WorldWideScience

Sample records for extracted ion current

  1. Observation of burst frequency in extracted ECR ion current

    NARCIS (Netherlands)

    Taki, G. S.; Sarma, P. R.; Drentje, A. G.; Nakagawa, T.; Ray, P. K.; Bhandari, R. K.

    2007-01-01

    Earlier we reported an ion current jump which was observed at a fixed negative biased disc potential in the 6.4GHz ECR ion source at VECC, Kolkata. In a recent experiment with neon ions, we measured the time spectra of the ion current and observed the presence of a burst frequency in the kilohertz r

  2. Evaluation of ion current density distribution on an extraction electrode of a radio frequency ion thruster

    Science.gov (United States)

    Masherov, P.; Riaby, V.; Abgaryan, V.

    2017-01-01

    The radial distributions of ion current density on an ion extracting electrode of a radio frequency (RF) ion thruster (RIT) with an inductive plasma source were obtained using probe diagnostics of the RF xenon plasma. Measurements were carried out using a plane wall probe simulator and the VGPS-12 Probe System of Plasma Sensors Co. At xenon flow rate q  =  2 sccm plasma pressure was 2 · 10-3 Torr, incident RF generator power varied in the range P g  =  50-250 W with RF power absorbed by plasma up to P p  =  220 W. Ion current densities were determined using semi- and double-logarithmic probe characteristics by linear extrapolations of their ion branches to probe floating potentials. The same parameters were also measured in undisturbed plasma by a classic cylindrical probe. They exceeded plane probe data by more than two times, showing the effectiveness of plasma sheath reproduction of the RIT ion extracting electrode by the plane wall probe simulator. Slight non-uniformity of the resulting plasma distributions and simplified RIT model design showed that the studied device with flat antenna coil and ferrite core could be considered as a promising prospect for RITs of new generation.

  3. Design of a low voltage, high current extraction system for the ITER Ion Source

    Science.gov (United States)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; de Esch, H. P. L.; Fubiani, G.; Marcuzzi, D.; Petrenko, S.; Pilan, N.; Rigato, W.; Serianni, G.; Singh, M.; Sonato, P.; Veltri, P.; Zaccaria, P.

    2009-03-01

    A Test Facility is planned to be built in Padova to assemble and test the Neutral Beam Injector for ITER. In the same Test Facility the Ion Source will be tested in a dedicated facility planned to operate in parallel to the main 1 MV facility. Purpose of the full size Ion Source is to optimize the Ion Source performance by maximizing the extracted negative ion current density and its spatial uniformity and by minimizing the ratio of co-extracted electrons. In this contribution the design of the extractor and accelerator grids for a 100 kV, 60 A system is presented. The trajectories of the negative ions, calculated with the SLACCAD code [1], have been benchmarked by a new 2D code (BYPO [2]) which solves in a self consistent way the electric fields in presence of electric charge and magnetic fields. The energy flux intercepted by the grids is estimated by using the Montecarlo code EAMCC [3] and the grids designed according to the constraints set by the permanent magnets and by the cooling channels. The interaction of backstreaming ions due to the ionization process with the grids and the Ion Source backplate is investigated and its impact on the project and performance discussed.

  4. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have been varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.

  5. Preliminary results concerning the simulation of beam profiles from extracted ion current distributions for mini-STRIKE

    Energy Technology Data Exchange (ETDEWEB)

    Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Giacomin, M. [Physics Department, Università di Padova, via F. Marzolo 8, 35131 Padova (Italy); Bonomo, F.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method to estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.

  6. ECR离子源引出束流周期性波动研究%Observation of Burst Frequency in Extracted ECR Ion Current

    Institute of Scientific and Technical Information of China (English)

    G.S.Taki; P.R.Sarma; A.G.Drentje; T.Nakagawa; P.K.Ray; R.K.Bhandari

    2007-01-01

    Earlier we reported an ion current jump which was observed at a fixed negative biased disc potential in the 6.4GHz ECR ion source at VECC,Kolkata.In a recent experiment with neon ions.we measured the time spectra of the ion current and observed the presence of a burst frequency in the kilohertz range.This frequency shows a correlated jump with the ion current jump described above.Another interesting feature is that the observed burst frequency shows a good linear correlation with the extracted ion current.The higher the ion current,the higher is the burst frequency.This means that current per burst is a constant factor;when there are more number of bursts,the current also increases.

  7. Ion current extracted from a self ignition plasma around the target immersed in a pulsed rf ICP methane plasma

    Science.gov (United States)

    Tanaka, Takeshi; Watanabe, Satoshi; Mizuno, Giichiro; Takagi, Toshinori; Yoshida, Mitsuhiro; Horibe, Hiroshi; Yukimura, Ken

    2003-05-01

    When a pulsed voltage is applied to a target immersed in plasma, the surrounding medium of the target is self-ignited under an appropriate discharge condition. For a three-dimensional substrate, ion implantation and deposition of the plasma species are promising to be uniformly attained by the self-ignition plasma. A retained dose of conformal ion implantation may increase with the self-ignition plasma generated in the target-immersed plasma. Ion are extracted from both the target-immersed plasma and the self-ignition plasma. In this research, a stainless steel target with a diameter of 140 mm and a thickness of 18 mm was immersed in a pulsed inductively coupled methane plasma to which a pulse voltage of -400 V to -10 kV with a width of 12 μs was repeatedly applied. The self-ignition plasma was generated at the voltage higher than about -1.2 kV. It was found that the shape of the current waveform changes by varying the applied voltage due to the change of the current from the self-ignition plasma.

  8. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  9. Self-focusing of a high current density ion beam extracted with concave electrodes in a low energy region around 150 eV

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Sakakita, H. [Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki (Japan)

    2014-02-15

    Spontaneous self-focusing of ion beam with high current density (J{sub c} ∼ 2 mA/cm{sup 2}, I{sub b} ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135–150 eV, and the J{sub c} jumps up from 0.7 to 2 mA/cm{sup 2}. Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.

  10. 强流ECR离子源引出系统研究%Study on Extraction System for High Current ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    王云; 张文慧; 张子民; 张雪珍; 刘占稳; 陈志; 赵红卫; 赵阳阳; 孙良亭; 杨尧; 钱程; 武启; 马鸿义

    2013-01-01

      为了提高强流ECR离子源的引出束流品质,分别设计了1#和2#引出系统,利用束流引出模拟软件PBGUNS对1#和2#引出系统进行了质子束流引出与传输的模拟计算,结合实际测得的发射度数据分析引出系统,发现2#引出系统比1#引出系统引出束流品质高。对ECR离子源引出系统的电势等位线分布等参数引起的球差进行了简单数学推导及MATLAB绘图,并结合1#和2#引出系统束流相图模拟结果证明了球差会使引出束流品质有效发射度增长,通过适当加大电极孔径可改善束流聚焦情况,得到了束流光学聚焦较好的束流引出系统设计。%  To improve the quality of extracted ion beam from a high current ECR ion source, 1# and 2# extraction systems were designed and tested. The PBGUNS code was used to simulate the 1# and 2# extraction systems of proton ion beam. The emittance measurement results with the two different extraction systems were compared and analyzed with the simulation, the conclusion that more high quality beam extracted from 2# system than 1# system was got. The formula derivation of ECR ion source extraction system spherical aberration and MATLAB drawing was done by the analyzing on the distribution of extraction field equipotentials, effective emittance increasing caused by spherical aberration was proved by 1# and 2# extraction systems beam phase space simulation result, beam focusing would be improved if electrode hole size increasing appropriately and a general concept on good optics focusing of ion beam extraction system was proposed finally.

  11. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  12. Negative ion beam extraction in ROBIN

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Gourab, E-mail: bansal@ipr.res.in [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren [Institute for Plasma Research (IPR), Bhat, Gandhinagar, Gujarat 382428 (India); Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak [ITER-India, Institute for Plasma Research, A-29, Sector 25, GIDC, Gandhinagar, Gujarat 380025 (India)

    2013-10-15

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10{sup 12} cm{sup −3} is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm{sup 2} as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10{sup 11} cm{sup −3} has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.

  13. Neutralization principles for the Extraction and Transport of Ion Beams

    CERN Document Server

    Riege, H

    2000-01-01

    The strict application of conventional extraction techniques of ion beams from a plasma source is characterized by a natural intensity limit determined by space charge.The extracted current may be enhanced far beyond this limit by neutralizing the space charge of the extracted ions in the first extraction gap of the source with electrons injected from the opposite side. The transverse and longitudinal emittances of a neutralized ion beam, hence its brightness, are preserved. Results of beam compensation experiments, which have been carried out with a laser ion source, are resumed for proposing a general scheme of neutralizing ion sources and their adjacent low-energy beam transport channels with electron beams. Many technical applications of high-mass ion beam neutralization technology may be identified: the enhancement of ion source output for injection into high-intensity, low-and high-energy accelerators, or ion thrusters in space technology, for the neutral beams needed for plasma heating of magnetic conf...

  14. Grid-controlled extraction of pulsed ion beams

    Science.gov (United States)

    Humphries, S., Jr.; Burkhart, C.; Coffey, S.; Cooper, G.; Len, L. K.; Savage, M.; Woodall, D. M.; Rutkowski, H.; Oona, H.; Shurter, R.

    1986-03-01

    Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm2 were achieved at 20-kV extractor voltage for an 8-μs pulse. With an aluminum-vapor arc, a current density of 15 mA/cm2 (0.3 A total) was measured for a 50-μs pulse.

  15. Grid-controlled extraction of pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, S. Jr.; Burkhart, C.; Coffey, S.; Cooper, G.; Len, L.K.; Savage, M.; Woodall, D.M.; Rutkowski, H.; Oona, H.; Shurter, R.

    1986-03-15

    Experimental results are presented on a method for extracting well-focused ion beams from plasma sources with time-varying properties. An electrostatic grid was used to stop the flow of plasma electrons so that only ions entered the extraction gap. In this case, ion flow in the gap was controlled by space-charge effects as it would be with a thermionic ion source. Constant extracted current was observed even with large variations of source flux. An insulator spark source and a metal-vapor vacuum arc were used to generate pulsed ion beams. With a hydrocarbon spark, current densities of 44 mA/cm/sup 2/ were achieved at 20-kV extractor voltage for an 8-..mu..s pulse. With an aluminum-vapor arc, a current density of 15 mA/cm/sup 2/ (0.3 A total) was measured for a 50-..mu..s pulse.

  16. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  17. Efficient ion beam extraction from a flowing plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.

    1979-10-01

    A moving plasma with directed flow velocities v larger than the ion acoustic speed c/sub s/ is used as a source of high-current ion beams in the 10--20-keV range of energies. Current densities up to 3 A/cm/sup 2/ are obtained at the plasma boundary which is an order of magnitude larger than the limiting value of Bohm current in a stationary plasma. The observed current densities were proportional to v, unlike the Bohm current densities which are proportional to ion acoustic speed. Total ion currents up to approx.100 A were extracted from the plasma through a two electrode extraction system. Simple geometric shaping of the electrodes enabled an 8-cm-diam beam to be focused to approx.7 mm.

  18. High-current ion beam from a moving plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.; Ponomarenko, A.G.

    1979-05-01

    High-current ion beams in the 10--20-keV range are extracted from a moving plasma. Current densities up to 2.5 A/cm/sup 2/ are obtained at the plasma boundary, which is almost an order of magnitude larger than the Bohm current. Total currents of over 100 A are obtained from the plasma. Simple geometric focusing gives current densities approx.200 A/cm/sup 2/ at the focus.

  19. Investigation of helium ion production in constricted direct current plasma ion source with layered-glows

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuna [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Yeong-Shin [Samsumg Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2014-02-15

    Generation of helium ions is experimentally investigated with a constricted direct current (DC) plasma ion source operated at layered-glow mode, in which electrons could be accelerated through multiple potential structures so as to generate helium ions including He{sup 2+} by successive ionization collisions in front of an extraction aperture. The helium discharge is sustained with the formation of a couple of stable layers and the plasma ball with high density is created near the extraction aperture at the operational pressure down to 0.6 Torr with concave cathodes. The ion beam current extracted with an extraction voltage of 5 kV is observed to be proportional to the discharge current and inversely proportional to the operating pressure, showing high current density of 130 mA/cm{sup 2} and power density of 0.52 mA/cm{sup 2}/W. He{sup 2+} ions, which were predicted to be able to exist due to multiple-layer potential structure, are not observed. Simple calculation on production of He{sup 2+} ions inside the plasma ball reveals that reduced operating pressure and increased cathode area will help to generate He{sup 2+} ions with the layered-glow DC discharge.

  20. Extraction of ions and electrons from audio frequency plasma source

    Directory of Open Access Journals (Sweden)

    N. A. Haleem

    2016-09-01

    Full Text Available Herein, the extraction of high ion / electron current from an audio frequency (AF nitrogen gas discharge (10 – 100 kHz is studied and investigated. This system is featured by its small size (L= 20 cm and inner diameter = 3.4 cm and its capacitive discharge electrodes inside the tube and its high discharge pressure ∼ 0.3 Torr, without the need of high vacuum system or magnetic fields. The extraction system of ion/electron current from the plasma is a very simple electrode that allows self-beam focusing by adjusting its position from the source exit. The working discharge conditions were applied at a frequency from 10 to 100 kHz, power from 50 – 500 W and the gap distance between the plasma meniscus surface and the extractor electrode extending from 3 to 13 mm. The extracted ion/ electron current is found mainly dependent on the discharge power, the extraction gap width and the frequency of the audio supply. SIMION 3D program version 7.0 package is used to generate a simulation of ion trajectories as a reference to compare and to optimize the experimental extraction beam from the present audio frequency plasma source using identical operational conditions. The focal point as well the beam diameter at the collector area is deduced. The simulations showed a respectable agreement with the experimental results all together provide the optimizing basis of the extraction electrode construction and its parameters for beam production.

  1. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Adonin, A. A., E-mail: a.adonin@gsi.de; Hollinger, R. [Linac and Operations/Ion Sources, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany)

    2014-02-15

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  2. Simulation of H- ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulator.

    Science.gov (United States)

    Kalvas, T; Welton, R F; Tarvainen, O; Han, B X; Stockli, M P

    2012-02-01

    A three-dimensional ion optical code IBSimu, which is being developed at the University of Jyväskylä, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H(-) ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H(-) currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two solenoids has been designed to transport the beam from the alternative electrostatic extraction systems to the radio frequency quadrupole.

  3. Simulation of H- ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulatora)

    Science.gov (United States)

    Kalvas, T.; Welton, R. F.; Tarvainen, O.; Han, B. X.; Stockli, M. P.

    2012-02-01

    A three-dimensional ion optical code IBSimu, which is being developed at the University of Jyväskylä, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H- ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H- currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two solenoids has been designed to transport the beam from the alternative electrostatic extraction systems to the radio frequency quadrupole.

  4. Current Density Measurements of an Annular-Geometry Ion Engine

    Science.gov (United States)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  5. Fast ion extraction in laser isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Hazak, G.; Gell, Y.; Boneh, Y.; Goshen, S.

    1980-10-01

    An analysis of the E x B scheme for fast ion extraction in laser isotope separation is presented. Using an analytically solvable model and a numerical simulation we have found that the scheme can meet the rather severe time and space restrictions imposed by the large cross section for charge exchange.

  6. EXTRACTION OF INTERNAL TIDE FROM CURRENT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to extract the internal tidal current from the current data which is not measured from the sea surface to the bottom, a data processing method is developed. It is based on the fact that the internal wave currents above and below the sharp thermocline are inverse in direction. This method is a practical extension to that proposed by Shu (1985) that can be only used to quite ideal current data. The ADCP data collected on the South China Sea is then processed by this method. The internal tidal current is successfully extracted.

  7. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  8. Ion energy spread and current measurements of the rf-driven multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Sun, L.; Vujic, J.; Williams, M.D.; Wutte, D. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm{sup 2} can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges. {copyright} {ital 1997 American Institute of Physics.}

  9. Ion energy spread and current measurements of the rf-driven multicusp ion source

    Science.gov (United States)

    Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.

    1997-03-01

    Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.

  10. Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves

    Science.gov (United States)

    Khazanov, George V.

    2002-01-01

    A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.

  11. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  12. Calculation Of Extraction Optics For Ion System With Plazma Emitter

    CERN Document Server

    Frolov, B A

    2004-01-01

    The 2-D code for simulating of ion optics system of positive ion extraction from a plasma source is described. Example calculation of 100 kV optics for the extraction ion IHEP gun is presented. The trajectories of particles and emittance plots are resulted. The aberrations influ-ence strongly on ion optics for considered geometry.

  13. Massive parallel 3D PIC simulation of negative ion extraction

    Science.gov (United States)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  14. Mass spectrometry improvement on an high current ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.G., E-mail: jgabriel@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Alegria, F.C., E-mail: falegria@lx.it.pt [Instituto Superior Tecnico/Technical University of Lisbon and Instituto de Telecomunicacoes, Av. Rovisco Pais, 1, 1049-001 Lisbon (Portugal); Redondo, L.M., E-mail: lmredondo@deea.isel.ipl.pt [Instituto Superior de Engenharia de Lisboa and Centro de Fisica Nuclear of the University of Lisbon, Rua Conselheiro Emidio Navarro, 1, 1959-007 Lisbon (Portugal); Rocha, J., E-mail: jrocha@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2011-12-15

    The development of accurate mass spectrometry, enabling the identification of all the ions extracted from the ion source in a high current implanter is described. The spectrometry system uses two signals (x-y graphic), one proportional to the magnetic field (x-axes), taken from the high-voltage potential with an optic fiber system, and the other proportional to the beam current intensity (y-axes), taken from a beam-stop. The ion beam mass register in a mass spectrum of all the elements magnetically analyzed with the same radius and defined by a pair of analyzing slits as a function of their beam intensity is presented. The developed system uses a PC to control the displaying of the extracted beam mass spectrum, and also recording of all data acquired for posterior analysis. The operator uses a LabVIEW code that enables the interfacing between an I/O board and the ion implanter. The experimental results from an ion implantation experiment are shown.

  15. An improved extraction for the multicusp-type light ion-ion source apparatus

    Science.gov (United States)

    Reijonen, J.; Heikkinen, P.; Liukkonen, E.; ńrje, J.

    1998-02-01

    A new ion extraction system has been developed for use with the light ion source apparatus (LIISA) of the Accelerator Laboratory. The aim of the new extraction system is to have a more intense and better quality beam. For simulation of the beam behavior at the extraction region a computer code IGUNe has been used. The simulation shows that a simple triode extraction would be efficient enough to extract total beam intensities of around 5 mA at an extraction voltage of 10-15 kV. At the same time, with the carefully designed plasma electrode, the emittance could be decreased significantly from the original design. The new extraction was installed in May 1997 and the results have been encouraging. The transport efficiency of the extracted beam to the first Faraday cup (at a distance of 1.2 m) was 100% and the maximum proton current obtained was 2.0 mA. The maximum proton current in the cyclotron inflector is 1.0 mA, which is eight times larger than the previous record.

  16. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  17. Current practice in transvenous lead extraction

    DEFF Research Database (Denmark)

    Bongiorni, Maria Grazia; Blomström-Lundqvist, Carina; Kennergren, Charles

    2012-01-01

    AIM: Current practice with regard to transvenous lead extraction among European implanting centres was analysed by this survey. METHODS AND RESULTS: Among all contacted centres, 164, from 30 countries, declared that they perform transvenous lead extraction and answered 58 questions...... with a compliance rate of 99.9%. Data from the survey show that there seems to be an overall increasing experience of managing various techniques of lead extraction and a widespread involvement of cardiac centres in this treatment. Results and complication rates seem comparable with those of main international...... registries. CONCLUSION: This survey gives an interesting snapshot of lead extraction in Europe today and gives some clues for future research and prospective European registries....

  18. Effective Extraction Mechanism of Volume-Produced Ions in the NIPPER I Device

    Directory of Open Access Journals (Sweden)

    Henry Ramos

    1993-12-01

    Full Text Available A mass spectrometer system is developed to extract and analyze hydrogen ions from a volume plasma hydrogen ion source. A 180° magnetic deflection-type mass analyzer is coupled to NIPPER I (National Institute of Physics Plasma Experimental Rig I, a negative ion source. Hydrogen plasma is produced from a low pressure gas (10-2 Torr with a transition of the glow discharge (254 volts, 75 mA to an arc plasma (78 volts, 14 amperes in a few seconds. The usually cylindrical plasma is converted into a sheet configuration using a pair of Sm-Co magnets. This optimizes ion current extraction by reducing (a the ion loss to the discharge anode and (b the decay of the ion current produced in the plasma. Negative hydrogen ions (H- are volume-produced by dissociative attachment of low energy electrons to highly vibrational excited hydrogen molecules.The extraction of H- ions from this volume source is optimized by the proper choice of apertures of the limiting electrodes and of the applied bias potential. A proper combination of extraction electrodes gives an optimum H- current extracted without the electrons. When one of the extraction electrodes is biased negatively near the value of the plasma floating potential, a maximum H- current is also obtained. The methods of effective extraction of H- are discussed.

  19. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph [Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50–100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant.

  20. Ion Extraction from a Toroidal Electron Cyclotron Resonance Ion Source: a Numerical Feasibility Study

    Science.gov (United States)

    Caliri, Claudia; Volpe, Francesco; Gammino, Santo; Mascali, David

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are magnetic mirror plasmas of microwave-heated electrons and cold multi-charged ions. The ions are extracted from one end of the mirror and injected in accelerators for nuclear and particle physics studies, hadrontherapy, or neutral beam injection in fusion plasmas. ECRIS devices progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of ``triple products'' comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modeling indicates. Possible techniques involve charge-dependent drifts, divertors, specially designed magnetic fields and associated loss-cones, electrostatic and/or magnetic deflectors, or techniques used in accelerators to transfer particles from one storage ring or accelerator to the next. Here we present single-particle tracings assessing and comparing these extraction techniques.

  1. Extraction mechanism of monovalent ion-pairs by polyurethane foams.

    Science.gov (United States)

    Fong, P; Chow, A

    1992-07-01

    The extractability sequence of K(+) approximately Rb(+) > Cs(+) > Na(+) > Li(+) for the extraction with polyether foam suggests that the cation chelation mechanism might be operative. However, the same order was obtained for the extraction with 100% polypropylene oxide polyether foam which does not normally adopt a helical structure to form oxygen-rich cavities as easily or as effectively as polyethylene oxide to accommodate alkali metal ions. This result indicates that a hole-size/cation-diameter relationship may not be required for the high extraction of K(+). The extraction of alkali metal DPAs and hydroxides from methanol demonstrates the importance of the solvent effect. It indicates that the water-structure enforced ion-pairing (WSEIP) is the driving force for extraction of the ion-pairs. The extraction mechanism for ionic species can be described as an ion-pair extraction process. The overall effect of ion-pair formation in water and interaction of the extracted ions with foam appears to determine the extractability of the ions of the extractable ion-pair.

  2. Analytical and simulation studies for diode and triode ion beam extraction systems

    Institute of Scientific and Technical Information of China (English)

    M. M. Abdelrahman1; N. I. Basal; S. G. Zakhary

    2012-01-01

    This work is concerned with ion beam dynamics and compares the emittance to aberration ratios of two-and three-electrode extraction systems.The study is conducted with the aid of Version 7 of SIMION 3D ray-tracing software.The beam dependence on various parameters of the extraction systems is studied and the numerical results lead to qualitative conclusions.Ion beam characteristics using diode and triode extraction systems are investigated with the aid of the computer code SIMION 3 D,Version 7.0. The diode (two electrode extraction system) and triode (threeelectrode extraction,acceleration-deceleration system) extraction systems are designed and optimized with different geometric parameters of the electrode system,voltage applied to the extraction electrode,and plasma parameters inside the ion source chamber,as well as by the ion beam space charge.This work attempts to describe the importance of the acceleration-deceleration extraction system.It shows that besides an increase of the beam energy,the ion beam has lower emittance than the two-electrode extraction system.Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum for which the perveance current intensity and the extraction gap have optimum value.Knowing the electron temperature of the plasma is necessary to determine plasma potential and the exact beam energy.

  3. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  4. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.

  5. Simulation of H{sup -} ion source extraction systems for the Spallation Neutron Source with Ion Beam Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kalvas, T.; Tarvainen, O. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae (Finland); Welton, R. F.; Han, B. X.; Stockli, M. P. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-02-15

    A three-dimensional ion optical code IBSimu, which is being developed at University of Jyvaeskylae, features positive and negative ion plasma extraction models and self-consistent space charge calculation. The code has been utilized for modeling the existing extraction system of the H{sup -} ion source of the Spallation Neutron Source. Simulation results are in good agreement with experimental data. A high-current extraction system with downstream electron dumping at intermediate energy has been designed. According to the simulations it provides lower emittance compared to the baseline system at H{sup -} currents exceeding 40 mA. A magnetic low energy beam transport section consisting of two solenoids has been designed to transport the beam from the alternative electrostatic extraction systems to the radio frequency quadrupole.

  6. Solid-liquid solvent extraction of metal ions

    Institute of Scientific and Technical Information of China (English)

    Bo Peng; Haiyan Fan; Jinzhang Gao

    2003-01-01

    An overview of extraction of some trace metal ions using molten solvent (low melting substance) during last two decadesis presented. The development of this technique since its inception is briefly traced. The comparison of extraction efficiency, thermo-dynamics and kinetics mainly involving extraction of rare earth ions between molten solvent extraction at high temperature and usualliquid-liquid extraction at room temperature are discussed in detail. The various parameters obtained from the previous and presentstudies such as equilibrium extraction constant Kex, pH1/2, thermodynamic and kinetic data are displayed in tabular form. Finally, thecurrent demands, disadvantages and future prospects are also evaluated.

  7. Ion Concentration Polarization by Bifurcated Current Path.

    Science.gov (United States)

    Kim, Junsuk; Cho, Inhee; Lee, Hyomin; Kim, Sung Jae

    2017-07-11

    Ion concentration polarization (ICP) is a fundamental electrokinetic process that occurs near a perm-selective membrane under dc bias. Overall process highly depends on the current transportation mechanisms such as electro-convection, surface conduction and diffusioosmosis and the fundamental characteristics can be significantly altered by external parameters, once the permselectivity was fixed. In this work, a new ICP device with a bifurcated current path as for the enhancement of the surface conduction was fabricated using a polymeric nanoporous material. It was protruded to the middle of a microchannel, while the material was exactly aligned at the interface between two microchannels in a conventional ICP device. Rigorous experiments revealed out that the propagation of ICP layer was initiated from the different locations of the protruded membrane according to the dominant current path which was determined by a bulk electrolyte concentration. Since the enhancement of surface conduction maintained the stability of ICP process, a strong electrokinetic flow associated with the amplified electric field inside ICP layer was significantly suppressed over the protruded membrane even at condensed limit. As a practical example of utilizing the protruded device, we successfully demonstrated a non-destructive micro/nanofluidic preconcentrator of fragile cellular species (i.e. red blood cells).

  8. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta

    2006-05-01

    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  9. Simulation of ion beam injection and extraction in an EBIS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L., E-mail: zhao@far-tech.com; Kim, J. S. [FAR-TECH, Inc., San Diego, California 92121 (United States)

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  10. Simulation of ion beam injection and extraction in an EBIS

    Science.gov (United States)

    Zhao, L.; Kim, J. S.

    2016-02-01

    An example simulation of Au+ charge breeding using FAR-TECH's integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  11. Predicting ion flux uniformity at the ion extraction plate in a 3D ICP reactor

    Science.gov (United States)

    Roy, Abhra; Bhoj, Ananth

    2016-09-01

    In order to achieve better control in processing the wafer surface, the ion fluxes in a remote plasma system are often focused through one or more ion extraction plates between the main plasma chamber and the downstream wafer plane. The ion extraction plates are typically of showerhead pattern with multiple holes. The focus of this particular study is to predict the ion flux uniformity over the ion extraction plate for a full 3D inductively coupled discharge reactor model using Argon chemistry. We will use the commercial modeling tool, CFD-ACE +, which can address such a process involving gas flow, heat transfer, plasma physics, reaction chemistry and electromagnetics in a coupled fashion. The plasma characteristics in the chamber and uniformity of the ion fluxes at ion extraction plate are discussed. Parametric studies varying the geometrical dimensions and process conditions to determine the effect on ion flux uniformity are presented. The showerhead-like ion extraction plate will be modeled as a porous media with a specified porosity. Further, a spatially varying porosity of the ion extraction plate is used to simulate ion recombination in order to reduce the ion flux non-uniformity. The goal is to optimize the system maximizing the ion flux while maintaining the uniformity.

  12. A New Three-Dimensional Code for Simulation of Ion Beam Extraction: Ion Optics Simulator

    Institute of Scientific and Technical Information of China (English)

    JIN Dazhi; HUANG Tao; HU Quan; YANG Zhonghai

    2008-01-01

    A new thee-dimensional code, ion optics simulator (IOS), to simulate ion beam extraction is developed in visual C++ language. The theoretical model, the flowchart of code, and the results of calculation as an example are presented.

  13. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclay.

    Science.gov (United States)

    Delferrière, O; Gobin, R; Harrault, F; Nyckees, S; Sauce, Y; Tuske, O

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  14. Advanced light ion source extraction system for a new electron cyclotron resonance ion source geometry at Saclaya)

    Science.gov (United States)

    Delferrière, O.; Gobin, R.; Harrault, F.; Nyckees, S.; Sauce, Y.; Tuske, O.

    2012-02-01

    One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.

  15. Development of heating device / development of the high current ion source for neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Dong Gyu; Lee, Kyong Jin; Ko Tae Kyong [Cheju National Univ., Cheju (Korea)

    1998-08-01

    The design and fabrication of a high current ion source for NBI was carried out. The scale of an ion source was reduced for mock-up test. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If fabricated ion source would be tested, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the ion beam technology in the field of new material synthesis and semiconductor industry. 24 refs., 22 figs., 13 tabs. (Author)

  16. The extraction of negative carbon ions from a volume cusp ion source

    Science.gov (United States)

    Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli

    2017-08-01

    Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.

  17. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  18. Transport and extraction of radioactive ions stopped in superfluid helium

    CERN Document Server

    Huang Wan Xia; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, J P; Äystö, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaeskylae, Finland. An open sup 2 sup 2 sup 3 Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling sup 2 sup 1 sup 9 Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  19. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    Science.gov (United States)

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  20. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    Science.gov (United States)

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  1. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow

    Energy Technology Data Exchange (ETDEWEB)

    Dudin, S. V. [Department of Physics and Technology, V.N. Karazin Kharkiv National University, Kurchatova Ave. 31, 61108 Kharkiv (Ukraine); Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv (Ukraine); Rafalskyi, D. V. [Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv (Ukraine)

    2012-11-15

    The present research is devoted to the problem of extraction grid choice for a single-grid source of bipolar ion-electron flow. The paper contains detailed reference information on ion and electron extraction characteristics of 10 different grids with broad range of parameters: aperture width (0.09-0.6 mm), grid transparency (0.19-0.51), thickness (0.036-0.5 mm), and with different aperture geometry. The grids with square, circular, and slit apertures were made with different technologies: laser cutting, welding, weaving, and electrolytic erosion. The general regularities of the ion and electron extraction from the single-grid source are experimentally researched for the cases of dc and RF extraction grid biasing. A conclusion has been made that the maximum extracted ion current at low ion energy (0-200 eV) does not significantly vary for all the grids and does not exceed half of the primary ion current from plasma multiplied by the optical grid transparency. The low-energy limit of efficient ion extraction has been discovered which cannot be overcome by the aperture narrowing. A conclusion is made that the RF extraction mode is superior for all the researched grids since it is characterized by higher extracted ion current at any acceleration voltage for any grid with much more simple and smooth extraction curves behavior in comparison to the dc case as well as absence of arcing, jumps, and hysteresis of the measured curves at any RF voltages. The unique ability of the RF biased single-grid source of simultaneous ion/electron emission has been studied. The measured maximal attainable ion beam current compensation ratio is always sufficiently higher than 1 and typically varies in the range 2-6. The results obtained in the present paper demonstrate prospective of the single-grid source in space thruster applications and in modern technologies, particularly for ion beam processing of wide bandgap semiconductor devices such as GaN and SiC transistors due to inherent

  2. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current.

    Science.gov (United States)

    Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed

    2016-01-15

    This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency.

  3. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  4. Scattering extraction of ions at CRYRING for SEU testing

    CERN Document Server

    Novák, D; Klamra, W; Norlin, L O; Bagge, L; Kaellberg, A; Paál, A; Rensfelt, K G; Molnár, J

    1999-01-01

    A measuring station has been built at the CRYRING heavy ion accelerator to test the Single Event Upset (SEU) phenomena in working Static RAM circuits. The setup extracts the beam using Rutherford scattering and the ions are monitored with a BaF sub 2 scintillator. SEU measurements have been performed for standard bulk CMOS memory circuits.

  5. An online peak extraction algorithm for ion mobility spectrometry data.

    Science.gov (United States)

    Kopczynski, Dominik; Rahmann, Sven

    2015-01-01

    Ion mobility (IM) spectrometry (IMS), coupled with multi-capillary columns (MCCs), has been gaining importance for biotechnological and medical applications because of its ability to detect and quantify volatile organic compounds (VOC) at low concentrations in the air or in exhaled breath at ambient pressure and temperature. Ongoing miniaturization of spectrometers creates the need for reliable data analysis on-the-fly in small embedded low-power devices. We present the first fully automated online peak extraction method for MCC/IMS measurements consisting of several thousand individual spectra. Each individual spectrum is processed as it arrives, removing the need to store the measurement before starting the analysis, as is currently the state of the art. Thus the analysis device can be an inexpensive low-power system such as the Raspberry Pi. The key idea is to extract one-dimensional peak models (with four parameters) from each spectrum and then merge these into peak chains and finally two-dimensional peak models. We describe the different algorithmic steps in detail and evaluate the online method against state-of-the-art peak extraction methods.

  6. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  7. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B. A. Soliman; M. M. Abdelrahman; A. G. Helal; F. W. Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7. This has been used to evaluate the extraction characteristics (accel-decel system) to generate an

  8. Measurement of ion species in high current ECR H{sup +}/D{sup +} ion source for IFMIF (International Fusion Materials Irradiation Facility)

    Energy Technology Data Exchange (ETDEWEB)

    Shinto, K., E-mail: shinto.katsuhiro@jaea.go.jp; Ichimiya, R.; Ihara, A.; Ikeda, Y.; Kasugai, A.; Kitano, T.; Kondo, K.; Takahashi, H. [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Senée, F.; Bolzon, B.; Chauvin, N.; Gobin, R.; Valette, M. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191 Gif/Yvette (France); Ayala, J.-M.; Marqueta, A.; Okumura, Y. [IFMIF/EVEDA Project Team, Rokkasho, Aomori 039-3212 (Japan)

    2016-02-15

    Ion species ratio of high current positive hydrogen/deuterium ion beams extracted from an electron-cyclotron-resonance ion source for International Fusion Materials Irradiation Facility accelerator was measured by the Doppler shift Balmer-α line spectroscopy. The proton (H{sup +}) ratio at the middle of the low energy beam transport reached 80% at the hydrogen ion beam extraction of 100 keV/160 mA and the deuteron (D{sup +}) ratio reached 75% at the deuterium ion beam extraction of 100 keV/113 mA. It is found that the H{sup +} ratio measured by the spectroscopy gives lower than that derived from the phase-space diagram measured by an Allison scanner type emittance monitor. The H{sup +}/D{sup +} ratio estimated by the emittance monitor was more than 90% at those extraction currents.

  9. On the microscopic mechanism of ion-extraction of a gridded ion propulsion thruster

    CERN Document Server

    Kirmse, Danny

    2013-01-01

    The following paper includes a physical microscopic particle-description of the phenomena and mechanisms that lead to the extraction of ions with the aim to generate thrust. This theoretical treatise arose from the intention to visualize the behavior of the involved particles under effect of the involved electrical fields. By this way, an underlying basis for experimental investigations of the work of an ion thruster should be formed. So a foundation was created, which explains the ion extracting and so thrust generating function of an ion thruster. The theoretical work was related to the Radio-frequency Ion Thruster (RIT). But the model worked out can be generalized for all thruster types that use electrostatic fields to extract positively charged ions.

  10. Generalization of the Child-Langmuir law to the alternate extraction of positive and negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); ONERA-The French Aerospace Lab, 91120 Palaiseau (France); Aanesland, A. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-12-15

    Using a combined analytical and simulation approach, we investigate positive and negative ion extraction between two electrodes from an ion-ion plasma source. With a square voltage waveform applied to the electrodes, we obtain approximate analytical solutions for the time-averaged extracted current densities, which are given simply by: J{sub p}{sup ac}=[α−fL√((M{sub p})/(q{sub p}V{sub 0}) )]J{sub p}{sup dc}, and J{sub n}{sup ac}=[(1−α)−fL√((M{sub n})/(q{sub n}V{sub 0}) )]J{sub n}{sup dc}, where J{sup ac} is the time-averaged current density, α is the square waveform duty cycle, f is the frequency, L is the electrode gap length, M is the ion mass, q is the ion charge, V{sub 0} is the applied voltage amplitude, J{sup dc} is the dc extracted current density, and the subscripts p and n refer to positive and negative ions, respectively. In particular, if J{sup dc} is the dc space-charge limited current density, then these equations describe the square waveform generalization of the Child-Langmuir law.

  11. Analysis of the H- ion emissive surface in the extraction region of negative ion sources.

    Science.gov (United States)

    Kameyama, N; Fukuyama, T; Wada, S; Kuppel, S; Tsumori, K; Nakano, H; Hatayama, A; Miyamoto, K; Fukano, A; Bacal, M

    2012-02-01

    To understand the plasma characteristics in the extraction region of negative H(-) sources is very important for the optimization of H(-) extraction from the sources. The profile of plasma density and electrostatic potential in the extraction region with and without extraction grid voltage are analyzed with a 2D particle in cell modeling of the NIFS-RD H(-) sources. The simulation results make clear the physical process forming a double ion plasma layer (which consists only of positive H(+) and negative H(-) ions) recently observed in the Cs-seeded experiments of the NIFS-R&D source in the vicinity of the extraction hole and the plasma grid. The results also give a useful insight into the formation mechanism of the plasma meniscus and the H(-) extraction process for such double ion plasma.

  12. Ion current rectification inversion in conic nanopores: nonequilibrium ion transport biased by ion selectivity and spatial asymmetry.

    Science.gov (United States)

    Yan, Yu; Wang, Lin; Xue, Jianming; Chang, Hsueh-Chia

    2013-01-28

    We show both theoretically and experimentally that the ion-selectivity of a conic nanopore, as defined by a normalized density of the surface charge, significantly affects ion current rectification across the pore. For weakly selective negatively charged pores, intra-pore ion transport controls the current and internal ion enrichment/depletion at positive/reverse biased voltage (current enters/leaves through the tip, respectively), which is responsible for current rectification. For strongly selective negatively charged pores under positive bias, the current can be reduced by external field focusing and concentration depletion at the tip at low ionic strengths and high voltages, respectively. These external phenomena produce a rectification inversion for highly selective pores at high (low) voltage (ionic strength). With an asymptotic analysis of the intra-pore and external ion transport, we derive simple scaling laws to quantitatively capture empirical and numerical data for ion current rectification and rectification inversion of conic nanopores.

  13. Conceptual design of first toroidal electron cyclotron resonance ion source and modeling of ion extraction from it

    CERN Document Server

    Caliri, C; Volpe, F A

    2015-01-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) progressed to higher and higher ion currents and charge states by adopting stronger magnetic fields (beneficial for confinement) and proportionally higher ECR frequencies. Further improvements would require the attainment of "triple products" of density, temperature and confinement time comparable with major fusion experiments. For this, we propose a new, toroidal rather than linear, ECRIS geometry, which would at the same time improve confinement and make better use of the magnetic field. Ion extraction is more complicated than from a linear device, but feasible, as our modelling suggests: single-particle tracings showed successful extraction by at least two techniques, making use respectively of a magnetic extractor and of ExB drifts. Additional techniques are briefly discussed.

  14. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Spädtke, Peter, E-mail: p.spaedtke@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  15. Double einzel lens extraction for the JYFL 14 GHz ECR ion source designed with IBSimu

    Science.gov (United States)

    Toivanen, V.; Kalvas, T.; Koivisto, H.; Komppula, J.; Tarvainen, O.

    2013-05-01

    In order to improve the performance of the JYFL 14 GHz electron cyclotron resonance ion source (ECRIS) and initiate low energy beam transport (LEBT) upgrade at the University of Jyväskylä, Department of Physics (JYFL) accelerator laboratory, a new ion beam extraction system has been designed and installed. The development of the new extraction was performed with the ion optical code IBSimu, making it the first ECRIS extraction designed with the code. The measured performance of the new extraction is in good agreement with the simulations. Compared to the old extraction the new system provides improved beam quality, i.e. lower transverse emittance values and improved structure of beam profiles, and transmission efficiency of the LEBT and the JYFL K-130 cyclotron. For example, the transmission efficiencies of 40Ar8+ and 84Kr16+ beams have increased by 80 and 90%, respectively. The new extraction system is capable of handling higher beam currents than the old one, which has been demonstrated by extracting new 4He+ and 4He2+ record beam currents of 1.12 mA and 720 μA, exceeding the old records of the JYFL 14 GHz ECRIS by a factor of two.

  16. Ionic currents and ion channels of lobster olfactory receptor neurons

    OpenAIRE

    1989-01-01

    The role of the soma of spiny lobster olfactory receptor cells in generating odor-evoked electrical signals was investigated by studying the ion channels and macroscopic currents of the soma. Four ionic currents; a tetrodotoxin-sensitive Na+ current, a Ca++ current, a Ca(++)-activated K+ current, and a delayed rectifier K+ current, were isolated by application of specific blocking agents. The Na+ and Ca++ currents began to activate at -40 to -30 mV, while the K+ currents began to activate at ...

  17. Extraction of copper ions by supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Complexation combined with supercritical fluid extraction was used to extract Cu2+ in this study. The effects of pressure, temperature, volume of CO2 on the efficiency of extraction were systematically investigated. At the optimum condition a 57.32% recovery was achieved. Addition of suitable amount of methanol(v/v = 5 % ) to the supercritical CO2 can increase in the extraction of Cu2+ (72.69 %, RSD = 2.12 %, n = 3). And the recovery can further increase in the presence of non-ionic surfactant Triton X-100 because of its function of solubilization. Surfactant was first used in the extraction of metal ions in the present study, and the results are satisfied (90.52%, RSD=2.20%, n =3).

  18. Intensified extraction of ionized natural products by ion pair centrifugal partition extraction.

    Science.gov (United States)

    Hamzaoui, Mahmoud; Hubert, Jane; Hadj-Salem, Jamila; Richard, Bernard; Harakat, Dominique; Marchal, Luc; Foucault, Alain; Lavaud, Catherine; Renault, Jean-Hugues

    2011-08-05

    The potential of centrifugal partition extraction (CPE) combined with the ion-pair (IP) extraction mode to simultaneously extract and purify natural ionized saponins from licorice is presented in this work. The design of the instrument, a new laboratory-scale Fast Centrifugal Partition Extractor (FCPE300(®)), has evolved from centrifugal partition chromatography (CPC) columns, but with less cells of larger volume. Some hydrodynamic characteristics of the FCPE300(®) were highlighted by investigating the retention of the stationary phase under different flow rate conditions and for different biphasic solvent systems. A method based on the ion-pair extraction mode was developed to extract glycyrrhizin (GL), a biologically active ionic saponin naturally present in licorice (Glycyrrhiza glabra L., Fabaceae) roots. The extraction of GL was performed at a flow rate of 20 mL/min in the descending mode by using the biphasic solvent system ethyl acetate/n-butanol/water in the proportions 3/2/5 (v/v/v). Trioctylmethylammonium with chloride as a counter-ion (Al336(®)) was used as the anion extractant in the organic stationary phase and iodide, with potassium as counter-ion, was used as the displacer in the aqueous mobile phase. From 20 g of a crude extract of licorice roots, 2.2g of GL were recovered after 70 min, for a total process duration of 90 min. The combination of the centrifugal partition extractor with the ion-pair extraction mode (IP-CPE) offers promising perspectives for industrial applications in the field of natural product isolation or for the fractionation of natural complex mixtures.

  19. Eddy current septum magnets for injection and extraction at SSRF

    Science.gov (United States)

    Ouyang, Lian-Hua; Gu, Ming; Liu, Bo; Chen, Rong

    2010-03-01

    There are 6 in-vacuum eddy current septum magnets used for booster injection, extraction, and storage ring injection in SSRF. Special attention was paid to coils and their support designs because of the shock force they bear in the magnetic fields and the high heat which is hard to be dissipated in vacuum environment. For the storage ring magnets, good transverse homogeneity in the gap was achieved by careful design, precise machining and accurate assembly; and an extremely low leakage field on the stored beam is another key feature thanks to the high permeability Mu metal. Magnetic field measurement was conducted with both a point coil and a long integral coil, and the results agree well with the OPERA-2d/3d simulations. An inner tube is added to keep the continuity of impedance for the circulating beam with two RF finger flanges at each end. There is no vacuum separation between the inner tube and the magnet chamber. Sputter ion pumps integrated with NEG are used to acquire the UHV for the chamber.

  20. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  1. Comparison of ONIX simulation results with experimental data from the BATMAN testbed for the study of negative ion extraction

    Science.gov (United States)

    Mochalskyy, Serhiy; Fantz, Ursel; Wünderlich, Dirk; Minea, Tiberiu

    2016-10-01

    The development of negative ion (NI) sources for the ITER neutral beam injector is strongly accompanied by modelling activities. The ONIX (Orsay Negative Ion eXtraction) code simulates the formation and extraction of negative hydrogen ions and co-extracted electrons produced in caesiated sources. In this paper the 3D geometry of the BATMAN extraction system, and the source characteristics such as the extraction and bias potential, and the 3D magnetic field were integrated in the model. Calculations were performed using plasma parameters experimentally obtained on BATMAN. The comparison of the ONIX calculated extracted NI density with the experimental results suggests that predictive calculations of the extraction of NIs are possible. The results show that for an ideal status of the Cs conditioning the extracted hydrogen NI current density could reach ~30 mA cm-2 at 10 kV and ~20 mA cm-2 at 5 kV extraction potential, with an electron/NI current density ratio of about 1, as measured in the experiments under the same plasma and source conditions. The dependency of the extracted NI current on the NI density in the bulk plasma region from both the modeling and the experiment was investigated. The separate distributions composing the NI beam originating from the plasma bulk region and the PG surface are presented for different NI plasma volume densities and NI emission rates from the plasma grid (PG) wall, respectively. The extracted current from the NIs produced at the Cs covered PG surface, initially moving towards the bulk plasma and then being bent towards the extraction surfaces, is lower compared to the extracted NI current from directly extracted surface produced ions.

  2. Current Status of the Daejeon Ion Accelerator Complex at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Sung-Ryul; Chang, Dae-Sik; Hwang, Churl-Kew; Lee, Seok-Kwan; Jin, Jeong-Tae; Oh, Byung-Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The Daejeon ion accelerator complex (DIAC) is being constructed at Korea atomic energy research institute (KAERI) in order to fulfill an increasing demand for heavy ion beam facilities for various purposes including structural material study, biological research and nanomaterial treatment. The accelerators in the DIAC are designed to produce heavy ion beams with energies up to 1 MeV/u and beam currents up to 300 μA. [1–4] In this article, current status of the DIAC construction is presented and discussed. The DIAC facilities are designed to handle stable non-radioactive beams. According to user demand, the separated two ECR sources (i.e., an 18 GHz KEK – the high energy accelerator research organization ECR ion source with a metal oven and a 14.5 GHz KAERI ECR ion source) together with low energy beam transport line (LEBT) can supply linacs with both metal and non-metal ions. From the successful full-power test results, we confirmed that the IH and RFQ linacs work properly and then they are ready to accelerate heavy ions up to 1.09 MeV/nucleon. Since all tests and reorganization of the integrated control system were successful, it is supposed that the DIAC is now ready for beam tuning. Presently, construction of radiation shielded walls and radiation safety licensing are now in progress.

  3. Gridless, very low energy, high-current, gaseous ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2010-02-15

    We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

  4. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    Science.gov (United States)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  5. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  6. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K.

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  7. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.; Ueda, H.; Yasuda, Y.; Morinobu, S.; Tamii, A.; Kamakura, K. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047 (Japan)

    2014-02-15

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  8. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  9. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  10. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Science.gov (United States)

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  11. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts.

  12. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure ...

  13. Advanced integrated solvent extraction and ion exchange systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, P. [Argonne National Lab., IL (United States)

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  14. Extraction of Internal Tidal Currents from A Portion of Sea Current Profile

    Institute of Scientific and Technical Information of China (English)

    韩春明; 潘增弟; 范典

    2002-01-01

    Internal tide is one of the major oceanic phenomena. Determination of internal tide is important for theoretical studyand for ocean engineering research. As an inverse problem, extraction of internal tidal currents from sea currents is diffi-cult. In this paper, a method is developed to extract internal tidal currents from a portion of the sea current profile basedon the fact that the directions of internal tidal currents above and below the thermocline are inverse. Sea current data col-lected from the South China Sea is processed with this method. The internal tidal currents and the depth of the thermo-cline are successfully extracted. The depth of the thermocline determined is in good agreement with that measured in 1959.

  15. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  16. Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

    Directory of Open Access Journals (Sweden)

    V.I. Voznyi

    2012-10-01

    Full Text Available A radio-frequency (RF inductive ion source at 27.12 MHz is investigated. With a global model of the argon discharge, plasma density, electron temperature and ion current density of the ion source is calculated in relation to absorbed RF power and gas pressure as a discharge chamber size changes. It is found that ion beam current density grows as the discharge chamber size decreases. Calculations show that in the RF source with a discharge chamber 30 mm in diameter and 35 mm long the ion current density is 40 mA/cm2 at 100 W of absorbed RF power and 7 mTorr of pressure, and agrees well with experimentally measured value of 43 mA/cm2. With decreasing discharge chamber diameter to 15 mm ion current density can reach 85 mA/cm2 at absorbed RF power of 100 W.

  17. Optimization and numerical simulation for the extraction system of the H- multicusp ion source

    Science.gov (United States)

    Hosseinzadeh, M.; Afarideh, H.

    2014-05-01

    A new ion source has been designed and manufactured for the CYCLONE30 accelerator, which has a much advanced performance compared with the original. It is expected that the newly designed ion source extraction system will transport a very large percentage of the beam without deteriorating the beam optics, which is designed to deliver an H- beam at 30 keV. The accelerator assembly consists of three circular aperture electrodes made of copper. The simulation study was focused on finding parameter sets that raise the beam perveance as large as possible and which reduce the beam divergence as low as possible. Ion beams of the highest quality are extracted whenever the half-angular divergence is minimum, for which the perveance current intensity and the extraction gap have optimum values. The triode extraction system is designed and optimized by using CST software (for Particle Beam Simulations). The physical design of the extraction system is given in this paper. From the simulation results, it is concluded that it is possible to achieve this goal by decreasing the thickness of the plasma electrode, shortening the first gap, and adjusting the acceleration electrode voltage.

  18. Parameter Extraction and Characteristics Study for Manganese-Type Lithium-Ion Battery

    OpenAIRE

    Somakettarin, Natthawuth; Funaki, Tsuyoshi

    2016-01-01

    In this paper, we propose the battery transient response model and parameter extraction method for studying the dynamic behaviors of Manganese-type Lithium-Ion battery. The background knowledge of the battery structure and its operating principle are also concluded. Several aspects of operating conditions, such as charging and discharging operations, environments of terminal currents and temperatures, are considered through the experiments for understanding the battery behaviors.  The charact...

  19. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I.; Nishioka, S.; Hatayama, A. [Graduate school of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  20. Effect of conical nanopore diameter on ion current rectification.

    Science.gov (United States)

    Kovarik, Michelle L; Zhou, Kaimeng; Jacobson, Stephen C

    2009-12-10

    Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current-voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current-voltage curves when initially etched and strong rectification after the ion current has stabilized.

  1. Ion cyclotron harmonics in the Saturn downward current auroral region

    Science.gov (United States)

    Menietti, J. D.; Schippers, P.; Santolík, O.; Gurnett, D. A.; Crary, F.; Coates, A. J.

    2011-12-01

    Observations of intense upgoing electron beams and diffuse ion beams have been reported during a pass by Cassini in a downward current auroral region, nearby a source region of Saturn kilometric radiation. Using the Cassini Radio and Plasma Wave Science (RPWS) instrument low frequency waveform receiver and the Cassini Plasma Spectrometer Investigation (CAPS) instrument we have been able to identify ion cyclotron harmonic waves associated with the particle beams. These observations indicate similarities with terrestrial auroral emissions, and may be a source of wave-particle interactions. We fit the observed plasma electron distribution with drifting Maxwellians and perform a linear numerical analysis of plasma wave growth. The results are relevant to ion heating and possibly to electron acceleration.

  2. Ultrahigh-current-density metal-ion implantation and diamondlike-hydrocarbon films for tribological applications

    Science.gov (United States)

    Wilbur, P. J.

    1993-09-01

    The metal-ion-implantation system used to implant metals into substrates are described. The metal vapor required for operation is supplied by drawing sufficient electron current from the plasma discharge to an anode-potential crucible so a solid, pure metal placed in the crucible will be heated to the point of vaporization. The ion-producing, plasma discharge is initiated within a graphite-ion-source body, which operates at high temperature, by using an argon flow that is turned off once the metal vapor is present. Extraction of ion beams several cm in diameter at current densities ranging to several hundred micro-A/sq cm on a target 50 cm downstream of the ion source were demonstrated using Mg, Ag, Cr, Cu, Si, Ti, V, B, and Zr. These metals were implanted into over 100 substrates (discs, pins, flats, wires). A model describing thermal stresses induced in materials (e.g. ceramic plates) during high-current-density implantation is presented. Tribological and microstructural characteristics of iron and 304-stainless-steel samples implanted with Ti or B are examined. Diamondlike-hydrocarbon coatings were applied to steel surfaces and found to exhibit good tribological performance.

  3. Eddy current pulsed phase thermography and feature extraction

    Science.gov (United States)

    He, Yunze; Tian, GuiYun; Pan, Mengchun; Chen, Dixiang

    2013-08-01

    This letter proposed an eddy current pulsed phase thermography technique combing eddy current excitation, infrared imaging, and phase analysis. One steel sample is selected as the material under test to avoid the influence of skin depth, which provides subsurface defects with different depths. The experimental results show that this proposed method can eliminate non-uniform heating and improve defect detectability. Several features are extracted from differential phase spectra and the preliminary linear relationships are built to measure these subsurface defects' depth.

  4. Lipid bilayer microarray for parallel recording of transmembrane ion currents.

    Science.gov (United States)

    Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V; Noji, Hiroyuki; Takeuchi, Shoji

    2008-01-01

    This paper describes a multiwell biochip for simultaneous parallel recording of ion current through transmembrane pores reconstituted in planar lipid bilayer arrays. Use of a thin poly(p-xylylene) (parylene) film having micrometer-sized apertures (phi=15-50 microm, t=20 microm) led to formation of highly stable bilayer lipid membranes (BLMs) for incorporation of transmembrane pores; thus, a large number of BLMs could be arrayed without any skillful technique. We optically confirmed the simultaneous formation of BLMs in a 5x5 matrix, and in our durability test, the BLM lasted more than 15 h. Simultaneous parallel recording of alamethicin and gramicidin transmembrane pores in multiple contiguous recording sites demonstrated the feasibility of high-throughput screening of transmembrane ion currents in artificial lipid bilayers.

  5. Backside calibration chronopotentiometry: using current to perform ion measurements by zeroing the transmembrane ion flux.

    Science.gov (United States)

    Xu, Yida; Ngeontae, Wittaya; Pretsch, Ernö; Bakker, Eric

    2008-10-01

    A recent new direction in ion-selective electrode (ISE) research utilizes a stir effect to indicate the disappearance of an ion concentration gradient across a thin ion-selective membrane. This zeroing experiment allows one to evaluate the equilibrium relationship between front and backside solutions contacting the membrane by varying the backside solution composition. This method is attractive since the absolute potential during the measurement is not required, thus avoiding standard recalibrations from the sample solution and a careful control of the reference electrode potential. We report here on a new concept to alleviate the need to continuously vary the composition of the backside solution. Instead, transmembrane ion fluxes are counterbalanced at an imposed critical current. A theoretical model illustrates the relationship between the magnitude of this critical current and the concentration of analyte and countertransporting ions and is found to correspond well with experimental results. The approach is demonstrated with lead(II)-selective membranes and protons as dominating interference ions, and the concentration of Pb(2+) was successfully measured in tap water samples. The principle was further evaluated with calcium-selective membranes and magnesium as counterdiffusing species, with good results. Advantages and limitations arising from the kinetic nature of the perturbation technique are discussed.

  6. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  7. Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sources.

    Science.gov (United States)

    Pierret, C; Maunoury, L; Biri, S; Pacquet, J Y; Tuske, O; Delferriere, O

    2008-02-01

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICA coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.

  8. Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sourcesa)

    Science.gov (United States)

    Pierret, C.; Maunoury, L.; Biri, S.; Pacquet, J. Y.; Tuske, O.; Delferriere, O.

    2008-02-01

    The goal of this article is to present simulations on the extraction from an electron cyclotron resonance ion source (ECRIS). The aim of this work is to find out an extraction system, which allows one to reduce the emittances and to increase the current of the extracted ion beam at the focal point of the analyzing dipole. But first, we should locate the correct software which is able to reproduce the specific physics of an ion beam. To perform the simulations, the following softwares have been tested: SIMION 3D, AXCEL, CPO 3D, and especially, for the magnetic field calculation, MATHEMATICA coupled with the RADIA module. Emittance calculations have been done with two types of ECRIS: one with a hexapole and one without a hexapole, and the difference will be discussed.

  9. Negative ion production and beam extraction processes in a large ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Tsumori, K., E-mail: tsumori@nifs.ac.jp; Nakano, H.; Goto, M.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Ikeda, K.; Kisaki, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Geng, S. [The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193 (Japan); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Sasaki, K.; Nishiyama, S. [Division of Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Serianni, G.; Agostinetti, P.; Sartori, E.; Brombin, M.; Veltri, P. [Plasma Engineering Group, Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Wimmer, C. [Max-Planck-Institut für Plasmaphysik, Bereich ITER-Technologie und -Diagnostik/N-NBI Boltzmannstr. 2, 85748 Garching (Germany)

    2016-02-15

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H{sup −}) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H{sup −} density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H{sub 2} plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields.

  10. Stormtime transport of ring current and radiation belt ions

    Science.gov (United States)

    Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.

    1993-01-01

    This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative

  11. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Grisham, L. R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  12. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  13. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  14. New progress of high current gasdynamic ion source (invited)

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  15. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  16. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D. [CERN, 1211 Geneva 23 (Switzerland); Midttun, Ø. [University of Oslo, P.O. Box 1048, 0316 Oslo (Norway); CERN, 1211 Geneva 23 (Switzerland); Valerio-Lizarraga, C. A. [Departamento de Investigación en Fisica, Universidad de Sonora, Hermosillo (Mexico); CERN, 1211 Geneva 23 (Switzerland)

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  17. Optimization of the beam extraction systems for the Linac4 H- ion source

    Science.gov (United States)

    Fink, D. A.; Lettry, J.; Midttun, Ø.; Scrivens, R.; Steyaert, D.; Valerio-Lizarraga, C. A.

    2015-04-01

    The development of the Linac 4 and its integration into CERN's acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H- beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H- beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm. mrad. The previously installed beam extraction system has been designed for an H- ion beam intensity of 20 mA produced by an RF-volume source with an electron to H- ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H- ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H- source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  18. Observation of doubly-charged ions of francium isotopes extracted from a gas cell

    Science.gov (United States)

    Schury, P.; Wada, M.; Ito, Y.; Kaji, D.; Haba, H.; Hirayama, Y.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Murray, I.; Ozawa, A.; Rosenbusch, M.; Reponen, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.

    2017-09-01

    Various isotopes of Ac, Ra, Fr, and Rn were produced by fusion-evaporation reactions using a 48Ca beam. The energetic ions were stopped in and extracted from a helium gas cell. The extracted ions were identified using a multi-reflection time-of-fight mass spectrograph. In all cases, it was observed that the predominant charge state for the extracted ions, including the alkali Fr, was 2+.

  19. Patch electrode glass composition affects ion channel currents.

    OpenAIRE

    Furman, R E; Tanaka, J C

    1988-01-01

    The influence of patch electrode glass composition on macroscopic IV relations in inside-out patches of the cGMP-activated ion channel from rod photoreceptors was examined for a soda lime glass, a Kovar sealing glass, a borosilicate glass, and several soft lead glasses. In several glasses the shape or magnitude of the currents changed as the concentration of EGTA or EDTA was increased from 200 microM to 10 mM. The changes in IV response suggest that, at low concentrations of chelator, divalen...

  20. Beam extraction from a laser-driven multicharged ion source (abstract)

    Science.gov (United States)

    Anderson, O. A.; Logan, B. Grant

    1998-02-01

    A newly proposed type of multicharged ion source has several potential advantages over existing types and a number of useful applications. The basic principle is that multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity (Ref. Reference 1). Thus, charge state separation downstream is simplified or made unnecessary. Another advantage is that large currents (hundreds of amperes) can be extracted. This type of source could be used for heavy-ion fusion drivers (see Ref. Reference 1) or storage rings. There are also industrial application such as materials processing. We describe conceptual design studies for several specific cases. For example, we discuss extraction and focusing of a 4.1 MV, 144 A beam of Xe16+ ions from an expanding plasma created by an intense laser. The maximum duration of the beam pulse is determined by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The initially diverging beam can be refocused to a small radius or made parallel by a combination of electrostatic and solenoid focusing. Our design studies are carried out first with an envelope code to determine the proper focusing parameters and then with a self-consistent particle code to optimize the beam quality. We present results from both codes and discuss several applications of this type of ion source.

  1. ANALYSIS OF A COMMERCIAL PORTABLE LITHIUM-ION BATTERY UNDER LOW CURRENT CHARGE-DISCHARGE CYCLES

    Directory of Open Access Journals (Sweden)

    Stephany Pires da Silva

    Full Text Available The dependence between the transferred charge and the corresponding transference time to charge and discharge a portable cell phone Li-ion battery (LiCoO2/C under cycles of low intensity currents was studied in detail. The voltage curve profile between 3.0 and 4.2 V and the charging and discharging time are strongly influenced by the applied current intensity. A linear dependence between the stored and extracted charges, into and from the battery, with the intensity of applied current was also observed. Allometric equations were found to describe the correlation between the charge transference time and the applied current intensity to charge and discharge the battery.

  2. Analysis of plasma distribution near the extraction region in surface produced negative ion sources.

    Science.gov (United States)

    Fukano, A; Hatayama, A

    2014-02-01

    In study of a negative ion source, it is important to understand the plasma characteristics near the extraction region. A recent experiment in the NIFS-R&D ion source has suggested that a "double ion plasma layer" which is a region consisting of hydrogen positive and negative ions exists near the plasma grid (PG). Density distribution of plasma near the extraction region is studied analytically. It is shown that the density distribution depends on an amount of the surface produced negative ions and the double ion plasma layer is formed near the PG surface for the case of strong surface production.

  3. The effect of pulse current on energy saving during Electrochemical Chloride Extraction (ECE) in concrete

    DEFF Research Database (Denmark)

    Sun, Tian R.; Geiker, Mette R.; Ottosen, Lisbeth M.

    2012-01-01

    Energy consumption is a factor influencing the cost of Electrochemical Chloride Extraction (ECE) in concrete. The aims of this work were to investigate the possibility for energy saving when using a pulsed electric field during ECE and the effect of the pulsed current on removal of chloride. Four...... experiments with artificially polluted concrete under same charge transfer were conducted. Results showed that the energy consumption was decreased 15% by pulse current in experiments with 0.2 mA/cm2 current density, which was higher than that of 0.1 mA/cm2 experiments with a decrease of 9.6%. When comparing...... the voltage drop at different parts of the experimental cells, it was found that the voltage drop of the area across the concrete was the major contributor to energy consumption, and results indicated that the pulse current could decrease the voltage drop of this part by re-distribution of ions in pore fluid...

  4. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    Science.gov (United States)

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  5. Extraction of negative charges from an ion source: Transition from an electron repelling to an electron attracting plasma close to the extraction surface

    Science.gov (United States)

    Wimmer, Christian; Fantz, Ursel

    2016-08-01

    Large-scale sources for negative hydrogen ions, capable of delivering an extracted ion current of several ten amperes, are a key component of the neutral beam injection system of the upcoming ITER fusion device. Since the created heat load of the inevitably co-extracted electrons after magnetic separation from the extracted beam limits their tolerable amount, special care must be taken for the reduction of co-extracted electrons—in particular, in deuterium operation, where the larger amount of co-extracted electrons often limits the source performance. By biasing the plasma grid (PG, first grid of the extraction system) positively with respect to the source body, the plasma sheath in front of the PG can be changed from an electron repelling towards an electron attracting sheath. In this way, the flux of charged particles onto the PG can be varied, thus changing the bias current and inverse to it the amount of co-extracted electrons. The PG bias affects also the flux of surface-produced H - towards the plasma volume as well as the plasma symmetry in front of the plasma grid, strongly influenced by an E → × B → drift. The influence of varying PG sheath potential profile on the plasma drift, the negative hydrogen ion density, and the source performance at the prototype H - source is presented, comparing hydrogen and deuterium operation. The transition in the PG sheath profile takes place in both isotopes, with a minimum of co-extracted electrons formed in case of the electron attracting PG sheath. The co-extracted electron density in deuterium operation is higher than in hydrogen operation, which is accompanied by an increased plasma density in deuterium.

  6. Development of a high-current hydrogen-negative ion source for LHD-NBI system

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Oka, Yoshihide; Kaneko, Osamu; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi [National Inst. for Fusion Science, Toki, Gifu (Japan); Tanaka, Masanobu

    1998-08-01

    We have developed a high-current hydrogen-negative ion source for a negative-ion-based NBI system in Large Helical Device (LHD). The ion source is a cesium-seeded volume-production source equipped with an external magnetic filter. An arc chamber is rectangular, the dimensions of which are 35 cm x 145 cm in cross section and 21 cm in depth. A three-grid single-stage accelerator is divided into five sections longitudinally, each of which has 154(14 x 11) apertures in an area of 25 cm x 25 cm. The ion source was tested in the negative-NBI teststand, and 25 A of the negative ion beam is incident on a beamdump 13 m downstream with an energy of 104 keV for 1 sec. Multibeamlets of 770 are focused on a focal point 13 m downstream with an averaged divergence angle of 10 mrad by the geometrical arrangement of five sections of grid and the aperture displacement technique of the grounded grid. A uniform beam in the vertical direction over 125 cm is obtained with uniform plasma production in the arc chamber by balancing individual arc currents flowing through each filament. Long-pulse beam production was performed, and 1.3 MW of the negative ion beam is incident on the beamdump for 10 sec, and the temperature rise of the cooling water is almost saturated for the extraction and the grounded grids. These results satisfy the first-step specification of the LHD-NBI system. (author)

  7. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  8. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  9. Ring Current-Electromagnetic Ion Cyclotron Waves Coupling

    Science.gov (United States)

    Khazanov, G. V.

    2005-01-01

    The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.

  10. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  11. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  12. Review on aggregation of acid extractants in solvent extraction of metal ions: remark on the general model

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The aggregation behavior of various acid extractants in the solvent extraction systems of metal ions is re-examined and explained according to knowledge obtained in recent work. The conclusions are as follows. (1) Complexes formed by the extractants and metal ions can form reversed micelles in organic diluents, depending on the microstructures of the complexes. The dimers of the acid extractant cannot percolate to the metal-extractant aggregates, and the acid-salt complexes are always formed in the aggregates. The reversed micelles or the W/O microemulsions formed by different species cannot be associated with each other to form a unified aggregate. (2) In solvent extraction systems, hydration of the extractants and metal ions can be considered as the driving force of forming reversed micelles. (3) Information of the first approach to the insight of the bicontinuous microemulsion of NaDEHP shows that various components in the aqueous phase behave confined and very similar to the typical AOT/n-heptane W/O microemulsions. (4) In the extraction of lanthanide ions by the W/O microemulsion of sodium naphthenate, the saponification is a process of forming reversed micelle or W/O microemulsion, while the extraction step is a process of destroying reversed micelles or W/O microemulsion droplets.

  13. Self-consistent multicomponent plasma sheath theory for the extraction of H- ions (invited)

    Science.gov (United States)

    Becker, Reinard

    2004-05-01

    A self-consistent one-dimensional plasma sheath theory is presented to provide the basis for a correct numerical simulation of the extraction of volume produced H- ions. The plasma may consist not only of electrons and H- ions, but may also contain other positive ions such as protons, molecular ions and those of heavier elements, like cesium or tantalum. For the transition from the classical plasma sheath with a falling potential to the extraction region for H- ions with an increasing potential there exists the problem of a saddle point with adverse optical properties. This is eliminated by requiring sufficient space charge of H- ions near the extraction electrode. The formation of a virtual cathode in the extraction region by reflected positive ions is also taken into account. The integration of the Poisson equation in the extraction region establishes a criterion to avoid the creation of a nonphysical periodical sequence of potential maximums and minima. This criterion is an antithesis to the Bohm sheath criterion and has a corresponding interpretation: a virtual cathode in the extraction region can only be avoided, if the space charge of positive ions rapidly decreases. The acceptable range of parameters is thus reduced considerably. The resulting axial potential function is then used to derive the shape of the plasma wall electrode in the vicinity of the ion beam edge in order to obtain an aberration free beam boundary, this information being equivalent to the Pierce angle in the case of solid electron or ion emitters.

  14. Sinusoidal current and stress evolutions in lithium-ion batteries

    Science.gov (United States)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  15. Robust ion current oscillations under a steady electric field: An ion channel analog

    Science.gov (United States)

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1 /f power spectrum.

  16. Code-to-code benchmark tests for 3D simulation models dedicated to the extraction region in negative ion sources

    Science.gov (United States)

    Nishioka, S.; Mochalskyy, S.; Taccogna, F.; Hatayama, A.; Fantz, U.; Minelli, P.

    2017-08-01

    The development of the kinetic particle model for the extraction region in negative hydrogen ion sources is indispensable and helpful to clarify the H- beam extraction physics. Recently, various 3D kinetic particle codes have been developed to study the extraction mechanism. Direct comparison between each other has not yet been done. Therefore, we have carried out a code-to-code benchmark activity to validate our codes. In the present study, the progress in this benchmark activity is summarized. At present, the reasonable agreement with the result by each code have been obtained using realistic plasma parameters at least for the following items; (1) Potential profile in the case of the vacuum condition (2) Temporal evolution of extracted current densities and profiles of electric potential in the case of the plasma consisting of only electrons and positive ions.

  17. Design of triode extraction system for a dual hollow cathode ion source

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-Hui; ZHU Kun; ZHAO Wei-Jiang; LIU Ke-Xin

    2011-01-01

    A triode extraction system is designed for a dual hollow cathode ion source being developed at the Institute of Heavy Ion Physics,Peking University.Basic parameters of the plasma are selected after examining the operation principle of the ion source,then the triode extraction system is designed and optimized by using software PBGUNS (for Particle Beam GUN Simulations).The physical design of the system is given in this paper.

  18. Liquid-liquid extraction of metal ions by the 6-membered N-containing macrocycle hexacyclen.

    Science.gov (United States)

    Arpadjan, S; Mitewa, M; Bontchev, P R

    1987-11-01

    The nitrogen-containing analogue of 18-crown-6, 1,4,7,10,13,16-hexa-azaoctadecane (hexacyclen)] was studied as a reagent for complexation and extraction of some metal ions. It was found that with this reagent and methyl isobutyl ketone, metal ions such as silver(I), mercury(II), copper(II), platinum(II) and palladium(II) can be quantitatively extracted and separated from iron(III) and some other metal ions.

  19. Solvent extraction, ion chromatography, and mass spectrometry of molybdenum isotopes.

    Science.gov (United States)

    Dauphas, N; Reisberg, L; Marty, B

    2001-06-01

    A procedure was developed that allows precise determination of molybdenum isotope abundances in natural samples. Purification of molybdenum was first achieved by solvent extraction using di(2-ethylhexyl) phosphate. Further separation of molybdenum from isobar nuclides was obtained by ion chromatography using AG1-X8 strongly basic anion exchanger. Finally, molybdenum isotopic composition was measured using a multiple collector inductively coupled plasma hexapole mass spectrometer. The abundances of molybdenum isotopes 92, 94, 95, 96, 97, 98, and 100 are 14.8428(510), 9.2498(157), 15.9303(133), 16.6787(37), 9.5534(83), 24.1346(394), and 9.6104(312) respectively, resulting in an atomic mass of 95.9304(45). After internal normalization for mass fractionation, no variation of the molybdenum isotopic composition is observed among terrestrial samples within a relative precision on the order of 0.00001-0.0001. This demonstrates the reliability of the method, which can be applied to searching for possible isotopic anomalies and mass fractionation.

  20. Ion-counting nanodosimetry: current status and future applications.

    Science.gov (United States)

    Schulte, R; Bashkirov, V; Garty, G; Leloup, C; Shchemelinin, S; Breskin, A; Chechik, R; Milligan, J; Grosswendt, B

    2003-12-01

    There is a growing interest in the study of interactions of ionizing radiation with condensed matter at the nanometer level. The motivation for this research is the hypothesis that the number of ionizations occurring within short segments of DNA-size subvolumes is a major factor determining the biological effectiveness of ionizing radiation. A novel dosimetry technique, called nanodosimetry, measures the spatial distribution of individual ionizations in an irradiated low-pressure gas model of DNA. The measurement of nanodosimetric event size spectra may enable improved characterization of radiation quality, with applications in proton and charged-particle therapy, radiation protection, and space research. We describe an ion-counting nanodosimeter developed for measuring radiation-induced ionization clusters in small, wall-less low-pressure gas volumes, simulating short DNA segments. It measures individual radiation-induced ions, deposited in 1 Torr propane within a tissue-equivalent cylindrical volume of 2-4 nm diameter and up to 100 nm length. We present first ionization cluster size distributions obtained with 13.6 MeV protons, 4.25 MeV alpha particles and 24.8 MeV carbon nuclei in propane; they correspond to a wide LET range of 4-500 keV/microm. We are currently developing plasmid-based assays to characterize the local clustering of DNA damage with biological methods. First results demonstrate that there is increasing complexity of DNA damage with increasing LET. Systematic comparison of biological and nanodosimetric data will help us to validate biophysical models predicting radiation quality based on nanodosimetric spectra. Possible applications for charged particle radiation therapy planning are discussed.

  1. Aggregation of Electric Current Consumption Features to Extract Maintenance KPIs

    Science.gov (United States)

    Simon, Victor; Johansson, Carl-Anders; Galar, Diego

    2017-09-01

    All electric powered machines offer the possibility of extracting information and calculating Key Performance Indicators (KPIs) from the electric current signal. Depending on the time window, sampling frequency and type of analysis, different indicators from the micro to macro level can be calculated for such aspects as maintenance, production, energy consumption etc. On the micro-level, the indicators are generally used for condition monitoring and diagnostics and are normally based on a short time window and a high sampling frequency. The macro indicators are normally based on a longer time window with a slower sampling frequency and are used as indicators for overall performance, cost or consumption. The indicators can be calculated directly from the current signal but can also be based on a combination of information from the current signal and operational data like rpm, position etc. One or several of those indicators can be used for prediction and prognostics of a machine's future behavior. This paper uses this technique to calculate indicators for maintenance and energy optimization in electric powered machines and fleets of machines, especially machine tools.

  2. solid phase extraction of trace amounts of palladium ions using ...

    African Journals Online (AJOL)

    Preferred Customer

    hydroxybenzylidene)- ... applied to the determination of palladium ion in environmental samples. KEY WORDS: ... preparation tool and provides a method that is simple and safe to use. .... and recovery of ions was investigated under optimum conditions.

  3. Amyloid β Ion Channels in a Membrane Comprising Brain Total Lipid Extracts.

    Science.gov (United States)

    Lee, Joon; Kim, Young Hun; T Arce, Fernando; Gillman, Alan L; Jang, Hyunbum; Kagan, Bruce L; Nussinov, Ruth; Yang, Jerry; Lal, Ratnesh

    2017-02-20

    Amyloid β (Aβ) oligomers are the predominant toxic species in the pathology of Alzheimer's disease. The prevailing mechanism for toxicity by Aβ oligomers includes ionic homeostasis destabilization in neuronal cells by forming ion channels. These channel structures have been previously studied in model lipid bilayers. In order to gain further insight into the interaction of Aβ oligomers with natural membrane compositions, we have examined the structures and conductivities of Aβ oligomers in a membrane composed of brain total lipid extract (BTLE). We utilized two complementary techniques: atomic force microscopy (AFM) and black lipid membrane (BLM) electrical recording. Our results indicate that Aβ1-42 forms ion channel structures in BTLE membranes, accompanied by a heterogeneous population of ionic current fluctuations. Notably, the observed current events generated by Aβ1-42 peptides in BTLE membranes possess different characteristics compared to current events generated by the presence of Aβ1-42 in model membranes comprising a 1:1 mixture of DOPS and POPE lipids. Oligomers of the truncated Aβ fragment Aβ17-42 (p3) exhibited similar ion conductivity behavior as Aβ1-42 in BTLE membranes. However, the observed macroscopic ion flux across the BTLE membranes induced by Aβ1-42 pores was larger than for p3 pores. Our analysis of structure and conductance of oligomeric Aβ pores in a natural lipid membrane closely mimics the in vivo cellular environment suggesting that Aβ pores could potentially accelerate the loss of ionic homeostasis and cellular abnormalities. Hence, these pore structures may serve as a target for drug development and therapeutic strategies for AD treatment.

  4. An RF-only ion-funnel for extraction from high-pressure gases

    CERN Document Server

    Brunner, Thomas; Varentsov, Victor; Sabourov, Amanda; Gratta, Giorgio; Dilling, Jens; DeVoe, Ralph; Sinclair, David; Fairbank, William; Albert, Joshua B; Auty, David J; Barbeau, Phil S; Beck, Douglas; Benitez-Medina, Cesar; Breidenbach, Martin; Cao, Guofu F; Chambers, Christopher; Cleveland, Bruce; Coon, Matthew; Craycraft, Adam; Daniels, Timothy; Daugherty, Sean J; Didberidze, Tamar; Dolinski, Michelle J; Dunford, Matthew; Fabris, Lorenzo; Farine, Jacques; Feldmeier, Wolfhart; Fierlinger, Peter; Gornea, Razvan; Graham, Kevin; Heffner, Mike; Hughes, Mitchell; Jewell, Michael; Jiang, Xiaoshan S; Johnson, Tessa N; Johnston, Sereres; Karelin, Alexander; Kaufman, Lisa J; Killick, Ryan; Koffas, Thomas; Kravitz, Scott; Kruecken, Reiner; Kuchenkov, Alexey; Kumar, Krishna S; Leonard, Douglas S; Leonard, Francois; Licciardi, Caio; Lin, Yi-Hsuan H; Ling, Jiajie; MacLellan, Ryan; Marino, Michael G; Mong, Brian; Moore, David; Odian, Allen; Ostrovskiy, Igor; Ouellet, Christian; Piepke, Andreas; Pocar, Andrea; Retiere, Fabrice; Rowson, Peter C; Rozo, Maria P; Schubert, Alexis; Smith, Erica; Stekhanov, Victor; Tarka, Michal; Tolba, Tamer; Tosi, Delia; Twelker, Karl; Vuilleumier, Jean-Luc L; Walton, Josiah; Walton, Timothy; Weber, Manuel; Wen, Liangjian J; Wichoski, Ubi; Yang, Liang; Yen, Yung-Ruey

    2014-01-01

    An RF ion-funnel technique has been developed to extract ions from a high-pressure (10 bar) noble-gas environment into vacuum ($10^{-6}$ mbar). Detailed simulations have been performed and a prototype has been developed for the purpose of extracting $^{136}$Ba ions from Xe gas with high efficiency. With this prototype, ions have been extracted for the first time from high-pressure xenon gas and argon gas. Systematic studies have been carried out and compared to the simulations. This demonstration of extraction of ions with mass comparable to that of the gas generating the high-pressure into vacuum has applications to Ba tagging from a Xe-gas time-projection chamber (TPC) for double beta decay as well as to the general problem of recovering trace amounts of an ionized element in a heavy (m$>40$ u) carrier gas.

  5. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  6. Macroscopic strain controlled ion current in an elastomeric microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael, E-mail: mdennin@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Li, Yongxue [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Esser-Kahn, Aaron P. [Department of Chemistry, University of California, Irvine, California 92697 (United States); Valdevit, Lorenzo [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697-3975 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Sun, Lizhi [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Siwy, Zuzanna [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-05-07

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  7. Current approach to the problem of nitrenium ions

    Science.gov (United States)

    Simonova, T. P.; Nefedov, V. D.; Toropova, M. A.; Kirillov, N. F.

    1992-06-01

    This review is devoted to the chemistry of nitrenium ions, which are highly reactive species whose bivalent nitrogen atom has an incomplete (sextet) electron shell and bears a formal positive charge. All known methods for generating these ions, including a nuclear chemical method developed by the authors, their reactions, structure, and also the role of nitrenium ions in the chemistry of nitrogen-containing compounds are examined. The bibliography includes 159 references.

  8. Fractioning electrodialysis: a current induced ion exchange process

    NARCIS (Netherlands)

    Galama, A.H.; Daubaras, G.; Burheim, O.S.; Rijnaarts, H.; Post, J.W.

    2014-01-01

    In desalination often multi ionic compositions are encountered. A preferential removal of multivalent ions over monovalent ions can be of interest to prevent scaling in the desalination process. Recently, a novel fractionating electrodialysis stack is described by Zhang et al., 2012 (in Sep. purify.

  9. Fractioning electrodialysis : a current induced ion exchange process

    NARCIS (Netherlands)

    Galama, A. H.; Daubaras, G.; Burheim, O. S.; Rijnaarts, H. H. M.; Post, J. W.

    2014-01-01

    In desalination often multi ionic compositions are encountered. A preferential removal of multivalent ions over monovalent ions can be of interest to prevent scaling in the desalination process. Recently, a novel fractionating electrodialysis stack is described by Zhang et al., 2012 (in Sep. purify.

  10. Mechanical Extraction of Power From Ocean Currents and Tides

    Science.gov (United States)

    Jones, Jack; Chao, Yi

    2010-01-01

    A proposed scheme for generating electric power from rivers and from ocean currents, tides, and waves is intended to offer economic and environmental advantages over prior such schemes, some of which are at various stages of implementation, others of which have not yet advanced beyond the concept stage. This scheme would be less environmentally objectionable than are prior schemes that involve the use of dams to block rivers and tidal flows. This scheme would also not entail the high maintenance costs of other proposed schemes that call for submerged electric generators and cables, which would be subject to degradation by marine growth and corrosion. A basic power-generation system according to the scheme now proposed would not include any submerged electrical equipment. The submerged portion of the system would include an all-mechanical turbine/pump unit that would superficially resemble a large land-based wind turbine (see figure). The turbine axis would turn slowly as it captured energy from the local river flow, ocean current, tidal flow, or flow from an ocean-wave device. The turbine axis would drive a pump through a gearbox to generate an enclosed flow of water, hydraulic fluid, or other suitable fluid at a relatively high pressure [typically approx.500 psi (approx.3.4 MPa)]. The pressurized fluid could be piped to an onshore or offshore facility, above the ocean surface, where it would be used to drive a turbine that, in turn, would drive an electric generator. The fluid could be recirculated between the submerged unit and the power-generation facility in a closed flow system; alternatively, if the fluid were seawater, it could be taken in from the ocean at the submerged turbine/pump unit and discharged back into the ocean from the power-generation facility. Another alternative would be to use the pressurized flow to charge an elevated reservoir or other pumped-storage facility, from whence fluid could later be released to drive a turbine/generator unit at a

  11. Evaluation of dual flow counter-current chromatography and intermittent counter-current extraction.

    Science.gov (United States)

    Ignatova, Svetlana; Hewitson, Peter; Mathews, Ben; Sutherland, Ian

    2011-09-09

    The aim of this research is to compare two continuous extraction technologies, intermittent counter-current extraction (ICcE) and dual flow counter-current chromatography (DFCCC), in terms of loading and throughput using the GUESSmix, and show the advantages and disadvantages of the two methods. A model sample containing caffeine, vanillin, naringenin and carvone, with a total load of 11.2 g, was employed with a hexane-ethyl acetate-methanol-water (2:3:2:3) phase system to evaluate an ICcE method on a preparative (912 ml coil volume) DE-Midi instrument. While DFCCC was carried out on a specially designed preparative (561 ml coil volume) bobbin installed in a similar Midi instrument case. While similar throughputs of 7.8 g/h and 6.9 g/h were achieved for the ICcE and DFCCC methods respectively, ICcE was demonstrated to have a number of advantages over DFCCC.

  12. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer-Timo; Papka, Michael E.; Curtiss, Larry A.; Pascucci, Valerio

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  13. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  14. Preliminary Simulation of Beam Extraction for the 28 GHz ECR Ion Source

    CERN Document Server

    Park, Bum-Sik; Choi, Seokjin

    2015-01-01

    The 28 GHz ECR(Electron Cyclotron Resonance) ion source is under development to supply various beams from proton to uranium at RISP(Rare Isotope Science Project). The superconducting magnet system for a 28 GHz ECR ion source consists of four solenoid coils and a saddle type sextupole. To meet the design requirement of ECR ion source, a numerical simulation was accomplished by using the KOBRA3-INP to optimize the extraction system which is the three dimensional ion optics code. The influence of the three dimensional magnetic field and the space charge effect was considered to extract the highly charged ion beam. In this paper, the design results of the extraction system were reported in detail.

  15. Transport and extraction of radioactive ions stopped in superfluid helium

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, JP; Aysto, J

    2003-01-01

    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaskyla, Finland. An open Ra-223 alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. T

  16. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    Energy Technology Data Exchange (ETDEWEB)

    Gloe, Karsten [Technischen Universität Dresden; Tasker, Peter A [ORNL; Oshima, Tatsuya [University of Miyazaki; Watarai, Hitoshi [Institute for NanoScience Design at Osaka University; Nilsson, Mikael [University of California, Irvine

    2013-01-01

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia. Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large

  17. Current experimental situation in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references. (RWR)

  18. Current signal of silicon detectors facing charged particles and heavy ions; Reponse en courant des detecteurs silicium aux particules chargees et aux ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H

    2005-07-01

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  19. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Y.; Tsumori, K.; Kaneko, O. [National Inst. for Fusion Science, Nagoya (Japan)] [and others

    1997-12-31

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H{sup -} current was obtained with a current density of 31 mA/cm{sup 2}. The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H{sup -} current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  20. Correlation character of ionic current fluctuations: analysis of ion current through a voltage-dependent potassium single channel.

    Science.gov (United States)

    Tong-Han, Lan; Huang, Xi; Jia-Rui, Lin

    2005-10-03

    The gating of ion channels has widely been modeled by assuming the transition between open and closed states is a memoryless process. Nevertheless, the statistical analysis of an ionic current signal recorded from voltage dependence K(+) single channel is presented. Calculating the sample auto-correlation function of the ionic current based on the digitized signals, rather than the sequence of open and closed states duration time. The results provide evidence for the existence of memory. For different voltages, the ion channel current fluctuation has different correlation attributions. The correlations in data generated by simulation of two Markov models, on one hand, auto-correlation function of the ionic current shows a weaker memory, after a delayed period of time, the attribute of memory does not exist; on the other hand, the correlation depends on the number of states in the Markov model. For V(p)=-60 mV pipette potential, spectral analysis of ion channel current was conducted, the result indicates that the spectrum is not a flat spectrum, the data set from ionic current fluctuations shows considerable variability with a broad 1/f -like spectrum, alpha=1.261+/-0.24. Thus the ion current fluctuations give information about the kinetics of the channel protein, the results suggest the correlation character of ion channel protein nonlinear kinetics regardless of whether the channel is in open or closed state.

  1. Metal Ions Extraction with Glucose Derivatives as Chelating Reagents in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Guo Chen YANG; Hai Jian YANG

    2006-01-01

    A series of glucose derivatives have been used as chelating reagents to extract metal ions in supercritical carbon dioxide. With perfluoro-1-octanesulfonic acid tetraethylammonium salt as additive, glucose derivatives were selective for Sr2+ and Pb2+ extraction in supercritical carbon dioxide.

  2. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  3. The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process

    Institute of Scientific and Technical Information of China (English)

    王庆; 王永富; 巴德纯; 岳向吉

    2012-01-01

    The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density as functions of discharge power, gas pressure and positions was measured. A double-hump shape was found in ion current density curve after the analysis of the effects of power and pressure. The data demonstrate that ion current density increases with the increase in gas pressure in spite of slightly at the double-hump site, sharply at wave-trough and side positions. Simultaneously, the ion current density increases upon increase in power. Es- pecially, the ion current density steeply increases at the double-hump site. The highest energy of the secondary electrons arising from Larmor precession was found at the double-hump position, which results in high ion density. The target was etched seriously at the double-hump position due to the high ion density there. The data indicates that the increase in power can lead to a high sputtering speed rate.

  4. POLY(AMINOMETHYLENEPHOSPHONIC ACID FOR SOLVENT EXTRACTION OF METAL IONS

    Directory of Open Access Journals (Sweden)

    M’hamed Kaid

    2011-09-01

    Full Text Available Diaminododecyltetramethylenetetraphosphonic acid (DADTMTPA has been investigated in liquid - liquid extraction of Zn (II and Cu (II in acetate media. The extraction of both cations was carried out in different media with the addition of CH3COONa, CH3COOH, HCl and H2SO4 at different pH values. The maximum extraction yield for copper is 70% after addition of 10 mg of sodium acetate and for zinc is 30% after addition of acetic acid at pHi = 5.5, in one step.

  5. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications.

    Science.gov (United States)

    Mohapatra, Prasanta Kumar

    2017-02-14

    Studies on the extraction of actinide ions from radioactive feeds have great relevance in nuclear fuel cycle activities, mainly in the back end processes focused on reprocessing and waste management. Room temperature ionic liquid (RTIL) based diluents are becoming increasingly popular due to factors such as more efficient extraction vis-à-vis molecular diluents, higher metal loading, higher radiation resistance, etc. The fascinating chemistry of the actinide ions in RTIL based solvent systems due to complex extraction mechanisms makes it a challenging area of research. By the suitable tuning of the cationic and anionic parts of the ionic liquids, their physical properties such as density, dielectric constant and viscosity can be changed which are considered key parameters in metal ion extraction. Aqueous solubility of the RTILs, which can lead to significant loss in the solvent inventory, can be avoided by appending the extractant moieties onto the ionic liquid. While the low vapour pressure and non-flammability of the ionic liquids make them appear as 'green' diluents, their aqueous solubility raises concerns of environmental hazards. The present article gives a summary of studies carried out on actinide ion extraction and presents perspectives of its applications in the nuclear fuel cycle. The article discusses various extractants used for actinide ion extraction and at many places, comparison is made vis-à-vis molecular diluents which includes the nature of the extracted species and the mechanism of extraction. Results of studies on rare earth elements are also included in view of their similarities with the trivalent minor actinides.

  6. Aqueous extraction of anions from coal and fly ash followed by ion-chromatographic determination

    Directory of Open Access Journals (Sweden)

    Tasić Aleksandra M.

    2016-01-01

    Full Text Available Three different techniques were applied for the aqueous extraction of anions from coal and fly ash: rotary mixer- and ultrasonic-assisted extraction with different duration time, and microwave-assisted extraction at different temperatures. Validation showed that the ion-chromatographic method was suitable for the analysis of anions in coal and fly ash extracts. The variations in the amounts of anions using different extraction times during rotary-assisted extraction were minimal for all investigated anions. The efficiency of ultrasound-assisted extraction of anions from coal depended on the sonication time and was highest at 30 min. The ultrasound-assisted extraction was less efficient for the extraction of anions from fly ash than rotary-assisted extraction. Increase of temperature in the microwave-assisted extraction had a positive effect on the amounts of all anions extracted from coal and sulphate from fly ash, while the amounts of fluoride and chloride in fly ash extracts decreased. The microwave-assisted extraction of coal at 150°C was compared with standard ASTM methods, and results were in good agreement only for chloride. Changes in the pH value and conductivity during ultrasound-assisted extraction were measured in order to explain changes on the surface of coal particles in contact with water and different processes that occur under environmental conditions. [Projekat Ministarstva nauke Republike Srbije, br. 172030, br. 176006 i br. III43009

  7. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Science.gov (United States)

    Full, S.; Bartnik, A.; Bazarov, I. V.; Dobbins, J.; Dunham, B.; Hoffstaetter, G. H.

    2016-03-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  8. Backside Calibration Chronopotentiometry: Using Current to Perform Ion Measurements by Zeroing the Transmembrane Ion Flux

    OpenAIRE

    Xu, Yida; Ngeontae, Wittaya; Pretsch, Ernö; Bakker, Eric

    2008-01-01

    A recent new direction in ion-selective electrode (ISE) research utilizes a stir effect to indicate the disappearance of an ion concentration gradient across a thin ion-selective membrane. This zeroing experiment allows one to evaluate the equilibrium relationship between front and backside solutions contacting the membrane by varying the backside solution composition. This method is attractive since the absolute potential during the measurement is not required, thus avoiding standard recalib...

  9. Influence of Jet Angle and Ion Density of Cathode Side on Low Current Vacuum Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; JIA Shenli; SHI Zongqian

    2008-01-01

    In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.

  10. Stabilized current source for lithium ion drift in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, I.T.; Sinitsyn, V.I.

    1976-01-01

    A proposal is made for designing a device for stabilizing current for the purpose of sustaining drift current within given limits in the production of Si(p-i-n) detectors. A diagram illustrates the main circuitry of a stabilized current source for one detector. 3 references, 1 figure.

  11. Surface ion-imprinted amino-functionalized cellulosic cotton fibers for selective extraction of Cu(II) ions.

    Science.gov (United States)

    Monier, M; Ibrahim, Amr A; Metwally, M M; Badawy, D S

    2015-11-01

    Surface ion-imprinted amino-functionalized cellulosic fibers (Cu-ABZ) were manufactured for efficient selective adsorption of Cu(2+) ions. The chemical modification steps had been characterized utilizing elemental analysis; Fourier transforms infrared (FTIR) along with wide angle X-ray diffraction (XRD) spectroscopy. Also, the morphological structure of the ion-imprinted and the non-imprinted (NI-ABZ) fibers were visualized and compared with that of the native cotton fibers using scanning electron microscope (SEM). In addition, the coordination mode by which the Cu(2+) ions bonded to the active sites were examined by both FTIR and X-ray photo electron spectra (XPS). Both Cu-ABZ and NI-ABZ were implemented in batch experiments for optimizing the conditions by which the Cu(2+) ions can be selectively removal from aqueous medium and pH 5 was the optimum for the metal ion extraction. Moreover, the kinetics and isotherm studies revealed that the adsorption data fitted with pseudo-second-order kinetic and Langmuir models with estimated maximum adsorption capacity 93.6mg/g. Also, the reusability studies indicated that the prepared ion-imprinted adsorbent maintains more than 95% of its original activity after fifth generation cycle.

  12. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    Directory of Open Access Journals (Sweden)

    Sirlei Jaiana Kleinübing

    2013-04-01

    Full Text Available This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.

  13. Current Transformers for GSI's KeV/u to GeV/u Ion Beams an Overview

    CERN Document Server

    Reeg, H

    2001-01-01

    At GSI's accelerator facilities ion beam intensities usually are observed and measured with various types of current transformers (CT), matched to the special requirements at their location in the machines. In the universal linear accelerator (UNILAC), and the high charge state injector (HLI) as well, active transformers with 2nd-order feedback are used, while passive pulse CTs and two DC-CTs based on the magnetic modulator principle are implemented in the heavy ion synchrotron (SIS) and the experimental storage ring (ESR). In the high energy beam transfer lines (HEBT) the particle bunch extraction/reinjection is monitored with resonant charge-integrating types. Since more than 10 years number and significance of beam current transformers for operating GSI's accelerators have grown constantly. Due to increased beam intensities following the last UNILAC upgrade, transmission monitoring and beam loss supervision with CTs have become the main tools for machine protection and radiation security purposes. All CTs ...

  14. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research.

    Science.gov (United States)

    Li, Yan; Ghasemi Naghdi, Forough; Garg, Sourabh; Adarme-Vega, Tania Catalina; Thurecht, Kristofer J; Ghafor, Wael Abdul; Tannock, Simon; Schenk, Peer M

    2014-01-24

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO₂ extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research.

  15. STUDIES ON INOSINE EXTRACTION BY ION EXCHANGE METHOD

    Institute of Scientific and Technical Information of China (English)

    HuangXiwen; ShiFang; 等

    1998-01-01

    The adsorption characteristics of inosine from fermentation solution on anion exchange resin under the condition of different pH,resin type are investigated.Besides,the desorption conditions are studied under different temperature.The adsorption and desorption mechanism are described to obtain the optimum technological condition of inosine extraction.

  16. Nanobeam production with the multicusp ion source

    Science.gov (United States)

    Lee, Y.; Ji, Q.; Leung, K. N.; Zahir, N.

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne+, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe+ or Kr+ ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of ˜100 nm.

  17. Uniform H(-) ion beam extraction in a large negative ion source with a tent-shaped magnetic filter.

    Science.gov (United States)

    Tobari, H; Hanada, M; Kashiwagi, M; Taniguchi, M; Umeda, N; Watanabe, K; Inoue, T; Sakamoto, K; Takado, N

    2008-02-01

    Based on previous studies on the spatial uniformity of the negative ion beam, the external magnetic filter was replaced to a novel tent-shaped magnetic filter in the JAEA 10 A negative ion source. The line-cusp field configuration on the source chamber was also changed to form a symmetric magnetic field like many of positive ion sources aiming at high proton yield. This magnetic field configuration allows fast electrons emitted from filament cathodes to rotate azimuthally inside the source chamber. The source configuration thus prevents localization of fast electrons due to their B x grad B drift in the filter field. As a result, the H(-) ion beam profile extracted from a wide region of 340 x 170 mm(2) showed reduction of standard deviation from 16% in the original to 7.9% with the tent filter. The negative ion source with the tent filter satisfied the requirement of the beam uniformity for a large negative ion source in the ITER neutral beam injection.

  18. Ion density and dielectric breakdown in the afterglow of a high-current arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Rutgers, W.R.; Verhagen, F.C.M.; De Zeeuw, W.A.

    1984-01-01

    The ion density in the afterglow of a high-current atmospheric arc-discharge and electrical breakdown have been investigated in atomic (argon), molecular (nitrogen) and electronegative (carbon dioxide) media. From the decay with time of the ion density, effective recombination coefficients can be calculated. When the ion density is reduced to values below 2 x 10/sup 17/m/sup -3/, the afterglow plasma changes from a resistive into a dielectric medium. (J.C.R.)

  19. [Determination of nonylphenol in wastewater by solid phase extraction gas chromatography mass spectrometry and multi-selective ions].

    Science.gov (United States)

    Hao, Rui-Xia; Liang, Peng; Zhao, Man; Wang, Jun-An; Zhou, Yu-Wen

    2006-11-01

    Nonylphenol (NP) having endocrine disrupter activity is an ultra trace component in sewage and reuse wastewater. There are many NP isomers in the wastewater because nonyl structure is different. The background impurity of the samples is very complex with many other components. So it is difficulty for quantitative analysis of NP in the samples. About seventy sewages and recycled wastewater samples were measured for the content of NP isomer mixtures by solid-phase extraction-gas chromatography-mass spectrometry and multi-selected ions monitoring (shortened as SPE-GC-MS-SIM). The results show that hydrophilic-lipophilic-equilibrium solid-phase extraction pole has selective adsorption for NP, so that the samples can be concentrated from 50 to 200 times. The five kinds of mass spectrum ions, i. e. 107, 121, 135, 149, 163, have higher abundance and distinct character. The sum of five selected ion monitoring (sigmaSIM) is from 54.4 to 73 percent of the total ion current for NP, which can accurately represent different NP isomers. Quantitative analysis base on the spectral integralof the sigmaSIM chromatograph can eliminate interference with background signal and ensure selectivity, accuracy and precision ofthe method.

  20. Effective shielding to measure beam current from an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, H., E-mail: bayle@bergoz.com [Bergoz Instrumentation, Saint-Genis-Pouilly (France); Delferrière, O.; Gobin, R.; Harrault, F.; Marroncle, J.; Senée, F.; Simon, C.; Tuske, O. [CEA, Saclay (France)

    2014-02-15

    To avoid saturation, beam current transformers must be shielded from solenoid, quad, and RFQ high stray fields. Good understanding of field distribution, shielding materials, and techniques is required. Space availability imposes compact shields along the beam pipe. This paper describes compact effective concatenated magnetic shields for IFMIF-EVEDA LIPAc LEBT and MEBT and for FAIR Proton Linac injector. They protect the ACCT Current Transformers beyond 37 mT radial external fields. Measurements made at Saclay on the SILHI source are presented.

  1. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  2. Solvent extraction-separation of La(III), Eu(III) and Er(III) ions from aqueous chloride medium using carbamoyl-carboxylic acid extractants

    Institute of Scientific and Technical Information of China (English)

    Reyhaneh Safarbali; Mohammad Reza Yaftian; Abbasali Zamani

    2016-01-01

    N,N-dibutyldiglycol amic acid (HLI) and N,N-dioctyldiglycol amic acid (HLI) were synthesized and characterized by con-ventional spectroscopic methods. These molecules were examined as extractants for extraction-separation of La(III), Eu(III) and Er(III), as representative ions of light, middle and heavy rare earths, from aqueous chloride solutions. The analysis of the extraction equilibria revealed that the extracted species of lanthanum and europium ions by both of the extractants had a 1:3 metal to ligand ratio. It was suggested that erbium ions were extracted into the organic phase via the formation of Er(LI or I)2Cl complexes. The effect of the organic diluents on the extraction-separation efficiency of the studied rare earths by HLI and HLI was investigated by comparing the results obtained in dichloromethane and carbon tetrachloride. Regardless to the diluent used, the order of selectivity presented by the investigated extractants was Er(III)>Eu(III)>La(III). It is noteworthy that, a significant enhancement in separation of the studied rare earths by the extractants was achieved in their competitive extraction experiments with respect to that obtained in single component extraction experiments. Applicability of the extractants for the removal of rare earth ions from spent Ni-MH batteries was tested by removal of La(III), Eu(III) and Er(III) ions from simulated leach solution of such batteries.

  3. Acid Extraction - Ion Exchange Recovery of Cinchona Alkaloids Process and Plant Development

    Science.gov (United States)

    1945-06-08

    farther and farther into the almost impenetrable rain forests of the Andes in search of drug- bearing bark. b. Labor and Transportation. In these...a certain percentage of the ion exchanger still bearing its hydrogen ion charge. As long as this situation exists, a certain amount of COp will...extraction medium. Hence, the contact time need be no greater than that re- quired to soften and disintegrate the gummy contents of the cell, plus

  4. QUANTITATIVE ION-PAIR EXTRACTION OF 4(5)-METHYLIMIDAZOLE FROM CARAMEL COLOR AND ITS DETERMINATION BY REVERSED-PHASE ION-PAIR LIQUID-CHROMATOGRAPHY

    DEFF Research Database (Denmark)

    Thomsen, Mohens; Willumsen, Dorthe

    1981-01-01

    A procedure for quantitative ion-pair extraction of 4(5)-methylimidazole from caramel colour using bis(2-ethylhexyl)phosphoric acid as ion-pairing agent has been developed. Furthermore, a reversed-phase ion-pair liquid chromatographic separation method has been established to analyse the content ...

  5. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profil...

  6. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  7. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)

    2015-07-01

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  8. Current state of the uranium extraction at the NMMC

    OpenAIRE

    2016-01-01

    Currently of the uranium mined in NMMC is obtained by means of underground leaching in the Kyzyl-Kum open pits. This method allows to reduce the cost of uranium mining and ensure the environmentally clean production.

  9. Ion Exchange Extraction of Boron from Aqueous Fluids by Amberlite IRA 743 Resin

    Institute of Scientific and Technical Information of China (English)

    肖应凯; 廖步勇; 刘卫国; 肖云; SWIHART,GeorgeH.

    2003-01-01

    The ion exchange characteristics d Amherlite IRA 743 resin for extracting boron from aqueous fluids have been investigated in detail. The results show that AmherHte IRA 743 resin, a boron specific ion exchange resin, can quantitatively extract boron as the B (OH)4- spedes from weakly basle solution. Some exchangeable anions such as CI- and SO42- are present, resulting in an increase in pH value of the loeded solution within the nan, and the boron in natural aqueous fluids with low nH is also extracted by Amberlite IRA 743 resin. However, the voiume of loaded solution must be restricted. The maximum voiume of loaded solution giving quantitative extraction of boron decreases for sample soh.,tiom of lower pH value. Warm HCI solution is more effective than room temperature HCI solution for eluting boron from Amberllte IRA 743 resin.

  10. Mapping the ion current distribution in nanopore/electrode devices.

    Science.gov (United States)

    Rutkowska, Agnieszka; Edel, Joshua B; Albrecht, Tim

    2013-01-22

    Solid-state nanopores with integrated electrodes have interesting prospects in next-generation single-molecule biosensing and sequencing. These include "gated" nanopores with a single electrode integrated into the membrane, as well as two-electrode designs, such as a transversal tunneling junction. Here we report the first comprehensive analysis of current flow in a three-electrode device as a model for this class of sensors. As a new feature, we observe apparent rectification in the pore current that is rooted in the current distribution of the cell, rather than the geometry or electrostatics of the pore. We benchmark our results against a recently developed theoretical model and define operational parameters for nanopore/electrode structures. Our findings thus facilitate the rational design of such sensor devices.

  11. Automatic parameter extraction technique for gate leakage current modeling in double gate MOSFET

    Science.gov (United States)

    Darbandy, Ghader; Gneiting, Thomas; Alius, Heidrun; Alvarado, Joaquín; Cerdeira, Antonio; Iñiguez, Benjamin

    2013-11-01

    Direct Tunneling (DT) and Trap Assisted Tunneling (TAT) gate leakage current parameters have been extracted and verified considering automatic parameter extraction approach. The industry standard package IC-CAP is used to extract our leakage current model parameters. The model is coded in Verilog-A and the comparison between the model and measured data allows to obtain the model parameter values and parameters correlations/relations. The model and parameter extraction techniques have been used to study the impact of parameters in the gate leakage current based on the extracted parameter values. It is shown that the gate leakage current depends on the interfacial barrier height more strongly than the barrier height of the dielectric layer. There is almost the same scenario with respect to the carrier effective masses into the interfacial layer and the dielectric layer. The comparison between the simulated results and available measured gate leakage current transistor characteristics of Trigate MOSFETs shows good agreement.

  12. A 2.45GHz High Current Ion Source for Neutron Production%一台2.45GHz强流中子源

    Institute of Scientific and Technical Information of China (English)

    J.W.Kwan; R.Gough; R.Keller; B.A.Ludewigt; M.Regis; R.P.Wells; J.H.Vainionpaa

    2007-01-01

    A 2.45GHz microwave-driven ion source is being used to provide 40mA of deuterium ion beam (peak current)for an RFQ accelerator as part of a neutron source system.We have also designed a 60kV electrostatic LEBT using computer simulations.In our experiment,we measured the hydrogen and deuterium ion beam currents as functions of discharge power,gas flow,and magnetic field strength.The required beam current was obtained using less than 700W of net microwave power with a gas flow of less than 1.5sccm.From the rise time data,it Was determined that in order to obtain a high percentage of atomic ions in the beam,the beam extraction should start after lms of switching on the microwave power.At steady state,the proton fraction Was above 90%.

  13. Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, P C; Ellingboe, A R; Turner, M M [Plasma Research Laboratory, National Centre for Plasma Science and Technology and School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2004-03-07

    Dual frequency capacitive discharges are designed to offer independent control of the flux and energy of ions impacting on an object immersed in a plasma. This is desirable in applications such as the processing of silicon wafers for microelectronics manufacturing. In such discharges, a low frequency component couples predominantly to the ions, while a high frequency component couples predominantly to electrons. Thus, the low frequency component controls the ion energy, while the high frequency component controls the plasma density. Clearly, this desired behaviour is not achieved for arbitrary configurations of the discharge, and in general one expects some unwanted coupling of ion flux and energy. In this paper we use computer simulations with the particle-in-cell method to show that the most important governing parameter is the ratio of the driving frequencies. If the ratio of the high and low frequencies is great enough, essentially independent control of the ion energy and flux is possible by manipulation of the high and low frequency power sources. Other operating parameters, such as pressure, discharge geometry, and absolute power, are of much less significance.

  14. Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions

    OpenAIRE

    Sirlei Jaiana Kleinübing; Frederico Gai; Caroline Bertagnolli; Meuris Gurgel Carlos da Silva

    2013-01-01

    This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, ad...

  15. Computer simulation of 2-D and 3-D ion beam extraction and acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ido, Shunji; Nakajima, Yuji [Saitama Univ., Urawa (Japan). Faculty of Engineering

    1997-03-01

    The two-dimensional code and the three-dimensional code have been developed to study the physical features of the ion beams in the extraction and acceleration stages. By using the two-dimensional code, the design of first electrode(plasma grid) is examined in regard to the beam divergence. In the computational studies by using the three-dimensional code, the axis-off model of ion beam is investigated. It is found that the deflection angle of ion beam is proportional to the gap displacement of the electrodes. (author)

  16. Extractive Spectrophotometric Determination of Fluconazole by Ion-pair Complex Formation with Bromocresol Green

    Institute of Scientific and Technical Information of China (English)

    JALALI,Fahimeh; RAJABI,Mohammad J.

    2007-01-01

    An extraction-spectrophotometric method for the determination of trace amounts of fluconazole was described.Fluconazole was effectively extracted as a 1 : 1 ion-pair complex with bromocresole green (BCG) at pH 3.0 into chloroform, followed by spectrophotometric determination at 420 nm. Beer's law was obeyed over the range of 4-procedure was applied to the determination of fluconazole in pharmaceutical preparations as well as its recovery from a blood serum sample.

  17. Stability of current-driven electrostatic waves in a magnetized and collisional negative ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Venugopal, Chandu; Varghese, Anu; S, Jyothi [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686 560, Kerala (India); Issac, Molly [Department of Physics, All Saints' College, Thiruvananthapuram 695 007, Kerala (India); Renuka, G [Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala (India)], E-mail: cvgmgphys@yahoo.co.in

    2008-10-15

    The stability of electrostatic waves, propagating nearly parallel to a uniform external magnetic field, is studied in a fully ionized, collisional plasma of positive and negative ions and a field-aligned current of drifting electrons. Expressions have been derived for the dispersion relation and growth rate using fluid theory and retaining the collisional and conductivity terms for the electrons. The plasma can, in general, support two modes, which have frequencies that are a composite of the ion acoustic and ion gyro frequencies. The growth rate of the modes increases with increasing drift velocities of the electrons and decreases with increasing negative ion densities.

  18. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Uchida, Takashi [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Yoshikazu [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan)

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60} ion beam in tandem-type ECRIS for the first time.

  19. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  20. New methods for high current fast ion beam production by laser-driven acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B. [Institute of Physics, ASCR, v.v.i., PALS Centre, Prague (Czech Republic); Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F. [INFN-Laboratori Nazionali del Sud, Catania, Messina University (Italy); Picciotto, A.; Serra, E. [Fondazione Bruno Kessler - IRST, Trento (Italy); Giuffrida, L. [CELIA, Centre Lasers Intenses et Applications (France); Mangione, A. [ITA - Istituto Tecnologie Avanzate, Trapani (Italy); Rosinski, M.; Parys, P. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  1. New methods for high current fast ion beam production by laser-driven accelerationa)

    Science.gov (United States)

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Torrisi, L.; Picciotto, A.; Giuffrida, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Serra, E.; Mangione, A.; Rosinski, M.; Parys, P.; Ryc, L.; Limpouch, J.; Laska, L.; Jungwirth, K.; Ullschmied, J.; Mocek, T.; Korn, G.; Rus, B.

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 1016-1019 W/cm2. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  2. New methods for high current fast ion beam production by laser-driven acceleration.

    Science.gov (United States)

    Margarone, D; Krasa, J; Prokupek, J; Velyhan, A; Torrisi, L; Picciotto, A; Giuffrida, L; Gammino, S; Cirrone, P; Cutroneo, M; Romano, F; Serra, E; Mangione, A; Rosinski, M; Parys, P; Ryc, L; Limpouch, J; Laska, L; Jungwirth, K; Ullschmied, J; Mocek, T; Korn, G; Rus, B

    2012-02-01

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10(16)-10(19) W∕cm(2). The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  3. Experimental studies of a microsecond plasma opening switch in the positive polarity regime with inductive load/extraction ion diode

    Science.gov (United States)

    Bystritskii, V. M.; Lisitsyn, I. V.; Sinebryukhov, V. A.; Volkov, S. N.; Krasik, Ya. E.

    1992-06-01

    Systematic studies of the microsecond plasma opening switch (MPOS) operation in the positive polarity of its inner electrode with an inductive load/B-applied ion diode of the extraction type at a level of 0.3 TW of dissipated power were performed at the DOUBLE generator (300 kA, 480 kV, 1 μs). The detailed measurements of ion flow parameters in the conductive phase of the MPOS showed the considerable enhancement of the ion current amplitude over the thermal flow limit (3-10 times) which is coupled with a significant decrease of electron conductivity in the MPOS across its self-magnetic field. The positive polarity MPOS operation proved to be more critical to the stored current amplitudes and geometry of the electrodes in comparison with the negative polarity case. This fact resulted in limitations of satisfactory performance of the MPOS involving short high-voltage pulse duration, low stored current amplitudes, and a narrow region of acceptable electrode diameters. The variation of the diode anode-cathode (AC) gap provided a sensitive control of the MPOS + magnetically insulated diode (MID) system, which displayed very strong coupling, resulting in clamping of the output voltage in a wide region of diode impedances. The early long-duration (<300 ns) high-voltage (50-200 kV) prepulse improves plasma production at the anode of the MID prior to the application of the main pulse. The optimal performance of the MPOS+MID system was realized at the level of ZMPOS/ZMID = 2.5. The energy of the extracted high-power ion beam made up 3.5 kJ, its power being 120 GW with 40% efficiency of energy transfer from MPOS to the MID.

  4. Detection and clearing of trapped ions in the high current Cornell photoinjector

    CERN Document Server

    Full, Steven; Bazarov, Ivan; Dobbins, John; Dunham, Bruce; Hoffstaetter, Georg

    2015-01-01

    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high CW beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and CW beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates...

  5. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems; Banco de pruebas portatil para el estudio de fuentes de iones y de la extraccion y enfoque del haz de iones

    Energy Technology Data Exchange (ETDEWEB)

    Cordero Lopez, F.

    1961-07-01

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  6. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  7. Current progress of the biological single-ion microbeam at FUDAN.

    Science.gov (United States)

    Wang, X F; Li, J Q; Wang, J Z; Zhang, J X; Liu, A; He, Z J; Zhang, W; Zhang, B; Shao, C L; Shi, L Q

    2011-08-01

    A biological microbeam for precisely positioned single-ion/single cell irradiation is built in the Institute of Modern Physics in Fudan University, Shanghai, China, based on the tandem accelerator (2 × 3MV) in the laboratory. In this paper, the developing progress of the FUDAN microbeam is reported, including the newly constructed beam line, the microbeam collimator, the ion detection system, and the cell-imaging and targeting systems. Statistical models are proposed for evaluating the spatial resolution and dosage precision of the microbeam. By taking the collimated ions as a Gaussian beam, the spatial resolution can be evaluated by the full width at half maximum of the 2-D Gaussian distribution, which is determined by fitting the proportions of peripheral pits outside specific radii in the pit clusters etched on ion track detectors to a 2-D Gaussian distribution. In the preset hitting of defined ion number, by taking the real delivered number of ions as an independent identically distributed random variable (iidrv), according to the Law of Large Numbers and Central Limit Theorem, the expected value μ and standard deviation σ of the real delivered ion number in a preset N-ion hitting can be determined by approaching the normal distribution of N (μ, σ (2)/n) with the proportions of the mean counts of pits in multiple pit clusters on ion track detectors. By the values of μ, σ and additional assumptions, statistical dosage precision evaluations can be made on the preset hitting. From the linear fit curve of μ(N) and the power function fit curve of σ(N) on different preset ion numbers, characteristic factors k, b, A, p can be extracted for a precision evaluation independent of the specific preset ion number.

  8. Stream mesocosm response sensitivities to simulated ion stress in produced waters from resource extraction activities

    Science.gov (United States)

    To increase the ecological relevance of laboratory exposures intent on determining species sensitivity to ion stress from resource extraction activities we have conducted several stream mesocosm dosing studies that pair single-species and community-level responses in-situ and all...

  9. Enhanced light extraction efficiency of GaN-based light-emittng diodes by nitrogen implanted current blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Deok; Oh, Seung Kyu; Park, Min Joo; Kwak, Joon Seop, E-mail: jskwak@sunchon.ac.kr

    2016-10-15

    Highlights: • A nitrogen implanted current-blocking layer was successfully demonstrated. • Light-extraction efficiency and radiant intensity was increased by more than 20%. • Ion implantation was successfully implemented in GaN based light-emitting diodes. - Abstract: GaN-based light emitting diodes (LEDs) with a nitrogen implanted current-blocking layer (CBL) were successfully demonstrated for improving the light extraction efficiency (LEE) and radiant intensity. The LEE and radiant intensity of the LEDs with a shallow implanted CBL with nitrogen was greatly increased by more than 20% compared to that of a conventional LED without the CBL due to an increase in the effective current path, which reduces light absorption at the thick p-pad electrode. Meanwhile, deep implanted CBL with a nitrogen resulted in deterioration of the LEE and radiant intensity because of formation of crystal damage, followed by absorption of the light generated at the multi-quantum well(MQW). These results clearly suggest that ion implantation method, which is widely applied in the fabrication of Si based devices, can be successfully implemented in the fabrication of GaN based LEDs by optimization of implanted depth.

  10. Extracting the Electron-Ion Temperature Relaxation Rate from Ion Stopping Experiments

    Science.gov (United States)

    Grabowski, Paul E.; Frenje, Johan A.; Benedict, Lorin X.

    2016-10-01

    Direct measurement of i-e equilibration rates at ICF-relevant conditions is a big challenge, as it is difficult to differentiate from other sinks and sources of energy, such as heat conduction and pdV work. Another method is to use information from ion stopping experiments. Such experiments at the OMEGA laser have made precision energy loss measurements of fusion products at these conditions. Combined with the multimonochromatic x-ray imager technique, which gives temporally and spatially resolved electron temperature and density, we have a robust stopping experiment. We propose to use such stopping measurements to assess the i-e temperature relaxation rate, since both processes involve energy exchange between electrons and ions. We require that the fusion products are 1) much faster than the thermal ions so that i-i collisions are negligible compared to i-e collisions and 2) slower than the thermal electrons so that the stopping obeys a linear friction law. Then the Coulomb logarithms associated with ion stopping and i-e temperature relaxation rate are identical and a measurement of the former provides the latter. Prepared by LLNL under Contract DE-AC52-07NA27344.

  11. Electroosmotic flow can generate ion current rectification in nano- and micropores.

    Science.gov (United States)

    Yusko, Erik C; An, Ran; Mayer, Michael

    2010-01-26

    This paper introduces a strategy for generating ion current rectification through nano- and micropores. This method generates ion current rectification by electroosmotic-driven flow of liquids of varying viscosity (and hence varying conductance) into or out of the narrowest constriction of a pore. The magnitude of current rectification was described by a rectification factor, R(f), which is defined by the ratio of the current measured at a positive voltage divided by the current measured at a negative voltage. This method achieved rectification factors in the range of 5-15 using pores with diameters ranging from 10 nm to 2.2 microm. These R(f) values are similar to the rectification factors reported in other nanopore-based methods that did not employ segmented surface charges. Interestingly, this work showed that in cylindrical nanopores with diameters of 10 nm and a length of at least 275 nm, electroosmotic flow was present and could generate ion current rectification. Unlike previous methods for generating ion current rectification that require nanopores with diameters comparable to the Debye length, this work demonstrated ion current rectification in micropores with diameters 500 times larger than the Debye length. Thus this method extends the concept of fluidic diodes to the micropore range. Several experiments designed to alter or remove electroosmotic flow through the pore demonstrated that electroosmotic flow was required for the mode of ion current rectification reported here. Consequently, the magnitude of current rectification could be used to indicate the presence of electroosmotic flow and the breakdown of electroosmotic flow with decreasing ionic strength and hence increasing electric double layer overlap inside nanopores.

  12. Solvent extraction of trivalent lanthanoid ions with N,N`-dimethyl-N,N`-diphenyl-3-oxapentanediamide

    Energy Technology Data Exchange (ETDEWEB)

    Narita, H.; Tachimori, S. [Separation Chemistry Lab., Japan Atomic Energy Research Inst., Ibaraki (Japan)]|[Ibaraki Univ., Bunkyo (Japan); Yaita, T.; Tamura, K. [Ibaraki Univ., Bunkyo (Japan)

    1998-12-31

    The extraction of trivalent lanthanoid ions from nitric acid and hydrochloric acid solutions by N,N`-dimethyl-N,N`-diphenyl-3-oxapentanediamide, DMDPhOPDA, was investigated. The distribution ratios in the nitric acid system were much higher than those in the hydrochloric acid system. In the nitric acid system, the dependencies of the distribution ratios on nitric acid and DMDPhOPDA concentrations showed a difference between lighter and heavier lanthanoid ions. The plots of the number of DMDPhOPDA molecules in the extracted species obtained from slope analysis in 4 mol dm{sup -3} nitric acid versus the ionic radius of trivalent lanthanoid ions exhibited a significant change around the middle of the lanthanoids (S-shape). The distribution ratios in the nitric acid system increased with an increase in the atomic number, while those in the HCl system decreased. (orig.)

  13. Nondissipative currents link graphene and heavy ion physics

    CERN Document Server

    Mizher, Ana Julia; Villavicencio, Cristian

    2013-01-01

    Monolayer graphite films, or graphene, have quasiparticle excitations that can be effectively described by (2+1)-dimensional quantum electrodynamics. Such a theory resembles more to quantum chromodynamics in some aspects, in particular, allowing for a non-trivial topological term in the gauge sector of the corresponding Lagrangian, the Chern-Simons term. In analogy to the chiral magnetic effect, proposed for quantum chromodynamics, we show that the presence of such topological gauge configurations associated to an external -in plane -magnetic field in a planar quantum elecrodynamical system, generates an electrical current along the magnetic field direction. This result is unexpected from the point of view of Maxwell equations and is uniquely due to the interaction of the gauge sector with the fermions.

  14. Aggregation and metal ion extraction properties of novel, silicon-substituted alkylenediphosphonic acids.

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, D. R.; Dietz, M. L.; Chiarizia, R.; Herlinger, A. W.

    2001-05-10

    In conjunction with efforts to develop novel actinide extractants exhibiting solubility in supercritical carbon dioxide, the effect of adding silicon-based functionalities to diphosphonic acids has been investigated. Specifically, a series of silyl-substituted diphosphonic acids has been prepared and characterized, and their aggregation and metal ion extraction properties compared with alkyl-substituted diphosphonic acids, reagents previously demonstrated to be effective extractants of actinides from acidic aqueous media into various organic solvents. In addition, the influence of the number of methylene groups bridging the phosphorus atoms of the diphosphonic acids on their extraction behavior has been investigated. Variations in the extraction behavior of the compounds arising from differences in the number of bridging methylene groups have been shown to be attributable to a combination of factors, in particular, the aggregation state of the ligand, the size of the chelate rings formed upon complexation, the basicity of the phosphoryl group and the relative acidities of the ligands.

  15. [Determination of residual aluminium Ion in Huoxiang Zhengqi pellets by GFAAS with EDTA complexation extraction].

    Science.gov (United States)

    Wang, Xue-Na; Ran, Cong-Cong; Li, Qing-Lian; Du, Chao-Hui; Jiang, Ye

    2015-06-01

    To establish an EDTA complexation extraction pretreatment combining with GFAAS method for the determination of residual aluminium ion in Huoxiang zhengqi pellets without digestive treatment, systematical investigation was made on sample preparation, and EDTA was used for the complexation extraction of residual aluminium ion in samples. The pH, concentration and volume of extraction solution, the temperature and time of microwave extraction, and graphite furnace temperature program were investigated. The results were compared with the microwave digestion. It was showed that, 0.1 g of sample weight was added in 20 mL 0.05 mol x L(-1) EDTA solution (pH 3.5), followed by heating at 150 degrees C for 10 min in the microwave extraction device. The determination of GFAAS was performed at optimized detection wavelength (257.4 nm) as well as graphite furnace temperature program, the detection limits and quantification limits were 2.37 μg x L(-1) and 7.89 μg x L(-1), respectively. The precision (RSD) was less than 2.3%. The average recovery was 96.9% -101%. The present method is easy, rapid and accurate for the determination of residual aluminium ion in Huoxiang zhengqi pellets.

  16. Ion properties in a Hall current thruster operating at high voltage

    Science.gov (United States)

    Garrigues, L.

    2016-04-01

    Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s-1 have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron-wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe2+ ion production becomes stepwise ionization of Xe+ ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8-1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.

  17. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    Science.gov (United States)

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%.

  18. Counter-current carbon dioxide extraction of fat from soy skim

    Science.gov (United States)

    This research aims to investigate the use of counter-current carbon dioxide extraction method as a means to reduce residual fat in soy skim after the enzyme-assisted aqueous extraction of soybeans. Extractions with liquid CO2 at 25°C and 10.34 MPa and supercritical CO2 at 50°C and 25.16 MPa are comp...

  19. Leakage Current Degradation Due to Ion Drift and Diffusion in Tantalum and Niobium Oxide Capacitors

    Directory of Open Access Journals (Sweden)

    Kuparowitz Martin

    2017-06-01

    Full Text Available High temperature and high electric field applications in tantalum and niobium capacitors are limited by the mechanism of ion migration and field crystallization in a tantalum or niobium pentoxide insulating layer. The study of leakage current (DCL variation in time as a result of increasing temperature and electric field might provide information about the physical mechanism of degradation. The experiments were performed on tantalum and niobium oxide capacitors at temperatures of about 125°C and applied voltages ranging up to rated voltages of 35 V and 16 V for tantalum and niobium oxide capacitors, respectively. Homogeneous distribution of oxygen vacancies acting as positive ions within the pentoxide layer was assumed before the experiments. DCL vs. time characteristics at a fixed temperature have several phases. At the beginning of ageing the DCL increases exponentially with time. In this period ions in the insulating layer are being moved in the electric field by drift only. Due to that the concentration of ions near the cathode increases producing a positively charged region near the cathode. The electric field near the cathode increases and the potential barrier between the cathode and insulating layer decreases which results in increasing DCL. However, redistribution of positive ions in the insulator layer leads to creation of a ion concentration gradient which results in a gradual increase of the ion diffusion current in the direction opposite to the ion drift current component. The equilibrium between the two for a given temperature and electric field results in saturation of the leakage current value. DCL vs. time characteristics are described by the exponential stretched law. We found that during the initial part of ageing an exponent n = 1 applies. That corresponds to the ion drift motion only. After long-time application of the electric field at a high temperature the DCL vs. time characteristics are described by the exponential

  20. First test of BNL electron beam ion source with high current density electron beam

    Science.gov (United States)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  1. Enhanced Ion Current Rectification in 2D Graphene‐Based Nanofluidic Devices

    OpenAIRE

    MIANSARI, Morteza; Friend, James R.; Yeo, Leslie Y.

    2015-01-01

    Furthering the promise of graphene‐based planar nanofluidic devices as flexible, robust, low cost, and facile large‐scale alternatives to conventional nanochannels for ion transport, we show how the nonlinear current–voltage (I–V) characteristics and ion current rectification in these platforms can be enhanced by increasing the system asymmetry. Asymmetric cuts made to the 2D multilayered graphene oxide film, for example, introduces further asymmetry to that natively inherent in the structura...

  2. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  3. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma source.

    Science.gov (United States)

    Sahu, D; Bhattacharjee, S; Singh, M J; Bandyopadhyay, M; Chakraborty, A

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE(11) mode. The source is operated at different discharge conditions to obtain the optimized negative H(-) ion current which is ∼33 μA (0.26 mA∕cm(2)). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  4. Optimization of negative ion current in a compact microwave driven upper hybrid resonance multicusp plasma sourcea)

    Science.gov (United States)

    Sahu, D.; Bhattacharjee, S.; Singh, M. J.; Bandyopadhyay, M.; Chakraborty, A.

    2012-02-01

    Performance of a microwave driven upper hybrid resonance multicusp plasma source as a volume negative ion source is reported. Microwaves are directly launched into the plasma chamber predominantly in the TE11 mode. The source is operated at different discharge conditions to obtain the optimized negative H- ion current which is ˜33 μA (0.26 mA/cm2). Particle balance equations are solved to estimate the negative ion density, which is compared with the experimental results. Future prospects of the source are discussed.

  5. Negative ion extraction via particle simulation for fusion: critical assessment of recent contributions

    Science.gov (United States)

    Garrigues, L.; Fubiani, G.; Boeuf, J. P.

    2017-01-01

    Particle-in-cell (PIC) models have been extensively used in the last few years to describe negative ion extraction for neutral beam injection applications. We show that some of these models have been employed in conditions far from the requirements of particle simulations and that questionable conclusions about negative ion extraction, not supported by experimental evidence, have been obtained. We present a critical analysis of the method that has led to these conclusions and propose directions toward a more accurate and realistic description of negative ion extraction. We show in particular that, as expected in PIC simulations, mesh convergence is reached only if the grid spacing is on the order of or smaller than the minimum Debye length in the simulation domain, and that strong aberrations in the extracted beam are observed if this constraint is not respected. The method of injection of charged particles in the simulated plasma is also discussed, and we show that some injection methods used in the literature lead to unphysical results.

  6. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-07-01

    Full Text Available Prognostics and remaining useful life (RUL estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS. The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a lithium-ion battery on-line in satellite applications. In this work, a novel health indicator (HI is extracted from the operating parameters of a lithium-ion battery to quantify battery degradation. Moreover, the Grey Correlation Analysis (GCA is utilized to evaluate the similarities between the extracted HI and the battery’s capacity. The result illustrates the effectiveness of using this new HI for fading indication. Furthermore, we propose an optimized ensemble monotonic echo state networks (En_MONESN algorithm, in which the monotonic constraint is introduced to improve the adaptivity of degradation trend estimation, and ensemble learning is integrated to achieve high stability and precision of RUL prediction. Experiments with actual testing data show the efficiency of our proposed method in RUL estimation and degradation modeling for the satellite lithium-ion battery application.

  7. Extractive Spectrophotometric Determination of Bismuth(III in Water Using Some Ion Pairing Reagents

    Directory of Open Access Journals (Sweden)

    Abdulaziz S. Bashammakh

    2011-01-01

    Full Text Available Two novel and low cost liquid-liquid extraction methods for the separation of bismuth(III at trace level from aqueous medium have been developed. The two methods were based upon the formation of yellow colored ternary complex ion associates of tetraiodobismuth(III complex anion, BiI4- with the ion-pairing reagent 2,3,5-tetraphenyltetrazoliumchloride (Tz+.Cl– and 1, 10 phenanthroline (Phen in sulfuric acid medium. The effect of various parameters e.g. pH, organic solvent, shaking time, etc. on the preconcentration of bismuth(III from the aqueous media by the reagent was investigated. The developed colored complex ion associates [Tz+.BiI4-] and [Phen+.BiI4-] were extracted quantitatively into acetone-chloroform (1:1v/v and methyliso- butylketone (MIBK, respectively. The compositions of the formed complex ion associates [Tz+.BiI4-] and [Phen+.BiI4-] were determined by the Job's method at 500 and 490 nm, respectively. The plots of bismuth(III concentration (0-17 μg mL-1 versus absorbance of the associates at 500 and 490 nm were linear with good correlation coefficient (R2=0.998. The developed method of the ion associate [Tz+.BiI4-] two methods was applied successfully for the analysis of bismuth in water.

  8. Technical note: Efficiency of total demineralization and ion-exchange column for DNA extraction from bone.

    Science.gov (United States)

    Seo, Seung Bum; Zhang, Aihua; Kim, Hye Yeon; Yi, Jin A; Lee, Hye Young; Shin, Dong Hoon; Lee, Soong Deok

    2010-01-01

    We investigated whether a combination of recently introduced methods, total demineralization and ion-exchange columns, would increase DNA recovery from old bone. Ten bone samples taken after a burial period of approximately 60 years were used in this study. Bone powder was digested using total or incomplete demineralization. DNA was extracted by the standard organic method. The DNA extract was purified with ion-exchange columns or QIAquick spin columns. The efficiency of different DNA extraction methods was compared in terms of DNA concentration, inhibitors generated by real-time PCR, and conventional STR typing results. The mean DNA concentration using the total demineralization method is approximately 3 times higher than that using the incomplete demineralization method. For DNA purification, the method using QIAquick spin columns appeared to yield approximately double the DNA than the method using ion-exchange columns. Furthermore, 2 out of 10 samples showed higher levels of inhibition with C(T) values of IPC > or =30 cycles when using only ion-exchange columns. In STR results, total demineralization yielded more locus profiles by 4.2 loci than incomplete demineralization, and QIAquick spin columns also yielded more locus profiles by 3.5 loci than ion-exchange columns. Total demineralization of bone powder significantly increased DNA yield and improved STR typing results. However, the use of ion-exchange columns was not efficient when compared with the method using QIAquick spin columns. It is suggested that the combination of total demineralization and QIAquick spin columns lead to greatly improved STR typing results.

  9. Extraction of Alkali Ions Investigated by Conductometric and pH Measurements

    Directory of Open Access Journals (Sweden)

    L. Kalvoda

    2006-01-01

    Full Text Available Extraction of alkali ions from aqueous solutions of chlorides and hydroxides into a lipophilic liquid membrane composed of tetraethyl p-tert-butylcalix[4]arene tetraacetate (TBT solution in hexane was investigated by means of measurements of changes in the electrolytic conductivity and pH-value of the aqueous solution. Hydrolysis of the TBT ionophore resulting in the release of the ethyl groups was proposed as the main reaction process, leading to disturbance of the known preference of TBT for sodium ions

  10. High extraction ability of 1,3-dialkynyl calixarene towards mercury(Ⅱ) ion

    Institute of Scientific and Technical Information of China (English)

    Lin Bo Gong; Shu Ling Gong; Qin Zheng; Xiong Li; Yuan Yin Chen

    2007-01-01

    The reaction of 1,3-dipropyn-2-yloxycalix[4]arene with mercury(Ⅱ) acetate could give mercury-containing alkynyl calixarene polymer. The extraction behavior of 1,3-dipropyn-2-yl-oxycalix[4]arene towards mercury(H) ion was examined. When the mole ratio of Hg2+/calixarene was 1∶1, the extractive percent can reach to 99.1%, and the extraction capacity was up to 431 mg/g. It could also decrease the Hg2+ concentration from 5 to 0.85 mg/L, which was only 17% of the national standard of effluent and satisfied the national standard of drinking water. The extraction process included chemical reaction.

  11. Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity

    CERN Document Server

    Qu, Hang; Tang, Yufeng; Semenikihin, Oleg; Skorobogatiy, Maksim

    2015-01-01

    A flexible, light weight and high conductivity current collector is the key element that enables fabrication of high performance flexible lithium ion battery. Here we report a thin, light weight and flexible lithium ion battery that uses graphite paper enhanced with a nano-sized metallic layers as the current collector, LiFePO4 and Li4Ti5O12 as the cathode and anode materials, and PE membrane soaked in LiPF6 as a separator. Using thin and flexible graphite paper as a substrate for the current collector instead of a rigid and heavy metal foil enables us to demonstrate a very thin Lithium-Ion Battery into ultra-thin (total thickness including encapsulation layers of less than 250 {\\mu}m) that is also light weight and highly flexible.

  12. Improved Ion Resistance for III-V Photocathodes in High Current Guns

    Energy Technology Data Exchange (ETDEWEB)

    Mulhollan, Gregory, A.

    2012-11-16

    The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studies was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.

  13. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  14. Extraction of radioactive positive ions across the surface of superfluid helium : A new method to produce cold radioactive nuclear beams

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Pekola, JP; Aysto, J

    2003-01-01

    Alpha-decay recoils Rn-219 were stopped in superfluid helium and positive ions were extracted by electric field into the vapour phase. This first quantitative observation of extraction was successfully conducted using highly sensitive radioactivity detection. The efficiency for extraction across the

  15. Effect of high ionic strength on the extraction of uranium(VI ions

    Directory of Open Access Journals (Sweden)

    M.K. Nazal

    2014-01-01

    Full Text Available Preparation and characterization of didodecylphosphoric acid (HDDPA as an extractant in toluene was carried. Mass spectroscopy showed that the monomer peak at 457.4 amu [M–Na+] is double that of the dimer at 891.9 amu [M–M–Na+] and the monomer molecules concentration dominate the dimer molecules in toluene. HDDPA was used as an extractant for the extraction of U(VI ion from perchlorate and nitrate media that have ionic strength (1.00, 3.00, 5.00, 7.00 M. The effect of HDDPA concentration, pcH, ionic strength of supporting electrolytes, and temperature in the range 15–45 °C on the extraction process have been studied. The stoichiometry of the extraction of U(VI ion, the free energy change (ΔG, the enthalpy change (ΔH, the entropy change (ΔS, and Kex at different ionic strength have been calculated. The formula of the complexes, which were formed has been established to be UO2(X(R2(HR2 at pcH equal 2.00 and UO2(X(R2(HR2 and UO2(X(R2 at pcH = 1.00, where (X isClO4- orNO3- and (HR2 is didodecylphosphoric acid monomer, (R2 is the deprotonated didodecylphosphoric acid, where R is the dodecyl group.

  16. Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionisation ion-trap mass spectrometry

    NARCIS (Netherlands)

    van Hout, M.W.J.; Niederlander, H.A G; de Zeeuw, R.A.; de Jong, G.J.

    2003-01-01

    Ion suppression effects were observed during the determination of clenbuterol in urine with solid-phase extraction/multiple-stage ion-trap mass spectrometry (SPE/MS3), despite the use of atmospheric pressure chemical ionisation. During SPE, a polymeric stationary phase (polydivinylbenzene) was appli

  17. Analysis of ion dynamics and peak shapes for delayed extraction time-of-flight mass spectrometers

    Science.gov (United States)

    Collado, V. M.; Ponciano, C. R.; Fernandez-Lima, F. A.; da Silveira, E. F.

    2004-06-01

    The dependence of time-of-flight (TOF) peak shapes on time-dependent extraction electric fields is studied theoretically. Conditions for time focusing are analyzed both analytically and numerically for double-acceleration-region TOF spectrometers. Expressions for the spectrometer mass resolution and for the critical delay time are deduced. Effects due to a leakage field in the first acceleration region are shown to be relevant under certain conditions. TOF peak shape simulations for the delayed extraction method are performed for emitted ions presenting a Maxwellian initial energy distribution. Calculations are compared to experimental results of Cs+ emission due to CsI laser ablation.

  18. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Küchler, D

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  19. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-02-15

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  20. Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Küchler, D.

    2016-02-01

    The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.

  1. Vertical blow-up in a low-current, stored, laser-cooled ion beam

    CERN Document Server

    Madsen, N; Siegfried, L E; Hangst, J S; Nielsen, J

    2003-01-01

    Using a novel technique for real-time transverse beam profile diagnostics of a stored ion beam, we have observed the transverse size of a stored, laser-cooled ion beam. Earlier we observed that the density of the beam is independent of the beam current. At very low currents we observe an abrupt change in this behavior: the vertical beam size increases suddenly by about an order of magnitude. This observation implies a sudden change in the indirect vertical cooling mediated by intrabeam scattering. Our results have serious implications for the ultimate beam quality attainable by laser- cooling. (12 refs).

  2. Wideband Precision Current Transformer for the Magnet Current of the Beam Extraction Kicker Magnet of the Large Hadron Collider

    CERN Document Server

    Gräwer, G

    2004-01-01

    The LHC beam extraction system is composed of 15 fast kicker magnets per beam to extract the particles in one turn of the collider and to safely dispose them on external absorbers. Each magnet is powered by a separate pulse generator. The generator produces a magnet current pulse with 3 us rise time, 20 kA amplitude and 1.8 ms fall time, of which 90 us are needed to dump the beam. The beam extraction system requires a high level of reliability. To detect any change in the magnet current characteristics, which might indicate a slow degradation of the pulse generator, a high precision wideband current transformer will be installed. For redundancy reasons, the results obtained with this device will be cross-checked with a Rogowski coil, installed adjacent to the transformer. A prototype transformer has been successfully tested at nominal current levels and showed satisfactory results compared with the output of a high frequency resistive coaxial shunt. The annular core of the ring type transformer is composed of...

  3. Effect of impurity ions on preparation of novel saponifier for rare earth extraction

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 冯宗玉; 黄小卫; 黄莉; 徐旸; 侯永可; 王猛

    2013-01-01

    Magnesium bicarbonate, prepared by the carbonation of magnesium hydroxide slurry, was used as a novel saponifier to eliminate the ammonia nitrogen pollution in the rare earth extraction separation process. The effect of impurity ions introduced by system on the carbonation reaction of magnesium hydroxide was studied in the work. The results showed that the presence of Ca2+could lead to side reactions so as to reduce the conversion rate of magnesium hydroxide, and a small number of rare earth ions would have great influence on the carbonation reaction. What’s more, there was no influence on carbonation reaction with the low concen-tration of Na+or Mg2+, the conversion rate of magnesium hydroxide could reach above 96%. This paper showed a practical theory which could provide scientific guidance for the preparation of novel saponifier in rare earth extraction separation process.

  4. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir; Rastbood, E. [Physics Department of Birjand University, Birjand (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  5. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  6. Modeling of plasma transport and negative ion extraction in a magnetized radio-frequency plasma source

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Hagelaar, G.; Kohen, N.; Boeuf, J. P.

    2017-01-01

    Negative ion sources for fusion are high densities plasma sources in large discharge volumes. There are many challenges in the modeling of these sources, due to numerical constraints associated with the high plasma density, to the coupling between plasma and neutral transport and chemistry, the presence of a magnetic filter, and the extraction of negative ions. In this paper we present recent results concerning these different aspects. Emphasis is put on the modeling approach and on the methods and approximations. The models are not fully predictive and not complete as would be engineering codes but they are used to identify the basic principles and to better understand the physics of the negative ion sources.

  7. Generation of electric currents in the chromosphere via neutral-ion drag

    CERN Document Server

    Krasnoselskikh, V; Hudson, H S; Bale, S D; Abbett, W P; 10.1088/0004-637X/724/2/1542

    2010-01-01

    We consider the generation of electric currents in the solar chromosphere where the ionization level is typically low. We show that ambient electrons become magnetized even for weak magnetic fields (30 G); that is, their gyrofrequency becomes larger than the collision frequency while ion motions continue to be dominated by ion-neutral collisions. Under such conditions, ions are dragged by neutrals, and the magnetic field acts as if it is frozen-in to the dynamics of the neutral gas. However, magnetized electrons drift under the action of the electric and magnetic fields induced in the reference frame of ions moving with the neutral gas. We find that this relative motion of electrons and ions results in the generation of quite intense electric currents. The dissipation of these currents leads to resistive electron heating and efficient gas ionization. Ionization by electron-neutral impact does not alter the dynamics of the heavy particles; thus, the gas turbulent motions continue even when the plasma becomes f...

  8. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  9. Separation and quantitation of methenamine in urine by ion-pair extraction.

    Science.gov (United States)

    Strom, J G; Jun, H W

    1986-04-01

    An ion-pair extraction technique is described for separating methenamine, a urinary tract antibacterial agent, from formaldehyde in human urine samples. Separation conditions are developed from extraction constants for the methenamine-bromocresol green ion-pair. The technique involves adsorption of the ion-pair onto a silica cartridge and elution with methylene chloride:1-pentanol (95:5). Methenamine is freed from the ion-pair by the addition of excess tetrabutylammonium iodide and converted to formaldehyde (determined spectrophotometrically) by reaction with ammonia and acetylacetone. Linear standard plots were obtained from urine containing methenamine which was diluted to 10-160 micrograms/mL. The lower limit of detection was 6 micrograms/mL of methenamine. Absolute recovery from urine was greater than or equal to 94.5%. The precision (CV) of detection of methenamine in the presence of formaldehyde was less than 2%, and less than or equal to 4.5% for the detection of formaldehyde in the presence of methenamine. No interferences were noted. The applicability of the method was demonstrated by analysis of human urine levels of both methenamine and formaldehyde following oral administration of a methenamine salt to a volunteer.

  10. Bach Adsorption Study for the Extraction of Silver Ions by Hydrazone Compounds from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Abdussalam Salhin Mohamad Ali

    2012-01-01

    Full Text Available Sorbent materials based on a hydrazone Schiff base compound, C14H11BrN4O4, were prepared either by immobilizing the ligand into sol-gel (SG1 or bonding to silica (SG2. The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag+, Cu2+, Co2+, Ni2+, Fe3+, Pb2+, Zn2+, and Mn2+ using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1 exhibits highest selectivity towards Ag+ ions, while the chemically bonded hydrazone sorbent (SG2 exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag+, the physically immobilized sorbent (SG1 is preferred.

  11. Ba-ion extraction from a high pressure Xe gas for double-beta decay studies with EXO

    CERN Document Server

    Brunner, T; Sabourov, A; Varentsov, V L; Gratta, G; Sinclair, D

    2013-01-01

    An experimental setup is being developed to extract Ba ions from a high-pressure Xe gas environment. It aims to transport Ba ions from 10 bar Xe to vacuum conditions. The setup utilizes a converging-diverging nozzle in combination with a radio-frequency (RF) funnel to move Ba ions into vacuum through the pressure drop of several orders of magnitude. This technique is intended to be used in a future multi-ton detector investigating double-beta decay in $^{136}$Xe. Efficient extraction and detection of Ba ions, the decay product of Xe, would allow for a background-free measurement of the $^{136}$Xe double-beta decay.

  12. The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T.; Tarvainen, O.; Toivanen, V.; Peura, P.; Jones, P.; Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae FI-40014 (Finland); Noland, J.; Leitner, D. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2010-02-15

    Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount of bremsstrahlung radiation is significantly decreased.

  13. Ion current rectification in funnel-shaped nanochannels: Hysteresis and inversion effects.

    Science.gov (United States)

    Rosentsvit, Leon; Wang, Wei; Schiffbauer, Jarrod; Chang, Hsueh-Chia; Yossifon, Gilad

    2015-12-14

    Ion current rectification inversion is observed in a funnel-shaped nanochannel above a threshold voltage roughly corresponding to the under-limiting to over-limiting current transition. Previous experimental studies have examined rectification at either low-voltages (under-limiting current region) for conical nanopores/funnel-shaped nanochannels or at high-voltages (over-limiting region) for straight nanochannels with asymmetric entrances or asymmetric interfacing microchannels. The observed rectification inversion occurs because the system resistance is shifted, beyond a threshold voltage, from being controlled by intra-channel ion concentration-polarization to that controlled by external concentration-polarization. Additionally, strong hysteresis effects, due to residual concentration-polarization, manifest themselves through the dependence of the transient current rectification on voltage scan rate.

  14. Development of beam current control system in RF-knockout slow extraction

    Science.gov (United States)

    Mizushima, K.; Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K.

    2011-12-01

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  15. Development of beam current control system in RF-knockout slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Mizushima, K., E-mail: mizshima@nirs.go.jp [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Sato, S.; Shirai, T.; Furukawa, T.; Katagiri, K.; Takeshita, E.; Iwata, Y.; Himukai, T.; Noda, K. [Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2011-12-15

    A raster scanning method has been developed for cancer therapy at NIRS-HIMAC. This method requires a high-accuracy beam current control and fast beam-on/off switching. We have developed a feedback control system of the beam current with the RF-knockout slow extraction method. The system has allowed a stable response to beam-on/off switching using a feedback control delay function with a beam-current ripple of 7%.

  16. Proton and Pb ion beam extraction experiments with bent crystals at the CERN-SPS

    CERN Document Server

    Elsener, K; Klem, J T; CERN. Geneva. SPS and LEP Division

    1997-01-01

    Extraction of particle beams from the CERN-SPS using bent silicon crystals is described. A summary of the early results is given. Emphasis is on the recent experiments, in particular on the energy dependence of proton extraction at 14, 120 and 270 GeV. 'U-shaped' crystals of different thickness and with a different miscut angle have been compared at 120 GeV. Non-linear excitation of the beam was used in one experiment, with the aim to achieve larger impact parameters - the results show a particular behaviour in the tails of the beam. Finally, the first experimental result on extraction of a 22 TeV fully stripped Pb ion beam with a bent crystal is also described.

  17. Improvement of the cloud point extraction of uranyl ions by the addition of ionic liquids.

    Science.gov (United States)

    Gao, Song; Sun, Taoxiang; Chen, Qingde; Shen, Xinghai

    2013-12-15

    The cloud point extraction (CPE) of uranyl ions by different kinds of extractants in Triton X-114 (TX-114) micellar solution was investigated upon the addition of ionic liquids (ILs) with various anions, i.e., bromide (Br(-)), tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)) and bis[(trifluoromethyl)sulfonyl]imide (NTf2(-)). A significant increase of the extraction efficiency was found on the addition of NTf2(-) based ILs when using neutral extractant tri-octylphosphine oxide (TOPO), and the extraction efficiency kept high at both nearly neutral and high acidity. However, the CPE with acidic extractants, e.g., bis(2-ethylhexyl) phosphoric acid (HDEHP) and 8-hydroxyquinoline (8-HQ) which are only effective at nearly neutral condition, was not improved by ILs. The results of zeta potential and (19)F NMR measurements indicated that the anion NTf2(-) penetrated into the TX-114 micelles and was enriched in the surfactant-rich phase during the CPE process. Meanwhile, NTf2(-) may act as a counterion in the CPE of UO2(2+) by TOPO. Furthermore, the addition of IL increased the separation factor of UO2(2+) and La(3+), which implied that in the micelle TOPO, NTf2(-) and NO3(-) established a soft template for UO2(2+). Therefore, the combination of CPE and IL provided a supramolecular recognition to concentrate UO2(2+) efficiently and selectively.

  18. Development of a universal serial bus interface circuit for ion beam current integrators.

    Science.gov (United States)

    Suresh, K; Panigrahi, B K; Nair, K G M

    2007-08-01

    A universal serial bus (USB) interface circuit has been developed to enable easy interfacing of commercial as well as custom-built ion beam current integrators to personal computer (PC) based automated experimental setups. Built using the popular PIC16F877A reduced instruction set computer and a USB-universal asynchronous receiver-transmitter/first in, first out controller, DLP2232, this USB interface circuit virtually emulates the ion beam current integrators on a host PC and uses USB 2.0 protocol to implement high speed bidirectional data transfer. Using this interface, many tedious and labor intensive ion beam irradiation and characterization experiments can be redesigned into PC based automated ones with advantages of improved accuracy, rapidity, and ease of use and control. This interface circuit was successfully used in carrying out online in situ resistivity measurement of 70 keV O(+) ion irradiated tin thin films using four probe method. In situ electrical resistance measurement showed the formation of SnO(2) phase during ion implantation.

  19. Control of a large vacuum wave precursor on the SABRE voltage adder MITL and extraction ion diode

    Science.gov (United States)

    Cuneo, M. E.; Hanson, D. L.; Poukey, J. W.; Menge, P. R.; Savage, M. E.; Smith, J. R.; Bernard, M. A.

    SABRE is a ten-cavity magnetically insulated voltage adder (6MV, 300 kA) used to study ion beam production in high voltage extraction applied-B ion diodes. Observations indicate that the machine power initially propagates in a large-amplitude vacuum wave prior to electron emission. This vacuum wave 'precursor' has an important impact on the turn-on and impedance history of ion diodes. Some typical precursor characteristics are shown using transmission line, diode, and beam current and voltage data and are compared to TWOQUICK simulations. Two techniques are under investigation to control the precursor and its effects on diode performance. A plasma opening switch (POS) has been used to erode the precursor. Field enhancing inserts are also planned to decrease the macroscopic field required for electron emission from the cathode. This will limit the distance over which vacuum and insulated waves separate by propagation at different velocities. Experimental data from the POS technique and TWOQUICK simulations of the insert technique are presented and discussed.

  20. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm.

  1. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam productiona)

    Science.gov (United States)

    Tanaka, M.; Hara, S.; Seki, T.; Iga, T.

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65mA (high current density of 330mA/cm2, proton ratio of 87%, and beam energy of 30keV) with a 5mm diameter extraction aperture, pulse width of 400μs, and 20Hz repetition rate at 1.3kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5mm radius) and the lens was 36mA and the 90% focused beam half-width was 1-2mm.

  2. Reconstruction of the ion plasma parameters from the current measurements: mathematical tool

    Directory of Open Access Journals (Sweden)

    E. Séran

    Full Text Available Instrument d’Analyse du Plasma (IAP is one of the instruments of the newly prepared ionospheric mission Demeter. This analyser was developed to measure flows of thermal ions at the altitude of ~ 750 km and consists of two parts: (i retarding potential analyser (APR, which is utilised to measure the energy distribution of the ion plasma along the sensor look direction, and (ii velocity direction analyser (ADV, which is used to measure the arrival angle of the ion flow with respect to the analyser axis. The necessity to obtain quick and precise estimates of the ion plasma parameters has prompted us to revise the existing mathematical tool and to investigate different instrumental limitations, such as (i finite angular aperture, (ii grid transparency, (iii potential depression in the space between the grid wires, (iv losses of ions during their passage between the entrance diaphragm and the collector. Simple analytical expressions are found to fit the currents, which are measured by the APR and ADV collectors, and show a very good agreement with the numerical solutions. It was proven that the fitting of the current with the model functions gives a possibility to properly resolve even minor ion concentrations and to find the arrival angles of the ion flow in the multi-species plasma. The discussion is illustrated by an analysis of the instrument response in the ionospheric conditions which are predicted by the International Reference Ionosphere (IRI model.

    Key words. Ionosphere (plasma convection; instruments and techniques – Space plasma physics (experimental and mathematical techniques

  3. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    Science.gov (United States)

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  4. A Modified Time-Delay Addition Method to Extract Resistive Leakage Current of MOSA

    Science.gov (United States)

    Khodsuz, Masume; Mirzaie, Mohammad

    2016-12-01

    Metal oxide surge arresters are one of the most important equipment for power system protection against switching and lightning over-voltages. High-energy stresses and environmental features are the main factors which degrade surge arresters. In order to verify surge arresters good condition, their monitoring is necessary. The majority of surge arrester monitoring techniques is based on total leakage current decomposition of their capacitive and resistive components. This paper introduces a new approach based on time-delay addition method to extract the resistive current from the total leakage current without measuring voltage signal. Surge arrester model for calculating leakage current has been performed in ATP-EMTP. In addition, the signal processing has been done using MATLAB software. To show the accuracy of the proposed method, experimental tests have been performed to extract resistive leakage current by the proposed method.

  5. The role of oxygen ions in the formation of a bifurcated current sheet in the magnetotail

    CERN Document Server

    Dalena, S; Zimbardo, G; Veltri, P

    2010-01-01

    Cluster observations in the near-Earth magnetotail have shown that sometimes the current sheet is bifurcated, i.e. it is divided in two layers. The influence of magnetic turbulence on ion motion in this region is investigated by numerical simulation, taking into account the presence of both protons and oxygen ions. The magnetotail current sheet is modeled as a magnetic field reversal with a normal magnetic field component $B_n$, plus a three-dimensional spectrum of magnetic fluctuations $\\delta {\\bf B}$, which represents the observed magnetic turbulence. The dawn-dusk electric field E$_y$ is also included. A test particle simulation is performed using different values of $\\delta {\\bf B}$, E$_y$ and injecting two different species of particles, O$^+$ ions and protons. O$^+$ ions can support the formation of a double current layer both in the absence and for large values of magnetic fluctuations ($\\delta B/B_0 = 0.0$ and $\\delta B/B_0 \\geq 0.4$, where B$_0$ is the constant magnetic field in the magnetospheric l...

  6. Determining the mobility of ions by transient current measurements at high voltages.

    Science.gov (United States)

    Kohn, Peter; Schröter, Klaus; Thurn-Albrecht, Thomas

    2007-08-24

    We present polarization and transient current experiments that allow an independent determination of the charge carrier density and the mobility of ions in polymer electrolytes at low charge carrier density. The method relies on a complete depletion of ions in the bulk electrolyte achieved by applying high voltages. Based on a qualitative model for the charge dynamics in this nonlinear regime, the method is exemplarily applied to a system of polymethylmethacrylate doped with small amounts of a lithium salt. The independently obtained values for the ionic mobility, the charge carrier density, and the conductivity are consistent for all salt concentrations studied. Criteria for the applicability of the method are discussed.

  7. Extracting DC bus current information for optimal phase correction and current ripple in sensorless brushless DC motor drive

    Institute of Scientific and Technical Information of China (English)

    Zu-sheng HO; Chii-maw UANG; Ping-chieh WANG

    2014-01-01

    Brushless DC motor (BLDCM) sensorless driving technology is becoming increasingly established. However, op-timal phase correction still relies on complex calculations or algorithms. In finding the correct commutation point, the problem of phase lag is introduced. In this paper, we extract DC bus current information for auto-calibrating the phase shift to obtain the correct commutation point and optimize the control of BLDC sensorless driving. As we capture only DC bus current information, the original shunt resistor is used in the BLDCM driver and there is no need to add further current sensor components. Software processing using only simple arithmetic operations successfully accomplishes the phase correction. Experimental results show that the proposed method can operate accurately and stably at low or high speed, with light or heavy load, and is suitable for practical applications. This approach will not increase cost but will achieve the best performance/cost ratio and meet market expectations.

  8. Rice straw modified by click reaction for selective extraction of noble metal ions.

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun; Li, Juan

    2015-02-01

    Rice straw was modified by azide-alkyne click reaction in order to realize selective extraction of noble metal ions. The ability of the modified straw to adsorb Pd(2+) and Pt(4+) was assessed using a batch adsorption technique. It was found that the sorption equilibrium could be reached within 1h and the adsorption capacity increased with temperature for both Pd(2+) and Pt(4+). The maximum sorption capacities for Pd(2+) and Pt(4+) were respectively attained in 1.0 and 0.1 mol/L HCl. The modified straw showed excellent selectivity for noble metal ions in comparison to the pristine straw. In addition, the modified straw was examined as a column packing material for extraction of noble metal ions. It was indicated that 1.0 mL/min was the best flow rate for Pd(2+) and Pt(4+). The modified straw could be repeatedly used for 10 times without any significant loss in the initial binding affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DNA degradation by aqueous extract of Aloe vera in the presence of copper ions.

    Science.gov (United States)

    Naqvi, Shoa; Ullah, M F; Hadi, S M

    2010-06-01

    The plant Aloe vera has long been used in medicine, as dietary supplements and for cosmetic purposes. Aloe vera extracts are a rich source of polyphenols, such as aloin and aloe emodin and have shown a wide range of pharmacological properties, including anti-inflammatory and anti-cancer properties. The bioactive component aloe emodin has been reported to induce apoptosis in various cancer cell lines. Many of the biological activities of Aloe vera have been attributed to its antioxidant properties. However, most plant-derived polyphenols that are also present in Aloe vera may exhibit pro-oxidant properties either alone or in the presence of transition metals, such as copper. Previous reports from this laboratory have implicated the pro-oxidant action as one of the mechanisms for their anti-cancer properties. In the present paper, we show that aqueous extract of Aloe vera is also able to cause DNA degradation in the presence of copper ions. Further, the extract is also able to reduce Cu(II) to Cu(I) and generate reactive oxygen species, such as superoxide anion and hydroxyl radicals in a dose-dependent manner, which correlates with ability of the extract to cause DNA breakage. Thus, the study shows that in addition to antioxidant activity, Aloe vera extract also possess pro-oxidant properties, leading to oxidative DNA breakage.

  10. submitter Light Extraction From Scintillating Crystals Enhanced by Photonic Crystal Structures Patterned by Focused Ion Beam

    CERN Document Server

    Modrzynski, Pawel; Knapitsch, Arno; Kunicki, Piotr; Lecoq, Paul; Moczala, Magdalena; Papakonstantinou, Ioannis; Auffray, Etiennette

    2016-01-01

    “Photonic Crystals (PhC)” have been used in a variety of fields as a structure for improving the light extraction efficiency from materials with high index of refraction. In previous work we already showed the light extraction improvement of several PhC covered LYSO crystals in computer simulations and practical measurements. In this work, new samples are made using different materials and techniques which allows further efficiency improvements. For rapid prototyping of PhC patterns on scintillators we tested a new method using “Focused Ion Beam (FIB)” patterning. The FIB machine is a device similar to a “Scanning Electron Microscope (SEM)”, but it uses ions (mainly gallium) instead of electrons for the imaging of the samples' surface. The additional feature of FIB devices is the option of surface patterning in nano-scale which was exploited for our samples. Three samples using FIB patterning have been produced. One of them is a direct patterning of the extraction face of a 0.8×0.8×10 $mm^3$ LYS...

  11. Flapping current sheet motions in magnetotail excited by non-adiabatic ions: case study

    Science.gov (United States)

    Wei, X., Jr.

    2015-12-01

    The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. Three type of current sheet flapping event in this paper will be discussed. This current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.

  12. The current sheet tiled and non-adiabatic ions effect on the flapping motion in magnetotail

    Science.gov (United States)

    Wei, XinHua

    2016-04-01

    The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. These flapping motion current sheet cases often observed tiled. The current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.

  13. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Chieh; Kushner, Mark J. [Electrical Engineering and Computer Science Department, University of Michigan, 1301 Beal Ave., Ann Arbor, Michigan 48109 (United States); Leoni, Napoleon; Birecki, Henryk; Gila, Omer [Hewlett Packard Research Labs, Palo Alto, California 94304 (United States)

    2013-01-21

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will be discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.

  14. Organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction

    Institute of Scientific and Technical Information of China (English)

    ZHONG Fu-jin; CHEN Xiao-qing; ZHANG Shu-chao; LI Yue-ping

    2007-01-01

    A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate,glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.

  15. Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.

  16. Simulations and experiments of intense ion beam current density compression in space and timea)

    Science.gov (United States)

    Sefkow, A. B.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Anders, A.; Coleman, J. E.; Leitner, M.; Lidia, S. M.; Roy, P. K.; Seidl, P. A.; Waldron, W. L.; Yu, S. S.; Welch, D. R.

    2009-05-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)]. To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ˜300 keV K+ beam and have separately achieved transverse and longitudinal focusing to a radius 2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  17. Chemical Extraction Preparation of Delithiated Cathode Materials of Li-ion Battery

    Institute of Scientific and Technical Information of China (English)

    YAN Shijian; ZHANG Mingang; CHAI Yuesheng; TIAN Wenhuai

    2009-01-01

    A method of conventional chemical reaction to prepare delithiated cathode materials of Li-ion battery was introduced.The cathode material of Li-ion battery was mixed with oxidizing agent Na_2S_2O_8 in water solution,and the solution was stirred continuously to make the chemical re-action proceed sufficiently,then the reaction product was filtered and finally the insoluble delithiated cathode material was obtained.A series of tests were conducted to verify the composition,crystal structure and electrochemical property of the delithiated cathode materials were all desirable.This method overcomes the shortcomings of battery charging preparation and chemical extraction prepa-ration employing other oxidizing agents.

  18. An integrating current transformer for fast extraction from the HIRFL-CSR main ring

    Science.gov (United States)

    Wu, Jun-Xia; Zheng, Jian-Hua; Zhao, Tie-Cheng; Mao, Rui-Shi; Yin, Yan; Yuan, You-Jin; Yang, Jian-Cheng

    2010-01-01

    For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always an important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.

  19. First test of BNL electron beam ion source with high current density electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, Alexander, E-mail: pikin@bnl.gov; Alessi, James G., E-mail: pikin@bnl.gov; Beebe, Edward N., E-mail: pikin@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard [CERN, CH-1211 Geneva 23 (Switzerland)

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  20. EFFECT OF COXSACKIEVIRUS B3 ON ION CHANNEL CURRENTS IN RAT VENTRICULAR MYOCYTES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To investigate the effects of coxsackievims B3 (CVB3) on ion channel currents in rat ventricular my-Methods. Rat hearts were isolated with collagenase to acquire single ventricular myocytes, L-type voltnge-depen-dent calcium channel( VDCC)current (Ica), Na + current (INa), outward potassium current (Iout), inwardly rectifying potassium current(IKI) were recorded using whole cell patch clamp techniques. Results. CVB3 infection increased Ica and Iout, while decreased IKI; but it had no obvious effect on INa. Conclusion. Tne effects of CVB3 on Ica、 Iout、 IKI may be one of the mechanisms of myocytes damage and the oc-currence of abnormal electroactivities induced by CVB3 infection.

  1. Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO

    Science.gov (United States)

    Kazakov, Ye O.; Van Eester, D.; Wauters, T.; Lerche, E.; Ongena, J.

    2015-02-01

    For the continuous operation of future tokamak-reactors like DEMO, non-inductively driven toroidal plasma current is needed. Bootstrap current, due to the pressure gradient, and current driven by auxiliary heating systems are currently considered as the two main options. This paper addresses the current drive (CD) potential of the ion cyclotron resonance frequency (ICRF) heating system in DEMO-like plasmas. Fast wave CD scenarios are evaluated for both the standard midplane launch and an alternative case of exciting the waves from the top of the machine. Optimal ICRF frequencies and parallel wave numbers are identified to maximize the CD efficiency. Limitations of the high frequency ICRF CD operation are discussed. A simplified analytical method to estimate the fast wave CD efficiency is presented, complemented with the discussion of its dependencies on plasma parameters. The calculated CD efficiency for the ICRF system is shown to be similar to those for the negative neutral beam injection and electron cyclotron resonance heating.

  2. Extraction of 22 TeV/c Lead Ions from the CERN SPS using a Bent Silicon Crystal

    Science.gov (United States)

    Herr, W.; Elsener, K.; Fidecaro, G.; Gyr, M.; Klem, J.; Weisse, E.

    1997-05-01

    The extraction of protons from the halo of a circulating beam has been repeatedly demonstrated at the SPS. In a recent experiment a coasting lead ion beam was available at a momentum of 270 GeV/c/Z corresponding to a total momentum of 22 TeV/c per ion and the possibility to extract ultrarelativistic lead ions with a bent crystal could be demonstrated for the first time. We present the experimental challenges, the measurements performed during this experiment and the first results.

  3. Optimized Extraction of H– by Three-Electrode Faraday Cup System in Magnetized Sheet Plasma Ion Source

    Directory of Open Access Journals (Sweden)

    M. S. Fernandez

    2003-06-01

    Full Text Available A locally designed rectangular parallelepiped, three-electrode Faraday cup system has been developed.Its design incorporates the capability of simultaneous extraction and deposition of the H– ions on substrates.The device functions to attain prescribed selectivity conditions of extracted ions, with controlled energies,for deposition or adsorption. It has been proven to detect the ions at filter bias voltage of 13.61 V with acurrent density of 5.3 A/m2 that is relatively higher than reported (Abate & Ramos, 2000.

  4. Determination of nitrate in lettuce by ion chromatography after microwave water extraction

    Directory of Open Access Journals (Sweden)

    Humberto Brevilato Novaes

    2009-01-01

    Full Text Available Lettuce is worldwide known as the most important vegetable. In this context, most farmers are searching new techniques for best quality products including hydropony. However, nitrate is of great concern, since it has a negative impact on human metabolism. The main objective of the present work was to evaluate the nitrate content of lettuce produced by conventional and hydroponic systems. The determination was conducted by ion chromatography and a new method of extraction was tested using microwave oven digestion. The results indicated that nitrate level produced in the conventional system was lower than in the hydroponic system.

  5. Determination of Zinc Ions in Environmental Samples by Dispersive Liquid- Liquid Micro Extraction and Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    F. Arabi

    2012-11-01

    Full Text Available In this work preconcentration of the Zn ions was investigated in water sample by Dispersive liquid- liquid micro extraction (DLLME using chloroform as an extraction solvent, methanol as a disperser solvent and 8-Hydroxyquinoline as a chelating agent. The determination of extracted ions was done by graphite furnace atomic absorption spectrometry. The influence of various analytical parameters including pH, extraction and disperser solvent type and volume and concentration of the chelating agent on the extraction efficiency of analyses was investigated. After extraction, the enrichment factor was 26 and the detection limit of the method was 0.0033 µg l-1 and the relative standard deviations (R.S.D for five determinations of 1 ng/ml Zn were 7.41%. 

  6. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids(ILs) as solvents has been investigated.The distribution ratio of Sr2+ can reach as high as 103 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  7. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    XU Chao; SHEN XingHai; CHEN QingDe; GAO HongCheng

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (Ils) as solvents has been investigated.The distribution ratio of Sr~(2+) can reach as high as 10~3 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na~+ and K~+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  8. Detailed beam and plasma measurements on the vessel for extraction and source plasma analyses (VESPA) Penning H{sup −} ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, S. R., E-mail: scott.lawrie@stfc.ac.uk [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, Oxford (United Kingdom); John Adams Institute of Accelerator Science, University of Oxford, Oxford (United Kingdom); Faircloth, D. C.; Letchford, A. P.; Whitehead, M. O.; Wood, T. [STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, Oxford (United Kingdom)

    2016-02-15

    A vessel for extraction and source plasma analyses (VESPA) is operational at the Rutherford Appleton Laboratory (RAL). This project supports and guides the overall ion source R&D effort for the ISIS spallation neutron and muon facility at RAL. The VESPA produces 100 mA of pulsed H{sup −} beam, but perveance scans indicate that the source is production-limited at extraction voltages above 12 kV unless the arc current is increased. A high resolution optical monochromator is used to measure plasma properties using argon as a diagnostic gas. The atomic hydrogen temperature increases linearly with arc current, up to 2.8 eV for 50 A; whereas the electron temperature has a slight linear decrease toward 2.2 eV. The gas density is 10{sup 21} m{sup −3}, whilst the electron density is two orders of magnitude lower. Densities follow square root relationships with arc current, with gas density decreasing whilst electron (and hence ion) density increases. Stopping and range of ions in matter calculations prove that operating a high current arc with an argon admixture is extremely difficult because cathode-coated cesium is heavily sputtered by argon.

  9. Design, manufacture and factory testing of the Ion Source and Extraction Power Supplies for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bigi, Marco, E-mail: marco.bigi@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Rinaldi, Luigi [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Simon, Muriel [Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain); Sita, Luca; Taddia, Giuseppe; Carrozza, Saverino [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Decamps, Hans [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Luchetta, Adriano [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Meddour, Abdelraouf [HIMMELWERK Hoch- und Mittelfrequenzanlagen GmbH, Jopestr. 10, 72072 Tübingen (Germany); Moressa, Modesto [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Morri, Cristiano; Musile Tanzi, Antonio [OCEM Energy Technology, Via della Solidarietà 2/1, 40056 Valsamoggia (località Crespellano), Bologna (Italy); Recchia, Mauro [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Wagner, Uwe [HIMMELWERK Hoch- und Mittelfrequenzanlagen GmbH, Jopestr. 10, 72072 Tübingen (Germany); Zamengo, Andrea; Toigo, Vanni [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2015-10-15

    Highlights: • 5 MVA ion source power supplies effectively integrated in 150 m{sup 2} Faraday cage. • Load protection and performance requirements met of custom design high voltage power supplies. • 200 kW tetrode oscillator with 200 kHz frequency range successfully tested. - Abstract: The SPIDER experiment, currently under construction at the Neutral Beam Test Facility in Padua, Italy, is a full-size prototype of the ion source for the ITER Neutral Beam Injectors. The Ion Source and Extraction Power Supplies (ISEPS) for SPIDER are supplied by OCEM Energy Technology s.r.l. (OCEM) under a procurement contract with Fusion for Energy (F4E) covering also the units required for MITICA and ITER injectors. The detailed design of SPIDER ISEPS was finalized in 2011 and manufacture of most components completed by end 2013. The Factory Acceptance Tests took place early 2014. ISEPS, with an overall power rating of 5 MVA, form a heterogeneous set of items including solid state power converters and 1 MHz radiofrequency generators of 200 kW output power. The paper presents the main features of the detailed design developed by OCEM, focusing in particular on the high output voltage pulse step modulators, the high output current resonant converters, the radiofrequency generators by HIMMELWERK GmbH and the architecture and implementation of the complex control system. Details are given on non-standard factory tests verifying the insulation requirements specific to this application. Performance of ISEPS during the factory acceptance tests is described, with emphasis on demonstration of the load protection requirements, a crucial point for all neutral beam power supplies. Finally, key dates of SPIDER ISEPS installation and site testing schedule are provided.

  10. Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2000-01-01

    Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.

  11. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: LASSEN@triumf.ca; Li, R. [TRIUMF (Canada); Raeder, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Zhao, X.; Dekker, T. [TRIUMF (Canada); Heggen, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Kunz, P.; Levy, C. D. P.; Mostanmand, M.; Teigelhöfer, A.; Ames, F. [TRIUMF (Canada)

    2017-11-15

    Developments at TRIUMF’s isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.

  12. Combined effects of sugarcane bagasse extract and Zinc(II) ions on the growth and bioaccumulation properties of yeast isolates.

    OpenAIRE

    Geetanjali Basak; CHARUMATHI D; NILANJANA DAS

    2011-01-01

    Bioaccumulation of zinc(II) ions by yeast isolates viz. Candida rugosa and Cryptococcus laurentii was investigated in different growth media. Both the isolates showed maximum bioaccumulation of zinc(II) in the medium prepared from sugarcane bagasse extract. The growth and zinc(II) bioaccumulation properties of yeasts in sugar cane bagasse extract were tested as a function of pH, temperature and initial metal concentrations. The combined effects of sugar extracted from bagasse and initial zinc...

  13. Complex-forming organic ligands in cloud-point extraction of metal ions: a review.

    Science.gov (United States)

    Pytlakowska, K; Kozik, V; Dabioch, M

    2013-06-15

    Cloud-point extraction (CPE), an easy, safe, environmentally friendly, rapid and inexpensive methodology for preconcentration and separation of trace metals from aqueous solutions has recently become an attractive area of research and an alternative to liquid-liquid extraction. Moreover, it provides results comparable to those obtained with other separation techniques and has a greater potential to be explored in improving detection limits and other analytical characteristics over other methods. A few reviews have been published covering different aspects of the CPE procedure and its relevant applications, such as the phenomenon of clouding, the application in the extraction of trace inorganic and organic materials, as well as pesticides and protein substrates from different sources, or incorporation of CPE into an FIA system. This review focuses on general properties of the most frequently used organic ligands in cloud-point extraction and on literature data (from 2000 to 2012) concerning the use of modern techniques in determination of metal ions' content in various materials. The article is divided according to the class of organic ligands to be used in CPE.

  14. Selective metal ion extraction for multiple ion liquid-liquid exchange reactions. Progress report, DE-AS02-79ER 10406. A001

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, L.L.

    1980-01-01

    The first phase of selecting a model binary system to study was completed. The system selected is Cu(II), Fe(III) acid sulfate solutions extracted by ..beta..-alkenyl 8-hydroxy quinoline (Kelex 100) in xylene. Maximum copper extraction occurs in less than 5 minutes at 30 to 50/sup 0/C. Thermodynamic chemical equilibrium studies with the Fe(III) ion indicate that the ionic charge of the extracted ion is +3 over a limited pH and concentration range. A simplified equilibrium model did not fit the experimental data. A chemical equilibrium model for the aqueous phase was developed. Kinetic studies on the liquid jet recycle reactor are underway. The model proposed to analyze simultaneous extraction of Cu(II) and Fe(III) in a stirred tank extractor was reduced to a set of two nonlinear algebraic equations for idealized kinetic expressions.

  15. Removal of Heavy Metal Ions by using Calcium Carbonate Extracted from Starfish Treated by Protease and Amylase

    Directory of Open Access Journals (Sweden)

    Kyong-Soo Hong

    2011-10-01

    Full Text Available CaCO3 extracted from starfish by using the commercial protein lyase having α-amylase, β-amylase, and protease is applied to remove heavy metal ions. The extracted CaCO3 shows excellent characteristics in removing heavy metal ions such as Cu2+, Cd2+, Pb2+, and Cr6+ compared with conventional materials such as crab shells, sawdust, and activated carbon except for removing Zn2+. SEM images reveal that the extracted CaCO33 has a good morphology and porosity. We characterize the removal efficiencies of the extracted CaCO3 for the heavy metal ions according to the concentrations, pH, temperatures, and conditions of empty bed contact times.

  16. Asparagus cochinchinensis Extract Alleviates Metal Ion-Induced Gut Injury in Drosophila: An In Silico Analysis of Potential Active Constituents

    Directory of Open Access Journals (Sweden)

    Weiyu Zhang

    2016-01-01

    Full Text Available Metal ions and sulfate are components of atmospheric pollutants that have diverse ways of entering the human body. We used Drosophila as a model to investigate the effect of Asparagus cochinchinensis (A. cochinchinensis extracts on the gut and characterized gut homeostasis following the ingestion of metal ions (copper, zinc, and aluminum. In this study, we found that the aqueous A. cochinchinensis extract increased the survival rate, decreased epithelial cell death, and attenuated metal ion-induced gut morphological changes in flies following chronic exposure to metal ions. In addition, we screened out, by network pharmacology, six natural products (NPs that could serve as putative active components of A. cochinchinensis that prevented gut injury. Altogether, the results of our study provide evidence that A. cochinchinensis might be an effective phytomedicine for the treatment of metal ion-induced gut injury.

  17. Alternating current cloud point extraction on a microchip: a comprehensive study.

    Science.gov (United States)

    Sasaki, Naoki; Takemura, Azusa; Sato, Kae

    2012-11-01

    We present a comprehensive study of alternating current cloud point extraction (ACPE) on a microchip. ACPE is an extraction technique for preconcentration of membrane-associated biomolecules. To characterize and optimize ACPE, we carried out ACPE experiments under various experimental conditions including amplitude and frequency of applied voltages, flow velocity, and concentration of surfactant, analyte, and salt. We found that ACPE has an amplitude threshold (15 V(p-p)), above which the extraction was more efficient. The dependence of the extraction on frequency (>5 MHz) was insignificant. Efficient extraction was achieved when the velocity of the test solution was 0.10∼0.67 mm s⁻¹ and the concentration of surfactant was 0.10∼1.0%. In contrast, the extraction was independent of the concentration of analytes (0.20∼20 μmol dm⁻³). The technique was applicable to solutions with a salt concentration of 0.050∼0.15 mol dm⁻³ under temperature control of the devices. Solution temperature in ACPE was also studied. These results provide guidelines for use of the ACPE technique in microfluidic chemical and biochemical analyses.

  18. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis.

    Science.gov (United States)

    You, Qinghong; Yin, Xiulian; Ji, Chaowen

    2014-01-30

    Four methods for extracting polysaccharides from Boletus edulis, namely, hot-water extraction, ultrasonic clearer extraction, static probe ultrasonic extraction, and pulsed counter-current probe ultrasonic extraction (CCPUE), were studied. Results showed that CCPUE has the highest extraction efficiency among the methods studied. Under optimal CCPUE conditions, a B. edulis polysaccharide (BEP) yield of 8.21% was obtained. Three purified fractions, BEP-I, BEP-II, and BEP-III, were obtained through sequential purification by DEAE-52 and Sephadex G-75 chromatography. The average molecular weights of BEP-I, BEP-II, and BEP-III were 10,278, 23,761, and 42,736 Da, respectively. The polysaccharides were mainly composed of xylose, mannose, galactose, and glucose; of these, mannose contents were the highest. The antioxidant activities of the BEPs were further investigated by measurement of their ability to scavenge DPPH and hydroxyl radicals as well as their reducing power. The results indicated that the BEPs have good antioxidant activity.

  19. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    Science.gov (United States)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  20. Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries.

    Science.gov (United States)

    Rana, Kuldeep; Singh, Jyoti; Lee, Jeong-Taik; Park, Jong Hyeok; Ahn, Jong-Hyun

    2014-07-23

    The electrodes in lithium-ion batteries (LIBs) are typically films that are arranged on metal foil current collectors with a thickness of several tens of μm. Here, we report on the preparation of a thick free-standing graphene film synthesized by CVD as an alternative to Cu foil as an anode current collector. As a model system, MoS2 anodes with a flower-like morphology were anchored onto the surface of the thick graphene film. A hybrid and binder free anode without a conventional metal current collector exhibited an excellent capacity value of around 580 mAh/g (@50 mA/g) and reasonable charge/discharge cyclability. The work presented here may stimulate the use of graphene films as replacements for conventional current collectors and additive free electrode in LIBs.

  1. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    Science.gov (United States)

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source.

  2. Radiolytic stability of some recently developed ion exchange and extraction chromatographic resins containing diphosphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Chiarizia, R.; Horwitz, E.P.

    2000-01-01

    The effect of {sup 60}Co irradiation on the Diphonix{trademark}, Diphosil and Diphonix-CS chelating ion exchange resins, and on two Dipex{trademark} extraction chromatographic resins containing the P,P{prime}-di(2-ethylhexyl) methanediphosphonic acid (H{sub 2}DEH[MDP]) impregnated in the pores of a polymeric support (Dipex-1) and of silica (Dipex-2), respectively, has been investigated. The resins have been irradiated while in contact with HNO{sub 3} (Diphonix, Diphosil and Dipex resins) or NaOH (Diphonix-DS resin) up to an absorbed dose of about 200 Mrad. As a probe of the resin radiolytic degradation, metal uptake (both equilibrium and kinetics) and capacity measurements have been performed. Results show that the Diphonix-CS resin properties are practically unaffected by irradiation under the experimental conditions used in this work. The Diphonix, Diphosil, and especially the Dipex resins suffer substantial capacity losses, but their affinity for actinide ions is not seriously compromised. On the other hand, the kinetics of metal uptake by the silica based Diphosil and Dipex-2 resins becomes substantially slower indicating that, from a radiolytic degradation standpoint, polymeric materials perform better than silica as supports for H{sub 2}DEH[MDP] containing extraction chromatographic resins.

  3. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    Science.gov (United States)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  4. Atmospheric pressure chemical ionization of explosives using alternating current corona discharge ion source.

    Science.gov (United States)

    Usmanov, D T; Chen, L C; Yu, Z; Yamabe, S; Sakaki, S; Hiraoka, K

    2015-04-01

    The high-sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx (-) (x = 2,3), O3 and HNO3 originating from plasma-excited air were suggested to contribute to the formation of [TNT - H](-) (m/z 226), [TNT - NO](-) (m/z 197) and [TNT - NO + HNO3 ](-) (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Comparison of Measurement And Modeling Of Current Profile Changes Due To Neutral Bean Ion Redistribution During TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Douglas

    2013-07-09

    Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function

  6. Ability of freshwater fish to extract oxygen at different hydrogen-ion concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, A.H.; McGavock, A.M.; Fuller, A.C.; Markus, H.C.

    1934-01-01

    Pruthi's observations on the stickleback at pH 3.1 have been confirmed for the stickleback as well as several other species of fresh-water fish. Pruthi's criticism of the work of Powers is invalid within the pH range to which the fish are acclimated. The initial oxygen has either no effect on the lethal oxygen or the effect is in the opposite direction from that suggested by Pruthi. Outside of the pH range normal to the species in question the lethal oxygen is dependent in a large measure on the initial oxygen. Several species of freshwater fish--largemouth blackbass, smallmouth blackbass, white crappie, yellow perch, rainbow trout, as well as the goldfish and green sunfish--have the ability to extract oxygen from the water at low oxygen tensions equally well over a fairly wide range of hydrogen-ion concentration. The bluegill has a somewhat narrower range of toleration. The two species of minnow--steel-colored and bluntnose--tolerate a markedly narrower range of difference in hydrogen-ion concentration as shown by the lethal oxygen. The ability of fish to extract oxygen from the water at low pressure depends more or less on the hydrogen-ion concentration of water. The results obtained in this investigation confirm the studies on pH tolerance of fish previously published. These results also confirm the observations that in highly alkaline water fish require a higher concentration of oxygen to survive.

  7. A Comment on Interaction of Lower Hybrid Waves with the Current-Driven Ion-Acoustic Instability

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Juul Rasmussen, Jens

    1985-01-01

    Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means of a positi......Majeski et al. (1984) have investigated the interaction between the current-driven 'ion-acoustic' instability and high frequency lower hybrid waves. The 'ion-acoustic' instability was excited by drawing an electron current through the plasma column of a single-ended Q-machine by means...... of a positively biased cold plate. Schmittwieser et al. do not believe that the observed instability is of the ion-acoustic type but that it is rather the so-called potential relaxation instability....

  8. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  9. Sub-ion scale intermittency and the development of filamentary current structures from the Hall effect

    Science.gov (United States)

    Chapman, S. C.; Kiyani, K. H.; Meyrand, R.; Sahraoui, F.; Osman, K.

    2014-12-01

    The distinct quantitative nature of the intermittency seen on fluid and kinetic scales in solar wind plasma turbulence is now well documented from an observational point of view. The classic high-order statistical signature rapidly transitions to a monoscaling signature as one crosses to sub-ion scales. How this scaling depends upon plasma conditions, and the underlying physical implications have yet to be fully explored. We present a study focusing on 28 intervals of solar wind magnetic field data from the Cluster spacecraft sampling a broad range of plasma parameters. We show how the scaling properties vary between these intervals and more importantly, if there are any correlations between the scaling exponents and the plasma parameter variations. We supplement this observational study with a computational investigation where we study spatial samples from an 1024^3 EMHD simulation -- a model for sub-ion scale magnetic field dynamics consisting solely of the Hall effect. From this, we show that the Hall-term can generate a topological change from current sheets at fluid scales to current filaments at sub-ion scales. We conjecture that this fundamental change in the coherent structures comprising the turbulence is also responsible for the change in the intermittency that we see from our observations; and which could also be responsible for dissipation at these scales.

  10. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    Science.gov (United States)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.

    2017-10-01

    Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals "mud cracks" within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.

  11. Extraction of copper(II) ions from aqueous solutions with a methimazole-based ionic liquid.

    Science.gov (United States)

    Reyna-González, Juan M; Torriero, Angel A J; Siriwardana, Amal I; Burgar, Iko M; Bond, Alan M

    2010-09-15

    The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf(2)], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu](+), which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf(2)] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf(2)] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV-vis, Raman, and (1)H, (13)C, and (15)N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf(2)] can be recovered from the labile copper-water-IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu(2+) from aqueous media into the [mimSBu][NTf(2)] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf(2)] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction-voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

  12. Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries

    Science.gov (United States)

    Lee, Dongkyoung; Patwa, Rahul; Herfurth, Hans; Mazumder, Jyotirmoy

    2012-07-01

    Sizing electrodes is an important step during Lithium-ion battery manufacturing processes since poor cut edge affects battery performance significantly and sometime leads to fire hazard. Mechanical cutting could result in a poor cut quality with defects. The cutting quality can be improved by using a laser, due to its high energy concentration, fast processing time, small heat-affected zone, and high precision. The cutting quality is highly influenced by operating parameters such as laser power and scanning speed. Thus, we studied a numerical simulation to provide a guideline for achieving clear edge quality. In order to simulate electrodes laser cutting for Lithium-Ion batteries, understanding the behavior of current collectors is crucial. This study focuses on current collectors, such as pure copper and aluminium. Numerical studies utilized a 3D self-consistent mathematical model for laser-material interaction. Observations of penetration time, depth, and threshold during laser cutting processes of current collectors are described. The model is validated experimentally by cutting current collectors and single side-coated electrodes with a single mode fiber laser. The copper laser cutting is laser intensity and interaction time dependent process. The aluminium laser cutting depends more on laser intensity than the interaction time. Numerical and experimental results show good agreement.

  13. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Science.gov (United States)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  14. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  15. Alternating current cloud point extraction on a microchip: the effect of electrode geometry.

    Science.gov (United States)

    Sasaki, Naoki; Maekawa, Chisaki; Sato, Kae

    2015-02-01

    We report on the effect of electrode geometry on alternating current cloud point extraction (ACPE). ACPE is a technique utilized to extract membrane-associated biomolecules in an electrode-integrated microfluidic channel. In this study, we investigated the effect of gap size (4∼22 μm) between microband electrodes on ACPE. A decrease in gap size resulted in efficient and rapid concentration of fluorescent-labeled phospholipids, a model of membrane-associated biomolecules. We also investigated the effect of applied voltage amplitude on ACPE using devices with decreased electrode gap size. When the gap was small, ACPE was achieved with low applied voltages. ACPE of membrane proteins extracted from HeLa cells was also studied to demonstrate the applicability of the ACPE to real samples. The results provide a guideline to improve the performance of ACPE and facilitate application of the ACPE technique as part of an overall analytical process.

  16. Energy extraction from ocean currents and waves: Mapping the most promising locations

    Science.gov (United States)

    Ordonez, A.; Hamlington, P.; Fox-Kemper, B.

    2012-12-01

    Concerns about fossil fuel supplies and an ever-increasing demand for energy have prompted the search for alternative power sources. One option is the ocean, a power-dense and renewable source of energy, but its capacity to meet human energy demands is poorly understood. Although raw wave energy resources have been investigated at many scales, there is still substantial uncertainty regarding how much useful power can be extracted. Even less is known about the energy available in ocean currents, especially on a global scale. Moreover, no studies have attempted to examine wave and current energy simultaneously while at the same time taking into account geographical, environmental, and technical factors that can substantially limit the amount of extractable energy. In this study, we use high fidelity oceanographic model data to assess the availability, recoverability, and value of energy in ocean wind waves and currents. Global wave energy transport, coastal wave energy flux, and current energy are calculated and mapped using the model data. These maps are then incorporated into a geographic information system (GIS) in order to assess the U.S. recoverable ocean energy resource. In the GIS, the amount of recoverable energy is estimated by combining the power output from realistic wave and current energy farms with physical and ecological data such as bathymetry and environmentally protected areas. This holistic approach is then used to examine the distribution and value of extractable wave and current energy along the U.S. coast. The results support previous studies that show that the U.S. West Coast has large potential for wave energy extraction and that the Florida Strait has high potential for current energy extraction. We also show that, at any particular location, the amount of available ocean energy is only one factor of many that determines the ultimate feasibility and value of the energy. We outline ways in which the GIS framework used in this assessment can be

  17. A Particle In Cell code development for high current ion beam transport and plasma simulations

    CERN Document Server

    Joshi, N

    2016-01-01

    A simulation package employing a Particle in Cell (PIC) method is developed to study the high current beam transport and the dynamics of plasmas. This package includes subroutines those are suited for various planned projects at University of Frankfurt. In the framework of the storage ring project (F8SR) the code was written to describe the beam optics in toroidal magnetic fields. It is used to design an injection system for a ring with closed magnetic field lines. The generalized numerical model, in Cartesian coordinates is used to describe the intense ion beam transport through the chopper system in the low energy beam section of the FRANZ project. Especially for the chopper system, the Poisson equation is implemented with irregular geometries. The Particle In Cell model is further upgraded with a Monte Carlo Collision subroutine for simulation of plasma in the volume type ion source.

  18. Beam size reduction of a several hundred-keV compact ion microbeam system by improving the extraction condition in an ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki; Ohkubo, Takeru; Kamiya, Tomihiro; Saitoh, Yuichi

    2015-04-01

    A several hundred-keV compact ion microbeam system with a three-stage acceleration lens has been developed to form an ion beam of several micrometers in diameter. In a previous study of the Ohkubo et al. (2013) and Ishii et al. (2014), a hydrogen beam of 143 keV having 17 μm diameter was experimentally formed using such a microbeam system. It was demonstrated that a three-stage acceleration lens functioned as a focusing lens and indicated that the beam diameter (hereinafter referred to as the “beam size”) depended on the extraction voltage to generate the ion beam and the vacuum pressure in the extraction space in a plasma-type ion source. In this study, the hydrogen beam sizes were experimentally measured at 130 keV as functions of the extraction voltage and vacuum pressure to form the beam size with several micrometers in diameter. These two relationships showed that beam sizes were reduced in the extraction voltage range of 400–500 V and when the vacuum pressure was lowered to a minimum value of 5.33 × 10{sup −5} Pa. In addition, the result showed that the beam size was dominantly influenced by the vacuum pressure. Consequently, a hydrogen beam 5.8 μm in diameter was formed experimentally—the smallest beam yet obtained.

  19. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  20. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  1. Partial alkali-metal ion extraction from K0.8(Li0.27Ti1.73)O4 using PTFE as an extraction reagent.

    Science.gov (United States)

    Ozawa, Tadashi C; Sasaki, Takayoshi

    2014-10-21

    The alkali-metal ion extraction ability of an inert material, polytetrafluoroethylene (PTFE; empirical formula CF2), was clarified by characterizing a partially alkali-metal ion-extracted layered compound, K0.8(Li0.27Ti1.73)O4. Washing K0.8(Li0.27Ti1.73)O4 in water extracts only 44% of the interlayer K(+) and no intralayer Li(+); on the other hand, 53% of the interlayer K(+) and approximately 10% of the intralayer Li(+) ions were extracted from K0.8(Li0.27Ti1.73)O4 by the reaction with PTFE at 350 °C under flowing Ar. A systematic decrease in the lattice parameters a and c along the intralayer directions and an increase in b along the interlayer direction were observed, consistent with the alkali-metal ion deintercalation amount as a function of the reaction temperatures and the reacted PTFE amounts. After the reaction with K0.8(Li0.27Ti1.73)O4 : CF2 = 1 : 0.6 in mol, the lattice parameter b increased to 1.5607(3) nm from 1.5522(2) of the pristine K0.8(Li0.27Ti1.73)O4, and this change in the lattice parameter was approximately one order of magnitude larger than those in a and c.

  2. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    Science.gov (United States)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  3. Internal-short-mitigating current collector for lithium-ion battery

    Science.gov (United States)

    Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu

    2017-05-01

    Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.

  4. Enhancement of light extraction efficiency of vertical LED with patterned graphene as current spreading layer

    Science.gov (United States)

    Singh, Sumitra; Sai Nandini, Annam Deepthi; Pal, Suchandan; Dhanavantri, Chenna

    2016-01-01

    In this paper we report an optimised pattern of surface textured graphene current spreading layer (CSL) for the enhancement of light extraction efficiency (LEE) in InGaN/GaN vertical light emitting diodes (V-LEDs). It is found that by texturing graphene surface LEE improves drastically. This improvement is attributed to better current spreading of graphene and increased random and multiple scattering of light through textured surfaces. Simulation results illustrate that V-LEDs with surface textured (hexagonal pattern) ITO as CSL shows threefold improvement in light extraction efficiency compared to V-LEDs with no surface texturing on ITO CSL. Further, LEE of V-LEDs having patterned graphene CSL is compared with that for indium tin oxide (ITO) CSL. V-LEDs with optimised hexagonal patterning on graphene CSL shows 13.42% enhancement of LEE compared to that of LED with hexagonal patterning on ITO surface.

  5. The first experimental results on laser ion loading into superconducting ECR ion source at RIKEN

    CERN Document Server

    Arzumanyan, G M; Shirkov, G D; Yano, Y

    2002-01-01

    The first experimental results on ions and neutrals injection by means of laser ablation from metal targets into the RIKEN 18 GHz superconducting electron cyclotron resonance ion source (SC ECRIS) are presented. Pulsed aluminium ion currents up to Al sup 8 sup + were generated in the source. The difference in pulse shapes of various charge states of the extracted ion currents is registered

  6. Synthesis and application of ion-imprinted polymer for extraction and pre-concentration of iron ions in environmental water and food samples.

    Science.gov (United States)

    Roushani, Mahmoud; Beygi, Tahereh Musa; Saedi, Zahra

    2016-01-15

    In this work, a novel Fe(III) ion imprinted polymer as a sorbent for extraction of iron ions from different samples was synthesized. Precipitation of thermal copolymerization was used for preparation of polymeric sorbent. In this technique, methacrylic acid, ethylene glycoldimethacrylate, 2,2'-azobisisobutyronitrile and (DHBPT)2 {(DHBPT)2=3,6-bis (3,5-dimethyl-1-H-pyrzol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine)} were used as monomer, cross-linker, initiator and ligand, respectively, in the presence of Fe(III) ions and ethanol as a porogenic solvent. Moreover, control polymer (NIP) particles were similarly prepared without the Fe(III) ions. XRD, FT-IR, SEM and nitrogen adsorption-desorption techniques have been used to characterization of these prepared polymeric samples. Iron ion imprinted polymer particles, abbreviated as Fe(III)-IIP, were leached with 50 mL of HCl (50% (v/v)). Absorption capacity for ion imprinted polymer was calculated about 40.41 mg·g(-1). Per-concentration of iron ion was investigated as a function of pH, weight of IIP, adsorption and desorption times, and volumes of sample. FAAS technique was used to determination of Fe(III) ion in the foods and waters samples.

  7. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Aggregation, Extraction, and Solubility Properties of Silicon-Substituted Alkylenediphosphonic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Mark L.; McAlister, Daniel R.; Stepinski, Dominique C.; Zalupski, Peter R.; Dzilawa, Julie A.; Barrans, Richard E.; Hess, J.N.; Rubas, Audris V.; Chiarizia, Renato; Lubbers, Christopher M.; Scurto, Aaron M.; Brennecke, Joan F.; Herlinger, Albert W.

    2003-09-11

    Partially esterified alkylenediphosphonic acids (DPAs) have been shown to be effective reagents for the extraction of actinide ions from acidic aqueous solution into conventional organic solvents. Efforts to employ these compounds in supercritical fluid extraction have been hampered by their modest solubility in unmodified supercritical carbon dioxide (SC-CO2). In an effort to design DPAs that are soluble in SC-CO2, a variety of silicon-substituted alkylenediphosphonic acids have been prepared and characterized, and their behavior compared with that of conventional alkyl-substituted reagents. Silicon substitution is shown to enhance the CO2-philicity of the reagents, while other structural features, in particular, the number of methylene groups bridging the phosphorus atoms of the extractant, are shown to exert a significant influence on their aggregation and extraction properties. The identification of DPAs combining desirable extraction properties with adequate solubility in SC-CO2 is shown to be facilitated by the application of molecular connectivity indices.

  8. Accelerated solvent extraction followed by on-line solid-phase extraction coupled to ion trap LC/MS/MS for analysis of benzalkonium chlorides in sediment samples

    Science.gov (United States)

    Ferrer, I.; Furlong, E.T.

    2002-01-01

    Benzalkonium chlorides (BACs) were successfully extracted from sediment samples using a new methodology based on accelerated solvent extraction (ASE) followed by an on-line cleanup step. The BACs were detected by liquid chromatography/ion trap mass spectrometry (LC/MS) or tandem mass spectrometry (MS/MS) using an electrospray interface operated in the positive ion mode. This methodology combines the high efficiency of extraction provided by a pressurized fluid and the high sensitivity offered by the ion trap MS/MS. The effects of solvent type and ASE operational variables, such as temperature and pressure, were evaluated. After optimization, a mixture of acetonitrile/water (6:4 or 7:3) was found to be most efficient for extracting BACs from the sediment samples. Extraction recoveries ranged from 95 to 105% for C12 and C14 homologues, respectively. Total method recoveries from fortified sediment samples, using a cleanup step followed by ASE, were 85% for C12BAC and 79% for C14-BAC. The methodology developed in this work provides detection limits in the subnanogram per gram range. Concentrations of BAC homologues ranged from 22 to 206 ??g/kg in sediment samples from different river sites downstream from wastewater treatment plants. The high affinity of BACs for soil suggests that BACs preferentially concentrate in sediment rather than in water.

  9. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  10. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  11. Wound-Induced Changes of Membrane Voltage, Endogenous Currents, and Ion Fluxes in Primary Roots of Maize.

    Science.gov (United States)

    Meyer, A. J.; Weisenseel, M. H.

    1997-07-01

    The effects of mechanical wounding on membrane voltage, endogenous ion currents, and ion fluxes were investigated in primary roots of maize (Zea mays) using intracellular microelectrodes, a vibrating probe, and ion-selective electrodes. After a wedge-shaped wound was cut into the proximal elongation zone of the roots, a large inward current of approximately 60 [mu]A cm-2 was measured, together with a change in the current pattern along the root. The changes of the endogenous ion current were accompanied by depolarization of the membrane voltage of cortex cells up to 5 mm from the wound. Neither inhibitors of ion channels nor low temperature affected the large, wound-induced inward current. The fluxes of H+, K+, Ca2+, and Cl- contributed only about 7 [mu]A cm-2 to the wound-induced ion current. This suggests the occurrence of a large mass flow of negatively charged molecules, such as proteins, sulfated polysaccharides, and galacturonic acids, from the wound. Natural wounding of the root cortex by developing lateral roots caused an outwardly directed current, which was clearly different in magnitude and direction from the current induced by mechanical injury.

  12. Design and Construction of a Microwave Plasma Ion Source

    CERN Document Server

    Çınar, Kamil

    2011-01-01

    This thesis is about the designing and constructing a microwave ion source. The ions are generated in a thermal and dense hydrogen plasma by microwave induction. The plasma is generated by using a microwave source with a frequency of 2.45 GHz and a power of 700 W. The generated microwave is pulsing with a frequency of 50 Hz. The designed and constructed microwave system generates hydrogen plasma in a pyrex plasma chamber. Moreover, an ion extraction unit is designed and constructed in order to extract the ions from the generated hydrogen plasma. The ion beam extraction is achieved and ion currents are measured. The plasma parameters are determined by a double Langmuir probe and the ion current is measured by a Faraday cup. The designed ion extraction unit is simulated by using the dimensions of the designed and constructed ion extraction unit in order to trace out the trajectories of the extracted ions.

  13. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    Directory of Open Access Journals (Sweden)

    P. J. G. Perron

    2013-03-01

    Full Text Available Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius corrections are small. We derived a new fluid-like expression for the critical drift which depends explicitly on ion anisotropy. More importantly, for ion to electron temperature ratios typical of F-region, solutions of the kinetic dispersion relation show that ion temperature anisotropy may significantly lower the drift threshold required for instability. In some cases, a perpendicular to parallel ion temperature ratio of 2 and may reduce the relative drift required for the onset of instability by a factor of approximately 30, assuming the ion-acoustic speed of the medium remains constant. Therefore, the ion temperature anisotropy should be considered in future studies of ion-acoustic waves and instabilities in the high-latitude ionospheric F-region.

  14. Herbal extracts in oral health care - A review of the current scenario and its future needs

    Directory of Open Access Journals (Sweden)

    Byalakere Rudraiah Chandra Shekar

    2015-01-01

    Full Text Available Background: Oral diseases are among the major public health problems and the commonest of chronic diseases that affect mankind. The application of natural products for the control of oral diseases is considered as an interesting alternative to synthetic antimicrobials due to their lower negative impact, and for the effort to overcome primary or secondary resistance to the drug during therapy. Objective: To review the current evidence on the antimicrobial efficacy of 10 plant extracts on dental caries and plaque microorganisms. Materials and Methods: A comprehensive literature search was made by one of the authors for 2 months in PubMed, PubMed Central, MEDLINE, LILACS/BBO, Cochrane database of systematic reviews, SCIENCE DIRECT, and Google scholar databases. The results from the relevant published literatures are discussed. Summary and Conclusion: The extracts of Azadirachta Indica, Ocimum sanctum, Murraya koenigii L., Acacia nilotica, Eucalyptus camaldulensis, Hibiscus sabdariffa, Mangifera indica, Psidium guajava, Rosa indica, and Aloe barbadensis Miller have all been found to inhibit certain dental caries and periodontal pathogens. The current evidence is on individual plant extracts against bacteria involved in either caries or periodontitis. "Herbal shotgun" or "synergistic multitarget effects" are the terms used for the strategy of combining different extracts. The research assessing the antimicrobial efficacy of a combination of these plant extracts against dental caries and periodontal pathogens is the need of the hour, and such research will aid in the development of a novel, innovative method that can simultaneously inhibit two of the most common dental diseases of mankind, besides slowing the development of drug resistance.

  15. Continuous protein recovery from whey using liquid-solid circulating fluidized bed ion-exchange extraction.

    Science.gov (United States)

    Lan, Qingdao; Bassi, Amarjeet; Zhu, Jing-Xu Jesse; Margaritis, Argyrios

    2002-04-20

    A liquid-solid circulating fluidized bed (LSCFB) continuous ion-exchange extraction system has been investigated for total protein recovery from whey solutions under various operating conditions. The effectiveness of a dynamic seal was evaluated between the riser and the downcomer, and the best conditions for the establishment of this seal were established. Start-up studies indicated that the system is robust and stable. Under optimal conditions, a productivity of 8.2 g of total protein removed per hour per kilogram of resin was achieved with a protein removal efficiency of 78.4%. However, higher overall protein recovery of up to 90% was also achieved under other conditions, with lower protein concentration in the effluent and a lower overall productivity.

  16. Characterization of a metastable neon beam extracted from a commercial RF ion source

    CERN Document Server

    Ohayon, B; Ron, G

    2015-01-01

    We have used a commercial RF ion-source to extract a beam of metastable neon atoms. The source was easily incorporated into our existing system and was operative within a day of installation. The metastable velocity distribution, flux, flow, and efficiency were investigated for different RF powers and pressures, and an optimum was found at a flux density of $2\\times10^{12}\\,$atoms/s/sr. To obtain an accurate measurement of the amount of metastable atoms leaving the source, we insert a Faraday cup in the beam line and quench some of them using a weak $633\\,$nm laser beam. In order to determine how much of the beam was quenched before reaching our detector, we devised a simple model for the quenching transition and investigated it for different laser powers. This detection method can be easily adapted to other noble gas atoms.

  17. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN.

    Science.gov (United States)

    Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  18. Calix[4]pyrrole derivative: recognition of fluoride and mercury ions and extracting properties of the receptor-based new material.

    Science.gov (United States)

    de Namor, Angela F Danil; Khalife, Rasha

    2008-12-11

    A calix[4]pyrrole derivative, namely, meso-tetramethyl tetrakis (4-phenoxy methyl ketone) calix[4]pyrrole, 1, was synthesized and structurally (1H NMR) and thermodynamically characterized. The complexing properties of this receptor with a wide variety of anions and cations in dipolar aprotic media (acetonitrile, propylene carbonate, and dimethyl sulfoxide) were investigated through 1H NMR and conductance studies. The former technique was used to assess whether or not complexation occurs and if so to identify the active sites of interaction of 1 with ions. The composition of the complexes was established by conductance measurements. It was found that in dipolar aprotic solvents, 1 interacts only with two polluting ions (fluoride and mercury). The complexation thermodynamics of 1 and these ions in these solvents is reported. The medium effect on the binding process involving the fluoride ion is discussed taking into account the solvation properties of reactants and the product. Complexes of moderate stability are found. Given that this is an important factor to consider for the recycling of the loaded material in extraction processes, 1 was treated with formaldehyde in basic medium leading to the production of a calix[4]pyrrole based material able to extract fluoride and mercury (II) ions from water. Thus the optimum conditions for the extraction of these ions from aqueous solutions were established. The material is easily recyclable using an organic acid. Final conclusions are given.

  19. Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN

    Science.gov (United States)

    Toivanen, V.; Bellodi, G.; Dimov, V.; Küchler, D.; Lombardi, A. M.; Maintrot, M.

    2016-02-01

    Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.

  20. Recording ion channels across soy-extracted lecithin bilayer generated by water-soluble quantum dots

    Science.gov (United States)

    Sarma, Runjun; Mohanta, Dambarudhar

    2014-02-01

    We report on the quantum dot (QD)-induced ion channels across a soya-derived lecithin bilayer supported on a laser drilled of ~100 μm aperture of cellulose acetate substrate that separates two electrolytic chambers. Adequate current bursts were observed when the bilayer was subjected to a gating voltage. The voltage-dependent current fluctuation, across the bilayer, was attributed to the insertion of ~20 nm sized water-soluble CdSe QDs, forming nanopores due to their spontaneous aggregation. Apart from a closed state, the first observable conductance levels were found as 6.3 and 11 nS, as for the respective biasing voltages of -10 and -20 mV. The highest observable conductance states, at corresponding voltages were ~14.3 and 21.1 nS. Considering two simplified models, we predict that the non-spherical pores (dnspore) can be a better approximation over spherical nanopores (dspore) for exhibiting a definite conductance level. At times, even dnspore ≤ 4dspore and that the non-spherical nanopores were associated with a smaller No. of QDs than the case for spherical nanopores, for a definite conductance state. It seems like the current events are partly stochastic, possibly due to thermal effects on the aggregated QDs that would form nanopores. The dwell time of the states was predicted in the range of 384-411 μs. The ion channel mechanism in natural phospholipid bilayers over artificial ones will provide a closer account to understand ion transport mechanism in live cells and signaling activity including labelling with fluorescent QDs.

  1. Stormtime ring current and radiation belt ion transport: Simulations and interpretations

    Science.gov (United States)

    Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael

    1995-01-01

    We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in

  2. Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX

    CERN Document Server

    Mochalskyy, S; Minea, T; Lifschitz, AF; Schmitzer, C; Midttun, O; Steyaert, D

    2013-01-01

    At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons’ temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contrib...

  3. Comparative evaluation of actinide ion uptake by polymer inclusion membranes containing TODGA as the carrier extractant.

    Science.gov (United States)

    Mahanty, B N; Raut, D R; Mohapatra, P K; Das, D K; Behere, P G; Afzal, Md

    2014-06-30

    Polymer inclusion membranes (PIM) containing TODGA (N,N,N',N'-tetra-n-octyl diglycolamide) were evaluated for the separation of actinide ions such as Am(3+), Pu(4+), UO2(2+) and Th(4+) from acidic feeds. The PIMs were prepared using cellulose triacetate (CTA) as the polymer matrix and 2-nitrophenyloctyl ether (NPOE) as the plasticizer along with the diglycolamide carrier extractants and were characterized by conventional techniques such as XRD, thermal analysis and AFM. The PIM composition was optimized by a series of studies which involved variation in the CTA, NPOE and carrier concentration which suggested 58% TODGA, 30% NPOE and 12% CTA to be optimum. The uptake studies were carried out using feed solutions containing varying concentrations of nitric acid and showed the trend: Am(3+)>Pu(4+)>Th(4+)>UO2(2+). Transport studies were carried out in a two-compartment cell where nitric acid concentration the feed was varied (1-3M) while the receiver compartment contained alpha-hydroxy-iso-butyric acid (AHIBA). The actinide ion transport efficiencies with TODGA containing PIMs followed the same trend as seen in the uptake studies. The AFM patterns of the PIMs changed when loaded with Eu(3+) carrier (used as a surrogate for Am(3+)) while the regenerated membranes have displayed comparable morphologies. Diffusion coefficient values were experimentally obtained from the transport studies and were found to be 8.89×10(-8) cm(2)/s for Am(3+) transport.

  4. Experimental study of the dependence of beam current on injection magnetic field in 6.4 GHz ECR ion source

    Indian Academy of Sciences (India)

    G S Taki; P R Sarma; D K Chakraborty; R K Bhandari; P K Ray

    2006-09-01

    The ion current from an electron cyclotron resonance (ECR) heavy ion source depends on the confining axial and radial magnetic fields. Some efforts were made by earlier workers to investigate magnetic field scaling on the performance of the ECR source. In order to study the dependence of the ion current on the injection magnetic field in the 6.4 GHz ECR source, we have measured the current by varying the peak injection field and have inferred that the variation of the current is exponential up to our maximum design injection field of 7.5 kG. An attempt has been made to understand this exponential nature on the basis of ion confinement time.

  5. A simple liquid extraction protocol for overcoming the ion suppression of triacylglycerols by phospholipids in liquid chromatography mass spectrometry studies.

    Science.gov (United States)

    Araujo, Pedro; Tilahun, Ephrem; Breivik, Joar Fjørtoft; Abdulkader, Bashir M; Frøyland, Livar; Zeng, Yingxu

    2016-02-01

    It is well-known that triacylglycerol (TAG) ions are suppressed by phospholipid (PL) ions in regiospecific analysis of TAG by mass spectrometry (MS). Hence, it is essential to remove the PL during sample preparation prior to MS analysis. The present article proposes a cost-effective liquid-liquid extraction (LLE) method to remove PL from TAG in different kinds of biological samples by using methanol, hexane and water. High performance thin layer chromatography confirmed the lack of PL in krill oil and salmon liver samples, submitted to the proposed LLE protocol, and liquid chromatography tandem MS confirmed that the identified TAG ions were highly enhanced after implementing the LLE procedure.

  6. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan

    2009-01-01

    We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (~100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ~10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.

  7. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Science.gov (United States)

    Bosia, G.; Helou, W.; Goniche, M.; Hillaret, J.; Ragona, R.

    2014-02-01

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  8. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H.; Zapol, Peter; Curtiss, Larry A.; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-02-20

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  9. Current density distributions and sputter marks in electron cyclotron resonance ion sources.

    Science.gov (United States)

    Panitzsch, Lauri; Peleikis, Thies; Böttcher, Stephan; Stalder, Michael; Wimmer-Schweingruber, Robert F

    2013-01-01

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then--induced by charged particles--mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigate their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.

  10. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source.

    Science.gov (United States)

    Tarvainen, O; Orpana, J; Kronholm, R; Kalvas, T; Laulainen, J; Koivisto, H; Izotov, I; Skalyga, V; Toivanen, V

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O(3+)-O(7+) were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  11. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    Science.gov (United States)

    Tarvainen, O.; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H.; Izotov, I.; Skalyga, V.; Toivanen, V.

    2016-09-01

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O3+-O7+ were recorded at various tuner positions and frequencies in the range of 14.00-14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited "mode-hopping" between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  12. The effect of cavity tuning on oxygen beam currents of an A-ECR type 14 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Orpana, J.; Kronholm, R.; Kalvas, T.; Laulainen, J.; Koivisto, H. [Department of Physics (JYFL), University of Jyväskylä, 40500 Jyväskylä (Finland); Izotov, I.; Skalyga, V. [Institute of Applied Physics, RAS, 46 Ul’yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Toivanen, V. [European Organization for Nuclear Research (CERN), 1211 Geneva 23 (Switzerland)

    2016-09-15

    The efficiency of the microwave-plasma coupling plays a significant role in the production of highly charged ion beams with electron cyclotron resonance ion sources (ECRISs). The coupling properties are affected by the mechanical design of the ion source plasma chamber and microwave launching system, as well as damping of the microwave electric field by the plasma. Several experiments attempting to optimize the microwave-plasma coupling characteristics by fine-tuning the frequency of the injected microwaves have been conducted with varying degrees of success. The inherent difficulty in interpretation of the frequency tuning results is that the effects of microwave coupling system and the cavity behavior of the plasma chamber cannot be separated. A preferable approach to study the effect of the cavity properties of the plasma chamber on extracted beam currents is to adjust the cavity dimensions. The results of such cavity tuning experiments conducted with the JYFL 14 GHz ECRIS are reported here. The cavity properties were adjusted by inserting a conducting tuner rod axially into the plasma chamber. The extracted beam currents of oxygen charge states O{sup 3+}–O{sup 7+} were recorded at various tuner positions and frequencies in the range of 14.00–14.15 GHz. It was observed that the tuner position affects the beam currents of high charge state ions up to several tens of percent. In particular, it was found that at some tuner position / frequency combinations the plasma exhibited “mode-hopping” between two operating regimes. The results improve the understanding of the role of plasma chamber cavity properties on ECRIS performances.

  13. Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere

    OpenAIRE

    Perron, P. J. G.; J.-M. A. Noël; Kabin, K.; St-Maurice, J.-P.

    2013-01-01

    Temperature anisotropies may be encountered in space plasmas when there is a preferred direction, for instance, a strong magnetic or electric field. In this paper, we study how ion temperature anisotropy can affect the threshold conditions of a shear-modified current driven electrostatic ion-acoustic (CDEIA) instability. In particular, this communication focuses on instabilities in the context of topside auroral F-region situations and in the limit where finite Larmor radius...

  14. Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging

    Science.gov (United States)

    Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.

    2011-10-01

    In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.

  15. Ion Current Collection Diagnostic for the Triggered Plasma Opening Switch Experiment

    Science.gov (United States)

    Jackson, D. P.; Gilmore, M. A.

    2005-10-01

    The novel Triggered Plasma Opening Switch (TPOS) is a unique device that exploits the high conductivity and low mass properties of plasma. The TPOS's objective is to take the initial ˜.8 MA (˜250 ns rise time) storage inductor current and deliver ˜.5 MA at ˜2.5 MV (˜10ns rise time) to a load of ˜5-10 φ. Study of the TPOS characteristics is in progress via an Ion Current Collection Diagnostic (ICCD). The ICCD has been designed, fabricated, tested, and is in use on the TPOS in order to explore the main switch opening profile. The ICCD utilizes 12 charge collectors (biased faraday cups) that are positioned perpendicularly to the main switch stage in order to collect radially traveling ions emitted from the plasma surface via the Child-Langmuir law. Magnetostatic simulations with self consistent space charge emitting surfaces of the main switch using the Trak static 2D finite element code have been conducted as well. Finally, ICCD experimental data have been recorded, and hopefully these data will provide evidence that support both theory and simulation.

  16. Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets.

    Science.gov (United States)

    He, Xiulan; Zhang, Kailin; Li, Ting; Jiang, Yanan; Yu, Ping; Mao, Lanqun

    2017-02-01

    Here we report for the first time that ion current rectification (ICR) can be observed at the micrometer scale in symmetric electrolyte solution with polyimidazolium brush (PimB)-modified micropipets, which we call micrometer-scale ion current rectification (MICR). To qualitatively understand MICR, a three-layer model including a charged layer, an electrical double layer, and a bulk layer is proposed, which could also be extended to understanding ICR at the nanoscale. Based on this model, we propose that when charges in the charged layer are comparable with those in the bulk layer, ICR would occur regardless of whether the electrical double layers are overlapped. Finite element simulations based on the solution of Poisson and Nernst-Planck equations and in situ confocal laser scanning microscopy results qualitatively validate the experimental observations and the proposed three-layer model. Moreover, possible factors influencing MICR, including the length of PimB, electrolyte concentration, and the radius of the pipet, are investigated and discussed. This study successfully extends ICR to the micrometer scale and thus opens a new door to the development of ICR-based devices by taking advantage of ease-in-manipulation and designable surface chemistry of micropipets.

  17. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, K J [Materials Performance Technologies, Industrial Research Ltd, PO Box 31-310, Lower Hutt (New Zealand); Trompetter, W J [Rafter Laboratory, Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hutt (New Zealand)

    2004-02-07

    Nuclear reaction analysis using a {sup 12}C(d, p{sub 0}){sup 13}C reaction and a {sup 16}O(d, p{sub 1}){sup 17}O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  18. Calibration of eddy current carburization measurements in ethylene production tubes using ion beam analysis

    Science.gov (United States)

    Stevens, K. J.; Trompetter, W. J.

    2004-02-01

    Nuclear reaction analysis using a 12C(d, p0)13C reaction and a 16O(d, p1)17O reaction, with 1.02 MeV deuterons in an accelerator microprobe, has been used to produce quantitative linescans of the carbon and oxygen levels in ex-service ethylene pyrolysis tubes of HPM, HK40 and Manaurite XM alloy. Particle induced x-ray emission in the ion beam microprobe and energy dispersive analysis of x-rays in a scanning electron microscope were used for linescans of the heavier elements (Cr, Ni, Fe, Si and Ti). The composition linescans were used to calibrate the response and accuracy of an eddy current probe system for measuring carburization near the inner surface of the tubes. The influence of the ferromagnetic outer oxide surface layers has been clarified. A two-dimensional ANSYS finite element model (FEM) was used for interpretation of the eddy current scans. Good correlation was obtained between the ion beam analysis results, the impedance scans and the FEM.

  19. Intermittent counter-current extraction-Equilibrium cell model, scaling and an improved bobbin design.

    Science.gov (United States)

    Hewitson, Peter; Sutherland, Ian; Kostanyan, Artak E; Voshkin, Andrei A; Ignatova, Svetlana

    2013-08-16

    This paper describes an equilibrium cell model for intermittent counter-current extraction that is analytically solved for the first time for continuous sample injection between a pair of columns. The model is compared with practice for injections of a model mixture of compounds on a standard high-performance counter-current chromatography instrument giving good agreement for compound elution order and the times to maximum concentration for the eluted components. An improved design of end fittings for the counter-current chromatography bobbins is described which permits on-column switching of the mobile and stationary phases. This on-column switching successfully eliminates the displaced stationary phase seen in fractions when operating ICcE with standard flying leads and gives a 6% reduction in the retention time of compounds and improved resolution due to the elimination of the time delay required to pump the previous mobile phase from standard flying leads.

  20. A tool to evaluate correspondence between extraction ion chromatographic peaks and peptide-spectrum matches in shotgun proteomics experiments.

    Science.gov (United States)

    Ruse, Cristian I; Peacock, Samantha; Ghiban, Cornel; Rivera, Keith; Pappin, Darryl J; Leopold, Peter

    2013-08-01

    Chromatographed peptide signals form the basis of further data processing that eventually results in functional information derived from data-dependent bottom-up proteomics assays. We seek to rank LC/MS parent ions by the quality of their extracted ion chromatograms. Ranked extracted ion chromatograms act as an intuitive physical/chemical preselection filter to improve the quality of MS/MS fragment scans submitted for database search. We identify more than 4900 proteins when considering detector shifts of less than 7 ppm. High quality parent ions for which the database search yields no hits become candidates for subsequent unrestricted analysis for PTMs. Following this rational approach, we prioritize identification of more than 5000 spectrum matches from modified peptides and confirmed the presence of acetylaldehyde-modified His/Lys. We present a logical workflow that scores data-dependent selected ion chromatograms and leverage information about semianalytical LC/LC dimension prior to MS. Our method can be successfully used to identify unexpected modifications in peptides with excellent chromatography characteristics, independent of fragmentation pattern and activation methods. We illustrate analysis of ion chromatograms detected in two different modes by RF linear ion trap and electrostatic field orbitrap.

  1. Ion-Cyclotron Instability in Current-Carrying Lorentzian (Kappa) and Maxwellian Plasmas with Anisotropic Temperatures: A Comparative Study

    Science.gov (United States)

    2011-09-26

    in the solar wind and in many space plasmas often exhibit non - Maxwellian suprathermal tails that decrease as a power-law of the velocity.1 Such...AFRL-RV-PS- AFRL-RV-PS- TR-2011-0164 TR-2011-0164 ION-CYCLOTRON INSTABILITY IN CURRENT- CARRYING LORENTZIAN (KAPPA) AND MAXWELLIAN PLASMAS...1 Oct 2007 – 9 Sep 2011 4. TITLE AND SUBTITLE Ion-Cyclotron Instability in Current-Carrying Lorentzian (Kappa) and Maxwellian Plasmas 5a. CONTRACT

  2. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions

    Science.gov (United States)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra

    2008-01-01

    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  3. Extraction of tetra-oxo anions into a hydrophobic, ionic liquid-based solvent without concomitant ion exchange.

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, D. C.; Vandegrift, G. F.; Shkrob, I. A.; Wishart, J. F.; Kerr, K.; Dietz, M. L.; Qadah, D. T. D.; Garvey, S. L.; BNL; Univ. of Wisconsin at Milwaukee

    2010-06-16

    Hydrophobic ionic liquids (IL) have the potential to simplify certain separations by serving as both an extraction solvent and an electrolyte for subsequent electrochemical reductions. While IL-based solvents are known to be efficient media for metal ion extraction, separations employing these solvents are frequently complicated by the loss of constituent IL ions to the aqueous phase, resulting in deteriorating performance. In this study, we have examined the extraction of pertechnetate and related tetra-oxo anions from aqueous solutions into IL-based solvents incorporating tetraalkylphosphonium bis[(trifluoromethyl)sulfonyl]imide and a crown ether. In contrast to various previously studied IL-based cation extraction systems, facile anion extraction without significant transfer of the IL ions to the aqueous phase has been observed. In addition, the solvents exhibit high distribution ratios (100-500 for pertechnetate), significant electrical conductivity (>100 ?S/cm), and a wide (4 V) electrochemical window. The results suggest that these solvents may provide the basis for improved approaches to the extraction and recovery of a variety of anions.

  4. Extraction of Tetra-oxo Anions into a Hydrophobic, Ionic Liquid-Based Solvent Without Concomitant Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, D.C.; Wishart, J.; Vandegrift, III, G.F.; Shkrob, I.A.; Kerr, K.; Dietz, M.L.; Qadah, D.T.D.; Garvey, S.L.

    2010-06-10

    Hydrophobic ionic liquids (IL) have the potential to simplify certain separations by serving as both an extraction solvent and an electrolyte for subsequent electrochemical reductions. While IL-based solvents are known to be efficient media for metal ion extraction, separations employing these solvents are frequently complicated by the loss of constituent IL ions to the aqueous phase, resulting in deteriorating performance. In this study, we have examined the extraction of pertechnetate and related tetra-oxo anions from aqueous solutions into IL-based solvents incorporating tetraalkylphosphonium bis[(trifluoromethyl)sulfonyl]imide and a crown ether. In contrast to various previously studied IL-based cation extraction systems, facile anion extraction without significant transfer of the IL ions to the aqueous phase has been observed. In addition, the solvents exhibit high distribution ratios (100-500 for pertechnetate), significant electrical conductivity (>100 {micro}S/cm), and a wide ({approx}4 V) electrochemical window. The results suggest that these solvents may provide the basis for improved approaches to the extraction and recovery of a variety of anions.

  5. Characteristics of a betatron core for extraction in a proton-ion medical synchrotron

    CERN Document Server

    Badano, L

    1997-01-01

    Medical synchrotrons for radiation therapy require a very stable extraction of the beam over a period of about one second. The techniques for applying resonant extraction to achieve this long spill can be classified into two groups, those that move the resonance and those that move the beam. The latter has the great advantage of keeping all lattice functions, and hence the resonance conditions, constant. The present report examines the possibility of using a betatron core to accelerate the waiting ion beam by induction into the resonance. The working principle, the proposed characteristics and the expected performances of this device are discussed. The betatron core is a smooth high-inductance device compared to the small quadrupole lenses that are normally used to move the resonance and is therefore better suited to delivering a very smooth spill. The large stored energy in a betatron core compared to a small quadrupole is also a safety feature since it responds less quickly to transients that could send lar...

  6. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction

    Science.gov (United States)

    Nan, Junmin; Han, Dongmei; Zuo, Xiaoxi

    This paper describes a new recycling process of metal values from spent lithium-ion batteries (LIBs). After the dismantling of the spent batteries steel crusts, the leaching of battery internal substances with alkaline solution and the dissolving of the residues with H 2SO 4 solution were carried out. Then mass cobalt was chemically deposited as oxalate, and Acorga M5640 and Cyanex272 extracted the small quantities of copper and cobalt, respectively. Lithium was recovered as deposition of lithium carbonate. It is shown that about 90% cobalt was deposited as oxalate with less than 0.5% impurities, and Acorga M5640 and Cyanex272 were efficient and selective for the extraction of copper and cobalt in sulfate solution. Over 98% of the copper and 97% of the cobalt was recovered in the given process. In addition, the waste solution was treated innocuously, and LiCoO 2 positive electrode material with good electrochemical performance was also synthesized by using the recovered compounds of cobalt and lithium as precursors. The process is feasible for the recycling of spent LIBs in scale-up.

  7. Effects of ring current ions on the ULF waves in the inner magnetosphere based on a 5-D drift kinetic ring current model

    Science.gov (United States)

    Seki, K.; Amano, T.; Saito, S.; Kamiya, K.; Miyoshi, Y.; Keika, K.; Matsumoto, Y.

    2016-12-01

    Terrestrial inner magnetosphere is the region where different plasma regimes over a wide range of energy such as the plasmasphere, ring current, and radiation belt coexist. Among them, the ring current carries most of plasma pressure and is thus responsible for deformation of the magnetic field. Since the deformation changes drift paths of charged particles including the ring current ions, it is important to describe this coupling between the ring current and electric/magnetic fields self-consistently. It is known that short-timescale phenomena such as ULF waves and substorm related ion injections from the plasma sheet play important roles in the inner magnetospheric dynamics during magnetic storms. While ULF waves contribute to the radial transport of relativistic electrons to form the radiation belt, the ion injections contribute to excitation of storm-time Pc5 ULF waves as well as to plasma supply to the ring current from the magnetotail. Aiming at a self-consistent description of the coupling between ring current ions and electric/magnetic fields, we have developed a global ring current model (GEMSIS-RC model). The model is a self-consistent and kinetic numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions coupled with Maxwell equations. Without assuming a force-balanced equilibrium, the GEMSIS-RC model allows the force-imbalance to exist, which generates induced electric field through the polarization current. In this study, we applied the GEMSIS-RC model for simulation of ULF waves in the inner magnetosphere with a focus on the short-timescale phenomena described above. Comparison between runs with/without ring current ions show that the existence of hot ring current ions can deform and amplify the original sinusoidal waveforms. The deformation causes the energy cascade to higher frequency range (Pc4 and Pc3 ranges). The cascade is more pronounced in high plasma beta cases. It is also shown that

  8. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  9. Ion Currents Induced by ATP and Angiotensin II in Cultured Follicular Cells of Xenopus laevis

    Science.gov (United States)

    Montiel-Herrera, Marcelino; Zaske, Ana María; García-Colunga, Jesús; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2011-01-01

    Xenopus laevis oocytes are commonly used to study the biophysical and pharmacological properties of foreign ion channels and receptors, but little is known about those endogenously expressed in their enveloping layer of follicular cells (FCs). Whole-cell recordings and the perforated patch-clamp technique in cultured FCs held at -60 mV revealed that ATP (20-250 μM) generates inward currents of 465 ± 93 pA (mean ± standard error) in ∼60% of the FCs studied, whereas outward currents of 317 ± 100 pA were found in ∼5% of the cells. The net effect of ATP on the FCs was to activate both mono- and biphasic inward currents, with an associated increase in membrane chloride conductance. Two-microelectrode voltage-clamp recordings of nude oocytes held at -60 mV disclosed that ATP elicited biphasic inward currents, corresponding to the well-known Fin and Sin-like currents. ATP receptor antagonists like suramin, TNP-ATP, and RB2 did not inhibit any of these responses. On the other hand, when using wholecell recordings, 1 μM Ang II yielded smooth inward currents of 157 ± 45 pA in ∼16% of the FC held at -60 mV. The net Ang II response, mediated by the activation of the AT1 receptor, was a chloride current inhibited by 10 nM ZD7155. This study will help to better understand the roles of ATP and Ang II receptors in the physiology of X. laevis oocytes. PMID:22083304

  10. Determination of chloride in brazilian crude oils by ion chromatography after extraction induced by emulsion breaking.

    Science.gov (United States)

    Robaina, Nicolle F; Feiteira, Fernanda N; Cassella, Alessandra R; Cassella, Ricardo J

    2016-08-01

    The present paper reports on the development of a novel extraction induced by emulsion breaking (EIEB) method for the determination of chloride in crude oils. The proposed method was based on the formation and breaking of oil-in-water emulsions with the samples and the consequential transference of the highly water-soluble chloride to the aqueous phase during emulsion breaking, which was achieved by centrifugation. The determination of chloride in the extracts was performed by ion chromatography (IC) with conductivity detection. Several parameters (oil phase:aqueous phase ratio, crude oil:mineral oil ratio, shaking time and type and concentration of surfactant) that could affect the performance of the method were evaluated. Total extraction of chloride from samples could be achieved when 1.0g of oil phase (0.5g of sample+0.5g of mineral oil) was emulsified in 5mL of a 2.5% (m/v) solution of Triton X-114. The obtained emulsion was shaken for 60min and broken by centrifugation for 5min at 5000rpm. The separated aqueous phase was collected, filtered and diluted before analysis by IC. Under these conditions, the limit of detection was 0.5μgg(-1) NaCl and the limit of quantification was 1.6μgg(-1) NaCl. We applied the method to the determination of chloride in six Brazilian crude oils and the results did not differ statistically from those obtained by the ASTM D6470 method when the paired Student-t-test, at 95% confidence level, was applied.

  11. Investigation of iron current measurement to detect combustion quality; Ion denryu ni yoru nensho jotai kenshutsu no kento

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, K.; Mogi, K. [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The possibility and problems were investigated in detecting the combustion quality by means of ion current measured at the spark plug. The ion current has two peaks during one combustion stroke; first peak is generated by flame around the spark plug just after ignition and second one appears with the rise in temperature of burned gases. As the result of investigations, it was confirmed that the first ion peak might be useful to forecast the combustion quality, but it would be hard to practice owing to the spark duration. And the second peak offered the information of combustion chamber pressure. 4 refs., 12 figs., 1 tab.

  12. Synthesis of novel calix[4]crown telomers and selective extraction of cesium ions

    Institute of Scientific and Technical Information of China (English)

    Hai Bing Li; Yuan Yin Chen; De Jun Xiong; Jun Yan Zhan; Cui Ping Han

    2007-01-01

    p-tert-Butylcalix[4]diazacrown-4 telomer, which contains hard and soft ion binding sites, was synthesized. It exhibited high selectivity toward cesium ions. The binding sites may complex alkali metal ions selectively.

  13. Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors.

    Science.gov (United States)

    Chen, Yanan; Fu, Kun; Zhu, Shuze; Luo, Wei; Wang, Yanbin; Li, Yiju; Hitz, Emily; Yao, Yonggang; Dai, Jiaqi; Wan, Jiayu; Danner, Valencia A; Li, Teng; Hu, Liangbing

    2016-06-08

    Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

  14. Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.

  15. A Multicusp Ion Source for Radioactive Ion Beams

    Science.gov (United States)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.

    1997-05-01

    In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.

  16. Alternating Current Cloud Point Extraction on a Microfluidic Chip: the Use of Ferrocenyl Surfactants.

    Science.gov (United States)

    Usui, Yuya; Sasaki, Naoki

    2016-01-01

    Alternating current cloud point extraction (ACPE) is a preconcentration technique that can be employed in the analysis of membrane proteins on a microfluidic chip. However, the selectivity of ACPE relies on the hydrophobicity of the analytes. In this study, 11-ferrocenyltrimethylundecylammonium bromide (FTMA) was utilized to introduce electrostatic interaction as part of the ACPE technique. The use of ACPE with oxidized FTMA resulted in efficient concentration of fluorescently labeled anionic membrane proteins. We expect the approach outlined in this report to be useful in the preconcentration technique of microchip electrophoresis.

  17. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples.

    Science.gov (United States)

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-04-01

    Novel Cu(II) ion-imprinted polymers (Cu-IIP) nanoparticles were prepared by using Cu(II) ion-thiosemicarbazide complex as the template molecule and methacrylic acid, ethylene glycol dimethacrylate (EGDMA), and 2,2'azobisisobutyronitrile (AIBN) as the functional monomer, cross-linker, and the radical initiator, respectively. The synthesized polymer nanoparticles were characterized by using infrared spectroscopy (IR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopic (SEM) techniques. Some parameters such as pH, weight of the polymer, adsorption time, elution time, eluent type, and eluent volume which affect the extraction efficiency of the polymer were studied. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 38.8 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 80, 1.7%, and 0.003 μg mL(-1), respectively. The prepared ion-imprinted polymer nanoparticles have an increased selectivity toward Cu(II) ions over a range of competing metal ions with the same charge and similar ionic radius. The method was applied to the determination of ultra trace levels of Cu2+ in environmental water samples with satisfactory results.

  18. A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jens F. Peters

    2016-12-01

    Full Text Available Resource depletion aspects are repeatedly used as an argument for a shift towards new battery technologies. However, whether serious shortages due to the increased demand for traction and stationary batteries can actually be expected is subject to an ongoing discussion. In order to identify the principal drivers of resource depletion for battery production, we assess different lithium-ion battery types and a new lithium-free battery technology (sodium-ion under this aspect, applying different assessment methodologies. The findings show that very different results are obtained with existing impact assessment methodologies, which hinders clear interpretation. While cobalt, nickel and copper can generally be considered as critical metals, the magnitude of their depletion impacts in comparison with that of other battery materials like lithium, aluminum or manganese differs substantially. A high importance is also found for indirect resource depletion effects caused by the co-extraction of metals from mixed ores. Remarkably, the resource depletion potential per kg of produced battery is driven only partially by the electrode materials and thus depends comparably little on the battery chemistry itself. One of the key drivers for resource depletion seems to be the metals (and co-products in electronic parts required for the battery management system, a component rather independent from the actual battery chemistry. However, when assessing the batteries on a capacity basis (per kWh storage capacity, a high-energy density also turns out to be relevant, since it reduces the mass of battery required for providing one kWh, and thus the associated resource depletion impacts.

  19. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    Energy Technology Data Exchange (ETDEWEB)

    Arduini, G.; Biino, C.; Clement, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafstroem, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E. [SL Division, CERN, CH-1211 Geneva 23 (Switzerland); Mo/ller, S.P.; Uggerho/j, E. [ISA, Aarhus University (Denmark); Taratin, A. [JINR, Dubna (Russia); Freund, A. [ESRF, Grenoble (France); Keppler, P.; Major, J. [MPI fuer Metallforschung, Stuttgart (Germany)

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb{sup 82+} ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c , by means of a bent crystal are reported. Deflection efficiencies are as high as 14{percent}, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c -per-charge Pb{sup 82+} (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10{percent} was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams. {copyright} {ital 1997} {ital The American Physical Society}

  20. Deflection and Extraction of Pb Ions up to 33 TeV/c by a Bent Silicon Crystal

    Science.gov (United States)

    Arduini, G.; Biino, C.; Clément, M.; Cornelis, K.; Doble, N.; Elsener, K.; Ferioli, G.; Fidecaro, G.; Gatignon, L.; Grafström, P.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.; Møller, S. P.; Uggerhøj, E.; Taratin, A.; Freund, A.; Keppler, P.; Major, J.

    1997-11-01

    The first results from an experiment to deflect a beam of fully stripped, ultrarelativistic Pb82+ ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical estimates. In a second experiment a bent crystal was used to extract 270 GeV/c-per-charge Pb82+ \\(22 TeV/c\\) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams.

  1. Deflection and extraction of Pb ions up to 33 TeV/c by a bent silicon crystal

    CERN Document Server

    Arduini, Gianluigi; Clément, M; Cornelis, Karel; Doble, Niels T; Elsener, K; Ferioli, G; Fidecaro, Giuseppe; Freund, A; Gatignon, L; Grafström, P; Gyr, Marcel; Herr, Werner; Keppler, P; Klem, J T; Major, J V; Mikkelsen, U; Møller, S P; Taratin, A M; Uggerhøj, Erik; Weisse, E

    1997-01-01

    The first results from an experiment to deflect a beam of fully stripped, ulta-relativistic Pb ions of 400 GeV/c per unit of charge, equivalent to 33 TeV/c, by means of a bent crystal are reported. Deflection efficiencies are as high as 14%, in agreement with theoretical predictions. In a second experiment a bent crsytal was used to extract 270 GeV/c per charge Pb82+ (22 TeV/c) ions from a coasting beam in the CERN-SPS, and a high extraction efficiency of up to 10% was found. These represent the first measurements to demonstrate applications of bent crystals in high energy heavy ion beams.

  2. Nanobeam production with the multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Ji, Q. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Leung, K. N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Zahir, N. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2000-02-01

    A 1.8-cm-diam multicusp ion source to be used for focused ion beam applications has been tested for Xe, He, Ne, Ar, and Kr ions. The extractable ion and electron currents were measured. The extractable ion current is similar for all these ion species except for Ne{sup +}, but the extractable electron current behaves quite differently. The multicusp ion source will be used with a combined extractor-collimator electrode system that can provide a few hundred nA of Xe{sup +} or Kr{sup +} ions. Ion optics computation indicates that these beams can be further focused with an electrostatic column to a beam spot size of {approx}100 nm. (c) 2000 American Institute of Physics.

  3. Overcoming the current issues surrounding device leads: reducing the complications during extraction.

    Science.gov (United States)

    Bongiorni, Maria Grazia; Segreti, Luca; Di Cori, Andrea; Zucchelli, Giulio; Paperini, Luca; Viani, Stefano; Soldati, Ezio

    2017-06-01

    The implantation rate of cardiac implantable electronic devices has consistently increased in the last 20 years, as have the related complication rates. The most relevant issue is the removal of pacing and implantable cardioverter defibrillator (ICD) leads, which a few months after implantation tend to develop intravascular fibrosis, often making extraction a challenging and risky procedure. Areas covered: The transvenous lead extraction (TLE) scenario is constantly evolving. TLE is a key procedure in lead management strategies. Many efforts have been made to develop new TLE approaches and techniques allowing a safe and effective procedure for patients. The increasing rate of cardiac implantable electronic device (CIED) implantations and of CIED related complications highlight the importance of TLE. Lead related- and patient-related factors may change the future of extractions. We review the current status of TLE, focusing on the strategies available to perform the optimal procedure in the right patient and reducing procedure related complications. Expert commentary: Understanding the importance of an accurate TLE risk stratification is mandatory to optimize the procedural risk-to-benefits ratio. The use of adequate tools, techniques and approaches, and appropriate training are cornerstones for the achievement of safer procedures.

  4. Solar Cell Parameters Extraction from a Current-Voltage Characteristic Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Sanjaykumar J. Patel

    2013-05-01

    Full Text Available The determination of solar cell parameters is very important for the evaluation of the cell performance as well as to extract maximum possible output power from the cell. In this paper, we propose a computational based binary-coded genetic algorithm (GA to extract the parameters (I0, Iph and n for a single diode model of solar cell from its current-voltage (I-V characteristic. The algorithm was implemented using LabVIEW as a programming tool and validated by applying it to the I-V curve synthesized from the literature using reported values. The values of parameters obtained by GA are in good agreement with those of the reported values for silicon and plastic solar cells. change to “After the validation of the program, it was used to extract parameters for an experimental I-V characteristic of 4 × 4 cm2 polycrystalline silicon solar cell measured under 900 W/m. The I-V characteristic obtained using GA shows excellent match with the experimental one.

  5. Concentration of zinc ions in perchlorate medium by a menbrane-gel using an acid extractant (DEHPA

    Directory of Open Access Journals (Sweden)

    Belhadji L.

    2013-07-01

    Full Text Available Recent decades, it is an awareness of the importance of ecological balance in the environment, balances threatened by industrial pollution. A new spirit presides we seek to minimize pollution of receiving waters. The present work is to study the liquid-gel-extraction of zinc ions in perchlorate medium by an acid extractant: the di (ethyl-2 hexyl phosphorique acid, or DEHPA. Two types of polymers were used as supports of solvent extraction: a polybutadiene rubber cross-linked respectively with 0.1% dicumyl peroxide and 0.4% dicumyl peroxide, vulcanized at 160°C, one is most cross-linked than the other. The liquid-gel extraction is based on the principles of the liquid-liquid extraction.

  6. Characteristics of the negative ion beam extracted from an LBL multicusp volume source

    Energy Technology Data Exchange (ETDEWEB)

    Debiak, T.W.; Solensten, L.; Sredniawski, J.J.; Ng, Y.C.; Heuer, R. (Grumman Corporation, Bethpage, New York 11714 (US))

    1990-01-01

    This work encompasses a study of the beam position, profile, and emittance of a Lawrence Berkeley Lab (LBL) multicusp volume source. The study includes a comparison of different extraction geometries with single- and multiple-hole apertures. Our work is currently based on single-gap extraction and acceleration. These experiments are the first of a planned series of studies with various extractor geometries. The beam profile full width at half-maximum ranged from 5.7 to 10.2 mm at a position 69 mm from the emission aperture. Measurements of profile and position in the vertical direction indicate that the beam is significantly bent in the direction expected due to the field of the electron separation magnet. Phase space contour plots in the horizontal plane have been obtained for circular extraction apertures with a diameter of 1.0 and 2.0 mm, and a multiple-hole aperture with an overall diameter of 2.46 mm. Emittances were calculated to be as low as 0.0010 {pi} cm mrad for the 1-mm aperture and 0.0014 {pi} cm mrad for the 2-mm aperture. Emittances are not reported for the multiple-hole aperture due to the shape of the phase space contours; however, analysis of the data is in progress to provide a meaningful comparison of the single-hole and multiple-hole beam characteristics.

  7. Thermal and electrostatic simulations of the diagnostic calorimeter for the source for production of ion of deuterium extracted from RF plasma beam.

    Science.gov (United States)

    Serianni, G; Dalla Palma, M; De Muri, M; Fasolo, D; Pasqualotto, R; Pomaro, N; Rizzolo, A; Tollin, M

    2012-02-01

    To study and optimise negative ion production for the ITER neutral beam injectors, a test facility is under construction in Padova with the aim of testing beam characteristics and to verify the source proper operation. The instrumented calorimeter STRIKE (short-time retractable instrumented kalorimeter experiment) is being developed to characterise the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) beam during short operations. The paper presents an investigation of the response of STRIKE measurement systems. It results that biasing is necessary to cope with the influence of secondary electrons on current measurements; moreover, despite the discretisation of the recorded thermal patterns introduced by the pixels of thermal cameras, a sufficient spatial resolution is expected.

  8. Liquid-liquid extraction of ion-association complexes of cobalt(II-4-(2-pyridylazoresorcinol with ditetrazolium salts

    Directory of Open Access Journals (Sweden)

    Divarova Vidka V.

    2015-01-01

    Full Text Available The formation and liquid-liquid extraction of ion-association complexes between Co(II-4-(2-Pyridylazoresorcinol (PAR anionic chelates and cations of three ditetrazolium chlorides were studied: Blue Tetrazolium chloride (BTC, Neotetrazolium chloride (NTC and Nitro Blue Tetrazolium chloride (NBT. The optimum conditions for the formation and solvent extraction of the ion-association comlpex chelates were determined. It has been found that in the systems of Co(II-PAR-DTS, the reactants are reacted in molar ratios 1:2:1 and the general formula of complexes was suggested. The extraction equilibria were investigated and quantitatively characterized by the equilibrium constants and the recovery factors. The analytical characteristics of the complexes were calculated.

  9. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V.; Sidorov, A. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanova St., Nizhny Novgorod (Russian Federation); Strelkov, A. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyväskylä, Jyväskylä (Finland)

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  10. Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry.

    Science.gov (United States)

    Dong, Can; Wang, Weiguo; Li, Haiyang

    2008-05-15

    A new atmospheric pressure air direct current glow discharge (DCGD) ionization source has been developed for ion mobility spectrometry (IMS) to overcome the regularity problems associated with the conventional (63)Ni source and the instability of the negative corona discharge. Its general electrical characteristics were experimentally investigated. By equipping it to IMS, a higher sensitivity was obtained compared to that of a (63)Ni source and corona discharge, and a linear dynamic range from 20 ppb to 20 ppm was obtained for m-xylene. Primary investigations showed that alkanes, such as pentane, which are nondetectable or insensitively detectable with (63)Ni-IMS, can be efficiently detected by DCGD-IMS and the detection limit of 10 ppb can be reached. The preliminary results have shown that the new DCGD ionization source has great potential applications in IMS, such as online monitoring of environment pollutants and halogenated compounds.

  11. MHD Flow with Hall Current and Ion-Slip Effects due to a Stretching Porous Disk

    Directory of Open Access Journals (Sweden)

    Faiza M. N. El-Fayez

    2013-01-01

    Full Text Available A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection through the disk is also considered.

  12. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    Science.gov (United States)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  13. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Science.gov (United States)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  14. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  15. Reproducible ion-current-based approach for 24-plex comparison of the tissue proteomes of hibernating versus normal myocardium in swine models.

    Science.gov (United States)

    Qu, Jun; Young, Rebeccah; Page, Brian J; Shen, Xiaomeng; Tata, Nazneen; Li, Jun; Duan, Xiaotao; Fallavollita, James A; Canty, John M

    2014-05-02

    Hibernating myocardium is an adaptive response to repetitive myocardial ischemia that is clinically common, but the mechanism of adaptation is poorly understood. Here we compared the proteomes of hibernating versus normal myocardium in a porcine model with 24 biological replicates. Using the ion-current-based proteomic strategy optimized in this study to expand upon previous proteomic work, we identified differentially expressed proteins in new molecular pathways of cardiovascular interest. The methodological strategy includes efficient extraction with detergent cocktail; precipitation/digestion procedure with high, quantitative peptide recovery; reproducible nano-LC/MS analysis on a long, heated column packed with small particles; and quantification based on ion-current peak areas. Under the optimized conditions, high efficiency and reproducibility were achieved for each step, which enabled a reliable comparison of 24 the myocardial samples. To achieve confident discovery of differentially regulated proteins in hibernating myocardium, we used highly stringent criteria to define "quantifiable proteins". These included the filtering criteria of low peptide FDR and S/N > 10 for peptide ion currents, and each protein was quantified independently from ≥2 distinct peptides. For a broad methodological validation, the quantitative results were compared with a parallel, well-validated 2D-DIGE analysis of the same model. Excellent agreement between the two orthogonal methods was observed (R = 0.74), and the ion-current-based method quantified almost one order of magnitude more proteins. In hibernating myocardium, 225 significantly altered proteins were discovered with a low false-discovery rate (∼3%). These proteins are involved in biological processes including metabolism, apoptosis, stress response, contraction, cytoskeleton, transcription, and translation. This provides compelling evidence that hibernating myocardium adapts to chronic ischemia. The major metabolic

  16. Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants

    Energy Technology Data Exchange (ETDEWEB)

    Borowiak-Resterna, Aleksandra [Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland); Cierpiszewski, Ryszard [Poznan University of Economics, Faculty of Commodity Science, al. Niepodleglosci 10, 61-875 Poznan (Poland); Prochaska, Krystyna, E-mail: Krystyna.Prochaska@put.poznan.pl [Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2010-07-15

    Liquid-liquid extraction of cadmium(II) from acidic chloride solutions was carried out with alkyl derivatives of pyridinecarboxamide in toluene with addition of 2-ethylhexan-1-ol as modifier. Equilibrium as well as kinetic studies was performed. The kinetic studies of a Cd(II) extraction process were carried out with a Lewis cell having a constant interfacial area. Cadmium(II) concentration in the aqueous phases was determined by atomic absorption spectroscopy (Varian SPECTR AA800). The results of equilibrium experiments showed that cadmium(II) was quantitatively extracted with N,N-dihexylpyridine-3-carboxamide whereas the derivative N,N-dihexylpyridine-2-carboxamide was not able to transfer Cd(II) ions from the aqueous phase to the organic one. Thus, the kinetics of extraction and the initial extraction rate were examined only in the systems with N,N-dihexylpyridine-3-carboxamide. The obtained experimental data as well as the calculated values of mass transfer coefficients suggest that the investigated process of extraction of Cd(II) by means of pyridinecarboxamide as extractant occurs in the mixed diffusion-kinetic region. Moreover, the results of adsorption studies indicated that the extraction of Cd(II) with a hydrophobic extractant should be considered as an interfacial process.

  17. Green synthesis of silver nanoparticles using Carica Papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions

    Science.gov (United States)

    Firdaus, M.; Andriana, S.; Elvinawati; Alwi, W.; Swistoro, E.; Ruyani, A.; Sundaryono, A.

    2017-04-01

    We have successfully synthesized silver nanoparticles (AgNPs) by using aqueous extract of papaya (Carica papaya) fruit as bioreductant under sunlight irradiation without additional capping agent. Characterizations were done using UV-Visible spectrophotometry and Fourier Transform Infrared Spectroscopy (FTIR). The synthesized AgNPs have yellowish-brown color with surface plasmon resonance peak at 410 nm. Good selectivity of the AgNPs towards hazardous heavy metal of mercury ions in aqueous solution has been developed as a green environmental sensor. The presence of Hg(II) ions in the mixture changed the yellowish-brown color of AgNPs to colorless due to oxidation of Ag(O) in AgNPs to Ag(I) ions. Effect of samples matrix such as alkali metal, alkaline earth metal and transition metal ions were evaluated.

  18. Multi-element pre-concentration of heavy metal ions by solid phase extraction on Chromosorb 108

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Art and Science, Department of Chemistry, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Elci, Latif [Pamukkale University, Faculty of Art and Science, Department of Chemistry, 20020 Denizli (Turkey)

    2005-08-29

    A multi-element preconcentration procedure for solid phase extraction on Chromosorb 108 as bathocuproinedisulfonic acid chelates and flame atomic absorption spectrometric determinations of some heavy metal ions in environmental samples is proposed in the present work. The influences of analytical parameters including pH of the aqueous solution, amounts of reagents, flow rates of sample and eluent solutions, sample volume etc. on the quantitative recoveries of copper, cadmium, lead, zinc, manganese, iron, chromium, nickel and cobalt ions were investigated. The effects of concomitant ions on the retentions of the analytes were also examined. The presented preconcentration procedure was applied to the determination of metal ions in reference standard materials (NRCC-SLRS 4 Riverine Water, SRM 1515 Apple leaves and GBW 07605 Tea) and some real samples including tap and river water, red wine, rice, black tea and honey.

  19. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  20. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  1. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Science.gov (United States)

    Nagatomo, T.; Tzoganis, V.; Kase, M.; Kamigaito, O.; Nakagawa, T.

    2016-02-01

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO2 (quartz), KBr, Eu-doped CaF2, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy 12C4+, 16O4+, and 40Ar11+ ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  2. Bulk matter evolution and extraction of jet transport parameter in heavy-ion collisions at RHIC

    CERN Document Server

    Chen, Xiao-Fang; Wang, Enke; Wang, Xin-Nian; Xu, Zhe

    2010-01-01

    Within the picture of jet quenching induced by multiple parton scattering and gluon bremsstrahlung, medium modification of parton fragmentation functions and therefore the suppression of large transverse momentum hadron spectra are controlled by both the value and the space-time profile of the jet transport parameter along the jet propagation path. Experimental data on single hadron suppression in high-energy heavy-ion collisions at the RHIC energy are analyzed within the higher-twist (HT) approach to the medium modified fragmentation functions and the next-to-leading order (NLO) perturbative QCD (pQCD) parton model. Assuming that the jet transport parameter $\\hat q$ is proportional to the particle number density in both QGP and hadronic phase, experimental data on jet quenching in deeply inelastic scattering (DIS) off nuclear targets can provide guidance on $\\hat q_{h}$ in the hot hadronic matter. One can then study the dependence of extracted initial value of jet quenching parameter $\\hat q_{0}$ at initial ...

  3. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons

    OpenAIRE

    Sutherland, Stephani P.; Christopher J. Benson; Adelman, John P.; McCleskey, Edwin W.

    2000-01-01

    Cardiac afferents are sensory neurons that mediate angina, pain that occurs when the heart receives insufficient blood supply for its metabolic demand (ischemia). These neurons display enormous acid-evoked depolarizing currents, and they fire action potentials in response to extracellular acidification that accompanies myocardial ischemia. Here we show that acid-sensing ion channel 3 (ASIC3), but no other known acid-sensing ion channel, reproduces the functional featur...

  4. Component development for the ITER Ion Cyclotron Heating and Current Drive Transmission Line and Matching System

    Science.gov (United States)

    Goulding, R. H.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Gray, S. L.; Moon, R. L.; Pesavento, P. V.; Sanabria, R. M.; Fredd, E.; Greenough, N.

    2013-10-01

    The transmission line and matching network for the ITER Ion Cyclotron Heating and Current Drive System feeds two equatorial launchers, each with 24 phased current straps combined into groups of three, and each designed to couple up to 20 MW into ELMy H-mode plasmas in the frequency range 40-55 MHz, for pulse lengths up to 3600 s. The network includes > 1 km of 50 Ohm 300 mm diameter transmission line carrying up to 6 MW net power per line at VSWR = 1.5. In addition, there are 8 power splitters, 32 hybrid phase shifters incorporating 64 tuning stubs, 32 additional tuning stubs, and 36 vacuum capacitors, which are configured to provide pre-matching in the port cell region adjacent to the antenna, final matching, decoupling of mutual inductances between antenna elements, and passive ELM resilience. The development and design of the various system components will be discussed. High power tests of components have begun, and the latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  5. Transmission line component testing for the ITER Ion Cyclotron Heating and Current Drive System

    Science.gov (United States)

    Goulding, Richard; Bell, G. L.; Deibele, C. E.; McCarthy, M. P.; Rasmussen, D. A.; Swain, D. W.; Barber, G. C.; Barbier, C. N.; Cambell, I. H.; Moon, R. L.; Pesavento, P. V.; Fredd, E.; Greenough, N.; Kung, C.

    2014-10-01

    High power RF testing is underway to evaluate transmission line components for the ITER Ion Cyclotron Heating and Current Drive System. The transmission line has a characteristic impedance Z0 = 50 Ω and a nominal outer diameter of 305 mm. It is specified to carry up to 6 MW at VSWR = 1.5 for 3600 s pulses, with transient voltages up to 40 kV. The transmission line is actively cooled, with turbulent gas flow (N2) used to transfer heat from the inner to outer conductor, which is water cooled. High voltage and high current testing of components has been performed using resonant lines generating steady state voltages of 35 kV and transient voltages up to 60 kV. A resonant ring, which has operated with circulating power of 6 MW for 1 hr pulses, is being used to test high power, low VSWR operation. Components tested to date include gas barriers, straight sections of various lengths, and 90 degree elbows. Designs tested include gas barriers fabricated from quartz and aluminum nitride, and transmission lines with quartz and alumina inner conductor supports. The latest results will be presented. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  6. SEQUENTIAL EXTRACTION OF PHOSPHORUS BY MEHLICH-1 AND ION EXCHANGE RESIN FROM B HORIZONS OF FERRIC AND PERFERRIC LATOSOLS (OXISOLS

    Directory of Open Access Journals (Sweden)

    Danilo de Lima Camêlo

    2015-08-01

    Full Text Available In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1 and Ion Exchange Resin (IER, from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m. Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.

  7. Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Fayazi, Maryam, E-mail: maryam.fayazi@yahoo.com [Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Researchers Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman (Iran, Islamic Republic of); Mostafavi, Ali [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ghanei-Motlagh, Masoud, E-mail: m.ghaneimotlagh@yahoo.com [Young Researchers Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2016-03-01

    In this study, novel magnetic ion-imprinted polymer (MIIP) nanoparticles were utilized for the sensitive and selective detection of Pb(II) ions by graphite furnace atomic absorption spectrometry (GFAAS). The Pb(II)-imprinted polymer was synthesized by using 4-vinylpyridine (4VP) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,3,5,6-tetra(2-pyridyl) pyrazine (TPPZ) as the chelating agent and magnetic multi-walled carbon nanotubes (MMWCNTs) as the carrier. The synthesized MIIP materials were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Various analytical parameters such as extraction and desorption time, eluent type and concentration, pH and sample volume were systematically examined. The selectivity of MIIP sorbent for Pb(II) ions in the presence of some cations was also evaluated. The limit of detection (LOD, 3S{sub b}) and the relative standard deviation (RSD, n = 8, c = 25 ng L{sup −1}) were found to be 2.4 ng L{sup −1} and 5.6%, respectively. The maximum sorption capacity of the MIIP for Pb(II) was found to be 48.1 mg g{sup −1}. Finally, the proposed analytical procedure was successfully applied to monitoring lead in human hair and water samples with satisfactory results for the spiked samples. - Highlights: • A selective and sensitive method based on MSPE-GFAAS was proposed. • The MIIP nanoparticles were characterized using FE-SEM, XRD, VSM and FT-IR techniques. • The synthesized MIIP material is efficient at extracting lead ions. • The method was applied to determine lead ions in several real samples.

  8. Development of hollow anode penning ion source for laboratory application

    Science.gov (United States)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  9. OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES

    Directory of Open Access Journals (Sweden)

    J.A. Esfahani

    2012-12-01

    Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.

  10. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Yu-Qiang Liu

    Full Text Available Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs in rat dorsal root ganglion (DRG neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration-response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC(50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.

  11. Lithium-ion battery materials and engineering current topics and problems from the manufacturing perspective

    CERN Document Server

    Gulbinska, Malgorzata K

    2014-01-01

    Gaining public attention due, in part,  to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batterie

  12. Experiments on current-driven three-dimensional ion sound turbulence. I - Return-current limited electron beam injection. II - Wave dynamics

    Science.gov (United States)

    Stenzel, R. L.

    1978-01-01

    Pulsed electron beam injection into a weakly collisional magnetized background plasma is investigated experimentally; properties of the electron beam and background plasma, as well as the low-frequency instabilities and wave dynamics, are discussed. The current of the injected beam closes via a field-aligned return current of background electrons. Through study of the frequency and wavenumber distribution, together with the electron distribution function, the low-frequency instabilities associated with the pulsed injection are identified as ion acoustic waves driven unstable by the return current. The frequency cut-off of the instabilities predicted from renormalized plasma turbulence theory, has been verified experimentally.

  13. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS.

  14. Ion and electron dynamics generating the Hall current in the exhaust far downstream of the reconnection x-line

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Ohsawa, Mitaka, Tokyo 181-8588 (Japan); Takamoto, Makoto [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 114-0015 (Japan)

    2016-01-15

    We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modified around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.

  15. Solvent extraction of rare earth ions from nitrate media with new extractant di-(2,3-dimethylbutyl)-phosphinic acid

    Institute of Scientific and Technical Information of China (English)

    王俊莲; 陈广; 徐盛明; 尹祉力; 张覃

    2016-01-01

    As a relatively new extractant, di-(2,3-dimethylbutyl)-phosphinic acid (HYY-2) is more efficient to separate heavy rare earths Tm/Yb/Lu than Cyanex 272 and P507. In this paper, HYY-2 was synthesized in our lab, and the extraction equilibrium, ther-modynamics and stripping acidity for La, Gd and Y, which stood for light rare earth elements (REE), middle REE and heavy REE respectively, from nitrate media with this extractant were investigated. Meanwhile, extraction ability, capacity and stripping acidity of HYY-2 were investigated and compared with those of Cyanex 272 and P507. The separation performance for rare earth element cou-ples Gd/Eu and Er/Ywere also studied. Compared to Cyanex 272, it possessed higher extraction capacity; while compared with P507, it has lower stripping acidity. The maximumβGd/Eu 1.46 occurred at pHequilibrium=2.78 and the maximumβEr/Y was 1.47 when pHequilibrium= 2.01.

  16. Evaluation of the method of electrochemical extraction of chlorides ions for the rehabilitation of concrete structures with reinforcement corrosion problems

    Directory of Open Access Journals (Sweden)

    Monteiro, E.

    2003-12-01

    Full Text Available The present work evaluates the method of electrochemical extraction of chloride ions for the rehabilitation of corroded concrete structures. The influence of the concrete cover and the water-to-cement ratio in the efficiency of the method was studied by determining the initial and the final chloride content. Electrochemical impedance spectroscopy and the corrosion potential were used to monitor the reinforcement electrochemical behavior during the chloride extraction. The test results verify that this method successfully extracted chloride ions like it was previous reported in the literature. On average, this method removed 77% of the content of initial chloride ions at a distance of 0.5 cm from the surface and 50% of the content of initial chloride ions near de rebars.

    El actual trabajo evalúa el método de extracción electroquímica de cloruros para la rehabilitación de estructuras de hormigón corroídas. La influencia del espesor de recubrimiento y de la relación agua/cemento en la eficacia del método fue estudiada determinando el contenido inicial y final de cloruros. La técnica de impedancia electroquímica y el potencial de la corrosión fueron utilizados para la monitorización del comportamiento electroquímico del refuerzo durante la extracción de cloruros. Los resultados de los ensayos verificaron que este método extrajo con éxito cloruros, tal y como fue divulgado previamente en la literatura. Como promedio, este método extrajo el 77% del contenido de iones iniciales de cloruros a una distancia de 0,5 centímetros de la superficie, y el 50% del contenido de cloruros cerca de las armaduras.

  17. Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from Radio Frequency plasma) experiment: tests in BATMAN (BAvarian Test Machine for Negative ions).

    Science.gov (United States)

    Brombin, M; Spolaore, M; Serianni, G; Pomaro, N; Taliercio, C; Dalla Palma, M; Pasqualotto, R; Schiesko, L

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  18. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    Energy Technology Data Exchange (ETDEWEB)

    Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy); Schiesko, L. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-11-15

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors’ holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  19. Langmuir probes for SPIDER (source for the production of ions of deuterium extracted from radio frequency plasma) experiment: Tests in BATMAN (Bavarian test machine for negative ions)

    Science.gov (United States)

    Brombin, M.; Spolaore, M.; Serianni, G.; Pomaro, N.; Taliercio, C.; Palma, M. Dalla; Pasqualotto, R.; Schiesko, L.

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  20. IonLab. A remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Wolfgang; Fournier, Claudia; Vahlbruch, Jan-Willem; Walther, Clemens [Leibniz Univ., Hannover (Germany). Inst. for Radioecology and Radiation Protection (IRS)

    2016-07-01

    As a major contribution to modern web-based education and training in nuclear chemistry we have built and operated a remote-controlled experiment - IonLab - as part of the integrated EUFP7 project CINCHII. The setup is suitable for teaching basics on extraction chromatography and ion exchange using radionuclides. We describe separation of the beta emitting nuclides Sr-90 and Y-90 followed by radiometric detection, but the experiment is easily adapted to other separation schemes. This approach is aimed at institutions in academic or vocational education who need to convey the skills of handling radioactive (or otherwise dangerous, e.g. biotoxic) substances without appropriately licensed laboratory space for teaching. This camera-monitored remote controlled lab experiment has proved to be much closer to a real hands-on training and superior to a mere computer simulation.

  1. Solid phase extraction of Cu2+, Ni2+, and Co2+ ions by a new magnetic nano-composite: excellent reactivity combined with facile extraction and determination.

    Science.gov (United States)

    Azizi, Parastou; Golshekan, Mostafa; Shariati, Shahab; Rahchamani, Jalal

    2015-04-01

    In the present study, silica magnetite mesoporous nanoparticles functionalized with a new chelating agent were synthesized and introduced as a magnetic solid phase for preconcentration of trace amounts of Cu2+, Ni2+, and Co2+ ions from aqueous solutions. Briefly, MCM-41 mesoporous-coated magnetite nano-particles (MMNPs) with particle size lower than 15 nm were synthesized via chemical co-precipitation methods. Then, N-(4-methoxysalicylidene)-4,5-dinitro-1,2-phenylenediamine (HL) as a new chelating agent was synthesized and used for surface modification of mesoporous magnetic solid phase by dispersive liquid-liquid functionalization (DLLF) as a new rapid method to form HL functionalized mesoporous magnetite nanoparticles (MMNPs─HL). The structure and morphology of prepared sorbent were characterized by FT-IR, XRD, VSM, and TEM. Finally, the prepared nanoparticles were utilized for preconcentration of Cu2+, Ni2+, and Co2+ ions prior to determination by atomic absorption spectrophotometery. The calibration graph was obtained under the optimized conditions with linear dynamic range of 1.0-300 μg L(-1) and correlation coefficient (r2) of 0.998. The detection limits of this method for cobalt, nickel, and copper ions were 0.03, 0.03, and 0.04 ng/mL, respectively. Finally, the method was successfully applied to the extraction and determination of the analyte ions in natural waters and reference plant samples.

  2. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids.

  3. Ion milling coupled field emission scanning electron microscopy reveals current misunderstanding of morphology of polymeric nanoparticles.

    Science.gov (United States)

    Francis, Donny; Mouftah, Samiha; Steffen, Robert; Beduneau, Arnaud; Pellequer, Yann; Lamprecht, Alf

    2015-01-01

    Nanoparticles (NPs) are currently used as drug delivery systems for numerous therapeutic macromolecules, e.g. proteins or DNA. Based on the preparation by double emulsion solvent evaporation a sponge-like structure was postulated entrapping hydrophilic drugs inside an internal aqueous phase. However, a direct proof of this hypothesized structure is still missing today. NPs were prepared from different polymers using a double-emulsion method and characterized for their physicochemical properties. Combining ion milling with field emission scanning electron microscopy allowed to cross section single NP and to visualize their internal morphology. The imaging procedure permitted cross-sectioning of NPs and visualization of the internal structure as well as localizing drugs associated with NPs. It was observed that none of the model actives was encapsulated inside the polymeric matrix when particle diameters were below around 470 nm but predominantly adsorbed to the particle surface. Even at larger diameters only a minority of particles of a diameter below 1 μm contained an internal phase. The properties of such drug loaded NPs, i.e. drug release or the observations in cellular uptake or even drug targeting needs to be interpreted carefully since in most cases NP surface properties are potentially dominated by the 'encapsulated' drug characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode

    Science.gov (United States)

    Wu, Cheng-Yu; Chang, Chun-Chi; Duh, Jenq-Gong

    2016-09-01

    Silicon nitride coated silicon (N-Si) has been synthesized by two-step DC sputtering on Cu Micro-cone arrays (CMAs) at ambient temperature. The electrochemical properties of N-Si anodes with various thickness of nitride layer are investigated. From the potential window of 1.2 V-0.05 V, high rate charge-discharge and long cycle test have been executed to investigate the electrochemical performances of various N-Si coated Si-based lithium ion batteries anode materials. Higher specific capacity can be obtained after 200 cycles. The cycling stability is enhanced via thinner nitride layer coating as silicon nitride films are converted to Li3N with covered Si thin films. These N-Si anodes can be cycled under high rates up to 10 C due to low charge transfer resistance resulted from silicon nitride films. This indicates that the combination of silicon nitride and silicon can effectively endure high current and thus enhance the cycling stability. It is expected that N-Si is a potential candidate for batteries that can work effectively under high power.

  5. The penetration of ions into the magnetosphere through the magnetopause turbulent current sheet

    Directory of Open Access Journals (Sweden)

    A. Taktakishvili

    Full Text Available This paper reports the results of numerical modeling of magnetosheath ion motion in the magnetopause current sheet (MCS in the presence of magnetic fluctuations. Our model of magnetic field turbulence has a power law spectrum in the wave vector space, reaches maximum intensity in the center of MCS, and decreases towards the magnetosheath and magnetosphere boundaries. We calculated the density profile across the MCS. We also calculated the number of particles entering the magnetosphere, reflected from the magnetopause and escaping from the flanks, as a function of the fluctuation level of the turbulence and magnetic field shear parameter. All of these quantities appeared to be strongly dependent on the fluctuation level, but not on the magnetic field shear parameter. For the highest fluctuation levels the number of particles entering the magnetosphere does not exceed 15% of the total number of particles launched from the magnetosheath side of the MCS; the modeling also reproduced the effective reflection of the magnetosheath flow from very high levels of magnetic fluctuations.

    Key words. Magnetospheric physics (magnetosheath; magnetospheric configuration and dynamics; turbulence

  6. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry.

    Science.gov (United States)

    Ghaedi, M; Shokrollahi, A; Ahmadi, F; Rajabi, H R; Soylak, M

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L(-1) HNO(3) nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO(3), bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL(-1) for Cu(2+), Co(2+) and Ni(2+) along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu(2+), Ni(2+) and Co(2+), respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  7. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, M. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Shokrollahi, A.; Ahmadi, F.; Rajabi, H.R. [Chemistry Department, University of Yasouj, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, M. [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-02-11

    A cloud point extraction procedure was presented for the preconcentration of copper, nickel and cobalt ions in various samples. After complexation with methyl-2-pyridylketone oxime (MPKO) in basic medium, analyte ions are quantitatively extracted to the phase rich in Triton X-114 following centrifugation. 1.0 mol L{sup -1} HNO{sub 3} nitric acid in methanol was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The adopted concentrations for MPKO, Triton X-114 and HNO{sub 3}, bath temperature, centrifuge rate and time were optimized. Detection limits (3 SDb/m) of 1.6, 2.1 and 1.9 ng mL{sup -1} for Cu{sup 2+}, Co{sup 2+} and Ni{sup 2+} along with preconcentration factors of 30 and for these ions and enrichment factor of 65, 58 and 67 for Cu{sup 2+}, Ni{sup 2+} and Co{sup 2+}, respectively. The high efficiency of cloud point extraction to carry out the determination of analytes in complex matrices was demonstrated. The proposed procedure was applied to the analysis of biological, natural and wastewater, soil and blood samples.

  8. Spectrophotometric determination of traces of iodide by liquid-liquid extraction of Brilliant Green-iodide ion pair

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, S.B.; Mozammil, Mohammad (Bahauddin Zakariya University, Multan (Pakistan). Department of Chemistry)

    1991-11-05

    Iodide in natural waters at the 10{sup -6} M level is determined spectrophotometrically as the Brilliant Green-iodide ion pair. Iodide is the first oxidized to iodide with hydrogen peroxide-sulphuric acid to separate it from other chemical species and extracted into carbon tetrachloride. It is then extracted back into aqueous medium by its reduction with sodium thiosulphate and stabilized as the ion pair with Brilliant Green. At pH 7 the ion pair is extracted into chloroform and the absorbance is measured at 625 nm against chloroform. A linear calibration graph is obtained over the range 5x10{sup -7}-3.5x10{sup -6} M iodide with a relative standard deviation of 0.38 % at the 2x10{sup -6} M iodide level. The apparent molar absorptivity for iodide is 3.0x10{sup 5} l mol{sup -1} cm{sup -1}. (author). 11 refs.; 4 figs.; 2 tabs.

  9. DETERMINATION OF FLUORIDE IN HIGHLY SALINATED WATERS BY ION CHROMATOGRAPHY METHOD WITH USE OF SOLID PHASE EXTRACTION FOR SAMPLE PREPARATION

    Directory of Open Access Journals (Sweden)

    Beata Kostka

    2014-10-01

    Full Text Available Solid phase extraction (SPE is one of the most popular methods of matrix elimination in determination of anions by ion chromatography. Possibility of using cartridges containing a cation-exchange resin in the Ag+ and Na+ forms for determination of fluoride in the presence of very high concentration of chloride in mine waters was described in this paper. A Dionex ICS-2500 ion chromatograph was used for separation of anions in gradient elution using IonPac AS19 (4x250 mm separation column along with generated KOH eluent. Fluoride after separation was determined by conductivity detector with suppression. The investigations performed on mine waters (conductivity in the range 12 700 μS/cm–155 000 μS/cm and synthetic brine (38 820 mg/L Cl- and 3 408 mg/L SO4 2- confirmed usefulness of cartridges containing a cation-exchange resin for minimizing matrix influence on results of fluoride determination. The ion chromatography method accompanied by solid phase extraction for sample preparation proved to be very useful for determination of fluoride in highly salinated waters (i.e. mine waters because of low detection limit (0,02 mg/L, good precision (< 2,5 % and accuracy (recovery 91 % – 104 %.

  10. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches

    Science.gov (United States)

    Guo, Yugao; Zhao, He; Han, Yelin; Liu, Xia; Guan, Shan; Zhang, Qingyin; Bian, Xihui

    2017-02-01

    A simultaneous spectrophotometric determination method for trace heavy metal ions based on solid-phase extraction coupled with partial least squares approaches was developed. In the proposed method, trace metal ions in aqueous samples were adsorbed by cation exchange fibers and desorbed by acidic solution from the fibers. After the ion preconcentration process, the enriched solution was detected by ultraviolet and visible spectrophotometer (UV-Vis). Then, the concentration of heavy metal ions were quantified by analyzing ultraviolet and visible spectrum with the help of partial least squares (PLS) approaches. Under the optimal conditions of operation time, flow rate and detection parameters, the overlapped absorption peaks of mixed ions were obtained. The experimental data showed that the concentration, which can be calculated through chemometrics method, of each metal ion increased significantly. The heavy metal ions can be enriched more than 80-fold. The limits of detection (LOD) for the target analytes of copper ions (Cu2 +), cobalt ions (Co2 +) and nickel ions (Ni2 +) mixture was 0.10 μg L- 1, 0.15 μg L- 1 and 0.13 μg L- 1, respectively. The relative standard deviations (RSD) were less than 5%. The performance of the solid-phase extraction can enrich the ions efficiently and the combined method of spectrophotometric detection and PLS can evaluate the ions concentration accurately. The work proposed here is an interesting and promising attempt for the trace ions determination in water samples and will have much more applied field.

  11. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  12. Low-voltage large-current ion gel gated polymer transistors fabricated by a "cut and bond" process.

    Science.gov (United States)

    Shao, Xianyi; Bao, Bei; Zhao, Jiaqing; Tang, Wei; Wang, Shun; Guo, Xiaojun

    2015-03-04

    A "cut and bond" process using a commercial die bonder was developed for fabricating ion gel gated organic thin-film transistors (OTFTs). It addresses the issues of damaging or contaminating the channel layer when depositing the ion gel layer on top in conventional fabrication processes. The formed isolated dielectric regions can help to eliminate possible lateral electric field coupling through the dielectric layer when several devices are integrated to construct functional circuits. The fabricated OTFTs provide mA-level ON current, and an ON/OFF current ratio higher than 10(5) with the gate swing voltage of less than 3 V. With the developed process, the ion gel OTFTs are integrated with inorganic light emitting diodes (LEDs) of different colors on plastic substrate using the same die bonder, and the light emission of the LEDs can be modulated in a wide range from dark to high brightness with change of the gate voltage less than 3 V.

  13. MeV-SIMS yield measurements using a Si-PIN diode as a primary ion current counter

    Energy Technology Data Exchange (ETDEWEB)

    Stoytschew, Valentin; Bogdanović Radović, Iva [Ruđer Bošković Institute, Zagreb (Croatia); Demarche, Julien [University of Surrey, Surrey (United Kingdom); Jakšić, Milko [Ruđer Bošković Institute, Zagreb (Croatia); Matjačić, Lidija [University of Surrey, Surrey (United Kingdom); Siketić, Zdravko [Ruđer Bošković Institute, Zagreb (Croatia); Webb, Roger [University of Surrey, Surrey (United Kingdom)

    2016-03-15

    Megaelectronvolt-Secondary Ion Mass Spectrometry (MeV-SIMS) is an emerging Ion Beam Analysis technique for molecular speciation and submicron imaging. Various setups have been constructed in the recent years. Still a systematic investigation on the dependence of MeV-SIMS yields on different ion beam parameters is missing. A reliable measurement method of the beam current down to the attoampere range is needed for this investigation. Therefore, a new detector has been added to the MeV-SIMS setup at the Ruđer Bošković Institute (RBI), which measures the current directly using a Si PIN-diode. In this work, we present the constructed system, its characteristics, and results of the first yield measurements. These measurements have already identified important factors that have to be considered while constructing a MeV SIMS setup.

  14. Measurement of negative ion density in a pulsed multicusp negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Coonan, B.; Mellon, K.N.; Hopkins, M.B. (Dublin City University, Dublin (Ireland))

    1992-10-05

    The production of negative ion beams for use in neutral beam injection heating has become an important area of research in recent years. This paper discusses the negative ion densities measured in a pulsed multicusp volume ion source using photodetachment diagnostic technique. A pulse modulated negative ion source is being used as an alternative to the tandem source and an increase in negative ion extracted current has previously been observed by Hopkins and Mellon. Work with photodetachment quoted in this paper shows an increase in negative ion density during the post discharge similar to previous results obtained using an accelerator to extract the negative ions.

  15. Ion current behaviors of mesoporous zeolite-polymer composite nanochannels prepared by water-assisted self-assembly.

    Science.gov (United States)

    Zhang, Wenjuan; Meng, Zheyi; Zhai, Jin; Heng, Liping

    2014-04-07

    Inspired by the asymmetry of biological ion channels in structure and composition, we designed a novel type of artificial asymmetric nanochannels based on mesoporous zeolite (MCM-41) and polyimide (PI) by water-assisted self-assembly. Meanwhile, we studied ionic current behaviors and rectifying characteristics of the mesoporous zeolite-polymer composite nanochannels.

  16. Selective metal-ion extraction for multiple-ion liquid-liquid exchange reactions. Final report, June 1, 1979-May 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Tavlarides, L.L.

    1982-01-29

    This research in hydrometallurgical solvent extraction is to develop a fundamental means to predict selectivity during simultaneous solvent extraction of multiple metal ions when the kinetic rates and thermodynamic equilibria both do not favor the desired metal. To this end the chemical kinetics and thermodynamic chemical equilibria models for the system copper-iron-acid sulfate solutions extracted by ..beta..-alkenyl-8-hydroxy quinoline in xylene are studied. These models can be employed with appropriate design equations to predict selectivity factors for two phase contactors. The work completed and in progress during the first half of the third funding period is on chemical equilibria studies for the iron-acid-sulfate-..beta..-alkenyl-8-hydroxy quinoline-xylene system. An aqueous phase ionic equilibrium model is available which can be used to calculate concentration of various Fe(III) ionic species present. Iron extraction data were obtained using both the AKUFVE, a high intensity stirrer with an in line centrifugal separator, and a shaker bath apparatus. Analysis of the data to determine a thermodynamic equilibrium model is in progress.

  17. 一台14GHz CAPRICE型ECR离子源的束流引出%Ion Beam Extracted from a 14GHz ECRIS of CAPRICE Type

    Institute of Scientific and Technical Information of China (English)

    P.Sp(a)dtke; R.Lang; J.M(a)der; J.Roβbach; K.Tinschert; J.Stetson

    2007-01-01

    An ion beam extracted from an ECRIS suffers from the inhomogeneous distribution of cold electrons within the minimum B configuration,necessary to confine the plasma.Especially for higher ion currents,the space charge force is not negligible any more,and because of the nonlinear force,emittance growth will occur.Measurements of the profile and the emittance of the beam directly behind the source show the complicated correlation between extraction voltage and plasma density.The emittance has been measured with a pepper pot device to account for the inhomogeneous azimuthal distribution of the beam.These results indicate that further information about the profile is required.To visualize the beam profile a tantalum foil with a thickness of 20μm has been used for an electrical beam power between 10 and 50W.Looking on the back side of the foil with a CCD camera it is possible to record the profile in real time.As a more sensitive diagnostic tool viewing targets made from BaF has been used.Three dimensional computer simulations have been used to identify the reason for the structures,observed in measurements.

  18. Formation of multi-charged ion beams by focusing effect of mid-electrode on electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Youta, E-mail: imai@nf.eie.eng.osaka-u.ac.jp; Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance ion source (ECRIS) and a beam line for extracting ion beams. The ion beam is extracted from the second stage by an accel-decel extraction system with a single-hole and the ion beam current on each electrode is measured. The total ion beam current is measured by a faraday cup downstream the extraction electrodes. We measure these currents as a function of the mid-electrode potential. We also change the gap length between electrodes and perform similar measurement. The behaviors of these currents obtained experimentally against the mid-electrode potential show qualitatively good agreement with a simple theoretical consideration including sheath potential effects. The effect of mid-electrode potential is very useful for decreasing the beam loss for enhancing ion beam current extracted from ECRIS.

  19. Charge inversion, water splitting, and vortex suppression due to DNA sorption on ion-selective membranes and their ion-current signatures.

    Science.gov (United States)

    Slouka, Zdenek; Senapati, Satyajyoti; Yan, Yu; Chang, Hsueh-Chia

    2013-07-02

    The physisorption of negatively charged single-stranded DNA (ssDNA) of different lengths onto the surface of anion-exchange membranes is sensitively shown to alter the anion flux through the membrane. At low surface concentrations, the physisorbed DNAs act to suppress an electroconvection vortex instability that drives the anion flux into the membrane and hence reduce the overlimiting current through the membrane. Beyond a critical surface concentration, determined by the total number of phosphate charges on the DNA, the DNA layer becomes a cation-selective membrane, and the combined bipolar membrane has a lower net ion flux, at low voltages, than the original membrane as a result of ion depletion at the junction between the cation- (DNA) and anion-selective membranes. However, beyond a critical voltage that is dependent on the ssDNA coverage, water splitting occurs at the junction to produce a larger overlimiting current than that of the original membrane. These two large opposite effects of polyelectrolyte counterion sorption onto membrane surfaces may be used to eliminate limiting current constraints of ion-selective membranes for liquid fuel cells, dialysis, and desalination as well as to suggest a new low-cost membrane surface assay that can detect and quantify the number of large biomolecules captured by probes functionalized on the membrane surface.

  20. Optimization of LiCoO2 powder extraction process from cathodes of lithium-ion batteries by chemical dissolution

    Directory of Open Access Journals (Sweden)

    Lucas Evangelista Sita

    2015-05-01

    Full Text Available A chemical process has been applied to extract LiCoO2 powder from cathodes of spent lithium-ion batteries by dissolution of the binder that agglutinate the powder particle each other as well to the Al collector surface. As solvents dimethylformamide (DMF and N-methyilpirrolidone (NMP were employed and the variables, cathode area, solution temperature, ultrasound bath power and solution stirring were chosen to optimize the extraction process. NMP solutions presented best results for powder extraction than DMF solutions. At 100 oC and under mechanical stirring or low power ultrasound bath NMP solution optimizes the binder dissolution. Powder extractions under DMF solutions are slow and an increase in the powder extraction efficiency was observed for crushed cathodes on solutions under ultrasound bath, at medium power. Filtration processes can separate the decanted LiCoO2 powder extracted upon DMF dissolution while the powder in suspension in the NMP solutions is separated by centrifugation techniques.

  1. Electro-driven extraction of inorganic anions from water samples and water miscible organic solvents and analysis by ion chromatography.

    Science.gov (United States)

    Nojavan, Saeed; Bidarmanesh, Tina; Memarzadeh, Farkhondeh; Chalavi, Soheila

    2014-09-01

    A simple electromembrane extraction (EME) procedure combined with ion chromatography (IC) was developed to quantify inorganic anions in different pure water samples and water miscible organic solvents. The parameters affecting extraction performance, such as supported liquid membrane (SLM) solvent, extraction time, pH of donor and acceptor solutions, and extraction voltage were optimized. The optimized EME conditions were as follows: 1-heptanol was used as the SLM solvent, the extraction time was 10 min, pHs of the acceptor and donor solutions were 10 and 7, respectively, and the extraction voltage was 15 V. The mobile phase used for IC was a combination of 1.8 mM sodium carbonate and 1.7 mM sodium bicarbonate. Under these optimized conditions, all anions had enrichment factors ranging from 67 to 117 with RSDs between 7.3 and 13.5% (n = 5). Good linearity values ranging from 2 to 1200 ng/mL with coefficients of determination (R(2) ) between 0.987 and 0.999 were obtained. The LODs of the EME-IC method ranged from 0.6 to 7.5 ng/mL. The developed method was applied to different samples to evaluate the feasibility of the method for real applications.

  2. Laser ion source studies at CERN

    CERN Document Server

    Tambini, J

    1995-01-01

    The plasma produced when a powerful laser pulse is focused onto a target surface in vacuum can provide a copious source of highly charged ions. Ions can then be extracted from the plasma to form a high current, short pulse length ion beam. Experimental laser ion sources have been the subject of investigation in medical physics and particle accelerator applications; a laser ion source is an option for the injection system of heavy ions for the Large Hadron Collider at CERN where a high intensity lead ion beam is required. This paper describes work carried out at CERN to develop a CO2 laser ion source.

  3. An ion-imprinted polymer for the selective extraction of mercury(II ...

    African Journals Online (AJOL)

    2011-02-16

    Feb 16, 2011 ... A double-imprinted polymer exhibiting high sensitivity for mercury(II) in aqueous solution is ... In recent years the release of various harmful heavy metal ions ..... both of the competing ions have the same charge, have com-.

  4. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations

    CERN Document Server

    Zorkot, Mira; Bonthuis, Douwe Jan

    2015-01-01

    We calculate the power spectrum of electric-field-driven ion transport through cylindrical nanometer-scale pores using both linearized mean-field theory and Langevin dynamics simulations. With the atom-sized cutoff radius as the only fitting parameter, the linearized mean-field theory accurately captures the dependence of the simulated power spectral density on the pore radius and the applied electric field. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ${\\omega}$, which is confirmed by the Langevin dynamics simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the $1/{\\omega}^{\\alpha}$ dependence found experimentally at low frequency. Based on simulations with and without ion-ion interactions, we attribute the low-frequency power law dependence to ion-ion correlations. Finally, we show that the surface charge density has no effect on the frequency dependen...

  5. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    Science.gov (United States)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  6. Dissociation of the store-operated calcium current ICRAC and the Mg-nucleotide-regulated metal ion current MagNuM

    Science.gov (United States)

    Hermosura, Meredith C; Monteilh-Zoller, Mahealani K; Scharenberg, Andrew M; Penner, Reinhold; Fleig, Andrea

    2002-01-01

    Rat basophilic leukaemia cells (RBL-2H3-M1) were used to study the characteristics of the store-operated Ca2+ release-activated Ca2+ current (ICRAC) and the magnesium-nucleotide-regulated metal cation current (MagNuM) (which is conducted by the LTRPC7 channel). Pipette solutions containing 10 mm BAPTA and no added ATP induced both currents in the same cell, but the time to half-maximal activation for MagNuM was about two to three times slower than that of ICRAC. Differential suppression of ICRAC was achieved by buffering free [Ca2+]i to 90 nm and selective inhibition of MagNuM was accomplished by intracellular solutions containing 6 mm Mg.ATP, 1.2 mm free [Mg2+]i or 100 μm GTP-γ-S, allowing investigations on these currents in relative isolation. Removal of extracellular Ca2+ and Mg2+ caused both currents to be carried significantly by monovalent ions. In the absence or presence of free [Mg2+]i, ICRAC carried by monovalent ions inactivated more rapidly and more completely than MagNuM carried by monovalent ions. Since several studies have used divalent-free solutions on either side of the membrane to study selectivity and single-channel behaviour of ICRAC, these experimental conditions would have favoured the contribution of MagNuM to monovalent conductance and call for caution in interpreting results where both ICRAC and MagNuM are activated. PMID:11882677

  7. Characterization and Utilization of Tannin Extract for the Selective Adsorption of Ni (II Ions from Water

    Directory of Open Access Journals (Sweden)

    Priya Meethale Kunnambath

    2015-01-01

    Full Text Available The current paper studies the preparation of a new tannin gel from Acacia nilotica for water purification and waste water remediation. Design of experiments is used for optimizing the tannin gel using tannin extract (Taguchi method with formaldehyde in the assistance of microwave (TGAN by the help of iodine number. The feasible combinations were tested in the removal of nickel from simulated and river water. In this study, the effect of adsorbent dosage, pH, and initial metal concentration on Ni (II biosorption on modified Acacia nilotica tannin gel (TGAN was investigated. Tannin gel was characterized by SEM, FTIR, XRD, and EDAX. The kinetic data was tested using pseudo-first-order, pseudo-second-order, and intraparticle diffusion model. The results suggested that the pseudo-second-order model (R2 > 0.998 was the best choice among all the kinetic models describing the adsorption behavior of Ni (II onto TGAN. Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption models were used to represent the equilibrium data. The best interpretation for the experimental data was given by the Langmuir isotherm and the maximum adsorption capacity 250 mg g−1 of Ni (II was obtained at pH 5.04 at 296 K. Adsorption of Ni (II onto TGAN is confirmed qualitatively by the use of atomic absorption spectroscopy. The BOD and COD values are considerably reduced after adsorption.

  8. Low-energy, high-current, ion source with cold electron emitter

    Energy Technology Data Exchange (ETDEWEB)

    Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-02-15

    An ion source based on a two-stage discharge with electron injection from a cold emitter is presented. The first stage is the emitter itself, and the second stage provides acceleration of injected electrons for gas ionization and formation of ion flow (<20 eV, 5 A dc). The ion accelerating system is gridless; acceleration is accomplished by an electric field in the discharge plasma within an axially symmetric, diverging, magnetic field. The hollow cathode electron emitter utilizes an arc discharge with cathode spots hidden inside the cathode cavity. Selection of the appropriate emitter material provides a very low erosion rate and long lifetime.

  9. Synthesis and application of novel ion-imprinted polymer coated magnetic multi-walled carbon nanotubes for selective solid phase extraction of lead(II) ions.

    Science.gov (United States)

    Fayazi, Maryam; Taher, Mohammad Ali; Afzali, Daryoush; Mostafavi, Ali; Ghanei-Motlagh, Masoud

    2016-03-01

    In this study, novel magnetic ion-imprinted polymer (MIIP) nanoparticles were utilized for the sensitive and selective detection of Pb(II) ions by graphite furnace atomic absorption spectrometry (GFAAS). The Pb(II)-imprinted polymer was synthesized by using 4-vinylpyridine (4VP) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,3,5,6-tetra(2-pyridyl) pyrazine (TPPZ) as the chelating agent and magnetic multi-walled carbon nanotubes (MMWCNTs) as the carrier. The synthesized MIIP materials were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). Various analytical parameters such as extraction and desorption time, eluent type and concentration, pH and sample volume were systematically examined. The selectivity of MIIP sorbent for Pb(II) ions in the presence of some cations was also evaluated. The limit of detection (LOD, 3S(b)) and the relative standard deviation (RSD, n=8, c=25 ng L(-1)) were found to be 2.4 ng L(-1) and 5.6%, respectively. The maximum sorption capacity of the MIIP for Pb(II) was found to be 48.1 mg g(-1). Finally, the proposed analytical procedure was successfully applied to monitoring lead in human hair and water samples with satisfactory results for the spiked samples.

  10. Model Channel Ion Currents in NaCl - SPC/E Solution with Applied-Field Molecular Dynamics

    CERN Document Server

    Crozier, P S; Rowley, R L; Busath, D D; Crozier, Paul S.; Henderson, Douglas; Rowley, Richard L.; Busath, David D.

    2001-01-01

    Using periodic boundary conditions and a constant applied field, we have simulated current flow through an 8.125 Angstrom internal diameter, rigid, atomistic channel with polar walls in a rigid membrane using explicit ions and SPC/E water. Channel and bath currents were computed from ten 10-ns trajectories for each of 10 different conditions of concentration and applied voltage. An electric field was applied uniformly throughout the system to all mobile atoms. On average, the resultant net electric field falls primarily across the membrane channel, as expected for two conductive baths separated by a membrane capacitance. The channel is rarely occupied by more than one ion. Current-voltage relations are concentration-dependent and superlinear at high concentrations.

  11. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    Energy Technology Data Exchange (ETDEWEB)

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  12. Ion sources for energy extremes of ion implantation.

    Science.gov (United States)

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  13. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  14. Layer-by-layer encapsulated nano-emulsion of ionic liquid loaded with functional material for extraction of Cd(2+) ions from aqueous solutions.

    Science.gov (United States)

    Elizarova, Iuliia S; Luckham, Paul F

    2017-04-01

    Ionic liquids can serve as an environmentally-friendly replacement for solvents in emulsions, therefore they are considered suitable to be used as an emulsified medium for various active materials one of which are extractors of metal ions. Increasing the extraction efficiency is considered to be one of the key objectives when working with such extraction systems. One way to improve the extraction efficiency is to increase the contact area between the extractant and the working ionic solution. This can be accomplished by creating a nano-emulsion of ionic liquid containing such an extractant. Since emulsification of ionic liquid is not always possible in the sample itself, there is a necessity of creating a stable emulsion that can be added externally and on demand to samples from which metal ions need to be extracted. We propose a method of fabrication of a highly-stable extractant-loaded ionic liquid-in-water nano-emulsion via a low-energy phase reversal emulsification followed by continuous layer-by-layer polyelectrolyte deposition process to encapsulate the nano-emulsion and enhance the emulsion stability. Such a multilayered stabilized nano-emulsion was tested for extraction of Cd(2+) and Ca(2+) ions in order to determine its extraction efficiency and selectivity. It was found to be effective in the extraction of Cd(2+) ions with near 100% cadmium removal, as well as being selective since no Ca(2+) ions were extracted. The encapsulated emulsion was removed from samples post-extraction using two methods - filtration and magnetic separation, both of which were shown to be viable under different circumstances - larger and mechanically stronger capsules could be removed by filtration, however magnetic separation worked better for both smaller and bigger capsules. The long-term stability of nano-emulsion was also tested being a very important characteristic for its proposed use: it was found to be highly stable after four months of storage time.

  15. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodgkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system. It was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the de-synchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating cur-rents on the global information processing and signal transduction in real neural systems.

  16. Some effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes.

    Science.gov (United States)

    Parodi, Jorge; Romero, Fernando; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2008-10-31

    A study was made of the effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. 1 microg/ml of the venom made the resting plasma membrane potential more negative in cells voltage-clamped at -60 mV. The effect was potentially due to the closure of one or several conductances that were investigated further. Thus, we determined the effects of the venom on the following endogenous ionic-currents: (a) voltage-activated potassium currents, (b) voltage-activated chloride-currents, and (c) calcium-dependent chloride-currents (Tout). The results suggest that the venom exerts its action mainly on a transient outward potassium-current that is probably mediated by a Kv channel homologous to shaker. Consistent with the electrophysiological evidence we detected the expression of the mRNA coding for xKv1.1 in the oocytes.

  17. Effect of gating currents of ion channels on the collective spiking activity of coupled Hodξkin-Huxley neurons

    Institute of Scientific and Technical Information of China (English)

    GONG YuBing; XIE YanHang; XU Bo; MA XiaoGuang

    2009-01-01

    Based on the coupled stochastic Hodgkin-Huxley neurons, we numerically studied the effect of gating currents of ion channels, as well as coupling and the number of neurons, on the collective spiking rate and regularity in the coupled system, it was found, for a given coupling strength and with a relatively large number of neurons, when gating currents are applied, the collective spiking regularity decreases; meanwhile, the collective spiking rate increases, indicating that gating currents can aggravate the de-synchronization of the spikings of all neurons. However, gating currents caused hardly any effect in the spiking of any individual neuron of the coupled system. This result, different from the reduction of the spiking rate by gating currents in a single neuron, provides a new insight into the effect of gating cur-rents on the global information processing and signal transduction in real neural systems.

  18. Current Physical and SDS Extraction Methods Do Not Efficiently Remove Exosporium Proteins from Bacillus anthracis spores

    OpenAIRE

    Thompson, Brian M.; Binkley, Jana M; Stewart, George C.

    2011-01-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these m...

  19. Evaluation of extraction procedures for the ion chromatographic determination of arsenic species in plant materials.

    Science.gov (United States)

    Schmidt, A C; Reisser, W; Mattusch, J; Popp, P; Wennrich, R

    2000-08-11

    The determination of arsenic species in plants grown on contaminated sediments and soils is important in order to understand the uptake, transfer and accumulation processes of arsenic. For the separation and detection of arsenic species, hyphenated techniques can be applied successfully in many cases. A lack of investigations exists in the handling (e.g., sampling, pre-treatment and extraction) of redox- and chemically labile arsenic species prior to analysis. This paper presents an application of pressurized liquid extraction (PLE) using water as the solvent for the effective extraction of arsenic species from freshly harvested plants. The method was optimized with respect to extraction time, number of extraction steps and temperature. The thermal stability of the inorganic and organic arsenic species under PLE conditions (60-180 degrees C) was tested. The adaptation of the proposed extraction method to freeze-dried, fine-grained material was limited because of the insufficient reproducibility in some cases.

  20. Measurements of an ion beam diameter extracted into air through a glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Natsuko, E-mail: fujita.natsuko@jaea.go.jp [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Yamaki, Atsuko [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Ishii, Kunikazu; Ogawa, Hidemi [Department of Physics, Nara Women’s University, Nara, 630 8506 (Japan)

    2013-11-15

    To establish techniques for in-air materials analysis using a glass capillary, we studied the beam distribution extracted in air as a function of the distance between the exit of the capillary and the target. We measured three-dimensional intensity distributions of the extracted beams, and compared the observed results with the model calculation. The comparison showed that the glass capillary technique is designed to reduce a divergence of the beam extracted into the air by a beam-focusing effect.

  1. Radiation effects on hydrophobic ionic liquid [C4mim][NTf2] during extraction of strontium ions.

    Science.gov (United States)

    Yuan, Liyong; Peng, Jing; Xu, Ling; Zhai, Maolin; Li, Jiuqiang; Wei, Genshuan

    2009-07-02

    The applications of room-temperature ionic liquids (RTILs) in separation of high level radioactive nuclides demand a comprehensive knowledge of the stability and metal ion extraction of RTILs under radiation. Herein, we assessed the influence of gamma-irradiation on the [C(4)mim][NTf(2)]-based extraction system, where [C(4)mim](+) is 1-butyl-3-methylimidazolium and [NTf(2)](-) is bis(trifluoromethylsulfonyl)imide, by solvent extraction of Sr(2+) using irradiated [C(4)mim][NTf(2)] in combination with dicyclohexyl-18-crown-6 (DCH18C6). It was found that the degree of extraction for Sr(2+) from water to irradiated [C(4)mim][NTf(2)] decreased compared with that to unirradiated [C(4)mim][NTf(2)], and the decrement enhanced obviously with increasing dose. NMR spectroscopic probe analysis revealed the formation of acids during irradiation of [C(4)mim][NTf(2)]. The decrease of Sr(2+) partitioning in irradiated [C(4)mim][NTf(2)] is attributed to the competition between H(+) with Sr(2+) to interact with DCH18C6. Accordingly, washing irradiated [C(4)mim][NTf(2)] with water gives a simple way of ionic liquid recycling. Furthermore, the degree of extraction for Sr(2+) from 3 mol.L(-1) nitric acid solution to [C(4)mim][NTf(2)] is independent of the irradiation of [C(4)mim][NTf(2)] since the amount of the radiation-generated H(+) is negligible in such a high acidic solution.

  2. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Daijie Wang

    2012-01-01

    Full Text Available Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio. The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.

  3. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao, E-mail: wxjn1998@126.com [Process Control Research Center of TCM. Shandong Academy of Sciences. Shandong Analysis and Test Center (China); Zhang, Jinjie [College of Biosystems Engineering and Food Science, Zhejiang University (China); Qiu, Jiying [Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Science, Shandong (China)

    2012-07-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and {sup 13}C-NMR. (author)

  4. Transport of yttrium metal ions through fibers supported liquid membrane solvent extraction

    Institute of Scientific and Technical Information of China (English)

    A.G.Gaikwad; A.M.Rajput

    2010-01-01

    A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...

  5. Preconcentration and determination of zinc and lead ions by a combination of cloud point extraction and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, H. [Chemistry Department, Payamenore University, Shiraz (Iran); Shokrollahi, A.; Zahedi, M. [Chemistry Department, Yasouj University, Yasouj (Iran); Niknam, K. [Chemistry Department, Persian Gulf University, Bushehr (Iran); Soylak, M. [Chemistry Department, University of Erciyes, Kayseri (Turkey); Ghaedi, M.

    2009-04-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of lead(II) and zinc(II). After complexation with 3-[(4-bromophenyl) (1-H-inden-3-yl)methyl]-1 H-indene (BPIMI), the analytes were quantitatively extracted to a phase rich in Triton X-114 after centrifugation. Methanol acidified with 1 mol/L HNO{sub 3} was added to the surfactant rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of bis((1H-benzo [d] imidazol-2yl)ethyl)sulfane, Triton X-114, pH and amount of surfactant were all optimized. Detection limits (3 SDb/m) of 2.5 and 1.6 ng/mL for Pb{sup 2+} and Zn{sup 2+} along with preconcentration factors of 30 and an enrichment factor of 32 and 48 for Pb{sup 2+}and Zn {sup 2+} ions were obtained, respectively. The proposed cloud point extraction was been successfully applied for the determination of these ions in real samples with complicated matrices such as food and soil samples, with high efficiency. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  7. Cloud point extraction and flame atomic absorption spectrometry combination for copper(II) ion in environmental and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: ashokrollahi@mail.yu.ac.ir; Ghaedi, Mehrorang [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of)], E-mail: m_ghaedi@mail.yu.ac.ir; Hossaini, Omid; Khanjari, Narges [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2008-12-30

    A cloud point extraction procedure was presented for the preconcentration of copper(II) ion in various samples. After complexation by 4-(phenyl diazenyl) benzene-1,3-diamine (PDBDM) (chrysoidine), copper(II) ions were quantitatively recovered in Triton X-114 after centrifugation. 0.5 ml of methanol acidified with 1.0 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The influence of analytical parameters including ligand, Triton X-114 and HNO{sub 3} concentrations, bath temperature, heating time, centrifuge rate and time were optimized. The effect of the matrix ions on the recovery of copper(II) ions was investigated. The detection limit (3S.D.{sub b}/m, n = 10) of 0.6 ng mL{sup -1} along with preconcentration factor of 30 and enrichment factor of 41.1 with R.S.D. of 1.0% for Cu was achieved. The proposed procedure was applied to the analysis of various environmental and biological samples.

  8. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.

    Science.gov (United States)

    Reubsaet, J Léon E; Paulsen, Jonas V

    2005-02-01

    This paper discusses the behaviour of five small model peptides in a three phase (aqueous donor-organic-aqueous acceptor) liquid phase micro extraction system in relation to their physico-chemical properties (charge, hydrophobicity). It is proved that for all peptides transport over the organic phase is mediated by aliphatic sulphonic acids. Heptane-1-sulphonic acid gave the best overall recoveries. It appeared that peptides with hydrophobic properties (IPI) and a high number of positive charges (KYK) show good recoveries and are enriched in the acceptor phase. Variation in the pH (1.6-4.4) of the donor phase shows that there are peptide-dependent optimal pH-values for their recovery. Increasing pH in the acceptor phase shows that in most cases the recovery decreases due to decreased ion-pair mediated membrane transport. For KYK the partition between the organic phase and the aqueous acceptor-phase is also driven by the solubility in the aqueous acceptor phase. Increase of the ion strength of the acceptor phase did not affect the recovery of the peptides. Except for KYK, which showed decreased recovery when the ion strength increased. Another finding is that delocalisation of positive charge causes bad recovery, probably due to incomplete ion-pair-peptide complex formation.

  9. Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized b

  10. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    OpenAIRE

    Haitao Liao; Wei Xie; Yu Peng; Datong Liu; Hong Wang

    2013-01-01

    Prognostics and remaining useful life (RUL) estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS). The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a...

  11. Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells

    Science.gov (United States)

    Sit, Kevin; Li, P. K. C.; Ip, C. W.; Li, C. W.; Wan, Levin; Lam, Y. F.; Lai, P. Y.; Fan, Jiang; Magnuson, Doug

    We studied the specific energy, energy density, specific power, and power density of current commercial 18650 cylindrical and 103450 prismatic Li-ion cells. It was found that the specific energy, energy density, specific power, and power density have been increased dramatically since 1999. The highest specific energy obtained in this study is 193 Wh/kg, which is 90% more than that reported in 1999 and is only 5% lower than 200 Wh/kg, the long-term DOE goal [The International Energy Agency Implementing Agreement for Electric Vehicle Technologies and Programs, Annex V, Outlook Document, 1996-1997, p. 16.]. The cell energy density has also doubled since 1999 and is as much as about 70% more than 300 Wh/l, the long-term DOE goal. The cells studied here can deliver over 80% of their designed energy at the specific power 200 W/kg while the 18650 cell studied previously could only deliver 10% of their designed energy at the same specific power. Various kinds of the factors in the cell-specific energy and energy density were studied. It seems that the geometric difference can cause as much as a 9% difference in the specific energy and a 12% difference in the energy density between 18650 cylindrical and 103450 prismatic cells. Use of an aluminum can seems to lead to about a 16% improvement in the specific energy of 103450 cells compared with steel can. The decrease in the cell discharge voltage can cause as much as a 9% decrease in the cell energy at the 2 C rate while it has a relatively small effect on the cell energy or specific energy at the 0.2 C rate. Compared with what has been obtained at room temperature, there are 17-35% at -20 °C, 43-76% at -30 °C, and 78-100% decreases at -40 °C, respectively, in the cell discharge energy and specific energy depending on the cell manufacturer. The decrease in the cell average discharge voltage during the cycling test can contribute as much as a 6% decrease in the cell energy at the 1 C rate after 300 cycles, which is 21% of

  12. Optimization and adsorption kinetic studies of aqueous manganese ion removal using chitin extracted from shells of edible Philippine crabs

    Science.gov (United States)

    Quimque, Mark Tristan J.; Jimenez, Marvin C.; Acas, Meg Ina S.; Indoc, Danrelle Keth L.; Gomez, Enjelyn C.; Tabuñag, Jenny Syl D.

    2017-01-01

    Manganese is a common contaminant in drinking water along with other metal pollutants. This paper investigates the use of chitin, extracted from crab shells obtained as restaurant throwaway, as an adsorbent in removing manganese ions from aqueous medium. In particular, this aims to optimize the adsorption parameters and look into the kinetics of the process. The adsorption experiments done in this study employed the batch equilibration method. In the optimization, the following parameters were considered: pH and concentration of Mn (II) sorbate solution, particle size and dosage of adsorbent chitin, and adsorbent-adsorbate contact time. At the optimal condition, the order of the adsorption reaction was estimated using kinetic models which describes the process best. It was found out that the adsorption of aqueous Mn (II) ions onto chitin obeys the pseudo-second order model. This model assumes that the adsorption occurred via chemisorption

  13. Capillary ion chromatography-mass spectrometry for simultaneous determination of glucosylglycerol and sucrose in intracellular extracts of cyanobacteria.

    Science.gov (United States)

    Fa, Yun; Liang, Wenhui; Cui, He; Duan, Yangkai; Yang, Menglong; Gao, Jun; Liu, Huizhou

    2015-09-15

    A capillary ion chromatography-mass spectrometry (MS) method was proposed to determine glucosylglycerol (GG), sucrose, and five other carbohydrates. MS conditions and make-up flow parameters were optimized. This method is accurate and sensitive for simultaneous analysis of carbohydrates, with mean correlation coefficients of determination greater than 0.99, relative standard deviation of 0.91-2.81% for eight replicates, and average spiked recoveries of 97.3-104.9%. Limits of detection of sodium adduct were obtained with MS detection in selected ion mode for GG (0.006mg/L), sucrose (0.02mg/L), and other carbohydrates (0.03mg/L). This method was successfully applied to determine GG and sucrose in intracellular extracts of salt-stressed cyanobacteria.

  14. High current H{sub 2}{sup +} and H{sub 3}{sup +} beam generation by pulsed 2.45 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Peng, Shixiang, E-mail: sxpeng@pku.edu.cn; Ren, Haitao; Zhao, Jie; Chen, Jia; Zhang, Tao; Guo, Zhiyu [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Zhang, Ailin [University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jia' er [State Key Laboratory of Nuclear Physics and Technology and Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    The permanent magnet 2.45 GHz electron cyclotron resonance ion source at Peking University can produce more than 100 mA hydrogen ion beam working at pulsed mode. For the increasing requirements of cluster ions (H{sub 2}{sup +} and H{sub 3}{sup +}) in linac and cyclotron, experimental study was carried out to further understand the hydrogen plasma processes in the ion source for the generation of cluster ions. The constituents of extracted beam have been analyzed varying with the pulsed duration from 0.3 ms to 2.0 ms (repetition frequency 100 Hz) at different operation pressure. The fraction of cluster ions dramatically increased when the pulsed duration was lower than 0.6 ms, and more than 20 mA pure H{sub 3}{sup +} ions with fraction 43.2% and 40 mA H{sub 2}{sup +} ions with fraction 47.7% were obtained when the operation parameters were adequate. The dependence of extracted ion fraction on microwave power was also measured at different pressure as the energy absorbed by plasma will greatly influence electron temperature and electron density then the plasma processes in the ion source. More details will be presented in this paper.

  15. Injection and extraction computer control system HIRFL-SSC The HIRFL-SSC is stated for Heavy Ion Research Facility of Lanzhou-Separated Sector Cyclotron

    CERN Document Server

    Zhang Wei; Chen Yun; Zhang Xia; Hu Jian Jun; Xu Xing Ming

    2002-01-01

    The injection and extraction computer control system of HIRFL-SSC (Heavy Ion Research Facility of Lanzhou-Separated Sector Cyclotron) have been introduced. Software is described briefly. Hardware structure is mainly presented. The computer control system realize that the adjustment of injection and extraction can done by PC and operate interface is Windows style. The system can make the adjustment convenient and veracious

  16. Removal of Radioactive Nuclides by Multi-Functional Microcapsules Enclosing Inorganic Ion-Exchangers and Organic Extractants

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, H.; Akiba, K.; Onodera, Y.

    2002-02-26

    The microcapsules enclosing two kinds of functional materials, inorganic ion-exchangers and organic extractants, were prepared by taking advantage of the high immobilization ability of alginate gel polymer. The fine powders of inorganic ion-exchanger and oil drops of extractant were kneaded with sodium alginate (NaALG) solution and the kneaded sol readily gelled in a salt solution of CaCl2, BaCl2 or HCl to form spherical gel particles. The uptake properties of various nuclides, 137Cs, 85Sr, 60Co, 88Y, 152Eu and 241Am, for thirty-four specimens of microcapsules in the presence of 10-1-10-4 M HNO3 were evaluated by the batch method. The distribution coefficient (Kd) of Cs+ above 103 cm3/g was obtained for the microcapsules enclosing CuFC or AMP. The Kd of Sr2+ around 102 cm3/g was obtained for the microcapsules containing clinoptilolite, antimonic acid, zeolite A, zeolite X or titanic acid. The microcapsules enclosing DEHPA exhibited relatively large Kd values of trivalent metal ions above 103 cm3/g; for example, the Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ for a favorable microcapsule (CuFC/clinoptilolite/DEHPA/CaALG) were 1.1x104, 7.5x10, 1.1x10, 1.0x104, 1.4x104, 3.4x103 cm3/g, respectively. The uptake rates of Cs+, Y3+, Eu3+ and Am3+ for this microcapsule were rather fast; the uptake percentage above 90% was obtained after 19 h-shaking and the uptake equilibrium was attained within 1 d. The AMP/CaALG exhibited high uptake ability for Cs+ even after irradiation of 188 kGy, and DEHPA/CaALG microcapsule had similar Kd values of Cs+, Sr2+, Co2+, Y3+, Eu3+ and Am3+ ions before and after irradiation. The microcapsules with various shapes such as spherical, columnar, fibrous and filmy forms were easily prepared by changing the way of dipping kneaded sol into gelling salt solution. The microcapsules enclosing inorganic ion-exchangers and extractants have a potential possibility for the simultaneous removal of various radioactive nuclides from waste solutions.

  17. The Rate of Decolorization of a Radical Ion Reagent Was Used to Determine the Phenolic Content of Various Food Extracts

    Directory of Open Access Journals (Sweden)

    Arthur Bradley

    2013-01-01

    Full Text Available Polyphenols are among the most valuable and widely studied food components. In the laboratory, they are readily extractable with aqueous alcohol. An aliquot rapidly decolorizes a measured portion of ABTS, a stable deep blue radical ion. The semilog plot of light absorption versus time is typically a straight line, and an immediately evident slope provides rapid classification in terms of gallic acid equivalents. Experimental data are presented to show general agreement with the literature. The disproportionate concentration of antioxidant in the skins and peels of fruits, vegetables, and nuts is given special attention.

  18. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Science.gov (United States)

    Tokuzawa, T.; Kisaki, M.; Nagaoka, K.; Tsumori, K.; Ito, Y.; Ikeda, K.; Nakano, H.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-11-01

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 1015 to 3 × 1018 m-3 in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  19. Synthesis, Structure and Ion Extraction Properties of Novel Monooxa-diselkylene-1,ω-dioxy Substituted Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    QIN Da-Bin; ZENG Xian-Shun; XU Feng-Bo; LI Qing-Shan; ZHANG Zheng-Zhi

    2006-01-01

    Novel macrocyclic monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a were synthesized by the reaction of calix[4]arene dibromides 1-5 with the disodium salt of bis(2-selenylethyl)ether in the yields between 28% and 64%. Their structures were characterized by proton and carbon NMR spectra. X-Ray structure analysis of 1a further confirmed the cone conformation of compounds 1a-5a. An interesting host-guest complex of 1a with dichloromethane via CH/π and Cl/π interactions was elucidated. Extraction experiments showed that these novel monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a had strong extraction ability towards mercury ion. The interaction of Hg2+with the calix ligand has also been investigated by 1H NMR titration.

  20. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites.

    Science.gov (United States)

    Omana, Dileep A; Wang, Jiapei; Wu, Jianping

    2010-07-01

    Efficient isolation of egg white components is desired due to its potential uses. Existing methods mainly targeted on one specific protein; an attempt has been made in the study to co-extract all the valuable egg white components in a continuous process. Ovomucin was first isolated by our newly developed two-step method; the resultant supernatant obtained after ovomucin isolation was used as the starting material for ion-exchange chromatography. Anion-exchange chromatography of 100 mM supernatant yielded a flow-through fraction and three other fractions representing ovotransferrin, ovalbumin and flavoproteins. The flow-through fraction was further separated into ovoinhibitor, lysozyme, ovotransferrin and an unidentified fraction which represents 4% of total egg white proteins. Chromatographic separation of 500 mM supernatant resulted in fractions representing lysozyme, ovotransferrin and ovalbumin. This co-extraction protocol represents a global recovery of 71.0% proteins.

  1. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept

    OpenAIRE

    Melin, G.; Drentje, A. G.; Girard, A; Hitz, D.

    1999-01-01

    Abstract: An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An expression is derived for determining the ion temperature from the values of all extracted ion currents. One aim is to study the ion temperature behavior in argon plasmas without and with mixing different...

  2. Ion sources for ion implantation technology (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Shigeki, E-mail: sakai-shigeki@nissin.co.jp; Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki [Nissin Ion Equipment co., ltd, 575 Kuze-Tonoshiro-cho Minami-ku, Kyoto 601-8205 (Japan)

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  3. Current Physical and SDS Extraction Methods Do Not Efficiently Remove Exosporium Proteins from Bacillus anthracis spores

    Science.gov (United States)

    Thompson, Brian M.; Binkley, Jana M.; Stewart, George C.

    2011-01-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these methods. Sonication and bead beating methods for exosporium layer removal were also examined. A combination of genetic and physical methods is the most effective for isolating proteins found in the spore exosporium. PMID:21338631

  4. Enzyme-assisted extraction of antioxidative phenols from black current juice press residues (Ribes nigrum)

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    protease, significantly increased plant cell wall breakdown of the pomace. Each of the tested enzyme preparations except Grindamyl pectinase also significantly enhanced the amount of phenols extracted from the pomace. Macer8 FJ and Macer8 R decreased the extraction yields of anthocyanins, whereas Pectinex...... BE and Novozym 89 protease showed no effect. A decrease in pomace particle sizes from 500-1000 mum to wine pomace. Four selected black currant...... pomace extracts all exerted a pronounced antioxidant activity against human LDL oxidation in vitro when tested at equimolar phenol concentrations of 7.5-10 muM....

  5. Current physical and SDS extraction methods do not efficiently remove exosporium proteins from Bacillus anthracis spores.

    Science.gov (United States)

    Thompson, Brian M; Binkley, Jana M; Stewart, George C

    2011-05-01

    Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these methods. Sonication and bead beating methods for exosporium layer removal were also examined. A combination of genetic and physical methods is the most effective for isolating proteins found in the spore exosporium.

  6. Ion-pair cloud-point extraction: a new method for the determination of water-soluble vitamins in plasma and urine.

    Science.gov (United States)

    Heydari, Rouhollah; Elyasi, Najmeh S

    2014-10-01

    A novel, simple, and effective ion-pair cloud-point extraction coupled with a gradient high-performance liquid chromatography method was developed for determination of thiamine (vitamin B1 ), niacinamide (vitamin B3 ), pyridoxine (vitamin B6 ), and riboflavin (vitamin B2 ) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion-pair formation approach between these ionizable analytes and 1-heptanesulfonic acid sodium salt as an ion-pairing agent. Influential variables on the ion-pair cloud-point extraction efficiency, such as the ion-pairing agent concentration, ionic strength, pH, volume of Triton X-100, extraction temperature, and incubation time have been fully evaluated and optimized. Water-soluble vitamins were successfully extracted by 1-heptanesulfonic acid sodium salt (0.2% w/v) as ion-pairing agent with Triton X-100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r(2) > 0.9916) and precision in the concentration ranges of 1-50 μg/mL for thiamine and niacinamide, 5-100 μg/mL for pyridoxine, and 0.5-20 μg/mL for riboflavin. The recoveries were in the range of 78.0-88.0% with relative standard deviations ranging from 6.2 to 8.2%.

  7. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    OpenAIRE

    Catarelli, Samantha Raisa; Lonsdale, Daniel; Cheng, Lei; Syzdek, Jaroslaw; Doeff, Marca

    2016-01-01

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then, a dense pellet of an electronically insulating but Li ion conducting...

  8. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    OpenAIRE

    Samantha Raisa Catarelli; Daniel eLonsdale; Lei eCheng; Jaroslaw S Syzdek; Marca eDoeff

    2016-01-01

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then a dense pellet of an electronically insulating but Li-ion conducting ...

  9. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    OpenAIRE

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents....

  10. Development of a microwave ion source for ion implantations

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N., E-mail: Nbk-Takahashi@shi.co.jp; Murata, H.; Kitami, H.; Mitsubori, H.; Sakuraba, J.; Soga, T.; Aoki, Y.; Katoh, T. [Technology Research Center, Sumitomo Heavy Industries Ltd., Yokosuka, Kanagawa 237-8555 (Japan)

    2016-02-15

    A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P{sup +} beam currents. The volume of the plasma chamber is optimized by varying the length of a boron nitride block installed within the chamber. The extracted P{sup +} beam current is more than 30 mA, at a 25 kV acceleration voltage, using PH{sub 3} gas.

  11. Electronic regulation of the SPS extraction quadrupole current pulse shape for improved stability of the extracted beam

    CERN Document Server

    Carlier, E; Vossenberg, Eugène B; CERN. Geneva. SPS and LEP Division

    1996-01-01

    In order to minimise the event pile-up and therefore optimise the detection efficiency, Chorus and Nomad experiments ask for a long and rectangular spill profile. At present the fast-slow extractio n is generated by driving the beam into a quadrupolar-octopolar resonance by exciting a quadrupole magnet with a semi-trapezoidal current [1]. The trapezoidal pulse shape is obtained by dischargin g a capacitor into the magnet coils. After a few milliseconds of undamped discharge a fixed resistor is switched into the circuit. The attenuation is then higher and the sine wave continues with a lower gradient. The two gradients can be adjusted by varying the initial capacitor voltage and the time at which the resistor is switched into the circuit. A further degree of freedom in determini ng the spill shape has been added by allowing the possibility of changing the second slope value independently of the initial conditions. This task is achieved by means of a variable current sour ce added in parallel to the fixed resis...

  12. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics

    DEFF Research Database (Denmark)

    Mysling, Simon; Palmisano, Giuseppe; Højrup, Peter;

    2010-01-01

    Glycopeptide enrichment is a prerequisite to enable structural characterization of protein glycosylation in glycoproteomics. Here we present an improved method for glycopeptide enrichment based on zwitter-ionic hydrophilic interaction chromatography solid phase extraction (ZIC-HILIC SPE...

  13. A study on prevention of an electric discharge at an extraction electrode of an electron cyclotron resonance ion source for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kishii, Y., E-mail: Ando.Yasuto@ct.MitsubishiElectric.co.jp; Kawasaki, S. [Energy Systems Center, Mitsubishi Electric Corporation, 1-1-2 Wadasaki-cho, Hyogo-ku, Kobe 652-8555 (Japan); Kitagawa, A.; Muramatsu, M. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan); Uchida, T. [Bio-Nano Electronics Research Center, Toyo University, 2100 Kujirai, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe 350-8585 (Japan)

    2014-02-15

    A compact ECR ion source has utilized for carbon radiotherapy. In order to increase beam intensity with higher electric field at the extraction electrode and be better ion supply stability for long periods, electric geometry and surface conditions of an extraction electrode have been studied. Focusing attention on black deposited substances on the extraction electrode, which were observed around the extraction electrode after long-term use, the relation between black deposited substances and the electrical insulation property is investigated. The black deposited substances were inspected for the thickness of deposit, surface roughness, structural arrangement examined using Raman spectroscopy, and characteristics of electric discharge in a test bench, which was set up to simulate the ECR ion source.

  14. Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source

    Directory of Open Access Journals (Sweden)

    K. E. Stiebing

    1999-12-01

    Full Text Available First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.

  15. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  16. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  17. Optimization of sodium extraction from soil by using a central composite design (CCD and determination of soil sodium content by ion selective electrodes

    Directory of Open Access Journals (Sweden)

    Sevinç Karadağ

    2016-04-01

    Full Text Available Rapid determination of sodium (Na ions in soil samples using ion selective electrodes (ISE was investigated in this study. The compatibility of ISEs with soil extraction solution is a challenging subject as various effects such as pH, ionic strength and other interferences have to be considered as well as efficiency of the extraction solution. Because almost every type of sodium salt is soluble in water, and the pH of water is suitable for ISE studies, it was chosen as the soil extractant. Firstly, the extraction parameters were optimized by using a central composite design (CCD, secondly thirty agricultural soil samples were extracted with water and the extracts were measured by Na-ISE in a previously developed flow system. The results were compared with ion chromatography (IC as the reference method, and the regression analysis between IC and ISE results yielded a high correlation (R² = 0.9408. It was concluded that, ion selective electrodes can be used with water as an extraction solution for rapid determination of sodium in soil samples.

  18. Development of an rf driven multicusp ion source for nuclear science experiments

    Science.gov (United States)

    Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Pickard, D. S.; Williams, M. D.; Xie, Z. Q.

    1998-07-01

    A compact 13.56 MHz radio-frequency (rf) driven multicusp ion source is under development at Lawrence Berkeley National Laboratory (LBNL) for radioactive ion beam applications. In this paper we describe the ion source design and the general ion source performance using H 2, Ar, Xe gas and a 90% Ar/10% CO gas mixture for generating the discharge plasma. The following ion source characteristics have been analyzed: extractable ion current, ion species distributions, ionization efficiency for nobel gases, axial energy spread and ion beam emittance measurements. This ion source can generate ion current densities of approximately 60 mA/cm 2.

  19. Prospects for Charged Current Deep-Inelastic Scattering off Polarized Nucleons at a Future Electron-Ion Collider

    CERN Document Server

    Aschenauer, Elke C; Martini, Till; Spiesberger, Hubert; Stratmann, Marco

    2013-01-01

    We present a detailed phenomenological study of charged-current-mediated deep-inelastic scattering off longitudinally polarized nucleons at a future Electron-Ion Collider. A new version of the event generator package DJANGOH, extended by capabilities to handle processes with polarized nucleons, is introduced and used to simulate charged current deep-inelastic scattering including QED, QCD, and electroweak radiative effects. We carefully explore the range of validity and the accuracy of the Jacquet-Blondel method to reconstruct the relevant kinematic variables from the measured hadronic final state in charged current events, assuming realistic detector performance parameters. Finally, we estimate the impact of the simulated charged current single-spin asymmetries on determinations of helicity parton distributions in the context of a global QCD analysis at next-to-leading order accuracy.

  20. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/....