WorldWideScience

Sample records for extractable soil phosphorus

  1. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    Science.gov (United States)

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  2. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    International Nuclear Information System (INIS)

    Ivanov, Krasimir; Zaprjanova, Penka; Petkova, Milena; Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana; Angelova, Violina

    2012-01-01

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO 4 digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner–Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner–Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower P

  3. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Krasimir, E-mail: kivanov1@abv.bg [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Zaprjanova, Penka [Tobacco and Tobacco Products Institute, Plovdiv (Bulgaria); Petkova, Milena [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana [Department of Analytical Chemistry, Plovdiv University ' Paisii Hilendarski,' Plovdiv (Bulgaria); Angelova, Violina [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria)

    2012-05-15

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO{sub 4} digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower

  4. Fertilizer phosphorus in some Finnish soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1961-01-01

    Full Text Available In the present paper it is tried to trace the fate of fertilizer phosphorus in soil by comparing the analyses of soils from treated and untreated plots of field trials. This indirect approach cannot be expected to provide exact values, but it is likely to give an approximate answer. The results reported above do not in any marked degree change our present conception of the forms in which fertilizer phosphorus accumulates in soils. In the acid soils studied (pH 4—6.4 in 0.02 N CaCl2 superphosphate tended to increase the fractions which were extracted by NH4F or NaOH. Hyperphosphate phosphorus was mostly found in the acid-soluble fraction. During a longer period of dressing with phosphate an increase in the organic phosphorus content of a peat soil could be detected. In the incubation experiments the mineralization of organic phosphorus occurred at a higher rate in the samples from the plots treated with superphosphate than in those from the untreated one. It might be supposed that the organic phosphorus mineralized mainly originated from the plant residues. It seems that the fractionation method developed by CHANG and JACKSON (4 for the estimation of discrete forms of soil phosphorus is not quite satisfactory for tracing the fertilizer phosphorus in soils recently dressed with phosphates. In particular, it may be fallacious to conclude that the fraction extracted by NH4F would only represent phosphorus bound to aluminium and its compounds. At least in the absence of soil, a large part of phosphorus in dicalcium phosphate dihydrate falls into this fraction, and also a small amount of hyperphosphate phosphorus may be found in it. The test values for »available» phosphorus showed the effect of fertilizers in accordance with previous observations (9, 13. Acetic acid soluble P revealed the treatment with hyperphosphate, but only slightly the application of superphosphate. The test value for the sorbed P of BRAY and KURTZ (2, or phosphorus

  5. The status of phosphorus in Thai soils and P evaluation using EDTA-NaF extraction method

    Directory of Open Access Journals (Sweden)

    Toru Matoh

    2003-07-01

    Full Text Available Although the available P extracted by Bray II method in tropical soil is low, most of tropical plants can grow well. The objective of this study was to study P status and to evaluate the available P extracted by EDTA-NaF method. Top soil and sub soil of 10 dominant soil series in Thailand were analyzed for some chemical properties and characterization of the forms of phosphorus using EDTA-NaF extraction and successive phosphorus extraction by the modified Sekiya method. The soil total P concentration was 38-1137 mg P2O5 kg-1. The available Bray II-P was very low to high (1-76 mg P2O5 kg-1, and it approximated 0.17-12% of the total P. Iron and aluminum phosphates were the main fraction of inorganic P in acid soil, whereas Ca phosphates were in calcareous soils. Organic P content accounted for 33-67% and most of them were bound with Fe and Al in acid soils and Ca in calcareous soils. P extracted by EDTA-NaF reagent was obviously larger than that of Bray II reagent. The EDTA-NaF extracted P [high molecular weight organic P (HMWP+ inorganic P (EDTA ext Pi] was 7-46% and 1-6% of total P in acid soils and calcareous soils respectively. The EDTA ext Pi tended to be larger than HMWP except in Tk soil. The total amount of extracted P correlated well with Al-Pi and Fe-Pi which were the main fraction of inorganic P. It also correlated with HMWP, but HMWP did not correlate with organic P determine by ignition method and Ca-Po, Fe-Po and Al-Po. The EDTA-NaF method may be suitable for P evaluation in the soils which have high amounts of Fe-Pi, Al -Pi and organic P widely distributed in Thailand.

  6. Sensitivity of soil phosphorus tests in predicting the potential risk of phosphorus loss from pasture soil

    OpenAIRE

    H. SOINNE; K. SAARIJÄRVI; M. KARPPINEN

    2008-01-01

    The objective of this study was to examine the effects of urine and dung additions on the phosphorus (P) chemistry of pasture land and to compare the sensitivity of two soil extraction methods in assessing the P-loading risk. In a field experiment, urine and dung were added to soil in amounts corresponding to single excrement portions and the soil samples, taken at certain intervals, were analysed for pHH2O, acid ammonium acetate extractable P (PAc) and water extractable total P (TPw), and mo...

  7. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  8. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  9. Phosphorus vertical migration in aquic brown soil and light chernozem under different phosphorous application rate: a soil column leaching experiment.

    Science.gov (United States)

    Zhao, Muqiu; Chen, Xin; Shi, Yi; Zhou, Quanlai; Lu, Caiyan

    2009-01-01

    A soil column leaching experiment was conducted to study the vertical migration of phosphorus in aquic brown soil and light chernozem under different phosphorus fertilization rates. The results showed that total dissolved phosphorus concentration in the leachates from the two soils was nearly the same, but dissolved inorganic phosphorus concentration was obviously different. In all fertilization treatments, aquic brown soil had a higher content of phosphorus in calcium chloride extracts compared with light chernozem. But Olsen phosphorus content was higher at the soil depth beneath 0-20 cm, and increased with increasing phosphorus application rate.

  10. Determination of total organic phosphorus in samples of mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1962-01-01

    Full Text Available In this paper some observations on the estimation of organic phosphorus in mineral soils are reported. The fact is emphasized that the accuracy of all the methods available is relatively poor. Usually, there are no reasons to pay attention to differences less than about 20 ppm. of organic P. Analyses performed on 345 samples of Finnish mineral soils by the extraction method of MEHTA et. al. (10 and by a simple procedure adopted by the author (successive extractions with 4 N H2SO4 and 0.5 N NaOH at room temperature in the ratio of 1 to 100 gave, on the average, equal results. It seemed to be likely that the MEHTA method removed the organic phosphorus more completely than did the less vigorous method, but in the former the partial hydrolysis of organic phosphorus compounds tends to be higher than in the latter. An attempt was made to find out whether the differences between the respective values for organic phosphorus obtained by an ignition method and the simple extraction method could be connected with any characteristics of the soil. No correlation or only a low correlation coefficient could be calculated between the difference in the results of these two methods and e. g. the pH-value, the content of clay, organic carbon, aluminium and iron soluble in Tamm’s acid oxalate, the indicator of the phosphate sorption capacity, or the »Fe-bound» inorganic phosphorus, respectively. The absolute difference tended to increase with an increase in the content of organic phosphorus. For the 250 samples of surface soils analyzed, the ignition method gave values which were, on the average, about 50 ppm. higher than the results obtained by the extraction procedure. The corresponding difference for the 120 samples from deeper layers was about 20 ppm of organic P. The author recommends, for the present, the determination of the total soil organic phosphorus as an average of the results obtained by the ignition method and the extraction method.

  11. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  12. Overview of soil phosphorus data from a large international soil database

    NARCIS (Netherlands)

    Batjes, N.H.

    2014-01-01

    An overiew of extractable soil phosphorus (P-Bray, P-Olsen, P-Mehlich and P-water) and P-retention data held in a large profile database is presented. The primary aim is to assess whether representative P-values, by broad soil group (FAO system), can be determined for each of these analytical

  13. Substoichiometric extraction of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    A study of the substoichiometric extraction of phosphorus is described. Phosphorus was extracted in the form of ternary compounds such as ammonium phosphomolybdate, 8-hydroxyquinolinium phosphomolybdate, tetraphenylarsonium phosphomolybdate and tri-n-octylamine phosphomolybdate. Consequently, phosphorus was extracted substoichiometrically by the addition of a substoichiometric amount of molybdenum for the four phosphomolybdate compounds. On the other hand, phosphorus could be separated substoichiometrically with a substoichiometric amount of tetraphenylarsonium chloride or tri-n-octylamine. Stoichiometric ratios of these ternary compounds obtained substoichiometrically were 1:12:3 for phosphorus, molybdenum and organic reagent. The applicability of these compounds to phosphorus determination is also discussed. (author)

  14. Sensitivity of soil phosphorus tests in predicting the potential risk of phosphorus loss from pasture soil

    Directory of Open Access Journals (Sweden)

    H. SOINNE

    2008-12-01

    Full Text Available The objective of this study was to examine the effects of urine and dung additions on the phosphorus (P chemistry of pasture land and to compare the sensitivity of two soil extraction methods in assessing the P-loading risk. In a field experiment, urine and dung were added to soil in amounts corresponding to single excrement portions and the soil samples, taken at certain intervals, were analysed for pHH2O, acid ammonium acetate extractable P (PAc and water extractable total P (TPw, and molybdate reactive P (MRPw. Urine additions immediately increased soil pH and MRPw, but no such response was observed in PAc extraction due to the low pH (4.65 of the extractant enhancing the resorption of P. The PAc responded to the dunginduced increase in soil total P similarly as did Pw, which suggests that both tests can serve to detect areas of high P concentration. However, water extraction was a more sensitive method for estimating short-term changes in P solubility. In pasture soils, the risk of P loss increases as a result of the interaction of urination and high P concentration in the topsoil resulting from continuous dung excretion.;

  15. Phosphorus fractions in sandy soils of vineyards in southern Brazil

    Directory of Open Access Journals (Sweden)

    Djalma Eugênio Schmitt

    2013-04-01

    Full Text Available Phosphorus (P applications to vineyards can cause P accumulation in the soil and maximize pollution risks. This study was carried out to quantify the accumulation of P fractions in sandy soils of vineyards in southern Brazil. Soil samples (layers 0-5, 6-10 and 11-20 cm were collected from a native grassland area and two vineyards, after 14 years (vineyard 1 and 30 years (vineyard 2 of cultivation, in Santana do Livramento, southern Brazil, and subjected to chemical fractionation of P. Phosphorus application, especially to the 30-year-old vineyard 2, increased the inorganic P content down to a depth of 20 cm, mainly in the labile fractions extracted by anion-exchange resin and NaHCO3, in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH, and in the non-labile fraction extracted by 1 mol L-1 HCl, indicating the possibility of water eutrophication. Phosphorus application and grapevine cultivation time increased the P content in the organic fraction extracted by NaHCO3 from the 0-5 cm layer, and especially in the moderately labile fraction extracted by 0.1 mol L-1 NaOH, down to a depth of 20 cm.

  16. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Li, Min; Zhang, Jing; Wang, Guangqian; Yang, Haijun; Whelan, Michael J.; White, Sue M.

    2013-01-01

    Highlights: ► Chemical sequential extraction and 31 P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most inorganic P and increase organic P recovery rate. ► A comprehensive organic P chemical sequential fractionation approach was proposed. - Abstract: Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31 P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP) > moderately resistant OP (15.8%m of total OP) > moderately labile OP (11.4% of total OP) > labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r = 0.586, p < 0.01) and highly (r = 0.741, p < 0.01) resistant OP fractions were positively correlated with soil organic matter. Phosphorus compounds including orthophosphate (23–74.6% of total P in spectra), monoester phosphate (18.6–76%), diester phosphate (nil-7.8%) and pyrophosphate (nil-6.7%) were characterized using 31 P NMR. Monoester-P was the dominant soil organic P compound identified. The proportion of monoester-P increased significantly in NaOH–EDTA extracts with HCl pretreatment and it was confirmed by chemical analysis. Therefore, it

  17. Comparing different extraction methods for estimating phosphorus solubility in various soil types

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Dekker, P.H.M.; Römkens, P.F.A.M.; Schoumans, O.F.

    2006-01-01

    In areas with intensive animal livestock farming, agricultural soils are enriched with phosphorus (P). These soils exhibit an increased risk for P transfer to the sub-soil and surface water via leaching. Besides the presence of hydrological pathways between a field and surface water, P in soil

  18. Inorganic Phosphorus Fractions and Their Relationships with Soil Characteristics of Selected Calcareous Soils of Fars Province

    Directory of Open Access Journals (Sweden)

    abolfazl azadi

    2017-01-01

    Full Text Available Introduction: Phosphorus (P is the second limiting nutrient in soils for crop production after nitrogen. Phosphorus is an essential nutrient in crop production. Determination of forms of soil phosphorus is important in the evaluation of soil phosphorus status. Various sequential P fractionation procedures have been used to identify the forms of P and to determine the distribution of P fractions in soils (Chang and Jackson, 1957, Williams et al., 1967; Hedley et al., 1982, but are not particularly sensitive to the various P compounds that may exist in calcareous soils. A Sequential fractionation scheme has been suggested for calcareous soils by which three types of Ca-phosphates i.e. dicalcium phosphate, octacalcium phosphate, and apatite could be identified (Jiang and Gu, 1989. These types of Ca-phosphates were described as Ca2-P (NaHCO3-extractable P, Ca8-P (NH4AC-extractable P and Ca10-P (apatite type, respectively. In this study, the amount and distribution of soil inorganic phosphorus fractions were examined in 49 soil samples of Fars province according to the method described by Jiang and Gu (1989. Materials and Methods: Based on the previous soil survey maps of Fars province and According to Soil Moisture and Temperature Regime Map of Iran (Banaei, 1998, three regions (abadeh, eghlid and noorabad with different Soil Moisture and Temperature Regimes were selected. The soils were comprised Aridic, xeric, and ustic moisture regimes along with mesic, and hyperthemic temperature regimes. 49 representative samples were selected. The soil samples were air-dried and were passed through a 2-mm sieve before analysis. Particle size distribution was determined by hydrometer method (Gee and Bauder 1996. Also, Cation exchange capacity (CEC; Sumner and Miller 1996, calcium carbonate equivalent (Loeppert and Suarez 1996, organic matter content (Nelson and Sommers 1996, and pH by saturated paste method (Thomas 1996 were determined . Inorganic phosphorus

  19. Phosphate fertilizers with varying water-solubility applied to Amazonian soils: II. Soil P extraction methods

    International Nuclear Information System (INIS)

    Muraoka, T.; Brasil, E.C.; Scivittaro, W.B.

    2002-01-01

    A pot experiment was carried out under greenhouse conditions at the Centro de Energia Nuclear na Agricultura, Piracicaba (SP, Brazil), to evaluate the phosphorus availability of different phosphate sources in five Amazonian soils. The soils utilized were: medium texture Yellow Latosol, clayey Yellow Latosol, very clayey Yellow Latosol, clayey Red-Yellow Podzolic and very clayey Red-Yellow Podzolic. Four phosphate sources were applied: triple superphosphate, ordinary Yoorin thermophosphate, coarse Yoorin termo-phosphate and North Carolina phosphate rock at P rates of 0, 40, 80 and 120 mg kg -1 soil. The dry matter yield and the amount of P taken up by cowpea and rice were correlated with the extractable P by anionic exchangeable resin, Mehlich-1, Mehlich-3 and Bray-I. The results showed that the extractable P by Mehlich-1 was higher in the soils amended with North Carolina rock phosphate. Irrespective of the phosphorus sources used, the Mehlich-3 extractant showed close correlation with plant response. The Mehlich-3 and Bray-I extractants were more sensitive to soil variations. The Mehlich-3 extractant was more suitable in predicting the P availability to plants in the different soils and phosphorus sources studied. (author)

  20. Existing Versus Added Soil Organic Matter in Relation to Phosphorus Availability on Lateritic Soils

    Directory of Open Access Journals (Sweden)

    Fadly Hairannoor Yusran

    2008-01-01

    Full Text Available Lateritic soils (Ultisols and Oxisols are commonly characterised by high phosphate sorbing capacity due to the type of clay and present high content of aluminium (Al and iron (Fe oxides. Addition of fresh organic matter (OM may contribute to management of these soils by releasing more bicarbonate-extractable phosphorus (BP through organic phosphorus (OP transformation, or by the soluble component of OM additions desorbing phosphate by ligand exchange. It is not known, however, whether BP results solely from addition of new OM (by either mineralisation or desorption or from transformation of inherent or pre-existing in soil. We considered that removing the existing soil OM and replacing it with an equivalent amount of new OM may help to resolve this issue, especially with respect to P transformation after OM additions. Three lateritic soils of Western Australia (including a deep regolith material with very low inherent soil OM (SOM were used, and sub-samples of the three soils were combusted (450° C to obtain soils effectively free from existing OM. A further sub-sample of the soils was not combusted. Both soil groups, receiving the same amount of organic carbon (OC, from 80 ton ha-1 biomass + soil OM or biomass equal to soil OM from peat, wheat straw (Triticum aestivum L. and lucerne hay (Medicago sativa L., were incubated for nine months. Soil bicarbonate-extractable P as well as non-extractable P (NP, measured as Total-P (TP-BP increased due to new OM application in the order lucerne hay>peat>wheat straw. The correlation between BP with soil organic carbon (SOC became more positive over time. Microbial biomass phosphorus (MBP was not well correlated with the increase of NP content and phosphatase was not related to the increase in BP. Overall, freshly applied (new OM not only contributed to the increased level of P compared with the existing OM treatment.

  1. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  2. Determination of available phosphorus in soils by using a new extraction procedure and a flow injection amperometric system.

    Science.gov (United States)

    Jakmunee, Jaroon; Junsomboon, Jaroon

    2009-09-15

    A new extraction procedure based on an off-line extraction column was proposed for extracting of available phosphorus from soils. The column was fabricated from a plastic syringe fitted at the bottom with a cotton wool and a piece of filter paper to support a soil sample. An aliquot (50 mL) of extracting solution (0.05 M HCl+0.0125 M H(2)SO(4)) was used to extract the sample under gravity flow and the eluate was collected in a polyethylene bottle. The extract was then analyzed for phosphorus contents by a simple flow injection amperometric system, employing a set of three-way solenoid valves as an injection valve. The method is based on the electrochemical reduction of 12-molybdophosphate which is produced on-line by the reaction of orthophosphate with acidic molybdate and the electrical current produced was directly proportional to the concentration of phosphate in range of 0.1-10.0 mg L(-1) PO(4)-P, with a detection limit of 0.02 mg L(-1). Relative standard for 11 replicate injections of 5 mg L(-1) PO(4)-P was 0.5%. A sample through put of 35 h(-1) was achieved, with consumption of 14 mg KCl, 10mg ammonium molybdate and 0.05 mL H(2)SO(4) per analysis. The detection system does not suffer from the interferences that are encountered in the photometric method such as colored substances, colloids, metal ions, silicate and refractive index effect (Schlieren effect). The results obtained by the column extraction procedure were well correlated with those obtained by the steady-state extraction procedure, but showed slightly higher extraction efficiency.

  3. Lead immobilization and phosphorus availability in phosphate-amended, mine-contaminated soils.

    Science.gov (United States)

    Osborne, Lydia R; Baker, Leslie L; Strawn, Daniel G

    2015-01-01

    Over a century of mining activities in the Coeur d'Alene mining district in Idaho have contaminated soils of the downstream basin with lead, arsenic, zinc, and cadmium. Elevated soil-Pb levels are a significant hazard to the health of humans and wildlife in the region. One in situ treatment approach for remediating Pb-contaminated soils is application of phosphorus to promote the formation of lead phosphate minerals that have low solubility. However, this remediation strategy may result in excess P runoff to surface waters, which can lead to eutrophication, particularly when used in riparian areas. Research presented in this paper describes experiments in which monopotassium phosphate (KHPO) solution was applied to two Pb-contaminated soils from the Coeur d'Alene River valley to determine how P loading rates affect both Pb immobilization and P mobility and to determine if an optimal P amendment rate can be predicted. Toxicity characteristic leaching procedure extractions were used to assess changes in Pb availability for uptake by an organism or mobilization through the soil, and Bray extractions were used to assess P availability for leaching out of the soil system. For the two soils tested, increasing phosphate amendment caused decreasing Pb extractability. Phosphorus amendment rates above approximately 70 mg kg, however, did not provide any additional Pb immobilization. Phosphorus availability increased with increasing phosphate application rate. An empirical relationship is presented that predicts extractable Pb as a function of extractable P. This relationship allows for prediction of the amount of Pb that can be immobilized at specified P leaching amounts, such as regulatory levels that have been established to minimize risks for surface water degradation. Results suggest that phosphate can be used to immobilize Pb in contaminated wetland or riparian areas without posing risks of P loading to surface waters. Copyright © by the American Society of Agronomy

  4. Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments.

    Science.gov (United States)

    Zupančič, Marija; Lavrič, Simona; Bukovec, Peter

    2012-02-01

    In this study we would like to show the importance of a holistic approach to evaluation of chemical stabilization using phosphate amendments. An extensive evaluation of metal stabilization in contaminated soil and an evaluation of the leaching of phosphorus induced after treatment were performed. The soil was highly contaminated with Cu (2894 mg kg(-1)), Zn (3884 mg kg(-1)), As (247 mg kg(-1)), Cd (12.6 mg kg(-1)) and Pb (3154 mg kg(-1)). To immobilize the metals, mixtures of soil with phosphate (from H(3)PO(4) and hydroxyapatite (HA) with varying ratios) were prepared with a constant Pb : P molar ratio of 1: 10. The acetic acid extractable concentration of Pb in the mixture with the highest amount of added phosphoric acid (n(H(3)PO(4)) : n(HA) = 3 : 1) was reduced to 1.9% (0.62 mg L(-1)) of the extractable Pb concentration in the untreated soil, but the content of water extractable phosphorus in the samples increased from 0.04 mg L(-1) in the untreated soil sample up to 14.3 mg L(-1) in the same n(H(3)PO(4)) : n(HA) = 3 : 1 mixture. The high increase in arsenic mobility was also observed after phosphate addition. The PBET test showed phosphate induced reduction in Pb bioavailability. In attempting to stabilize Pb in the soil with the minimum treatment-induced leaching of phosphorus, it was found that a mixture of soil with phosphate addition in the molar ratio of H(3)PO(4) : HA of 0.75 : 1 showed the most promising results, with an acetic acid extractable Pb concentration of 1.35 mg L(-1) and a water extractable phosphorus concentration of 1.76 mg L(-1). The time-dependent leaching characteristics of metals and phosphorus for this mixture were evaluated by a column experiment, where irrigation of the soil mixture with the average annual amount of precipitation in Slovenia (1000 mm) was simulated. The phosphorus concentration in the leachates decreased from 2.60 mg L(-1) at the beginning of irrigation to 1.00 mg L(-1) at the end.

  5. Impacts of anthropic pressures on soil phosphorus availability, concentration, and phosphorus forms in sediments in a Southern Brazilian watershed

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Joao Batista Rossetto; Rheinheimer dos Santos, Danilo; Goncalves, Celso Santos; Copetti, Andre Carlos Cruz [Dept. de Solos, Univ. Federal de Santa Maria, Centro de Ciencias Rurais, Santa Maria, RS (Brazil); Bortoluzzi, Edson Campanhola [Faculdade de Agronomia e Medicina Veterinaria da Univ. de Passo Fundo, RS (Brazil); Tessier, Daniel [Inst. National de la Recherche Agronomique, Versailles (France)

    2010-04-15

    Purpose: The transfer of soil sediments and phosphorus from terrestrial to aquatic systems is a common process in agricultural lands. The aims of this paper are to quantify the soil phosphorus availability and to characterize phosphorus forms in soil sediments as contaminant agents of waters as a function of anthropic pressures. Materials and methods On three subwatersheds with different anthropic pressure, water and sediment samples were collected automatically in upstream and downstream discharge points in six rainfall events during the tobacco growing season. Phosphorus desorption capacity from soil sediments was estimated by successive extractions with anion exchange resins. First-order kinetic models were adjusted to desorption curves for estimating potentially bioavailable particulate phosphorus, desorption rate constant, and bioavailable particulate phosphorus. Results and discussion The amount of bioavailable particulate phosphorus was directly correlated with the iron oxide content. The value of desorption rate constant was directly related with the total organic carbon and inversely with the iron oxide contents. Phosphate ions were released to solution, on average, twice as rapidly from sediments collected in subwatersheds with low anthropic activity than from those ones of highly anthropic subwatersheds. Anthropic pressure on watershed can engender high sediment discharge, but these solid particles seem to present low phosphorus-releasing capacity to water during transport due to the evidenced high affinity between phosphorus and iron oxide from sediments. Conclusions Anthropic pressure was related with sediment concentration and phosphorus release to aquatic systems. While natural vegetation along streams plays a role on soil and water depuration, it is unable to eliminate the phosphorus inputs intrinsic to the agricultural-intensive systems. Recommendations and perspectives The contamination of water in watershed by phosphates is facilitated by the

  6. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    Science.gov (United States)

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  7. Filter Membrane Effects on Water-Extractable Phosphorus Concentrations from Soil.

    Science.gov (United States)

    Norby, Jessica; Strawn, Daniel; Brooks, Erin

    2018-03-01

    To accurately assess P concentrations in soil extracts, standard laboratory practices for monitoring P concentrations are needed. Water-extractable P is a common analytical test to determine P availability for leaching from soils, and it is used to determine best management practices. Most P analytical tests require filtration through a filter membrane with 0.45-μm pore size to distinguish between particulate and dissolved P species. However, filter membrane type is rarely specified in method protocols, and many different types of membranes are available. In this study, three common filter membrane materials (polyether sulfone, nylon, and nitrocellulose), all with 0.45-μm pore sizes, were tested for analytical differences in total P concentrations and dissolved reactive P (DRP) concentrations in water extracts from six soils sampled from two regions. Three of the extracts from the six soil samples had different total P concentrations for all three membrane types. The other three soil extracts had significantly different total P results from at least one filter membrane type. Total P concentration differences were as great as 35%. The DRP concentrations in the extracts were dependent on filter type in five of the six soil types. Results from this research show that filter membrane type is an important parameter that affects concentrations of total P and DRP from soil extracts. Thus, membrane type should be specified in soil extraction protocols. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Isotopic techniques to study phosphorus cycling in soils

    International Nuclear Information System (INIS)

    Manjaiah, K.M.; Sreenivasa Chari, M.; Sachdev, P.; Sachdev, M.S.

    2008-01-01

    A sound understanding of phosphorus cycling in soil system is essential in order to manage this system in a sustainable manner. Phosphorus transformations are characterized by physico-chemical (sorption-desorption) and biological processes . The transformation rates need to be taken into account while developing nutrient management strategies for economical and sustainable production. One of the important tools and the method gaining popularity for determining the gross transformation rates of nutrients in the soil is the isotopic dilution technique. The major processes in the soil-plant system which determine the distribution and bioavailability of phosphorus in various inorganic and organic soil components consist of: (1) the dissolution of soil mineral phosphates, (2) retention of phosphorus by inorganic soil constituents, (3) decomposition of organic phosphorus contained in plant, animal and microbial detritus and (4) Immobilization of phosphorus via the soil microbial biomass and plan uptake

  9. SEQUENTIAL ELECTRODIALYTIC EXTRACTION OF PHOSPHORUS COMPOUNDS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an apparatus for electrodialytic extraction of phosphorus from a particulate material in suspension and to a method for electrodialytic phosphorus recovery, which uses the apparatus. The method may be applied for wastewater treatment, and/or treatment of particulate...... material rich in phosphorus. The present invention provides an apparatus for electrodialytic extraction of phosphorus from a particulate material comprising acidic and/or alkaline soluble phosphorus compounds, in suspension, comprising: • a first electrodialytic cell comprising a first anolyte compartment...

  10. Phosphorus in agricultural soils:

    NARCIS (Netherlands)

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  11. Screening crops for efficient phosphorus acquisition in a low phosphorus soil using radiotracer technique

    International Nuclear Information System (INIS)

    Meena, S.; Malarvizhi, P.; Rajeswari, R.

    2017-01-01

    Deficiency of phosphorus (P) is the major limitation to agricultural production. Identification of cultivars with greater capacity to grow in soils having low P availability (phosphorus efficiency) will help in P management in a sustainable way. Green house experiment with maize (CO 6) and cotton (MCU 13) as test crops with four levels of phosphorus (0, 3.75, 7.50 and 15 mg P kg -1 soil) was conducted in a P deficient soil (7.2 kg ha -1 ) to study the phosphorus acquisition characteristics and to select efficient crop using 32 P radiotracer technique. Carrier free 32 P obtained as orthophosphoric acid in dilute hydrochloric acid medium from the Board of Radiation and Isotope Technology, Mumbai was used for labeling the soil @ 3200 kBq pot -1 . After 60 days the crops were harvested and the radioactivity was measured in the plant samples using Liquid scintillation counter (PerkinElmer - Tricarb 2810 TR). Different values of specific radioactivity and Isotopically Exchangeable Phosphorus for maize and cotton indicated that chemically different pools of soil P were utilized and maize accessing a larger pool than cotton. Maize having recorded high Phosphorus Use Efficiency, Phosphorus Efficiency and low Phosphorus Stress Factor values, it is a better choice for P deficient soils. Higher Phosphorus Acquisition Efficiency of maize (59 %) than cotton (48%) can be related to the ability of maize to take up P from insoluble inorganic P forms. (author)

  12. Phytoextraction of excess soil phosphorus

    International Nuclear Information System (INIS)

    Sharma, Nilesh C.; Starnes, Daniel L.; Sahi, Shivendra V.

    2007-01-01

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils

  13. Phytoextraction of excess soil phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nilesh C. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Starnes, Daniel L. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Sahi, Shivendra V. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States)]. E-mail: shiv.sahi@wku.edu

    2007-03-15

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils.

  14. Effect Of Wood-Based Biochar And Sewage Sludge Amendments For Soil Phosphorus Availability

    Directory of Open Access Journals (Sweden)

    Frišták Vladimír

    2015-06-01

    Full Text Available This study investigated the effects of two biochars (pyrolysed wood chips and garden clippings on phosphorus (P availability in a heavy-metal contaminated soil poor in phosphorus. Short-term 14-days incubation experiments were conducted to study how applications of biochars at different rates (1 and 5 % in combination with (1:1 and without dried sewage sludge from a municipal waste water treatment plant (WWTP affected the content of soil extractable P. For P-availability analyses deionized water, calcium acetate lactate (CAL, Mehlich 3 and Olsen extraction protocols were applied. In addition, the content of total and mobile forms of potentially toxic heavy metals (PTHM was studied. Application of both biochars caused a significant decrease of PTHM available forms in sewage sludge amended soil samples. The concentration of total and available P increased with higher biochar and sewage sludge application rates.

  15. Phosphorus conditions at various depths in some mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1963-05-01

    Full Text Available The fractionation method of CHANG and JACKSON (2 was used for the analysing of the distribution of inorganic phosphorus in the topsoil and subsoil of twelve virgin and twelve cultivated soils from various parts of the country; two virgin soils and twenty cultivated soils were studied down to the depths of 60 cm or 70 cm, one even to 2 m. In the more intensively podsolized virgin soils the surface layers, particularly the A2-horizon, are very poor in all the forms of inorganic phosphorus while the enrichment layer will contain fairly high amounts of iron and aluminium bound phosphorus. The application of fertilizers and the other cultivation managements tend to accumulate aluminium and iron bound phosphorus in the plough layer. In some soils the minimum content of calcium bound phosphorus occurs in the layer below the plough layer, but an increase with the depth seems to be typical to it in all the non-Litorina soils, while the first two fractions usually decrease with the depth. In the Litorina soils the iron bound phosphorus is dominant in all the layers studied, but the content of reductant soluble phosphorus is low in these soils, and their content of calcium bound phosphorus is higher than the content of phosphorus bound by aluminium. The predominance of calcium phosphate in the subsoil and the rather low content of reductant soluble and occluded fractions indicate that the chemical weathering in most of our soils is not yet at an advanced stage. The test values determined were in accordance with the results of the fractionation and the estimation of ammonium oxalate soluble aluminium and iron.

  16. Evaluation of added phosphorus in six volcanic ash soils

    International Nuclear Information System (INIS)

    Pino N, I.; Casas G, L.; Urbinsa P, M.C.

    1984-01-01

    The behaviour of added phosphorus in six volcanic ash soils (Andepts) was studied. Two phosphate retention solution were used; one of them labeled with 32 P carrier free. The phosphate retention solution (25 ml) was added to 5 gr of air dry soil. The remainder phosphorus in solution was measured through colorimetry and liquid scintillation. Over 85% phosphorus retention was measured in five soils. A phosphate retention solution labeled with 32 P carrier free proved to be efficient for the determination of phosphorus retention rates in the volcanic ash soils studied. (Author)

  17. Phosphorus in soil treatment systems: accumulation and mobility.

    Science.gov (United States)

    Eveborn, David; Gustafsson, Jon Petter; Elmefors, Elin; Yu, Lin; Eriksson, Ann-Kristin; Ljung, Emelie; Renman, Gunno

    2014-11-01

    Septic tanks with subsequent soil treatment systems (STS) are a common treatment technique for domestic wastewater in rural areas. Phosphorus (P) leakage from such systems may pose a risk to water quality (especially if they are located relatively close to surface waters). In this study, six STS in Sweden (11-28 years old) were examined. Samples taken from the unsaturated subsoil beneath the distribution pipes were investigated by means of batch and column experiments, and accumulated phosphorus were characterized through X-ray absorption near edge structure (XANES) analysis. At all sites the wastewater had clearly influenced the soil. This was observed through decreased pH, increased amounts of oxalate extractable metals and at some sites altered P sorption properties. The amount of accumulated P in the STS were found to be between 0.32 and 0.87 kg m(-3), which in most cases was just a fraction of the estimated P load (<30%). Column studies revealed that high P concentrations (up to 6 mg L(-1)) were leached from the material when deionized water was applied. However, the response to deionized water varied between the sites. As evidenced by XANES analysis, aluminium phosphates or P adsorbed to aluminium (hydr)oxides, as well as organically bound P, were important sinks for P. Generally soils with a high content of oxalate-extractable Al were also less vulnerable to P leakage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of different treatments of cattle slurry manure on water-extractable phosphorus

    NARCIS (Netherlands)

    Chapuis-Lardy, L.; Temminghoff, E.J.M.; Goede, de R.G.M.

    2003-01-01

    Cattle slurry manure applied to land increases the risk of phosphorus (P) movement to surface waters, which may lead to eutrophication. The water-extractable fraction of P in slurry manure is correlated with P concentration in runoff from soils amended with slurry smanure, and thus is an effective

  19. Phosphorus extracted by ion exchange resins and mehlich-1 from oxisols (latosols treated with different phosphorus rates and sources for varied soil-source contact periods

    Directory of Open Access Journals (Sweden)

    Irio Fernando de Freitas

    2013-06-01

    Full Text Available Despite the large number of studies addressing the quantification of phosphorus (P availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR and Mixed Resin (MR, to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2 + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV, a sandy clay loam Red Yellow Latosol (LVA, and a sandy loam Yellow Latosol (LA, to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais at two P rates (75 and 150 mg dm-3, plus three control treatments (each soil without P application after four contact periods (15, 30, 60, and 120 days of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction. These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay and LVA (medium texture for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of

  20. Forms of organic phosphorus in wetland soils

    Science.gov (United States)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 μg P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  1. Forms of newly retained phosphorus in mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1964-01-01

    Full Text Available The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the

  2. [Effects of selective cutting on soil phosphorus forms and availability in Korean pine broad-leaved forest in Xiaoxing'an Mountains of China.

    Science.gov (United States)

    Zhang, Xin; Gu, Hui Yan; Chen, Xiang Wei

    2018-02-01

    In order to clarify the effects of selective cutting on soil phosphorus availability in Korean pine broad-leaved forest, surface soil (0-10 cm) samples from original Korean pine broad-leaved forest and natural forests with mild, medium and intensive cutting disturbances were collected. The Sui modified Hedley phosphorus fractionation method was used to continuously extract soil samples and analyzed the differences and changes of soil phosphorus fractions from different experimental stands. The results showed that the soil total phosphorus content of Korean pine broad-leaved forest varied from 1.09 to 1.66 g·kg -1 , with the original stand and intensive cutting disturbance stand being the maximum and minimum one, respectively. The differences of soil total phosphorus content among cutting disturbance levels were significant. The Olsen phosphorus and phosphorus activation coefficients changed with an amplitude of 7.26-17.79 mg·kg -1 and 0.67%-1.07%, respectively. Both of them significantly decreased with the increase of selective cutting disturbance level. The concentrations of all P fractions except HCl-P o , i.e., H 2 O-P i , NaHCO 3 -P, NaOH-P, HCl-P i , Residual-P, decreased with increasing cutting disturbance levels compared with original forest. The correlation coefficient between H 2 O-P i and soil Olsen phosphorus was the highest (0.98), though it only accounted for 1.5%-2.2% of the total phosphorus. NaOH-P content contributed to more than 48.0% of the total phosphorus, acknowledged as the potential source of soil phosphorus. In conclusion, selective cutting disturbance could constrain phosphorus storage and soil phosphorus availabi-lity of the Korean pine broad-leaved forests by significantly reducing the content of soil inorganic phosphorus and NaOH-P o , and such trends were positively dependent on the intensity of selective cutting.

  3. Applications of isotope techniques for the assessment of soil phosphorus status and evaluation of rock phosphates as phosphorus sources for plants in subtropical China

    International Nuclear Information System (INIS)

    Xiong, L.M.; Zhou, Z.G.; Feng, G.L.; Lu, R.K.; Fardeau, J.C.

    2002-01-01

    In an attempt to assess current soil phosphorus status and evaluate the effectiveness of local rock phosphates in subtropical China, nearly 40 representative soil samples from this region were collected and characterized by using 32 P isotope and chemical extraction techniques. Pot experiments, incubation studies and field trials were conducted to investigate the interaction of rock phosphates and water-soluble phosphates as well as the effects of rock phosphate on soil chemical properties in selected soils. Results indicated that these soils were generally low in available phosphorus and high in P-fixing capacity. The soil characteristics dictated that the employed isotope kinetic model was less successful in predicting plant P uptake than the chemical procedures tested. A new chemical extraction method consisting of sodium bicarbonate and ammonium fluoride was proposed to evaluate available P in these Solis. Data on available P generated with the proposed method gave the best prediction of plant uptake amongst all methods compared. In a pot experiment, the combined application of soluble P fertilizer with local rock phosphate significantly enhanced plant growth and increased P uptake. This positive interaction was attributed to the improved soil chemical properties due to the application of low-grade rock phosphates, as demonstrated in incubation studies. These results suggest that rock phosphate-based fertilizers should be good alternative fertilizers for plants in similar acidic soils in southern China. (author)

  4. Effect of decreasing acidity on the extractability of inorganic soil phosphorus

    Directory of Open Access Journals (Sweden)

    Helinä Hartikainen

    1981-01-01

    Full Text Available The extractability of P by the water and anion exchange resin methods and reactions of soil inorganic P were investigated with seven acid mineral soil samples incubated with KOH solutions of various concentrations. The results were compared with the analytical data obtained from three soil samples incubated in a prolonged liming experiment. The resin extraction method proved more effective than the water extraction method. The amounts of P desorbed by both methods seemed to increase exponentially as the pH in the soil suspensions rose. The factors involved were discussed. On the basis of fractionation analyses P reacting to changes in the pH and participating in desorption processes was supposed to originate from secondary NH4F and NaOH soluble reserves. In general, as the acidity decreased NH4F-P increased at the expense of NaOH-P. In heavily limed gyttja soil also H2SO4-P increased. This was possibly induced by the precipitation of mobilized P as a Ca compound. The significance of pH in the extractability of soil P seemed somewhat to lessen as the amount of secondary P increased. The results were in accordance with the conception that liming improves the availability of inorganic P to plants and reduces the need for P fertilization. However, increasing of the soil pH involves the risk that P is more easily desorbed to the recipient water by the eroded soil material carried into the watercourse. Therefore, intensive liming is not recommendable close to the shoreline. Further, it should be taken into account that liming of lakes may also result in eutrophication as desorption of sedimentary inorganic P is enhanced.

  5. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser

    NARCIS (Netherlands)

    McDowell, R.W.; Koopmans, G.F.

    2006-01-01

    A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture

  6. Prediction of phosphorus mobilisation in inundated floodplain soils

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, Roos [Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)], E-mail: r.loeb@science.ru.nl; Lamers, Leon P.M.; Roelofs, Jan G.M. [Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen (Netherlands)

    2008-11-15

    After flooding, iron reduction in riverine wetlands may cause the release of large quantities of phosphorus. As phosphorus is an important nutrient causing eutrophication in aquatic systems, it is important to have a tool to predict this potential release. In this study we examined the P release to the soil pore water in soil cores from floodplains in the Netherlands and from less anthropogenically influenced floodplains from Poland. During the inundation experiment, concentrations of P in the pore water rose to 2-90 times the initial concentrations. P release was not directly related to the geographic origin of the soils. An important predictor variable of P release was found in the ratio between the concentration of iron-bound P and amorphous iron. This ratio may provide a practical tool for the selection of new areas for wetland creation, and for impact assessment of plans for riverine wetland restoration and floodwater storage. - Mobilisation of phosphorus in floodplain wetland soils can be predicted with easily measurable soil characteristics.

  7. Prediction of phosphorus mobilisation in inundated floodplain soils

    International Nuclear Information System (INIS)

    Loeb, Roos; Lamers, Leon P.M.; Roelofs, Jan G.M.

    2008-01-01

    After flooding, iron reduction in riverine wetlands may cause the release of large quantities of phosphorus. As phosphorus is an important nutrient causing eutrophication in aquatic systems, it is important to have a tool to predict this potential release. In this study we examined the P release to the soil pore water in soil cores from floodplains in the Netherlands and from less anthropogenically influenced floodplains from Poland. During the inundation experiment, concentrations of P in the pore water rose to 2-90 times the initial concentrations. P release was not directly related to the geographic origin of the soils. An important predictor variable of P release was found in the ratio between the concentration of iron-bound P and amorphous iron. This ratio may provide a practical tool for the selection of new areas for wetland creation, and for impact assessment of plans for riverine wetland restoration and floodwater storage. - Mobilisation of phosphorus in floodplain wetland soils can be predicted with easily measurable soil characteristics

  8. The Role of Organic Acids on the Release of Phosphorus and Zinc in a Calcareous Soil

    Directory of Open Access Journals (Sweden)

    Sareh Nezami

    2017-02-01

    Full Text Available Introduction: Phosphorus (P and zinc (Zn fixation by soil minerals and their precipitation is one of the major constraints for crop production in calcareous soils. Recent Studies show that root exudates are effective for the extraction of the large amounts of nutrients in calcareous soils. A part of the root exudations are Low Molecular Weight Organic Acids (LMWOAs. LMWOAs are involved in the nutrients availability and uptake by plants, nutrients detoxification, minerals weathering and microbial proliferation in the soil. At nutrients deficiency conditions citric and oxalic acids are released by plants root in large quantities and increase nutrient solubility like P, Zn, Fe, Mn and Cu in the rhizosphere. These components are the large portion of the carbon source in the soil after exudations are mineralized by microorganisms, quickly. In addition, soil surface sorption can affect their half-life and other behaviors in the soil. In order to study the effect of oxalic and citric organic acids on the extraction of phosphorus and zinc from a calcareous soil, an experiment was conducted. Materials and Methods: Studied soil was calcareous and had P and Zn deficiency. Soil sample was collected from A horizon (0-30 cm of Damavand region. 3 g of dried soil sample was extracted with 30 ml of oxalic and citric acids extraction solutions at different concentrations (0.1, 1 and 10 mM and different time periods (10, 60, 180 and 360 minutes on an orbital shaker at 200 rev min-1.The soil extracts then centrifuged for 10 minutes (16000g. After filtering, the pH of the extractions was recorded and then phosphorus, calcium and zinc amounts were determined. Soil extraction with distilled water was used as control. Each treatment was performed in 3 replications. Statistical analysis was performed with ANOVA test followed by the Bonferroni method significant level adjustments due to multiple comparisons. Results and Discussion: The results of variance analysis showed

  9. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  10. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  11. Evaluation of phosphorus sorption characteristics of soils from the ...

    African Journals Online (AJOL)

    The evaluation of phosphorus sorption characteristics of soils and their relation to soil properties from the Bambouto sequence of Baranka 1, Baranka 2, Femock 1 and Femock 2 has been studied. Phosphorus, an essential plant nutrient, is often not readily available to plants and this deficiency tends to limit plant growth.

  12. Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lombi, E., E-mail: enzo.lombi@unisa.edu.a [CSIRO Land and Water, Centre for Environmental Contaminant Research, PMB 2, Glen Osmond, SA 5064 (Australia); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Building X, Mawson Lakes Campus, Mawson Lakes, SA 5095 (Australia); CRC CARE, PO Box 486, Salisbury, SA 5106 (Australia); Stevens, D.P. [CSIRO Land and Water, Centre for Environmental Contaminant Research, PMB 2, Glen Osmond, SA 5064 (Australia); Arris Pty Ltd, PO Box 5143, Burnley, Victoria 3121 (Australia); McLaughlin, M.J. [CSIRO Land and Water, Centre for Environmental Contaminant Research, PMB 2, Glen Osmond, SA 5064 (Australia); Soil and Land Systems, University of Adelaide, PMB 1, Glen Osmond, SA 5064 (Australia)

    2010-06-15

    Water treatment residuals (WTRs) are produced by the treatment of potable water with coagulating agents. Beneficial recycling in agriculture is hampered by the fact that WTRs contain potentially toxic contaminants (e.g. copper and aluminium) and they bind phosphorus strongly. These issues were investigated using a plant bioassay (Lactuca sativa), chemical extractions and an isotopic dilution technique. Two WTRs were applied to an acidic and a neutral pH soil at six rates. Reductions in plant growth in amended soils were due to WTR-induced P deficiency, rather than Al or Cu toxicity. The release of potentially toxic Al from WTRs was found to be mitigated by their alkaline nature and pH buffering capacity. However, acidification of WTRs was shown to release more soluble Al than soil naturally high in Al. Copper availability was relatively low in all treatments. However, the lability of WTR-Cu increased when the WTR was applied to the soil. - The effect of water treatment residue application to soil was investigated in relation to phosphorus availability, and copper and aluminium phytotoxicity.

  13. Effect of water treatment residuals on soil phosphorus, copper and aluminium availability and toxicity

    International Nuclear Information System (INIS)

    Lombi, E.; Stevens, D.P.; McLaughlin, M.J.

    2010-01-01

    Water treatment residuals (WTRs) are produced by the treatment of potable water with coagulating agents. Beneficial recycling in agriculture is hampered by the fact that WTRs contain potentially toxic contaminants (e.g. copper and aluminium) and they bind phosphorus strongly. These issues were investigated using a plant bioassay (Lactuca sativa), chemical extractions and an isotopic dilution technique. Two WTRs were applied to an acidic and a neutral pH soil at six rates. Reductions in plant growth in amended soils were due to WTR-induced P deficiency, rather than Al or Cu toxicity. The release of potentially toxic Al from WTRs was found to be mitigated by their alkaline nature and pH buffering capacity. However, acidification of WTRs was shown to release more soluble Al than soil naturally high in Al. Copper availability was relatively low in all treatments. However, the lability of WTR-Cu increased when the WTR was applied to the soil. - The effect of water treatment residue application to soil was investigated in relation to phosphorus availability, and copper and aluminium phytotoxicity.

  14. Phosphorus Sorption Capacity of Gray Forest Soil as Dependent on Fertilization System

    Science.gov (United States)

    Rogova, O. B.; Kolobova, N. A.; Ivanov, A. L.

    2018-05-01

    In this paper, the results of the study of changes in the phosphorus sorption capacity of gray forest soils of Vladimir opolie under the impact of different fertilization systems are discussed. The quantitative parameters of the potential buffer capacity of soils for phosphorus (PBCP) and Langmuir sorption isotherms have been calculated. It is shown that the application of organic fertilizers results in a stronger decrease in PBCP than the application of mineral fertilizers. The portion of phosphorus of mineral compounds considerably increases, and the high content of available phosphates is maintained. In the variants with application of mineral phosphorus in combination with manure, the portions of organic and mineral phosphorus are at the level typical of unfertilized soils. The energy of phosphate bonds with the soil is minimal upon the application of a double rate of mineral phosphorus at the maximum capacity in relation to phosphate ions.

  15. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils

    International Nuclear Information System (INIS)

    Ownby, David R.; Galvan, Kari A.; Lydy, Michael J.

    2005-01-01

    Four phosphorus forms were investigated as potential soil amendments to decrease the bioavailability of Pb and Zn in two repository soils to the earthworm, Eisenia fetida. Treatments were evaluated by examining differences in bioaccumulation factors between amended and non-amended soils. Triple super phosphate at 5000 mg P/kg decreased both Pb and Zn bioavailability in both soils. Rock phosphate at 5000 mg P/kg decreased Zn bioavailability, but not Pb bioavailability in both repository soils. Monocalcium phosphate and tricalcium phosphate at 5000 mg P/kg did not significantly decrease Pb or Zn bioavailability to earthworms in either repository soil. In order to optimize phosphorus amendments, additional phosphorus (up to 15,000 mg P/kg) and lowered pH were used in a series of tests. The combination of lowering the pH below 6.0 and increasing phosphorus concentrations caused complete mortality in all triple super phosphate amended soils and partial mortality in the highest rock phosphate amended soils. Results indicate that triple super phosphate and rock phosphate are viable soil amendments, but care should be taken when optimizing amendment quantity and pH so that adverse environmental effects are not a by-product. - Phosphorus form and pH were controlling factors in the effectiveness of phosphorus amendment in decreasing Pb and Zn bioavailability

  16. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils

    Energy Technology Data Exchange (ETDEWEB)

    Ownby, David R. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, IL 62901 (United States); Galvan, Kari A. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, IL 62901 (United States); Lydy, Michael J. [Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, IL 62901 (United States)]. E-mail: mlydy@siu.edu

    2005-07-15

    Four phosphorus forms were investigated as potential soil amendments to decrease the bioavailability of Pb and Zn in two repository soils to the earthworm, Eisenia fetida. Treatments were evaluated by examining differences in bioaccumulation factors between amended and non-amended soils. Triple super phosphate at 5000 mg P/kg decreased both Pb and Zn bioavailability in both soils. Rock phosphate at 5000 mg P/kg decreased Zn bioavailability, but not Pb bioavailability in both repository soils. Monocalcium phosphate and tricalcium phosphate at 5000 mg P/kg did not significantly decrease Pb or Zn bioavailability to earthworms in either repository soil. In order to optimize phosphorus amendments, additional phosphorus (up to 15,000 mg P/kg) and lowered pH were used in a series of tests. The combination of lowering the pH below 6.0 and increasing phosphorus concentrations caused complete mortality in all triple super phosphate amended soils and partial mortality in the highest rock phosphate amended soils. Results indicate that triple super phosphate and rock phosphate are viable soil amendments, but care should be taken when optimizing amendment quantity and pH so that adverse environmental effects are not a by-product. - Phosphorus form and pH were controlling factors in the effectiveness of phosphorus amendment in decreasing Pb and Zn bioavailability.

  17. Identification of cowpea cultivars for low phosphorus soils of Nigeria

    International Nuclear Information System (INIS)

    Afolabi, N.O.; Ogunbodede, B.A.; Adediran, J.A.

    1996-01-01

    Twenty cultivars of cowpea, Vigna unguiculata, adapted to the Nigerian ecologies were screened to identify cultivars which can give high and sustainable yields when grown on soils with low available phosphorus in a sub-humid climate. Some cultivars including TVX3236, AFB1757, Ogunfowokan and K-28 gave three to four times higher grain yields than the other cultivars at zero phosphorus supply. While phosphorus application reduced grain yield in most of the cultivars with marked reduction in the higher yielding cultivars, low yielding cultivars tended to show some yield increase. Phosphorus use efficiency of the roots, stem or leaves was not significantly correlated with grain yield when 60 KgP/ha was applied. Reduction in yield due to phosphorus application might be due to induced Zn deficiency as Zn supply in these soils has been found to be inherently low. High grain yielding capacity without fertilizer phosphorus application was generally positively correlated with high vegetative shoot dry matter production. However, no clear relationship could be found between grain yield and root dry matter at maturity. It is concluded that selection for phosphorus efficiency in cowpea can substantially contribute to higher cowpea productivity and the farmers income on soils low in available phosphorus in the sub-humid areas of Nigeria. (author). 5 refs, 2 figs, 2 tabs

  18. Identification of cowpea cultivars for low phosphorus soils of Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Afolabi, N O; Ogunbodede, B A; Adediran, J A [Obafemi Awolowo Univ., Ibadan (Nigeria). Inst. of Agricultural Research and Training

    1996-07-01

    Twenty cultivars of cowpea, Vigna unguiculata, adapted to the Nigerian ecologies were screened to identify cultivars which can give high and sustainable yields when grown on soils with low available phosphorus in a sub-humid climate. Some cultivars including TVX3236, AFB1757, Ogunfowokan and K-28 gave three to four times higher grain yields than the other cultivars at zero phosphorus supply. While phosphorus application reduced grain yield in most of the cultivars with marked reduction in the higher yielding cultivars, low yielding cultivars tended to show some yield increase. Phosphorus use efficiency of the roots, stem or leaves was not significantly correlated with grain yield when 60 KgP/ha was applied. Reduction in yield due to phosphorus application might be due to induced Zn deficiency as Zn supply in these soils has been found to be inherently low. High grain yielding capacity without fertilizer phosphorus application was generally positively correlated with high vegetative shoot dry matter production. However, no clear relationship could be found between grain yield and root dry matter at maturity. It is concluded that selection for phosphorus efficiency in cowpea can substantially contribute to higher cowpea productivity and the farmers income on soils low in available phosphorus in the sub-humid areas of Nigeria. (author). 5 refs, 2 figs, 2 tabs.

  19. A neural network model for estimating soil phosphorus using terrain analysis

    Directory of Open Access Journals (Sweden)

    Ali Keshavarzi

    2015-12-01

    Full Text Available Artificial neural network (ANN model was developed and tested for estimating soil phosphorus (P in Kouhin watershed area (1000 ha, Qazvin province, Iran using terrain analysis. Based on the soil distribution correlation, vegetation growth pattern across the topographically heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedologic information for the development of ANN model in area for estimating of soil phosphorus. Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes were estimated by the digital elevation model (DEM. In order to develop the pedo-transfer functions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be explained by elevation and Band 1 data and significant correlation was observed between input variables and phosphorus contents. There was a significant correlation between soil P and terrain attributes which can be used to derive the pedo-transfer function for soil P estimation to manage nutrient deficiency. Results showed that P values can be calculated more accurately with the ANN-based pedo-transfer function with the input topographic variables along with the Band 1.

  20. Utilization of fertilizer phosphorus in rice wheat cropping sequence on different soils

    International Nuclear Information System (INIS)

    Singhania, R.A.; Goswami, N.N.

    1975-01-01

    Uptake and utilization of fertilizer phosphorus was studied in a rice-wheat cropping pattern on alluvial, black, red and laterite soils from representative model agronomic centres. Phosphorus was applied as 32 P-tagged superphosphate to rice at varying doses, depending upon the phosphorus fixing capacity of the soil, and to wheat at 30 kg P 2 O 5 /ha. Results showed that rice responded to phosphorus in all soils, but to higher doses only in black and laterite soils which had higher P-fixation capacity. Phosphorus applied to rice had little residual effect on the suceeding crop of wheat but the latter showed higher uptake and utilization of fertilizer phosphorus directly applied to it as compared to that by rice. Wheat responded to P only in red and laterite soils. Results on the transformation of applied P was converted to Fe-P which was of lower availability. These findings suggest that phosphorus in a rice-wheat sequence should preferably be applied to wheat primarily because of (1) greater uptake of fertilizer P by wheat (2) under flooded conditions in which rice is grown most of the applied P is transformed into Fe-P and (3) rice can utilize Fe-P better. (author)

  1. [Soil Phosphorus Forms and Leaching Risk in a Typically Agricultural Catchment of Hefei Suburban].

    Science.gov (United States)

    Fan, Hui-hui; Li, Ru-zhong; Pei, Ting-ting; Zhang, Rui-gang

    2016-01-15

    To investigate the soil phosphorus forms and leaching risk in a typically agricultural catchment of Ershibu River in Hefei Suburban, Chaohu Lake basin, 132 surface soil samples were collected from the catchment area. The spatial distribution of total phosphorus (TP) and bio-available phosphorus (Bio-P), and the spatial variability of soil available phosphorus (Olsen-P) and easy desorption phosphorus (CaCl2-P) were analyzed using the Kriging technology of AreGIS after speciation analysis of soil phosphorus. Moreover, the enrichment level of soil phosphorus was studied, and the phosphorus leaching risk was evaluated through determining the leaching threshold value of soil phosphorus. The results showed that the samples with high contents of TP and Bio-P mainly located in the upstream of the left tributary and on the right side of local area where two tributaries converged. The enrichment rates of soil phosphorus forms were arranged as follows: Ca-P (15.01) > OP (4.16) > TP (3. 42) > IP (2.94) > Ex-P (2.76) > Fe/Al-P (2.43) > Olsen-P (2.34). The critical value of Olsen-P leaching was 18.388 mg x kg(-1), and the leaching samples with values higher than the threshold value accounted for 16.6% of total samples. Generally, the high-risk areas mainly occurred in the upstream of the left tributary, the middle of the right tributary and the local area of the downstream of the area where two tributaries converged.

  2. Inorganic phosphorus fractionation and its translocation dynamics in a low-P soil

    International Nuclear Information System (INIS)

    Yang, J.C.; Wang, Z.G.; Zhou, J.; Jiang, H.M.; Zhang, J.F.; Pan, P.; Han, Z.; Lu, C.; Li, L.L.; Ge, C.L.

    2012-01-01

    The translocation of different inorganic phosphorus (Pi) forms in a low-P soil (Langfang experimental station, Hebei province, China) over time was investigated using P fractionation extraction and a 32 P tracer technique. The L-value and P availability of the soil was assessed using 5 different maize genotype (Zea mays L.) cultivars. The results showed that the different Pi fractions in the soil increased in the order of H 2 SO 4 -extractable P (Ca 10 –P) > Na 3 C 6 H 5 O 7 –Na 2 S 2 O 4 -extractable P (O–P) > NH 4 Ac-extractable P (Ca 8 –P) > NaHCO 3 -extractable P (Ca 2 –P), NH 4 F-extractable P (Al–P), NaOH–Na 2 CO 3 -extractable P (Fe–P), and the content of plant-unavailable P (Ca 10 –P + O–P) was high, up to 79.1%, which might be an important reason for P deficiency in this low-P soil. The 32 P tracer results showed that after the addition of 32 P-Pi to the soil with no P fertilizer applied for 25 d, 29.0% of 32 P was quickly transformed into Ca 2 –P (rapidly available P), and 66.1% of 32 P was transformed into Al–P, Fe–P and Ca 8 –P (slowly available P). Only 5.0% of 32 P was transformed into O–P and Ca 10 –P (plant-unavailable P). Moreover, in the soil with P fertilizer applied, 32 P transformation into Ca 2 –P increased, and the transformation into Ca 8 –P + Fe–P + AL–P and O–P, Ca 10 –P significantly decreased compared to the soil with no P fertilizer applied (p 32 P tracer. ► L-value and P availability assessed using 5 maize genotype. ► Observed higher rate of P transformation to unavailable P in deficient soil than in sufficient. ► Different genotypes had different soil P-use efficiency and low-P tolerance mechanisms.

  3. Phosphorus forms in soils of Oban Hills, Akamkpa, Cross River State ...

    African Journals Online (AJOL)

    Oban Hills is located at Akamkpa in the Southern Senatorial District of Cross River, State, Nigeria. Phosphorus (P)-rich soil from the Hills is expected to have an effect on retention and distribution in the highly acidic soils surrounding the area inundated for several years. Phosphorus forms in the soils of the Hills varied with ...

  4. Uptake and utilization of soil and fertilizer phosphorus by wheat in medium black soils

    International Nuclear Information System (INIS)

    Mahajan, J.P.

    1980-01-01

    A field experiment was conducted using labelled superphosphate to study the uptake and utilization of soil and fertilizer phosphorus by wheat under different soil fertility gradients and phosphorus levels. Grain, straw and total dry matter yield and total P uptake in wheat increased significantly with increasing soil fertility status and P levels (P 0 to P 90 kg P 2 O 5 /ha). Percent P derived from fertilizer increased significantly with increase in P levels but decreased with increasing fertility status of soil. Similar trend was observed in fertilizer P uptake in grain, straw and total dry matter, however, percent utilization of applied P decreased significantly with increasing P levels and fertility status of soil. Soil P uptake increased with increasing fertility status of soil. (author)

  5. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study.

    Science.gov (United States)

    Cade-Menun, Barbara J; Carter, Martin R; James, Dean C; Liu, Corey W

    2010-01-01

    In many regions, conservation tillage has replaced conventional tilling practices to reduce soil erosion, improve water conservation, and increase soil organic matter. However, tillage can have marked effects on soil properties, specifically nutrient redistribution or stratification in the soil profile. The objective of this research was to examine soil phosphorus (P) forms and concentrations in a long-term study comparing conservation tillage (direct drilling, "No Till") and conventional tillage (moldboard plowing to 20 cm depth, "Till") established on a fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island, Canada. No significant differences in total carbon (C), total nitrogen (N), total P, or total organic P concentrations were detected between the tillage systems at any depth in the 0- to 60-cm depth range analyzed. However, analysis with phosphorus-31 nuclear magnetic resonance spectroscopy showed differences in P forms in the plow layer. In particular, the concentration of orthophosphate was significantly higher under No Till than Till at 5 to 10 cm, but the reverse was true at 10 to 20 cm. Mehlich 3-extractable P was also significantly higher in No Till at 5 to 10 cm and significantly higher in Till at 20 to 30 cm. This P stratification appears to be caused by a lack of mixing of applied fertilizer in No Till because the same trends were observed for pH and Mehlich 3-extractable Ca (significantly higher in the Till treatment at 20 to 30 cm), reflecting mixing of applied lime. The P saturation ratio was significantly higher under No Till at 0 to 5 cm and exceeded the recommended limits, suggesting that P stratification under No Till had increased the potential for P loss in runoff from these sites.

  6. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran

    Science.gov (United States)

    Jalali, Mohsen

    2007-10-01

    Phosphorus (P) application in excess of plant requirement may result in contamination of drinking water and eutrophication of surface water bodies. The phosphorous buffer capacity (PBC) of soil is important in plant nutrition and is an important soil property in the determination of the P release potential of soils. Phosphorus sorption greatly affects both plant nutrition and environmental pollution. For better and accurate P fertilizer recommendations, it is necessary to quantify P sorption. This study was conducted to investigate available P and P sorption by calcareous soils in a semi-arid region of Hamadan, western Iran. The soil samples were mainly from cultivated land. Olsen’s biocarbonate extractable P (Olsen P) varied among soils and ranged from 10 to 80 mg kg-1 with a mean of 36 mg kg-1. Half of the soils had an Olsen P > 40 mg kg-1 and >70% of them had a concentration >20 mg kg-1, whereas the critical concentration for most crops is potato (44 kg kg-1) fields than in dry-land wheat farming (24 mg kg-1), pasture (30 mg kg-1), and wheat (24 mg P kg-1) fields. A marked increase in fertilizer P rates applied to agricultural soils has caused P to be accumulated in the surface soil. Phosphate sorption curves were well fitted to the Freundlich equation. The standard P requirement (SPR) of soils, defined as the amount of P sorbed at an equilibrium concentration of 0.2 mg l-1 ranged from 4 to 102 mg kg-1. Phosphorus buffer capacity was relatively high and varied from 16 to 123 l kg-1 with an average of 58 l kg-1. In areas of intensive crop production, continual P applications as P fertilizer and farmyard manure have been used at levels exceeding crop requirements. Surface soil accumulations of P are high enough that loss of P in surface runoff and a high risk for P transfer into groundwater have become priority management concerns.

  7. Soil Phosphorus Storage Capacity for Environmental Risk Assessment

    Directory of Open Access Journals (Sweden)

    Vimala D. Nair

    2014-01-01

    Full Text Available Reliable techniques must be developed to predict phosphorus (P storage and release from soils of uplands, ditches, streams, and wetlands in order to better understand the natural, anthropogenic, and legacy sources of P and their impact on water quality at a field/plot as well as larger scales. A concept called the “safe” soil phosphorus storage capacity (SPSC that is based on a threshold phosphorus saturation ratio (PSR has been developed; the PSR is the molar ratio of P to Fe and Al, and SPSC is a PSR-based calculation of the remaining soil P storage capacity that captures risks arising from previous loading as well as inherently low P sorption capacity of a soil. Zero SPSC amounts to a threshold value below which P runoff or leaching risk increases precipitously. In addition to the use of the PSR/SPSC concept for P risk assessment and management, and its ability to predict isotherm parameters such as the Langmuir strength of bonding, KL, and the equilibrium P concentration, EPC0, this simple, cost-effective, and quantitative approach has the potential to be used as an agronomic tool for more precise application of P for plant uptake.

  8. Extraction of pesticides in soil using supercritical carbon dioxide co-solvents

    International Nuclear Information System (INIS)

    Forero, Jose R; Castro, Henry I; Guerrero, Jairo A.

    2009-01-01

    In this study, three organic solvents (ethyl acetate, methanol and acetone) were used as co solvent in supercritical fluid extraction (SFE) of a mixture of pesticides with different physical and chemical properties present in soil. These pesticides were determined by gas chromatography with electronic micro capture detector μECD and nitrogen-phosphorus detector (NPD), coupled in parallel. The extractions were performed on spiked soil samples using supercritical carbon dioxide (CO 2 SC) as the extracting phase to 35 celsius degrade and 14 MPa, using 10 mL of each co solvent and it was found that methanol offers the greatest efficiency in the extraction process obtaining recovery values between 51.24 and 123.50%.

  9. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content.

    Science.gov (United States)

    Jiang, Wei; Hou, Qingye; Yang, Zhongfang; Zhong, Cong; Zheng, Guodong; Yang, Zhiqiang; Li, Jie

    2014-05-01

    The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  12. Nitrogen mineralization and nitrous oxide emissions in a sandy soil amended with low-phosphorus broiler litter

    Science.gov (United States)

    Recurrent land application of broiler litter in regions with a high concentration of poultry farms result in soils with phosphorus (P) far beyond the agronomic requirement of crops. A new waste treatment technology developed by USDA-ARS, called “Quick Wash”, chemically extracts and recovers P from b...

  13. Extração do fósforo do solo pelo método de Neubauer e por métodos químicos Extraction of phosphorus from the soil by the neubauer and chemical methods

    Directory of Open Access Journals (Sweden)

    R. A. Catani

    1954-01-01

    Full Text Available Nêste trabalho são apresentados dados sôbre a extração do fósforo de alguns solos do Estado de São Paulo, obtidos pelo método biológico de Neubauer e por diversos métodos químicos. Foram empregados três tipos de solo : massapé-salmourão, terra roxa misturada e arenito Bauru. As amostras de solo foram submetidas à extração do fósforo por arroz (Oryza sativa L., usando a técnica de Neubauer, com pequenas modificações. Ao mesmo tempo o fósforo foi extraído das referidas amostras com os seguintes extratores : água distilada; solução de ácido acético 0,25 normal; solução de ácido sulfúrico 0,05 normal; solução 0,025 ncrmal de fluoreto de amônio e 0,05 normal de ácido sulfúrico ; solução 0,25 normal de ácido oxálico e 0,75 normal de oxalato de potássio.The present work is an attempt to correlate the results obtained in the extraction of soil phosphorus by various chemical methods with those obtained by the biological seedling method of Neubauer. The soil samples investigated represent three of the main soil types of the State of São Paulo, Brazil. Physico-chemical properties of these soils are given in the Portuguese text. Two samples of each soil type were prepared. To one of the samples superphosphate was added at the rate of 115 kg of P2O5 per hectare before being tested. Aliquots of the two samples were then extracted with the following extractors : distilled water ; 0.25 normal acetic acid ; 0.05 normal sulfuric acid ; 0.025 normai ammonium fluoride and 0.05 normal sulfuric acid ; 0.25 normal oxalic acid and 0.75 normal potassium oxalate. Rice plants (Oryza sativa L. were used for the Neubauer test instead of rye (Secale cereale L. because they had been found to be more satisfactory in previous tests. The results, representing the average of three replications, are summarized in table 1. Figures in column 4 represent the differences between the phosphorus absorbed from 100 g of soil and from the blank

  14. Disponibilidade de fósforo em solos avaliada por diferentes extratores Phosphorus availability in soils, determined by different extracting procedures

    Directory of Open Access Journals (Sweden)

    Fábio Cesar da Silva

    1999-02-01

    , Bray 1 e Olsen; (d não superestima, como os extratores ácidos, a disponibilidade de P em solos tratados com fosfatos naturais; (e é o que apresenta o melhor embasamento teórico para a determinação do chamado "fator quantidade" de P em solos, que é o mais importante índice da disponibilidade do nutriente.The objective of this paper was the comparative study of the most important extractors of soil phosphorus. It presents a literature review of papers that deal with methods of extraction for the evaluation of phosphorus availability in soils. The methods considered were: anion exchange resin, Olsen, Bray 1, Bray 2, Mehlich 1, Troug, Égner, water, 0,01M CaCl2, iron hydroxide impregnated filter paper (Pi and the determinations of the E and L values. The comparison between results of soil analysis by different methods of phosphorus extraction in soils and phosphorus uptake by plants was initially made considering the coefficient of determination (r² for several extractants. The following average values and corresponding numbers of articles in which the method was considered were obtained: resin, 70% (34; E value, 68% (16; L value, 65% (8; Olsen, 54% (48; Bray 1, 50% (42; Mehlich 1, 46% (25; Égner, 44% (9; Bray 2, 42% (19; Water, 42% (15; Truog, 38% (13; CaCl2, 36% (13, and Morgan, 32% (13. The comparison of several methods, considering the pairs of results (r² obtained for the extractants, that were tested together through linear correlation and average contrasts (t student test, indicated that the resin method was statistically superior to the other methods. The resin method presents the following favorable features: (a highest values for the determinations coefficients for the correlations between P uptake by plants and soil P by the different methods, as reviewed in 72 papers; (b it can be used in both acid and alkaline soils, which is not the case for the other most commonly used methods; (c it reveals adequately the effect of liming on the increase of P

  15. Studies of phosphorus-containing fertilizer uptake in soils by 32P isotope labelling

    International Nuclear Information System (INIS)

    Fueleky, Gyoergy; Osztoics, Andrasne; Papne Kranitz, Erzsebet

    1983-01-01

    Breeding experiments were carried out with rye-grass (Lolium perenne L.) on two soil types to determine the plant uptake of phosphorus from naturally occuring element and from that added to the soil by superphosphate fertilizers. 32 P isotope labelling and radiometric measuring method were applied. In addition to the determination of phosphorus uptake, the phosphorus contents of the soil from its natural stock and from the fertilizer for both soil types can be determined by this method. (A.L.)

  16. Relationship among Phosphorus Circulation Activity, Bacterial Biomass, pH, and Mineral Concentration in Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Dinesh Adhikari

    2017-12-01

    Full Text Available Improvement of phosphorus circulation in the soil is necessary to enhance phosphorus availability to plants. Phosphorus circulation activity is an index of soil’s ability to supply soluble phosphorus from organic phosphorus in the soil solution. To understand the relationship among phosphorus circulation activity; bacterial biomass; pH; and Fe, Al, and Ca concentrations (described as mineral concentration in this paper in agricultural soil, 232 soil samples from various agricultural fields were collected and analyzed. A weak relationship between phosphorus circulation activity and bacterial biomass was observed in all soil samples (R2 = 0.25, and this relationship became significantly stronger at near-neutral pH (6.0–7.3; R2 = 0.67. No relationship between phosphorus circulation activity and bacterial biomass was observed at acidic (pH < 6.0 or alkaline (pH > 7.3 pH. A negative correlation between Fe and Al concentrations and phosphorus circulation activity was observed at acidic pH (R2 = 0.72 and 0.73, respectively, as well as for Ca at alkaline pH (R2 = 0.64. Therefore, bacterial biomass, pH, and mineral concentration should be considered together for activation of phosphorus circulation activity in the soil. A relationship model was proposed based on the effects of bacterial biomass and mineral concentration on phosphorus circulation activity. The suitable conditions of bacterial biomass, pH, and mineral concentration for phosphorus circulation activity could be estimated from the relationship model.

  17. Phosphorus solubility in an acid forest soil as influenced by form of applied phosphorus and liming

    International Nuclear Information System (INIS)

    Fransson, Ann-Mari; Bergkvist, Bo; Tyler, Germund

    1999-01-01

    Sedimentary phosphorus, superphosphate, and wood-ash, as well as either sedimentary phosphorus. superphosphate or ash combined with lime, were distributed in selected plots in an 80-yr-old Norway spruce forest [Picea abies (L.) Karst]. After 2 yrs, the sedimentary phosphorus had increased the oxalate/oxalic acid-extractable P in the O-horizon, and the superphosphate had increased the oxalate/oxalic acid-extractable P in the E-horizon. At first, the percolation water from the superphosphate treatment showed high P concentrations. It soon returned to control levels, however. The percolation water from the sedimentary phosphorus treatment gradually showed increased phosphate concentrations. The wood-ash increased neither the amount of extractable P nor the P concentration in the percolation water. The oxalate/oxalic acid-extractable P from the sedimentary P treatment was reduced by liming. The P concentration in the percolation water also tended to be reduced. This was perhaps due to formation of Ca phosphates in the vicinity of the lime particles. In addition, if the solubility rate was similar to the uptake rate, it could account for the decreased P concentration

  18. Soil phosphorus redistribution among iron-bearing minerals under redox fluctuation

    Science.gov (United States)

    Lin, Y.; Bhattacharyya, A.; Campbell, A.; Nico, P. S.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Phosphorus (P) is a key limiting nutrient in tropical forests that governs primary production, litter decomposition, and soil respiration. A large proportion of P in these highly weathered soils is bound to short-range ordered or poorly crystalline iron (Fe) minerals. It is well-documented that these Fe minerals are redox-sensitive; however, little is known about how Fe-redox interactions affect soil P turnover. We evaluated the impacts of oxic/anoxic fluctuation on soil P fractions and reactive Fe species in a laboratory incubation experiment. Soils from a humid tropical forest were amended with plant biomass and incubated for up to 44 days under four redox regimes: static oxic, static anoxic, high frequency fluctuating (4-day oxic/4-day anoxic), and low frequency fluctuating (8-day oxic/4-day anoxic). We found that the static anoxic treatment induced a 10-fold increase in Fe(II) (extracted by hydrochloric acid) and a 1.5-fold increase in poorly crystalline Fe (extracted by ammonium oxalate), suggesting that anoxic conditions drastically increased Fe(III) reduction and the formation of amorphous Fe minerals. Static anoxic conditions also increased Fe-bound P (extracted by sodium hydroxide) and increased the oxalate-extractable P by up to 110% relative to static oxic conditions. In two fluctuating treatments, Fe(II) and oxalate-extractable Fe and P were all increased by short-term reduction events after 30 minutes, but fell back to their initial levels after 3 hours. These results suggest that reductive dissolution of Fe(III) minerals mobilized a significant amount of P; however, this P could be rapidly re-adsorbed. Furthermore, bioavailable P extracted by sodium bicarbonate solution was largely unaffected by redox regimes and was only increased by static anoxic conditions after 20 days. Overall, our data demonstrate that a significant amount of soil P may be liberated and re-adsorbed by Fe minerals during redox fluctuation. Even though bioavailable P appears to be

  19. Quality-intensity relationships of phosphorus in some soils from NW India

    International Nuclear Information System (INIS)

    Vig, A.C.; Dev, G.

    1975-01-01

    In a laboratory investigation, Q/I relationship of soil phosphorus in soils derived from four different agroclimatic regions of N.W. India have been worked out on the basis of adsorption studies, involving the use of radioactive phosphorus. These two parameters are related to each other by a Langmuir-like equation. The results indicate that for supply of P, the soils fall in the decreasing order of: Dalhousie, Ludhiana, Gurudaspur, Palampur. (author)

  20. Horizontal distribution of phosphorus in soils of irrigation ditches ...

    African Journals Online (AJOL)

    Horizontal distribution of phosphorus in soils of irrigation ditches. ... correlations were found between soil P and stream water P on one hand, and between soil pH and stream water pH on the other, indicating that the irrigation water may indeed, have had little or no influence on the properties of the ditches' soils.

  1. Validating soil phosphorus routines in the SWAT model

    Science.gov (United States)

    Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Commonly used models like SWAT have not always been updated to reflect improved understanding of soil P transformations and transfer to runoff. Our objective was to validate the ability of the P routin...

  2. [Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi River, a tributary of the Three Gorges Reservoir].

    Science.gov (United States)

    Sun, Wen-Bin; Du, Bin; Zhao, Xiu-Lan; He, Bing-Hui

    2013-03-01

    The sediment, one of the key factors leading to the eutrophication of water bodies, is an important ecological component of natural water body. In order to investigate the morphological characteristics and moving-transiting rule of phosphorus in the sediments of the Pengxi River, a tributary of the Three Gorges Reservoir, the distributions of different phosphorus forms on the three cross-section in the sediments and three soil types of riparian zone were investigated using the sequential extraction method. The characteristics of phosphorus adsorption on the sediments were also investigated by batch experiments. The equilibrium phosphorus concentrations at zero adsorption (EPC0) on those sediments were estimated using the Henry linear models. The results show that the total phosphorus (TP) contents of these sediments and soils of riparian zone were 0.80-1.45 g x kg(-1) and 0.65-1.16 g x kg(-1), respectively. Phosphorus in sediments and soils were divided into inorganic phosphorus (IP) and organic phosphorus (Or-P), and the inorganic phosphorus was the dominant component of TP. Of the inorganic phosphorus fractions, the percentages of phosphorus bounded to calcium (Ca-P) and occluded phosphorus (O-P) from sediments were higher than 80%, implying that the contents of phosphorus were mainly influenced by their bedrocks and the sedimentary environmental conditions, not by the activities of human beings. The fractions of Ca-P and O-P were the dominant components of inorganic phosphorus in alluvial soil and purple soil, while the fraction of O-P was the highest in the paddy soil. The EPC0 values of the sediments from the sections of Huangshi, Shuangjiang and Gaoyang were 0.08, 0.13 and 0.11 mg x L(-1) respectively, but the EPC0 values of the alluvial soil, purple soil and paddy soil located in riparian zone were 0.08, 0.09 and 0.04 mg x L(-1), respectively. Correlation analysis shows that the values of EPC0 positively related to the contents of total phosphorus and clay

  3. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  4. Broiler diet modification and litter storage: impacts on phosphorus in litters, soils, and runoff.

    Science.gov (United States)

    McGrath, Joshua M; Sims, J Thomas; Maguire, Rory O; Saylor, William W; Angel, C Roselina; Turner, Benjamin L

    2005-01-01

    Modifying broiler diets to mitigate water quality concerns linked to excess phosphorus (P) in regions of intensive broiler production has recently increased. Our goals were to evaluate the effects of dietary modification, using phytase and reduced non-phytate phosphorus (NPP) supplementation, on P speciation in broiler litters, changes in litter P forms during long-term storage, and subsequent impacts of diets on P in runoff from litter-amended soils. Four diets containing two levels of NPP with and without phytase were fed to broilers in a three-flock floor pen study. After removal of the third flock, litters were stored for 440 d at their initial moisture content (MC; 24%) and at a MC of 40%. Litter P fractions and orthophosphate and phytate P concentrations were determined before and after storage. After storage, litters were incorporated with a sandy and silt loam and simulated rainfall was applied. Phytase and reduced dietary NPP significantly reduced litter total P. Reducing dietary NPP decreased water-extractable inorganic phosphorus (IP) and the addition of dietary phytase reduced NaOH- and HCl-extractable organic P in litter, which correlated well with orthophosphate and phytic acid measured by 31P nuclear magnetic resonance (NMR), respectively. Although dry storage caused little change in P speciation, wet storage increased concentrations of water-soluble IP, which increased reactive P in runoff from litter-amended soils. Therefore, diet modification with phytase and reduced NPP could be effective in reducing P additions on a watershed scale. Moreover, efforts to minimize litter MC during storage may reduce the potential for dissolved P losses in runoff.

  5. Aplicação de fósforo para imobilização química do cádmio em solo contaminado Phosphorus application for the chemical immobilization of cadmium in contaminated soil

    Directory of Open Access Journals (Sweden)

    Anderson Ricardo Trevizam

    2010-01-01

    Full Text Available The objective of the study was to evaluate the effect of phosphorus on the Cd availability to plants of a contaminated soil using 109Cd isotope and chemical extractants. The experiment was set in a randomized block design and the soil was labeled with 222 KBq of 109Cd per pot and received 5 rates of P as triple superphosphate, growing lettuce plants as test crop. The use of phosphorus reduced pH of soil which altered the Cd availability in DTPA and Mehlich extractants. The lettuce Cd content decreased but its accumulation and L value increased in all treatments compared to the control, demonstrating the inefficiency of phosphorus in reducing the Cd availability.

  6. Phosphorus levels in soil and lettuce production due to phosphorus fertilization

    Directory of Open Access Journals (Sweden)

    José Ricardo Mantovani

    2014-09-01

    Full Text Available The leafy vegetables are considered nutrient-demanding, but are scarce in the literature works about phosphorus fertilization. This study aimed to evaluate the effect of phosphate on the production of lettuce, content and amount of P accumulated in leaf plants, and to relate levels of P in the clayey soil with plant production. The experiment was conducted in a greenhouse in pots in a randomized block design with ten treatments and four replications. The treatments were made up of P, corresponding to 0, 50, 100, 150, 200, 300, 400, 500, 600 and 700 mg dm-3, as triple superphosphate powder. Portions of 6 dm3 of the clay soil (420 g kg-1 clay received lime, aimed at raising the V % soil to 70 %, equivalent to 20 t ha-1 of cattle manure, and the phosphate fertilizer according to the treatments, remaining incubated for about 30 days. At the end of incubation, each pot received a change of lettuce cultivar Verônica. The plant harvesting was performed 39 days after transplanting the seedlings. O P gave large increases in growth and production of lettuce, and culture responded positively to the application of high doses of the nutrient. A dose of 350 mg dm-3, equivalent to 800 kg ha-1 P2O5, was the most suitable for growing lettuce in the clay soil. In this work conditions, the phosphorus fertilizations it was necessary when the P-Mehlich contents in the clay soil were less than 75 mg dm-3.

  7. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    OpenAIRE

    Ch’ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixt...

  8. Comparação de quatro extratores de fósforo de solos Comparison of four extractors of soil phosphorus

    Directory of Open Access Journals (Sweden)

    Bernardo Van Raij

    1984-01-01

    Full Text Available É apresentado um estudo comparativo de quatro métodos de extração de fósforo de solos: a IAC, baseado na extração de 5cm³ de terra com 50ml de H2SO4 0,05N; b Bray I modificado, baseado na extração de 2,5cm³ de terra com 50ml de solução 0,03N em NH4F e 0,025N em HCl; c Olsen, baseado na extração de 2,5cm³ de terra com 50ml de NaHCO3 0,5N a pH 8,5 e d resina, baseado na extração de 5cm³ de terra com 2,5cm³ de resina trocadora de aníons, com agitação por duas horas em suspensão aquosa. Para comparar os métodos determinou-se, para cada um deles, a correlação entre os teores de fósforo nos solos e os resultados de respostas à adubação fosfatada em ensaios de campo, de 16 ensaios de milho e 16 de algodão. Para as duas culturas em conjunto, os valores absolutos dos coeficientes de correlação, para os quatro métodos, foram: a 0,683; b 0,650; c 0,391 e d 0,802, indicando a superioridade do método da resina.A comparative study of four methods used for the extraction of soil phosphorus, is presented. The methods were: a IAC method, based on the extraction of, 5cm³ of soil with 50ml of 0.05N H2SO4; b a modified Bray I method, based on the extraction of 2.5cm³ of soil with 50m1 of a solution 0.03N in NH4F and 0.025N in HCl; c Olsen's method, based on the extraction of 2.5cm³ of soil with 50ml of 0.5N NaHCO3 solution at pH 8.5; d an anion exchange resin method based on the extraction of 5cm³ of soil with 2.5cm³ of an anion exchange resin contained in a polyester netting bag, by shaking in 50ml water. For each method, the correlation coefficients between soil phosphorus and the response to phosphorus fertilization of 16 field experiments of cotton and 16 field experiments of corn were, respectively, 0.683, 0.650, 0.391 and 0.802, indicating the superiority of the anion-exchange resin method for the assessment of soil phosphorus availability.

  9. Using hyper-spectral indices to detect soil phosphorus concentration for various land use patterns.

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; Zhu, Qing; Li, Jingtao

    2015-01-01

    The management of nonpoint source pollution requires accurate information regarding soil phosphorus concentrations for different land use patterns. The use of remotely sensed information provides an important opportunity for such studies, and the previous studies showed that soil phosphorus shows no clear spectral response feature, while the phosphorus concentrations can be indirectly detected from the normalised difference vegetation indices (NDVI). Therefore, this study uses an optimised index in the RED and near-infrared (NIR) wavelengths to estimate total phosphorus and Olsen-P concentrations. The prediction accuracy is not entirely satisfactory with respect to a mixed land use dataset in which the determination coefficient was maintained at approximately 0.6, with particularly poor performance obtained for forest land group. However, the prediction accuracy increases markedly with the separation of samples into broad land use categories, even the R(2) was exceeded 0.8 for tea plantation group. The soil phosphorus prediction effect showed obvious variance for different land use patterns, which was related to vegetation growth conditions and critical soil properties including soil organic matter and mechanical composition.

  10. [Soil Olsen-P content changing trend and its relationship with phosphorus surplus and crop yield under long-term fertilization in loessial soil region on the Loess Plateau, China].

    Science.gov (United States)

    E, Sheng Zhe; Yang, Zhi Qi; Zeng, Xi Bai; Wang, Ya Nan; Luo, Zhao Xia; Yuan, Jin Hua; Che, Zong Xian

    2017-11-01

    The changing trend of soil available phosphorus (Olsen-P) content in soil and its relationship with soil phosphorus surplus and crop yield are fundamental when making appropriate phosphate fertilizer recommendations. In this paper, the influences of long-term fertilization on crops phosphorus uptake, soil phosphorus surplus, changing trend of soil available phosphorus content and relationships of soil available phosphorus content with soil phosphorus surplus and crop yield were investigated through 34 years (1981-2015) long-term trial in loessial soil region on the Loess Plateau. The experiment had a completely-randomized-block split-plot design in triplicate. Two main-plot treatments were no farmyard manure and farmyard manure (M), and four subplot treatments were CK (no fertilizer), N (application of chemical fertilizer N), NP (application of chemical fertilizer NP) and NPK (balanced application of chemical fertilizer NPK), respectively. The results showed that fertilization treatments and crop types significantly influenced uptake amount of phosphorus and soil phosphorus surplus. Averaged over time from 1981 to 2015, wheat mean phosphorus uptake amounts of CK, N, NP, NPK, M, MN, MNP and MNPK were 8.63, 10.64, 16.22, 16.21, 16.25, 17.83, 20.39 and 20.27 kg·hm -2 , while rape phosphorus uptakeamounts of eight treatments were 4.40, 8.38, 15.08, 15.71, 10.52, 11.23, 17.96 and 17.66 kg·hm -2 , respectively. The surplus amount of soil phosphorus significantly correlated with the amount of phosphorus applied to soil. When soil phosphorus surplus amount equal zero, wheat and rape phosphorus input amounts were 10.47 kg·hm -2 and 6.97 kg·hm -2 , respectively. Soil phosphorus surplus amount significantly influenced the changing trend of available phosphorus content in soil. CK and N treatments had no phosphorus input, and soil available phosphorus content exhibited a declining trend, annually decreased by 0.16 mg·kg -1 and 0.15 mg·kg -1 , respectively. In contrast

  11. Changes in Soil Minerology Reduce Phosphorus Mobility During Anoxic Soil Conditions

    Science.gov (United States)

    Giri, S. K.; Geohring, L. D.; Richards, B. K.; Walter, M.; Steenhuis, T. S.

    2008-05-01

    Phosphorus (P) transfer from the landscape to receiving waters is an important environmental concern because these diffuse losses may cause widespread water quality impairments which can accelerate freshwater eutrophication. Phosphorus (P) mobilization from soil to surface and subsurface flow paths is controlled by numerous factors, and thus it can vary greatly with time and landscape scale. To determine whether P mobilization during soil saturation in the landscape was caused or controlled by complexation, iron reduction or ligand exchange, experiments were carried out to better characterize the interrelationships of varying P sources with dissolved organic carbon (DOC) and soil anoxic conditions. The soil incubation experiments consisted of treatments with distilled water, 5 mM acetic acid (HAc), 0.05% humic acid (HA) and glucose (40 mM) at 26 o C under anaerobic conditions to isolate effects of the various P exchange processes. The experimental results suggest that during soil saturation, the loosely bound P, which is primarily associated with iron oxyhydroxides, was mobilized by both reduction and complexation processes. Good correlations were observed between ferrous iron (Fe+2) and DOC, and between total dissolved phosphorus (TDP) and DOC, facilitating P desorption to the soil water. The anaerobic soil conditions with different P sources also indicated that mineralization facilitated P mobility, mainly due to chelation (humics and metabolites) and as a result of the bio-reduction of iron when fresh litter and grass were present. The organic P sources which are rich in carbohydrate and cellulose and that undergo fermentation due to the action of lactate forming organisms also caused a release of P. The easily metabolizable DOC sources lead to intensive bio-reduction of soil with the release of Fe, however this did not necessarily appear to cause more TDP in the soil solution. The varying P additions in soils with water, HAc and glucose (40mm) before and after

  12. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    Science.gov (United States)

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  13. Effects of phosphorus and nitrogen additions on tropical soil microbial activity in the context of experimental warming

    Science.gov (United States)

    Foley, M.; Nottingham, A.; Turner, B. L.

    2017-12-01

    Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.

  14. Releasing Pattern of Applied Phosphorus and Distribution Change of Phosphorus Fractions in the Acid Upland Soils with Successive Resin Extraction

    Directory of Open Access Journals (Sweden)

    Arief Hartono

    2008-05-01

    Full Text Available The releasing pattern of applied P in the acid upland soils and the soil properties influencing the pattern were studied. Surface horizons of six acid upland soils from Sumatra, Java and Kalimantan were used in this study. The releasing pattern of applied P (300 mg P kg-1 of these soils were studied by successive resin extraction. P fractionation was conducted to evaluate which fractions released P to the soil solution after successive resin extraction. The cumulative of resin-Pinorganic (Pi release of soils was fitted to the first order kinetic. Regression analyses using factor scores obtained from the previous principal components analyses was applied to determine soil properties influencing P releasing pattern. The results suggested that the maximum P release was significantly (P < 0.05 increased by acidity plus 1.4 nm mineral-related factor (PC2 i.e. exchangeable Al and 1.4 nm minerals (smectite and vermiculite and decreased by oxide related factor (PC1 i.e. aluminum (Al plus 1/2 iron (Fe (by ammonium oxalate, crystalline Al and Fe oxides, cation exchange capacity, and clay content. P fractionation analysis after successive resin extraction showed that both labile and less labile in the form of NaHCO3-Pi and NaOH-Pi fractions, respectively, can be transformed into resin-Pi when in the most labile resin-Pi is depleted. Most of P released in high oxides soils were from NaOH-Pi fraction while in low oxides soils were from NaHCO3-Pi. P release from the former fraction resulted in the maximum P release lower than that of the latter one. When NaHCO3-Pi was high, NaOH-Pi was relatively more stable than NaHCO3-Pi despite resin-Pi removal. NaHCO3-Pi and NaOH-Pi are very important P fractions in replenishing resin-Pi in these acid upland soils.

  15. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark

    DEFF Research Database (Denmark)

    Rubæk, Gitte Holton; Kristensen, Kristian; Olesen, S E

    2013-01-01

    Over the past century, phosphorus (P) has accumulated in Danish agricultural soils. We examined the soil P content and the degree of P saturation in acid oxalate (DPS) in 337 agricultural soil profiles and 32 soil profiles from deciduous forests sampled at 0–0.25, 0.25–0.50, 0.50–0.75 and 0...

  16. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  17. Isotopic assessment of soil phosphorus fertility and evaluation of rock phosphates as phosphorus sources for plants in subtropical China

    International Nuclear Information System (INIS)

    Xiong, L.M.; Zhou, Z.G.; Feng, G.L.; Lu, R.K.; Fardeau, J.C.

    2002-01-01

    Soil phosphorus (P) deficiency is a major factor limiting crop productivity in many tropical and subtropical soils. Due to the acidic nature of these soils, rock phosphate (RP)-based P fertilizers that are cheaper than manufactured water-soluble P fertilizers can be an attractive alternative under certain conditions. Assessment of the efficacy of these alternative P fertilizers and a rational management of local P resources for sustainable agricultural production require an understanding of the dynamics of P in the soil-plant system and the interactions of various P sources in soils and monitoring of soil available P levels. The present work was conducted to test the applicability of the 32 P isotopic kinetic method to assess the soil P fertility status and evaluate the agronomic effectiveness of local rock phosphates in subtropical China. A series of experiments was carried out in the laboratory, greenhouse and field conditions with the following specific objectives: (a) to evaluate the suitability of this isotopic kinetic method in evaluating soil P fertility in 32 soil samples collected across southern China, (b) to test and further develop chemical extraction methods for routine soil P testing, (c) to monitor the dissolution kinetics of local low to medium grade rock phosphate sources and their effect on soil properties and (d) to evaluate their agronomic effectiveness in greenhouse and field experiments. Since most of the studied soils had very low concentrations of soluble P and high P-fixing capacities, the isotopic kinetic method was found unsuitable for evaluating soil P fertility and to predict plant P uptake. In contrast, the proposed chemical extraction method (NaHCO 3 -NH 4 F) predicted very well plant P uptake, suggesting that this extraction method can be routinely used to evaluate soil bioavailable P in similar soils in subtropical China. From the incubation study, it was found that although the local low to medium grade RPs were inferior to the

  18. Characterization, desorption, and mining of phosphorus in noncalcareous sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.

    2004-01-01

    In areas with intensive livestock farming, soils have been enriched with phosphorus (P), following heavy applications of animal manure. These soils are a risk for nearby surface waters, as the leaching of P from these soils contributes to eutrophication of these surface waters. This study was set up

  19. [Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil].

    Science.gov (United States)

    Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan

    2013-04-01

    Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.

  20. Bacteria as transporters of phosphorus through soil

    DEFF Research Database (Denmark)

    Glæsner, N.; Bælum, Jacob; Jacobsen, C. S.

    2016-01-01

    The transport of phosphorus (P) from agricultural land has led to the eutrophication of surface waters worldwide, especially in areas with intensive animal production. In this research, we investigated the role of bacteria in the leaching of P through three agricultural soils with different...

  1. Effect of Phosphorus Fertilizer Application on Some Soil Chemical ...

    African Journals Online (AJOL)

    Research was conducted during the 2004, 2005 and 2006 cropping seasons to study the effect of phosphorus fertilizer on some soil chemical properties and nitrogen fixation of legumes at Bauchi, northeastern Nigeria. Composite soil samples were collected from sites before planting and after harvesting at the depths of ...

  2. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  3. Effect of fertilization on soil phosphorus in a long-term field experiment in southern Finland

    Directory of Open Access Journals (Sweden)

    A. JAAKKOLA

    2008-12-01

    Full Text Available A field experiment was established in 1978 on a loam soil (pH in CaCl 2 7.1 to monitor gradual changes in the soil P status as response to different P fertilization regimes. For 18 years, cereals or grass were cultivated without P fertilization (P 0 or with annual P application of 35 kg ha -1 (P 1 or 70- 79 kg P ha -1 and 71-83 kg K ha -1 (P 2 K. The effects of the treatments on the crop yield varied yearly. The Chang and Jackson fractionation analysis revealed that fertilizer P not taken up by the plant crops was mostly in the NH 4 F extract and to a lesser extent in the NaOH extract. The NH 4 F-extractable P proved also to be the main P source for plants. However, the changes in the reserves of inorganic and organic P did not agree very well with the calculated P balance in soil (applied P minus plant P uptake. This disproportion was partly explained by the soil movement from plots to the neighbouring ones during the experiment. Phosphorus extractable in acid ammonium acetate or water decreased gradually when no P was applied and increased with increasing P accumulation. The changes in the inorganic P reserves due to different P fertilization history were reflected a little more sensitively in the water extraction test than in the acid acetate test.;

  4. Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem

    Science.gov (United States)

    M. E. McGroddy; W. L. Silver; Jr. de Oliveira; W. Z. de Mello; M. Keller

    2008-01-01

    The low available phosphorus (P) pools typical of highly weathered tropical forest soils are thought to result from a combination of export of phosphorus via erosion and leaching as well as chemical reactions resulting in physically and chemically protected P compounds. Despite the low apparent P availability, these soils support some of the highest terrestrial net...

  5. Phosphorus adsorption pattern in selected cocoa growing soils in ...

    African Journals Online (AJOL)

    Application of phosphate fertilizer for the correction of P deficiency in soil is ideal in agricultural practices. Unfortunately, only a small fraction of applied P fertilizer is available for plant uptake due to fertilizer-soil interactions which leads to fixation of P. phosphorus adsorption isotherm and buffering capacity are strong tools ...

  6. Soil organic phosphorus in soils under different land use systems in northeast Germany

    Science.gov (United States)

    Slazak, Anna; Freese, Dirk; Hüttl, Reinhard F.

    2010-05-01

    Phosphorus (P) is commonly known as a major plant nutrient, which can act as a limiting factor for plant growth in many ecosystems, including different land use systems. Organic P (Po), transformations in soil are important in determining the overall biological availability of P and additionally Po depletion is caused by land cultivation. It is expected that changes of land use modifies the distribution of soil P among the various P-pools (Ptotal, Plabile, Po), where the Plabile forms are considered to be readily available to plants and Po plays an important role with P nutrition supply for plants. The aim of the study was to measure the different soil P pools under different land use systems. The study was carried out in northeast of Brandenburg in Germany. Different land use systems were studied: i) different in age pine-oak mixed forest stands, ii) silvopastoral land, iii) arable lands. Samples were taken from two mineral soil layers: 0-10 and 10-20 cm. Recently, a variety of analytical methods are available to determine specific Po compounds in soils. The different P forms in the soil were obtained by a sequential P fractionation by using acid and alkaline extractants, which mean that single samples were subjected to increasingly stronger extractants, consequently separating the soil P into fractions based on P solubility. The soil Ptotal for the forest stands ranged from 100 to 183 mg kg -1 whereas Po from 77 to 148 mg kg -1. The Po and Plabile in both soil layers increased significantly with increase of age-old oak trees. The most available-P fraction was Plabile predominate in the oldest pine-oak forest stand, accounting for 29% of soil Ptotal. For the silvopasture and arable study sites the Ptotal content was comparable. However, the highest value of Ptotal was measured in the 30 years old silvopastoral system with 685 mg kg-1 and 728 mg kg-1 at 0-10 cm and 10-20 cm depth, respectively than in arable lands. The results have shown that the 30 years old

  7. Solvent Extraction Separation of Phosphorus for the Measurement of 32P

    International Nuclear Information System (INIS)

    Kang, Sang Hoon; Lee, Heung N.; Ahn, Hong Joo; Han, Sun ho; Jee, Kwang Yong

    2006-01-01

    Phosphorus is a major element in life and plays essential roles in the human body. On the other hand, phosphorus organic compound has high toxicity, therefore, the determination of trace amount of phosphorus is important in environment studies. Development of an analytical method for the determination of low levels of phosphorus is very important as a very few analytical techniques yield reliable results for this element at trace levels. Radioactive phosphorus, 32 P (T1/2 = 14.3 d, Emax 1.71 MeV) is the highest energy beta-emitting radionuclides and now generally accepted as an effective therapeutic agent for chronic leukemia and excess red blood cells. But, 32 P used in diagnosis and treatment are generated radioactive waste such as pipette tips, latex gloves, angioplastic balloons, Kimwipes etc.. We'll analyze 32 P in medical radioactive waste in the future. Even if 32 P has low level activity and short halflife, we have to control radioactive materials in medical waste. In this work, experiment separation using solvent extraction of inactive phosphorus as preliminary experiments for the establishment of analysis. Phosphorus is extracted tri-n-octylamine (TNOA)/ xylene, which is the most suitable solvent and then is measured by UV-visable spectrophotometer

  8. Land-use impact on selected forms of arsenic and phosphorus in soils of different functions

    Science.gov (United States)

    Plak, Andrzej; Bartmiński, Piotr; Dębicki, Ryszard

    2017-10-01

    The aim of the study was to assess the impact of technosols and geomechanically unchanged soils of the Lublin agglomeration on the concentrations of arsenic and phosphorus, and on selected forms of these elements. Arsenic and phosphorus concentrations were determined in the urban soils of Lublin (Poland), and the relationship between their degree of contamination and different types of land use was estimated. The samples collected were subjected to sequential analysis, using ammonium sulphate, acid ammonium phosphate, oxalate buffer (also with ascorbic acid) and aqua regia for arsenic, and ammonium chloride, sodium hydroxide, hydrochloric acid and aqua regia for phosphorus. The influence of the land use forms was observed in the study. The greatest amount of arsenic (19.62 mg kg-1) was found in the industrial soils of Lublin, while the greatest amount of phosphorus (580.4 mg kg-1) was observed in non-anthropogenic soils (mainly due to the natural accumulation processes of this element). Fractions of arsenic and phosphorus obtained during analysis showed strong differentiation. Amorphic and crystalline fractions of arsenic, bound with iron oxides, proved to have the highest share in the total arsenic pool. The same situation was noted for phosphorus.

  9. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.

    Science.gov (United States)

    Vadas, Peter A; Joern, Brad C; Moore, Philip A

    2012-01-01

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Effects of Land-Applied Ammonia Scrubber Solutions on Yield, Nitrogen Uptake, Soil Test Phosphorus, and Phosphorus Runoff.

    Science.gov (United States)

    Martin, Jerry W; Moore, Philip A; Li, Hong; Ashworth, Amanda J; Miles, Dana M

    2018-03-01

    Ammonia (NH) scrubbers reduce amounts of NH and dust released from animal rearing facilities while generating nitrogen (N)-rich solutions, which may be used as fertilizers. The objective of this study was to determine the effects of various NH scrubber solutions on forage yields, N uptake, soil-test phosphorus (P), and P runoff. A small plot study was conducted using six treatments: (i) an unfertilized control, (ii) potassium bisulfate (KHSO) scrubber solution, (iii) aluminum sulfate [Al(SO) ⋅14HO, alum] scrubber solution, (iv) sodium bisulfate (NaHSO) scrubber solution, (v) sulfuric acid (HSO) scrubber solution, and (vi) ammonium nitrate (NHNO) fertilizer. The scrubber solutions were obtained from ARS Air Scrubbers attached to commercial broiler houses. All N sources were applied at a rate of 112 kg N ha. Plots were harvested approximately every 4 wk and soil-test P measurements were made, then a rainfall simulation study was conducted. Cumulative forage yields were greater ( scrubber solutions than for alum (6.7 Mg ha) or HSO (6.5 Mg ha) scrubber solutions or for NHNO (6.9 Mg ha). All N sources resulted in higher yields than the control (5.1 Mg ha). The additional potassium in the KHSO treatment likely resulted in higher yields. Although Mehlich-III-extractable P was not affected, water-extractable P in soil was lowered by the alum-based scrubber solution, which also resulted in lower P runoff. This study demonstrates that N captured using NH scrubbers is a viable N fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Organic Acids Regulation of Chemical-Microbial Phosphorus Transformations in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Paredes, Cecilia; Zhang, Hao; Giles, Courtney D; Darch, Tegan; Stutter, Marc; George, Timothy S; Shand, Charles; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Wearing, Catherine; Haygarth, Philip M

    2016-11-01

    We have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg -1 . However, low organic acid doses (<2 mmol kg -1 ) were associated with a steep increase in microbial biomass P, which was not seen for higher doses. In both soils, treatment with the tribasic citric acid led to a greater increase in soil solution P than the dibasic oxalic acid, likely due to the rapid degrading of oxalic acids in soils. After equilibration of soils with citric or oxalic acids, the adsorbed-to-solution distribution coefficient (K d ) and desorption rate constants (k -1 ) decreased whereas an increase in the response time of solution P equilibration (T c ) was observed. The extent of this effect was shown to be both soil and organic acid specific. Our results illustrate the critical thresholds of organic acid concentration necessary to mobilize sorbed and precipitated P, bringing new insight on how the exudation of organic acids regulate chemical-microbial soil phosphorus transformations.

  12. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    Science.gov (United States)

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.

  13. Does Biochar Addition Inlfuence the Change Points of Soil Phosphorus Leaching?

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-rong; LI Dan; KONG Juan; LIN Qi-mei

    2014-01-01

    Phosphorus change point indicating the threshold related to P leaching, largely depends on soil properties. Increasing data have shown that biochar addition can improve soil retention capacity of ions. However, we have known little about weather biochar amendment inlfuence the change point of P leaching. In this study, two soils added with 0, 5, 10, 20, and 50 g biochar kg-1 were incubated at 25°C for 14 d following adjusting the soil moisture to 50%water-holding capacity (WHC). The soils with different available P values were then obtained by adding a series of KH2PO4 solution (ranging from 0 to 600 mg P kg-1 soil), and subjecting to three cycles of drying and rewetting. The results showed that biochar addition signiifcantly lifted the P change points in the tested soils, together with changes in soil pH, organic C, Olen-P and CaCl2-P but little on exchangeable Ca and Mg, oxalate-extractable Fe and Al. The Olsen-P at the change points ranged from 48.65 to 185.07 mg kg-1 in the alluvial soil and 71.25 to 98.65 mg kg-1 in the red soil, corresponding to CaCl2-P of 0.31-6.49 and 0.18-0.45 mg L-1, respectively. The change points of the alluvial soil were readily changed by adding biochar compared with that of the red soil. The enhancement of change points was likely to be explained as the improvement of phosphate retention ability in the biochar-added soils.

  14. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    Science.gov (United States)

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow

  15. Phosphorus fertilization in sugarcane cultivation under different soil managements

    OpenAIRE

    Sousa Junior, Paulo R. de; Brunharo, Caio A. C. G.; Furlani, Carlos E. A.; Prado, Renato de M.; Maldonado Júnior, Walter; Zerbato, Cristiano

    2017-01-01

    ABSTRACT Soil preparation along with its chemical adjustment is the most important step in sugarcane plantation, especially because it provides proper conditions for plant development. The objective of the present research was to evaluate sugarcane response to the application of different phosphorus doses and their location, associated with both minimum soil tillage and conventional soil tillage. The experiment was conducted in a split-split-plot randomized block design, where the main plots ...

  16. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: Effects of compost amendments

    International Nuclear Information System (INIS)

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B.

    2013-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. -- Highlights: ► Soil Pb and As in an old orchard were concentrated in discrete particles. ► Compost amendment of contaminated soil reduced Pb bioavailability. ► Compost amendment of contaminated soil did not reduce As bioavailability. ► Ammonium acetate extraction test reflected bioavailability of soil Pb and As. -- Remediating metal-contaminated orchard soils with compost reduced lead bioavailability but had little effect on arsenic

  17. Phosphorus Characteristics with Controlled Nitrogen in Fertile Soils in Protected Vegetable Field

    Directory of Open Access Journals (Sweden)

    WANG Heng

    2014-06-01

    Full Text Available There is an unreasonable phenomenon of fertilization in vegetable facility cultivation, with the serious imbalance of soil nutrient. In purpose of understanding the absorption characteristics of phosphorus from nitrogen-rich soil, a long-term nitrogen-controlled experiment was carried from the year 2004 to 2007, and a split plot experiment of leaching was carried in winter-spring season of 2007. The results showed that the content of phosphorus varied with different nitrogen control. The TP was decreased with nitrogen supply of none(NN 、organic manure(MN 、organic manure and straw(MN+S, and the decreased range was NN>MN>MN+S, meanwhile the increase range of TP was traditional-nitrogen(CN >traditional-nitrogen+straw(CN+S >optimized-nitrogen+straw(SN+S >optimized-nitrogen(SN. The available P with CN and CN+S reached to 213.7 mg· kg -1 、225.4 mg·kg -1, which increased by 17.1 percent and 23.5 percent, which declared the phosphorus was accumulated; The available P with other nitrogen controlled decreased with the range of NN>MN>MN+S>SN+S>SN跃CN>CN+S, which showed that the supply reduction of nitrogen could slowdown the phosphorus accumulated and promote the utilization ratio of phosphorus. The organophosphorus was increased except NN, with obvious increase with CN、CN+S(308.4 mg·kg -1 、331.4 mg·kg -1 by 28.5 percent and 38.2 percent. The absorption coefficient of phosphorus with SN+S(P 2 O 5,mg· 100 g -1 reached to 1 571, increased by 143.6 percent; Otherwise the absorption coefficient of phosphorus with CN、CN+S showed negative growth, the CN dipped to 416(P 2 O 5,mg·100 g -1 by 35.5 percent. Adding wheat straw could greatly improved the capacity of absorption of phosphorus and slow down the accumulation of available phosphorus to some extent. The concentrations of total phosphorus in the filtrate with SN+S were less than SN, contrary to the concentration of organophosphorus, thus the straw returning had a certain effect on

  18. Efficiency of phosphate fertilization to maize crop in high phosphorus content soil, evaluated by 32P tracer

    International Nuclear Information System (INIS)

    Trevizam, Anderson R.; Alvarez Villanueva, Felipe C.; Silva, Maria Ligia de S.; Muraoka, Takashi

    2007-01-01

    Application of high dosis of phosphorus (P) in agricultural soils is justified by its intense fixation by the soil clays, which reduce availability to crops. The objective of this research was to evaluate the response of maize crops to five rates of triple superphosphate in a soil with high available phosphorus content. Portions of 2 dm 3 of soil (Typic Quartzipisamment) with 75 mg kg -1 of available phosphorus and pH 7.00, collected from the upper 0-20 cm layer, were placed in plastic pots, received solution containing 5.55 MBq (150 μCi) of 32 P and incubated for 7 days. Then 0, 250, 500, 1000 and 4000 mg P kg -1 as triple superphosphate was added to soil in the respective pots and incubated for 15 days keeping the soil moisture to 60 % of the field capacity. Maize (Zea mays L.) plants, single hybrid P30F80, were grown for 50 days (after germination), collected, oven dried, weighed and ground in a Wiley mill for analysis of total P content and 32 P radioactivity. The maize dry matter increased with triple superphosphate rates. The phosphorus content and accumulation in the maize plants increased with triple superphosphate rate up to 4000 mg kg -1 . The percentage of phosphorus derived from the fertilizer ranged from 79 to 97% and consequently the phosphorus derived from soil decreased with increasing application of triple superphosphate. In spite of soil high P available content, maize plants responded to applied phosphorus rates. (author)

  19. Evaluation of Phosphorus Leaching in an Agricultural Soil under Different Soil Amendments

    OpenAIRE

    ERDONA DEMIRAJ; FERDI BRAHUSHI; JAMARBËR MALLTEZI; SULEJMAN SULÇE

    2017-01-01

    The transport of Phosphorus (P) from agricultural soils to surface waters sensitive to eutrophication has long been a world-wide environmental concern. The intensive agricultural activity in the upper Shkodra fields, combined with others point source pollution, probably, intensify eutrophication of the Shkodra Lake. These Clay Loamy soils (calcaric Regosols) are characterized by low organic matter, N and P, with a high water percolation. An experiment was conducted at Greenhouse Research Stat...

  20. Exchangeable phosphorus and others parameters in soil samples from Sapucai

    International Nuclear Information System (INIS)

    Facetti, J.F.; Zanotti, J.F.

    1972-01-01

    Soils samples from the alkaline rocks area at Sapucai were studied. The total amount of P in the soils shows to be high, as well as the E value for the 32 P exclangeable phosphorus. Other parameters like V values, TEC, etc., and their relationschip also were analyzed

  1. Exchangeable phosphorus and others parameters in soil samples from Sapucai

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F; Zanotti, J F [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1972-01-01

    Soils samples from the alkaline rocks area at Sapucai were studied. The total amount of P in the soils shows to be high, as well as the E value for the 32 P exclangeable phosphorus. Other parameters like V values, TEC, etc., and their relationschip also were analyzed.

  2. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil.

    Science.gov (United States)

    Martínez-Sánchez, José Luis

    2005-01-01

    In tropical forests with nutrient-rich soil tree's nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm) of three undisturbed forest plots at 'Estaci6n de Biologia Los Tuxtlas' on the east coast of Mexico (18 degrees 34' - 18 degrees 36' N, 95 degrees 04' - 95 degrees 09' W). N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30) and extractable P (4.11 microg g(-1) n = 30). As expected, trees showed incomplete N (1.13%, n = 11) and P (0.11%, n = 1) resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption.

  3. Changes in Olsen Phosphorus Concentration and Its Response to Phosphorus Balance in Black Soils under Different Long-Term Fertilization Patterns

    Science.gov (United States)

    Zhan, Xiaoying; Zhang, Li; Zhou, Baoku; Zhu, Ping; Zhang, Shuxiang; Xu, Minggang

    2015-01-01

    The Olsen phosphorus (P) concentration of a soil is a key index that can be used to evaluate the P supply capacity of the soil and to estimate the optimal P fertilization rate. A study of the relationship between the soil Olsen P concentration and the P balance (P input minus P output) and their variations among different fertilization patterns will help to provide useful information for proper management of P fertilization. In this paper, the two investigated long-term experiments were established on black soils in the northeast region of China. Six fertilization treatments were selected: (1) unfertilized (CK); (2) nitrogen only (N); (3) nitrogen and potassium (NK); (4) nitrogen and phosphorus (NP); (5) nitrogen, phosphorus, and potassium (NPK); and (6) nitrogen, phosphorus, potassium and manure (NPKM). The results showed that the average Olsen P concentrations in the black soils at Gongzhuling and Harbin (16- and 31-year study periods, respectively), decreased by 0.49 and 0.56 mg kg-1 a-1, respectively, without P addition and increased by 3.17 and 1.78 mg kg-1 a-1, respectively, with P fertilization. The changes in soil Olsen P concentrations were significantly (P<0.05) correlated with the P balances at both sites except for the NP and NPK treatments at Gongzhuling. Under an average deficit of 100 kg ha-1 P, the soil Olsen P concentration at both sites decreased by 1.36~3.35 mg kg-1 in the treatments without P addition and increased by 4.80~16.04 mg kg-1 in the treatments with 100 kg ha-1 of P accumulation. In addition, the changes in Olsen P concentrations in the soil with 100 kg ha-1of P balance were significantly correlated with the P activation coefficient (PAC, percentage of Olsen P to total P, r=0.99, P<0.01) and soil organic matter content (r=0.91, P<0.01). A low pH was related to large changes of Olsen P by 1 kg ha-1 of P balance. These results indicated that soil organic matter and pH have important effects on the change in soil Olsen P by 1 kg ha-1 of P

  4. Novel colorimetric method overcoming phosphorus interference during trace arsenic analysis in soil solution.

    Science.gov (United States)

    Makris, Konstantinos C; Punamiya, Pravin; Sarkar, Dibyendu; Datta, Rupali

    2008-02-01

    A sensitive (method detection limit, 2.0 microg As L(-1)) colorimetric determination of trace As(v) and As(iii) concentrations in the presence of soluble phosphorus (P) concentrations in soil/water extracts is presented. The proposed method modifies the malachite green method (MG) originally developed for P in soil and water. Our method relies upon the finding that As(iii) and As(v) do not develop the green color during P analysis using the MG method. When an optimum concentration of ascorbic acid (AA) is added to a sample containing up to 15 times P > As (microM) concentrations, the final sample absorbance due to P will be equal to that of As(v) molecules. The soluble As concentration can then be quantified by the concentration difference between the mixed oxyanion (As + P) absorbance (proposed method) and the MG method absorbance that measures only P. Our method is miniaturized using a 96-well microplate UV-VIS reader that utilizes minute reagent and sample volumes (120 and 200 microL sample(-1), respectively), thus, minimizing waste and offering flexibility in the field. Our method was tested in a suite of As-contaminated soils that successfully measured both As and P in soil water extracts and total digests. Mean% As recoveries ranged between 84 and 117%, corroborating data obtained with high-resolution inductively-coupled plasma mass-spectrometry. The performance of the proposed colorimetric As method was unaffected by the presence of Cu, Zn, Pb, Ni, Fe, Al, Si, and Cr in both neutral and highly-acidic (ca. pH 2) soil extracts. Data from this study provide the proof of concept towards creating a field-deployable, portable As kit.

  5. Labile soil phosphorus as influenced by methods of applying radioactive phosphorus

    International Nuclear Information System (INIS)

    Selvaratnam, V.V.; Andersen, A.J.; Thomsen, J.D.; Gissel-Nielsen, G.

    1980-03-01

    The influence of different methods of applying radioactive phosphorus on the E- and L-values was studied in four foil types using barley, buckwheat, and rye grass for the L-value determination. The four soils differed greatly in their E- and L-values. The experiment was carried out both with and without carrier-P. The presence of carrier-P had no influence on the E-values, while carrier-P in some cases gave a lower L-value. Both E- and L-values dependent on the method of application. When the 32 P was applied on a small soil or sand sample and dried before mixing with the total amount of soil, the E-values were higher than at direct application most likely because of a stronger fixation to the soil/sand particles. This was not the case for the L-values that are based on a much longer equilibrium time. On the contrary, the direct application of the 32 p-solution to the whole amount of soil gave higher L-values of a non-homogeneous distribution of the 32 p in the soil. (author)

  6. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  7. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: The phosphorus indicator in Northeast China

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Wei, E-mail: wei@itc.nl; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-08-15

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20-40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: Black-Right-Pointing-Pointer Spatial dynamics of NPS phosphorus

  8. Evaluating spatial interaction of soil property with non‐point source pollution at watershed scale: The phosphorus indicator in Northeast China

    International Nuclear Information System (INIS)

    Ouyang, Wei; Huang, Haobo; Hao, Fanghua; Shan, Yushu; Guo, Bobo

    2012-01-01

    To better understand the spatial dynamics of non-point source (NPS) phosphorus loading with soil property at watershed scale, integrated modeling and soil chemistry is crucial to ensure that the indicator is functioning properly and expressing the spatial interaction at two depths. Developments in distributed modeling have greatly enriched the availability of geospatial data analysis and assess the NPS pollution loading response to soil property over larger area. The 1.5 km-grid soil sampling at two depths was analyzed with eight parameters, which provided detailed spatial and vertical soil data under four main types of landuses. The impacts of landuse conversion and agricultural practice on soil property were firstly identified. Except for the slightly bigger total of potassium (TK) and cadmium (Cr), the other six parameters had larger content in 20–40 cm surface than the top 20 cm surface. The Soil and Water Assessment Tool was employed to simulate the loading of NPS phosphorus. Overlaying with the landuse distribution, it was found that the NPS phosphorus mainly comes from the subbasins dominated with upland and paddy rice. The linear correlations of eight soil parameters at two depths with NPS phosphorus loading in the subbasins of upland and paddy rice were compared, respectively. The correlations of available phosphorus (AP), total phosphorus (TP), total nitrogen (TN) and TK varied in two depths, and also can assess the loading. The soil with lower soil organic carbon (SOC) presented a significant higher risk for NPS phosphorus loading, especially in agricultural area. The Principal Component Analysis showed that the TP and zinc (Zn) in top soil and copper (Cu) and Cr in subsurface can work as indicators. The analysis suggested that the application of soil property indicators is useful for assessing NPS phosphorus loss, which is promising for water safety in agricultural area. -- Highlights: ► Spatial dynamics of NPS phosphorus pollution with soil

  9. Solvent Extraction Separation of Phosphorus for the Measurement of {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang Hoon; Lee, Heung N.; Ahn, Hong Joo; Han, Sun ho; Jee, Kwang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Phosphorus is a major element in life and plays essential roles in the human body. On the other hand, phosphorus organic compound has high toxicity, therefore, the determination of trace amount of phosphorus is important in environment studies. Development of an analytical method for the determination of low levels of phosphorus is very important as a very few analytical techniques yield reliable results for this element at trace levels. Radioactive phosphorus, {sup 32}P (T1/2 = 14.3 d, Emax 1.71 MeV) is the highest energy beta-emitting radionuclides and now generally accepted as an effective therapeutic agent for chronic leukemia and excess red blood cells. But, {sup 32}P used in diagnosis and treatment are generated radioactive waste such as pipette tips, latex gloves, angioplastic balloons, Kimwipes etc.. We'll analyze {sup 32}P in medical radioactive waste in the future. Even if {sup 32}P has low level activity and short halflife, we have to control radioactive materials in medical waste. In this work, experiment separation using solvent extraction of inactive phosphorus as preliminary experiments for the establishment of analysis. Phosphorus is extracted tri-n-octylamine (TNOA)/ xylene, which is the most suitable solvent and then is measured by UV-visable spectrophotometer.

  10. Effects of P-efficient Transgenic Rice OsPT4 on Inorganic Phosphorus Fractions in Red Soil

    Directory of Open Access Journals (Sweden)

    WEI Lin-lin

    2017-08-01

    Full Text Available In a rhizobox experiment with phosphorus(P fertilizer application and P-deficiency, planting wild-type rice(Nipp, P-efficient mutant rice(PHO2, P-efficient transgenic rice(OsPT4 were chosen to evaluate effects of phosphorus efficient transgenic rice on inorganic phosphorus in the rhizosphere and non-rhizosphere soil. The obtained results were summarized as follows:(1Significant higer dry weight and P accumulation were observed in OsPT4 and PHO2 than in Nipp, but lower total P and inorganic phosphorus observed in OsPT4 and PHO2 than in Nipp;(2The concentrations of inorganic phosphorus fractions in the rhizosphere and non-rhizosphere soil were sorted as follows:O-P > Fe-P > Al-P > Ca-P, and the order of inorganic phosphorus fractions adapted to three rice materials;(3When added phosphorus fertilizer, the concents of rhizospheric Al-P, Fe-P and non-rhizospheric Ca-P in three rice materials had no significant difference. The concents of rhizospheric soil O-P and Ca-P in OsPT4 and PHO2 were significantly inferior to Nipp, and their concents of non-rhizospheric soil Al-P, Fe-P and O-P were significantly lower than Nipp. When added no phosphorus fertilizer, the concents of rhizospheric Al-P, O-P, Ca-P and non-rhizosphere Al-P, Ca-P in three rice materials had no significant difference, and the concents of rhizosphere Fe-P and non-rhizosphere soil Fe-P, O-P in OsPT4 and PHO2 were significantly lower than Nipp, but rhizosphere Ca-P was significantly higher than Nipp.

  11. Relationship Between Extractable Potassium And Phosphorus ...

    African Journals Online (AJOL)

    Clay content, and soil pH were the most considered and remarkable variables in modeling the behaviour of analysed extractable P and K from fresh and laboratory prepared soil samples. The laboratory pre-analysis protocols had a negative effect on soil pH in all soils; P and K were also affected negatively in most soils ...

  12. Bioavailability of phosphorus from composts and struvite in acid soils

    Directory of Open Access Journals (Sweden)

    Carmo Horta

    Full Text Available ABSTRACT The objective of this study was to assess the type and fractions of phosphorus (P forms in composts and struvite and how these P forms affect the bioavailability of P in the soil. P fertilization was performed with compost from sewage sludge (CSS, compost from poultry litter (CPL and struvite (SV and compared with single superphosphate (SSP. P forms were quantified through a sequential fractionation scheme. The first extraction was performed with H2O, the second with 0.5 M NaHCO3, the third with 0.1 M NaOH and the fourth with 1 M HCl. The release of P over time, after soil P fertilization, was assessed by incubating the fertilizers with a low-P acid soil. P bioavailability was assessed through a micro-pot experiment with the incubated soils in a growth chamber using rye plants (Secale cereale L.. Inorganic P forms in the first two fractions represented ~50% (composts, 32% (SV and 86% (SSP of the total P; and in the HCl fraction, ~40% (composts, 26% (SV and 13% (SSP of the total P. Despite the variability of the P form fractions in the composts and struvite, the P release and bioavailability were similar among the fertilized treatments. The acidic nature of the soil, which improve solubility of Ca-P forms, and the high efficiency of rye, which favors P uptake, were factors that contributed to these results.

  13. Efficiency of phosphate fertilization to maize crop in high phosphorus content soil, evaluated by {sup 32}P tracer

    Energy Technology Data Exchange (ETDEWEB)

    Trevizam, Anderson R.; Alvarez Villanueva, Felipe C.; Silva, Maria Ligia de S.; Muraoka, Takashi [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Fertilidade do Solo]. E-mails: trevizam@cena.usp.br; falvarez@cena.usp.br; mlsousi@hotmail.com; muraoka@cena.usp.br

    2007-07-01

    Application of high dosis of phosphorus (P) in agricultural soils is justified by its intense fixation by the soil clays, which reduce availability to crops. The objective of this research was to evaluate the response of maize crops to five rates of triple superphosphate in a soil with high available phosphorus content. Portions of 2 dm{sup 3} of soil (Typic Quartzipisamment) with 75 mg kg{sup -1} of available phosphorus and pH 7.00, collected from the upper 0-20 cm layer, were placed in plastic pots, received solution containing 5.55 MBq (150 {mu}Ci) of {sup 32}P and incubated for 7 days. Then 0, 250, 500, 1000 and 4000 mg P kg{sup -1} as triple superphosphate was added to soil in the respective pots and incubated for 15 days keeping the soil moisture to 60 % of the field capacity. Maize (Zea mays L.) plants, single hybrid P30F80, were grown for 50 days (after germination), collected, oven dried, weighed and ground in a Wiley mill for analysis of total P content and {sup 32}P radioactivity. The maize dry matter increased with triple superphosphate rates. The phosphorus content and accumulation in the maize plants increased with triple superphosphate rate up to 4000 mg kg{sup -1}. The percentage of phosphorus derived from the fertilizer ranged from 79 to 97% and consequently the phosphorus derived from soil decreased with increasing application of triple superphosphate. In spite of soil high P available content, maize plants responded to applied phosphorus rates. (author)

  14. Soil phosphorus dynamics in a humid tropical silvopastoral system

    Energy Technology Data Exchange (ETDEWEB)

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass.

  15. Soil phosphorus dynamics in a humid tropical silvopastoral system

    International Nuclear Information System (INIS)

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass

  16. Investigation by phosphorus-32 isotope the capabilities of mushrooms to decompose insoluble phosphoric compounds

    International Nuclear Information System (INIS)

    Takhtobin, K.S.; Tashpulatov, D.T.; Shulman, T.S.

    2006-01-01

    Full text: One of global ecological problems of agriculture is the problem 'phosphatization' of soils. Only of 10% - 25% of phosphorus, introduced by the way fertilizers to acquire by plants, the other main part, as a result of chemical changes in soil, transforms in insoluble, hard-to-reach for plants forms. The study of possibility to extract the phosphorus from this insoluble forms is very important. Our investigations devoted to study of some strains of soil mushrooms which are capable to decompose insoluble phosphoric compounds, secreting an acids and enzymes. Soil mushrooms have symbiotic relationship with roots systems of plants and other microorganisms, they augment the contents of solvable phosphorus in soil, which is easy assimilate by plants. It increases efficiency of other kinds of fertilizers, keeping nitrogen, the potassium and as a whole leads to favourable, balanced composition of soil. In order to investigate quantitatively the capacity of different strains of soil mushrooms to canker insoluble forms of phosphorus we are introduce an isotope phosphorus-32 in such compound as Ca 3 (PO 4) 2. We are investigate by an isotope phosphorus-32 some characteristics of strains, in particular, the absorption capabilities of phosphorus-32 from Ca 3 (PO 4 ) 2 . It find out that the part of mushrooms absorbed phosphorus from Ca 3 (PO 4 ) 2 , in particular, Aspergillus niger, Aspergillus terreus, Penicillium sp., Fusarium solani. (author)

  17. Phytoremediation of high phosphorus soil by annual ryegrass and common bermudagrass harvest

    Science.gov (United States)

    Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This four-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic...

  18. Total Nitrogen and Available Phosphorus Dynamics in Soils ...

    African Journals Online (AJOL)

    Total nitrogen and available phosphorus concentration of soils in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation (Hevea brasiliensis) and a mature forest in the west African Rainforest belt in southern Nigeria were investigated in order to determine the ...

  19. Negative effects of excessive soil phosphorus on floristic quality in Ohio wetlands.

    Science.gov (United States)

    Stapanian, Martin A; Schumacher, William; Gara, Brian; Monteith, Steven E

    2016-05-01

    Excessive soil nutrients, often from agricultural runoff, have been shown to negatively impact some aspects of wetland plant communities. We measured plant-available phosphorus (Mehlich-3: MeP) in soil samples, and assessed the vascular plant community and habitat degradation at 27 emergent and 13 forested wetlands in Ohio, USA. We tested two hypotheses: (1) that an index of vegetation biological integrity based on floristic quality was lower in wetlands with higher concentrations of MeP in the soil, and (2) that higher concentrations of MeP occurred in wetlands with more habitat degradation (i.e., lower quality), as estimated by a rapid assessment method. Hypothesis (1) was supported for emergent, but not for forested wetlands. Hypothesis (2) was marginally supported (P=0.09) for emergent, but not supported for forested wetlands. The results indicate that the effect of concentration of phosphorus in wetland soils and the quality of plant species assemblages in wetlands is more complex than shown in site-specific studies and may depend in part on degree of disturbance in the surrounding watershed and dominant wetland vegetation type. Woody plants in forested wetlands are typically longer lived than herbaceous species in the understory and emergent wetlands, and may persist despite high inputs of phosphorus. Further, the forested wetlands were typically surrounded by a wide band of forest vegetation, which may provide a barrier against sedimentation and the associated phosphorus inputs to the wetland interior. Our results indicate that inferences about soil nutrient conditions made from rapid assessment methods for assessing wetland habitat condition may not be reliable. Copyright © 2016. Published by Elsevier B.V.

  20. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus

    International Nuclear Information System (INIS)

    Hossain, M.B.; Jahiruddin, M.; Panaullah, G.M.; Loeppert, R.H.; Islam, M.R.; Duxbury, J.M.

    2008-01-01

    Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 μg L -1 . Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH 4 -oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296 ± 0.063 μg g -1 , n = 56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh. - Arsenic concentrations of irrigation water, soil and rice decreased with distance from STW point and it was related with iron and phosphorus concentrations

  1. Phosphorus release behaviors of poultry litter biochar as a soil amendment

    International Nuclear Information System (INIS)

    Wang, Yue; Lin, Yingxin; Chiu, Pei C.; Imhoff, Paul T.; Guo, Mingxin

    2015-01-01

    Phosphorus (P) may be immobilized and consequently the runoff loss risks be reduced if poultry litter (PL) is converted into biochar prior to land application. Laboratory studies were conducted to examine the water extractability of P in PL biochar and its release kinetics in amended soils. Raw PL and its biochar produced through 400 °C pyrolysis were extracted with deionized water under various programs and measured for water extractable P species and contents. The materials were further incubated with a sandy loam at 20 g kg −1 soil and intermittently leached with water for 30 days. The P release kinetics were determined from the P recovery patterns in the water phase. Pyrolysis elevated the total P content from 13.7 g kg −1 in raw PL to 27.1 g kg −1 in PL biochar while reduced the water-soluble P level from 2.95 g kg −1 in the former to 0.17 g kg −1 in the latter. The thermal treatment transformed labile P in raw PL to putatively Mg/Ca phosphate minerals in biochar that were water-unextractable yet proton-releasable. Orthophosphate was the predominant form of water-soluble P in PL biochar, with condensed phosphate (e.g., pyrophosphate) as a minor form and organic phosphate in null. Release of P from PL biochar in both water and neutral soils was at a slower and steadier rate over a longer time period than from raw PL. Nevertheless, release of P from biochar was acid-driven and could be greatly promoted by the media acidity. Land application of PL biochar at soil pH-incorporated rates and frequency will potentially reduce P losses to runoffs and minimize the adverse impact of waste application on aquatic environments. - Highlights: • The predominant portion of P in poultry litter biochar is water insoluble. • Poultry litter P was immobilized by forming Ca/Mg (pyro)phosphates in biochar. • Release of P from biochar was slower and steadier than from raw poultry litter. • Soil pH greatly influenced the P release patterns of poultry litter biochar

  2. Phosphorus release behaviors of poultry litter biochar as a soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Lin, Yingxin [Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901 (United States); Chiu, Pei C.; Imhoff, Paul T. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Guo, Mingxin, E-mail: mguo@desu.edu [Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901 (United States)

    2015-04-15

    Phosphorus (P) may be immobilized and consequently the runoff loss risks be reduced if poultry litter (PL) is converted into biochar prior to land application. Laboratory studies were conducted to examine the water extractability of P in PL biochar and its release kinetics in amended soils. Raw PL and its biochar produced through 400 °C pyrolysis were extracted with deionized water under various programs and measured for water extractable P species and contents. The materials were further incubated with a sandy loam at 20 g kg{sup −1} soil and intermittently leached with water for 30 days. The P release kinetics were determined from the P recovery patterns in the water phase. Pyrolysis elevated the total P content from 13.7 g kg{sup −1} in raw PL to 27.1 g kg{sup −1} in PL biochar while reduced the water-soluble P level from 2.95 g kg{sup −1} in the former to 0.17 g kg{sup −1} in the latter. The thermal treatment transformed labile P in raw PL to putatively Mg/Ca phosphate minerals in biochar that were water-unextractable yet proton-releasable. Orthophosphate was the predominant form of water-soluble P in PL biochar, with condensed phosphate (e.g., pyrophosphate) as a minor form and organic phosphate in null. Release of P from PL biochar in both water and neutral soils was at a slower and steadier rate over a longer time period than from raw PL. Nevertheless, release of P from biochar was acid-driven and could be greatly promoted by the media acidity. Land application of PL biochar at soil pH-incorporated rates and frequency will potentially reduce P losses to runoffs and minimize the adverse impact of waste application on aquatic environments. - Highlights: • The predominant portion of P in poultry litter biochar is water insoluble. • Poultry litter P was immobilized by forming Ca/Mg (pyro)phosphates in biochar. • Release of P from biochar was slower and steadier than from raw poultry litter. • Soil pH greatly influenced the P release patterns

  3. Spatial estimation of foliar phosphorus in different species of the genus Coffea based on soil properties

    Directory of Open Access Journals (Sweden)

    Samuel de Assis Silva

    2014-10-01

    Full Text Available Information underlying analyses of coffee fertilization systems should consider both the soil and the nutritional status of plants. This study investigated the spatial relationship between phosphorus (P levels in coffee plant tissues and soil chemical and physical properties. The study was performed using two arabica and one canephora coffee variety. Sampling grids were established in the areas, and the points georeferenced. The assessed properties of the soil were levels of available phosphorus (P-Mehlich, remaining phosphorus (P-rem and particle size, and of the plant tissue, phosphorus levels (foliar P. The data were subjected to descriptive statistical analysis, correlation analysis, cluster analysis, and probability tests. Geostatistical and trend analyses were only performed for pairs of variables with significant linear correlation. The spatial variability for foliar P content was high for the variety Catuai and medium for the other evaluated plants. Unlike P-Mehlich, the variability in P-rem of the soil indicated the nutritional status of this nutrient in the plant.

  4. Leaf and soil nitrogen and phosphorus availability in a neotropical rain forest of nutrient-rich soil

    Directory of Open Access Journals (Sweden)

    José Luis Martínez-Sánchez

    2006-06-01

    Full Text Available The nitrogen and phosphorus supply in a lowland rain forest with a nutrient-rich soil was investigated by means of the leaf N/P quotient. It was hypothesised a high N and P supply to the forest ecosystem with a N and P rich soil. Total N and extractable P were determined in the surface (10 cm soil of three plots of the forest. Total N was analysed by the Kjeldahl method, and P was extracted with HCl and NH4F. The leaf N/P quotient was evaluated from the senesced leaves of 11 dominant tree species from the mature forest. Samples of 5 g of freshly fallen leaves were collected from three trees of each species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid, and determined by photometry. Concentrations of total N (0.50%, n = 30 and extractable P (4.11 μg g-1, n = 30 in the soil were high. As expected, P supply was sufficient, but contrary to expected, N supply was low (N/P = 11.8, n = 11. Rev. Biol. Trop. 54(2: 357-361. Epub 2006 Jun 01.A través del cociente foliar N/P, se investigó la disponibilidad de nitrógeno y fósforo en una selva húmeda tropical con suelo fértil. Como hipótesis se esperaba encontrar una alta disponibilidad de N y P en el ecosistema debido a un suelo rico en N y P. Se determinó el N total y el P extraible en el suelo superficial (10 cm en tres sitios de la selva. El N total se analizó por el método Kjeldahl y el P por extracción con HCl y NH4F. El cociente foliar N/P se evaluó a partir de hojas seniles de 11 especies arbóreas dominantes de la selva madura. Se recolectaron muestras de 5 g de hojas recién caídas de tres árboles de cada especie. El nitrógeno se analizó por digestión microkjeldahl con ácido sulfúrico y destilación con ácido bórico, y el fósforo por digestión con ácido nítrico y ácido perclórico, y determinación con fotometría. Las concetraciones de N

  5. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  6. Determination of Phosphorus Adsorption Using Various Forms of Isotherms in Soils of Adıyaman Çamgazi Plain

    OpenAIRE

    AĞCA, Necat

    2014-01-01

    Samples from 8 widespread soil series from Adıyaman Çamgazi Plain were equilibriated at a constant temperature with 16 different solutions containing 0 to 50 mg/ml phosphorus in batch-type experiments. The phosphorus concentrations of the equilibrium solutions and the amounts of phosphorus adsorbed by the soils at these concentrations were determined. These phosphorus-adsorption data were evaluated statistically for their suitability for adsorption isotherms in various concentration ranges.

  7. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency

    International Nuclear Information System (INIS)

    Cheyns, Karlien; Peeters, Sofie; Delcourt, Dorien; Smolders, Erik

    2012-01-01

    This study was set up to relate lead (Pb) bioavailability with its toxicity to plants in soils. Tomato and barley seedlings were grown in six different PbCl 2 spiked soils (pH: 4.7–7.4; eCEC: 4.2–41.7 cmol c /kg). Soils were leached and pH corrected after spiking to exclude confounding factors. Plant growth was halved at 1600–6500 mg Pb/kg soil for tomato and at 1900–8300 mg Pb/kg soil for barley. These soil Pb threshold were unrelated to soil pH, organic carbon, texture or eCEC and neither soil solution Pb nor Pb 2+ ion activity adequately explained Pb toxicity among soils. Shoot phosphorus (P) concentrations significantly decreased with increasing soil Pb concentrations. Tomato grown in hydroponics at either varying P supply or at increasing Pb (equal initial P) illustrated that shoot P explained growth response in both scenarios. The results suggest that Pb toxicity is partially related to Pb induced P deficiency, likely due to lead phosphate precipitation. - Highlights: ► Tomato and barley shoot growth was affected by Pb toxicity in six different soils. ► Soil properties did not explain differences in plant Pb toxicity among soils. ► Neither soil solution Pb nor Pb 2+ ion activity explained Pb toxicity among soils. ► Shoot phosphorus concentration decreased with increasing soil Pb concentrations. ► Lead induced a P deficiency in plants, likely due to lead phosphate precipitation. - Soil properties did not explain differences in plant lead toxicity among different soils. Shoot phosphorus concentration decreased with increasing soil lead concentrations.

  8. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    Science.gov (United States)

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Assessment of phosphorus fertility by means of isotopically exchangeable phosphorus and the fixing capacity of soils

    International Nuclear Information System (INIS)

    Gachon, L.

    1979-01-01

    Using over 400 soils representative of French pedological types, the absorption kinetics of phosphorus were studied on Italian rye-grass grown in pots until assimilable reserves had been exhausted. At the same time, Russell's E value (isotopically exchangeable P in vitro), Larsen's L value (isotopically exchangeable P in vivo) and the fixing capacity of the soils were measured. The study shows a very close correlation between the phosphorus removed by the first four cuttings and fertility indices combining E or L with the fixing capacity. The agricultural value of the two indices proposed, Isub(E) and Isub(L), is confirmed by the results of about forty one-year and multi-year field experiments. Norms for the interpretation of these indices are deduced; these are independent of the pedological type but need to be modified as a function of the type of crop and the cultural practice. (author)

  10. Effect of available phosphorus in paddy soils on phosphorus uptake of rice

    International Nuclear Information System (INIS)

    Liu Delin; Zhu Zhaomin

    1996-01-01

    Relation between available phosphorus in 6 types of paddy soil in Hunan Province and its uptake by rices was studied by 32 P tracing. The result indicated that the P uptake by rices varied with available P content in the paddy soils. When the content was high, the rice absorbed more P nutrient from the soil and decreased the P uptake from the P fertilizer, which showed a poor contribution of the P fertilizer to the rice yield increase, and vice versa. The recovery of the P fertilizer varied with the soil types. Ranked the first was in paddy soils derived from lacustrine deposite but little rice yield increased. While in paddy soils derived from limestone, the yield greatly increased although the recovery of P fertilizer was the lowest. Rice absorbed P nutrient during its whole growth duration. No matter the different uptake amount due to the P supply by the different soils, rice plant generally had the greatest P nutrient uptake from tillering stage to elongation stage, and along with the rise of the rices dry matter, amount of P uptake was gradually increased but the P content in unit dry matter was tended to decrease. (author). 5 refs., 3 figs., 6 tabs

  11. Phosphorus contents and availability of technogenic substrates for soil construction

    Science.gov (United States)

    Nehls, Thomas; Lydia, Paetsch; Sarah, Rokia; Schwartz, Christophe; Wessolek, Gerd

    2014-05-01

    Urban areas lack of green and of soil substrates to support this green. A great variety of solid waste materials can be seen as technogenic substances (TS) for the construction of soil-similar plant substrates. Biomass production in the city and the use of waste materials as nutrient sources can help to close regional nutrient cycles. The most important waste materials have been studied for their phosphorus contents, availabilities and diffusion rates in the rhizosphere by combining their analyzed chemical and physical properties. Compost, concrete, green wastes, paper mill sludge, street-sweepings, mix of rubble, bricks, track ballasts and charcoal have (i) been analyzed their P release properties (HF extraction, Olsen-P, adsorption isotherms); (ii) the physical properties (water retention function, saturated hydraulic conductivity) were analyzed at 80 % of the proctor density; (iii) The P availability of the TMs to the roots were simulated for different pressure heads (pF = 1.3, 1.8 and 3.0) using HYDRUS 1-D. We compared the results for TS with these for agricultural soils. Ptot varies from 710 to 21 000 mg kg-1 for bricks and compost, while POlsen varies from 19 to 1 090 mg kg-1 for charcoal and green wastes. The diffusion rates of TSs (pF = 1.3) are up to 10 times higher compared to those of soils, with green wastes showing highest and bricks the lowest P diffusion rates. We conclude that the investigated TS are appropriate for construction of soil similar planting substrates because of their P delivery potential and their favourable physical properties.

  12. Colloid and phosphorus leaching from undisturbed soil cores sampled along a natural clay gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann

    2011-01-01

    correlated to the accumulated outflow and was described as a diffusion controlled process, using ¾(accumulated outflow). The mass of leached particles was positively correlated to the clay content as well as to water-dispersible colloids. Particulate phosphorus (P) was linearly correlated to concentration......The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus...

  13. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  14. Effect of natural West African phosphates on phosphorus uptake by Agrostis and on isotopically dilutable phosphorus (L-value) in five tropical soils

    International Nuclear Information System (INIS)

    Pichot, J.; Truong, B.; Beunard, P.

    1979-01-01

    Six natural West African phosphates are compared with a weak Tunisian phosphate and triple superphosphate in five types of tropical soil. The study consists of a pot experiment using Agrostis as the test plant, over several cuttings, in order to evaluate the uptake of phosphorus by plants and the isotopically dilutable phosphorus of the soil (L-value). The results show that there are very great differences between phosphates from the points of view of speed and degree of solubilization and that the L-value is a good criterion for assessing these differences. (author)

  15. Vertical Stratification of Soil Phosphorus as a Concern for Dissolved Phosphorus Runoff in the Lake Erie Basin.

    Science.gov (United States)

    Baker, David B; Johnson, Laura T; Confesor, Remegio B; Crumrine, John P

    2017-11-01

    During the re-eutrophication of Lake Erie, dissolved reactive phosphorus (DRP) loading and concentrations to the lake have nearly doubled, while particulate phosphorus (PP) has remained relatively constant. One potential cause of increased DRP concentrations is P stratification, or the buildup of soil-test P (STP) in the upper soil layer (soil samples (0-5 or 0-2.5 cm) alongside their normal agronomic samples (0-20 cm) ( = 1758 fields). The mean STP level in the upper 2.5 cm was 55% higher than the mean of agronomic samples used for fertilizer recommendations. The amounts of stratification were highly variable and did not correlate with agronomic STPs (Spearman's = 0.039, = 0.178). Agronomic STP in 70% of the fields was within the buildup or maintenance ranges for corn ( L.) and soybeans [ (L.) Merr.] (0-46 mg kg Mehlich-3 P). The cumulative risks for DRP runoff from the large number of fields in the buildup and maintenance ranges exceeded the risks from fields above those ranges. Reducing stratification by a one-time soil inversion has the potential for larger and quicker reductions in DRP runoff risk than practices related to drawing down agronomic STP levels. Periodic soil inversion and mixing, targeted by stratified STP data, should be considered a viable practice to reduce DRP loading to Lake Erie. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Use of dolomite phosphate rock (DPR) fertilizers to reduce phosphorus leaching from sandy soil

    International Nuclear Information System (INIS)

    Chen, G.C.; He, Z.L.; Stoffella, P.J.; Yang, X.E.; Yu, S.; Calvert, D.

    2006-01-01

    There is increasing concern over P leaching from sandy soils applied with water-soluble P fertilizers. Laboratory column leaching experiments were conducted to evaluate P leaching from a typical acidic sandy soil in Florida amended with DPR fertilizers developed from dolomite phosphate rock (DPR) and N-Viro soil. Ten leaching events were carried out at an interval of 7 days, with a total leaching volume of 1183 mm equivalent to the mean annual rainfall of this region during the period of 2001-2003. Leachates were collected and analyzed for total P and inorganic P. Phosphorus in the leachate was dominantly reactive, accounting for 67.7-99.9% of total P leached. Phosphorus leaching loss mainly occurred in the first three leaching events, accounting for 62.0-98.8% of the total P leached over the whole period. The percentage of P leached (in the total P added) from the soil amended with water-soluble P fertilizer was higher than those receiving the DPR fertilizers. The former was up to 96.6%, whereas the latter ranged from 0.3% to 3.8%. These results indicate that the use of N-Viro-based DPR fertilizers can reduce P leaching from sandy soils. - Fertilizers developed from dolomite phosphate rock (DPR) reduce phosphorus leaching from sandy soil

  17. Factors affecting the determination of the isotopically exchangeable phosphorus in soils

    International Nuclear Information System (INIS)

    Morales, L.E.M.

    1981-06-01

    In order to evaluate the factors that affect the determination of the isotopically exchangeable phosphorus in soils (L value), various greenhouse experiments were carried out. The following factors were considered: carrier level; plant species; harvest time; nitrogen doses; nitrogen sources; culture conditions and soil type. A radioactive solution with an activity level of approximately 10 μCi 32 p/3 kg soil with different carrier levels was located in layers or mixed completely with the soil depending upon the experiment. (author)

  18. Phosphorus Dynamics in Long-Term Flooded, Drained, and Reflooded Soils

    Directory of Open Access Journals (Sweden)

    Juan Tian

    2017-07-01

    Full Text Available In flooded areas, soils are often exposed to standing water and subsequent drainage, thus over fertilization can release excess phosphorus (P into surface water and groundwater. To investigate P release and transformation processes in flooded alkaline soils, wheat-growing soil and vegetable-growing soil were selected. We flooded-drained-reflooded two soils for 35 d, then drained the soils, and 10 d later reflooded the soils for 17 d. Dissolved reactive phosphorus (DRP, soil inorganic P fractions, Olsen P, pH, and Eh in floodwater and pore water were analyzed. The wheat-growing soil had significantly higher floodwater DRP concentrations than vegetable-growing soil, and floodwater DRP in both soils decreased with the number of flooding days. During the reflooding period, DRP in overlying floodwater from both soils was less than 0.87 mg/L, which was 3–25 times less than that during the flooding period. Regardless of flooding or reflooding, pore water DRP decreased with flooding days. The highest concentration of pore water DRP observed at a 5-cm depth. Under the effect of fertilizing and flooding, the risk of vertical P movement in 10–50 cm was enhanced. P diffusion occurred from the top to the bottom of the soils. After flooding, Al-P increased in both soils, and Fe-P, O-P, Ca2-P decreased, while Fe-P, Al-P, and O-P increased after reflooding, When Olsen P in the vegetable-growing soil exceeded 180.7 mg/kg and Olsen P in the wheat-growing soil exceeded 40.8 mg/kg, the concentration of DRP in pore water increased significantly. Our results showed that changes in floodwater and pore water DRP concentrations, soil inorganic P fractions, and Olsen P are significantly affected by fertilizing and flooding; therefore, careful fertilizer management should be employed on flooded soils to avoid excess P loss.

  19. [Distribution characteristics and erosion risk of nitrogen and phosphorus in soils of Zhuangmu town in Lake Wabuhu basin].

    Science.gov (United States)

    Li, Ru-Zhong; Zou, Yang; Xu, Jing-Jing; Ding, Gui-Zhen

    2014-03-01

    To understand the loss risk of soil erosion in the Zhuangmu town in Lake Wabuhu watershed, concentration and spatial distribution of nitrogen and phosphorus in 162 surface soil samples collected from the farmlands in ten administrative villages of the town were investigated. The risk assessment was conducted by using the nitrogen and phosphorus index method after speciation analysis of soil nitrogen and phosphorus. Based on ArcGIS technology, the spatial interpolation of total nitrogen (TN), total phosphorus (TP), and bioavailable nitrogen and phosphorus contents as well as nitrogen and phosphorus index values were performed by means of Kriging interpolation. The results show that, generally, average contents of TN and TP were obtained at 1.67 g x kg(-1) and 0.71 g x kg(-1), respectively. And the mean concentration of bioavailable nitrogen and phosphorus were estimated at 0.26 g x kg(-1) and 0.33 g x kg(-1), accounting for 14.93% and 47.30% of TN and TP contents, respectively. Spatially, the samples with high concentration of TN were mostly from Houji, Yangwan and Liuqian villages, whereas the samples sites with higher contents of TP located in Houji, Yangwan and Zaolin villages. The mean values of nitrogen index (NI) and phosphorus index (PI) for the whole town are 2.11 and 2.13, respectively. According to the numeric size of NI and PI, ten villages ranged in the order of Yangwan > Zhuangmu > Xueqiao > Liuqian > Lizhuang > Jinqiao > Zaolin > Zhangwei > Houji > Xugang village. In general, the soil nitrogen loss is dominated by low and medium risks in the Zhuangmu town, and high risk sporadically appears in local area of the Yangwan village. Like the nitrogen, soil phosphorus loss risk also gives priority to low, and above medium risk concentrates in the Yangwan village as well.

  20. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    International Nuclear Information System (INIS)

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  1. Application of different lime rates and phosphorus on soil physico ...

    African Journals Online (AJOL)

    The treatments were factorial combination of five rates of phosphorus (0, 11.5, 23, 46, 57.5 kg P2O5) and four rates of lime (CaCO3) (0, 2.25, 3 and 3.75 tons ha-1) in randomized complete block design and replicated three times. The pre soil analysis indicated that the soil of experimental area was acidic (pH = 5.31) and low ...

  2. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    Directory of Open Access Journals (Sweden)

    Ellen R. Campbell

    2015-01-01

    First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  3. Study of phosphorus retention in a quartz ferralitic u soil devoted to citrus cultivation

    International Nuclear Information System (INIS)

    Nuviola, A.; Garcia, A.; Vallin, G.; Gonzalez, A.; Alvarez, C.

    1988-01-01

    Samples of a ferralitic quartz yellow-reddish lixiviated soil cultivated with valencia late orange were taken at two depths. Five different doses of phosphorus fertilization were applied there. These samples were worked out in the laboratory by using P 32 radioactive tracers so as to know the characteristics of retention and release of phosphorus. The effect of fertilization on the phosphates forms present in the soil were studied and the influence of each considered variant could be established trough the main components analysis

  4. Complementary Enzymes Activities in Organic Phosphorus Mineralization and Cycling by Phosphohydrolases in Soils

    Science.gov (United States)

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...

  5. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment.

    Science.gov (United States)

    Sun, Daquan; Hale, Lauren; Kar, Gourango; Soolanayakanahally, Raju; Adl, Sina

    2018-03-01

    Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Chemical and biological properties of phosphorus-fertilized soil under legume and grass cover (Cerrado region, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo Fernando Pereira Souza

    2013-12-01

    Full Text Available The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil, in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5. In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient. After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.

  7. Use of Phosphorus Isotopes for Improving Phosphorus Management in Agricultural Systems

    International Nuclear Information System (INIS)

    2016-10-01

    Phosphorus is an essential element in plant, human and animal nutrition. Soils with low levels of phosphorus are widespread in many regions of the world, and the deficiency limits plant growth and reduces crop production and food quality. This publication provides comprehensive and up to date information on several topics related to phosphorus in soil–plant systems, in agricultural systems and in the environment. It presents the theoretical background as well as practical information on how to use nuclear and radioisotope tracer techniques in both laboratory and greenhouse experiments to assess soil phosphorus forms and plant-available soil phosphorus pools, and to understand the cycling processes in soil–plant systems. The publication focuses on practical applications of radiotracer techniques and can serve as resource material for research projects on improving sustainable phosphorus management in agricultural systems and as practical guidance on the use of phosphate isotopes in soil–plant research

  8. Neutron-activation determination of phosphorus using extraction separation of phosphate-ion with dialkylti dinitrates

    International Nuclear Information System (INIS)

    Yakovlev, Yu.V.; Kolotov, V.P.

    1981-01-01

    The selectivity of phosphorus (5) separation has been studied using dialkyltin dinitrates-promising reagents for extraction of oxygen-containing anions. Procedures have been developed for separating phosphorus in the presence of macro amounts of some interfering-elements (Al, Fe, Mo and Zr). The procedure was used for neutron activation determination of phosphorus in aluminium. The limit of detection was 5x10 -10 g [ru

  9. Description of the phosphorus sorption and desorption processes in lowland peaty clay soils

    NARCIS (Netherlands)

    Schoumans, O.F.

    2013-01-01

    To determine phosphorus (P) losses from agricultural land to surface water, information is needed about the behavior of P in soils. In this study, the sorption and desorption characteristics of lowland peaty clay soils are described based on experimental laboratory studies. The maximum P sorption

  10. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    Science.gov (United States)

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  11. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    Science.gov (United States)

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  12. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  13. Enzymatic hydrolysis of organic phosphorus in swine manure and soil.

    Science.gov (United States)

    He, Zhongqi; Griffin, Timothy S; Honeycutt, C Wayne

    2004-01-01

    Organic phosphorus (Po) exists in many chemical forms that differ in their susceptibility to hydrolysis and, therefore, bioavailability to plants and microorganisms. Identification and quantification of these forms may significantly contribute to effective agricultural P management. Phosphatases catalyze reactions that release orthophosphate (Pi) from Po compounds. Alkaline phosphatase in tris-HCl buffer (pH 9.0), wheat (Triticum aestivum L.) phytase in potassium acetate buffer (pH 5.0), and nuclease P1 in potassium acetate buffer (pH 5.0) can be used to classify and quantify Po in animal manure. Background error associated with different pH and buffer systems is observed. In this study, we improved the enzymatic hydrolysis approach and tested its applicability for investigating Po in soils, recognizing that soil and manure differ in numerous physicochemical properties. We applied (i) acid phosphatase from potato (Solanum tuberosum L.), (ii) acid phosphatases from both potato and wheat germ, and (iii) both enzymes plus nuclease P1 to identify and quantify simple labile monoester P, phytate (myo-inositol hexakis phosphate)-like P, and DNA-like P, respectively, in a single pH/buffer system (100 mM sodium acetate, pH 5.0). This hydrolysis procedure released Po in sequentially extracted H2O, NaHCO3, and NaOH fractions of swine (Sus scrofa) manure, and of three sandy loam soils. Further refinement of the approach may provide a universal tool for evaluating hydrolyzable Po from a wide range of sources.

  14. 28 PHOSPHORUS FORMS AND DISTRIBUTION IN SELECTED ...

    African Journals Online (AJOL)

    sys01

    Coleman and Thomas (1967). Total phosphorus in the soils was determined by perchloric acid digestion (Jackson, 1958) and organic P was estimated by the difference between 13 M HCL extractable inorganic P, before and after ignition, by the method of Leg and Black (1955). Inorganic P was fractionated by method of.

  15. A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley...

  16. A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley and...

  17. Phosphorus collectors from filter paper and synthetic cloth coated with iron or aluminium oxide to provide phosphorus by diffusion in soils

    Directory of Open Access Journals (Sweden)

    Eduardo Bernardi Luchese

    2000-01-01

    Full Text Available Phosphorus collectors made from filter paper and synthetic cloth, were tested to evaluate their feasibility of determining the need for phosphate application. The collectors were coated with two types of oxides, iron oxide and aluminium oxide. The capacity of the collectors was tested by placing them in a 2 mL of solution containing phosphorus (PO4(3- in the concentration of 0.0, 1.00, 3.00, 5.00, 7.00, 9.00 and 11.00 µ g.mL-1, respectively, after which they were placed in contact with four types of soil (LBa, LRd, LEd and Ca and incubed for 0.0 and 24 h. In this test the soils were kept at a humidity equivalent to 150 mmHg suction. The amount of phosphorus extracted from the solutions was tested at intervals between 0,0 and 11.0 µ g of phosphorus/mL. Results indicated that collectors were most efficient in Dystrophic Dark-Red Latosol (LEd and less efficient in "Bruno álico" Latosol (LBa and Cambisol (Ca. Synthetic cloth was the support yielding the best performance, whereas iron oxide lining was the most adequate lining material. Phosphorus collection increased with time of incubation.Coletores de fósforo feitos de papel filtro e pano sintético (perfex foram usados no estudo da determinação da necessidade de adubação fosfatada. Foram preparados coletores impregnados com óxido de ferro e outros com óxido de alumínio. A capacidade foi testada colocando-os em 2 mL de uma solução padrão de fósforo (na forma de fosfato com 0,0; 1,00; 3,00; 5,00; 7,00; 9,00 e 11;00 µg.mL-1 , depois foram colocados em contato com 4 tipos de solos (Lba, LRd, Led e Ca e incubados por 0,0 e 24 horas. No teste, os solos foram mantidos com uma umidade equivalente a 150 mmHg de sucção. Os resultados mostraram que os coletores foram mais eficientes, na extração de fósforo, no solo LED e menos eficiente no LBa e Ca (Cambissolo. O pano sintético foi a matriz (material suporte que proporcionou melhores resultados. O óxido de ferro foi o substrato foi o

  18. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.

    Science.gov (United States)

    Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C

    2009-12-01

    Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils.

  19. Evaluación de formas de fósforo en suelos cultivados con plátano Evaluating forms of phosphorus found in soils planted to plantain

    Directory of Open Access Journals (Sweden)

    Elena Patrícia Berrocal Rosso

    2009-07-01

    Full Text Available El fósforo (P extractable representa una pequeña fracción del presente en el suelo y se encuentra en un equilibrio dinámico con las formas orgánicas e inorgánicas. Se estudió el comportamiento de las formas de fósforo en dos zonas dedicadas a plantaciones de plátano (Musa AAB Simmonds en el municipio de Moñitos, Córdoba, Colombia. Para el efecto se tomaron muestras de suelo y de tejido foliar (hojas de plantas de plátano mediante un muestreo al azar estratificado. Se determinaron las diferentes formas de fósforo: P-fácilmente reemplazable, P-Ca no-apatítico, P-Al, P-Fe, P-Ca apatítico, por el método de fraccionamiento propuesto por (Chang y Jackson, 1957 modificado por Petersen y Corey (1966, y Williams et al. (1967. En ambas unidades de suelo CM-CA (Inceptisoles de colinas altas y medias y PM (Inceptisoles de terrazas marinas el mayor aporte al fósforo inorgánico se obtuvo por parte del P-Fe, el P-Ca apatítico y el P-Ca no-apatítico, mientras que el P-fácilmente reemplazable y el P-Al presentaron porcentajes muy bajos para estos tipos de suelo. Con el proceso de fraccionamiento del P inorgánico también se logró extraer parte del fósforo orgánico del suelo, lo cual se evidencia con los niveles obtenidos por el P total del suelo y el P total inorgánico, este último se ve superado por los contenidos de fósforo inorgánico producto de la suma del fraccionamiento.The extractive phosphorus represent a small fraction to the present in the soil and it is found in a dynamic balance with organic and inorganic forms. Was carried out in two zones dedicated to the plantains plantations in the municipality of Moñitos (Cordoba, Colombia in where were took sampling of soil and the foliage tissue (The leaves of the plantains plants through a stratified sampling at random. Was determined the differents forms of the phosphorus: P-Easily, P-Ca no apatitico, P-Al, PFe, P-Ca apatitico, for fractionation method proposed by ( Chang and

  20. Measurement of in situ phosphorus availability in acidified soils using iron-infused resin.

    Czech Academy of Sciences Publication Activity Database

    Tahovská, K.; Čapek, P.; Šantrůčková, H.; Kaňa, Jiří; Kopáček, Jiří

    2016-01-01

    Roč. 47, č. 4 (2016), s. 487-494 ISSN 0010-3624 R&D Projects: GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : acidification * aluminium * forest soil * ion exchange resin * iron * phosphorus availability Subject RIV: DF - Soil Science Impact factor: 0.589, year: 2016

  1. Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems

    Directory of Open Access Journals (Sweden)

    Jessé Rodrigo Fink

    2014-02-01

    Full Text Available The low phosphorus availability in tropical and subtropical soils, normally related to adsorption of phosphate to the minerals surfaces, can be attenuated when organic matter (OM accumulates in the soils. Herein, we report the results of long-term experiments (18–32 years aimed at quantifying the maximum phosphorus adsorption capacity (MPAC and its determinant mineralogical variables in Brazilian soils and at assessing the effect of no-tillage (NT in mitigating the phosphorus adsorption of soils. The MPAC of soils ranged from 297 to 4,561 mg kg-1 in the 0.00–0.10 m layer and from 285 to 4,961 mg kg-1 in the 0.10–0.20 m layer. The MPAC was correlated with the concentrations of iron oxides, goethite and ferrihydrite, gibbsite/(gibbsite+kaolinite ratio and the specific surface area. The OM increased in the 0.00–0.10 m layer of NT soils, which was not reflected on the decrease of MPAC for the no-tillage soils.

  2. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong

    2017-01-01

    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of Soil Types and Phosphorus Fertilizer Interaction on the ...

    African Journals Online (AJOL)

    A pot experiment was conducted to examine the effect of soil types and phosphorus fertilizer application on maize (variety DMR-L-SR) growth and yield in the rain forest zone of Nigeria. This was done at the Teaching and Research Farm, Ladoke Akintola University of Technology, Ogbomoso. The experimental treatments ...

  4. Effect of temperature on kinetics of phosphorus isotope sorption by soils

    International Nuclear Information System (INIS)

    Osztoics, E.; Konya, J.; Nagy, N.; Varallyay, L.

    1994-01-01

    Sorption of water soluble P by soils may be approximated by a rapid plus a slow processes. The rapid process of P sorption was studied on samples of five characteristic Hungarian soil types (meadow soil from Hajduboszormeny, brown forest soil from Keszthely, chernozem soil from Oroshaza and sandy soil from Orbottyan), using 32 P isotope technique. Kinetics of 32 P sorption and the effect of temperature (0, 25, and 40 o C) on the processes were investigated. The kinetic data were evaluated using the Christiansen equation. The activation energy and activation entropy of the processes were calculated from the temperature-dependence of the kinetic constants. The following conclusions were drawn: 1. The amount of sorbed P increases with increasing temperature, the increase is different in different soil types depending on soil characteristics. 2. Two processes of different velocity may be distinguished in the rapid P sorption under our experimental conditions. 3. The activation energy of the faster process is 25-50 kJ/mol. This suggests that film diffusion of phosphorus is the rate-limiting process in the first step of P sorption. 4. The activation energy of the slower process of rapid sorption is less than that of the faster process. 5. In contrast, the activation entropy of the slower process is twice as high (in absolute values) as that of the first, instantaneous process. The slower process is probably connected with a structural rearrangement of the sorption layer, i.e. the phosphorus becomes more firmly held. 6. This rearrangement is supported also by our previous studies on the reversibility of 32 P sorption. (author)

  5. SOIL PHOSPHORUS THRESHOLDS IN EVALUATING RISK OF ENVIRONMENTAL TRANSFER TO SURFACE WATERS IN SANTA CATARINA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Luciano Colpo Gatiboni

    2015-08-01

    Full Text Available The State of Santa Catarina, Brazil, has agricultural and livestock activities, such as pig farming, that are responsible for adding large amounts of phosphorus (P to soils. However, a method is required to evaluate the environmental risk of these high soil P levels. One possible method for evaluating the environmental risk of P fertilization, whether organic or mineral, is to establish threshold levels of soil available P, measured by Mehlich-1 extractions, below which there is not a high risk of P transfer from the soil to surface waters. However, the Mehlich-1 extractant is sensitive to soil clay content, and that factor should be considered when establishing such P-thresholds. The objective of this study was to determine P-thresholds using the Mehlich-1 extractant for soils with different clay contents in the State of Santa Catarina, Brazil. Soil from the B-horizon of an Oxisol with 800 g kg-1 clay was mixed with different amounts of sand to prepare artificial soils with 200, 400, 600, and 800 g kg-1 clay. The artificial soils were incubated for 30 days with moisture content at 80 % of field capacity to stabilize their physicochemical properties, followed by additional incubation for 30 days after liming to raise the pH(H2O to 6.0. Soil P sorption curves were produced, and the maximum sorption (Pmax was determined using the Langmuir model for each soil texture evaluated. Based on the Pmax values, seven rates of P were added to four replicates of each soil, and incubated for 20 days more. Following incubation, available P contents (P-Mehlich-1 and P dissolved in the soil solution (P-water were determined. A change-point value (the P-Mehlich-1 value above which P-water starts increasing sharply was calculated through the use of segmented equations. The maximum level of P that a soil might safely adsorb (P-threshold was defined as 80 % of the change-point value to maintain a margin for environmental safety. The P-threshold value, in mg dm-3

  6. Phosphorus migration analysis using synchrotron radiation in soil treated with Brazilian granular fertilizers

    International Nuclear Information System (INIS)

    Castro, Robson C. de; Melo Benites, Vinícius de; César Teixeira, Paulo; Anjos, Marcelino José dos; Oliveira, Luis Fernando de

    2015-01-01

    The aim of this study was to evaluate the phosphorus (P) mobility in a tropical Brazilian soil type red Oxisol treated with three different forms of granular fertilizer. Total Reflection X-Ray Fluorescence (TXRF) was applied to determine the concentration of P at different distances from granular fertilizer application point. The results showed that most of the P from fertilizers tends to concentrate in a region of up to 10 mm around the place of the fertilizer deposition. - Highlights: • Phosphorus (P) mobility in a tropical Brazilian soil. • Total Reflection X-Ray Fluorescence was applied to determine the concentration of P. • Fertilizers used monoammonium phosphate and polymer coated monoammonium phosphate.

  7. Phosphorus acquisition by barley (Hordeum vulgare L. at suboptimal soil temperature

    Directory of Open Access Journals (Sweden)

    Kari Ylivainio

    2012-12-01

    Full Text Available We studied the effects of soil temperature (8 ºC and 15 ºC on barley growth, barley phosphorus (P uptake and soil P solubility. Barley was grown in a pot experiment in two soils with different P fertilization histories for 22 years. The availability of P was estimated by using 33P-labeled fertilizer and calculating L-values. After cultivation for 22 years at ambient soil temperature without P fertilization (-P, soil L-value had decreased compared to soil that received annual P fertilization (P+. Low soil temperature further reduced the L-values, more in the -P soil than in the +P soil. Our results demonstrated that P fertilization can only partially ameliorate poor growth at low soil temperatures. Thus, applying ample fertilization to compensate for poor growth at low soil temperatures would increase the P content and solubility in the soil, but plant uptake would remain inhibited by cold.

  8. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  9. Estimation of solubility of organo-phosphorus extractants by P determination using molybdovanadophosphoric acid method

    International Nuclear Information System (INIS)

    Gill, J.S.; Kotekar, M.K.; Singh, H.

    2005-01-01

    Solvent extraction processes have been found to be suitable for uranium recovery from phosphoric acid. Various extractants like di-2-ethyl hexylphosphoric acid (D2EHPA), di-nonylphenyl phosphoric acid (DNPPA) and synergistic agents like tri-butyl phosphate (TBP), tri-octyl phosphine oxide (TOPO) have been used in liquid-liquid extraction of uranium from phosphoric acid. Contents of these organo-phosphorus compounds in aqueous raffinates need estimation for process requirements. Solubility of Tri-butyl phosphate (TBP) and Di-2-ethylhexyl phosphoric acid (D2EHPA) extractants have been determined in different media of water, oxalic acid (0.6M) and sulphuric acid (3.75M) solutions. These compounds were estimated by determining their phosphorus (P) contents employing molybdovanadophosphoric acid method, after digesting and solubalizing them in nitric and perchloric acid. (author)

  10. Molecular speciation of phosphorus in organic amendments and amended soils using nuclear magnetic resonance and X-ray absorption spectroscopies

    International Nuclear Information System (INIS)

    Ajibove, B.

    2007-01-01

    Characterization of phosphorus (P) in organic amendments is essential for environmentally sustainable fertilization of agricultural soils. The sequential chemical extraction (SCE) technique commonly used for P characterization does not provide any direct molecular information about P species. Studies were conducted to characterize P species in organic amendments and amended soils at a molecular level. The SCE was used to fractionate P in organic amendments including biosolids, hog, dairy and beef cattle manures, and poultry litter. The extracts were analyzed for total P and P species using inductively coupled plasma - optical emission spectroscopy (ICP-OES) and solution 31 P nuclear magnetic resonance (NMR) spectroscopy, respectively. The relative proportions of P species in intact organic amendments and residues after each extraction, and calcareous soils amended with organic amendments and monoammonium phosphate (MAP) were estimated using the synchrotron-based P 1s X-ray absorption near edge structure (XANES) spectroscopy. The solution 31 P NMR provided a detailed characterization of organic P in the non-labile NaOH and HCl fractions of organic amendments, but was limited in characterizing the labile fractions of most of these organic amendments due to their proneness to alkaline hydrolysis. The XANES analysis, however, identified the actual chemical species constituting the labile P that was only characterized as inorganic P or orthophosphates by sequential extraction and solution 31 P NMR. In the amended Vertisolic and Chernozemic soils, XANES analysis estimated 'soluble and adsorbed P' as the dominant P species. For the Vertisolic soil, both the unamended and soil amended with biosolids and MAP contained hydroxyapatite (HAP). In addition, soil amended with biosolids, hog and dairy manures contained β-tricalcium phosphate (TRICAL), a more soluble CaP than HAP. TRICAL was found in all amended soils except in that amended with hog manure, while HAP was present

  11. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Science.gov (United States)

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  12. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material

    Directory of Open Access Journals (Sweden)

    Faridullah

    Full Text Available Abstract Contaminants like nitrate (NO3, phosphorus (P and heavy metals in water are often associated with agricultural activities. Various soil and water remediation techniques have been employed to reduce the risk associated with these contaminants. A study was conducted to examine the extent of leaching of heavy metals (Cd, Ni, Pb and Cr, NO3 and P. For this purpose sandy and silt loam soils were amended with different waste materials, namely wood ash, solid waste ash, vegetable waste, charcoal, and sawdust. The soils were saturated with wastewater. Irrespective of the waste applied, the pH and EC of the amended soils were found to be greater than the control. Charcoal, sawdust and wood ash significantly decreased heavy metals, nitrate and phosphorus concentrations in the leachate. Treatments were more efficient for reducing Ni than other heavy metals concentrations. Waste amendments differed for heavy metals during the process of leaching. Heavy metals in the soil were progressively depleted due to the successive leaching stages. This research suggests that waste material may act as an adsorbent for the above contaminants and can reduce their leachability in soils.

  13. Nitrous oxide emissions from soil amended with low-phosphorus broiler litter

    Science.gov (United States)

    Regions of the United States with a high concentration of poultry farms have soils with excess nitrogen (N) and phosphorus (P) far beyond the agronomic requirement of crops because of recurrent land application of broiler litter. A new waste treatment technology developed by USDA-ARS, called “Quick ...

  14. Detecting and analyzing soil phosphorus loss associated with critical source areas using a remote sensing approach.

    Science.gov (United States)

    Lou, Hezhen; Yang, Shengtian; Zhao, Changsen; Shi, Liuhua; Wu, Linna; Wang, Yue; Wang, Zhiwei

    2016-12-15

    The detection of critical source areas (CSAs) is a key step in managing soil phosphorus (P) loss and preventing the long-term eutrophication of water bodies at regional scale. Most related studies, however, focus on a local scale, which prevents a clear understanding of the spatial distribution of CSAs for soil P loss at regional scale. Moreover, the continual, long-term variation in CSAs was scarcely reported. It is impossible to identify the factors driving the variation in CSAs, or to collect land surface information essential for CSAs detection, by merely using the conventional methodologies at regional scale. This study proposes a new regional-scale approach, based on three satellite sensors (ASTER, TM/ETM and MODIS), that were implemented successfully to detect CSAs at regional scale over 15years (2000-2014). The approach incorporated five factors (precipitation, slope, soil erosion, land use, soil total phosphorus) that drive soil P loss from CSAs. Results show that the average area of critical phosphorus source areas (CPSAs) was 15,056km 2 over the 15-year period, and it occupied 13.8% of the total area, with a range varying from 1.2% to 23.0%, in a representative, intensive agricultural area of China. In contrast to previous studies, we found that the locations of CSAs with P loss are spatially variable, and are more dispersed in their distribution over the long term. We also found that precipitation acts as a key driving factor in the variation of CSAs at regional scale. The regional-scale method can provide scientific guidance for managing soil phosphorus loss and preventing the long-term eutrophication of water bodies at regional scale, and shows great potential for exploring factors that drive the variation in CSAs at global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian; Sekine, Ryo; Schiller, Tara; Lipiec, Ewelina; McNaughton, Don

    2013-10-01

    The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate.

  16. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  17. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  18. Prediction of extraction ability during metal complexing with organic phosphorus extractants

    International Nuclear Information System (INIS)

    Rozen, A.M.; Krupnov, B.V.

    1995-01-01

    Quantum-chemical calculations of thermodynamic parameters of complexing of neutral organic phosphorus compounds (phosphates, phosphine oxides and diphosphine dioxides with different substituents) with seven acceptors of different strength have been made. It is shown that in a wide range of the complexes strength change the entropy contribution of the Gibbs energy of complexing depends but slightly both on the ligand basicity and on the acceptor nature. It is ascertained that this reaction series is isoentropic for any Lewis acid. Practicability of the previously used correlation between extractability and complexing enthalpy has been proved. 17 refs., 1 fig., 1 tab

  19. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China.

    Science.gov (United States)

    Yi, Qitao; Xie, Kai; Sun, Pengfei; Kim, Youngchul

    2014-02-15

    Extensive coal mining in the Huainan Coal Mines, Anhui China, in light of the local hydrology and geology, has resulted in extensive land subsidence and submergence around the mines. This has led to the formation of large (>100 km(2)) lakes. Three representative lakes were selected to study the mechanisms of phosphorus (P) unavailability for primary production from the perspective of sedimentary environments, which in turn owe their formation to permanently inundated agricultural soils. Two important issues were considered: (1) potential of P transport from the cultivated soil column toward surface sediments and (2) characterization of P behavior in view of regional ecological rehabilitation and conservation. Accordingly, we conducted field sediment analyses, combined with simulation experiments of soil column inundation/submergence lasting for four months. Enrichment of Fe-(hydr)oxides in surface sediments was verified to be the main reason for limitations in regional P availability in water bodies. Iron (Fe), but not its bound P, moved upward from the submerged soil column to the surface. However, an increasing upward gradient in the contents of organic matter (OM), total nitrogen (N), total phosphorus (TP), and different P fractions was caused by spatial heterogeneity in soil properties. Phosphorus was unable to migrate upward toward the surface sediments as envisioned, because of complex secondary reactions within soil minerals. Phosphorus bound to Fe and/or Al comprised over 50% of TP, which has important implications for local ecological rehabilitation and water conservation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Multilevel soil-vapor extraction test for heterogeneous soil

    International Nuclear Information System (INIS)

    Widdowson, M.A.; Haney, O.R.; Reeves, H.W.

    1997-01-01

    The design, performance, and analysis of a field method for quantifying contaminant mass-extraction rates and air-phase permeability at discrete vertical locations of the vadose zones are presented. The test configuration consists of a multiscreen extraction well and multilevel observation probes located in soil layers adjacent to the extraction well. For each level tested an inflatable packer system is used to pneumatically isolate a single screen in the extraction well, and a vacuum is applied to induce air flow through the screen. Test data include contaminant concentration and flow characteristics at the extraction well, and transient or steady-state pressure drawdown data at observation probes located at variable radii from the extraction well. The test method is applicable to the design of soil-vapor extraction (SVE) and bioventing remediation systems in a variety of geologic settings, particularly stratified soils. Application of the test method at a gasoline-polluted site located in the Piedmont physiographic region is described. Contaminant mass-extraction rates, expressed in terms of volatile hydrocarbons, varied from 0.16 to 14 kg/d

  1. Investigation of Soil Erosion and Phosphorus Transport within an Agricultural Watershed

    Science.gov (United States)

    Klik, A.; Jester, W.; Muhar, A.; Peinsitt, A.; Rampazzo, N.; Mentler, A.; Staudinger, B.; Eder, M.

    2003-04-01

    In a 40 ha agricultural used watershed in Austria, surface runoff, soil erosion and nutrient losses are measured spatially distributed with 12 small erosion plots. Crops during growing season 2002 are canola, corn, sunflower, winter wheat, winter barley, rye, sugar beets, and pasture. Canopy height and canopy cover are observed in 14-day intervals. Four times per year soil water content, shear stress and random roughness of the surface are measured in a 25 x 25 m grid (140 points). The same raster is sampled for soil texture analyses and content of different phosphorus fractions in the 0-10 cm soil depth. Spatially distributed data are used for geostatistical analysis. Along three transects hydrologic conditions of the hillslope position (top, middle, foot) are investigated by measuring soil water content and soil matrix potential. After erosive events erosion features (rills, deposition, ...) are mapped using GPS. All measured data will be used as input parameters for the Limburg Soil Erosion Model (LISEM).

  2. Research concerning the influence of soil type and fertilization prescriptions on nitrogen and phosphorus absorption by grapevine from fertilizers using 15N and 32P

    International Nuclear Information System (INIS)

    Serdinescu, A.

    1994-01-01

    A pot experiment was conducted with the aim to study the effect of two types of soils (reddish-brown and podzol) fertilized with different N, P, K rates and ratios, on nitrogen and phosphorus absorption by grapevine from fertilizers. The mineral fertilizers were applied in pots as binary and ternary combinations between N, P and K. In case of each combination there were applied different levels for each nutrient (two levels for nitrogen and three levels for phosphorus and potassium). Nitrogen was applied at 3 mg NO 3 /100 g soil (N 1 ) as 2.375% 15 N atom excess labelled ammonium nitrate, phosphorus at 5 mg P 2 O 5 /100 g soil (P 1 ) as monosodium phosphate labelled with 32 P (0.30 mCi/pot) and potassium at 10 mg K 2 0/100 g soil (K 1 ) as potassium sulphate. Nitrogen and phosphorus absorption was estimated by means of Ndff% and Pdff% values, established in grapevine at blooming and at the beginning of ripening. The experimental data indicated a higher nitrogen and phosphorus absorption from mineral fertilizers in the reddish-brown soil, as compared to podzol. In both soils the nitrogen absorption was positively influenced by the increase of the nitrogen rate and by the simultaneous administration of phosphorus and potassium. Phosphorus absorption was not thoroughly influenced by the use of nitrogen and potassium. (author)

  3. Phosphorus availability due to polyphosphates additions to alfalfa plants grown on alluvial and calcareous soils using tracer techniques

    International Nuclear Information System (INIS)

    Ismail, A.S.; Massoud, M.A.; Shalil, K.M.E.

    1985-01-01

    A pot experiment was carried out to compare the effect of different sources and levels of condensed phosphates, including ring and chain structured molecules, with orthophosphate on alfalfa plants grown on alluvial and highly calcareous soils using P-32-labelled fertilizers. Data indicate that application of different sources of P-fertilizers increased both dry matter content and total-P uptake by alfalfa plants over control in both soils. The fraction of phosphorus in plants derived from added fertilizers was higher from condensed phosphates than that derived from the other sources of phosphorus. The percentages of P-fraction derived from added fertilizers (y-values) were higher in calcareous soil than those in alluvial soil

  4. The potential of legume tree prunings as organic matters for improving phosphorus availability in an acid soil

    Directory of Open Access Journals (Sweden)

    I Wahyudi

    2015-01-01

    Full Text Available A study that was aimed to elucidate roles of Gliricidia sepium and Tithonia diversifolia prunings and their extracted humic and fulvic acids on improving phosphorus availability and decreasing aluminum concentration in an Ultisol was conducted in a glasshouse. Thirteen treatments consisting of two prunings, six rates of pruning application (5, 7.5, 10, 20, 40 and 80 t/ha and one control (no added prunings were arranged in a randomized block design with four replicates. Each mixture of prunings and soil was placed in a pot containing 8 kg of soil and maize of Srikandi cultivar was grown on it for 45 days. At harvest, soil pH, P content and aluminium concentration were measured. Results of the glasshouse experiment showed that application of Gliricidia and Tithonia prunings significantly increased soil pH, reduced Alo concentration, increased Alp content, increased P availability, and increased P taken up by maize grown for 45 days. The optimum rate of both Gliricidia and Tithonia pruning should be 40 t/ha. However, at the same rate, optimum production gained by Tithonia would be higher than that of Gliricidia.

  5. Fertilizer placement and tillage effects on phosphorus leaching in fine-textured soils

    Science.gov (United States)

    Adoption of no-tillage in agricultural watersheds has resulted in substantial reductions in sediment and particulate phosphorus (P) delivery to surface waters. No-tillage, however, may result in increased losses of dissolved P in tile-drained landscapes due to the accumulation of P in surface soil l...

  6. Some plant extracts retarde nitrification in soil

    Directory of Open Access Journals (Sweden)

    Abdul–Mehdi S. AL-ANSARI

    2015-12-01

    Full Text Available An incubation experiment was conducted to evaluate the effect of aqueous extracts of 17 plant materials on nitrification inhibition of urea- N in soil as compared with chemical inhibitor Dicyandiamide (DCD. Plant materials used in study were collected from different areas of Basrah province, south of Iraq. Aqueous extracts were prepared at ratio of 1:10 (plant material: water and added at conc. of 0.05, 0.10 and 0.20 ml g– 1 soil to loamy sand soil. DCD was added to soil at rate of 50 µg g-1 soil . Soil received urea at rate of 1000 µg N g-1 soil. Treated soils were incubated at 30 OC for 40 days. Results showed that application of all plant extracts, except those of casuarina, date palm and eucalyptus to soil retarded nitrification in soil. Caper, Sowthistle ,bladygrass and pomegranate extracts showed highest inhibition percentage (51, 42, 40 and 40 %, respectively and were found to be more effective than DCD (33 %. Highest inhibition was achieved by using those extracts at conc. of 0.1 ml g-1 soil after 10 days of incubation . Data also revealed that treated soil with these plant extracts significantly increased amount of NH4+–N and decreased amount of NO3-–N accumulation in soil compared with DCD and control treatments. Results of the study suggested a possibility of using aqueous extracts of some studied plants as potent nitrification inhibitor in soil.

  7. Seasonal variability of microbial biomass phosphorus in urban soils.

    Science.gov (United States)

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils.

    Science.gov (United States)

    Huang, Lidong; Yang, Junming; Xu, Yuting; Lei, Jiayan; Luo, Xiaoshan; Cade-Menun, Barbara J

    2018-03-01

    Alum [KAl(SO)⋅12HO] is often added to chicken manure to limit P solubility after land application. This is generally ascribed to the formation of Al-PO complexes. However, Al-PO complex formation could be affected by the matrix of chicken manure, which varies with animal diet. Alum was added to KHPO (as a reference material) and two manures from typical chicken farms in China, one from an intensive farm (CMIF) and another from free-ranging chickens (CMFR). These were subsequently incubated with soils for 100 d to investigate P transformations. Alum reduced water-soluble colorimetrically reactive phosphorus (RP) from soils amended with manure more effectively than in soils amended with KHPO. Alum addition lowered Mehlich-3 RP in soils with CMFR but had no influence on Mehlich-3 RP in CMIF- or KHPO-amended soils. A comparison of P in digested Mehlich-3 extracts with RP in undigested samples showed significantly increased P in digests of alum-treated CMFR only. Fractionation data indicated that alum treatment increased P in the NHF-RP (Al-P) fraction only in soils with KHPO, but not in soils with manure treatments. Furthermore, NaOH-extracted nonreactive P was markedly higher in soil with alum-treated CMFR relative to normal CMFR. The CMFR manure was assumed to contain higher concentrations of organic P because these chickens were fed grains only. These results suggest that the formation of alum-organic P complexes may reduce P solubility. By comparing alum-treated KHPO and manures, it appears that organic matter in manure could interfere with the formation of Al-PO complexes. Copyright © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and AgriFood Canada.

  9. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Science.gov (United States)

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  10. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  11. Mineralogical impact on long-term patterns of soil nitrogen and phosphorus enzyme activities

    Science.gov (United States)

    Mikutta, Robert; Turner, Stephanie; Meyer-Stüve, Sandra; Guggenberger, Georg; Dohrmann, Reiner; Schippers, Axel

    2014-05-01

    Soil chronosequences provide a unique opportunity to study microbial activity over time in mineralogical diverse soils of different ages. The main objective of this study was to test the effect of mineralogical properties, nutrient and organic matter availability over whole soil pro-files on the abundance and activity of the microbial communities. We focused on microbio-logical processes involved in nitrogen and phosphorus cycling at the 120,000-year Franz Josef soil chronosequence. Microbial abundances (microbial biomass and total cell counts) and enzyme activities (protease, urease, aminopeptidase, and phosphatase) were determined and related to nutrient contents and mineralogical soil properties. Both, microbial abundances and enzyme activities decreased with soil depth at all sites. In the organic layers, microbial biomass and the activities of N-hydrolyzing enzymes showed their maximum at the intermediate-aged sites, corresponding to a high aboveground biomass. In contrast, the phosphatase activity increased with site age. The activities of N-hydrolyzing enzymes were positively correlated with total carbon and nitrogen contents, whereas the phosphatase activity was negatively correlated with the phosphorus content. In the mineral soil, the enzyme activities were generally low, thus reflecting the presence of strongly sorbing minerals. Sub-strate-normalized enzyme activities correlated negatively to clay content as well as poorly crystalline Al and Fe oxyhydroxides, supporting the view that the evolution of reactive sec-ondary mineral phases alters the activity of the microbial communities by constraining sub-strate availability. Our data suggest a strong mineralogical influence on nutrient cycling par-ticularly in subsoil environments.

  12. Isotope exchange kinetic of phosphorus in soils from Pernambuco State -Brazil

    International Nuclear Information System (INIS)

    Figueiredo, F.J.B. de.

    1989-12-01

    The applicability of isotopic exchange kinetics of 32 p to characterize phosphorus available to plants and to diagnose the reactivity of soil-fertilizer-P in six soils from Pernambuco is described. This methodology was compared with anion exchange resin, isotopic exchange equilibrium methods (E-value and L-value) and P absorption by plants. The first greenhouse experiment had the following treatments: 1) with P and, 2) with addition of 43.7 mg P/Kg of soil, incubated for O, 42 and 84 days before seeding. The kinetic of isotopic exchange (KIE), resin-P and E-value were determined before seeding and after harvesting pearl millet grown for 42 days. Results indicated that the KIE parameters rated the soils more efficiently, in terms of available P and soil-fertilizer-P reactivity, than resin-P, E-value and L-value. (author). 38 refs, 2 figs, 18 tabs

  13. Avaliação da disponibilidade de fósforo no solo para a cultura do milho Assessment of soil phosphorus availability to corn

    Directory of Open Access Journals (Sweden)

    Gerson Roberto Miola

    1999-05-01

    Full Text Available Conduziu-se um experimento, em 1994, em casa de vegetação com seis solos do Estado do Rio Grande do Sul, com o objetivo de avaliar a disponibilidade de fósforo no solo extraído pelos métodos duplo ácido (Mehlich-1, resinas em esferas (RE, em cápsulas (RC e em membrana (RM e papéis de filtro impregnados com óxido de ferro em solo umedecido a 75% da capacidade de campo (D1 e solo saturado (D2. Os solos foram previamente incubados com quatro doses de fósforo, e cultivados com milho durante 28 dias. Os coeficientes de determinação obtidos entre o fósforo absorvido pelas plantas de milho e o fósforo extraído foram: 0,85 para o Mehlich-1; 0,82 para o RE; 0,84 para o RC; 0,89 para o RM; 0,75 para o D1 e 0,70 para o D2. As quantidades de fósforo extraídas pelos métodos das resinas foram altamente correlacionadas entre si (r=0,98 e com as extraídas pelo método D1 (r=0,89. Os resultados permitiram concluir que os métodos testados foram igualmente eficientes na extração do fósforo do solo e para avaliar a disponibilidade deste elemento para a cultura do milho.In order to evaluate soil phosphorus availability to plants, the extraction methods: Mehlich-1, exchange resins in beads (RE, encapsulated (RC and as membrane (RM and iron oxide impregnated filter papers with 75% field capacity (D1 and waterlogged conditions (D2 were studied in Rio Grande do Sul State, Brazil, in 1994, in a greenhouse experiment with six soils fertilized with four phosphate rates and cultivated with corn (Zea mays L. for 28 days. Determination coefficients between plant absorbed phosphorus and the amounts determined by the extraction methods were: 0.85 (Mehlich-1, 0.82 (RE, 0.84 (RC, 0.89 (RM, 0.75 (D1 and 0.70 (D2. Soil phosphorus contents extracted by the exchange resin methods were highly correlated (r=0.98, as well as with the amounts extracted by the D-1 method (r = 0.89. The results indicated that the studied methods are equally effective for predicting P

  14. Aluminium, extractable from soil samples by the acid ammonium acetate soil-testing method

    Directory of Open Access Journals (Sweden)

    Osmo Mäkitie

    1968-05-01

    Full Text Available The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction, 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2. Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65 aluminium in our soils.

  15. Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.

    Science.gov (United States)

    Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong

    2011-01-01

    Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. External costs of cadmium emissions to soil: a drawback of phosphorus fertilizers

    DEFF Research Database (Denmark)

    Pizzol, Massimo; C.R. Smart, James; Thomsen, Marianne

    2014-01-01

    are exposed to cadmium through their diet causing potential adverse health impacts. Future scenarios for cadmium emissions to soil via agricultural applications of inorganic and organic fertilizers in Denmark were defined. A simplified fate and speciation model allowed the increase in soil cadmium......Abstract: In this study the Impact-Pathway Approach methodology was applied for monetary valuation of health impacts due to cadmium emitted to soil as a micro-pollutant present in phosphorus fertilizers. Due to the high persistency of cadmium in soil, and high soil-to-plant transfer rates, humans...... ammonium phosphate) and mineral fertilizer produced the lowest external health costs, followed by the fertilizer products wastewater sludge and pig manure. The external cost estimates produced in this study could be used to design economic policy instruments to encourage use of cleaner fertilizer products....

  17. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  18. Effect of phosphorus sources on phosphorus and nitrogen utilization by three sweet potato cultivars

    International Nuclear Information System (INIS)

    Montanez, A.; Zapata, F.; Kumarasinghe, K.S.

    1996-01-01

    A greenhouse experiment was conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria using three sweet potato cultivars, TIS 2, TIS 3053 and TIS 1487. The three sweet potato cultivars were grown at two levels of phosphorus (0 kg P/kg soil and 60 kg P/kg soil). The fertilizer treatments consisted of two sources of phosphorus, Gafza rock Phosphate and triple super phosphate with 14.19 and 19.76% total phosphorus, respectively. 15 N labelled urea was used to study the nitrogen recovery in tubers from the applied nitrogen fertilizer. The results from these preliminary studies indicate that there is considerable genotypic variation among cultivars in the efficiency with which phosphorus and nitrogen are taken up and used to produce biomass. Their response to different sources of phosphorus are also variable. TIS-2 and TIS-1487 have a greater ability to absorb phosphorus from Gafza rock phosphate and produce higher tube yields indicating their greater potential for using alternative sources of natural phosphate fertilizers more effectively. Gafza rock phosphate also increased accumulation of nitrogen in TIS-1487, a characteristic which will place this cultivar at an advantage when growing in soils low in nitrogen. On an overall basis taking into account tuber yield, phosphorus use efficiency, and nitrogen use efficiency, TIS-2 may be considered the better candidate for introduction into soils poor in resources particularly phosphorus. This study was conducted with a limited number of cultivars due to limitation in the availability of germplasma. In spite of this, the differences in their abilities for phosphorus and nitrogen uptake and use are clearly visible which justifies large scale screening experiments using a broader germplasm base, in the future. (author). 14 refs, 1 fig., 3 tabs

  19. Effect of phosphorus sources on phosphorus and nitrogen utilization by three sweet potato cultivars

    Energy Technology Data Exchange (ETDEWEB)

    Montanez, A; Zapata, F [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit; Kumarasinghe, K S [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section

    1996-07-01

    A greenhouse experiment was conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf, Austria using three sweet potato cultivars, TIS 2, TIS 3053 and TIS 1487. The three sweet potato cultivars were grown at two levels of phosphorus (0 kg P/kg soil and 60 kg P/kg soil). The fertilizer treatments consisted of two sources of phosphorus, Gafza rock Phosphate and triple super phosphate with 14.19 and 19.76% total phosphorus, respectively. {sup 15}N labelled urea was used to study the nitrogen recovery in tubers from the applied nitrogen fertilizer. The results from these preliminary studies indicate that there is considerable genotypic variation among cultivars in the efficiency with which phosphorus and nitrogen are taken up and used to produce biomass. Their response to different sources of phosphorus are also variable. TIS-2 and TIS-1487 have a greater ability to absorb phosphorus from Gafza rock phosphate and produce higher tube yields indicating their greater potential for using alternative sources of natural phosphate fertilizers more effectively. Gafza rock phosphate also increased accumulation of nitrogen in TIS-1487, a characteristic which will place this cultivar at an advantage when growing in soils low in nitrogen. On an overall basis taking into account tuber yield, phosphorus use efficiency, and nitrogen use efficiency, TIS-2 may be considered the better candidate for introduction into soils poor in resources particularly phosphorus. This study was conducted with a limited number of cultivars due to limitation in the availability of germplasma. In spite of this, the differences in their abilities for phosphorus and nitrogen uptake and use are clearly visible which justifies large scale screening experiments using a broader germplasm base, in the future. (author). 14 refs, 1 fig., 3 tabs.

  20. Some extractable iron contents as influenced by some organic manures application in the soils of Lake Geriyo, Adamawa state, Nigeria

    Directory of Open Access Journals (Sweden)

    Saddiq Abdullahi Muhammad

    2016-04-01

    Full Text Available Organic manures are safer sources of plant nutrients and a good source of micronutrients therefore; pot experiments were carried out to estimate some extractable iron contents as influenced by organic manure application in the soils of Lake Geriyo, Adamawa state, Nigeria. Two types of organic manures; poultry droppings, cow dung and control were used for the experiment. Three levels of organic manures; 5, 10 and 15 tons per hectare (ton ha-1 and three sampling time (30, 60 and 90 DAS were laid down in a completely randomized (CRD design replicated three times. Results obtained revealed that rate, type of organic manures and time of submergence significantly (P ≤ 0.05 changed Fe content in the soil. Mean extractable iron concentrations of 42.01, 56.13 and 24.63 mgkg-1 were recorded for ammonium oxalate extractable iron, Citrate Bicarbonate Dithionite extractable iron and sodium pyrophosphate extractable iron in the first experiment while 45.81, 59.29 and 28.89 mgkg-1 were recorded for the second experiment respectively. However, CBD which extracts both amorphous and crystalline Fe recorded the highest Fe contents throughout the treatments with poultry droppings applied pots recording superior values than that of cowdung manure. similarly, higher values of oxa-Fe and Pyro-Fe were recorded in both manures compared to the control. In conclusion poultry droppings may result in iron accumulation and toxicity hence should be used with caution in the soil of Lake Geriyo and similar soils to avoid serious soil reduction leading to iron toxicity and soil phosphorus antagonism.

  1. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    International Nuclear Information System (INIS)

    Pan Gang; Li Lei; Zhao Dongye; Chen Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  2. Agricultural phosphorus and water quality: sources, transport and management

    Directory of Open Access Journals (Sweden)

    A. SHARPLEY

    2008-12-01

    Full Text Available Freshwater eutrophication is usually controlled by inputs of phosphorus (P. To identify critical sources of P export from agricultural catchments we investigated hydrological and chemical factors controlling P export from a mixed land use (30% wooded, 50% cultivated, 20% pasture 39.5-ha catchment in east-central Pennsylvania, USA. Mehlich-3 extractable soil P, determined on a 30-m grid over the catchment, ranged from 7 to 788 mg kg-1. Generally, soils in wooded areas had low Mehlich-3 P (

  3. Spectroscopic quantification of soil phosphorus forms by 31P-NMR after nine years of organic or mineral fertilization

    International Nuclear Information System (INIS)

    Gatiboni, Luciano Colpo; Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz; Pandolfo, Carla Maria; Veiga, Milton

    2013-01-01

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha -1 year -1 of moist poultry litter; 4) 60 m 3 ha -1 year -1 of liquid cattle manure and 5) 40 m 3 ha -1 year -1 of liquid swine manure. The 31 P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  4. Phosphorus in Agriculture : 100 % Zero

    NARCIS (Netherlands)

    Schnug, Ewald; De Kok, Luit J.

    2016-01-01

    Phosphorus is essential for all living organisms, reserves in geogenic deposits are finite, and phosphorus nutrient mining and oversupply are common phenomenons on agricultural soils. Only if the agricultural phosphorus cycle can be closed and the fertilized nutrient been utilized completely,

  5. Flow analysis techniques for phosphorus: an overview.

    Science.gov (United States)

    Estela, José Manuel; Cerdà, Víctor

    2005-04-15

    A bibliographical review on the implementation and the results obtained in the use of different flow analytical techniques for the determination of phosphorus is carried out. The sources, occurrence and importance of phosphorus together with several aspects regarding the analysis and terminology used in the determination of this element are briefly described. A classification as well as a brief description of the basis, advantages and disadvantages of the different existing flow techniques, namely; segmented flow analysis (SFA), flow injection analysis (FIA), sequential injection analysis (SIA), all injection analysis (AIA), batch injection analysis (BIA), multicommutated FIA (MCFIA), multisyringe FIA (MSFIA) and multipumped FIA (MPFIA) is also carried out. The most relevant manuscripts regarding the analysis of phosphorus by means of flow techniques are herein classified according to the detection instrumental technique used with the aim to facilitate their study and obtain an overall scope. Finally, the analytical characteristics of numerous flow-methods reported in the literature are provided in the form of a table and their applicability to samples with different matrixes, namely water samples (marine, river, estuarine, waste, industrial, drinking, etc.), soils leachates, plant leaves, toothpaste, detergents, foodstuffs (wine, orange juice, milk), biological samples, sugars, fertilizer, hydroponic solutions, soils extracts and cyanobacterial biofilms are tabulated.

  6. Fractionation of phosphorus added as a vegetal residue (32 P) and a fertilizer (32 P) between soil, plant and microbial biomass

    International Nuclear Information System (INIS)

    Pereira, M.C.

    1988-04-01

    Sugar cane straw and/or P-fertilizer phosphorus-32 labelled were added to a Red Yellow podzolic soil from Goiana-PE. The treated samples were used in a pot experiment, growing sorghum plants for 4 and 6 weeks, and in an incubation experiment with incubation periods of 1, 2, 3, 4 and 6 weeks without plants in order to follow the dynamics of the P added. After each harvest and incubation period the soil were analysed for 31 P and 32 P in the microbial biomass and in sequential extracts with resin (Pi), 0.5 M Na H Co 3 (Pi, Po) and 0.1 N NaOH (Pi, Po). The 31 P and 32 P contents of the sorghum in the pot experiment were also determined. (author)

  7. Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils.

    Science.gov (United States)

    Asensio-Ramos, M; Hernández-Borges, J; Borges-Miquel, T M; Rodríguez-Delgado, M A

    2009-08-11

    A new, simple and cost-effective method based on the use of multi-walled carbon nanotubes (MWCNTs) as solid-phase extraction stationary phases is proposed for the determination of a group of seven organophosphorus pesticides (i.e. ethoprophos, diazinon, chlorpyriphos-methyl, fenitrothion, malathion, chlorpyriphos and phosmet) and one thiadiazine (buprofezin) in different kinds of soil samples (forestal, ornamental and agricultural) using gas chromatography with nitrogen phosphorus detection. Soils were first ultrasound extracted with 10 mL 1:1 methanol/acetonitrile (v/v) and the evaporated extract redissolved in 20 mL water (pH 6.0) was passed through 100 mg of MWCNTs of 10-15 nm o.d., 2-6 nm i.d. and 0.1-10 microm length. Elution was carried out with 20 mL dichloromethane. The method was validated in terms of linearity, precision, recovery, accuracy and selectivity. Matrix-matched calibration was carried out for each type of soil since statistical differences between the calibration curves constructed in pure solvent and in the reconstituted soil extract were found for most of the pesticides under study. Recovery values of spiked samples ranged between 54 and 91% for the three types of soils (limits of detection (LODs) between 2.97 and 9.49 ngg(-1)), except for chlorpyrifos, chlorpyrifos-methyl and buprofezin which ranged between 12 and 54% (LODs between 3.14 and 72.4 ngg(-1)), which are the pesticides with the highest soil organic carbon sorption coefficient (K(OC)) values. Using a one-sample test (Student's t-test) with fortified samples at two concentration levels in each type of soil, no significant differences were observed between the real and the experimental values (accuracy percentages ranged between 87 and 117%). It is the first time that the adsorptive potential of MWCNTs for the extraction of organophosphorus pesticides from soils is investigated.

  8. Effect of four acidifying materials added to a calcareous soil on the availability of phosphorus to ryegrass

    Energy Technology Data Exchange (ETDEWEB)

    Sen Gupta, M B; Cornfield, A H

    1964-12-01

    Ryegrass was grown in a pot test using a calcareous soil (0.36% calcium carbonate) treated with sulfur, ammonium sulfate, ferrous sulfate, and aluminium sulfate at 0.1% sulfur-equivalent, with potassium nitrate added where necessary, including the control, to equalize nitrogen supply. The sulfur treatment was the only one which significantly increased dry matter yields, total phosphorus uptake and top/root ratios in dry matter yields and total phosphorus. The ammonium sulfate, ferrous sulfate, and aluminium sulfate treatments significantly reduced top/root ratios in dry-matter yields and total phosphorus. 6 references, 1 table.

  9. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states.

    Science.gov (United States)

    Lin, Chen; Ma, Ronghua; Xiong, Junfeng

    2018-07-01

    The physicochemical properties of surface soil play a key role in the fate of watershed non-point source pollution. Special emphasis is needed to identify soil properties that are sensitive to both particulate P (PP) pollution and dissolved P (DP) pollution, which is essential for watershed environmental management. The Chaohu Lake basin, a typical eutrophic lake in China, was selected as the study site. The spatial features of the Non-point Source (NPS) PP loads and DP loads were calculated simultaneously based on the integration of sediment delivery distributed model (SEDD) and pollution loads (PLOAD) model. Then several critical physicochemical soil properties, especially various soil P compositions, were innovatively introduced to determine the response of the critical soil properties to NPS P pollution. The findings can be summarized: i) the mean PP load value of the different sub-basins was 5.87 kg, and PP pollution is regarded to be the primary NPS P pollution state, while the DP loads increased rapidly under the rapid urbanization process. ii) iron-bound phosphorus (Fe-P) and aluminum-bound phosphorus (Al-P) are the main components of available P and showed the most sensitive responses to NPS PP pollution, and the correlation coefficients were approximately 0.9. Otherwise, the residual phosphorus (Res-P) was selected as a sensitive soil P state that was significantly negatively correlated with the DP loads. iii) The DP and PP concentrations were represented differently when they were correlated with various soil properties, and the clay proportion was strongly negatively related to the PP loads. Meanwhile, there is a non-linear relationship between the DP loads and the critical soil properties, such as Fe and Total Nitrogen (TN) concentrations. Specifically, a strong inhibitory effect of TN concentration on the DP load was apparent in the Nanfei river (NF) and Paihe (PH) river basins where the R 2 reached 0.67, which contrasts with the relatively poor

  10. Phosphorus in virgin peat soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1956-01-01

    coefficient after the elimination of the effects of total P and N contents was only r = 0.136. No significant correlation existed between the organic P content and the N content, r = 0.184. The organic P content of the 217 samples expressed as a percentage of the total P content ranged from 55 to 95 per cent with an average of 78 ± 1 per cent. The proportion of organic P of total P was correlated with the degree of humification, the total correlation coefficient was r = 0.504***, the partial correlation coefficient after the elimination of the effect of the sampling depth was r = 0.427***. No correlation with the sampling depth existed after the elimination of the effect of the degree of humification: the partial correlation coefficient was r = 0.159, whereas the total correlation coefficient was r = 0.334***. A low correlation existed between the percentage of organic P of total P and the pH value even after the elimination of the effect of the degree of humification, r = 0.228*, but the connection with the total P content appeared to be only indirect and arised from the effect of the degree of humification, the total correlation coefficient was r = 0.222*, the partial correlation coefficient r = 0.076. The amount of organic P expressed as a percentage of the organic dry matter ranged from 0.01 to 0.25 per cent with an average of 0.07 ± 0.004. The ratio of N/org.P ranged from 12 to 133 with an average of 45 ± 3. Owing to the low P content of the BCp-group its mean ratio was significantly higher than that of the other groups. The degree of humification did not show any correlation with the ratio of N/org.P. The solubility of inorganic P in 0.5 N acetic acid and in 0.2 N sulphuric acid was highest in the Sp-group. On the average approximately from 15 to 30 per cent of total inorganic P was extracted by the latter solution. The acetic acid extracted only about 2 per cent of the inorganic P in the Cp-group but about 15 per cent in the Sp-group. The phosphorus conditions in

  11. Selective solvation extraction of gold from alkaline cyanide solution by alkyl phosphorus esters

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.D.; Wan, R.Y.; Mooiman, M.B.; Sibrell, P.L.

    1987-01-01

    Research efforts have shown that solvation extraction of gold from alkaline cyanide solution is possible by alkyl phosphorus esters. Both tributyl phosphate (TBP) and dibutyl butyl phosphonate (DBBP) appear to be effective extractants for gold and exhibit high loading capacities exceeding 30 gpl. Selective solvation extraction of gold from alkaline cyanide solution can be achieved with selectivity factors relative to other cyanoanions as high as 1000 under certain circumstances. Variables influencing the selectivity such as ionic strength, temperature, and extractant structure, are discussed in terms of the extraction chemistry, which seems to involve the solvation of a M dot, dot, dot Au(CN)2 ion pair.

  12. Interaction of Peat Soil and Sulphidic Material Substratum: Role of Peat Layer and Groundwater Level Fluctuations on Phosphorus Concentration

    Directory of Open Access Journals (Sweden)

    Benito Heru Purwanto

    2014-09-01

    Full Text Available Phosphorus (P often becomes limiting factor for plants growth. Phosphorus geochemistry in peatland soil is associated with the presence of peat layer and groundwater level fluctuations. The research was conducted to study the role of peat layer and groundwater level fluctuations on P concentration in peatland. The research was conducted on deep, moderate and shallow peat with sulphidic material as substratum, peaty acid sulphate soil, and potential acid sulphate soil. While P concentration was observed in wet season, in transition from wet to dry season, and in dry season. Soil samples were collected by using peat borer according to interlayer and soil horizon. The results showed that peat layer might act as the main source of P in peatland with sulphidic material substratum. The upper peat layer on sulphidic material caused by groundwater level fluctuations had no directly effect on P concentration in the peat layers. Increased of P concentration in the lowest sulphidic layer might relate to redox reaction of iron in the sulphidic layer and precipitation process. Phosphorus concentration in peatland with sulphidic material as substratum was not influenced by peat thickness. However, depletion or disappearance of peat layer decreased P concentration in soil solution. Disappearance of peat layer means loss of a natural source of P for peatland with sulphidic material as substratum, therefore peat layer must be kept in order to maintain of peatlands.

  13. Contribution of soil-32P, fertilizer-32P and VA mycorrhizal fungi to phosphorus nutrition of corn plant

    International Nuclear Information System (INIS)

    Feng Gu; Yang Maoqiu; Bai Dengsha; Huang Quansheng

    1997-01-01

    32 P labelled fertilizer and five synthetic phosphates (dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate and apatite), which were used to simulate inorganic phosphates such as Ca 2 -P, Ca 8 -P, Fe P , Al-P and Ca 10 -P in calcareous soil, were applied to corn plants inoculating with and without vesicular-arbuscular (VA) mycorrhizal fungi in a calcareous soil. The results showed that VA mycorrhizal fungi and dicalcium phosphate, octocalcium phosphate, iron phosphate, aluminium phosphate promoted growth and increased phosphorus content of corn plant. The four synthetic phosphates except apatite had higher contributions to corn plant growth than VA mycorrhizal fungi. Contributions of fertilizer-P, soil-P and synthetic phosphates to phosphorus nutrition of corn plant were in order of synthetic phosphates (except apatite) > soil- P > fertilizer-P. Inoculating with VA mycorrhizal fungi increased the contribution of soil-P and decreased the contribution of synthetic phosphates, but did not affect the contribution of fertilizer-P

  14. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminium resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil.

    Science.gov (United States)

    Delhaize, Emmanuel; Taylor, Phillip; Hocking, Peter J; Simpson, Richard J; Ryan, Peter R; Richardson, Alan E

    2009-06-01

    Barley (Hordeum vulgare L.), genetically modified with the Al(3+) resistance gene of wheat (TaALMT1), was compared with a non-transformed sibling line when grown on an acidic and highly phosphate-fixing ferrosol supplied with a range of phosphorus concentrations. In short-term pot trials (26 days), transgenic barley expressing TaALMT1 (GP-ALMT1) was more efficient than a non-transformed sibling line (GP) at taking up phosphorus on acid soil, but the genotypes did not differ when the soil was limed. Differences in phosphorus uptake efficiency on acid soil could be attributed not only to the differential effects of aluminium toxicity on root growth between the genotypes, but also to differences in phosphorus uptake per unit root length. Although GP-ALMT1 out-performed GP on acid soil, it was still not as efficient at taking up phosphorus as plants grown on limed soil. GP-ALMT1 plants grown in acid soil possessed substantially smaller rhizosheaths than those grown in limed soil, suggesting that root hairs were shorter. This is a probable reason for the lower phosphorus uptake efficiency. When grown to maturity in large pots, GP-ALMT1 plants produced more than twice the grain as GP plants grown on acid soil and 80% of the grain produced by limed controls. Expression of TaALMT1 in barley was not associated with a penalty in either total shoot or grain production in the absence of Al(3+), with both genotypes showing equivalent yields in limed soil. These findings demonstrate that an important crop species can be genetically engineered to successfully increase grain production on an acid soil.

  15. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  16. Assessment of soil nitrogen and phosphorous availability under elevated CO2 and N-fertilization in a short rotation poplar plantation

    NARCIS (Netherlands)

    Lagomarsino, A.; Moscatelli, M.C.; Hoosbeek, M.R.; Angelis, de P.; Grego, S.

    2008-01-01

    Photosynthetic stimulation by elevated [CO2] is largely regulated by nitrogen and phosphorus availability in the soil. During a 6 year Free Air CO2 Enrichment (FACE) experiment with poplar trees in two short rotations, inorganic forms of soil nitrogen, extractable phosphorus, microbial and total

  17. Changes in the Content of Soil Phosphorus after its Application into Chernozem and Haplic Luvisol and the Effect on Yields of Barley Biomass

    Directory of Open Access Journals (Sweden)

    Tomáš Lošák

    2016-01-01

    Full Text Available The pot experiment was established in vegetation hall in the year 2015. Spring barley, variety KWS Irina, was grown. Two different soils – chernozem from Brno (with a low phosphorus content and alkali soil reaction – 7.37 and haplic luvisol from Jaroměřice nad Rokytnou (with a high phosphorus content and slightly acid soil reaction – 6.01 were used for comparison. The rates of phosphorus in the form of triple superphosphate (45 % P2O5 were increased from 0.3 – 0.6 – 1.2 g per pot (5 kg of soil – Mitscherlich pots. Nitrogen was applied in the form of CAN (27 % N at a rate of 1 g N per pot in all the treatments incl. the control. Using statistical analysis, significant differences were found between the two soil types both in terms of the postharvest soil P content and yields of aboveground biomass. The content of post‑harvest soil phosphorus increased significantly with the applied rate (96 – 141 – 210 mg/kg in chernozem and 128 – 179 – 277 mg/kg in haplic luvisol. Dry matter yields of the aboveground biomass grown on chernozem were the lowest in the control treatment not fertilised with P (38.97 g per pot and increased significantly with the P rate applied (46.02 – 47.28 g per pot, although there were no significant differences among the fertilised treatments. On haplic luvisol phosphorus fertilisation was not seen at all, demonstrating that the weight of the biomass in all the treatments was balanced (48.12 – 49.63 g per pot.

  18. 200 years of soil carbon nitrogen and phosphorus change across the United Kingdom

    Science.gov (United States)

    Tipping, Ed; Quinton, John; Davies, Jessica; Bell, Vicky; Carnell, Ed; Dragosits, Ulli; Muhammed, Shibu; Naden, Pam; Stuart, Marianne; Tomlinson, Sam; Whitmore, Andy; Wu, Lianhai

    2015-04-01

    Human intervention over the last 200 years has resulted in vast changes to the fluxes of nitrogen (N) and phosphorus (P) entering the United Kingdom's landscape. Industrialisation has resulted in N deposition, agricultural intensification has seen widespread use of N and P fertilizers and societal actions have resulted in extensive land use change. To understand the consequences of these anthropogenic inputs for our soils, freshwaters and ecosystems it is necessary to take an integrated long term large scale approach. Integration across the compartments of the critical zone - from atmosphere, plants to soil and stream - is necessary in order to trace the effects of deposition, fertilization, cultivation and land use change. Coherent integration of C, N and P dynamics is also crucial, as biological processes tightly couple these cycles, so that in unison C N and P control the generation of biomass and consequent production of soil organic matter, having knock on effects for dissolved and particulate fluxes and ecosystem function. The Long-Term Large-Scale (LTLS) project is developing an integrated model that simulates the pools and fluxes of carbon, nitrogen and phosphorus (C, N, and P) between atmospheric, vegetation, soil and aquatic systems for the whole of the United Kingdom for a period spanning from the onset of the industrial revolution up until the present day. In this paper we will present results demonstrating the changes in the soil macronutrient cycles in response to agrarian and social change in the United Kingdom over the last 200 years

  19. Extraction inductively coupled plasma-optical emission spectrometry (ICP-OES). Determination of traces of phosphorus in tungsten

    International Nuclear Information System (INIS)

    Bauer, G.; Wegscheider, W.; Mueller, K.

    1989-01-01

    A method for the separation and preconcentration of traces of phosphorus from tungsten was developed. Solid phase extraction of the phosphovanadomolybdate complex performed on a micro-column was applied. Phosphorus was determined by optical emission spectroscopy (OES) with inductively coupled plasma (ICP) excitation. A limit of detection of 0,4 μg/g P with respect to the solid phase is obtained. By directly coupling the extraction/elution step to the ICP instrument a detection limit of 0,06 μg/g P in W was achieved. Besides, the complexity of spectral evaluation in ICP-OES determinations of traces in spectralline-rich matrices is discussed. (Authors)

  20. Effect of FYM, rock phosphate and bio-fertilizer on utilization of phosphorus by rice (Oryza sativa L.) and its transformation in soil

    International Nuclear Information System (INIS)

    Kumhar, A.K.

    2007-01-01

    A greenhouse experiment was conducted during kharif season of 2005 using rice var, IR36 as a test crop in low, medium and high P status soils at the Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, to study the effect of added P through SSP (labeled 32 P) alone and in combination with FYM, RP and bio-fertilizer on mobilization, uptake pattern, Olsen's P, inorganic soil P fractions and dry matter production. The results showed that the amount of Olsen's extractable P decreased with passage of time up to harvest but total dry matter showed an increasing trend and the highest value was recorded in treatment receiving SSP - 32 P + RP + FYM + PSB. Almost similar pattern was observed in P uptake. The highest value 26.54, 24.54 and 22.90; and 37.60, 36.94 and 35.82; and 27.60, 26.16 and 25.90 of the per cent P derived from fertilizer (Pdff%) were registered in SSP + RP + FYM + PSB at tillering, flowering and at harvest under low, medium and high P status soils, respectively. Results indicated that combined use of RP, FYM and bio-fertilizer helped not only in better utilization of fertilizer phosphorus but it also helped in better utilization of soil phosphorus. PSB was effective only in soil where available P status of soil was low to medium. The application of RP applied along with FYM and PSB improved the P utilization by the crop. It was found that maximum amount of applied P was transformed to Ca-P and minimum into saloid-P in all the variable P status soils. Different fractions of P in the soils followed the order Ca-P>Fe-P>Al-P>Occluded-P and Saloid-P. Maximum response to added P was obtained in SSP + RP + FYM + PSB and minimum was noted in SSP at all the growth stages of plant as well as in different treatments. (author)

  1. Assessing the long term impact of phosphorus fertilization on phosphorus loadings using AnnAGNPS.

    Science.gov (United States)

    Yuan, Yongping; Bingner, Ronald L; Locke, Martin A; Stafford, Jim; Theurer, Fred D

    2011-06-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a "critical point" may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the "critical point" where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines.

  2. Effects of sole and mixed culture of wheat crop and phosphorus fertilization on the solubility of phosphorus in the soil

    International Nuclear Information System (INIS)

    Mahmood, H. R.; Ali, M. A.; Ahmad, N.

    2016-01-01

    Farmers face a challenging task to harvest yield potential of crops as well as improving fertilizer use-efficiency under their limited farm resources. Among the macronutrients, the relative efficiency of phosphorus fertilizer is very low in alkaline-calcareous soils under arid and semi-arid environments. Therefore, a field study was undertaken to quantify the interactive effects of wheat varieties and phosphorous fertilization on grain yield and solubility of phosphorous nutrient in the rhizosphere. The treatments consisted of (a) two wheat varieties (Sehr-2006, Shafaq-2006, mixed culture) and (b) three phosphorus levels (0, 45, 85 kg P/sub 2/O/sub 5/ per hectare) were arranged in randomized complete block design and replicated four times. The Results showed that biological grain yield and 1000-grain weight of wheat increased by 8.7 percent, 14.46 percent and 8.48 percent under mixed culture of varieties sehr-2006 and shafaq-2006, respectively over the solely grown varieties. The application of phosphorus at the rate 85 kg P/sub 2/O/sub 5/ ha/sup -1/ resulted in increased quantity of total biological yield, grain yield and 1000-grain weight compared to unfertilized crop. The uptake of nitrogen and phosphorus contents were substantially enhanced under mixed culture cropping pattern over sole wheat cultivars. The availability of phosphorus was increased by 19.70 percent under mixed cropping over sole culture. It is inferred from the study that mixed cropping produced synergetic effects on the availability of nutrients in the rhizosphere, and thereby resulted in the higher production of wheat crop. (author)

  3. Soil phosphorus dynamics and availability and irrigated coffee yield

    Directory of Open Access Journals (Sweden)

    Thiago Henrique Pereira Reis

    2011-04-01

    Full Text Available Research data have demonstrated that the P demand of coffee (Coffea arabica L. is similar to that of short-cycle crops. In this context, the objective of this study was to evaluate the influence of annual P fertilization on the soil P status by the quantification of labile, moderately labile, low-labile, and total P fractions, associating them to coffee yield. The experiment was installed in a typical dystrophic Red Latosol (Oxisol cultivated with irrigated coffee annually fertilized with triple superphosphate at rates of 0, 50, 100, 200, and 400 kg ha-1 P2O5. Phosphorus fractions were determined in two soil layers: 0-10 and 10-20 cm. The P leaf contents and coffee yield in 2008 were also evaluated. The irrigated coffee responded to phosphate fertilization in the production phase with gains of up to 138 % in coffee yield by the application of 400 kg ha-1 P2O5. Coffee leaf P contents increased with P applications and stabilized around 1.98 g kg-1, at rates of 270 kg ha-1 P2O5 and higher. Soil P application caused, in general, an increase in bioavailable P fractions, which constitute the main soil P reservoir.

  4. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  5. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  6. Extraction of uranium(6), transuranium elements and europium by bidentate neutral phosphorus- and phosphorus-nitrogen-containing reagents with substituent in methylene bridge

    International Nuclear Information System (INIS)

    Kochetkova, N.E.; Kojro, O.Eh.; Nesterova, N.P.; Medved', T.Ya.; Chmutova, M.K.; Myasoedov, B.F.; Kabachnik, M.I.

    1986-01-01

    The influence of substituents in methylene bridge on solubility, extractivity and selectivity of bidentate neutral phosphorus- and phosphorus-nitrogen-containing reagents in the process of U(6), TUE, Eu extraction has been studied. It is ascertained that hydrogen substitution in the bridge of tetraphenylmethylenediphosphine dioxide (1) causes a decrease in the extractivity of reagent as to TPE, uranium (6) and europium. There is no visible regular relation between basicity and extractivity of substituted reagents. Hydrogen substitution in the bridge of diphenyl[diethylcarbamoylmethyl]phosphine oxide (2) causes a decrease in extractivity of the reagent as to TPE, uranium (6) and europium. In contrast to monodentate neutral reagents, when bidentate neutral reagents are used, sometimes no increase in the reagent extractivity with an increase in its basicity is observed. When fragments restricting the conformation mobility of bidentate reagent molecule are introduced in it (here substituents in methylene bridge), it may result in the violation of the regularity, since of all the factors affecting the reagent extractivity the spatial factor may become the prevailing one. On hydrogen substitution in the bridge of 1 separation factors of practically all (with few exceptions) studied pairs of elements increase. Hydrogen substitution in the bridge of 2 causes an increase in separation factor of U (6) /Am pair and it does not affect the separation factor of Am/Eu pair. Hydrogen substitution in the bridge of 1 and 2 does not result in the preparation of more efficient and considerably more selective reagents for extractive isolation and separation of the elements, but some of the substituted reagents (Cl-substituted 1, for instance) may turn out useful for the element separation

  7. Chinese tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization.

    Science.gov (United States)

    Zhang, Ling; Zhang, Yaojun; Wang, Hong; Zou, Jianwen; Siemann, Evan

    2013-01-01

    Two mechanisms that have been proposed to explain success of invasive plants are unusual biotic interactions, such as enemy release or enhanced mutualisms, and increased resource availability. However, while these mechanisms are usually considered separately, both may be involved in successful invasions. Biotic interactions may be positive or negative and may interact with nutritional resources in determining invasion success. In addition, the effects of different nutrients on invasions may vary. Finally, genetic variation in traits between populations located in introduced versus native ranges may be important for biotic interactions and/or resource use. Here, we investigated the roles of soil biota, resource availability, and plant genetic variation using seedlings of Triadica sebifera in an experiment in the native range (China). We manipulated nitrogen (control or 4 g/m(2)), phosphorus (control or 0.5 g/m(2)), soil biota (untreated or sterilized field soil), and plant origin (4 populations from the invasive range, 4 populations from the native range) in a full factorial experiment. Phosphorus addition increased root, stem, and leaf masses. Leaf mass and height growth depended on population origin and soil sterilization. Invasive populations had higher leaf mass and growth rates than native populations did in fresh soil but they had lower, comparable leaf mass and growth rates in sterilized soil. Invasive populations had higher growth rates with phosphorus addition but native ones did not. Soil sterilization decreased specific leaf area in both native and exotic populations. Negative effects of soil sterilization suggest that soil pathogens may not be as important as soil mutualists for T. sebifera performance. Moreover, interactive effects of sterilization and origin suggest that invasive T. sebifera may have evolved more beneficial relationships with the soil biota. Overall, seedlings from the invasive range outperformed those from the native range, however

  8. Topsoil and subsoil properties influence phosphorus leaching from four agricultural soils.

    Science.gov (United States)

    Andersson, Helena; Bergström, Lars; Djodjic, Faruk; Ulén, Barbro; Kirchmann, Holger

    2013-01-01

    Eutrophication, a major problem in many fresh and brackish waters, is largely caused by nonpoint-source pollution by P from agricultural soils. This lysimeter study examined the influence of P content, physical properties, and sorption characteristics in topsoil and subsoil on P leaching measured during 21 mo in 1-m-long, undisturbed soil columns of two clay and two sandy soils. Total P losses during the period varied between 0.65 and 7.40 kg ha. Dissolved reactive P was the dominant form in leachate from the sandy soils and one clay soil, varying from 48 to 76%. Particulate P dominated in leachate from the other clay soil, where low pH (5.2) in the subsoil decreased aggregate stability and thereby probably increased the dispersion of clay particles. Phosphorus leaching was small from soils with high P sorption index (PSI) and low P saturation (35% of PSI) in the profile. High sorption capacity in the subsoil was more important for P leaching in sandy soils than in clay soils with macropore flow, where the effect of high sorption capacity was reduced due to less interaction between percolating water and the soil matrix. The results suggest that P leaching is greatly affected by subsoil properties and that topsoil studies, which dominate current research, are insufficient for assessing P leaching in many soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm 2 /(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  10. Precision of commercial soil testing practice for phosphorus fertilizer recommendations in Finland

    Directory of Open Access Journals (Sweden)

    T. PELTOVUORI

    2008-12-01

    Full Text Available Implementation of the Agri-Environmental Program in 1995 has emphasized the role of advisory soil testing in phosphorus (P input planning and markedly expanded the market for commercial soil testing in Finland. A small precision experiment (5 laboratories and a simulation study on soil sampling were conducted to evaluate the current precision of the soil testing practice for P. The observed values of reproducibility (95% probability of soil P determination were 42-61% of the mean P concentration for three soils. This approximately corresponds to a maximum error of one P class in a seven-step classification system. Soil texture and organic matter content are used as secondary variables in P fertilization planning. In commercial soil testing these are both determined by finger assessment and the results have significant errors in most laboratories. Erroneous texture determinations are more likely to lead to errors in P fertilizer recommendations than soil P analysis itself. In this study the largest deviation from a correct P fertilization recommendation was +10 kg ha-1. In soil sampling simulation, stratified random sampling in areas of differing texture gave the most consistent results with geostatistical analysis of the soil test data, as compared with random, systematic, and judgment sampling strategies.;

  11. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  12. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  13. X-ray fluorescence spectrometry-based approach to precision management of bioavailable phosphorus in soil environments

    Science.gov (United States)

    Declining nutrient use efficiency in crop production has been a global priority to preserve high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients, and the availability of ...

  14. Interrill erosion of carbon and phosphorus from conventionally and organically farmed Devon silt soils

    DEFF Research Database (Denmark)

    Kuhn, Nikolaus J; Armstrong, Elizabeth K; Ling, Amy C

    2012-01-01

    particles by raindrop impacted flow. Resistance to interrill erosion varies between soils depending on their physical, chemical and mineralogical properties. In addition, significant changes in soil resistance to interrill erosion occur during storms as a result of changes in surface roughness, cohesion...... to conventional soil management. The enrichment of P and C in the interrill sediment was not directly related to SOC, P content of the soil and soil interrill erodibility. A comparison of soil and sediment properties indicates that crusting, P and C content as well as density and size of eroded aggregate......Globally, between 0.57 and 1.33 Pg of soil organic carbon (SOC) may be affected by interrill processes. Also, a significant amount of phosphorus (P) is contained in the surface soil layer transformed by raindrop impact, runoff and crust formation. In the EU, the P content of a crusted (2 mm...

  15. Phosphorus use efficiency of maize: an investigation using radiotracer phosphorus (32P)

    International Nuclear Information System (INIS)

    Meena, S.

    2017-01-01

    A better understanding on the nutrient uptake and utilization by plants is essential for developing better nutrient efficient cultivars suited for optimal production. Precise information on the PUE of crops and P dynamics can be obtained with the help of radiotracer technique. To study the phosphorus acquisition and phosphorus use efficiency of added sources in maize using 32 P, a pot culture experiment was conducted in a medium P soil (21.26 kg ha -1 ). The treatments were P as Single Superphosphate, Enriched FYM with Single Superphosphate (EFYM), DAP, Nutriseed pack (SSP), Nutriseed pack (DAP). The above treatments were applied along with phosphobacteria. Totally there were ten treatments replicated four times. Phosphorus sources were tagged with 32 P (obtained as 32 P in orthophosphoric medium from the Board of Radiation and Isotope Technology) and applied as per the treatments. Radioactive 32 P in the grain and stover sample was determined using Liquid Scintillation Counter (Perkin Elmer Tricarb 2810 R). Using the data, per cent phosphorus derived from fertilizer (%Pdff), per cent phosphorus derived from soil (%Pdfs), Phosphorus Use Efficiency (PUE) and A value were determined. Application of Phosphorus (SSP, DAP, enriched FYM with SSP, Nutriseed pack (SSP) and Nutriseed pack (DAP)) along with PB increased the per cent phosphorus derived from fertilizer (% Pdff), P uptake from fertilizer and PUE. The highest PUE of 25.38 was recorded in the treatment where enriched FYM with SSP was applied along with PB. (author)

  16. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China

    DEFF Research Database (Denmark)

    Liu, Lei; Gundersen, Per; Zhang, Tao

    2012-01-01

    Elevated nitrogen (N) deposition in humid tropical regions may aggravate phosphorus (P) deficiency in forest on old weathered soil found in these regions. From January 2007 to August 2009, we studied the responses of soil microbial biomass and community composition to P addition (in two monthly...

  17. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  18. Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability.

    Science.gov (United States)

    Leonel, Magali; Carmo, Ezequiel L; Fernandes, Adalton M; Franco, Célia M L; Soratto, Rogério P

    2016-04-01

    Starch is the major component of potato tubers, amounting approximately to 150-200 g kg (-1) of the tuber weight. Starch is considered to be a major factor for the functionality of the potato in food applications. This study evaluated the physical characteristics of potato starches isolated from tubers of different potato cultivars grown in soil with three levels of phosphorus (P) availability. All potatoes were growing according the same method. The starches were isolated by physical methods and the samples were analyzed for the amylose, P content, paste properties (RVA) and thermal properties of gelatinization and retrogradation (DSC). Experimental data were analyzed considering the potato cultivars and the three soil P availability. For all measured parameters significant impact of cultivar and soil P availability was determined. Phosphorus contents in potato starches ranged from 0.252 to 0.647 g kg(-1) and amylose from 27.18 to 30.8%. Starches from different potato cultivars independent of soil showed a small range of gelatinization temperature. All starches showed low resistance heating and shear stress. The results showed the influence of growing conditions (soil P availability) and also of the differences between the potato cultivars on important characteristics of applicability of starches. © 2015 Society of Chemical Industry.

  19. Phosphorus availability and microbial respiration across biomes :  from plantation forest to tundra

    OpenAIRE

    Esberg, Camilla

    2010-01-01

    Phosphorus is the main limiting nutrient for plant growth in large areas of the world and the availability of phosphorus to plants and microbes can be strongly affected by soil properties. Even though the phosphorus cycle has been studied extensively, much remains unknown about the key processes governing phosphorus availability in different environments. In this thesis the complex dynamics of soil phosphorus and its availability were studied by relating various phosphorus fractions and soil ...

  20. Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla.

    Science.gov (United States)

    Symanczik, Sarah; Gisler, Michelle; Thonar, Cécile; Schlaeppi, Klaus; Van der Heijden, Marcel; Kahmen, Ansgar; Boller, Thomas; Mäder, Paul

    2017-01-01

    Naranjilla ( Solanum quitoense ) is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF) can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains ( Rhizoglomus irregulare , Claroideoglomus claroideum , and Cetraspora helvetica ) and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture) have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains) versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS) methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104%) compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with

  1. Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla

    Directory of Open Access Journals (Sweden)

    Sarah Symanczik

    2017-07-01

    Full Text Available Naranjilla (Solanum quitoense is a perennial shrub plant mainly cultivated in Ecuador, Colombia, and Central America where it represents an important cash crop. Current cultivation practices not only cause deforestation and large-scale soil degradation but also make plants highly susceptible to pests and diseases. The use of arbuscular mycorrhizal fungi (AMF can offer a possibility to overcome these problems. AMF can act beneficially in various ways, for example by improving plant nutrition and growth, water relations, soil structure and stability and protection against biotic and abiotic stresses. In this study, the impact of AMF inoculation on growth and nutrition parameters of naranjilla has been assessed. For inoculation three European reference AMF strains (Rhizoglomus irregulare, Claroideoglomus claroideum, and Cetraspora helvetica and soils originating from three differently managed naranjilla plantations in Ecuador (conventional, organic, and permaculture have been used. This allowed for a comparison of the performance of exotic AMF strains (reference strains versus native consortia contained in the three soils used as inocula. To study fungal communities present in the three soils, trap cultures have been established using naranjilla as host plant. The community structures of AMF and other fungi inhabiting the roots of trap cultured naranjilla were assessed using next generation sequencing (NGS methods. The growth response experiment has shown that two of the three reference AMF strains, a mixture of the three and soil from a permaculture site led to significantly better acquisition of phosphorus (up to 104% compared to uninoculated controls. These results suggest that the use of AMF strains and local soils as inoculants represent a valid approach to improve nutrient uptake efficiency of naranjilla and consequently to reduce inputs of mineral fertilizers in the cultivation process. Improved phosphorus acquisition after inoculation with

  2. Efficiency of phosphorus resource use in Africa as defined by soil chemistry and the impact on crop production

    NARCIS (Netherlands)

    Magnone, Daniel; Bouwman, Alexander F.; Zee, Van Der Sjoerd E.A.T.M.; Sattari, Sheida Z.; Beusen, Arthur H.W.; Niasar, Vahid J.

    2017-01-01

    By 2050 the global population will be 9.7 billion, placing an unprecedented burden on the world's soils to produce extremely high food yields. Phosphorus (P) is crucial to plant growth and mineral fertilizer is added to soil to maintain P concentrations, however this is a finite resource, thus

  3. Efficiency of phosphorus resource use in Africa as defined by soil chemistry and the impact on crop production

    NARCIS (Netherlands)

    Magnone, Daniel; Bouwman, Alexander F.; van der Zee, Sjoerd E.A.T.M.; Sattari, Sheida Z.; Beusen, Arthur H.W.; Niasar, Vahid J.

    By 2050 the global population will be 9.7 billion, placing an unprecedented burden on the world's soils to produce extremely high food yields. Phosphorus (P) is crucial to plant growth and mineral fertilizer is added to soil to maintain P concentrations, however this is a finite resource, thus

  4. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  5. Influence of extractable soil manganese on oxidation capacity of different soils in Korea

    Science.gov (United States)

    Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun

    2008-08-01

    We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).

  6. Valorisation of Phosphorus Extracted from Dairy Cattle Slurry and Municipal Solid Wastes Digestates as a Fertilizer

    DEFF Research Database (Denmark)

    Oliveira, V.; Ottosen, Lisbeth M.; Labrincha, J.

    2016-01-01

    Phosphorus is a vital cell component and an essential and irreplaceable element. Yet at the current rate of exploitation, the phosphate’s reserves will be fast depleted. Dairy cattle slurry and digestates from anaerobic digestion of municipal solid wastes (MSW) are organic wastes containing...... phosphorus which can potentially be used as a secondary source of this nutrient. The present study investigated the effect of pH in phosphorus release from these wastes using acid and base extraction followed by phosphorus recovery via precipitation, targeting the production of a fertilizer. Results showed...... the formation of amorphous calcium phosphates, a potential fertilizer that can help to close the cycle of this nutrient. During the process, heavy metals might become enriched in the precipitates. In the perspective of producing a fertilizer this is an undesirable process, and one that should be taken...

  7. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling.

    Science.gov (United States)

    Giles, Courtney D; Richardson, Alan E; Cade-Menun, Barbara J; Mezeli, Malika M; Brown, Lawrie K; Menezes-Blackburn, Daniel; Darch, Tegan; Blackwell, Martin Sa; Shand, Charles A; Stutter, Marc I; Wendler, Renate; Cooper, Patricia; Lumsdon, David G; Wearing, Catherine; Zhang, Hao; Haygarth, Philip M; George, Timothy S

    2018-03-02

    Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation. Soil P composition was evaluated using solution 31 P NMR spectroscopy. In the soil with limited available P, positive complementarity occurred in Cit+Phy mixtures with roots intermingled. Root separation eliminated positive interactions in mixtures expressing the less mobile phytase (Aspergillus niger PhyA) whereas positive complementarity persisted in mixtures that expressed the more mobile phytase (Peniophora lycii PhyA). Soils from Cit+Phy mixtures contained less inorganic P and more organic P compared to monocultures. Exudate-specific strategies for the acquisition of soil P were most effective in P-limited soil and depended on citrate efflux rate and the relative mobility of the expressed phytase in soil. Plant growth and soil P utilization in plant systems with complementary exudation strategies are expected to be greatest where exudates persist in soil and are expressed synchronously in space and time. This article is protected by copyright. All rights reserved.

  8. Spectroscopic quantification of soil phosphorus forms by {sup 31}P-NMR after nine years of organic or mineral fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Gatiboni, Luciano Colpo, E-mail: gatiboni@cav.udesc.br [Universidade Estadual de Santa Catarina (UDESC), Lages, SC (Brazil); Brunetto, Gustavo; Rheinheimer, Danilo dos Santos; Kaminski, Joao; Flores, Alex Fabiani Claro; Lima, Maria Angelica Silveira; Girotto, Eduardo; Copetti, Andre Carlos Cruz, E-mail: danilo.rheinheimer@pq.cnpq.br, E-mail: joao.kaminski@gmail.com, E-mail: acflores@quimica.ufsm.br, E-mail: masl32003@gmail.com, E-mail: girottosolos@gmail.com, E-mail: andrecopetti@yahoo.com.br [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Pandolfo, Carla Maria; Veiga, Milton, E-mail: pandolfo@epagri.sc.gov.br, E-mail: milveiga@epagri.sc.gov.br [Empresa de Pesquisa Agropecuaria e Extensao Rural de Santa Catarina (EPAGRI), Campos Novos, SC (Brazil)

    2013-05-15

    Long-standing applications of mineral fertilizers or types of organic wastes such as manure can cause phosphorus (P) accumulation and changes in the accumulated P forms in the soil. The objective of this research was to evaluate the forms of P accumulated in soils treated with mineral fertilizer or different types of manure in a long-term experiment. Soil was sampled from the 0-5 cm layer of plots fertilized with five different nutrient sources for nine years: 1) control without fertilizer; 2) mineral fertilizer at recommended rates for local conditions; 3) 5 t ha{sup -1} year{sup -1} of moist poultry litter; 4) 60 m{sup 3} ha{sup -1} year{sup -1} of liquid cattle manure and 5) 40 m{sup 3} ha{sup -1} year{sup -1} of liquid swine manure. The {sup 31}P-NMR spectra of soil extracts detected the following P compounds: orthophosphate, pyrophosphate, inositol phosphate, glycerophosphate, and DNA. The use of organic or mineral fertilizer over nine years did not change the soil P forms but influenced their concentration. Fertilization with mineral or organic fertilizers stimulated P accumulation in inorganic forms. Highest inositol phosphate levels were observed after fertilization with any kind of manure and highest organic P concentration in glycerophosphate form in after mineral or no fertilization. (author)

  9. Soil Scientific Research Methods Used in Archaeology – Promising Soil Biochemistry: a Mini-review

    Directory of Open Access Journals (Sweden)

    Valerie Vranová

    2015-01-01

    Full Text Available This work seeks to review soil scientific methods that have been used and are still being used in archaeology. This review paper aims at emphasising the importance of soil science practice to archaeology thus adding a scientific analytical nature to the cultural nature of archaeology. Common methods (physical, chemical and biochemical used to analyse archaeological soils and artefacts is touched on and their strengths and shortcomings duly noted to become the base for future research. Furthermore, the authors made emphasis on distinctive excavating/sampling methods, biochemical analyses focused on distinctive features of plough-land and soil organic matter mineralization, Counter Immunoelectrophoresis (CEIP method by the presence of proteins testing, carbon analyses such as carbon-14 dating techniques, soil phosphorus studies and geochemical analyses of hematite Fe2O3 and cinnabaryte HgS contents. It is obvious that, the future of archaeology is in the soil because the soil harbours information of the past hence the synergy between soil and archaeological research has to be strengthened and archaeology made a prime agenda by soil scientists by expanding the analyses scope of total phosphorus extraction and giving attention to soil magnetism.

  10. Characterization of phosphorus species in sediments from the Arabian Sea oxygen minimum zone: Combining sequential extractions and X-ray spectroscopy

    NARCIS (Netherlands)

    Kraal, Peter; Bostick, Benjamin C.; Behrends, Thilo; Reichart, Gert-Jan; Slomp, Caroline P.

    2015-01-01

    The bulk phosphorus (P) distribution in sediment samples from the oxygen minimum zone of the northern Arabian Sea was determined using two methods: sequential chemical extraction (the ‘SEDEX’ procedure) and X-ray absorption near-edge structure (XANES) spectroscopy of the phosphorus K-edge. Our

  11. Mobility of arsenic and its compounds in soil and soil solution: the effect of soil pretreatment and extraction methods.

    Science.gov (United States)

    Száková, J; Tlustos, P; Goessler, W; Frková, Z; Najmanová, J

    2009-12-30

    The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of arsenic and its compounds was tested. In the first part, five extraction procedures were compared with following order of extractable arsenic portions: 2M HNO(3)>0.43 M CH(3)COOH>or=0.05 M EDTA>or=Mehlich III (0.2M CH(3)COOH+0.25 M NH(4)NO(3)+0.013 M HNO(3)+0.015 M NH(4)F+0.001 M EDTA) extraction>water). Additionally, two methods of soil solution sampling were compared, centrifugation of saturated soil and the use of suction cups. The results showed that different sample pretreatments including soil solution sampling could lead to different absolute values of mobile arsenic content in soils. However, the interpretation of the data can lead to similar conclusions as apparent from the comparison of the soil solution sampling methods (r=0.79). For determination of arsenic compounds mild extraction procedures (0.05 M (NH(4))(2)SO(4), 0.01 M CaCl(2), and water) and soil solution sampling using suction cups were compared. Regarding the real soil conditions the extraction of fresh samples and/or in situ collection of soil solution are preferred among the sample pretreatments and/or soil extraction procedures. However, chemical stabilization of the solutions should be allowed and included in the analytical procedures for determination of individual arsenic compounds.

  12. Phosphorus cycles of forest and upland grassland ecosystems and some effects of land management practices.

    Science.gov (United States)

    Harrison, A F

    The distribution of phosphorus capital and net annual transfers of phosphorus between the major components of two unfertilized phosphorus-deficient UK ecosystems, an oak--ash woodland in the Lake District and an Agrostis-Festuca grassland in Snowdonia (both on acid brown-earth soils), have been estimted in terms of kg P ha--1. In both ecosystems less than 3% of the phosphorus, totalling 1890 kg P ha--1 and 3040 kg P ha--1 for the woodland and grassland, respectively, is contained in the living biomass and half that is below ground level. Nearly all the phosphorus is in the soil matrix. Although the biomass phosphorus is mostly in the vegetation, the soil fauna and vegetation is slower (25%) than in the grassland vegetatation (208%). More than 85% of the net annual vegetation uptake of phosphorus from the soil is returned to the soil, mainly in organic debris, which in the grassland ecosystem is more than twice as rich in phosphorus (0.125% P) as in the woodland ecosystem (0.053% P). These concentrations are related to the rates of turnover (input/P content) of phosphorus in the litter layer on the soil surface; it is faster in the grassland (460%) than in the woodland (144%). In both cycles plant uptake of phosphorus largely depends on the release of phosphorus through decomposition of the organic matter returned to soil. In both the woodland and the grassland, the amount of cycling phosphorus is potentially reduced by its immobilization in tree and sheep production and in undecomposed organic matter accumulating in soil. It is assumed that the reductions are counterbalanced by the replenishment of cycling phosphorus by (i) some mineralization of organically bound phosphorus in the mineral soil, (ii) the income in rainfall and aerosols not being effectively lost in soil drainage waters and (iii) rock weathering. The effects of the growth of conifers and sheep grazing on the balance between decomposition and accumulation of organic matter returned to soil are

  13. Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol

    NARCIS (Netherlands)

    Margenot, Andrew; Paul, B.K.; Pulleman, M.M.; Parikh, Sanjai; Fonte, Steven J.

    2017-01-01

    The widespread promotion of conservation agriculture (CA) in regions with weathered soils prone to phosphorus (P) deficiency merits explicit consideration of its effect on P availability. A long-term CA field trial located on an acid, weathered soil in western Kenya was evaluated for effects of

  14. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  15. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  16. Case study of shallow soil mixing and soil vacuum extraction remediation project

    International Nuclear Information System (INIS)

    Carey, M.J.; Day, S.R.; Pinewski, R.; Schroder, D.

    1995-01-01

    Shallow Soil Mixing (SSM) and Soil Vacuum Extraction (SVE) are techniques which have been increasingly relied on for the insitu remediation of contaminated soils. The primary applications of SSM have been to mix cement, bentonite, or other reagents to modify properties and thereby remediate contaminated soils or sludges. Soil vacuum extraction has been used at numerous applications for insitu removal of contaminants from soils. At a recent project in southern Ohio, the two technologies were integrated and enhanced to extract volatile organic compounds (VOCs) from soils at a Department of Energy facility. Advantages of the integrated SSM/SVE technology over alternative technologies include a relatively rapid remediation compared to other in-situ techniques at a lower cost, less exposure of waste to the surface environment and elimination of off-site disposal. These advantages led to the selection of the use of both technologies on the project in Southern Ohio. The information presented in this paper is intended to provide Engineers and owners with the level of understanding necessary to apply soil mixing and vacuum extraction technology to a specific site. The most important steps in implementing the technology are site investigation, feasibility estimate, selection of performance criteria, selection of appropriate materials, bench scale testing and construction

  17. Influence of Lime and Phosphorus Application Rates on Growth of Maize in an Acid Soil

    Directory of Open Access Journals (Sweden)

    Peter Asbon Opala

    2017-01-01

    Full Text Available The interactive effects of lime and phosphorus on maize growth in an acid soil were investigated in a greenhouse experiment. A completely randomized design with 12 treatments consisting of four lime levels, 0, 2, 10, and 20 t ha−1, in a factorial combination with three phosphorus rates, 0, 30, and 100 kg ha−1, was used. Maize was grown in pots for six weeks and its heights and dry matter yield were determined and soils were analyzed for available P and exchangeable acidity. Liming significantly reduced the exchangeable acidity in the soils. The effect of lime on available P was not significant but available P increased with increasing P rates. There was a significant effect of lime, P, and P by lime interactions on plant heights and dry matter. Without lime application, dry matter increased with increasing P rates but, with lime, dry mattes increased from 0 to 30 kg P ha−1 but declined from 30 to 100 kg P ha−1. The highest dry matter yield (13.8 g pot−1 was obtained with a combined 2 t ha−1 of lime with 30 kg P ha−1 suggesting that lime application at low rates combined with moderate amounts of P would be appropriate in this soil.

  18. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  19. Using agricultural practices information for multiscale environmental assessment of phosphorus risk

    Science.gov (United States)

    Matos Moreira, Mariana; Lemercier, Blandine; Michot, Didier; Dupas, Rémi; Gascuel-Odoux, Chantal

    2015-04-01

    Phosphorus (P) is an essential nutrient for plant growth. In intensively farmed areas, excessive applications of animal manure and mineral P fertilizers to soils have raised both economic and ecological concerns. P accumulation in agricultural soils leads to increased P losses to surface waterbodies contributing to eutrophication. Increasing soil P content over time in agricultural soils is often correlated with agricultural practices; in Brittany (NW France), an intensive livestock farming region, soil P content is well correlated with animal density (Lemercier et al.,2008). Thus, a better understanding of the factors controlling P distribution is required to enable environmental assessment of P risk. The aim of this study was to understand spatial distribution of extractable (Olsen method) and total P contents and its controlling factors at the catchment scale in order to predict P contents at regional scale (Brittany). Data on soil morphology, soil tests (including P status, particles size, organic carbon…) for 198 punctual positions, crops succession since 20 years, agricultural systems, field and animal manure management were obtained on a well-characterized catchment (ORE Agrhys, 10 km²). A multivariate analysis with mixed quantitative variables and factors and a digital soil mapping approach were performed to identify variables playing a significant role in soil total and extractable P contents and distribution. Spatial analysis was performed by means of the Cubist model, a decision tree-based algorithm. Different scenarios were assessed, considering various panels of predictive variables: soil data, terrain attributes derived from digital elevation model, gamma-ray spectrometry (from airborne geophysical survey) and agricultural practices information. In the research catchment, mean extractable and total P content were 140.0 ± 63.4 mg/kg and 2862.7 ± 773.0 mg/kg, respectively. Organic and mineral P inputs, P balance, soil pH, and Al contents were

  20. Vertical distribution of phosphorus in agricultural drainage ditch soils.

    Science.gov (United States)

    Vaughan, Robert E; Needelman, Brian A; Kleinman, Peter J A; Allen, Arthur L

    2007-01-01

    Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices.

  1. A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems.

    Science.gov (United States)

    Pöthig, Rosemarie; Behrendt, Horst; Opitz, Dieter; Furrer, Gerhard

    2010-02-01

    Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries. Soils from areas which varied highly in land use and soil type were investigated regarding the degree of P saturation (DPS) as well as the equilibrium P concentration (EPC(0)) and water-soluble P (WSP) as indicators for the potential of P loss. The parameters DPS and EPC(0) were determined from P sorption isotherms. Our investigation of more than 400 soil samples revealed coherent relationships between DPS and EPC(0) as well as WSP. The complex parameter DPS, characterizing the actual P status of soil, is accessible from a simple standard measurement of WSP based on the equation [Formula: see text]. The parameter WSP in this equation is a function of remaining phosphorous sorption capacity/total accumulated phosphorous (SP/TP). This quotient is independent of soil type due to the mutual compensation of the factors SP and TP. Thus, the relationship between DPS and WSP is also independent of soil type. The degree of P saturation, which reflects the actual state of P fertilization of soil, can be calculated from the easily accessible parameter WSP. Due to the independence from soil type and land use, the relation is valid for all soils. Values of WSP, which exceed 5 mg P/kg soil, signalize a P saturation between 70% and 80% and thus a high risk of P loss from soil. These results reveal a new approach of risk assessment for P loss from soils to

  2. Quantifying Phosphorus Retnention in Soils of Riparian Buffers Influenced by Different Land Use Practices

    Science.gov (United States)

    Lancellotti, B.; Ross, D. S.; Adair, C.; Schroth, A. W.; Perdrial, J. N.

    2017-12-01

    Excess phosphorus (P) loading to freshwater systems can lead to eutrophication, resulting in algal blooms and subsequent fish kills. Lake Champlain, located between Vermont, New York, and Quebec, has historically exhibited negative effects of eutrophication due to P overloading from non-point sources. To reduce P inputs to the Lake, the Vermont Agency of Natural Resources requires and provides guidelines for the management of riparian buffers, which help protect adjacent water bodies from nutrient and sediment runoff. To better understand how phosphorous retention in riparian buffers is influenced by soil wetness and adjacent land use, we explored differences in P content between riparian buffers located in forested and agricultural watersheds. Within each land use type, we focused on two paired riparian buffers with contrasting soil moisture levels (one wet transect and one dry transect). At each of the four sites, soil pits were dug along a transect perpendicular to the streambank and were placed strategically to capture convergent and divergent landscape positions. Soil samples were collected from each horizon within 0-30cm. In each of these samples, we measured orthophosphate, degree of phosphorus saturation (DPS), and trace elements. We investigated the relationship between DPS and aluminum (Al) and iron (Fe) concentrations to determine how much of the variability in DPS was explained by Al and Fe concentrations, and compared these relationships between the four riparian buffer sites. We also assessed how these relationships varied with depth in the soil profile. The results of these analyses allow us to identify the characteristics of riparian buffers that promote the most effective P sequestration, which is beneficial to the effective management of riparian areas within the Lake Champlain basin.

  3. Development of an extraction method for perchlorate in soils.

    Science.gov (United States)

    Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A

    2006-03-01

    Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.

  4. Phytoextraction of nitrogen and phosphorus by crops grown in a heavily manured Dark Brown Chernozem under contrasting soil moisture conditions.

    Science.gov (United States)

    Agomoh, Ikechukwu; Hao, Xiying; Zvomuya, Francis

    2018-01-02

    Phytoextraction of excess nutrients by crops in soils with a long history of manure application may be a viable option for reducing the nutrient levels. This greenhouse study examined the effectiveness of six growth cycles (40 d each) of barley, canola, corn, oat, pea, soybean, and triticale at extracting nitrogen (N) and phosphorus (P) from a Dark Brown Chernozem that had received 180 Mg ha -1 (wet wt.) of beef cattle feedlot manure annually for 38 years. Moisture content during the study was maintained at either 100% or 50% soil field capacity (SFC). Repeated cropping resulted in an overall decrease in dry matter yield (DMY). The decrease in N and P uptake relative to Cycle 1 was fastest for the cereal grains and less pronounced for the two legumes. However, cumulative N uptake values were significantly greater for corn than the other crops under both moisture regimes. The reduction in soil N was greater under the 100% than the 50% SFC. These results indicate that repeated cropping can be a useful management practice for reducing N and P levels in a heavily manured soil. The extent of reduction will be greater for crops with high biomass production under adequate moisture supply.

  5. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    Science.gov (United States)

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, Psoil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, Psoil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, Psoil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  6. Elemental stoichiometry indicates predominant influence of potassium and phosphorus limitation on arbuscular mycorrhizal symbiosis in acidic soil at high altitude.

    Science.gov (United States)

    Khan, Mohammad Haneef; Meghvansi, Mukesh K; Gupta, Rajeev; Veer, Vijay

    2015-09-15

    The functioning of high-altitude agro-ecosystems is constrained by the harsh environmental conditions, such as low temperatures, acidic soil, and low nutrient supply. It is therefore imperative to investigate the site-specific ecological stoichiometry with respect to AM symbiosis in order to maximize the arbuscular mycorrhizal (AM) benefits for the plants in such ecosystems. Here, we assess the elemental stoichiometry of four Capsicum genotypes grown on acidic soil at high altitude in Arunachal Pradesh, India. Further, we try to identify the predominant resource limitations influencing the symbioses of different Capsicum genotypes with the AM fungi. Foliar and soil elemental stoichiometric relations of Capsicum genotypes were evaluated with arbuscular mycorrhizal (AM) colonization and occurrence under field conditions. AM fungal diversity in rhizosphere, was estimated through PCR-DGGE profiling. Results demonstrated that the symbiotic interaction of various Capsicum genotypes with the AM fungi in acidic soil was not prominent in the study site as evident from the low range of root colonization (21-43.67%). In addition, despite the rich availability of carbon in plant leaves as well as in soil, the carbon-for-phosphorus trade between AMF and plants appeared to be limited. Our results provide strong evidences of predominant influence of the potassium-limitation, in addition to phosphorus-limitation, on AM symbiosis with Capsicum in acidic soil at high altitude. We also conclude that the potassium should be considered in addition to carbon, nitrogen, and phosphorus in further studies investigating the stoichiometric relationships with the AMF symbioses in high altitude agro-ecosystems. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    Science.gov (United States)

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Phosphorus sources (P plus filter pie with or without azotofos on the available P in the soil

    Directory of Open Access Journals (Sweden)

    Maikel Abreu Jiménez

    2014-04-01

    Full Text Available The objective of the investigation was to evaluate the effect of four phosphorus sources plus filter pie with or without the biofertilizer Azotofos on the available phosphorus in the soil at different moments after the treatment. An experiment in factorial design 4(2+1 was established, being the four phosphorus sources: rock phosphate, natural phosphate, triple phosphate and Cuban phosphoric rock; two sources of the organic compound to base filter cake enriched with Azotofos microorganisms, only filter cake (without enrichment and a control treatment (without filter pie, neither Azotofos, with three repetitions. The evaluations of the tenor of available P (Bray-2 were carried out at the 30, 60, 90, 120 and 150 days after the installation of the experiment. The tenor of P (Bray-2 was influenced by the sources of P and the enrichment with biofertilizantes (factorial increasing the tenor of available P in front of the control. The triple superphosphate promoted the higher tenors in P in the soil at 60 and 90 days after its application, independently of the presence or not of the organic compound enriched with P solubilizing microorganisms, although this effect didn’t stay stable at the time.

  9. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  10. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    Science.gov (United States)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  11. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community.

    Science.gov (United States)

    Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen

    2017-10-01

    Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among

  12. Linking stoichiometric homeostasis of microorganisms with soil phosphorus dynamics in wetlands subjected to microcosm warming.

    Directory of Open Access Journals (Sweden)

    Hang Wang

    Full Text Available Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P biogeochemical cycling coupled with carbon (C dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m(-2 d(-1 in the control and 0.07 to 61.26 mg m(-2 d(-1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001 relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C and flow of

  13. Towards a closed phosphorus cycle

    NARCIS (Netherlands)

    Keyzer, M.A.

    2010-01-01

    Summary: This paper stresses the need to address upcoming scarcity of phosphorus, a mineral nutrient that is essential for all life on Earth. Agricultural crops obtain phosphorus from the pool in the soil that can be replenished by recycling of organic material, or by application of inorganic

  14. Integrated vacuum extraction/pneumatic soil fracturing system for remediation of low permeability soil

    International Nuclear Information System (INIS)

    Plaines, A.L.; Piniewski, R.J.; Yarbrough, G.D.

    1994-01-01

    There is wide use of vacuum extraction to remove volatile and semi-volatile organic compounds (VOCs) from unsaturated soil. At sites with soil of low permeability, VOC extraction rates may not be sufficient to meet soil clean-up objectives within the desired time frame. During vacuum extraction in low permeability soil, the diffusion rates of VOCs through the soil matrix may limit VOC removal rates. An increase in the number of subsurface paths for advective flow through the contaminated zone results in a larger mass of contaminant being removed in a shorter time frame, accelerating site remediation. One technique for increasing the number of subsurface flow paths is Terra Vac's process of pneumatic soil fracturing (PSF). In this process, pressurized air is injected into the subsurface, creating micro-fractures for the vacuum extraction system to withdraw contaminants. Similar to hydraulic fracturing techniques long used in the petroleum industry for increasing yield from oil and gas production wells, this technique has applications for soil remediation in low permeability conditions. Two case studies, one in Louisiana at a gasoline service station and one at a manufacturing plant in New York, are presented

  15. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.

    2002-01-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil

  16. Development and production response of edible and forage varieties of pea (Pisum sativum L. to temporary soil drought under different levels of phosphorus application

    Directory of Open Access Journals (Sweden)

    Agnieszka Klimek-Kopyra

    2016-06-01

    Full Text Available The change in weather conditions in Central Europe has led to the need to review current standards for fertilization of pulse crops. Physiologists claim that phosphorus may play a significant role in raising tolerance to a temporary lack of water in the soil. The objective of the 2-year field study (2011–2012 was to assess the effect of phosphorus application on characteristics of the aerial and underground plant parts of different varieties of pea and elements of their yield structure. The study showed that a higher phosphorus application rate led to significant intensification of photosynthesis and thus to more rapid vegetative development in the plants, manifested as a greater number of leaves and greater leaf area. The higher rate of phosphorus application significantly influenced the flowering process of pea during soil drought. The number of flowering nodes increased significantly as phosphorus application increased. The plants fertilized with the higher level of phosphorus produced a greater weight of root nodules with more Rhizobium bacterial colonies. Increased phosphorus fertilization had a significant role during the year of permanent semi-drought, 2012, resulting in a significantly greater number and weight of pods as well as a greater number and weight of seeds per plant, and thus a larger final yield.

  17. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies

    International Nuclear Information System (INIS)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs. -- Highlights: • The alternative and advancement in extraction agents to remove PAHs from soil using soil washing technology is summarised. • The soil regulations for PAH level in various countries are summarized for reference to researchers. • The concentration levels of PAHs in soil at present and the need for soil remediation is presented. -- The efficiency of the extraction agent plays a significant role in soil washing of PAH-contaminated soil

  18. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    Energy Technology Data Exchange (ETDEWEB)

    Ringeval, Bruno [ISPA, Villenave d' Ornon (France); Augusto, Laurent [ISPA, Villenave d' Ornon (France); Monod, Herve [Univ. Paris-Saclay, Jouy-en-Josas (France); van Apeldoorn, Dirk [Utrecht Univ., Utrecht (The Netherlands); Bouwman, Lex [Utrecht Univ., Utrecht (The Netherlands); Yang, Xiaojuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Achat, David L. [ISPA, Villenave d' Ornon (France); Chini, Louise P. [Univ. of Maryland, College Park, MD (United States); Van Oost, Kristof [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Guenet, Bertrand [Univ. Paris-Saclay, Gif-sur-Yvette (France); Wang, Rong [Univ. Paris-Saclay, Gif-sur-Yvette (France); Peking Univ., Beijing (China); Decharme, Bertrand [CNRS/Meteo-France, Toulouse (France); Nesme, Thomas [ISPA, Villenave d' Ornon (France); Pellerin, Sylvain [ISPA, Villenave d' Ornon (France)

    2017-01-09

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs PILAB. Indeed, 97% of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of PILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.

  19. Sequestration of phosphorus by acid mine drainage floc

    Science.gov (United States)

    Adler, P.R.; Sibrell, P.L.

    2003-01-01

    Solubilization and transport of phosphorus (P) to the water environment is a critical environmental issue. Flocs resulting from neutralizing acid mine drainage (AMD) were tested as a possible lowcost amendment to reduce the loss of soluble P from agricultural fields and animal wastewater. Flocs were prepared by neutralizing natural and synthetic solutions of AMD with limestone, lime, ammonium hydroxide, and sodium hydroxide. Phosphorus sequestration was tested in three distinct environments: water, soil, and manure storage basins. In water, flocs prepared from AMD adsorbed 10 to 20 g P kg-1 dry floc in equilibrium with 1 mg L-1 soluble P. Similar results were observed for both Fe-based and A1-based synthetic flocs. A local soil sample adsorbed about 0.1 g P kg-1, about two orders of magnitude less. The AMD-derived flocs were mixed with a highP soil at 5 to 80 g floc kg-1 soil, followed by water and acid (Mehlich1) extractions. All flocs performed similarly. About 70% of the waterextractable P was sequestered by the floc when applied at a rate of 20 g floc kg-1 soil, whereas plant-available P only decreased by about 30%. Under anaerobic conditions simulating manure storage basins, all AMD flocs reduced soluble P by greater than 95% at a rate of 0.2 g floc g-1 rainbow trout (Oncorhynchus mykiss) manure. These findings indicate that AMD flocs could be an effective agent for preventing soluble P losses from soil and manure to the water environment, while at the same time decreasing the costs associated with AMD treatment.

  20. Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

    Directory of Open Access Journals (Sweden)

    Yan Deng

    Full Text Available Sustainable agriculture requires improved phosphorus (P management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L. roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1, and the threshold indicating a significant environmental risk was about 15 mg kg(-1, which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1, indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.

  1. Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

    Science.gov (United States)

    Deng, Yan; Chen, Keru; Teng, Wan; Zhan, Ai; Tong, Yiping; Feng, Gu; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2014-01-01

    Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.

  2. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants.

    Science.gov (United States)

    Ahmad, Munir; Usman, Adel R A; Al-Faraj, Abdullah S; Ahmad, Mahtab; Sallam, Abdelazeem; Al-Wabel, Mohammad I

    2018-03-01

    Biochar (BC) was produced by pyrolyzing the date palm leaf waste at 600 °C and then loaded with phosphorus (P) via sorption process. Greenhouse pot experiment was conducted to investigate the application effects of BC and P-loaded biochar (BCP) on growth and availability of P and heavy metals to maize (Zea mays L.) plants grown in contaminated mining soil. The treatments consisted of BC and BCP (at application rates of 5, 10, 20, and 30 g kg -1 of soil), recommended NK and NPK, and a control (no amendment). Sorption experiment showed that Langmuir predicted maximum P sorption capacity of BC was 13.71 mg g -1 . Applying BCP increased the soil available P, while BC and BCP significantly decreased the soil labile heavy metals compared to control. Likewise, heavy metals in exchangeable and reducible fractions were transformed to more stable fraction with BC and BCP applications. The highest application rate of BCP (3%) was most effective treatment in enhancing plant growth parameters (shoot and root lengths and dry matter) and uptake of P and heavy metals by 2-3 folds. However, based on metal uptake and phytoextraction indices, total heavy metals extraction by maize plants was very small for practical application. It could be concluded that using P-loaded biochar as a soil additive may be considered a promising tool to immobilize heavy metals in contaminated mining areas, while positive effects on the biomass growth of plants may assist the stabilization of contaminated areas affected by wind and water erosion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Irrigation management and phosphorus addition alter the abundance of carbon dioxide-fixing autotrophs in phosphorus-limited paddy soil.

    Science.gov (United States)

    Wu, Xiaohong; Ge, Tida; Yan, Wende; Zhou, Juan; Wei, Xiaomeng; Chen, Liang; Chen, Xiangbi; Nannipieri, Paolo; Wu, Jinshui

    2017-12-01

    In this study, we assessed the interactive effects of phosphorus (P) application and irrigation methods on the abundances of marker genes (cbbL, cbbM, accA and aclB) of CO2-fixing autotrophs. We conducted rice-microcosm experiments using a P-limited paddy soil, with and without the addition of P fertiliser (P-treated-pot (P) versus control pot (CK)), and using two irrigation methods, namely alternate wetting and drying (AWD) and continuous flooding (CF). The abundances of bacterial 16S rRNA, archaeal 16S rRNA, cbbL, cbbM, accA and aclB genes in the rhizosphere soil (RS) and bulk soil (BS) were quantified. The application of P significantly altered the soil properties and stimulated the abundances of Bacteria, Archaea and CO2-fixation genes under CF treatment, but negatively influenced the abundances of Bacteria and marker genes of CO2-fixing autotrophs in BS soils under AWD treatment. The response of CO2-fixing autotrophs to P fertiliser depended on the irrigation management method. The redundancy analysis revealed that 54% of the variation in the functional marker gene abundances could be explained by the irrigation method, P fertiliser and the Olsen-P content; however, the rhizosphere effect did not have any significant influence. P fertiliser application under CF was more beneficial in improving the abundance of CO2-fixing autotrophs compared to the AWD treatment; thus, it is an ideal irrigation management method to increase soil carbon fixation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Soil Phosphorus Compositional Characteristics as a Function of Land-Use Practice in the Upper Eau Galle River Watershed, Wisconsin

    National Research Council Canada - National Science Library

    James, William F; Eakin, Harry L; Ruiz, Carlos E; Barko, John W

    2004-01-01

    The purpose of this research was to quantify biologically labile and refractory phosphorus species in source soils of an agricultural watershed that drains into a eutrophic Corps of Engineers reservoir...

  5. Regulating phosphorus from the agricultural sector

    DEFF Research Database (Denmark)

    Hansen, Line Block; Hansen, Lars Gårn; Rubæk, Gitte Holton

    2010-01-01

      Loss of phosphorus (P) from agricultural areas is one of the main contributors to eutrophication of water systems in many European countries. Regulatory systems such as ambient taxes or discharge taxes which are suitable for regulation of N are insufficient for regulating P because these systems...... do not take into account the importance of P already stored in the soils. Phosphorus stored in the soils is the major source of P losses to surface waters, but at the same time crucial for the soils ability to sustain a viable crop production. Even if measures on P losses from agricultural areas...

  6. Changes phosphorus associated to phosphatase activity because of application of carbon, nitrogen and manure

    Science.gov (United States)

    Paredes, Cecilia; Gianfreda, Liliana; Mora, María de la Luz

    2015-04-01

    The Chilean Andisols are of great importance in the economy of southern Chile supporting the bulk of agricultural production. The major characteristics of Chilean volcanic soils are the high adsorption capacity of P with a concomitant low P availability to plants. Studies preliminary using dairy cattle dung suggest that we can improve P availability using organic P sources within the soil because of microorganism. Phosphorous solubilization by microorganisms is a complex phenomenon, which depends on many factors such as nutritional, physiological and growth condition of the culture. The principal mechanism for mineral phosphate solubilization is the production of organic acids where the enzyme phosphatases play a major role in the mineralization of organic phosphorous in soil. The objective of this study was to evaluate changes in soil phosphorus fractions due to application the cattle dung, glucose, nitrogen (N) and phosphorus (P). In this experiment we incubated soil samples with 300 g of cattle dung, 30 mg kg-1 of N and P and 1000 mg glucose kg-1. The soil samples were moistened to field capacity and incubated in plastic bags to room temperature by different time. The changes in P forms in soil were monitored through the Hedley fractionation procedure and phosphatase activity. Our preliminary results indicated that the application of cattle dung, glucose nitrogen and phosphorus, caused the increased phosphatase activity until to 7 days and then apparently return to normal values. Interestingly, we observed a rise in the inorganic P fraction extracted by NaHCO3 in the same period. In summary, the increase biological activity by carbon and nitrogen increase P availability. Acknowledgements: The authors thank Fondecyt 1141247 Project.

  7. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-01-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations

  8. Effect of phosphorus and zinc on growth and their uptake in hybrid maize grown in a calcareous alluvial soil

    International Nuclear Information System (INIS)

    Parik, B.L.; Santikari, A.K.; Das, S.K.; Chowdhury, B.

    1977-01-01

    Hybrid maize (Zea mays L., var. Ganga 101) was grown in glasshouse at different levels of phosphorus with and without zinc, in a calcareous alluvial soil of North Bihar. Phosphorus was applied at 0, 11, 22, 44 and 88 ppm as tagged P in single superphosphats. Zinc was applied at 0 and 10 ppm as 65 ZnCl 2 . Application of phosphorus and zinc significantly increased the dry matter yield up to P 44 . Higher dose of P resulted in depressed growth accompanied by decreased zinc concentration and uptake by plants, exhibiting zinc deficiency symptoms. Higher levels of P and Zn increased their concentrations in the plant, but their total uptake was reduced at P 88 . With higher levels of P the percent utilization of fertilizer P decreased, while in zinc treated soils uptake of fertilizer P increased. Percent utilization of added zinc increased with increase in P levels upto P 44 and decreased thereafter, although at this level of P a greater percentage of zinc was derived from the fertilizer. (author)

  9. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  10. A simplified extraction schema to for the analytical characterization of apple orchard soils

    Science.gov (United States)

    Sager, Manfred

    2014-05-01

    In agriculture, soil analysis is mainly done to monitor available nutrients as well contaminants, in order to find the optimum fertilization resp. remediation strategy. Traditionally, available nutrients in soils have been obtained from a series of different extractions, some just for one single parameter. In order to simplify the entire procedures, multi-element techniques, like ICP-OES and ICP-MS, have been applied to a sequence of extracts obtained with 0,16M acetic acid and 0,1M oxalate buffer pH 3, which are more suitable for the plasma than traditional salt extractant solutions. Dilute acetic acid should characterize exchangeables plus carbonates, and oxalate buffer the pedogenic oxides. Aqua regia extractions in glass have been replaced by pressure digestion with KClO3 in dilute nitric acid, which yields results equivalent to aqua regia, and additionally permits the determination of total sulfur, as well as acid-leachable boron and silicon. Total digestion was done in PTFE beakers by fuming with HNO3/HClO4, subsequently with HF, and final uptake in 1+1 HCl. The results of total digestion could be verified by XRF analysis of the solid, Ti recovery was the most critical item. The method was applied to 34 soils from apple orchards of different soil types and climatic zones. P and K obtained from standard acetate-lactate extract as well as B obtained from the Baron extract correlated with the results from the acetic acid extract better than 0,9. Just Mg from the CaCl2 extract (Schachtschabel) was independent from all other Mg fractions. The results for Ca, Cu, Mg, Mn, Sr, Pb and Zn obtained from KClO3 digest and from totals, were strongly correlated. The Rare Earth elements formed a strongly intercorrelated group as well after total digestion as in the oxalate leach. Factor analysis was utilized to prove if the obtained fractions part into groups in a geochemically feasible way. The fraction mobilized by dilute acetic acid contained Ca-Mg-carbonates as well as

  11. Soil solution extraction techniques for microbial ecotoxicity testing: a comparative evaluation.

    Science.gov (United States)

    Tiensing, T; Preston, S; Strachan, N; Paton, G I

    2001-02-01

    The suitability of two different techniques (centrifugation and Rhizon sampler) for obtaining the interstitial pore water of soil (soil solution), integral to the ecotoxicity assessment of metal contaminated soil, were investigated by combining chemical analyses and a luminescence-based microbial biosensor. Two different techniques, centrifugation and Rhizon sampler, were used to extract the soil solution from Insch (a loamy sand) and Boyndie (a sandy loam) soils, which had been amended with different concentrations of Zn and Cd. The concentrations of dissolved organic carbon (DOC), major anions (F- , CI-, NO3, SO4(2-)) and major cations (K+, Mg2+, Ca2+) in the soil solutions varied depending on the extraction technique used. Overall, the concentrations of Zn and Cd were significantly higher in the soil solution extracted using the centrifugation technique compared with that extracted using the Rhizon sampler technique. Furthermore, the differences observed between the two extraction techniques depended on the type of soil from which the solution was being extracted. The luminescence-based biosensor Escherichia coli HB101 pUCD607 was shown to respond to the free metal concentrations in the soil solutions and showed that different toxicities were associated with each soil, depending on the technique used to extract the soil solution. This study highlights the need to characterise the type of extraction technique used to obtain the soil solution for ecotoxicity testing in order that a representative ecotoxicity assessment can be carried out.

  12. Factors affecting phosphorus transport at a conventionally-farmed site in Lancaster County, Pennsylvania, 1992-95

    Science.gov (United States)

    Galeone, Daniel G.

    1996-01-01

    The U.S. Geological Survey and the Bureau of Land and Water Conservation of the Pennsylvania Department of Environmental Protection conducted a cooperative study to determine the effects of manure application and antecedent soil-phosphorus concentrations on the transport of phosphorus from the soil of a typical farm site in Lancaster County, Pa., from September 1992 to March 1995. The relation between concentrations of soil phosphorus and phosphorus transport needs to be identified because excessive phosphorus concentrations in surface-water bodies promote eutrophication.The objective of the study was to quantify and determine the significance of chemical, physical, and hydrologic factors that affected phosphorus transport. Three study plots less than 1 acre in size were tilled and planted in silage corn. Phosphorus in the form of liquid swine and dairy manure was injected to a depth of 6-8 inches on two of the three study plots in May 1993 and May 1994. Plot 1 received no inputs of phosphorus from manure while plots 2 and 3 received an average of 56 and 126 kilograms of phosphorus per acre, respectively, from the two manure applications. No other fertilizer was applied to any of the study plots. From March 30, 1993, through December 31, 1993, and March 10, 1994, through August 31, 1994 (the study period), phosphorus and selected cations were measured in precipitation, manure, soil, surface runoff, subsurface flow (at 18 inches below land surface), and corn plants before harvest. All storm events that yielded surface runoff and subsurface flow were sampled. Surface runoff was analyzed for dissolved (filtered through a 0.45-micron filter) and total concentrations. Subsurface flow was only analyzed for dissolved constituents. Laboratory soil-flask experiments and geochemical modeling were conducted to determine the maximum phosphate retention capacity of sampled soils after manure applications and primary mineralogic controls in the soils that affect phosphate

  13. Subsurface phosphorus transport through a no-till field in the semi arid Palouse region

    Science.gov (United States)

    Norby, J. C.; Brooks, E. S.; Strawn, D. G.

    2017-12-01

    Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.

  14. Reliability and limits of soil phosphated fertility diagnostic determined from isotopically dilutable phosphorus and fixing power

    International Nuclear Information System (INIS)

    Gachon, Louis; Triboi, Eugene

    1979-01-01

    On the soils of about forty experiment fields, are measured the E and L values, the fixing capacity and phosphorus uptake during 100/120 days by ray-grass cultivated in vegetation pots. The fertility indices Isub(E) and Isub(L) joining the fixing capacity to the E or L values respectively provide an excellent appreciation of the potential flux of phosphate ions offered by the soil to the plant. But the soil climate and the root system geometry influence the concrete interception of this flux by the roots and consequently, the responses of crops to phosphate fertilizers. The interpretation norms are suggested and discussed [fr

  15. Comparison Of Six Extractants For Assessing Available Phosphorus ...

    African Journals Online (AJOL)

    ... 0.01M CaCl2, Bray-1 and electro-ultra-filtration (EUF) technique] for simultaneous assessment of the availability of these nutrients in selected Nigerian soils was evaluated using guinea-corn (Sorghum bicolor) as test crop in Neubauer experiment. The respective average amounts of P, Zn and Mn extracted by 1N NH4OAc ...

  16. [Bioretention Media Screening for the Removal of Phosphorus in Urban Stormwater].

    Science.gov (United States)

    Li, Li-qing; Gong, Yan-fang; Yan, Zi-qin; Shan, Bao-qing

    2015-07-01

    Urban runoff is an increasingly important source of excess phosphorus (P) to local receiving waters. Bioretention, a promising technology for urban stormwater pollution treatment, was investigated to determine whether the mixture of purple soil and sand could adsorb sufficient P at low concentrations in urban stormwater. The TP concentrations of urban runoff from variously impervious areas in Chongqing City ranged from 0. 04 to 7. 00 mg . L-1 (mean ± S. D. = 0. 75 mg . L-1 ± 1. 08 mg . L-1); the TDP concentrations ranged from 0. 02-0. 46 mg . L-1 ( mean ± S. D. = 0. 15 mg . L-1 ± 0. 10 mg . L-1). The media adsorption benchmark was determined for a bioretention facility sized at 10% of the 100% impervious catchment area and having 10 years of capacity according to annual rainfall pattern and the runoff TDP range. The media benchmark for adsorption was calculated as 7. 5 mg . kg-1 at soluble P concentration of 0. 30 mg . L-1 which provided the necessary stormwater treatment. The oxalate-extractable aluminum and iron content influenced the P sorption capacity for neutral and acid purple soils. A strong positive linear relationship was observed between the oxalate ratio [OR = (Alox + Feox)/Pox] and media P sorption capacity. The media mixture of 20% purple soil and 80% sand showed excellent P removal, meeting the developed benchmark for adsorptive behavior. The media mixture in a large-scale (60 cm) column consistently produced soluble reactive phosphorus effluent event with mean concentrations soil and sand can be used as a bioretention media to treat low-concentration phosphorus in urban runoff under various hydrologic and pollutant concentration conditions.

  17. Modeling of phosphorus fluxes produced by wild fires at watershed scales.

    Science.gov (United States)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.

    2017-12-01

    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  18. Phosphorus availability in an acid tropical soil amended with phosphate rocks

    International Nuclear Information System (INIS)

    Zaharah, A.R.; Sharifuddin, H.A.H.

    2002-01-01

    The fate of P from phosphate rocks applied to Malaysian soils has not been studied in detail. Since the plantation sector is the major consumer of phosphate rock (PR) in Malaysia, studies on the dissolution and agronomic effectiveness of PR are of great interest to the country. Thus a series of greenhouse and laboratory experiments involving conventional chemical extractants and 32 P isotopic techniques was carried out to evaluate the agronomic effectiveness of PR sources of different reactivity. Phosphorus and other chemical properties of the soil and PRs studied were determined. The P solubility tests by 2% formic acid, 2% citric acid and neutral ammonium citrate gave positive correlation with P uptake by one-year old oil palm seedlings. Neutral ammonium citrate proved to be a better indicator of PR solubility and its correlation coefficient with P uptake improved by expressing citrate solubility as a percentage of the rock rather than as a percentage of total P 2 0 5 content. The agronomic effectiveness of TSP and 6 PR sources was evaluated in glasshouse conditions with oil palm seedlings for one year-period. The percentage of PR dissolution varied greatly among PR sources. The PR dissolution was assessed by 0.5 M NaOH, Pi strip, L-value and 1 M ammonium citrate-dissolved Ca. Irrespective of the methods used, the more reactive PR such as North Carolina and Tunisia dissolved more P than the lower reactive sources such as Christmas Island and China PR. All the four methods used gave positive correlation with plant P uptake, with 0.5M NaOH being the best indirect method for determining PR dissolution. Less than 30% of the applied P was dissolved during the one-year period, with only about 15 to 40% of the dissolved P being taken up by the oil palm seedlings. A laboratory 32 P isotopic exchange method was also carried out in this acid soil to assess the soil P status parameters. A low water soluble P concentration (Cp) was found for all PRs used. The ratio of the

  19. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  20. Comparison of Chemical Extraction Methods for Determination of Soil Potassium in Different Soil Types

    Science.gov (United States)

    Zebec, V.; Rastija, D.; Lončarić, Z.; Bensa, A.; Popović, B.; Ivezić, V.

    2017-12-01

    Determining potassium supply of soil plays an important role in intensive crop production, since it is the basis for balancing nutrients and issuing fertilizer recommendations for achieving high and stable yields within economic feasibility. The aim of this study was to compare the different extraction methods of soil potassium from arable horizon of different types of soils with ammonium lactate method (KAL), which is frequently used as analytical method for determining the accessibility of nutrients and it is a common method used for issuing fertilizer recommendations in many Europe countries. In addition to the ammonium lactate method (KAL, pH 3.75), potassium was extracted with ammonium acetate (KAA, pH 7), ammonium acetate ethylenediaminetetraacetic acid (KAAEDTA, pH 4.6), Bray (KBRAY, pH 2.6) and with barium chloride (K_{BaCl_2 }, pH 8.1). The analyzed soils were extremely heterogeneous with a wide range of determined values. Soil pH reaction ( {pH_{H_2 O} } ) ranged from 4.77 to 8.75, organic matter content ranged from 1.87 to 4.94% and clay content from 8.03 to 37.07%. In relation to KAL method as the standard method, K_{BaCl_2 } method extracts 12.9% more on average of soil potassium, while in relation to standard method, on average KAA extracts 5.3%, KAAEDTA 10.3%, and KBRAY 27.5% less of potassium. Comparison of analyzed extraction methods of potassium from the soil is of high precision, and most reliable comparison was KAL method with KAAEDTA, followed by a: KAA, K_{BaCl_2 } and KBRAY method. Extremely significant statistical correlation between different extractive methods for determining potassium in the soil indicates that any of the methods can be used to accurately predict the concentration of potassium in the soil, and that carried out research can be used to create prediction model for concentration of potassium based on different methods of extraction.

  1. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2013-01-01

    Full Text Available Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context.

  2. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  3. Pervasive phosphorus limitation of tree species but not communities in tropical forests

    Science.gov (United States)

    Turner, Benjamin L.; Brenes-Arguedas, Tania; Condit, Richard

    2018-03-01

    Phosphorus availability is widely assumed to limit primary productivity in tropical forests, but support for this paradigm is equivocal. Although biogeochemical theory predicts that phosphorus limitation should be prevalent on old, strongly weathered soils, experimental manipulations have failed to detect a consistent response to phosphorus addition in species-rich lowland tropical forests. Here we show, by quantifying the growth of 541 tropical tree species across a steep natural phosphorus gradient in Panama, that phosphorus limitation is widespread at the level of individual species and strengthens markedly below a threshold of two parts per million exchangeable soil phosphate. However, this pervasive species-specific phosphorus limitation does not translate into a community-wide response, because some species grow rapidly on infertile soils despite extremely low phosphorus availability. These results redefine our understanding of nutrient limitation in diverse plant communities and have important implications for attempts to predict the response of tropical forests to environmental change.

  4. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers

    DEFF Research Database (Denmark)

    Christel, Wibke; Zhu, Kun; Hoefer, Christoph

    2016-01-01

    processes and fixation in the residue sphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing...... on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids...

  5. Comparative evaluation of phosphorus fertilizer on lowland rice soils by the 'A' value technique

    International Nuclear Information System (INIS)

    Nagarajah, S.; Amarasiri, S.L.; Jauffer, M.M.M.; Wickremasinghe, K.

    1979-01-01

    The direct and residual effects of several phosphorus fertilizers were studied in some rice soils of Sri Lanka in the greenhouse and in the field using the 'A' value method. In the greenhouse experiment rock phosphates did not show a direct effect on any of the soils. Rhenania phosphate was superior to other phosphates in its direct effect in some of the soils. The rock phosphates hardly showed a residual effect while Rhenania phosphate showed a residual effect in three of the soils. In the field experiment there were no differences in 'A' value between the forms of phosphate in their direct effects. Only the higher level of concentrated superphosphate showed a residual effect. 'A' value data also presented some problems in their interpretation and use. Some of the 'A' values were negative, there were conflicts between 'A' value data and previously known field data, and the 'A' value method was sometimes unable to differentiate between phosphates of wide differences in availability. (author)

  6. Role of Phospho enol pyruvate Carboxylase in the Adaptation of a Tropical Forage Grass to Low-Phosphorus Acid Soils

    OpenAIRE

    Begum, Hasna Hena; Osaki, Mitsuru; Nanamori, Masahito; Watanabe, Toshihiro; Shinano, Takuro; Rao, Idupulapati M.

    2006-01-01

    As Brachiaria hybrid cv. 'Mulato' has adapted to acid soils with extremely low phosphorus (P) contents, its low-P-tolerance mechanisms were investigated and compared with those of wheat (Triticum aestivum L.) and rice (Oryza sativa L. cv. 'Kitaake'). Among the three plant species, the highest P-use efficiency (PUE) in low-P soil was recorded in the Brachiaria hybrid, which increased remarkably under P-deficiency and soil acidity, while P-deficiency had less effect on the PUE of wheat and rice...

  7. Characterization of leached phosphorus from soil, manure, and manure-amended soil by physical and chemical fractionation and diffusive gradients in thin films (DGT)

    DEFF Research Database (Denmark)

    Glæsner, Nadia Andersen; Donner, Erica; Magid, Jakob

    2012-01-01

    We are challenged to date to fully understand mechanisms controlling phosphorus (P) mobilization in soil. In this study we evaluated physical properties, chemical reactivity, and potential bioavailability of P mobilized in soil during a leaching event and examined how the amounts and properties...... with manure. Manure particles themselves were also largely retained by the soil. Combined physical (centrifugation) and chemical (molybdate reactiveness) fractionation of leached P showed that leachates in the manure treated soils were dominated by dissolved unreactive P (DUP), mainly originating from manure...... of leached P were influenced by surface application of cattle manure. Leaching experiments on manure itself, and on intact soil columns (14.1 cm inner dia., 25 cm height) before and after manure application, were carried out at an irrigation rate of 1 mm h−1 for 48 h. High concentrations of dissolved...

  8. Dynamics of phosphorus fractions in the rhizosphere of fababean (Phaseolus vulgaris L.) and maize (Zea mays L.) grown in calcareous and acid soils

    NARCIS (Netherlands)

    Li, G.; Li, Haigang; Leffelaar, P.A.; Shen, J.; Zhang, F.

    2015-01-01

    The dynamics of soil phosphorus (P) fractions were investigated, in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils. Plants were grown in a mini-rhizotron with a thin (3 mm) soil layer, which was in contact with the root-mat, and considered as

  9. Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution

    Directory of Open Access Journals (Sweden)

    Lessandro De Conti

    2015-06-01

    Full Text Available The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM, Santa Maria (RS. The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf, subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC, and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.

  10. Quantifying the Limitation to World Cereal Production Due To Soil Phosphorus Status

    Science.gov (United States)

    Kvakić, Marko; Pellerin, Sylvain; Ciais, Philippe; Achat, David L.; Augusto, Laurent; Denoroy, Pascal; Gerber, James S.; Goll, Daniel; Mollier, Alain; Mueller, Nathaniel D.; Wang, Xuhui; Ringeval, Bruno

    2018-01-01

    Phosphorus (P) is an essential element for plant growth. Low P availability in soils is likely to limit crop yields in many parts of the world, but this effect has never been quantified at the global scale by process-based models. Here we attempt to estimate P limitation in three major cereals worldwide for the year 2000 by combining information on soil P distribution in croplands and a generic crop model, while accounting for the nature of soil-plant P transport. As a global average, the diffusion-limited soil P supply meets the crop's P demand corresponding to the climatic yield potential, due to the legacy soil P in highly fertilized areas. However, when focusing on the spatial distribution of P supply versus demand, we found strong limitation in regions like North and South America, Africa, and Eastern Europe. Averaged over grid cells where P supply is lower than demand, the global yield gap due to soil P is estimated at 22, 55, and 26% in winter wheat, maize, and rice. Assuming that a fraction (20%) of the annual P applied in fertilizers is directly available to the plant, the global P yield gap lowers by only 5-10%, underlying the importance of the existing soil P supply in sustaining crop yields. The study offers a base for exploring P limitation in crops worldwide but with certain limitations remaining. These could be better accounted for by describing the agricultural P cycle with a fully coupled and mechanistic soil-crop model.

  11. Selenium and phosphorus interaction in pea (pisum sativum L.)

    International Nuclear Information System (INIS)

    Singh, Mahendra; Bhandari, D.K.

    1975-01-01

    The interaction of selenium and phosphorus on the dry matter yield and concentration and uptake of phosphorus, sulfur and selenium was studied in pea (Pisum sativnum) var. T 163. The fertilizer was tagged with P 32 . It was observed that increased concentration of applied selenium in soil decreased the dry matter yield and increased the concentration and uptake of total P, soil P and selenium in pea plants. Increased concentration of P alone increased dry matter yield, concentration and uptake of total, soil and fertilizer P and selenium which was beyond safe limits, and decreased concentration and uptake of sulphur. Selenium and phosphorus showed strong synergetic relationship by increasing the concentration of each other in plants while both showed antagonistic effect on the concentration of sulphur. Phosphorus compensated the toxic effect of selenium and improved the growth and dry matter yield of pea plants. The highest selenium concentration of 22.4 ppm was observed in 100 ppm phosphorus with 5 ppm selenium treated pots while lowest (0.10 ppm) in control. (author)

  12. Congo grass grown in rotation with soybean affects phosphorus bound to soil carbon

    Directory of Open Access Journals (Sweden)

    Alexandre Merlin

    2014-06-01

    Full Text Available The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

  13. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  14. Phosphorus runoff from turfgrass as affected by phosphorus fertilization and clipping management.

    Science.gov (United States)

    Bierman, Peter M; Horgan, Brian P; Rosen, Carl J; Hollman, Andrew B; Pagliari, Paulo H

    2010-01-01

    Phosphorus enrichment of surface water is a concern in many urban watersheds. A 3-yr study on a silt loam soil with 5% slope and high soil test P (27 mg kg(-1) Bray P1) was conducted to evaluate P fertilization and clipping management effects on P runoff from turfgrass (Poa pratensis L.) under frozen and nonfrozen conditions. Four fertilizer treatments were compared: (i) no fertilizer, (ii) nitrogen (N)+potassium (K)+0xP, (iii) N+K+1xP, and (iv) N+K+3xP. Phosphorus rates were 21.3 and 63.9 kg ha(-1) yr(-1) the first year and 7.1 and 21.3 kg ha(-1) yr(-1) the following 2 yr. Each fertilizer treatment was evaluated with clippings removed or clippings recycled back to the turf. In the first year, P runoff increased with increasing P rate and P losses were greater in runoff from frozen than nonfrozen soil. In year 2, total P runoff from the no fertilizer treatment was greater than from treatments receiving fertilizer. This was because reduced turf quality resulted in greater runoff depth from the no fertilizer treatment. In year 3, total P runoff from frozen soil and cumulative total P runoff increased with increasing P rate. Clipping management was not an important factor in any year, indicating that returning clippings does not significantly increase P runoff from turf. In the presence of N and K, P fertilization did not improve turf growth or quality in any year. Phosphorus runoff can be reduced by not applying P to high testing soils and avoiding fall applications when P is needed.

  15. Comparison of extraction fluids used with contaminated soils

    International Nuclear Information System (INIS)

    Erickson, D.C.; White, E.; Loehr, R.C.

    1991-01-01

    Five separate solutions were evaluated for use as leaching fluids with soils containing petroleum refining waste residues. The extraction fluids were: (a) water, (b) dilute hydrochloric acid, (c) 0.05 molar EDTA, (d) acetate buffer and (e) a dilute sulfuric/nitric acid mixture. The soils were collected from former refinery land treatment sites which had been used to treat petroleum refining wastes. The extractions were performed using a rotary tumbler (30 RPM, 18 hours) and the resulting solutions were analyzed for polynuclear aromatic hydrocarbons (PAHs) and metals. Concentrations of the PAHs in each of the five solutions were near or below the analytical quantitation limits. Metal concentrations were highest in the HCL and EDTA extracts, although only a small fraction of the total available metal present in the soils was extracted by the solutions evaluated

  16. The Effects of EDTA and H2SO4 on Phyto-extraction of Pb from contaminated Soils by Radish

    Directory of Open Access Journals (Sweden)

    T. Mansouri

    2016-10-01

    Full Text Available Introduction: Soil contamination by heavy metals is one of the most important environmental concerns in many parts of the world. The remediation of soil contaminated with heavy metals is necessary to prevent the entry of these metals into the human food chain. Phyto-extraction is an effective, cheap and environmental friendly method which uses plants for cleaning contaminated soils. The plants are used for phytoremediation should have high potential for heavy metals uptake and produce enormous amount of biomass. A major problem facing phyto-extraction method is the immobility of heavy metals in soils. Chemical phyto-extraction is a method in which different acids and chelating substances are used to enhance the mobility of heavy metals in soil and their uptake by plants. The aims of this study were: (a to determine the potential of radish to extract Pb from contaminated soils and (b to assess the effects of different soil amendment (EDTA and H2SO4 to enhance plant uptake of the heavy metal and (c to study the effects of different levels of soil Pb on radish growth and Pb concentrations of above and below ground parts of this plant. Materials and Methods: Soil samples were air dried and passed through a 2 mm sieve and analysed for some physico-chemical properties and then artificially contaminated with seven levels of lead (0, 200, 400, 600, 800 and 1000 mg/kg using Pb(NO32 salt and then planted radish. During the growth period of radish and after the initiation of root growth, the plants were treated with three levels of sulfuric acid (0, 750 and 1500 mg/kg or three levels of EDTA (0, 10 and 20 mg/kg through irrigation water. At the end of growth period, the above and below ground parts of the plants were harvested, washed, dried and digested using a mixture of HNO3, HCl, and H2O2. The concentrations of Pb, N, P and K in plant extracts were measured. Statistical analysis of data was performed using MSTATC software and comparison of means was

  17. Analysis of factors controlling soil phosphorus loss with surface runoff in Huihe National Nature Reserve by principal component and path analysis methods.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Bu, He; Wo, Qiang

    2018-01-01

    Phosphorus (P) loss with surface runoff accounts for the P input to and acceleration of eutrophication of the freshwater. Many studies have focused on factors affecting P loss with surface runoff from soils, but rarely on the relationship among these factors. In the present study, rainfall simulation on P loss with surface runoff was conducted in Huihe National Nature Reserve, in Hulunbeier grassland, China, and the relationships between P loss with surface runoff, soil properties, and rainfall conditions were examined. Principal component analysis and path analysis were used to analyze the direct and indirect effects on P loss with surface runoff. The results showed that P loss with surface runoff was closely correlated with soil electrical conductivity, soil pH, soil Olsen P, soil total nitrogen (TN), soil total phosphorus (TP), and soil organic carbon (SOC). The main driving factors which influenced P loss with surface runoff were soil TN, soil pH, soil Olsen P, and soil water content. Path analysis and determination coefficient analysis indicated that the standard multiple regression equation for P loss with surface runoff and each main factor was Y = 7.429 - 0.439 soil TN - 6.834 soil pH + 1.721 soil Olsen-P + 0.183 soil water content (r = 0.487, p runoff. The effect of physical and chemical properties of undisturbed soils on P loss with surface runoff was discussed, and the soil water content and soil Olsen P were strongly positive influences on the P loss with surface runoff.

  18. Runoff, nitrogen (N) and phosphorus (P) losses from purple slope cropland soil under rating fertilization in Three Gorges Region.

    Science.gov (United States)

    Bouraima, Abdel-Kabirou; He, Binghui; Tian, Taiqiang

    2016-03-01

    Soil erosion along with soil particles and nutrients losses is detrimental to crop production. We carried out a 5-year (2010 to 2014) study to characterize the soil erosion and nitrogen and phosphorus losses caused by rainfall under different fertilizer application levels in order to provide a theoretical evidence for the agricultural production and coordinate land management to improve ecological environment. The experiment took place under rotation cropping, winter wheat-summer maize, on a 15° slope purple soil in Chongqing (China) within the Three Gorges Region (TGR). Four treatments, control (CK) without fertilizer, combined manure with chemical fertilizer (T1), chemical fertilization (T2), and chemical fertilizer with increasing fertilization (T3), were designed on experimental runoff plots for a long-term observation aiming to study their effects on soil erosion and nutrients losses. The results showed that fertilization reduced surface runoff and nutrient losses as compared to CK. T1, T2, and T3, compared to CK, reduced runoff volume by 35.7, 29.6, and 16.8 %, respectively and sediment yield by 40.5, 20.9, and 49.6 %, respectively. Regression analysis results indicated that there were significant relationships between soil loss and runoff volume in all treatments. The combined manure with chemical fertilizer (T1) treatment highly reduced total nitrogen and total phosphorus losses by 41.2 and 33.33 %, respectively as compared with CK. Through this 5-year experiment, we can conclude that, on the sloping purple soil, the combined application of manure with fertilizer is beneficial for controlling runoff sediments losses and preventing soil erosion.

  19. The impact of seabirds on the content of various forms of phosphorus in organic soils of the Bellsund coast, western Spitsbergen

    Directory of Open Access Journals (Sweden)

    Marta Ziółek

    2014-10-01

    Full Text Available In areas isolated from direct human impact, such as Spitsbergen, environmental changes result mainly from natural processes, which include nutrient enrichment caused by seabirds. The objective of this study was to evaluate the degree of nutrient enrichment of organic soils fertilized by seabirds, indicated by the phosphorus content and transformations. This study encompassed two areas on the Bellsund coast. A profile without the influence of seabirds and profiles located at different distances from the colony of birds (0–150 m were analysed. A sequential phosphorus fractionation method was used, and three inorganic P (Pi fractions were obtained as a result: Pi-L (labile P, Pi-FeAl (P associated with Fe and Al and Pi-CaMg (P associated with Ca and Mg; and two fractions of organic P (Po: Po-HuAc (P associated with humic acids and Po-Res (residual P. Polar organic soils not subjected to the direct seabird impact contained amounts of total phosphorus (Pt similar to organic soils in other climate zones. The presence of the seabird colony increased the Pt content and changed the distribution between the ratio of organic and inorganic P fractions. Within the inorganic P fraction, the Pi–CaMg component was dominant and its distribution was modified by the fertilizing effect of bird droppings. The nutrient enrichment of organic soils by birds in the polar zone was therefore very strong.

  20. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  1. Long-term grassland management effects on soil Phosphorus status on rewetted Histosols

    Science.gov (United States)

    Heller, Sebastian; Müller, Jürgen; Kayser, Manfred

    2017-04-01

    Since the Neolithic Period, the cultivation of wetlands has played a significant role for the settlement of Humans northwest Germany. A continuing drainage of the wetlands over the centuries and an intensified soil cultivation during the last decades has caused irreversible peat degradation and led to fundamental changes in the landscape. Nowadays, almost 70 % of the 4345 km2 peatland of Lower Saxony is altered by agriculture. For the revitalization of wetland ecosystems, permanent rewetting is an integral component to preserve the functions of organic soils and achieve resilient, speciesrich wetlands. However, permanent rewetting measures are not always feasible. In our study area at the Osterfeiner Moor, a fen located in the Dümmer lowlands near Osnabrück, intensive forage cropping areas were converted into extensive permanent grasslands accompanied by temporary rewetting during winter. This management practice combined with zero fertilization and a low mowing and grazing intensity aims at mitigating mineralisation of peat layers and creating a habitat for endangered meadow bird species. In this semi-natural ecosystem soil phosphorus (P) dynamics play a crucial role. However, longterm research results on P availability of degraded and rewetted fens are still lacking. Thus, we investigated the interaction of different grassland uses and P dynamics in the soil. We described P depletion of the topsoil over a time scale of 17 years after the implementation of restoration measures. Our study site comprises of 180 ha protected grassland divided into 52 management plots. According to the management system, we divided the plots into meadows, pastures and combinations of cutting and grazing. The soils in our study area can be characterised as drained organic soils, WRB: Rheic Sapric Histosols (Drainic), with drastic degradation properties through moorsh forming processes. Plant-available P (double lactate extraction method: PDL) was analysed from representative topsoil

  2. Faecal excretion of total and acid extractable phosphorus in dairy cows fed rations with different levels of phosphorus.

    Science.gov (United States)

    Nordqvist, Maria; Spörndly, Rolf; Holtenius, Kjell

    2016-03-15

    The phosphorus (P) originating from livestock operations causes eutrophication. Determination of acid extractable P (AEP) in cattle faeces has been proposed as a tool to identify excessive P feeding. The method has not yet been evaluated in controlled studies with cows subjected to individual recording of P intake. Thus the present study focused on investigating the relationship between different P fractions in faeces from cows fed rations with varying P content. The study also investigated whether AEP in faeces could be used to estimate dietary P intake in relation to the P requirement. The results showed that acid extractable P predicted P overfeeding. P fed in excess of requirements was largely excreted as acid extractable P. The unavailable and/or inevitably lost P fractions in the diets were smaller than assumed. This study demonstrates in experimental studies a positive relationship between measured AEP and indirectly calculated regulated P. Any P fed in excess of requirements was largely excreted as AEP. This fraction is thought to be the most mobile P fraction with regard to potential runoff losses. However, the unavailable and/or inevitably lost P fractions in the diets were smaller than assumed. © 2015 Society of Chemical Industry.

  3. Factors Influencing Divergent Patterns of Phosphorus Availability in NY and PA Biogeochemical `Hotspots'

    Science.gov (United States)

    Saia, S. M.; Hofmeister, K.; Regan, J. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Anthropogenic alteration of the soil phosphorus (P) cycle leads to subsequent water quality issues in agricultural dominated watersheds. In the humid Northeastern United States (NE US), variably saturated areas can generate surface runoff that transports P and stimulates biogeochemical processes; these hydrologically dynamic locations are often called biogeochemical `hotspots'. Many studies have evaluated nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesized seasonally wet parts of the landscape (i.e., hotspots) have smaller biologically available P pools because runoff events frequently carry away nutrients like P. To test this hypothesis, we generated soil wetness index (SWI) maps from soil (SURRGO) and elevation (LiDAR rescaled to 3 m) data and used these maps to direct seasonal soil sampling near Klingerstown, Pennsylvania (PA) and Ithaca, New York (NY). We collected 5cm deep soil samples in PA (bimonthly) and NY (monthly) along soil moisture gradients for a range of land cover types (forest, fallow, and cropped) from May through October. We measured soil moisture in the field and percent organic matter (OM), pH, and three increasingly strong soil P extractions (dilute-salt-extractable P, oxalate-extractable P, and total-extractable P) in the laboratory. Our results indicated a negative relationship between dilute-salt-extractable P concentrations and SWI in PA and no relationship between these same variables in NY. We also found positive relationships between each of the three P extractions in PA but only a positive relationship between oxalate-extractable P and total-extractable P in NY. Our findings in PA support our hypothesis; namely, less biologically available P (i.e. dilute-salt-extractable P) is found in wetter areas of the landscape. However, divergent P availability patterns in NY point to further complexities and confounding variables in our understanding in soil P processes. Further studies will look

  4. A representation of the phosphorus cycle for ORCHIDEE (revision 4520)

    Science.gov (United States)

    Goll, Daniel S.; Vuichard, Nicolas; Maignan, Fabienne; Jornet-Puig, Albert; Sardans, Jordi; Violette, Aurelie; Peng, Shushi; Sun, Yan; Kvakic, Marko; Guimberteau, Matthieu; Guenet, Bertrand; Zaehle, Soenke; Penuelas, Josep; Janssens, Ivan; Ciais, Philippe

    2017-10-01

    Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for the influence of the nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization, and biological nitrogen fixation. Changes in the nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from the soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300-year) and a late (4.1 Myr) stage of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus, or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower than observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition.

  5. Effects of Land Use on Concentrations and Chemical Forms of Phosphorus in Different-Size Aggregates

    Science.gov (United States)

    Ahmad, E. H.; Demisie, W.; Zhang, M.

    2017-12-01

    Land use has been recognized as an important driver of environmental change on all spatial and temporal scales. This study was conducted to determine the effects of land uses on phosphorus concentration in bulk soil and in water-stable aggregates in different soils. The study was conducted on three soil types (Ferrosols, Cambosols, and Primosols), which were collected from three different locations from southeast China and under three land uses (Uncultivated, Vegetable and forest land) the region is characterized as a hill and plain area. Accordingly, a total of 24 soil samples were collected. The results showed that average contents of total P were 0.55-1.55 g/kg, 0.28-1.03 g/kg and 0.14-0.8 g/kg for the soils: Cambosols, Ferrosols and Primosols respectively. Vegetable and forest land led to higher total phosphorus contents in these soils than in the uncultivated land. An aggregate fraction of >2 mm under forest land made up the largest percentage (30 up to 70%), whereas the size fraction phosphorus, organic phosphorus and Olsen P and phosphorus forms in the soils. It implies that the conversion of natural ecosystem to vegetable land increased the phosphorus proportion in the soils, which could have negative impact on the environmental quality.

  6. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants

    Directory of Open Access Journals (Sweden)

    Jastrzębska Magdalena

    2018-02-01

    Full Text Available Recycling phosphorus from waste for fertilization purposes appears to be an alternative for non-renewable sources and a solution for managing harmful products of civilisation. Fertilizers from secondary raw materials are considered to be safe to the environment. This study presents an assessment of the effects of five new biofertilizers made from sewage sludge ash and/or animal bones on the content of cadmium and lead in the soil, in wheat grains and straw (test plant, in the mass of the the accompanying weeds and in the post-harvest residues. Biofertilizers were produced in the form of suspension or granules and activated using Bacillus megaterium or Acidithiobacillus ferrooxidans bacteria. They were tested in four field experiments. The Cd and Pb contents of the soil and plant material were determined using the ICP-MS technique. Similar to superphosphate, new biofertilizers showed no change in the Cd and Pb contents of the soil and plants biomass when applied at amounts up to 80 kg; P2O5 ha−1. Both Cd and Pb in the soil and plants occurred naturally, and the amounts were within the acceptable standards. Biofertilizers from renewable raw materials, with low toxic element contents, are not thought to pose a hazard to the soil and plants when applied in reasonable amounts. They can be a substitute for conventional phosphorus fertilizers.

  7. Effect of phosphorus and organic matter on zinc availability on rice

    International Nuclear Information System (INIS)

    Gupta, G.N.; Kamath, M.B.; Motsara, M.R.

    1977-01-01

    Pot culture experiment was conducted on grey brown podzolic soil (Palampur) and Tarai soil (Pantnagar) to study the influence of the addition of organic matter, phosphorus and zinc on the uptake and utilization of zinc by rice crop. In podzolic soils the combined application of Zn-P and Zn-organic matter resulted in reduced zinc content in crop but the crop yield was not affected. The uptake and utilization of applied zinc increased with P application. In Tarai soil, crop response to Zn, P and organic matter was obtained when applied separately. A negative zinc x P and zinc x organic matter interaction was obtained on yield. However, zinc content of the crop increased due to the application of P, organic matter and zinc. The uptake and utilization of applied zinc increased with P application. The analysis of soils after crop harvest indicated an increased amount of 0.1 N HCl extractable zinc in soils treated with zinc in Tarai soils while in podzolic soil from Palampur, the available zinc increased only under the combined application of zinc and P. (author)

  8. Zinc species distribution in EDTA-extract residues of zinc-contaminated soil

    International Nuclear Information System (INIS)

    Chang, S.-H.; Wei, Y.-L.; Wang, H. Paul

    2007-01-01

    Soil sample from a site heavily contaminated with >10 wt.% zinc is sampled and extracted with aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) that is a reagent frequently used to extract heavy metals in soil remediation. Three liquid/soil ratios (5/1, 20/1, and 100/1) were used in the extracting experiment. The molecular environment of the residual Zn in the EDTA-extract residues of zinc-contaminated soil is investigated with XANES technique. The results indicate that EDTA does not show considerable preference of chelating for any particular Zn species during the extraction. Zn species distribution in the sampled soil is found to resemble that in all EDTA-extract residues; Zn(OH) 2 is determined as the major zinc species (60-70%), seconded by organic zinc (21-26%) and zinc oxide (9-14%)

  9. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  10. Hydrological Variables and Dissolved Phosphorus in the Runoff from No-tilled Soil after Application of Swine Liquid

    Science.gov (United States)

    Barbosa, F. T.; Bertol, I.; de Amaral, A. J.; Grahl dos Santos, P.; Ramos, R. R.; Werner, R. S.; Miras Avalos, J. M.

    2012-04-01

    Swine manure is used as a soil fertilizer in South Brazil. Commonly, it is applied continuously and in great amounts over surfaces with an important relief and without facilities that avoid water erosion. Thus, this manure is a potential risk of environmental pollution, mainly for the eutrophication of water bodies due to a runoff rich in nutrients. The aim of this work was to assess some soil hydrological parameters and to quantify the dissolved phosphorus losses in the runoff from no-tilled soils after the application of swine liquid manure. The experiment was carried out in the Highlands of Santa Catarina State, Brazil, in June 2009, over a Nitisol. On field plots, a 90-minute simulated rainfall test was performed with a rotating boom rainfall simulator and rainfall intensity of 70 mm h-1. Prior to the rainfall simulation, sowing was performed using a disk planter either with or without tines. Spacing between lines was 0.5 m. Swine liquid manure was applied at rates of 0.0, 30 and 60 m3ha-1 to the plots planted using tines; whereas it was applied at 15, 45 e 75 m3ha-1 to the plots were no tines were used for planting. During rainfall simulation, readings of runoff rate were taken each five minutes; total water loss was calculated by integrating all the 5-minute readings. Runoff samples were collected at 10 minutes intervals, and they were filtered through a 0.45 μm filter to determine dissolved phosphorus. Hydrological variables were significantly affected by the use of tines, which favoured infiltration and reduced runoff as compared to the non-use of tines. Runoff started at 28 and 11 minutes, water losses were 252 and 467 m3 ha-1, maximum runoff rate were 29 and 42 mm h-1 and constant rates of infiltration were 41 and 28 mm h-1, for treatments with and without tines, respectively. Dissolved phosphorus increased with the rate of swine liquid manure applied, with a trend to decrease from the beginning to the end of rainfall. The highest concentration was 0

  11. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    Science.gov (United States)

    Wolf, Kristin L.; Noe, Gregory; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  12. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  13. [Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages].

    Science.gov (United States)

    Li, Wei; Zheng, Zi-cheng; Li, Ting-xuan

    2015-01-01

    This study selected 4 tea plantations with different ages (12-15, 20-22, 30-33 and >50 year-old) located in Ya' an, Sichuan Province, China to investigate the distribution patterns of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) , and to examine the ecological stoichiometric characteristics of C, N and P within soil aggregates. The results showed that the coefficients of variation of SOC, TN and TP were 17.5%, 16.3% and 9.4%, respectively in the 0-20 cm soil layer and were 24.0%, 21.0% and 9.2%, respectively in the 20-40 cm soil layer. The spatial variation of TP was lower than that of SOC and TN but there were significant positive correlations among them. SOC and TN were distributed in the small-size aggregates and both of them had the greatest values in the >50 year-old tea plantation, however, the distribution of TP was relatively uniform among aggregates and ages. The coefficients of variation of C/N, C/P, and N/P were 9.4%, 14.0% and 14.9%, respectively in the 0-20 cm soil layer and were 7.4%, 24.9% and 21.8%, respectively in the 20-40 cm soil layer. Variation of C/N was lower than that of C/P and N/P. Averaged C/P and N/P values in the small-size aggregates were higher than in aggregates of other sizes, and the maximum values were in the >50 year-old plantation. C/N, C/P and N/P had good indication for soil organic carbon storage.

  14. Meat and bone meal and biosolids as slow-release phosphorus fertilizers

    Directory of Open Access Journals (Sweden)

    Anne Bøen

    2013-06-01

    Full Text Available Biosolids and meat and bone meal (MBM are commonly used as fertilizers in agriculture, often at application rates where total phosphorus (P far exceeds the annual demand. In a pot experiment, three biosolids and two types of MBM were tested at two commonly used application rates. Their contributions to P uptake in ryegrass (second and third season were compared with annual mineral P fertilization. The soil was analysed for extractable P (PAL and POlsen. Only soil amended with digested, limed biosolids provided a P uptake in ryegrass the third season comparable to annual NPK fertilization. Bone-rich MBM had considerable contributions to third season P uptake in soil with pH < 6. The product application rates did not influence P uptake significantly for any of the products. POlsen was found suitable to describe residual effects on soil P solubility, whereas the PAL-method was not applicable for MBM fertilized soils.

  15. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands.

    Science.gov (United States)

    Wolf, Kristin L; Noe, Gregory B; Ahn, Changwoo

    2013-07-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots ( = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Response of soybean plants to phosphorus, boron and molybdenum fertilization

    International Nuclear Information System (INIS)

    Abdel-Aziz, H. A.; Aly, M. E.

    2012-12-01

    A pot experiment was carried out to study the effect of added phosphorus levels (30. 60 kg p/fed) with the addition of boron at (2, 6 ppm) and molybdenum at (5, 10.ppm) and without addition beside the control the control on growth and mineral content and root nodules in soybean plants. The results indicated that the effect of phosphorus on the formation of nodules had a clear effect when added with boron, molybdenum and when boron added at a rate of 2 ppm in the absence of phosphorus led to increase in root nodules in each of the 5, 10 ppm led to increased formation of, naldetuss in of the alluvial and calcareous soil. The molybdenum, nitrogen and phosphorus uptake increased directly proportional to the result of increased rate of addition of phosphorus and molybdenum. While the uptake born may be added with the rate of increased concentration of 2 ppm, while when added at 6 ppm led tp increased absorption of boron in the calcareous soil, but led to a decrease in the alluvial soils. (Author)

  17. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil.

    Science.gov (United States)

    Moonrungsee, Nuntaporn; Pencharee, Somkid; Jakmunee, Jaroon

    2015-05-01

    A field deployable colorimetric analyzer based on an "Android mobile phone" was developed for the determination of available phosphorus content in soil. An inexpensive mobile phone embedded with digital camera was used for taking photograph of the chemical solution under test. The method involved a reaction of the phosphorus (orthophosphate form), ammonium molybdate and potassium antimonyl tartrate to form phosphomolybdic acid which was reduced by ascorbic acid to produce the intense colored molybdenum blue. The software program was developed to use with the phone for recording and analyzing RGB color of the picture. A light tight box with LED light to control illumination was fabricated to improve precision and accuracy of the measurement. Under the optimum conditions, the calibration graph was created by measuring blue color intensity of a series of standard phosphorus solution (0.0-1.0mgPL(-1)), then, the calibration equation obtained was retained by the program for the analysis of sample solution. The results obtained from the proposed method agreed well with the spectrophotometric method, with a detection limit of 0.01mgPL(-1) and a sample throughput about 40h(-1) was achieved. The developed system provided good accuracy (REphosphorus nutrient. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Relation of zinc levels and water soluble phosphorus in suphala [fertilizer] on uptake of phosphorus and zinc

    International Nuclear Information System (INIS)

    Mutatkar, V.K.; Chapke, V.G.

    1975-01-01

    Under pot culture, four levels of Zn 0, 2, 4 and 6 ppm, were studied in relation to 30, 50 and 100 % water soluble levels of phosphorus in suphala for the dry matter production and uptake of P and Zn by maize on acidic soil of Goa and black cotton soil of Maharashtra. 32 P and 65 Zn tracers were used for this investigation. The results revealed that application of Zn has increased the dry matter and uptake of phosphorus upto 4 ppm of Zn application and it has decreased at 6 ppm Zn level. This inhibition of P uptake was observed at all water soluble levels of P and in both the soils studied. Zn uptake by maize in both the soils under study was increased with increasing level of Zn, irrespective of water soluble level of P in suphala. (author)

  19. Radiochemical studies of some preparation methods for phosphorus

    International Nuclear Information System (INIS)

    Loos-Neskovic, C.; Fedoroff, M.

    1983-01-01

    Various methods of radiochemical separation were tested for the determination of phosphorus in metals and alloys by neutron activation analysis. Classical methods of separation revealed some defects when they were applied to this problem. Methods using liquid extraction gave low yields and were not reproducible. Methods based on precipitation gave better results, but were not selective enough in most cases. Retention on alumina was not possible without preliminary separations. Authors studied a new radiochemical separation based on the extraction of elemental phosphorus in the gaseous phase after reduction at high temperature with carbon. Measurements with radioactive phosphorus showed that the extraction yield is better than 99%. (author)

  20. Phosphorus content in three physical fractions of typical Chernozem

    Science.gov (United States)

    Kotelnikova, Anna; Egorova, Zoya; Sushkov, Nikolai; Matveeva, Natalia; Fastovets, Ilya; Rogova, Olga; Volkov, Dmitriy

    2017-04-01

    The widespread use of fertilizers makes it necessary to study not only the content but also the forms of occurrence of nutrients in soil, as well as the phase in which nutrients are transferred. These characteristics determine the availability of chemical elements for plants, but remain insufficiently studied. In this work we attempted to gain insight into the distribution of organo-mineral fractions in agriculturally used Chernozem from Voronezh (Russia) and the distribution of phosphorus - one of the most important nutrient elements - in this type of soil. We compared the distributions of phosphorus in physical fractions of the soil in 3 experimental groups: the control group (without fertilizers), the group fertilized with 1 dose of NPK, and the group fertilized with 2 doses of NPK. The soil was sampled during the period of treatment with fertilizers and during the period of aftereffect (4 years after the last application of fertilizers). In order to analyze organo-mineral fractions, we used size-density fractionation to separate the soil samples into three physical fractions: clay-associated fraction with particle size 2.0 g cm-3 (RF). Total phosphorus content (TPC) in the fractions was determined with Agilent 5100 ICP-AES spectrometer. To compare groups, simultaneous confidence intervals were computed from pooled variance estimators in ANOVA, and Fisher's LSD test was used. We showed that during the period of treatment with fertilizers LF increased proportionally to the dose of fertilizers, and a simultaneous reduction in RF was observed. During the period of aftereffect, the content of these fractions tended to the control value. The increase of LF may indicate increasing availability of nutrients, since this fraction is likely to participate in biological cycles. The analysis of TPC in fractions suggested that during the period of treatment with fertilizers most of phosphorus accumulates in CF. In the group with double dose of fertilizers TPC in CF was more

  1. [Characteristics of soil phosphorous loss under different ecological planting patterns in hilly red soil regions of southern Hunan Province, China].

    Science.gov (United States)

    Yuan, Min; Wen, Shi-Lin; Xu, Ming-Gang; Dong, Chun-Hua; Qin, Lin; Zhang, Lu

    2013-11-01

    Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.

  2. Effect of soil contaminant extraction method in determining toxicity using the Microtox(reg.) assay

    International Nuclear Information System (INIS)

    Harkey, G.A.; Young, T.M.

    2000-01-01

    This project examined the influence of different extraction methods on the measured toxicity of contaminated soils collected from manufactured gas plant (MGP) sites differing in soil composition and contaminant concentration. Aged soils from a number of MGP sites were extracted using a saline solution, supercritical fluid extraction (SFE), and Soxhlet extraction. Toxicity was assessed using two forms of Microtox tests: acute aqueous tests on saline and SFE soil extracts and solid-phase tests (SPTs) on soil particles. Microtox SPTs were performed on soils before and after SFE to determine resulting toxicity reduction. Three hypotheses were tested: (1) Toxicity of soil extracts is related to contaminant concentrations of the extracts, (2) measured toxicity significantly decreases with less vigorous methods of extraction, and (3) supercritical fluid extractability correlates with measured toxicity. The EC50s for SPTs performed before and after SFE were not different for some soils but were significantly greater after extraction for other soils tested. The most significant toxicity reductions were observed for soils exhibiting the highest toxicity in both preextraction SPTs and acute aqueous tests. Acute Microtox tests performed on SFE extracts showed significantly lower EC50s than those reported from saline-based extraction procedures. Toxicity of the soils measured by Microtox SPTs was strongly correlated with both SFE efficiency and measures of contaminant aging. Data from this project provide evidence of sequestration and reduced availability of polycyclic aromatic hydrocarbons (PAHs) from soils extracted via physiologically based procedures compared to vigorous physical extraction protocols

  3. Soil and groundwater remediation using dual-phase extraction technology

    International Nuclear Information System (INIS)

    Miller, A.W.; Gan, D.R.

    1995-01-01

    A gasoline underground storage tank (UST) was formerly used to fuel vehicles for a hospital in Madison, Wisconsin. Elevated concentrations of gasoline range organics (GRO) were observed in soils and groundwater at the site during the tank removal and a subsequent site investigation. Based on the extent of soil and groundwater contamination, a dual-phase extraction technology was selected as the most cost effective alternative to remediate the site. The dual-phase extraction system includes one extraction well functioning both as a soil vapor extraction (SVE) and groundwater recovery well. After six months of operation, samples collected from the groundwater monitoring wells indicated that the groundwater has been cleaned up to levels below the Wisconsin preventative action limits. The dual-phase extraction system effectively remediated the site in a short period of time, saving both operation and maintenance costs and overall project cost

  4. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    Science.gov (United States)

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  5. Fate of phosphorus in Everglades agricultural soils after fertilizer application

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Alan L. [Everglades Research and Education Center, Belle Glade, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States); McCray, J. Mabry [Univ. of Florida, Gainesville, FL (United States)

    2012-07-01

    Land use changes, agricultural drainage and conventional cultivation of winter vegetables and sugarcane cropping in the Everglades Agricultural Area (EAA) may alter soil conditions and organic matter decomposition and ultimately influence the fate of phosphorus (P). Theses agricultural practices promote soil subsidence, reduce the soil depth to bedrock limestone and increase the potential for incorporation of limestone into the root zone of crops. The incorporation of limestone into surface soil has significantly increased soil pH which in turns causes greater fixation of P fertilizer into unavailable forms for plant growth. Additional P fertilization is thus required to satisfy crop nutrient requirements in plant-available P form. It is important to determine how the mixing of bedrock limestone into soils influences the behavior of P fertilizers after their application. To accomplish this task, P fertilizers were applied to (1) typical cultivated soils and to (2) soils that have never been fertilized or extensively tilled. The changes in P concentrations over time were then compared between the two land uses, with differences being attributable to the impacts of cultivation practices. The P distribution in soil varied between land uses, with sugarcane having more P in inorganic pools while the uncultivated soil had more in organic pools. Water-soluble P concentrations in soil increased with increasing fertilizer application rates for all sampling times and both land uses. However, concentrations in uncultivated soil increased proportionally to P-fertilized soil due to organic P mineralization. At all sampling times, plant-available P concentrations remained higher for uncultivated than sugarcane soil. Lower P concentrations for sugarcane were related to adsorption by mineral components (e.g. limestone). Cultivated soils have higher calcium concentrations resulting from incorporation of bedrock limestone into soil by tillage, which increased pH and fostered

  6. Dependence of the concentrations of "1"3"7Cs and potassium in extracted soil solutions on soil humidity before centrifugation

    International Nuclear Information System (INIS)

    Prorok, V.V.; Datsenko, O.Yi.; Bulavyin, L.A.; Zlens'kij, S.Je.; Melnichenko, L.Yu.; Rozuvan, S.G.; Poperenko, L.V.; White, P.J.

    2017-01-01

    Concentrations of 137Cs and potassium in solutions extracted by centrifugation from soils selected at some experimental sites in the 10-km Exclusion Zone of Chornobyl Nuclear Plant were determined. The results showed that for the majority of investigated soils, the concentration of 137Cs in soil solution depends on the humidity of the soil before centrifugation. It is possible to explain the dependence of the concentration of 137Cs in the soil solution on soil humidity from the dependence of the concentrations of molecules of different molecular-gravimetric fractions in soil solution on soil humidity. Considerable amount of 137Cs in soil solution is associated with these molecules, that is why the concentration of 137Cs in the extracted soil solution changes with the humidity of soil. These dependences differ between soils. For the majority of investigated soils the concentration of 137Cs in the extracted soil solution increases with increasing humidity of the soil. By contrast, soil humidity had no effect on the potassium concentration in the extracted soil solution for any soil investigated. It is concluded, that potassium is practically not associated with molecules of different molecular-gravimetric fractions in the extracted soil solutions

  7. Phosphorus availability in oxidic soils treated with lime and silicate applications

    Directory of Open Access Journals (Sweden)

    Aline da Silva Sandim

    2014-08-01

    Full Text Available Based on the assumption that silicate application can raise soil P availability for crops, the aim of this research was to compare the effect of silicate application on soil P desorption with that of liming, in evaluations based on two extractors and plant growth. The experiment was carried out in randomized blocks with four replications, in a 3 × 3 × 5 factorial design, in which three soil types, three P rates, and four soil acidity correctives were evaluated in 180 experimental plots. Trials were performed in a greenhouse using corn plants in 20-dm³ pots. Three P rates (0, 50 and 150 mg dm-3 were applied in the form of powder triple superphosphate and the soil was incubated for 90 days. After this period, soil samples were collected for routine chemical analysis and P content determination by the extraction methods resin, Mehlich-1 and remaining P. Based on the results, acidity correctives were applied at rates calculated for base saturation increased to 70 %, with subsequent incubation for 60 more days, when P content was determined again. The acidity correctives consisted of: dolomitic lime, steelmaking slag, ladle furnace slag, and wollastonite. Therefore, our results showed that slags raised the soil P content more than lime, suggesting a positive correlation between P and Si in soil. Silicon did not affect the extractor choice since both Mehlich-1 and resin had the same behavior regarding extracted P when silicon was applied to the soil. For all evaluated plant parameters, there was significant interaction between P rates and correctives; highest values were obtained with silicate.

  8. Studies of the utilization of phosphorus and nitrogen fertilizers by 32P and 15N isotopes

    International Nuclear Information System (INIS)

    Dombovari, Janos; Kiss, A.S.

    1983-01-01

    The utilization of phosphorus and nitrogen fertilizers in crop enhancement was studied with different plants and soils, using 15 N nad 32 P labelling. 15 N was determined by mass spectrometry, 32 P by radiometry. For nitrogen fertilizers better results were achieved by sequential small doses than by single higher doses. The utilization of phosphorus fertilizer strongly depends, in addition to the plant species, on the quality of the soil, especially on its Ca and N contents. Low and high soil liming increased and decreased the utilization of phosphorus, respectively, while nitrogen fertilizers increased it in each case. Measurement of the isotopically exchangable phosphorus content of soils represents a new technique for the determination of the phosphorus uptake. (A.L.)

  9. Changes in Soil Available Phosphorus, Leaf Phosphorus Content and Yield of Sword Bean (Canavalia Ensiformis (L.) DC.) by Application of SP-36 and Phosphate Rock on Acid Upland Soil of East Lampung

    OpenAIRE

    Achmad Arivin Rivaie

    2015-01-01

    A glasshouse trial was performed to determine changes in phosphorus (P) nutrition and the yield of sword bean (Canavalia ensiformis (L.) DC.) following the application of different rates and types of P fertilizer in an acid upland soil of East Lampung. Two different types of P fertilizer, namely SP-36 (total P = 36%) and Phosphate Rock (PR) (total P = 24.3%, particle size distribution = 75% <0.25 mm, 85% < 0.50 mm, 90% < 1.00 mm) were used in the trial. For the treatment, each P fert...

  10. A representation of the phosphorus cycle for ORCHIDEE (revision 4520

    Directory of Open Access Journals (Sweden)

    D. S. Goll

    2017-10-01

    Full Text Available Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the ORCHIDEE land surface model, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for the influence of the nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated mineralization, and biological nitrogen fixation. Changes in the nutrient content (quality of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from the soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300-year and a late (4.1 Myr stage of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus, or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower than observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient

  11. Global Distribution of Plant-Extractable Water Capacity of Soil (Dunne)

    Data.gov (United States)

    National Aeronautics and Space Administration — Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. This data set provides an...

  12. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Science.gov (United States)

    Camenzind, Tessa; Papathanasiou, Helena; Foerster, Antje; Dietrich, Karla; Hertel, Dietrich; Homeier, Juergen; Oelmann, Yvonne; Olsson, Pål Axel; Suárez, Juan; Rillig, Matthias

    2015-12-01

    Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF) hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm) (WSA) and the soil mean weight diameter (MWD) was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  13. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Directory of Open Access Journals (Sweden)

    Tessa eCamenzind

    2016-01-01

    Full Text Available Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm (WSA and the soil mean weight diameter (MWD was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  14. Kinetics and Mechanisms of Phosphorus Adsorption in Soils from Diverse Ecological Zones in the Source Area of a Drinking-Water Reservoir.

    Science.gov (United States)

    Zhang, Liang; Loáiciga, Hugo A; Xu, Meng; Du, Chao; Du, Yun

    2015-11-10

    On-site soils are increasingly used in the treatment and restoration of ecosystems to harmonize with the local landscape and minimize costs. Eight natural soils from diverse ecological zones in the source area of a drinking-water reservoir in central China are used as adsorbents for the uptake of phosphorus from aqueous solutions. The X-ray fluorescence (XRF) spectrometric and BET (Brunauer-Emmett-Teller) tests and the Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectral analyses are carried out to investigate the soils' chemical properties and their potential changes with adsorbed phosphorous from aqueous solutions. The intra-particle diffusion, pseudo-first-order, and pseudo-second-order kinetic models describe the adsorption kinetic processes. Our results indicate that the adsorption processes of phosphorus in soils occurred in three stages and that the rate-controlling steps are not solely dependent on intra-particle diffusion. A quantitative comparison of two kinetics models based on their linear and non-linear representations, and using the chi-square (χ2) test and the coefficient of determination (r2), indicates that the adsorptive properties of the soils are best described by the non-linear pseudo-second-order kinetic model. The adsorption characteristics of aqueous phosphorous are determined along with the essential kinetic parameters.

  15. Fluxo difusivo de fósforo em função de doses e da umidade do solo Influence of phosphorus doses and soil moisture on diffusion flow

    Directory of Open Access Journals (Sweden)

    José P. V. da Costa

    2006-12-01

    Full Text Available A difusão é o mecanismo mais expressivo do transporte do fósforo no solo e depende de vários fatores, como o conteúdo volumétrico de água, a interação fósforo-colóide do solo, a distância da fonte às raízes, o teor e a temperatura do solo. Avaliaram-se os efeitos do conteúdo volumétrico de água e de doses de fósforo no seu fluxo difusivo no solo, em amostras da camada superficial de cinco solos. O experimento consistiu do arranjo fatorial 5 x 8 x 5, referente a cinco materiais de solo, oito níveis de umidade e cinco doses de fósforo, dispostos em blocos ao acaso, com quatro repetições. Como unidade experimental foram utilizados anéis de PVC com volume útil de 360 cm³, que serviram como câmara de difusão. Para avaliação do fluxo difusivo de fósforo nas amostras foram utilizadas lâminas de resina de troca aniônica (IONICS 204UZRA. Pelos resultados, constatou-se que o fluxo difusivo sofre influência da umidade do solo e das doses de fósforo aplicadas.The main phosphorus transport mechanism in the soil is diffusion, which is influenced by several soil factors, such as volumetric water content, phosphorus-colloid interaction, distance between source and roots, content and temperature. The effects of the soil water content and phosphorus doses on the diffusion flow into soil were assessed in samples from the superficial layers of five soils. The treatments were arranged in a 5 x 8 x 5 factorial design corresponding, respectively, to five soils, eight moisture levels and five phosphorus doses. A completely randomized block design with four replications was used. The experimental unit was a PVC ring with a volume of 360 cm³, which acted as a diffusion chamber. Anionic exchange resin slides (IONICS 204UZRA were utilized to assess the phosphorus diffusion flow. Results indicated that the diffusion flow was influenced by phosphorus doses and moisture content.

  16. Effect of Polonite used for phosphorus removal from wastewater on soil properties and fertility of a mountain meadow

    International Nuclear Information System (INIS)

    Cucarella, Victor; Mazurek, Ryszard; Zaleski, Tomasz; Kopec, Michal; Renman, Gunno

    2009-01-01

    Reactive filter materials used for phosphorus (P) removal from wastewater can be disposed of as soil amendments after treatment, thus recycling P and other macro- and micro-nutrients to plants. In addition, materials with a high pH and Ca content, such as Polonite, are potential soil conditioners, which can be particularly beneficial for acid soils. Polonite previously used for on-site wastewater treatment was applied as a soil amendment to a mountain meadow. The amendment significantly increased soil pH and decreased the hydrolytic acidity, thus reducing Al toxicity risks. The effects were comparable to those of liming. No difference in yield and P uptake by meadow plants was observed. The uptake of metals was lower for amended soils, especially the uptake of Mn. Using Polonite after wastewater treatment as a soil amendment is thus a viable disposal alternative that can replace liming, when necessary, being capable of recycling P and other nutrients to meadow plants. - Filter substrate Polonite can benefit acid soils after wastewater treatment.

  17. Influence of Vegetation on Long-term Phosphorus Sequestration in Subtropical Treatment Wetlands.

    Science.gov (United States)

    Bhomia, R K; Reddy, K R

    2018-03-01

    Sustainable operation of a treatment wetland depends on its continued treatment of influent water to achieve desired outflow water quality targets. Water treatment or nutrient reduction is attained by a combination of biotic and abiotic processes. We studied one of the world's largest treatment wetlands established to revive the Florida Everglades from impacts of excessive phosphorus (P) inputs. Phosphorus retained in the treatment wetlands is sequestered within the accumulated material via biotic and abiotic pathways that are influenced by the existing wetland vegetation. Recently accreted soils (RAS) provide a major sink for stored P, and long-term P removal efficiency of treatment wetlands is governed by the stability of accreted P because more stable P pools are less susceptible to mobilization and loss. We quantified reactive P (extracted with acid and alkali) and nonreactive P (not extracted with acid and alkali) pools in wetland soils by using an operationally defined P fractionation scheme and assessed the effect of emergent vs. submerged vegetation communities on stability of sequestered P. Reactive P comprised 63 to 79% of total P in wetland soils without a clear difference between two vegetation groups. The quantities of reactive P forms (inorganic vs. organic P) were significantly different between two vegetation types. A higher proportion of reactive P was stored as organic P in flocculent detrital organic matter (floc) and RAS under emergent vegetation (46-47% total P) in comparison with submerged vegetation (21-34% total P). The dominant P removal pathway in the submerged vegetation system was associated with calcium whereas plant uptake and peat burial appeared to be the main pathway in the emergent vegetation system. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Relative efficiency of different methods of phosphorus (32P) application on fertilizer phosphorus uptake by maize (zea may L.)

    International Nuclear Information System (INIS)

    Chaudhary, M.L.; Gupta, A.P.

    1975-01-01

    A green house study was conducted for comparing four methods of phosphorus application (broad cast, below the seed, one side and both sides of the seeds) at the rate of 60 ppm in sierozem soil of H issar (Haryana). Maize crop was planted in 50 cm. bottomless bitumin drums for 70 days i.e. upto tasseling stage. The plant samples were collected at jointing and tasseling stages of plant growth. The results revealed that the highest dry matter yield, total and fertilizer phosphorus uptake was observed when the phosphorus was applied below the seed, followed by both side application of phosphorus. The least yield, total and fertilizer phosphorus uptake were recorded when the phosphorus was broadcast at the time of sowing. (author)

  19. A regional modeling framework of phosphorus sources and transport in streams of the southeastern United States

    Science.gov (United States)

    Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia

    2011-01-01

    We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.

  20. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Luchun [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-10-15

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and {sup 14}C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of {sup 14}C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.

  1. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    International Nuclear Information System (INIS)

    Duan, Luchun; Naidu, Ravi; Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj; Semple, Kirk T.

    2015-01-01

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and 14 C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of 14 C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed

  2. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  3. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Directory of Open Access Journals (Sweden)

    Asif Naeem

    2013-01-01

    Full Text Available In calcareous soils, phosphorus (P retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % for 15 days. Freundlich adsorption isotherms ( were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1 were calculated. It was observed that P adsorption in soil increased with . Moreover, at all the levels of , P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil contents and quantity of fertilizer to other similar textured soils needs confirmation.

  4. Phylogenetic analysis of local-scale tree soil associations in a lowland moist tropical forest.

    Directory of Open Access Journals (Sweden)

    Laura A Schreeg

    Full Text Available BACKGROUND: Local plant-soil associations are commonly studied at the species-level, while associations at the level of nodes within a phylogeny have been less well explored. Understanding associations within a phylogenetic context, however, can improve our ability to make predictions across systems and can advance our understanding of the role of evolutionary history in structuring communities. METHODOLOGY/PRINCIPAL FINDINGS: Here we quantified evolutionary signal in plant-soil associations using a DNA sequence-based community phylogeny and several soil variables (e.g., extractable phosphorus, aluminum and manganese, pH, and slope as a proxy for soil water. We used published plant distributional data from the 50-ha plot on Barro Colorado Island (BCI, Republic of Panamá. Our results suggest some groups of closely related species do share similar soil associations. Most notably, the node shared by Myrtaceae and Vochysiaceae was associated with high levels of aluminum, a potentially toxic element. The node shared by Apocynaceae was associated with high extractable phosphorus, a nutrient that could be limiting on a taxon specific level. The node shared by the large group of Laurales and Magnoliales was associated with both low extractable phosphorus and with steeper slope. Despite significant node-specific associations, this study detected little to no phylogeny-wide signal. We consider the majority of the 'traits' (i.e., soil variables evaluated to fall within the category of ecological traits. We suggest that, given this category of traits, phylogeny-wide signal might not be expected while node-specific signals can still indicate phylogenetic structure with respect to the variable of interest. CONCLUSIONS: Within the BCI forest dynamics plot, distributions of some plant taxa are associated with local-scale differences in soil variables when evaluated at individual nodes within the phylogenetic tree, but they are not detectable by phylogeny

  5. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  6. Rare earth elements in soil extracts by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, L.; Furrer, V.; Wyttenbach, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burger, M.; Jakob, A. [AC-Laboratorium Spiez (Switzerland)

    1997-09-01

    Three different horizons of a soil profile were extracted with water and with a complexing solution. 14 REEs were determined in the extracts. The distribution patterns obtained from the different horizons were rather similar and did not show the large fractionations observed between different plant species growing on this soil. (author) 2 figs., 1 ref.

  7. The combined effect of fertiliser nitrogen and phosphorus on herbage yield and change in soil nutrients of a grass/clover and grass-only sward

    NARCIS (Netherlands)

    Schils, R.L.M.; Snijders, P.J.M.

    2004-01-01

    The combined effect of reduced nitrogen ( N ) and phosphorus ( P ) application on the production of grass- only and grass/ clover swards was studied in a five- year cutting experiment on a marine clay soil, established on newly sown swards. Furthermore, changes in soil N, P and carbon ( C ) were

  8. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technol......Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  9. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  10. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions

    International Nuclear Information System (INIS)

    Madrid, F.; Reinoso, R.; Florido, M.C.; Diaz Barrientos, E.; Ajmone-Marsan, F.; Davidson, C.M.; Madrid, L.

    2007-01-01

    Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils. - Dilute HCl extraction is tested as an alternative to the BCR sequential extraction in urban soils

  11. A new detailed map of total phosphorus stocks in Australian soil.

    Science.gov (United States)

    Viscarra Rossel, Raphael A; Bui, Elisabeth N

    2016-01-15

    Accurate data are needed to effectively monitor environmental condition, and develop sound policies to plan for the future. Globally, current estimates of soil total phosphorus (P) stocks are very uncertain because they are derived from sparse data, with large gaps over many areas of the Earth. Here, we derive spatially explicit estimates, and their uncertainty, of the distribution and stock of total P in Australian soil. Data from several sources were harmonized to produce the most comprehensive inventory of total P in soil of the continent. They were used to produce fine spatial resolution continental maps of total P in six depth layers by combining the bootstrap, a decision tree with piecewise regression on environmental variables and geostatistical modelling of residuals. Values of percent total P were predicted at the nodes of a 3-arcsecond (approximately 90 m) grid and mapped together with their uncertainties. We combined these predictions with those for bulk density and mapped the total soil P stock in the 0-30 cm layer over the whole of Australia. The average amount of P in Australian topsoil is estimated to be 0.98 t ha(-1) with 90% confidence limits of 0.2 and 4.2 t ha(-1). The total stock of P in the 0-30 cm layer of soil for the continent is 0.91 Gt with 90% confidence limits of 0.19 and 3.9 Gt. The estimates are the most reliable approximation of the stock of total P in Australian soil to date. They could help improve ecological models, guide the formulation of policy around food and water security, biodiversity and conservation, inform future sampling for inventory, guide the design of monitoring networks, and provide a benchmark against which to assess the impact of changes in land cover, land use and management and climate on soil P stocks and water quality in Australia. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  12. Toxicity Thresholds Based on EDTA Extractable Nickel and Barley Root Elongation in Chinese Soils

    Directory of Open Access Journals (Sweden)

    Guangyun Zhu

    2018-04-01

    Full Text Available The uncertainty in the risk assessment of trace metal elements in soils when total metal contents are used can be decreased by assessing their availability and/or extractability when the soils have a high background value or different sources of trace metal elements. In this study, the added water-soluble nickel (Ni toxicity to barley root elongation was studied in 17 representative Chinese soil samples with and without artificial rainwater leaching. The extractability of added Ni in soils was estimated by three sequential extractions with ethylenediaminetetraacetic acid (EDTA. The results showed that the effective concentration of EDTA extractable Ni (EC50, which caused 50% inhibition of barley root elongation, ranged from 46 to 1019 mg/kg in unleached soils and 24 to 1563 mg/kg in leached soils. Regression models for EDTA extractable Ni and total Ni added to soils against soil properties indicated that EDTA extractable Ni was significantly correlated with the total Ni added to soils and that pH was the most important control factor. Regression models for toxicity thresholds based on EDTA extractable Ni against soil properties showed that soil citrate dithionate extractable Fe was more important than soil pH in predicting Ni toxicity. These results can be used to accurately assess the risk of contaminated soils with high background values and/or different Ni sources.

  13. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol

    NARCIS (Netherlands)

    De Ridder-Duine, A.S.; Smant, W.; Van der Wal, A.; Van Veen, J.A.; De Boer, W.

    2006-01-01

    Quantification of soil ergosterol is increasingly used as an estimate for soil fungal biomass. Several methods for extraction of ergosterol from soil have been published, perhaps the simplest being that described by Gong, P., Guan, X., Witter, E. [2001. A rapid method to extract ergosterol from soil

  15. Long-term reclaimed water application effects on phosphorus leaching potential in rapid infiltration basins.

    Science.gov (United States)

    Moura, Daniel R; Silveira, Maria L; O'Connor, George A; Wise, William R

    2011-09-01

    Rapid infiltration basins (RIBs) are effective tools for wastewater treatment and groundwater recharge, but continuous application of wastewater can increase soil P concentrations and subsequently impact groundwater quality. The objectives of this study were to (1) investigate the effects of reclaimed water infiltration rate and "age" of RIBs on soil P concentrations at various depths, and (2) estimate the degree (percentage) of sorption equilibrium reached between effluent P and soil attained during reclaimed water application to different RIBs. The study was conducted in four contrasting cells of a RIB system with up to a 25 year history of secondary wastewater application. Soil samples were collected from 0 to 300 cm depth at 30 cm intervals and analyzed for water extractable phosphorus (WEP) and oxalate extractable P, Al, and Fe concentrations. Water extractable P and P saturation ratio (PSR) values were generally greater in the cells receiving reclaimed water compared to control soils, suggesting that reclaimed water P application can increase soil P concentrations and the risk of P movement to greater depths. Differences between treatment and control samples were more evident in cells with longer histories of reclaimed water application due to greater P loading. Data also indicated considerable spatial variability in WEP concentrations and PSR values, especially within cells from RIBs characterized by fast infiltration rates. This occurs because wastewater-P flows through surface soils much faster than the minimum time required for sorption equilibrium to occur. Studies should be conducted to investigate soil P saturation at deeper depths to assess possible groundwater contamination.

  16. Particle-size distribution and phosphorus forms as a function of hydrological forcing in the Yellow River.

    Science.gov (United States)

    Yao, Qing-Zhen; Du, Jun-Tao; Chen, Hong-Tao; Yu, Zhi-Gang

    2016-02-01

    Samples were collected monthly from January to December in 2010, and daily observations were made during the water-sediment regulation event in June-July 2010. Sequential extractions were applied to determine the forms of P in different particle-size fractions and to assess the potential bioavailability of particulate phosphorus (PP). The results indicated that exchangeable phosphorus, organic phosphorus, authigenic phosphorus, and refractory phosphorus increased with the decreasing of particulate size; conversely, detrital phosphorus decreased with the decreasing of particulate size. The content of bioavailable particulate phosphorus (BAPP) varied greatly in different sizes of particles. In general, the smaller the particle size, the higher the content of bioavailable phosphorus and its proportion in total phosphorous was found in these particles. Hydrological forcing controlled the variability in the major P phases found in the suspended sediments via changes in the sources and the particle grain-size distribution. The variation of particle sizes can be attributed also to different total suspended sediment (TSS) sources. Water-sediment regulation (WSR) mobilized only particulate matter from the riverbed, while during the rainstorm soil erosion and runoff were the main source. The BAPP fluxes associated with the "truly suspended" fraction was approximately 200 times larger than the dissolved inorganic phosphorus (DIP) flux. Thus, the transfer of fine particles to the open sea is most probably accompanied by BAPP release to the DIP and can support greater primary and secondary production.

  17. Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China

    Science.gov (United States)

    Zhang, Pingjiu; Li, Lianqing; Pan, Genxing; Ren, Jingchen

    2006-12-01

    Not only the nutritional status and biological activity but also the soil ecological functioning or soil health has been impacted profoundly by land degradation in the karst area of southwest China where the karst ecosystems are generally considered as extremely vulnerable to land degradation under intensified land-use changes. The objectives of this study are to elucidate the changes in overall soil quality by a holistic approach of soil nutritional, biological activity, and soil health indicators in the karst area as impacted by intense cultivation and vegetation degradation. Topsoil samples were collected on selected eco-tesserae in a sequence of land degradation in a karst area of southwest Guizhou in 2004. The soil nutrient pools of organic carbon (Corg), extractable extracellular carbon (Cext), total soil nitrogen (Nt), alkali-hydrolyzable nitrogen (Nah), total phosphorus (Pt), available phosphorus (Pa) were analyzed by wet soil chemistry. The soil biological properties were studied by means of measurements of microbial biomass carbon (both by fumigation-extraction, FE-Cmic, and by calculation from substrate-incubation respiration, SIR-Cmic) of respiration [respiration without addition of substrates, basal respiration (BR), and potential respiration (PR) with substrate-incubation] and of soil enzyme activities (invertase, urease, and alkaline phosphatase). Soil health status was assessed by simple indices of Cmic/Corg and BR/Cmic in conjunction with bacterial community structures determined by polymerase chain reaction and denaturing gradient gel electrophoresis. While the nutritional pool parameters, such as Corg and Cext, described basically the changes in soil life-supporting capacity with cultivation interference and vegetation declined, those parameters of biological activity such as FE-Cmic, SIR, and SIR-Cmic as well as bacterial community structures measured by molecular method evidenced well the changes in soil functioning for ecosystem health with

  18. Soil phosphorus cycling in tropical soils: An ultisol and oxisol perspective

    Science.gov (United States)

    Reed, Sasha C.; Wood, Tana E

    2016-01-01

    Phosphorus (P) is essential for life. It is the backbone of our DNA, provides energy for biological reactions, and is an integral component of cell membranes. As such, it is no surprise that P availability plays a strong role in regulating ecosystem structure and function (Wassen et al. 2005, Elser et al. 2007, Condit et al. 2013), and in determining our capacity to grow food for a burgeoning human population (Sharpley et al. 1997, Sims and Sharpley 2005, Lal 2009). Concerns that P supplies are insufficient to meet our species’ growing demands are on the rise (Richardson and Simpson 2011) and scientific and media outlets increasingly discuss P as an element worthy of our attention and concern (e.g., Cordell et al. 2009, Lougheed 2011, Edixhoven et al. 2013, Ulrich et al. 2013). Indeed, a number of groups are calling for the explicit stewardship of our planet’s P stocks (Schipper 2014, Withers et al. 2015). Yet a focus on P as a vital and limited resource is not new in the tropics, where an abundance of soils characterized by low P has resulted in a substantial, longstanding reliance on P inputs for tropical ecosystem function in both unmanaged and agriculture settings (Table 1, Figure 2; Sanchez 1976, Swap et al. 1992, Chadwick et al. 1999, Okin et al. 2004, Lal 2009). Indeed, there is a long history of cultivation in the tropics, where for thousands of years land management practices have included methods that effectively modify P availability for plant growth (e.g., Giardina et al. 2000, Lawrence and Schlesinger 2001, Vitousek et al. 2004, Lewis et al. 2015). Nevertheless, low soil fertility in tropical systems where fertilizer is scarce has enduringly been recognized as a major source of hunger and starvation (Sanchez and Buol 1975, Sanchez 2002, Sanchez and Swaminathan 2005).

  19. The effect of the halophytic shrub Lycium ruthenium (Mutt) on selected soil properties of a desert ecosystem in central Iran

    Science.gov (United States)

    Gholam Ali Jalali; Hossein Akbarian; Charles Rhoades; Hamed Yousefzadeh

    2012-01-01

    We compared soil properties beneath naturally-occurring patches of Lycium ruthenicum Murray (fam. Solanaceae) to evaluate the shrub’s potential to improve the fertility of saline soils. Soil pH, total nitrogen and carbon and extractable potassium, magnesium and phosphorus were respectively significantly higher in the A and B horizons of Lycium shrub patches...

  20. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  1. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples

    International Nuclear Information System (INIS)

    Herreweghe, Samuel van; Swennen, Rudy; Vandecasteele, Carlo; Cappuyns, Valerie

    2003-01-01

    Leaching experiments, a mineralogical survey and larger samples are preferred when arsenic is present as discrete mineral phases. - Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity

  2. Carcinogenicity of soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbak, N P

    1970-01-01

    A total of 270 3-mo-old mice, hybrids of the C57BL and CBA strains which are highly susceptible to carcinogens, were painted on the skin (2-3 admin./week) with 3-4 drops of (1) a concentrated benzene extract of soil taken near a petroleum refinery with a 3,4 benzpyrene (BP) content of 0.22%; (2) a 0.22% soln of pure BP in benzene; (3) a concentrated benzene extract of soil taken from an old residential area of Moscow (BP content 0.0004%); (4) a 0.0004% BP soln in benzene; and (5) pure benzene. Only mice in the first 2 groups developed tumors. In group (1), 8 mice had papillomas, 46 had skin cancer, 1 had a sarcoma and 2 had plasmocytomas. In group (2) all 60 animals had skin cancer. Lung metastases were present at autopsy in 5 mice in group (1) and in 10 mice in group (2); in some cases, these tumors were multiple. Lymph node metastases were found in 6 mice in group (1) and in 10 mice in group (2). Tumors developed more slowly in group (1) than in group (2).

  3. Assessment of soil phosphorus status and management of phosphatic fertilisers to optimise crop production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Phosphorus (P) is an essential plant nutrient, and its deficiency in soils severely restricts crop yields. Tropical and subtropical soils are predominantly acidic and often extremely deficient in phosphorus. Moreover most of these soils possess a high phosphate sorption capacity. Strongly sorbed or fixed phosphate is unavailable for plant uptake. Therefore, substantial P inputs are required for optimum plant growth and adequate food and fiber production. Manufactured water-soluble P fertilizers, like superphosphates, are the commonest P inputs. However, in most developing countries these P fertilizers are not produced locally but are imported, and their supplies to resource-poor farmers in rural areas are limited. Many phosphate-bearing mineral deposits exist worldwide. Several developing countries with P-deficient tropical acid soils have important phosphate rock deposits, that is the raw material for the production of P fertilizers. Thus, under certain soil and climatic conditions, direct application of phosphate rocks (PRs) is an agronomically and economically sound alternative to the use of expensive superphosphates. In spite of extensive research on the application of PR to acid soils in temperate regions, there is scant information on the potential of local PR sources in tropical and subtropical regions. Phosphate rocks vary widely in their mineralogical, chemical and physical properties and consequently in their reactivity and agronomic potential. It is, therefore, necessary to assess the relative agronomic effectiveness of the indigenous and imported PRs using the commercially available superphosphate as a reference. Also, changes in the soil available P when amended with PR products and water-soluble P fertilizers need to be properly monitored with suitable soil P testing methods for the provision of adequate P fertilizer recommendations. During the 1980's, some local PR sources were evaluated in the FAO Fertilizer Programme. The idea of a project on PR

  4. Assessment of soil phosphorus status and management of phosphatic fertilisers to optimise crop production

    International Nuclear Information System (INIS)

    2002-02-01

    Phosphorus (P) is an essential plant nutrient, and its deficiency in soils severely restricts crop yields. Tropical and subtropical soils are predominantly acidic and often extremely deficient in phosphorus. Moreover most of these soils possess a high phosphate sorption capacity. Strongly sorbed or fixed phosphate is unavailable for plant uptake. Therefore, substantial P inputs are required for optimum plant growth and adequate food and fiber production. Manufactured water-soluble P fertilizers, like superphosphates, are the commonest P inputs. However, in most developing countries these P fertilizers are not produced locally but are imported, and their supplies to resource-poor farmers in rural areas are limited. Many phosphate-bearing mineral deposits exist worldwide. Several developing countries with P-deficient tropical acid soils have important phosphate rock deposits, that is the raw material for the production of P fertilizers. Thus, under certain soil and climatic conditions, direct application of phosphate rocks (PRs) is an agronomically and economically sound alternative to the use of expensive superphosphates. In spite of extensive research on the application of PR to acid soils in temperate regions, there is scant information on the potential of local PR sources in tropical and subtropical regions. Phosphate rocks vary widely in their mineralogical, chemical and physical properties and consequently in their reactivity and agronomic potential. It is, therefore, necessary to assess the relative agronomic effectiveness of the indigenous and imported PRs using the commercially available superphosphate as a reference. Also, changes in the soil available P when amended with PR products and water-soluble P fertilizers need to be properly monitored with suitable soil P testing methods for the provision of adequate P fertilizer recommendations. During the 1980's, some local PR sources were evaluated in the FAO Fertilizer Programme. The idea of a project on PR

  5. Assessment of soil phosphorus status and management of phosphatic fertilizers to optimise crop production

    International Nuclear Information System (INIS)

    2002-03-01

    Phosphorus (P) is an essential plant nutrient, and its deficiency in soils severely restricts crop yields. Tropical and subtropical soils are predominantly acidic and often extremely deficient in phosphorus. Moreover most of these soils possess a high phosphate sorption capacity. Strongly sorbed or fixed phosphate is unavailable for plant uptake. Therefore, substantial P inputs are required for optimum plant growth and adequate food and fiber production. Manufactured water-soluble P fertilizers, like superphosphates, are the commonest P inputs. However, in most developing countries these P fertilizers are not produced locally but are imported, and their supplies to resource-poor farmers in rural areas are limited. Many phosphate-bearing mineral deposits exist worldwide. Several developing countries with P-deficient tropical acid soils have important phosphate rock deposits, that is the raw material for the production of P fertilizers. Thus, under certain soil and climatic conditions, direct application of phosphate rocks (PRs) is an agronomically and economically sound alternative to the use of expensive superphosphates. In spite of extensive research on the application of PR to acid soils in temperate regions, there is scant information on the potential of local PR sources in tropical and subtropical regions. Phosphate rocks vary widely in their mineralogical, chemical and physical properties and consequently in their reactivity and agronomic potential. It is, therefore, necessary to assess the relative agronomic effectiveness of the indigenous and imported PRs using the commercially available superphosphate as a reference. Also, changes in the soil available P when amended with PR products and water-soluble P fertilizers need to be properly monitored with suitable soil P testing methods for the provision of adequate P fertilizer recommendations. During the 1980's, some local PR sources were evaluated in the FAO Fertilizer Programme. The idea of a project on PR

  6. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Elizabeth T. Alori

    2017-06-01

    Full Text Available The use of excess conventional Phosphorus (P fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se, arsenic (As in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.

  7. The thermodynamics of extraction of U(VI) and Th(IV) from nitric acid by neutral phosphorus-based organic compounds

    International Nuclear Information System (INIS)

    Kalina, D.G.; Mason, G.W.; Horwitz, E.P.

    1981-01-01

    The extraction of Th(IV) and U(VI) from dilute nitric acid solution by several neutral phosphorus-based extractants has been studied as a function of temperature in the range of 0 to 50 0 C. From the variation of the distribution ratio (Ksub(d)) with temperature the thermodynamic quantities ΔG, ΔH and ΔS have been calculated for these extractions. The results of this study indicate that the steric bulk of the extractant plays a major role in determining how well Th(IV) is extracted. The size of the extractant appears to be of little or no importance in the extraction of U(VI). Similarly, the basicity of the extractant is of lesser importance in the extraction of uranyl ion relative to thorium ion. (author)

  8. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil

    Directory of Open Access Journals (Sweden)

    José Luis Martínez-Sánchez

    2005-09-01

    Full Text Available In tropical forests with nutrient-rich soil tree’s nutrient resorption from senesced leaves has not always been observed to be low. Perhaps this lack of consistence is partly owing to the nutrient resorption methods used. The aim of the study was to analyse N and P resorption proficiency from tropical rain forest trees in a nutrient-rich soil. It was hypothesised that trees would exhibit low nutrient resorption in a nutrient-rich soil. The soil concentrations of total N and extractable P, among other physical and chemical characteristics, were analysed in 30 samples in the soil surface (10 cm of three undisturbed forest plots at ‘Estación de Biología Los Tuxtlas’ on the east coast of Mexico (18°34’ - 18°36’ N, 95°04’ - 95°09’ W. N and P resorption proficiency were determined from senescing leaves in 11 dominant tree species. Nitrogen was analysed by microkjeldahl digestion with sulphuric acid and distilled with boric acid, and phosphorus was analysed by digestion with nitric acid and perchloric acid. Soil was rich in total N (0.50%, n = 30 and extractable P (4.11 µg g-1, n = 30. As expected, trees showed incomplete N (1.13%, n = 11 and P (0.11%, n = 11 resorption. With a more accurate method of nutrient resorption assessment, it is possible to prove that a forest community with a nutrient-rich soil can have low levels of N and P resorption. Rev. Biol. Trop. 53(3-4: 353-359. Epub 2005 Oct 3.En las selvas tropicales con suelos fértiles se ha observado que la reabsorción de nutrientes de los arboles de las hojas seniles no siempre es baja. Esta falta de consistencia en el resultado es talvez debida en parte a la metodología de reabsorción de nutrientes utilizada. El objetivo de este estudio fue analizar la reabsorción final de N y P de arboles de la selva húmeda tropical en un suelo rico en nutrientes. La hipótesis planteada fue que en un suelo rico en nutrientes los arboles presentarían una baja reabsorción final de

  9. Use of sequential extraction to assess metal partitioning in soils

    International Nuclear Information System (INIS)

    Kaasalainen, Marika; Yli-Halla, Markku

    2003-01-01

    The state of heavy metal pollution and the mobility of Cd, Cu, Ni, Cr, Pb and Zn were studied in three texturally different agricultural soil profiles near a Cu-Ni smelter in Harjavalta, Finland. The pseudo-total concentrations were determined by an aqua regia procedure. Metals were also determined after division into four fractions by sequential extraction with (1) acetic acid (exchangeable and specifically adsorbed metals), (2) a reducing agent (bound to Fe/Mn hydroxides), (3) an oxidizing agent (bound to soil organic matter) and (4) aqua regia (bound to mineral structures). Fallout from the smelter has increased the concentrations of Cd, Cu and Ni in the topsoil, where 75-90% of Cd, 49-72% of Cu and 22-52% of Ni occurred in the first two fractions. Slight Pb and Zn pollution was evident as well. High proportions of mobile Cd, Cu and Ni also deeper in the sandy soil, closest to the smelter, indicated some downward movement of metals. The hydroxide-bound fraction of Pb dominated in almost all soils and horizons, while Ni, Cr and Zn mostly occurred in mineral structures. Aqua regia extraction is usefully supplemented with sequential extraction, particularly in less polluted soils and in soils that exhibit substantial textural differences within the profiles. - Sequential extraction is most useful with soils with low metal pollutant levels

  10. Phosphorus and groundwater: Establishing links between agricultural use and transport to streams

    Science.gov (United States)

    Domagalski, Joseph L.; Johnson, Henry

    2012-01-01

    Phosphorus is a highly reactive element that is essential for life and forms a variety of compounds in terrestrial and aquatic ecosystems. In water, phosphorus may be present as the orthophosphate ion (PO43-) and is also present in all life forms as an essential component of cellular material. In natural ecosystems, phosphorus is derived from the erosion of rocks and is conserved for plant growth as it is returned to the soil through animal waste and the decomposition of plant and animal tissue; but in agricultural systems, a portion of the phosphorus is removed with each harvest, especially since phosphorus is concentrated in the seeds and fruit. Phosphorus is added to soil by using chemical fertilizers, manure, and composted materials. Agricultural use of chemical phosphorus fertilizer, in the United States, in 2008 was 4,247,000 tons, which is an increase of 25 percent since 1964 (http://www.ers.usda.gov/Data/FertilizerUse/). Widely grown corn, soybeans, and wheat use the greatest amount of phosphorus fertilizer among agricultural crops.

  11. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium.

    Science.gov (United States)

    Laitinen, Pirkko; Siimes, Katri; Rämö, Sari; Jauhiainen, Lauri; Eronen, Liisa; Oinonen, Seija; Hartikainen, Helinä

    2008-01-01

    The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.

  12. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. ... genotype would be a potential approach for maintaining wheat yield potential in soils with low P bioavailability. Key words: Wheat, P efficiency, rhizosphere properties, P fractions, phosphates activity.

  13. Ethylene: a regulator of root architectural responses to soil phosphorus availability

    NARCIS (Netherlands)

    Borch, K.; Bouma, T.J.; Lynch, J.P.; Brown, K.M.

    1999-01-01

    The involvement of ethylene in root architectural responses to phosphorus availability was investigated in common bean (Phaseolus vulgaris L,) plants grown with sufficient and deficient phosphorus. Although phosphorus deficiency reduced root mass and lateral root number, main root length was

  14. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    Science.gov (United States)

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  15. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  16. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.

    Science.gov (United States)

    Cao, Xinde; Liang, Yuan; Zhao, Ling; Le, Huangying

    2013-09-01

    Phosphorus-bearing materials have been widely applied in immobilization of heavy metals in contaminated soils. However, the study on the stability of the initially P-induced immobilized metals in the contaminated soils is far limited. This work was conducted to evaluate the mobility of Pb, Cu, and Zn in two contrasting contaminated soils amended with phosphate rock tailing (PR) and triple superphosphate fertilizer (TSP), and their combination (P + T) under simulated landfill and rainfall conditions. The main objective was to determine the stability of heavy metals in the P-treated contaminated soils in response to the changing environment conditions. The soils were amended with the P-bearing materials at a 2:1 molar ratio of P to metals. After equilibrated for 2 weeks, the soils were evaluated with the leaching procedures. The batch-based toxicity characteristic leaching procedure (TCLP) was conducted to determine the leachability of heavy metals from both untreated and P-treated soils under simulated landfill condition. The column-based synthetic precipitation leaching procedure (SPLP) were undertaken to measure the downward migration of metals from untreated and P-treated soils under simulated rainfall condition. Leachability of Pb, Cu, and Zn in the TCLP extract followed the order of Zn > Cu > Pb in both soils, with the organic-C- and clay-poor soil showing higher metal leachability than the organic-C- and clay-rich soil. All three P treatments reduced leachability of Pb, Cu, and Zn by up to 89.2, 24.4, and 34.3 %, respectively, compared to the untreated soil, and TSP revealed more effectiveness followed by P + T and then PR. The column experiments showed that Zn had the highest downward migration upon 10 pore volumes of SPLP leaching, followed by Pb and then Cu in both soils. However, migration of Pb and Zn to subsoil and leachate were inhibited in the P-treated soil, while Cu in the leachate was enhanced by P treatment in the organic

  17. Response of three soils in the derived savanna zone of southwestern Nigeria to combined application of organic and inorganic fertilizer as affecting phosphorus fractions

    Directory of Open Access Journals (Sweden)

    Abigail O. Ojo

    2018-04-01

    Full Text Available Phosphorus inputs to the soil are primarily from the application of fertilizer P and organic resources. A ten week incubation study was carried out to determine the effects of organic and inorganic P sources on phosphorus fractions in three derived savanna soils. Poultry manure was applied at 0, 0.75g, 1.5g, 2.25g and 3g per 300g weight of soil while single superphosphate was applied at 0.0023g, 0.0046g, 0.0069g and 0.0092g per 300g of soil. Sampling was done at two weeks interval. At 0 week of the incubation study, Ekiti series had the largest amount of P fractions i.e. Fe-P, Al-P, residual P, reductant soluble P, occluded P, organic P and occluded P while Ca-P was high in Apomu series. However, increases in Fe-P, Al-P, Ca-P and organic P were observed in the three soil series evaluated and poultry manure was notably effective in reducing P occlusion. In conclusion, it was observed that irrespective of the soil series at different stages of the incubation studies, poultry manure and the combined application of poultry manure and Single superphosphate was highly effective in increasing P fractions.

  18. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat

    DEFF Research Database (Denmark)

    Mackay, Jessica E.; Cavagnaro, Timothy R.; Jakobsen, Iver

    2017-01-01

    Aims Dried sewage sludge (SS) and the by-products of four SS thermal conversion processes (pyrolysis, incineration and two types of gasification) were investigated for phosphorus (P) availability. Methods A sequential extraction was used to determine the distribution of P among different P pools....... After mixing materials with soil, availability of the P was determined with soil P extractions and in a growth experiment with wheat. Results Thermally converted SS contained a greater proportion of P within recalcitrant pools than dried SS. Despite having very different P pool distributions......, the incinerated and dried SS provided similar amounts of P to plants. Plant P supply from dried and incinerated SS was lower than the comparable soluble P treatment (50 mg P kg−1), but higher than a soluble treatment at a lower rate (20 mg P kg−1). Plant P uptake in gasified and pyrolysed treatments was only...

  19. Element fractionation by sequential extraction in a soil with high carbonate content

    International Nuclear Information System (INIS)

    Sulkowski, Margareta; Hirner, Alfred V.

    2006-01-01

    The influence of carbonate and other buffering substances in soils on the results of a 3-step sequential extraction procedure (BCR) used for metal fractionation was investigated. Deviating from the original extraction scheme, where the extracts are analysed only for a limited number of metals, almost all elements in the soils were quantified by X-ray fluorescence spectroscopy, in the initial samples as well as in the residues of all extraction steps. Additionally, the mineral contents were determined by X-ray diffractometry. Using this methodology, it was possible to correlate changes in soil composition caused by the extraction procedure with the release of elements. Furthermore, the pH values of all extracts were monitored, and certain extraction steps were repeated until no significant pH-rise occurred. A soil with high dolomite content (27%) and a carbonate free soil were extracted. Applying the original BCR-sequence to the calcareous soil, carbonate was found in the residues of the first two steps and extract pH-values rose by around two units in the first and second step, caused mainly by carbonate dissolution. This led to wrong assignment of the carbonate elements Ca, Mg, Sr, Ba, and also to decreased desorption and increased re-adsorption of ions in those steps. After repetition of the acetic acid step until extract pH remained low, the carbonate was completely destroyed and the distributions of the elements Ca, Mg, Sr, Ba as well as those of Co, Ni, Cu, Zn and Pb were found to be quite different to those determined in the original extraction. Furthermore, it could be shown that the effectiveness of the reduction process in step two was reduced by increasing pH: Fe oxides were not significantly attacked by the repeated acetic acid treatments, but a 10-fold amount of Fe was mobilized by hydroxylamine hydrochloride after complete carbonate destruction. On the other hand, only small amounts of Fe were released anyway. Even repeated reduction steps did not

  20. Phosphorus cycling in natural and low input soil/plant systems: the role of soil microorganisms

    Science.gov (United States)

    Tamburini, F.; Bünemann, E. K.; Oberson, A.; Bernasconi, S. M.; Frossard, E.

    2011-12-01

    Availability of phosphorus (as orthophosphate, Pi) limits biological production in many terrestrial ecosystems. During the first phase of soil development, weathering of minerals and leaching of Pi are the processes controlling Pi concentrations in the soil solution, while in mature soils, Pi is made available by desorption of mineral Pi and mineralization of organic compounds. In agricultural soils additional Pi is supplied by fertilization, either with mineral P and/or organic inputs (animal manure or plant residues). Soil microorganisms (bacteria and fungi) mediate several processes, which are central to the availability of Pi to plants. They play a role in the initial release of Pi from the mineral phase, and through extracellular phosphatase enzymes, they decompose and mineralize organic compounds, releasing Pi. On the other hand, microbial immobilization and internal turnover of Pi can decrease the soil available Pi pool, competing in this way with plants. Using radio- and stable isotopic approaches, we show evidence from different soil/plant systems which points to the central role of the microbial activity. In the presented case studies, P contained in the soil microbial biomass is a larger pool than available Pi. In a soil chronosequence after deglaciation, stable isotopes of oxygen associated to phosphate showed that even in the youngest soils microbial activity highly impacted the isotopic signature of available Pi. These results suggested that microorganisms were rapidly taking up and cycling Pi, using it to sustain their community. Microbial P turnover time was faster in the young (about 20 days) than in older soils (about 120 days), reflecting a different functioning of the microbial community. Microbial community crashes, caused by drying/rewetting and freezing/thawing cycles, were most likely responsible for microbial P release to the available P pool. In grassland fertilization experiments with mineral NK and NPK amendments, microbial P turnover

  1. Characteristic of wet method of phosphorus recovery from polish sewage sludge ash with nitric acid

    Directory of Open Access Journals (Sweden)

    Gorazda Katarzyna

    2016-01-01

    Full Text Available Sewage Sludge Ash (SSA is a concentrated source of phosphorus and can be successfully recycled via a number of different routes. This paper presents research results on phosphorus recovery from differently combusted sewage sludge with the use of nitric acid extraction. Different SSA forms from Polish thermal utilization stations were compared. It was revealed that sewage treatment technology as well as combustion technology influence many physical and chemical parameters of ashes that are crucial for further phosphorus recovery from such waste according to the proposed method. Presented research defines extraction efficiency, characterized extracts composition and verifies the possibility of using SSA as cheaper and alternative sources of phosphorus compounds. Gdynia, Kielce and Kraków SSA have the best properties for the proposed technology of phosphorus recovery with high extraction efficiency greater than 86%. Unsuitable results were obtained for Bydgoszcz, Szczecin Slag and Warszawa SSA. Extraction process for Łódź and Szczecin Dust SSA need to be improved for a higher phosphorus extraction efficiency greater than 80%.

  2. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  3. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  4. Interaction Effect between Phosphorus and Zinc on their Availability in Soil in Relation to their Contents in Stevia (Stevia rebaudiana)

    Science.gov (United States)

    Das, Kuntal; Dang, Raman; Shivananda, T. N.; Sur, Pintu

    2005-01-01

    A greenhouse experiment was conducted at the Indian Institute of Horticultural Research (IIHR), Bangalore to study the interaction effect between phosphorus and zinc on their availability in soil in relation to their contents in stevia (Stevia rebaudiana). The results show that the amount of available P and Zn content in soil has been found to increase initially and, thereafter, the amount of the same decreased with the progress of plant growth up to 60 days irrespective of treatments. The amount of P and Zn in soils showed an increase with their separate applications either as soil or foliar spray while that of the same value significantly decreased both in soils and plants due to their combined applications, suggesting a mutual antagonistic effect between Zn and P affecting each other's availability in soil and content in the stevia plant. PMID:15980919

  5. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  6. Sequential extraction for the speciation of some heavy metals in soils

    International Nuclear Information System (INIS)

    Zemberyova, M.; Zwaik, A.A.H.; Farkasovska, I.

    1998-01-01

    The five step sequential extraction for speciation of copper and nickel originally designed for sediments has been applied to soil samples. The extractant solutions were: 1 mol/l ammonium acetate, 1 mol/l hydroxylammonium chloride in 25% acetic acid (1:1), 0.1 mol/l hydrochlorid acid, 0.5 mol/l sodium hydroxide and 8 mol/l nitric acid. The residue was decomposed by HF and HNO 3 . Using this procedure the metal fraction bound to the organic matter can be distinguished. The concentrations of analytes were determined in the soil extracts by FAAS and ETAAS. Accuracy was assessed by comparing the sum of the contents of copper and nickel in soil extracts with the total certified values of CRMs of soils. The overall recovery values for nickel was 84-105% and for copper 105-114%. (author)

  7. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  8. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    Science.gov (United States)

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (PpH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation rates, decrease their availability, alter their rhizosphere

  9. A multisyringe flow-through sequential extraction system for on-line monitoring of orthophosphate in soils and sediments

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l-1 NH4Cl, 0.1 mol l-1 NaOH and 0...... of the operational times from days to hours, highly temporal resolution of the leaching process, and the capability for immediate decision for stopping or proceeding with the ongoing extraction. Very importantly, accurate determination of the various orthophosphate pools is ensured by minimization of the hydrolysis...... of extracted organic phosphorus and condensed inorganic phosphates within the time frame of the assay. The potential of the novel system for accommodation of the harmonized protocol from the Standards, Measurement and Testing (SMT) Program of the Commission of the European Communities for inorganic phosphorus...

  10. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  11. Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran

    Science.gov (United States)

    Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.

    2018-02-01

    Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.

  12. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study.

    Science.gov (United States)

    Jin, Yi; Liang, Xinqiang; He, Miaomiao; Liu, Yu; Tian, Guangming; Shi, Jiyan

    2016-01-01

    Using manure-derived-biochar as an alternative phosphorus (P) source has bright future prospects to improve soil P status. A 98-day microcosm incubation experiment was set up for two soils which were amended with manure biochar at proportions of 0, 0.5% and 1.5%. Swine manure samples were air-dried and manure biochar was prepared by pyrolysis at 400 °C for 4 h. As determined by P-31 nuclear magnetic resonance ((31)P NMR) spectroscopy, manure biochar mainly increased the contents and fractions of orthophosphate and pyrophosphate in two soils, while decreased those of monoesters (P<0.05). At the end of incubation, 1.5% of manure biochar raised soil pH by 0.5 and 0.6 units, cation exchange capacity by 16.9% and 32.2%, and soil total P by 82.1% and 81.1% for silt loam and clay loam soils, respectively, as compared with those soils without biochar. Simultaneously, 1.5% of manure biochar decreased acid phosphomonoesterase activities by 18.6% and 34.0% for clay loam and silt loam, respectively; while it increased alkaline phosphomonoesterase activities by 28.5% and 95.1% for clay loam and silt loam, respectively. The enhancement of soil P availability after manure biochar addition was firstly due to the orthophosphate and pyrophosphate as the major P species in manure biochar which directly increased contents of soil inorganic P, and also attributed to the decomposition of some organic P like monoesters by enhanced alkaline phosphomonoesterase activities from manure biochar addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Phosphorus status and microbial community of paddy soil with the growth of annual ryegrass (Lolium multiflorum Lam.) under different phosphorus fertilizer treatments*

    Science.gov (United States)

    Guo, Hai-chao; Wang, Guang-huo

    2009-01-01

    Annual ryegrass (Lolium multiflorum Lam.) was grown in paddy soil in pots under different phosphorus (P) fertilizer treatments to investigate changes of P fractions and microbial community of the soil. The treatments included Kunyang phosphate rock (KPR) applications at 50 mg P/kg (KPR50) and 250 mg P/kg (KPR250), mono-calcium phosphate (MCP) application at 50 mg P/kg (MCP50), and the control without P application. The results showed that KPR50, KPR250, and MCP50 applications significantly increased the dry weight of the ryegrass by 13%, 38%, and 55%, and increased P uptake by 19%, 135%, and 324%, respectively. Compared with MCP50, the relative effectiveness of KPR50 and KPR250 treatments in ryegrass production was about 23% and 68%, respectively. After one season of ryegrass growth, the KPR50, KPR250, and MCP50 applications increased soil-available P by 13.4%, 26.8%, and 55.2%, respectively. More than 80% of the applied KPR-P remained as HCl-P fraction in the soil. Phospholipid fatty acid (PLFA) analysis showed that the total and bacterial PLFAs were significantly higher in the soils with KPR250 and MCP50 treatments compared with KPR50 and control. The latter had no significant difference in the total or bacterial PLFAs. The KPR50, KPR250, and MCP50 treatments increased fungal PLFA by 69%, 103%, and 69%, respectively. Both the principal component analysis and the cluster analysis of the PLFA data suggest that P treatments altered the microbial community composition of the soils, and that P availability might be an important contributor to the changes in the microbial community structure during the ryegrass growth in the paddy soils. PMID:19817001

  14. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  15. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Use of reactive materials to bind phosphorus

    NARCIS (Netherlands)

    Chardon, W.J.; Groenenberg, J.E.; Temminghoff, E.J.M.; Koopmans, G.F.

    2012-01-01

    Phosphorus (P) losses from agricultural soils have caused surface water quality impairment in many regions of the world, including The Netherlands. Due to the large amounts of P accumulated in Dutch soils, the generic fertilizer and manure policy will not be sufficient to reach in time the surface

  17. Effect of levels of P, FYM and PSB on mobilization of soil phosphorus using isotope technique in paddy

    International Nuclear Information System (INIS)

    Khatik, S.K.; Deshmukh, K.K.; Sharma, G.D.; Dwivedi, B.S.

    2004-01-01

    A greenhouse experiment was conducted using paddy (variety IR-36) as a test crop, receiving graded doses of P to study the effect of added P through SSP (labelled 32 P) alone and in combination with FYM and biofertilizer on uptake pattern, mobilization. Olsen's P and different inorganic P fractions. The results showed that the amount of Olsen's extractable P decreased with increasing cropping period up to harvest and the highest value was recorded in treatment receiving SSP- 32 P + FYM + PSB. Almost similar results were observed in P uptake pattern. The highest values 34.68. 29.91 and 28.36 of the per cent P derived from fertilizer (Pdff) and the lowest values of 65.31, 70.08 and 71.65 for the per cent P derived from soil (Pdff) were registered in SSP + FYM +PSB at tillering, flowering and harvest stages, indicating that combined use of FYM and bio-fertilizer helped in better utilization of native reserve phosphorus. It was also found that maximum amount of applied P was transformed to Ca-P and minimum into saloid-P in all the plant growth stages. Different fractions of transformed P in the soil followed the order Ca-P > Fe-P > Al-P > Occluded-P > saloid-P. Maximum response to added P was obtained in SSP + FYM + PSB treatment and minimum was noticed in control at all the growth stages of plant. (author)

  18. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon

  19. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    Science.gov (United States)

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  20. Determination of phosphorus using derivative neutron activation

    International Nuclear Information System (INIS)

    Scindia, Y.M.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.

    2002-01-01

    For the determination of phosphorus in different matrices, the derivative neutron activation analysis is especially applicable to aqueous samples, since the conventional neutron activation analysis is not useful for the determination of phosphorus. Phosphorus when reacted with ammonium molybdate 4 hydrate and ammonium metavanadate forms molybdo vanado phosphoric acid. This complex is preconcentrated by extracting into methyl isobutyl ketone. The organic phase containing the molybdo vanado phosphoric acid is neutron activated and the phosphorus is determined through the activation product of 52 V. Preparation of this complex, its stoichiometry, application to trace level determination of phosphorus and improved detection limit are discussed. This method was applied for the analysis of industrial effluent samples. (author)

  1. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources.

    Science.gov (United States)

    Adnan, Muhammad; Shah, Zahir; Sharif, Muhammad; Rahman, Hidayatur

    2018-04-01

    Agricultural land is a major sink of global organic carbon (C). Its suitable management is crucial for improving C sequestration and reducing soil CO 2 emission. Incubation experiments were performed to assess the impact of phosphate solubilizing bacterial (PSB) inoculation (inoculated and uninoculated) and soil calcification (4.78, 10, 15, and 20% crushed CaCO 3 ) with phosphorus (P) sources [single superphosphate (SSP), rock phosphate (RP), farm yard manure (FYM), and poultry manure (PM)] in experiment 1 and with various rates of PM (4, 8, and 12 kg ha -1 ) in experiment 2 on cumulative soil respiration. These experiments were arranged in three factorial, complete randomize design (CRD) with three replications. Interactively, lime with P sources (at day 1 and 3) and lime with PSB (at day 1) significantly expedited soil respiration. Mainly, PSB inoculation, liming, PM fertilization, and its various rates significantly enhanced soil respiration with time over control/minimum in alkaline soil at all incubation periods. Higher CO 2 emission was detected in soil supplemented with organic P sources (PM and FYM) than mineral sources (SSP and RP). CO 2 emission was noted to increase with increasing PM content. Since liming intensified CO 2 discharge from soil, therefore addition of lime to an alkaline soil should be avoided; instead, integrated approaches must be adopted for P management in alkaline calcareous soils for climate-smart agriculture.

  2. Optimization of the diffusive gradients in thin films (DGT) method for simultaneous assay of potassium and plant-available phosphorus in soils.

    Science.gov (United States)

    Zhang, Yulin; Mason, Sean; McNeill, Ann; McLaughlin, Michael J

    2013-09-15

    Potassium (K) and phosphorus (P) are two important macronutrients for crops, and are usually applied to soils as granular fertilizer before seeding. Therefore, accurate soil tests prior to planting to predict crop response to fertilizers are important in optimizing crop yields. Traditional methods used for testing both available K and P in soils, which are based on chemical extraction procedures, are to be soil-type dependent, and the predictive relationships across a broad range of soils are generally poor. The diffusive gradients in thin films (DGT) technique, based on diffusion theory, is extensively used to measure the diffusive supply of trace elements, metals and some nutrients in soils and water. When DGT is used to assess plant-available P in soils, a good relationship is found between crop response to P fertilizer and concentrations of P in soil measured by DGT, and therefore the DGT method provides a more precise recommendation of P fertilizer requirements. Adaptation of the DGT method to measure plant-available K in soils has already been attempted [1], but limitations were reported due to the non-uniform size of the resin gel, decreased K binding rate of the gel at long deployment times and a limited ability to measure a wide range of K concentrations. To eliminate these problems, a new resin gel has been developed by combining Amberlite and ferrihydrite. This mixed Amberlite and ferrihydrite (MAF) gel has improved properties in terms of handling and even distribution of Amberlite in the gel. The elution efficiencies of the MAF gel for K and P were 90% and 96%, respectively. The diffusion coefficient of K through the diffusive gel was 1.30 × 10(-5)cm(2)s(-1) at 22 ± 1°C and was stable through time. Since ferrihydrite is already used in DGT P testing, the ability of the MAF gel to assess available P simultaneously was also assessed. The MAF gel performed the same as the traditional ferrihydrite gel for available P assessment in a wide variety of

  3. WHO WOULD EAT IN A WORLD WITHOUT PHOSPHORUS? A GLOBAL DYNAMIC MODEL

    Science.gov (United States)

    Dumas, M.

    2009-12-01

    Phosphorus is an indispensable and non-substitutable resource, as agriculture is impossible if soils do not hold adequate amounts of this nutrient. Phosphorus is also considered to be a non-renewable and increasingly scarce resource, as phosphate rock reserves - as one measure of availability amongst others - are estimated to last for 50 to 100 years at current rates of consumption. How would food production decline in different parts of the world in the scenario of a sudden shortage in phosphorus? To answer this question and explore management scenarios, I present a probabilistic model of the structure and dynamics of the global P cycle in the world’s agro-ecosystems. The model proposes an original solution to the challenge of capturing the large-scale aggregate dynamics of multiple micro-scale soil cycling processes. Furthermore, it integrates the essential natural processes with a model of human-managed flows, thereby bringing together several decades of research and measurements from soil science, plant nutrition and long-term agricultural experiments from around the globe. In this paper, I present the model, the first simulation results and the implications for long-term sustainable management of phosphorus and soil fertility.

  4. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    Science.gov (United States)

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  5. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.

    Science.gov (United States)

    Yan, Mang; Yu, Liufang; Zhang, Liang; Guo, Yuexia; Dai, Kewei; Chen, Yuru

    2014-11-01

    Orthophosphate is an essential but limiting macronutrient for plant growth. About 67% cropland in China lacks sufficient phosphorus, especially that with red soil. Extensive soil phosphorus reserves exist in the form of organic phosphorus, which is unavailable for root uptake unless hydrolyzed by secretory acid phosphatases. Thus, many microorganisms with the ability to produce phosphatase have been exploited. In this work, the activity of an extracellular acid phosphatase and yeast biomass from Candida mycoderma was measured under different culture conditions, such as pH, temperature, and carbon source. A maximal phosphatase activity of 8.47×10(5)±0.11×10(5)U/g was achieved by C. Mycoderma in 36 hr under the optimal conditions. The extracellular acid phosphatase has high activity over a wide pH tolerance range from 2.5 to 5.0 (optimum pH3.5). The effects of different phosphorus compounds on the acid phosphatase production were also studied. The presence of phytin, lecithin or calcium phosphate reduced the phosphatase activity and biomass yield significantly. In addition, the pH of the culture medium was reduced significantly by lecithin. The efficiency of the strain in releasing orthophosphate from organic phosphorus was studied in red soil (used in planting trees) and rice soil (originating as red soil). The available phosphorus content was increased by 230% after inoculating 20 days in rice soil and decreased by 50% after inoculating 10 days in red soil. This work indicates that the yeast strain C. mycoderma has potential application for enhancing phosphorus utilization in plants that grow in rice soil. Copyright © 2014. Published by Elsevier B.V.

  6. Association between colloidal iron, aluminum, phosphorus, and humic acids

    NARCIS (Netherlands)

    Dolfing, J.; Chardon, W.J.; Japenga, J.

    1999-01-01

    In temperate regions a distinct part of phosphorus (P) in soils is associated with organic matter. Organic macromolecules can desorb from the soil matrix and, consequently, act as carriers for P in environments where it would otherwise be immobile, However, not all organic forms of P in soils have

  7. Variation of the rare earth element concentrations in the soil, soil extract and in individual plants from the same site

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.; Schleppi, P.

    1998-01-01

    Samples of various types (spruce needles, blackberry leaves, soils, and soil extracts) have each been taken at 6 places from the same site. In addition, 4 whirls each from 2 spruce trees were sampled. Rare earth elements (REEs) were determined in these samples by neutron activation analysis with a chemical group separation. Variations between places were found to be small with soils and soil extracts, but large with plants. Variations between whirls were small. Plants neither reflected the soil nor the soil extract. Both plant species were dissimilar, but the logarithm of their ratio was a linear function of the atomic number of the REE. A negative Ce anomaly (with respect to soil) was found in both plant species. (author)

  8. Neutron activation determination of phosphorus in semiconductor materials

    International Nuclear Information System (INIS)

    Verevkin, G.V.; Gil'bert, Eh.N.; Gol'dshtejn, M.M.; Yudelevich, I.G.; Yurchenko, V.K.

    1976-01-01

    The solvent extraction of molybdophosphoric acid (MPA) with benzene and dichloroethane solutions of dioctylsulphoxide has been studied. A neutron-activation method has been worked out of determining phosphorus in semiconductor silicon, high purity gallium, and homoepitaxial films of gallium arsenide. The method is based on separation of radiochemically pure phosphorus in the form of MPA by extraction with 0.2 M solution of dioctylsulphoxide in benzene and measurement of 32 P activity on a liquid scintillation spectrometer. The method makes it possible to determine phosphorus in the materials enumerated with a limit of detection of 1.9x10 -10 g and a relative standard deviation of not more than 0.05

  9. Formas de fósforo em solos de várzea e biodisponibilidade para o feijoeiro Phosphorus forms in lowland soils and bioavailability to bean plants

    Directory of Open Access Journals (Sweden)

    Luiz Arnaldo Fernandes

    2002-03-01

    Full Text Available Realizou-se um experimento em casa de vegetação do Departamento de Ciência do Solo da Universidade Federal de Lavras, com o objetivo de verificar a influência da aplicação de calcário e de P em algumas formas de P em quatro solos de várzea cultivados com feijoeiro. O delineamento experimental utilizado foi o inteiramente casualizado, em esquema fatorial 4 x 5 x 2, com quatro repetições, a saber: quatro solos [Glei Húmico (GH, Glei Pouco Húmico (GP, Aluvial (A e Orgânico (O], cinco doses de P (75, 150, 300, 500 e 800 mg dm-3 de P e dois níveis de calagem (sem e com. Os solos foram incubados em vasos, por 30 dias, com as respectivas doses de calcário, e por mais 150 dias, com as doses de P. No final desse período, foram coletadas amostras de solo para o fracionamento de P, e o restante foi cultivado com feijoeiro. Cada parcela foi constituída por um vaso com 3 dm³, em que foram cultivadas duas plantas até o final do ciclo. A calagem e a adubação fosfatada influenciaram as formas de P de maneira distinta nos solos de várzea estudados; exceto no solo Glei Pouco Húmico, as formas de P lábil, tanto na ausência quanto na presença de calagem, tiveram pouca participação no P total dos solos. Na presença da calagem, o P lábil foi a forma de P preferencialmente absorvida pelas plantas de feijoeiro.An experiment was carried out in greenhouse of the Soil Science Department of the Universidade Federal de Lavras, State of Minas Gerais, Brazil, with the objective of verifying the influence of application of limestone and phosphorus on some forms of soil P in four lowland soils cultivated with bean plants. The experimental design utilized was a completely randomized in 4 x 5 x 2 factorial scheme, with four replications, that means: four soils [Gley Humic (GH, Bog Soil (O, Alluvial (A and Low Humic Gley (GP], five doses of P (75, 150, 300, 500 and 800 mg dm-3 of P and two levels of liming (without and with. The soils were incubated

  10. Phosphorus critical levels and availability in lowland soils cultivated with flooded rice

    Directory of Open Access Journals (Sweden)

    Mariano Isabela Orlando dos Santos

    2002-01-01

    Full Text Available Lowland soils present a great potential for the flooded rice crop. This work aimed to estimate critical levels of P in waterlogged soils cultivated with rice using Mehlich 1 and anion exchange resin as soil-P extractors, compare the performance of these extractors as for the evaluation of the P availability, and study the soil-P fractions involved in the P nutrition of the rice crop. Studied soils consisted of four Histosols: Low Humic Gley (GP, Aluvial (A, Humic Gley (GH and Bog Soil (O which were previously cultivated with beans. The experimental design was completely randomized, in a factorial scheme, using four soils, five P rates (75, 150, 300, 500 and 800 mg dm-3 and two liming treatments (with and without liming, with three replicates. After 60 days of flooding, soil samples were submitted to P extraction by Mehlich 1 and resin, and phosphorous fractionation. Two rice plants were cultivated in pots containing 3 dm³ of waterlogged soils. The labile P and the moderately labile P of the soils contributed for rice nutrition. The two tested extractors presented efficiency in the evaluation of P availability for the rice cultivated in lowland waterlogged soils.

  11. Do earthworms affect phosphorus availability to grass? A pot experiment.

    NARCIS (Netherlands)

    Vos, M.J.; Ros, M.B.H.; Koopmans, G.F.; Groenigen, van J.W.

    2014-01-01

    The largest part of phosphorus (P) in soil is bound by the soil solid phase; its release to the soil solution therefore often does not meet the demand of plants. Since global P fertilizer reserves are declining, it becomes increasingly important to better utilize soil P. We tested whether earthworm

  12. The effect of meat and bone meal (MBM on the nitrogen and phosphorus content and pH of soil

    Directory of Open Access Journals (Sweden)

    Anna Nogalska

    2017-12-01

    Full Text Available A field experiment was conducted in 2011 – 2013 in Poland. The objective of this study was to determine the effect of increasing doses of meat and bone meal (MBM on the mineral nitrogen (Nmin and available phosphorus (P content of soil and the soil pH. Changes in the content of NH4+-N, NO3--N and available P in soil were affected by MBM dose, experiment duration, weather conditions and crop species. Soil amended with MBM was more abundant in mineral N and available P. The lowest concentration of NO3--N and the highest concentration of NH4+-N were noted in the first year of the study, because the nitrification process requires a longer time. MBM had no influence on the accumulation of Nmin in soil, whereas the concentration of available P increased significantly throughout the experiment. The soil pH decreased with increasing MBM doses. After the application of the highest MBM doses soil pH classification was changed from neutral to slightly acidic.

  13. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    Science.gov (United States)

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  14. A global analysis of fine root production as affected by soil nitrogen and phosphorus.

    Science.gov (United States)

    Yuan, Z Y; Chen, Han Y H

    2012-09-22

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.

  15. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake

    Science.gov (United States)

    Hu, Cong; Li, Feng; Xie, Yong-hong; Deng, Zheng-miao; Chen, Xin-sheng

    2018-02-01

    Soil carbon (C), nitrogen (N), and phosphorus (P) stoichiometry greatly affects plant community succession and structure. However, few studies have examined the soil stoichiometric changes in different vegetation communities of freshwater wetland ecosystems along an elevation gradient distribution. In the present study, soil nutrient concentrations (C, N, and P), soil stoichiometry (C:N, C:P, and N:P ratios), and other soil physicochemical characteristics were measured and analyzed in 62 soil samples collected from three dominant plant communities (Carex brevicuspis, Artemisia selengensis, and Miscanthus sacchariflorus) in the East Dongting Lake wetlands. The concentration ranges of soil organic carbon (SOC), total soil nitrogen (TN), and total soil phosphorus (TP) were 9.42-45.97 g/kg, 1.09-5.50 g/kg, and 0.60-1.70 g/kg, respectively. SOC and TN concentrations were the highest in soil from the C. brevicuspis community (27.48 g/kg and 2.78 g/kg, respectively) and the lowest in soil from the A. selengensis community (17.97 g/kg and 1.71 g/kg, respectively). However, the highest and lowest TP concentrations were detected in soil from the A. selengensis (1.03 g/kg) and M. sacchariflorus (0.89 g/kg) communities, respectively, and the C:N ratios were the highest and lowest in soil from the M. sacchariflorus (12.72) and A. selengensis (12.01) communities, respectively. C:P and N:P ratios were the highest in soil from the C. brevicuspis community (72.77 and 6.46, respectively) and the lowest in soil from the A. selengensis community (45.52 and 3.76, respectively). Correlation analyses confirmed that SOC concentrations were positively correlated with TN and TP, and C:N and N:P ratios were positively correlated with C:P. These data indicated that soil C, N, and P stoichiometry differed significantly among different plant communities and that these differences might be accounted for by variations in the hydrological conditions of the three communities.

  16. Recovering phosphorus and uranium values from phosphate rock

    International Nuclear Information System (INIS)

    Sze, M.C.Y.; Long, R.H.

    1981-01-01

    Phosphate rock is acidulated with aqueous nitric acid to produce an aqueous solution containing phosphate values, calcium and uranium values. The aqueous solution is contacted with an extraction solvent for the uranium values: the extraction solvent comprising a water immiscible organic diluent, a dialkyl phosphoric acid having at least 10 carbon atoms, and an organic phosphorus compound having the formula R 1 R 2 R 3 P = O where R 1 , R 2 and R 3 are each either alkyl or alkoxy, the organic phosphorus compound having at least 10 carbon atoms. The uranium values are then recovered from the extraction solvent. In an example the extraction solvent is HDEHP and TOPO in kerosene. (author)

  17. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment

    DEFF Research Database (Denmark)

    Christel, Wibke; Bruun, Sander; Magid, Jakob

    2014-01-01

    The alteration of easily available phosphorus (P) from the separated solid fraction of pig slurry by composting and thermal processing (pyrolysis or combustion at 300-1000. °C) was investigated by water and acidic extractions and the diffusive gradients in thin films (DGT) technique. Temporal...... changes in P availability were monitored by repeated DGT application in three amended temperate soils over 16. weeks. P availability was found to decrease in the order: drying. >. composting. >. pyrolysis. >. combustion with increasing degree of processing. Water extractions suggested that no P would....... Composting and thermal treatment produced a slow-release P fertilizer, with P availability being governed by abiotic and biotic mechanisms....

  18. Effects of seasonal and well construction variables on soil vapor extraction pilot tests

    International Nuclear Information System (INIS)

    Campbell, R.; Hudon, N.; Bass, D.

    1995-01-01

    The selection and design of an effective soil vapor extraction system is dependent upon data generated from pilot testing. Therefore, it is critical to understand factors that may affect the testing prior to selecting or designing a system. In Sebago Lake Village, Maine, two adjacent gasoline stations experienced a release. Gasoline migrated through fine sand into the groundwater and discharged to a small stream. Soil vapor extraction was investigated as a remedial alternative to reduce volatile organic compounds in the unsaturated soil. Three soil vapor extraction pilot tests were performed at one of the sites and one test at the other site. The results of the testing varied. Data collected during a summer test indicated soil vapor extraction was less likely to work. The wells tested were installed using an excavator. An adequate surface seal was not present in any of the tested wells. An additional test was performed in the winter using wells installed by a drill rig. Winter test results indicated that soil vapor extraction could be effective. Another test was performed after a horizontal soil vapor extraction system with a surface seal was installed. The results of this testing indicated that soil vapor extraction was more effective than predicted by the earlier tests. Tests performed on the other property indicated that the horizontal wells were more effective than the vertical wells. Testing results were affected by the well installation method, well construction, proximity to manmade structures, and the season in which testing was performed. Understanding factors that affect the testing is critical in selecting and designing the system

  19. Distributions and concentrations of thallium in Korean soils determined by single and sequential extraction procedures.

    Science.gov (United States)

    Lee, Jin-Ho; Kim, Dong-Jin; Ahn, Byung-Koo

    2015-06-01

    The objectives of this study were to investigate the distribution of thallium in soils collected near suspected areas such as cement plants, active and closed mines, and smelters and to examine the extraction of thallium in the soils using 19 single chemical and sequential chemical extraction procedures. Thallium concentrations in soils near cement plants were distributed between 1.20 and 12.91 mg kg(-1). However, soils near mines and smelters contained relatively low thallium concentrations ranging from 0.18 to 1.09 mg kg(-1). Thallium extractability with 19 single chemical extractants from selected soils near cement plants ranged from 0.10% to 8.20% of the total thallium concentration. In particular, 1.0 M NH4Cl, 1.0 M (NH4)2SO4, and 1.0 M CH3COONH4 extracted more thallium than other extractants. Sequential fractionation results of thallium from different soils such as industrially and artificially contaminated soils varied with the soil properties, especially soil pH and the duration of thallium contamination.

  20. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  1. A study on the cycling of phosphorus in wheat (T. alstivum L.) by tracer technique

    International Nuclear Information System (INIS)

    Dwivedi, R.S.

    1974-01-01

    The cycling of phosphorus was studied in relation to its uptake, retention, release and mineralization during the growth period of wheat crop (S. 308) in pure stand (PS) and mixed stand (MS) by using carrier free 32 P. It was estimated that about 60 kg P 2 O 5 /ha was added to the soil through litter by growing two such crops in a year. The mineralization of phosphorus from the litter was to be two times faster at 6 inches soil depth at semi-saturated soil moisture than surface litter. The dry matter production and re-absorption of litter phosphorus by maize plant growing at the bassal dose of decomposed litter were insignificantly different from those of fertilized soils. All the parameters of phosphorus cycling determined by both the techniques did not differ markedly. For mineralization and especially reabsorption studies, only the radiotracer technique appeared to be most sensitive, easy, reliable and quicker. (author)

  2. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    Science.gov (United States)

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  3. Electrokinetic extraction of chromate from unsaturated soils

    International Nuclear Information System (INIS)

    Mattson, E.D.; Lindgren, E.R.

    1993-01-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode

  4. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  5. Sustainable Land Use, Soil Protection and Phosphorus Management from a Cross-National Perspective

    Directory of Open Access Journals (Sweden)

    Jessica Stubenrauch

    2018-06-01

    Full Text Available The scarcity of phosphorus (P is a global concern that is not restricted to western industrialized nations. Until now, most countries in the world are highly dependent on importing mineral P fertilizers for agriculture. The industrialized nation of Germany, the emerging economy of Costa Rica, and the developing country of Nicaragua are examined with regard to their legislation in the field of environmental protection and agriculture, in particular with regard to soil protection and fertilizer law. Based on the structure of agriculture in each country, control weaknesses in legislation in the individual countries, which is largely determined by command-and-control law, are identified and compared. It becomes clear that soil protection in all three countries has not yet been adequately standardised in law and at the same time the efficient use of organic or recycled P fertilizers instead of (finite mineral P fertilizers is inadequately regulated. In particular, frugality, i.e., the strategy of lower (and not only more efficient consumption of P fertilizers, has so far played no regulatory role in land-use governance.

  6. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  7. Diversity and Gene Expression of Phosphatase Genes Provide Insight into Soil Phosphorus Dynamics in a New Zealand Managed Grassland

    Science.gov (United States)

    Dunfield, K. E.; Gaiero, J. R.; Condron, L.

    2017-12-01

    Healthy and diverse communities of soil organisms influence key soil ecosystem services such as carbon sequestration, water quality protection, climate regulation and nutrient cycling. Microbially driven mineralization of organic phosphorus is an important contributor to plant available inorganic orthophosphates. In acidic soils, microbes produce non-specific acid phosphatases (NSAPs) which act on common forms of organic phosphorus (P). Our current understanding of P turnover in soils has been limited by lack of research tools capable of targeting these genes. Thus, we developed a set of oligonucleotide PCR primers that targeted bacteria with the genetic potential for acid phosphatase production. A long term randomized-block pasture trial was sampled following 22 years of continued aerial biomass removal and retention. Primers were used to target genes encoding alkaline phosphatase (phoD) and the three classes (CAAP, CBAP, CCAP) of non-specific acid phosphatases. PCR amplicons targeting total genes and gene transcripts were sequenced using Illumina MiSeq to understand the diversity of the bacterial phosphatase producing communities. In general, the majority of operational taxonomic units (OTUs) were shared across both treatments and across metagenomes and transcriptomes. However, analysis of DNA OTUs revealed significantly different communities driven by treatment differences (P reduced Olsen P levels (15 vs. 36 mg kg-1 in retained treatment). Acid phosphatase activity was measured in all samples, and found to be highest in the biomass retained treatment (16.8 vs. 11.4 µmol g-1 dry soil h-1), likely elevated due to plant-derived enzymes; however, was still correlated to bacterial gene abundances. Overall, the phosphatase producing microbial communities responded to the effect of consistent P limitation as expected, through alteration in the composition of the community structure and through increased levels of gene expression of the phosphatase genes.

  8. Zinc fractionation in contaminated soils by sequential and single extractions: influence of soil properties and zinc content.

    Science.gov (United States)

    Voegelin, Andreas; Tokpa, Gerome; Jacquat, Olivier; Barmettler, Kurt; Kretzschmar, Ruben

    2008-01-01

    We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.

  9. Sediment and Phosphorus losses by Surface Runoff from a Catchment in the Humid Pampa Landscape, Argentina Republic

    Science.gov (United States)

    Méndez M., A.; Díaz E., L.; Lenzi M., L.; Lado, M.; Vidal-Vázquez, E.

    2015-04-01

    runoff were responsible for the most of recorded losses of sediment and phosphorus. Moreover, the highest exportation of sediments and phosphorus from soil to streamflow occurred in the spring and summer period. The daily losses of phosphorus or sediments were mainly explained by the amount of precipitation accumulated during the five days prior to sampling, as shown by regression analysis, and a higher coefficient of determination was obtained for samples extracted during the summer season. This response mainly has been demonstrated to be produced in periods with higher amounts of precipitation equal or greater than 35 mm arising in this season, which are characteristic for summer storms with high rain intensities, and therefore greater erosive power.

  10. SEQUENTIAL EXTRACTION OF PHOSPHORUS BY MEHLICH-1 AND ION EXCHANGE RESIN FROM B HORIZONS OF FERRIC AND PERFERRIC LATOSOLS (OXISOLS

    Directory of Open Access Journals (Sweden)

    Danilo de Lima Camêlo

    2015-08-01

    Full Text Available In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1 and Ion Exchange Resin (IER, from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m. Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.

  11. Influência de doses de fósforo no fluxo difusivo em solos de Alagoas Influence of phosphorus doses in diffusive flow in the soils of Alagoas

    Directory of Open Access Journals (Sweden)

    Adelmo L. Bastos

    2008-04-01

    Full Text Available Objetivando avaliar o efeito de diferentes doses de fósforo sobre o fluxo difusivo deste elemento em amostras de solos do Estado de Alagoas, conduziu-se um experimento em laboratório, no Centro de Ciências Agrárias da Universidade Federal de Alagoas, município de Rio Largo, AL. Os solos utilizados foram classificados como Latossolo Amarelo coeso (LAx, Argissolo Acinzentado (PAC, Neossolo Flúvico (RU, Neossolo Quartzarênico RQ, Luvissolo Crômico órtico (TCo e Luvissolo Crômico pálico (TCp. Realizaram-se análises químicas, físicas e mineralógicas. O P remanescente foi determinado na solução de equilíbrio e a CMAP o foi em função do fósforo remanescente, utilizando-se, como unidades experimentais, anéis de PVC, que serviram como câmara de difusão. As doses de fósforo corresponderam a 0, 10, 20 e 30% da CMAP. Para avaliação do fluxo difusivo de fósforo dos solos, se utilizaram papel de troca aniônica e a metodologia de papel-filtro impregnado com óxido de ferro. O ensaio consistiu em um arranjo fatorial (6 x 4 correspondendo, respectivamente, a seis solos e quatro doses de fósforo. Os solos mais arenosos (RQ e RU e a maior dose usada indicaram sempre os maiores fluxos difusivos de fósforo.The effect of distinct doses of phosphorus was evaluated on the diffusion of this element in soil samples from the State of Alagoas. The experiment was performed in the laboratory of the Centro de Ciências Agrárias of the Federal University of Alagoas, Rio Largo, AL. The soils were classified as a compacted Yellow Latossol, Grey Argissoil, Fluvic Neosoil, Quartzanic Neossoil and ortic Chromic Luvissoil. Chemical, physical and mineralogical analyses had been made. The determination of the remaining P was made in the equilibrium solution. The maximum capacity of adsorption was determined through the remaining phosphorus, using PVC rings which were used as diffusion chambers. The doses of phosphorus had been equivalent to 0, 10, 20

  12. Chemical composition and Zn bioavailability of the soil solution extracted from Zn amended variable charge soils.

    Science.gov (United States)

    Zampella, Mariavittoria; Adamo, Paola

    2010-01-01

    A study on variable charge soils (volcanic Italian and podzolic Scottish soils) was performed to investigate the influence of soil properties on the chemical composition of soil solution. Zinc speciation, bioavailability and toxicity in the soil solution were examined. The soils were spiked with increasing amounts of Zn (0, 100, 200, 400 and 1000 mg/kg) and the soil solutions were extracted using rhizon soil moisture samplers. The pH, total organic carbon (TOC), base cations, anions, total Zn and free Zn2+ in soil solution were analysed. A rapid bioassay with the luminescent bacterium Escherichia coli HB101 pUCD607 was performed to assess Zn toxicity. The influence of soil type and Zn treatments on the chemical composition of soil solution and on Zn toxicity was considered and discussed. Different trends of total and free Zn concentrations, base cations desorption and luminescence of E. coli HB101 pUCD607 were observed. The soil solution extracted from the volcanic soils had very low total and free Zn concentrations and showed specific Zn2+/Ca2+ exchange. The soil solution from the podzolic soil had much higher total and free Zn concentrations and showed no evidence of specific Zn2+/Ca2+ exchange. In comparison with the subalkaline volcanic soils, the acidic podzol showed enhanced levels of toxic free Zn2+ and consequently stronger effects on E. coli viability.

  13. Selection and Evaluation of Maize Genotypes Tolerance to Low Phosphorus Soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. C.; Jiang, H. M.; Zhang, J. F.; Li, L. L.; Li, G. H. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing (China)

    2013-11-15

    Maize species differ in their ability to take up phosphorus (P) from the soil, and these differences are attributed to the morphology and physiology of plants relative to their germplasm base. An effective method of increasing P efficiency in maize is to select and evaluate genotypes that can produce a high yield under P deficient conditions. In this study, 116 maize inbred lines with various genetic backgrounds collected from several Agricultural Universities and Institutes in China were evaluated in a field experiment to identify genotypic differences in P efficiency in 2007. Overall, 15 maize inbred lines were selected from the 116 inbred lines during the 5-year field experimental period based on their 100-grain weight in P-deficient soil at maturity, when compared to the characteristics exhibited in P-sufficient soil. All of the selected lines were evaluated in field experiments from 2008 to 2010 for their tolerance to low-P at the seedling and maturity stages. Inhibition (%) was used and defined as the parameter measured under P limitation compared to the parameters measured under P sufficiency to evaluate the genotypic variation in tolerance. Inhibition of root length, root surface area, volume, root: shoot ratio and P uptake efficiency could be used as indices to assess the genotypic tolerance to P limitation. Low-P tolerant genotypes could uptake more P and accumulate more dry matter at the seedling stage. A strong relationship between the total biomass and root length was exhibited. In order to understand the mechanisms of the genotypic tolerance to low-P soil to utilize P from the sparing soluble P forms, 5 maize genotypes selected out of the 15 maize inbred lines, according to the four quadrant distribution, was used as the criteria in a {sup 32}P isotope tracer experiment to follow the recovery of {sup 32}P in soil P fractions. The {sup 32}P tracer results showed a higher rate for water- soluble P transformation to slowly available P in P deficient soil

  14. Enzymatic vegetable organic extracts as soil biochemical biostimulants and atrazine extenders.

    Science.gov (United States)

    García-Martínez, Ana María; Tejada, Manuel; Díaz, Ana Isabel; Rodríguez-Morgado, Bruno; Bautista, Juan; Parrado, Juan

    2010-09-08

    The purpose of this study was to gather information on the potential effects of organic biostimulants on soil activity and atrazine biodegradation. Carob germ enzymatic extract (CGEE) and wheat condensed distiller solubles enzymatic extract (WCDS-EE) have been obtained using an enzymatic process; their main organic components are soluble carbohydrates and proteins in the form of peptides and free amino acids. Their application to soil results in high biostimulation, rapidly increased dehydrogenase, phosphatase and glucosidase activities, and an observed atrazine extender capacity due to inhibition of its mineralization. The extender capacity of both extracts is proportional to the protein/carbohydrate ratio content. As a result, these enzymatic extracts are highly microbially available, leading to two independent phenomena, fertility and an atrazine persistence that is linked to increased soil activity.

  15. Soil clean up by vapour extraction: parametrical study; Depollution des sols par extraction sous pression reduite: etude de quelques parametres

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, C.

    2003-05-15

    Soil vapour extraction is a treatment process for soils polluted by volatile organic compounds. Its principle relies on the circulation of gaseous flow in soil by the application of a depression of some hundreds milli-bars. A parametrical study has been led on a soil artificially polluted by tri-chloro-ethene. It shows that the gaseous flow rate has a slight influence on pollutants extraction yield. This is due to rate limited mass transfer processes. Soil moisture plays a negative role on treatment efficiency because of the reduction of the porosity available for the gas circulation. Tests have been performed on a soil polluted by a complex mixture of organic pollutants to elaborate a methodology of technical feasibility assessment. This methodology aims at identifying and limiting risks of site rehabilitation failure. Tests results show that soil vapour extraction was inadequate to treat the soil tested in this study because of the strong affinity between a dense organic phase (grease) and chlorinated solvents. (author)

  16. Phosphorus application to cotton enhances growth, yield, and quality characteristics on a sandy loam soil

    International Nuclear Information System (INIS)

    Ahmad, M.; Ranjha, A.M.

    2009-01-01

    Phosphorus (P) is the second most limiting nutrient in cotton (Gossypium hirsutum L.) production after nitrogen. Under wheat-cotton cropping system of Pakistan most of the farmers apply P fertilizer only to wheat crop. A field experiment was conducted to evaluate the effect of fertilizer P on the growth, yield and fibre quality of cotton on a sandy loam calcareous soil at farmer's field in cotton growing area of district Khanewal, Punjab. Five levels of P (0, 17, 26, 34 and 43 kg P ha /sup -1/) along with 120 kg N and 53 kg K ha/sup -1/ were applied. The response of cotton growth parameters was greater than quality components to P addition in calcareous soil. There was significant increase in the growth and yield parameters with each additional rate of P. The response of number of bolls per plant, boll weight and seed cotton yield was to the tune of 88.23, 16.82 and 42%, respectively at P application rate of 34 kg ha/sup -1/. Cotton quality components (lint %age, fiber length and fiber strength) improved from 2 to 5% where 43 kg P ha/sup -1/ was added. The lint and seed P concentration was little affected by P application as compared to stem and leaves showing its essentiality for cell division and development of meristematic tissue. Phosphorus use, thus not only valuable for wheat crop but also its application to cotton crop is of vital importance in improving both lint yield and quality. (author)

  17. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Science.gov (United States)

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  18. Change of the Extractability of Cadmium Added to Different Soils: Aging Effect and Modeling

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-03-01

    Full Text Available Ethylenediaminetetraacetic acid (EDTA is known to be a chelating agent and has been widely used for estimating the total extractable metals in soil. The effect of aging on EDTA-extractable cadmium (Cd was investigated in five different soils at three Cd concentrations incubated for 180 days. The EDTA-extractable Cd rapidly decreased after incubated during 30–60 days, followed by slow processes, and for 90 days the EDTA-extractable Cd tended to be stable. The decrease in EDTA-extractable Cd may be due to precipitation/nucleation processes, diffusion of Cd into the micropores/mesopores, and occlusion within organic matter in soils. A semi-mechanistic model to predict the extractability of Cd during incubation, based on processes of Cd precipitation/nucleation, diffusion, and occlusion within organic matter, was developed and calibrated. The results showed that the processes of micropore/mesopore diffusion were predominant processes affecting the extractability of Cd added to soils, and were slow. However, the proportions of the processes of precipitation/nucleation and occlusion within organic matter to the non-EDTA-extractable Cd added to soils were only 0.03–21.0% and 0.41–6.95%, respectively. The measured EDTA-extractable Cd from incubated soils were in good agreement with those predicted by the semi-mechanistic model (R2 = 0.829. The results also indicated that soil pH, organic matter, and incubation time were the most important factors affecting Cd aging.

  19. Recycling phosphorus by fast pyrolysis of pig manure: concentration and extraction of phosphorus combined with formation of value-added pyrolysis products

    NARCIS (Netherlands)

    Azuara, M.; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2013-01-01

    In order to recycle phosphorus from the livestock chain back to the land, fast pyrolysis of concentrated pig manure at different temperatures (400 °C, 500 °C, 600 °C), was undertaken to concentrate the phosphorus in the char fraction for recovery. Results show that 92%–97% of the phosphorus present

  20. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  1. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  2. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies

    Science.gov (United States)

    Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel

    2018-01-01

    The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.

  3. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    Science.gov (United States)

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  4. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues

    NARCIS (Netherlands)

    Ros, G.H.; Hoffland, E.

    2010-01-01

    Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable

  5. Evaluation of methods for quantifying bioavailable phosphorus in a ferralsol from Cuba

    International Nuclear Information System (INIS)

    Herrera, J.A.; Rodriguez, R.; Herrera, J.L.; Fardeau, J.C.

    2002-01-01

    As part of a research program related to enhance the agronomic effectiveness of P fertilizer, in particular phosphate rock, several methods to assess P availability of phosphate fertilizers were evaluated. Soil samples from pot experiments and a long-term field experiment in a Ferralsol from Ciego de Avila, Cuba, were analyzed using 32 P isotopic exchange kinetic method and five chemical methods (Oniani, Bray 1, Olsen, Mehlich 2 and resin-P). Oniani and Bray 1 methods were good descriptors of available phosphorus (P) in soil when water-soluble P fertilizers were used. However, they only provided a static estimation of plant-available P. All the chemical methods used in this paper to evaluate P availability in a Ferralsol amended with Trinidad de Guedes phosphate rocks did not perform well because less than 10% of the P extracted was bioavailable. The 32 P isotopic exchange kinetic method provided more reliable and accurate information of various parameters describing soil P status better than the soil P testing methods studied. (author)

  6. Fit-for-purpose phosphorus management: do riparian buffers qualify in catchments with sandy soils?

    Science.gov (United States)

    Weaver, David; Summers, Robert

    2014-05-01

    Hillslope runoff and leaching studies, catchment-scale water quality measurements and P retention and release characteristics of stream bank and catchment soils were used to better understand reasons behind the reported ineffectiveness of riparian buffers for phosphorus (P) management in catchments with sandy soils from south-west Western Australia (WA). Catchment-scale water quality measurements of 60 % particulate P (PP) suggest that riparian buffers should improve water quality; however, runoff and leaching studies show 20 times more water and 2 to 3 orders of magnitude more P are transported through leaching than runoff processes. The ratio of filterable reactive P (FRP) to total P (TP) in surface runoff from the plots was 60 %, and when combined with leachate, 96 to 99 % of P lost from hillslopes was FRP, in contrast with 40 % measured as FRP at the large catchment scale. Measurements of the P retention and release characteristics of catchment soils (bank soil (bank soils suggest that catchment soils contain more P, are more P saturated and are significantly more likely to deliver FRP and TP in excess of water quality targets than stream bank soils. Stream bank soils are much more likely to retain P than contribute P to streams, and the in-stream mixing of FRP from the landscape with particulates from stream banks or stream beds is a potential mechanism to explain the change in P form from hillslopes (96 to 99 % FRP) to large catchments (40 % FRP). When considered in the context of previous work reporting that riparian buffers were ineffective for P management in this environment, these studies reinforce the notion that (1) riparian buffers are unlikely to provide fit-for-purpose P management in catchments with sandy soils, (2) most P delivered to streams in sandy soil catchments is FRP and travels via subsurface and leaching pathways and (3) large catchment-scale water quality measurements are not good indicators of hillslope P mobilisation and transport

  7. Effect of irrigation regimes on mobilization of nonreactive tracers and dissolved and particulate phosphorus in slurry-injected soils

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2011-01-01

    affected by the irrigation regime. These results highlight that nonequilibrium exchange dynamics are important when evaluating processes affecting mobilization and transport in structured soils. Leaching experiments, including cycles of irrigation interruptions and gravitational drainage, thus, adds......Understanding the mobilization processes of phosphorus (P) in the plow layer are essential to quantify potential P losses and suggest management strategies to reduce P losses. This study is aimed at examining nonequilibrium exchange dynamics on the mobilization of slurry-amended Br−, and dissolved...... and particulate P in slurry-injected soils. We compared leaching from intact soil columns (20 cm diam., 20 cm high) under unsaturated flow (suction at the lower boundary of 5 hPa) subjected to continuous irrigation at 2 mm hr−1, and intermittent irrigation at 2 mm hr−1 and 10 mm hr−1 to with interruptions of 10 h...

  8. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  9. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-01-01

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems

  10. [Phosphorus application effects and input threshold of Chinese cabbage in the oasis irrigation region.

    Science.gov (United States)

    Lian, Cai Yun; Ma, Zhong Ming

    2018-02-01

    To resolve the problem of higher application and lower use efficiency of phosphorus fertilizer of Chinese cabbage (Brassica pekinensis), the yield, use efficiency of phosphate fertilizer and soil phosphate balance were examined by a located field trial in Zhangye Observation and Experiment Station of the Agro-ecological Environment in oasis irrigation region from 2011 to 2013. The results showed that the yield increased with the increase of phosphorus fertilization rate from 0 to 112.52 kg P·hm -2 , beyond which there would be no further enhancement. The yield was 5489.1 kg·hm -2 at 112.52 kg P·hm -2 treatment. This treatment increased the yield by 13.3%-23.8%, under which the phosphorus use efficiency was 14.2%. Soil Olsen-P and CaCl 2 -P were positively correlated. For 111.1 kg P·hm -2 treatment, the content of soil Olsen-P was 24.22 mg·kg -1 , with no phosphorus leaching and no pollution. At the rate of 60.17 kg P·hm -2 , there was a balance between phosphorus input and output and the phosphate demand of Chinese cabbage being met. In conclusion, the optimal phosphorus threshold was 60.17-112.52 kg·hm -2 for Chinese cabbage, the amount at which could reduce the risk of phosphorus pollution.

  11. Hydroxypropyl-beta-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4 (Canada); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada)

    2010-05-15

    Hydroxypropyl-beta-cyclodextrin (HPCD) was used as a non-exhaustive extractant for organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in muck soil. An optimized extraction method was developed which involved using a HPCD to soil mass ratio of 5.8 with a single extraction period of 20 h. An aging experiment was performed by spiking a muck soil with {sup 13}C-labeled OCs and non-labeled PCBs. The soil was extracted with the optimized HPCD method and Soxhlet apparatus with dichloromethane over 550 d periodically. The HPCD extractability of the spiked OCs was greater than of the native OCs. A decreased in HPCD extractability was observed for the spiked OCs after 550 d of aging and their extractability approached those of the natives. The partition coefficient between HPCD and soil (log K{sub CD-Soil}) was negatively correlated with the octanol-water partition coefficient (log K{sub OW}) with r{sup 2} = 0.67 and p < 0.05. - The effect of aging on the extractability of organochlorine chemicals in muck soil was investigated using hydroxypropyl-beta-cyclodextrin as a mild extractant.

  12. Chemical and plant extractability of metals and plant growth on soils amended with sludge

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, J.D.; Halstead, R.L.

    1976-02-01

    The addition of sludge to a Fox sandy loam (sl), Granby sl and Rideau clay (c) soil increased soil pH, total C, NaHCO3 extractable P, cation exchange capacity and exchangeable Ca. Sludge application increased DTPA-extractable Cd 2 to 5 times, Pb 2 to 3 times, Cu 3 to 7 times and Zn 7 to 31 times. Metal extractability in Granby and Fox sl soils was not greatly changed after 11 mo incubation but extractable Zn, Cu, Pb and Cd were reduced in the clay soil following incubation. Cropping to lettuce reduced the quantity of metal extracted from Fox sl soil and to a lesser extent from Rideau c soil but not from Granby sl soil. Lettuce (Lactuca sativa L.) yields were significantly reduced for the first crop grown on sludge + fertilizer-treated Rideau c and Granby sl soils and for all three harvests from similarly treated Fox s 1 soil compared to harvests from soils treated with fertilizer only. Yield reduction for the first crop was attributed to a salt effect, as subsequent yields on Rideau c and Granby sl soils were similar to harvests from fertilized treatments. Saturation extract conductivities for all sludge treatments were higher for incubated than for cropped soils. Generally Zn, Cu and Pb tissue concentrations in lettuce harvested from sludge + fertilizer-treated Fox and Granby sl soils were significantly increased but total uptake was only increased for Zn. Metal uptake and tissue concentrations for lettuce grown on similarly treated Rideau c soil were equal to or less than those found in lettuce harvested from the fertilizer-only treatment. To a lesser extent similar trends were observed with the tomato (Lycospersicon esculentum Mill.) crop. 27 references, 3 tables.

  13. Phosphorus leaching from soils amended with thermally gasified piggery waste ash

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe

    2009-01-01

    In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash...... from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g−1. Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha−1 corresponding to 91 mg P kg−1 soil dry...... matter) as a function of precipitation rate (9.5 and 2.5 mm h−1), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na2HPO4). Water soluble P...

  14. Comparison of mild extraction procedures for determination of plant-available arsenic compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Szakova, Jirina; Tlustos, Pavel; Pavlikova, Daniela; Balik, Jiri [Czech University of Agriculture, Department of Agrochemistry and Plant Nutrition, Prague (Czech Republic); Goessler, Walter; Schlagenhaufen, Claudia [Karl-Franzens-University Graz, Institute of Chemistry, Analytical Chemistry, Graz (Austria)

    2005-05-01

    In this work three mild extraction agents for determination of plant-available fractions of elements in soil were evaluated for arsenic speciation in soil samples. Pepper (Capsicum annum, L.) var. California Wonder was cultivated in pots, and aqueous solutions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid, at a concentration of 15 mg As kg{sup -1} soil, were added at the beginning of the experiment. Control pots (untreated) were also included. Deionized water, 0.01 mol L{sup -1} CaCl{sub 2}, and 0.05 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} were used to extract the plant-available fraction of the arsenic compounds in soil samples collected during the vegetation period of the plants. Whereas in control samples the extractable arsenic fraction did not exceed 1% of total arsenic content, soil amendment by arsenic compounds resulted in extraction of larger amounts, which varied between 1.4 and 8.1% of total arsenic content, depending on soil treatment and on the extracting agent applied. Among arsenic compounds determined by HPLC-ICPMS arsenate was predominant, followed by small amounts of arsenite, methylarsonic acid, and dimethylarsinic acid, depending on the individual soil treatment. In all the experiments in which methylarsonic acid was added to the soil methylarsonous acid was detected in the extracts, suggesting that the soil bacteria are capable of reducing methylarsonic acid before a further methylation occurs. No significant differences were observed between analytical data obtained by using different extraction procedures. (orig.)

  15. Recovering phosphorus and uranium values from phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Sze, M C.Y.; Long, R H

    1981-02-11

    Phosphate rock is acidulated with aqueous nitric acid to produce an aqueous solution containing phosphate values, calcium and uranium values. The aqueous solution is contacted with an extraction solvent for the uranium values: the extraction solvent comprising a water immiscible organic diluent, a dialkyl phosphoric acid having at least 10 carbon atoms, and an organic phosphorus compound having the formula R/sub 1/ R/sub 2/ R/sub 3/ P = O where R/sub 1/, R/sub 2/ and R/sub 3/ are each either alkyl or alkoxy, the organic phosphorus compound having at least 10 carbon atoms. The uranium values are then recovered from the extraction solvent. In an example the extraction solvent is HDEHP and TOPO in kerosene.

  16. [Characteristics of 'salt island' and 'fertile island' for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land].

    Science.gov (United States)

    Zhang, Li-hua; Chen, Xiao-bing

    2015-03-01

    To clarify the nutrient characteristics of 'salt island' and 'fertile island' effects in saline-alkali soil, the native Tamarix chinensis of the Yellow River Delta (YRD) was selected to measure its soil pH, electrical conductivity (EC), organic carbon (SOC), total nitrogen (N), total phosphorus (P) and their stoichiometry characteristics at different soil depths. The results showed that soil pH and EC increased with the increasing soil depth. Soil EC and P in the 0-20 cm layer decreased and increased from canopied area to interspace, respectively. SOC, N, N/P and C/P in the 20-40 cm soil layer decreased, and C/N increased from the shrub center to interspace. SOC and N contents between island and interspace both decreased but P content decreased firstly and then increased with the increasing soil depth. Soil pH correlated positively with EC. In addition, pH and EC correlated negatively with C, N, P contents and their ecological stoichiometry.

  17. Field scale modeling to estimate phosphorus and sediment load reductions using a newly developed graphical user interface for soil and water assessment tool

    Science.gov (United States)

    Streams throughout the North Canadian River watershed in northwest Oklahoma, USA have elevated levels of nutrients and sediment. SWAT (Soil and Water Assessment Tool) was used to identify areas that likely contributed disproportionate amounts of phosphorus (P) and sediment to Lake Overholser, the re...

  18. Soil phosphorus fractionation as a tool for monitoring dust phosphorus signature underneath a Blue Pine (Pinus wallichiana canopy in a Temperate Forest

    Directory of Open Access Journals (Sweden)

    Mustafa-Nawaz Shafqat

    2016-12-01

    the cycling of P in temperate forest in Himalaya region. Keywords: soil phosphorus fractions; atmospheric dust; stemflow, throughfall; temperate forest.

  19. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    Science.gov (United States)

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  20. Necessity of purification during bacterial DNA extraction with environmental soils

    Directory of Open Access Journals (Sweden)

    Hyun Jeong Lim

    2017-08-01

    Full Text Available Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for polymerase chain reaction (PCR assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification. The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium [Mg] showed that sand samples containing less than 10 μg/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of Mg ion was different from other inhibitors due to the complexation interaction of Mg ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 μg/g of humic acids, less than 70% clay content and less than 0.01% Mg ion content.