WorldWideScience

Sample records for extract inhibits proliferation

  1. Paris polyphylla extract inhibits proliferation and promotes apoptosis ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Paris polyphylla extract (PPE) on proliferation and apoptosis in A549 human lung cancer cells. Methods: Morphological changes were examined by microscopy in A549 cells after exposure to PPE. Trypan blue staining of living cells was used to aid the construction of the cell growth curve ...

  2. [Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells].

    Science.gov (United States)

    Jiang, Weiwei; Yu, Xudong; Ren, Guofeng

    2013-05-01

    To observe the inhibitive effects of black rice pericarp extracts on cell proliferation of human prostate cancer cell PC-3 and to explore its effecting mechanism. The black rice pericarp extract was used to treat the PC-3 cells. The inhibitory effect of black rice pericarp extract on cells proliferation of PC-3 was tested by MTT method. Cell apoptosis rates and cell cycle were measured by flow cytometric assay (FCM). Western blot was used to study the protein expression levels of p38, p-p38, JNK, p-JNK. A dose-dependent and time-dependent proliferation inhibition of black rice pericarp extract was demonstrated in PC-3. The most prominent experiment condition was inhibitory concentration with 300microg/ml and treated for 72 h. The experiment result of flow cytometry analysis demonstrates that the apoptosis rate of PC-3 cells increased along with the increasing of black rice pericarp extract concentration, and a G1-S cell cycle arrest was induced in a dose-dependent manner. After PC-3 cell was treated with black rice pericarp extract for 72 h, the expressions of p-p38, p-JNK protein increased. Black rice pericarp extract could inhibit proliferation, change the cell cycle distributions and induce apoptosis in human prostatic cancer cell PC-3. Its inhibitory effect may be through promoting activation of the JNK, p38 signaling pathway. These results suggest that black rice pericarp extract maybe has an inhibitory effect on prostatic cancer.

  3. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  4. Xanthium strumarium extract inhibits mammalian cell proliferation through mitotic spindle disruption mediated by xanthatin.

    Science.gov (United States)

    Sánchez-Lamar, Angel; Piloto-Ferrer, Janet; Fiore, Mario; Stano, Pasquale; Cozzi, Renata; Tofani, Daniela; Cundari, Enrico; Francisco, Marbelis; Romero, Aylema; González, Maria L; Degrassi, Francesca

    2016-12-24

    Xanthium strumarium L. is a member of the Asteraceae family popularly used with multiple therapeutic purposes. Whole extracts of this plant have shown anti-mitotic activity in vitro suggesting that some components could induce mitotic arrest in proliferating cells. Aim of the present work was to characterize the anti-mitotic properties of the X. strumarium whole extract and to isolate and purify active molecule(s). The capacity of the whole extract to inhibit mitotic progression in mammalian cultured cells was investigated to identify its anti-mitotic activity. Isolation of active component(s) was performed using a bioassay-guided multistep separation procedure in which whole extract was submitted to a progressive process of fractionation and fractions were challenged for their anti-mitotic activity. Our results show for the first time that X. strumarium whole extract inhibits assembly of the mitotic spindle and spindle-pole separation, thereby heavily affecting mitosis, impairing the metaphase to anaphase transition and inducing apoptosis. The purification procedure led to a fraction with an anti-mitotic activity comparable to that of the whole extract. Chemical analysis of this fraction showed that its major component was xanthatin. The present work shows a new activity of X. strumarium extract, i.e. the alteration of the mitotic apparatus in cultured cells that may be responsible for the anti-proliferative activity of the extract. Anti-mitotic activity is shown to be mainly exerted by xanthatin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Directory of Open Access Journals (Sweden)

    Rushendhiran Kesavan

    Full Text Available Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs, PDGF-BB (20 ng/ml induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml. The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA. Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  6. Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts.

    Science.gov (United States)

    Kesavan, Rushendhiran; Potunuru, Uma Rani; Nastasijević, Branislav; T, Avaneesh; Joksić, Gordana; Dixit, Madhulika

    2013-01-01

    Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.

  7. Taraxacum officinale dandelion extract efficiently inhibited the breast cancer stem cell proliferation

    OpenAIRE

    Ngu Van Trinh; Nghi Doan-Phuong Dang; Diem Hong Tran; Phuc Van Pham

    2016-01-01

    Background: Breast cancer stem cells (BCSCs) play an important role in breast cancer initiation, metastasis, recurrence, and drug resistance. Therefore, targeting BCSCs is an essential strategy to suppress cancer growth. This study aimed to evaluate the effects of dandelion Taraxacum officinale extracts on BCSC proliferation in vitro in 2D and 3D cell culture platforms. Materials and Methods: The BCSCs were maintained under standard conditions, verified for expression of CD44 and CD24 surface...

  8. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    Science.gov (United States)

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  9. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus.

    Science.gov (United States)

    Hsieh, Yi-Jen; Yang, Ming-Yeh; Leu, Yann-Lii; Chen, Chinpiao; Wan, Chin-Fung; Chang, Meng-Ya; Chang, Chih-Jui

    2012-09-10

    Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  10. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    Directory of Open Access Journals (Sweden)

    Hsieh Yi-Jen

    2012-09-01

    Full Text Available Abstract Background Kalanchoe tubiflora (KT is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate.

  11. Tapirira guianensis Aubl. Extracts Inhibit Proliferation and Migration of Oral Cancer Cells Lines

    Directory of Open Access Journals (Sweden)

    Renato José Silva-Oliveira

    2016-11-01

    Full Text Available Cancer of the head and neck is a group of upper aerodigestive tract neoplasms in which aggressive treatments may cause harmful side effects to the patient. In the last decade, investigations on natural compounds have been particularly successful in the field of anticancer drug research. Our aim is to evaluate the antitumor effect of Tapirira guianensis Aubl. extracts on a panel of head and neck squamous cell carcinoma (HNSCC cell lines. Analysis of secondary metabolites classes in fractions of T. guianensis was performed using Nuclear Magnetic Resonance (NMR. Mutagenicity effect was evaluated by Ames mutagenicity assay. The cytotoxic effect, and migration and invasion inhibition were measured. Additionally, the expression level of apoptosis-related molecules (PARP, Caspases 3, and Fas and MMP-2 was detected using Western blot. Heterogeneous cytotoxicity response was observed for all fractions, which showed migration inhibition, reduced matrix degradation, and decreased cell invasion ability. Expression levels of MMP-2 decreased in all fractions, and particularly in the hexane fraction. Furthermore, overexpression of FAS and caspase-3, and increase of cleaved PARP indicates possible apoptosis extrinsic pathway activation. Antiproliferative activity of T. guianensis extract in HNSCC cells lines suggests the possibility of developing an anticancer agent or an additive with synergic activities associated with conventional anticancer therapy.

  12. In Vitro Antioxidant, Anticoagulant and Antimicrobial Activity and in Inhibition of Cancer Cell Proliferation by Xylan Extracted from Corn Cobs

    Science.gov (United States)

    Melo-Silveira, Raniere Fagundes; Fidelis, Gabriel Pereira; Costa, Mariana Santana Santos Pereira; Telles, Cinthia Beatrice Silva; Dantas-Santos, Nednaldo; de Oliveira Elias, Susana; Ribeiro, Vanessa Bley; Barth, Afonso Luis; Macedo, Alexandre José; Leite, Edda Lisboa; Rocha, Hugo Alexandre Oliveira

    2012-01-01

    Xylan is one of most abundant polymer after cellulose. However, its potential has yet to be completely recognized. Corn cobs contain a considerable reservoir of xylan. The aim of this work was to study some of the biological activities of xylan obtained from corn cobs after alkaline extraction enhanced by ultrasonication. Physical chemistry and infrared analyses showed 130 kDa heteroxylan containing mainly xylose:arabinose: galactose:glucose (5.0:1.5:2.0:1.2). Xylan obtained exhibited total antioxidant activity corresponding to 48.5 mg of ascorbic acid equivalent/g of xylan. Furthermore, xylan displayed high ferric chelating activity (70%) at 2 mg/mL. Xylan also showed anticoagulant activity in aPTT test. In antimicrobial assay, the polysaccharide significantly inhibited bacterial growth of Klebsiella pneumoniae. In a test with normal and tumor human cells, after 72 h, only HeLa tumor cell proliferation was inhibited (p < 0.05) in a dose-dependent manner by xylan, reaching saturation at around 2 mg/mL, whereas 3T3 normal cell proliferation was not affected. The results suggest that it has potential clinical applications as antioxidant, anticoagulant, antimicrobial and antiproliferative compounds. PMID:22312261

  13. Crude Flavonoid Extract of Medicinal Herb Zingibar officinale Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells.

    Science.gov (United States)

    Elkady, Ayman I; Abu-Zinadah, Osama A; Hussein, Rania Abd El Hamid

    2017-07-05

    There is an urgent need to improve the clinical management of hepatocellular carcinoma (HCC), one of the most common causes of global cancer-related deaths. Zingibar officinale is a medicinal herb used throughout history for both culinary and medicinal purposes. It has antioxidant, anticarcinogenic, and free radical scavenging properties. Previously, we proved that the crude flavonoid extract of Z. officinale (CFEZO) inhibited growth and induced apoptosis in several cancer cell lines. However, the effect of the CFEZO on an HCC cell line has not yet been evaluated. In this study, we explored the anticancer activity of CFEZO against an HCC cell line, HepG2. CFEZO significantly inhibited proliferation and induced apoptosis in HepG2 cells. Typical apoptotic morphological and biochemical changes, including cell shrinkage and detachment, nuclear condensation and fragmentation, DNA degradation, and comet tail formation, were observed after treatments with CFEZO. The apoptogenic activity of CFEZO involved induction of ROS, depletion of GSH, disruption of the mitochondrial membrane potential, activation of caspase 3/9, and an increase in the Bax/Bcl-2 ratio. CFEZO treatments induced upregulation of p53 and p21 expression and downregulation of cyclin D1 and cyclin-dependent kinase-4 expression, which were accompanied by G2/M phase arrest. These findings suggest that CFEZO provides a useful foundation for studying and developing novel chemotherapeutic agents for the treatment of HCC.

  14. Salivary gland extracts of Culicoides sonorensis inhibit murine lymphocyte proliferation and no production by macrophages.

    Science.gov (United States)

    Bishop, Jeanette V; Mejia, J Santiago; Pérez de León, Adalberto A; Tabachnick, Walter J; Titus, Richard G

    2006-09-01

    Culicoides biting midges serve as vectors of pathogens affecting humans and domestic animals. Culicoides sonorensis is a vector of several arboviruses in North American that cause substantial economic losses to the US livestock industry. Previous studies showed that C. sonorensis saliva, like the saliva of many hematophagous arthropods, contains numerous pharmacological agents that affect hemostasis and early events in the inflammatory response, which may enhance the infectivity of Culicoides-borne pathogens. This paper reports on the immunomodulatory properties of C. sonorensis salivary gland extracts on murine immune cells and discusses the possible immunomodulatory role of C. sonorensis saliva in vesicular stomatitis virus infection of vertebrate hosts. Splenocytes treated with C. sonorensis mitogens were significantly affected in their proliferative response, and peritoneal macrophages secreted significantly less NO. A 66-kDa glycoprotein was purified from C. sonorensis salivary gland extract, which may be in part responsible for these observations and may be considered as a vaccine candidate.

  15. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors.

    Directory of Open Access Journals (Sweden)

    Alok De

    Full Text Available Patients with ovarian cancer (OC may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla, have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen - CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC.

  16. A traditional Chinese medicine formula extracts stimulate proliferation and inhibit mineralization of human mesenchymal stem cells in vitro

    DEFF Research Database (Denmark)

    Chen, Muwan; Feng, Wenzhou; Cao, Hui

    2009-01-01

    AIM OF THE STUDY: To investigate the effects of a traditional Chinese medicine (TCM) formula extract, named as ZD-I, on the proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. MATERIALS AND METHODS: When hMSCs cultivated in the basal medium with ZD-I, cell...

  17. An aqueous stem bark extract of Mangifera indica (Vimang) inhibits T cell proliferation and TNF-induced activation of nuclear transcription factor NF-kappaB.

    Science.gov (United States)

    Garrido, Gabino; Blanco-Molina, Magdalena; Sancho, Rocío; Macho, Antonio; Delgado, René; Muñoz, Eduardo

    2005-03-01

    A commercial aqueous stem bark extract of Mangifera indica L. (Vimang) has been reported to have antiinflammatory, immunomodulatory and antioxidant activities. The molecular basis for these diverse properties is still unknown. This study shows that a stem bark extract of M. indica inhibits early and late events in T cell activation, including CD25 cell surface expression, progression to the S-phase of the cell cycle and proliferation in response to T cell receptor (TCR) stimulation. Moreover, the extract prevented TNFalpha-induced IkappaBalpha degradation and the binding of NF-kappaB to the DNA. This study may help to explain at the molecular level some of the biological activities attributed to the aqueous stem bark extract of M. indica (Vimang).

  18. Water extract of Semecarpus parvifolia Thw. leaves inhibits cell proliferation and induces apoptosis on HEp-2 cells.

    Science.gov (United States)

    Soysa, Preethi; Jayarthne, Panchima; Ranathunga, Imali

    2018-03-05

    Semecarpus parvifolia Thw is used as an ingredient of poly herbal decoctions to treat cancer in traditional medicine. The present study aims to investigate the antiproliferative activity on HEp 2 cells by the water extract of S. parvifolia leaves and to evaluate potential mechanisms. The plant extract was exposed to S. parvifolia for 24 hours and antiproliferative activity was quantified by Sulforhodamine B (SRB), 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and Lactate dehydrogenase (LDH) assays. Morphological changes were observed after staining cells with ethidium bromide/acridine orange (EB/AO) and Giemsa dye. Comet assay was performed to evaluate the DNA damage. The toxicity of the plant extract was determined by brine shrimp lethality assay. S. parvifolia leaves reduced the cell proliferation in a dose and time dependent manner. A two fold increase in NO level was observed at higher concentrations. Morphological changes characteristic to apoptosis were observed in light microscopy, Giemsa and EB/AO stained cells. Fragmented DNA further confirmed its capacity to induce apoptosis. No lethality was observed with brine shrimps. The results suggest that Semecarpus parvifolia Thw induces apoptosis in HEp-2 cells through a NO dependent pathway.

  19. 7-Piperazinethylchrysin inhibits melanoma cell proliferation by ...

    African Journals Online (AJOL)

    In B16F10 and A375 cells, treatment with PEC caused the inhibition ... Conclusion: PEC inhibited melanoma cell proliferation, apparently by blocking the cell cycle at G0/G1 .... all statistical analyses. .... Financial support from the Department of.

  20. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic ..... Zhang N, Wang D, Zhu Y, Wang J, Lin H. Inhibition ... Han X. Protection of Luteolin-7-O-Glucoside Against ... Hwang YJ, Lee EJ, Kim HR, Hwang KA.

  1. Urtica dioica Extract Inhibits Proliferation and Induces Apoptosis and Related Gene Expression of Breast Cancer Cells In Vitro and In Vivo.

    Science.gov (United States)

    Mohammadi, Ali; Mansoori, Behzad; Baradaran, Pooneh Chokhachi; Khaze, Vahid; Aghapour, Mahyar; Farhadi, Mehrdad; Baradaran, Behzad

    2017-10-01

    Currently, because the prevalence of breast cancer and its consequent mortality has increased enormously in the female population, a number of studies have been designed to identify natural products with special antitumor properties. The main purpose of the present study was to determine the effect of Urtica dioica on triggering apoptosis and diminishing growth, size, and weight of the tumor in an allograft model of BALB/c mice. In the present study, a BALB/c mouse model of breast cancer (4T1) was used. After emergence of tumor, 2 groups of mice received the extract, 1 group at a dose of 10 mg/kg and 1 group at a dose of 20 mg/kg, by intraperitoneal injection for 28 days. During the test and after removal of the tumor mass, the size and weight of the tumor were measured. To assess the induction of apoptosis in the cancer cells, the TUNEL (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling) assay was performed. The Ki-67 test was used to evaluate tumor proliferation. The results showed that the tumor size in the mice treated with the extract decreased significantly. The weight of the tumor mass in the treated mice after resection was less than that in the control group. The TUNEL assay findings revealed that apoptosis occurred in the treated group. The Ki-67 test findings also demonstrated that administration of the extract suppressed the growth of tumor cells. These results suggest that U. dioica extract can decrease the growth of breast tumors and induce apoptosis in tumor cells; thus, it might represent an ideal therapeutic tool for breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. In vitro inhibition of angiogenesis by heat and low pH stable hydroalcoholic extract of Peganum harmala seeds via inhibition of cell proliferation and suppression of VEGF secretion

    DEFF Research Database (Denmark)

    Yavari, Niloofar; Emamian, Farnoosh; Yarani, Reza

    2015-01-01

    ) is a native plant from the eastern Iranian region, which is used as a traditional folk medicine. Although some biological properties of this plant are determined, its effect on angiogenesis is still unclear. Objective: We investigated the anti-angiogenic effects of heat and low pH stable hydroalcoholic...... and angiogenesis with an ID50 of ∼85 μg/ml. VEGF secretion was (inhibited) decreased by the extracts at concentrations higher than 10 μg/ml. Discussion and conclusion: Herbal plant extracts still attract attention owing to their fewer side effects comparing to synthetic drug agents. Current study indicated...

  3. Methanol Extract of Myelophycus caespitosus Inhibits the ...

    African Journals Online (AJOL)

    Methanol Extract of Myelophycus caespitosus Inhibits the Inflammatory Response in Lipopolysaccharidestimulated BV2 Microglial Cells by Downregulating NF-kB via Inhibition of the Akt Signaling Pathway.

  4. Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods.

    Science.gov (United States)

    Vijayarathna, Soundararajan; Chen, Yeng; Kanwar, Jagat R; Sasidharan, Sreenivasan

    2017-07-01

    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC 50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC 50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic myeloid leukemia K562 cells and whether luteoloside induces cell cycle arrest and apoptosis in K562 cells. Methods: Luteoloside's cytotoxicity was assessed using a cell counting kit. Cell cycle distribution was analysed by flow cytometry ...

  6. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation

    Science.gov (United States)

    Brahmbhatt, Meera; Gundala, Sushma R.; Asif, Ghazia; Shamsi, Shahab A; Aneja, Ritu

    2014-01-01

    Dietary phytochemicals offer non-toxic therapeutic management as well as chemopreventive intervention for slow-growing prostate cancers. However, the limited success of several single-agent clinical trials suggest a paradigm shift that the health benefits of fruits and vegetables are not ascribable due to individual phytochemicals rather may be ascribed to but to synergistic interactions among them. We recently reported growth-inhibiting and apoptosis-inducing properties of ginger extract (GE) in in vitro and in vivo prostate cancer models. Nevertheless, the nature of interactions among the constituent ginger biophenolics, viz. 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogoal, remains elusive. Here we show antiproliferative efficacy of the most-active GE biophenolics as single-agents and in binary combinations, and investigate the nature of their interactions using the Chou-Talalay combination-index (CI) method. Our data demonstrate that binary combinations of ginger phytochemicals synergistically inhibit proliferation of PC-3 cells with CI values ranging from 0.03-0.88. To appreciate synergy among phytochemicals present in GE, the natural abundance of ginger biophenolics was quantitated using LC-UV/MS. Interestingly, combining GE with its constituents (in particular, 6-gingerol) resulted in significant augmentation of GE’s antiproliferative activity. These data generate compelling grounds for further preclinical evaluation of GE alone and in combination with individual ginger biophenols for prostate cancer management. PMID:23441614

  7. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    International Nuclear Information System (INIS)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang; Zhang, Yi

    2013-01-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients

  8. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  9. Bryostatin I inhibits growth and proliferation of pancreatic cancer ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of bryostatin I on proliferation of pancreatic cancer cells as well as tumor growth in mice tumor xenograft model. Methods: Activation of NF-κB was evaluated by preparing nuclear material extract using nuclear extract kit (Carlsbad, CA, USA) followed by enzyme-linked immunosorbent assay ...

  10. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  11. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  12. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  13. Inhibition of aluminum corrosion using Opuntia extract

    International Nuclear Information System (INIS)

    El-Etre, A.Y.

    2003-01-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions

  14. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    International Nuclear Information System (INIS)

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-01-01

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G 0 /G 1 -phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D 3 and p21 Waf1 , which stabilizes cyclin D/cdk4 complex for G 1 -S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  15. Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21(Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21(Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21(Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.

  16. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Chang Yoon [The Hotchkiss School, Lakeville, CT (United States); Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Ku, Cheol Ryong [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Yoon Hee, E-mail: wooriminji@gmail.com [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Eun Jig, E-mail: ejlee423@yuhs.ac [Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul (Korea, Republic of); Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  17. ERβ inhibits proliferation and invasion of breast cancer cells

    Science.gov (United States)

    Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise

    2001-01-01

    Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191

  18. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  19. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway

    International Nuclear Information System (INIS)

    Patel, Rachana; Ingle, Arvind; Maru, Girish B.

    2008-01-01

    Tea polyphenols like epigallocatechin gallate and theaflavins are established chemopreventive agents for colorectal carcinogenesis. However, studies on evaluating similar chemopreventive properties of thearubigins or polymeric black tea polyphenols (PBPs), the most abundant polyphenols in black tea, are limited. Hence, in the present study we aim to investigate chemopreventive effects along with probable mechanisms of action of PBP extract employing 1,2-dimethylhydrazine (DMH)-induced colorectal carcinogenesis in Sprague-Dawley rats as experimental model. The present study suggests that PBPs, like other tea polyphenols, also inhibit DMH-induced colorectal tumorigenesis by decreasing tumor volume and multiplicity. This study also shows that although the pretreatment with PBP extract could induce detoxifying enzymes in hepatic and colorectal tissue, it did not show any additional chemopreventive effects when compared to treatments with PBP extract after initiation with DMH. Mechanistically, PBP extract may inhibit colorectal carcinogenesis by decreasing DMH-induced cell proliferation via Wnt/β-catenin pathway. Treatments with PBP extract showed decreased levels of COX-2, c-MYC and cyclin D1 proteins which aid cell proliferation probably by regulating β-catenin by maintaining expression of APC and decreasing inactivation of GSK3β. DMH-induced activation of MAP kinases such as ERK and JNK was also found to be inhibited by treatments with PBP extract. In conclusion, the protective effects of PBP extract could be attributed to inhibition of DMH-induced cellular proliferation probably through β-catenin regulation

  20. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction.

    Directory of Open Access Journals (Sweden)

    Paul Lin

    Full Text Available Human mesenchymal stem cells (hMSCs can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1-8 µg/mL negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr. Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical.

  1. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    Science.gov (United States)

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  2. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    OpenAIRE

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL ass...

  3. Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice

    Directory of Open Access Journals (Sweden)

    Kaushlendra eTripathi

    2012-05-01

    Full Text Available The fungal pathogen Cryptococcus neoformans (Cn is a serious threat to immunocompromised individuals, especially for HIV patients who develop meningoencephalitis. For effective cryptococcal treatment, novel antifungal drugs or innovative combination therapies are needed. Recently, sphingolipids have emerged as important bioactive molecules in the regulation of microbial pathogenesis. Previously we reported that the sphingolipid pathway gene, ISC1, which is responsible for ceramide production, is a major virulence factor in Cn infection. Here we report our studies of the role of ISC1 during genotoxic stress induced by the antineoplastic hydroxyurea (HU and methylmethane sulfonate (MMS, which affect DNA replication and genome integrity. We observed that Cn cells lacking ISC1 are highly sensitive to HU and MMS in a rich culture medium. HU affected cell division of Cn cells lacking the ISC1 gene, resulting in cell clusters. Cn ISC1, when expressed in a Saccharomyces cerevisiae (Sc strain lacking its own ISC1 gene, restored HU resistance. In macrophage-like cells, although HU affected the proliferation of WT Cn cells by 50% at the concentration tested, HU completely inhibited Cn isc1-delta cell proliferation. Interestingly, our preliminary data show that mice infected with WT or Cn isc1-delta cells and subsequently treated with HU had longer lifespans than untreated, infected control mice. Our work suggests that the sphingolipid pathway gene, ISC1, is a likely target for combination therapy with traditional drugs such as HU.

  4. XIAP antagonist embelin inhibited proliferation of cholangiocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Cody J Wehrkamp

    Full Text Available Cholangiocarcinoma cells are dependent on antiapoptotic signaling for survival and resistance to death stimuli. Recent mechanistic studies have revealed that increased cellular expression of the E3 ubiquitin-protein ligase X-linked inhibitor of apoptosis (XIAP impairs TRAIL- and chemotherapy-induced cytotoxicity, promoting survival of cholangiocarcinoma cells. This study was undertaken to determine if pharmacologic antagonism of XIAP protein was sufficient to sensitize cholangiocarcinoma cells to cell death. We employed malignant cholangiocarcinoma cell lines and used embelin to antagonize XIAP protein. Embelin treatment resulted in decreased XIAP protein levels by 8 hours of treatment with maximal effect at 16 hours in KMCH and Mz-ChA-1 cells. Assessment of nuclear morphology demonstrated a concentration-dependent increase in nuclear staining. Interestingly, embelin induced nuclear morphology changes as a single agent, independent of the addition of TNF-related apoptosis inducing ligand (TRAIL. However, caspase activity assays revealed that increasing embelin concentrations resulted in slight inhibition of caspase activity, not activation. In addition, the use of a pan-caspase inhibitor did not prevent nuclear morphology changes. Finally, embelin treatment of cholangiocarcinoma cells did not induce DNA fragmentation or PARP cleavage. Apoptosis does not appear to contribute to the effects of embelin on cholangiocarcinoma cells. Instead, embelin caused inhibition of cell proliferation and cell cycle analysis indicated that embelin increased the number of cells in S and G2/M phase. Our results demonstrate that embelin decreased proliferation in cholangiocarcinoma cell lines. Embelin treatment resulted in decreased XIAP protein expression, but did not induce or enhance apoptosis. Thus, in cholangiocarcinoma cells the mechanism of action of embelin may not be dependent on apoptosis.

  5. Inhibition of proliferation and migration of stricture fibroblasts by epithelial cell-conditioned media

    Directory of Open Access Journals (Sweden)

    Nilima Nath

    2015-01-01

    Conclusion: These results demonstrate the ability of ECCM to inhibit the proliferation and migration of stricture fibroblasts and present it as an effective adjunct in urethroplasty, which may influence stricture wound healing and inhibit the recurrence of stricture.

  6. Anti-nitric oxide production, anti-proliferation and antioxidant effects of the aqueous extract from Tithonia diversifolia

    Directory of Open Access Journals (Sweden)

    Poonsit Hiransai

    2016-11-01

    Conclusions: Our study demonstrated the immunomodulation caused by the aqueous leaf extract of T. diversifolia, resulting from the inhibition of phytohemagglutinin-M-induced PBMCs proliferation and LPS-induced nitric oxide production in RAW264.7 macrophages. Although the anti-oxidative activity was presented in the chemical-based anti-oxidant assay, the extract cannot protect cell death from stress conditions.

  7. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Directory of Open Access Journals (Sweden)

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  8. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell.

    Science.gov (United States)

    Ding, Hong; Shen, Jinglian; Yang, Yang; Che, Yuqin

    2015-01-01

    Signal transducer and activator of transcription factor 3 (STAT3) plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  9. Total glucosides of paeony inhibits lipopolysaccharide-induced proliferation, migration and invasion in androgen insensitive prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Zhang

    Full Text Available Previous studies demonstrated that inflammatory microenvironment promoted prostate cancer progression. This study investigated whether total glucosides of paeony (TGP, the active constituents extracted from the root of Paeonia Lactiflora Pall, suppressed lipopolysaccharide (LPS-stimulated proliferation, migration and invasion in androgen insensitive prostate cancer cells. PC-3 cells were incubated with LPS (2.0 μg/mL in the absence or presence of TGP (312.5 μg /mL. As expected, cells at S phase and nuclear CyclinD1, the markers of cell proliferation, were increased in LPS-stimulated PC-3 cells. Migration activity, as determined by wound-healing assay and transwell migration assay, and invasion activity, as determined by transwell invasion assay, were elevated in LPS-stimulated PC-3 cells. Interestingly, TGP suppressed LPS-stimulated PC-3 cells proliferation. Moreover, TGP inhibited LPS-stimulated migration and invasion of PC-3 cells. Additional experiment showed that TGP inhibited activation of nuclear factor kappa B (NF-κB and mitogen-activated protein kinase (MAPK/p38 in LPS-stimulated PC-3 cells. Correspondingly, TGP attenuated upregulation of interleukin (IL-6 and IL-8 in LPS-stimulated PC-3 cells. In addition, TGP inhibited nuclear translocation of signal transducer and activator of transcription 3 (STAT3 in LPS-stimulated PC-3 cells. These results suggest that TGP inhibits inflammation-associated STAT3 activation and proliferation, migration and invasion in androgen insensitive prostate cancer cells.

  10. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  11. Apigenin inhibits proliferation and migratory properties of Barrett's ...

    African Journals Online (AJOL)

    dependent fashion, with an IC50 of 75 µM, after 72 h of incubation, and also induced apoptosis, with modulation of pro- and anti-apoptotic genes. Furthermore, apigenin inhibited the motility of OE33 by targeting PI3K/Akt/mTOR signaling. Conclusion: Apigenin effectively inhibits the oncogenicity of OE33 cells by targeting ...

  12. Glucocorticoids inhibit the proliferation of IL-2-dependent T cell clones

    International Nuclear Information System (INIS)

    Fresno, M.; Redondo, J.M.; Lopez-Rivas, A.

    1986-01-01

    It has been shown that glucocorticoids inhibit mitogen or antigen-induced lymphocyte proliferation by decreasing the production of interleukin-2 (IL-2). They have studied the effect of dexamethasone (Dx) on the proliferation of IL-2-dependent T cell clones. They have found that preincubation of these clones with Dx inhibits ( 3 H) thymidine incorporation and cell proliferation in a dose-dependent manner (ID 50 % 5 x 10 -10 M). The inhibition of DNA synthesis by Dx was dependent on the concentration of IL-2. High concentration of IL-2 reversed completely this inhibition. The action of Dx seems to be mediated through the induction of a protein since the simultaneous presence of cycloheximide and Dx prevented the inhibitory effect of the latter. Moreover, dialyzed conditioned medium of Dx treated cells inhibited DNA synthesis by T cell clones. The biochemical characterization of this protein is in progress

  13. Inhibition of proliferation, migration and invasion of human non ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of phlomisoside F (PMF) on the proliferation, migration and invasion of human non-small cell lung cancer cell line A549 and explore the possible mechanisms. Methods: The anti-proliferative effect of PMF on A549 cells was determined by CCK-8. Subsequently, migration and invasion were ...

  14. Bryostatin I inhibits growth and proliferation of pancreatic cancer ...

    African Journals Online (AJOL)

    ). ... µM reduced MIApaCa 2 cell proliferation from 87 to 26 %. ... tumors in the treatment and untreated groups was 123.67 ± 22.56 and ... κB expression, and therefore, needs to be further investigated for therapeutic application in pancreatic.

  15. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  16. Plumbagin Inhibits Leptin-Induced Proliferation of Hepatic Stellate ...

    African Journals Online (AJOL)

    Purpose: To investigate the protective effects of plumbagin against liver fibrosis and explore the influence of plumbagin on the proliferation of hepatic stellate cells (HSCs). Methods: HSC-LX2 cells were divided into blank/control group, 100 ng/ml leptin group, 100 ng/ml leptin + 2 μmol/L plumbagin group, 100 ng/ml leptin + ...

  17. A potent trypanocidal component from the fungus Lentinus strigosus inhibits trypanothione reductase and modulates PBMC proliferation

    Directory of Open Access Journals (Sweden)

    Betania Barros Cota

    2008-05-01

    Full Text Available The fungus Lentinus strigosus (Pegler 1983 (Polyporaceae, basidiomycete was selected in a screen for inhibitory activity on Trypanosoma cruzi trypanothione reductase (TR. The crude extract of L. strigosus was able to completely inhibit TR at 20 µg/ml. Two triquinane sesquiterpenoids (dihydrohypnophilin and hypnophilin, in addition to two panepoxydol derivatives (neopanepoxydol and panepoxydone, were isolated using a bioassay-guided fractionation protocol. Hypnophilin and panepoxydone displayed IC50 values of 0.8 and 38.9 µM in the TR assay, respectively, while the other two compounds were inactive. The activity of hypnophilin was confirmed in a secondary assay with the intracellular amastigote forms of T. cruzi, in which it presented an IC50 value of 2.5 µ M. Quantitative flow cytometry experiments demonstrated that hypnophilin at 4 µM also reduced the proliferation of human peripheral blood monocluear cells (PBMC stimulated with phytohemaglutinin, without any apparent interference on the viability of lymphocytes and monocytes. As the host immune response plays a pivotal role in the adverse events triggered by antigen release during treatment with trypanocidal drugs, the ability of hypnophilin to kill the intracellular forms of T. cruzi while modulating human PBMC proliferation suggests that this terpenoid may be a promising prototype for the development of new chemotherapeutical agents for Chagas disease.

  18. A rhodanine derivative CCR-11 inhibits bacterial proliferation by inhibiting the assembly and GTPase activity of FtsZ.

    Science.gov (United States)

    Singh, Parminder; Jindal, Bhavya; Surolia, Avadhesha; Panda, Dulal

    2012-07-10

    A perturbation of FtsZ assembly dynamics has been shown to inhibit bacterial cytokinesis. In this study, the antibacterial activity of 151 rhodanine compounds was assayed using Bacillus subtilis cells. Of 151 compounds, eight strongly inhibited bacterial proliferation at 2 μM. Subsequently, we used the elongation of B. subtilis cells as a secondary screen to identify potential FtsZ-targeted antibacterial agents. We found that three compounds significantly increased bacterial cell length. One of the three compounds, namely, CCR-11 [(E)-2-thioxo-5-({[3-(trifluoromethyl)phenyl]furan-2-yl}methylene)thiazolidin-4-one], inhibited the assembly and GTPase activity of FtsZ in vitro. CCR-11 bound to FtsZ with a dissociation constant of 1.5 ± 0.3 μM. A docking analysis indicated that CCR-11 may bind to FtsZ in a cavity adjacent to the T7 loop and that short halogen-oxygen, H-bonding, and hydrophobic interactions might be important for the binding of CCR-11 with FtsZ. CCR-11 inhibited the proliferation of B. subtilis cells with a half-maximal inhibitory concentration (IC(50)) of 1.2 ± 0.2 μM and a minimal inhibitory concentration of 3 μM. It also potently inhibited proliferation of Mycobacterium smegmatis cells. Further, CCR-11 perturbed Z-ring formation in B. subtilis cells; however, it neither visibly affected nucleoid segregation nor altered the membrane integrity of the cells. CCR-11 inhibited HeLa cell proliferation with an IC(50) value of 18.1 ± 0.2 μM (∼15 × IC(50) of B. subtilis cell proliferation). The results suggested that CCR-11 inhibits bacterial cytokinesis by inhibiting FtsZ assembly, and it can be used as a lead molecule to develop FtsZ-targeted antibacterial agents.

  19. DAX-1 Inhibits Hepatocellular Carcinoma Proliferation by Inhibiting β-Catenin Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Hong-Lei Jiang

    2014-08-01

    Full Text Available Background/Aims: Hepatocellular carcinoma (HCC represents the most common type of liver cancer. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1, an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains, has been known for its fundamental roles in the development, especially in the sex determination and steroidogenesis. Previous studies also showed that DAX-1 played a critical role in endocrine and sex steroid-dependent neoplasms such as adrenocortical, pituitary, endometrial, and ovarian tumors. However, its biological roles in the development of HCC remain largely unexplored. Methods: Real-time PCR and Western blot were used to detect the expression of DAX-1 in HCC tissues and cell lines. Immunoprecipitation (IP assay was used to show the interaction between DAX-1 and β-Catenin. Small interfering RNA (siRNA was used to silence the expression of DAX-1. BrdU incorporation and Cell-cycle assays were used to detect the role of DAX-1 in HCC cells proliferation. Migration and invasion assays were carried out to test the metastasis ability of DAX-1 in HCC cells. Results: In the present study, we found that mRNA and protein levels of DAX-1 were down-regulated in HCC tissues and cell lines. Furthermore, overexpression of DAX-1 could inhibit while its knockdown using small interfering RNA promoted cell proliferation in several HCC cell lines. At the molecular level, we demonstrated that DAX-1 could interact with β-Catenin and attenuate its transcriptional activity. Conclusion: Therefore, our results suggest a previously unknown DAX-1/β-Catenin molecular network controlling HCC development.

  20. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    International Nuclear Information System (INIS)

    Shin, Youn Ho; Lee, Seo Jin; Jung, Junyang

    2013-01-01

    Highlights: ► ATP-treated sciatic explants shows the decreased expression of p75NGFR. ► Extracellular ATP inhibits the expression of phospho-ERK1/2. ► Lysosomal exocytosis is involved in Schwann cell dedifferentiation. ► Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  1. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells.

    Science.gov (United States)

    Yoshimura, Hiroko; Sawai, Yu; Tamotsu, Satoshi; Sakai, Atsushi

    2011-03-01

    Volatile monoterpenes such as 1,8-cineole inhibit the growth of Brassica campestris seedlings in a dose-dependent manner, and the growth-inhibitory effects are more severe for roots than hypocotyls. The preferential inhibition of root growth may be explained if the compounds inhibit cell proliferation more severely than cell elongation because root growth requires both elongation and proliferation of the constituent cells, whereas hypocotyl growth depends exclusively on elongation of existing cells. In order to examine this possibility, BY-2 suspension-cultured tobacco (Nicotiana tabacum) cells were treated with 1,8-cineole, and the inhibitory effects on cell proliferation and on cell elongation were assessed quantitatively. Treatment with 1,8-cineole lowered both the mitotic index and elongation of the cells in a dose-dependent manner, and the half-maximal inhibitory concentration (IC₅₀) for cell elongation was lower than that for cell proliferation. Moreover, 1,8-cineole also inhibited starch synthesis, with IC₅₀ lower than that for cell proliferation. Thus, the inhibitory effects of 1,8-cineole were not specific to cell proliferation; rather, 1,8-cineole seemed inhibitory to a variety of physiological activities when it was in direct contact with target cells. Based on these results, possible mechanisms for the mode of action of 1,8-cineole and for its preferential inhibition on root growth are discussed.

  2. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  3. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    International Nuclear Information System (INIS)

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi; Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-01-01

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway

  4. Dyospiros kaki phenolics inhibit colitis and colon cancer cell proliferation, but not gelatinase activities.

    Science.gov (United States)

    Direito, Rosa; Lima, Ana; Rocha, João; Ferreira, Ricardo Boavida; Mota, Joana; Rebelo, Patrícia; Fernandes, Adelaide; Pinto, Rui; Alves, Paula; Bronze, Rosário; Sepodes, Bruno; Figueira, Maria-Eduardo

    2017-08-01

    Polyphenols from persimmon (Diospyros kaki) have demonstrated radical-scavenging and antiinflammatory activities; however, little is known about the effects of persimmon phenolics on inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Therefore, we aimed in this work to characterize the antiinflammatory and antiproliferative effects of a persimmon phenolic extract (80% acetone in water), using an in vivo model of experimental colitis and a model of cancer cell invasion. Our results show, for the first time, a beneficial effect of a persimmon phenolic extract in the attenuation of experimental colitis and a potential antiproliferative effect on cultured colon cancer cells. Administration of persimmon phenolic extract to mice with TNBS-induced colitis led to a reduction in several functional and histological markers of colon inflammation, namely: attenuation of colon length decrease, reduction of the extent of visible injury (ulcer formation), decrease in diarrhea severity, reduced mortality rate, reduction of mucosal hemorrhage and reduction of general histological features of colon inflammation. In vitro studies also showed that persimmon phenolic extract successfully impaired cell proliferation and invasion in HT-29 cells. Further investigation showed a decreased expression of COX-2 and iNOS in the colonic tissue of colitis mice, two important mediators of intestinal inflammation, but there was no inhibition of the gelatinase MMP-9 and MMP-2 activities. Given the role of inflammatory processes in the progression of CRC and the important link between inflammation and cancer, our results highlight the potential of persimmon polyphenols as a pharmacological tool in the treatment of patients with IBD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Inhibition and Adsorption impact of Leave Extracts of Cnidoscolus ...

    African Journals Online (AJOL)

    Corrosion inhibition in the presence of alokaloid and non alkaloid extracts of Cnidoscolus aconitifolius in 1M HCl was studied using the weight loss and hydrogen evolution techniques at 303, 313 and 333 K. The results obtained revealed that the inhibition efficiency decreased with increase in temperature. Inhibition ...

  6. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms

    International Nuclear Information System (INIS)

    Rasmusson, Ida; Ringden, Olle; Sundberg, Berit; Le Blanc, Katarina

    2005-01-01

    Human mesenchymal stem cells (MSCs) have immuno-modulatory properties. They inhibit T-cell proliferation to mitogens and alloantigens in vitro and prolong skin graft survival in vivo. We found that MSCs inhibited the proliferation of peripheral blood lymphocytes (PBLs) to phorbol myristate acetate (PMA), suggesting that MSCs exert an inhibitory effect downstream of the receptor level. We analyzed cytokine profiles of PBLs co-cultured with MSCs. MSCs increased interleukin (IL)-2 and soluble IL-2 receptor in mixed lymphocyte cultures (MLCs), while IL-2 and IL-2R decreased in phytohemagglutinin (PHA)-stimulated PBL cultures. MSCs inhibited IL-2 induced proliferation, without absorbing IL-2. IL-10 levels increased in MLCs co-cultured with 10% MSCs, while the levels were not affected in PHA cultures. In MLCs inhibited by MSCs, antibodies against IL-10 further suppressed proliferation but had no effect in PHA cultures. Addition of indomethacin, an inhibitor of prostaglandin-synthesis, restored part of the inhibition by MSCs in PHA cultures. However, indomethacin did not affect MSC-induced inhibition in MLCs. To conclude, our data indicate that MSC-induced suppression is a complex mechanism affecting IL-2 and IL-10 signaling and may function differently, depending on T-cell stimuli. Prostaglandins are important in the inhibition by MSCs when the T cells were activated by PHA, but not alloantigens

  7. Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner.

    Science.gov (United States)

    Mukherjee, Madhumati; Chaudhari, Snehal N; Balachandran, Riju S; Vagasi, Alexandra S; Kipreos, Edward T

    2017-12-15

    Dafachronic acid (DA) is a bile acid-like steroid hormone that regulates dauer formation, heterochrony, and lifespan in C. elegans. Here, we describe that DA is an inhibitor of C. elegans germ stem cell proliferation in adult hermaphrodites. Using a C. elegans germ cell primary culture system, we show that DA inhibits the proliferation of germ cells in vitro. Exogenous DA reduces the frequency of large tumors in adult tumorous germline mutants and decreases the proliferation of wild-type germ stem cells in adult hermaphrodites. In contrast, DA has no appreciable effect on the proliferation of larval-stage germ cells in wild type. The inhibition of adult germ cell proliferation by DA requires its canonical receptor DAF-12. Blocking DA production by inactivating the cytochrome P450 DAF-9 increases germ cell proliferation in wild-type adult hermaphrodites and the frequency of large tumors in germline tumorous mutants, suggesting that DA inhibits the rate of germ cell proliferation under normal growth conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. MicroRNA-144 inhibits hepatocellular carcinoma cell proliferation

    Indian Academy of Sciences (India)

    MiR-144 was shown to besignificantly down-regulated in HCC tissues and cell lines. Subsequently, overexpression of miR-144 was transfectedinto HCC cell lines so as to investigate its biological function, including MTT, colony formation, and transwell assays.Gain of function assay revealed miR-144 remarkably inhibited ...

  9. Paris polyphylla extract inhibits proliferation and promotes apoptosis ...

    African Journals Online (AJOL)

    Methods: Morphological changes were examined by microscopy in A549 cells after exposure to PPE. ... decreased correspondingly, indicating that the cells were in G0/G1-phase arrest. ... Materials. Human lung cancer cell line (A549) was obtained from Chinese .... observed at high magnification (x 400) in 5 fields,.

  10. Mechanism of Ursolic Acid-Mediated Inhibition of Proliferation in ...

    African Journals Online (AJOL)

    performed to measure the endogenous mRNA levels of ERK1, C-Jun, C-Myc, and Cyclin D1, and. Western blotting was used to determine the expressions of ERK1, C-Jun, C-Myc, and Cyclin ... Cells were harvested, and the total RNA was extracted according to BIOZOL reagent instruction manual. Total RNA was used for.

  11. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-02-01

    Full Text Available We aimed to investigate the effect of advanced glycation end products (AGEs on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs. Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3 II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  12. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D.

    Science.gov (United States)

    Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian

    2017-02-17

    We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2'-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  13. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Likui Wang

    2014-09-01

    Full Text Available Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2 called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE, which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.

  14. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  15. Inhibition of MAO by fractions and constituents of hypericum extract.

    Science.gov (United States)

    Bladt, S; Wagner, H

    1994-10-01

    The inhibition of monoamine oxidase (MAO) by six fractions from hypericum extract and three characteristic constituents (as pure substances) were analyzed in vitro and ex vivo to study the antidepressive mechanism of action. Rat brain homogenates were used as the in vitro model, while the ex vivo analysis was performed after intraperitoneal application of the test substances to albino rats. Massive inhibition of MAO-A could be shown with the total extract and all fractions only at the concentration of 10(-3) mol/L. At 10(-4) mol/L, one fraction rich in flavonoides showed an inhibition of 39%, and all other fractions demonstrated less than 25% inhibition. Using pure hypericin as well as in all ex vivo experiments, no relevant inhibiting effects could be shown. From the results it can be concluded that the clinically proven antidepressive effect of hypericum extract cannot be explained in terms of MAO inhibition.

  16. The effect of caffeine on osteoblast proliferation after tooth extraction in Wistar rats

    Directory of Open Access Journals (Sweden)

    Budi Yuwono

    2006-03-01

    Full Text Available Caffeine is the most well-known substance which consumed by most people daily. Behind its popularity as favorable drinks and food, this substance also known can inhibit the post extraction wound healing by decreasing the proliferation of osteoblast cells through the increase of intracellular cyclic Adenosine Mono Phosphate (cAMP. The objective of this study was done to observe the effect of caffeine intake toward the number of osteoblast cells during the wound healing of post dental extraction in Wistar’s rats. This study was an experimental laboratory research and the post test-only control group design was used for the statistical evaluation. The samples used were 24 healthy 3 months old male Wistar’s rats, with approximately 200 grams of body weight and devided into 4 groups. Three groups were taken and represented as a treated group (P and the rest of one group was used as a control group (KO. Caffeine diet with a dosage of 3.78 mg/100 ml grams of body weight/cc was given for 7 days in group P1, P2 for 14 days, and 21 days in group P3 and the diet was given orally using an oral sonde. Teeth extractions of the right first molar in the lower jaw were done in all groups according to the interval time had been scheduled. Seven days of post-extraction time was waiting in all groups before the sample being decapitated for further histological examination in the post extracted sites. A Hematoxillin and Eosin staining was used and the number of osteoblast cells were counted under light microscopy with 400 times magnification. One-way ANOVA and Least Significant Difference (LSD test were used for the statistical evaluation. The result of the study shown a significant decrease of the number of osteoblast cells in caffeine consumed group of 7, 14, and 21 days observed (p < 0.05. This study conclude that the duration time of caffeine consumed had been interfered significantly with the osteoblast cell proliferation during the wound healing after

  17. Agnus castus extracts inhibit prolactin secretion of rat pituitary cells.

    Science.gov (United States)

    Sliutz, G; Speiser, P; Schultz, A M; Spona, J; Zeillinger, R

    1993-05-01

    In our studies on prolactin inhibition by plant extracts we focused on the effects of extracts of Vitex agnus castus and its preparations on rat pituitary cells under basal and stimulated conditions in primary cell culture. Both extracts from Vitex agnus castus as well as synthetic dopamine agonists (Lisuride) significantly inhibit basal as well as TRH-stimulated prolactin secretion of rat pituitary cells in vitro and as a consequence inhibition of prolactin secretion could be blocked by adding a dopamine receptor blocker. Therefore because of its dopaminergic effect Agnus castus could be considered as an efficient alternative phytotherapeutic drug in the treatment of slight hyperprolactinaemia.

  18. Cyclooxygenase-2 Inhibition Enhances Proliferation of NKT Cells Derived from Patients with Laryngeal Cancer.

    Science.gov (United States)

    Klatka, Janusz; Grywalska, Ewelina; Hymos, Anna; Guz, Małgorzata; Polberg, Krzysztof; Roliński, Jacek; Stepulak, Andrzej

    2017-08-01

    The aim of this study was to analyze whether inhibition of cyclooxygenase-2 by celecoxib and the subsequent enhancement in the proliferation of natural killer T (NKT) cells could play a role in dendritic cell (DC)-based laryngeal cancer (LC) immunotherapy. Peripheral blood mononuclear cells were obtained from 48 male patients diagnosed with LC and 30 control patients without cancer disease. Neoplastic cell lysate preparations were made from cancer tissues obtained after surgery and used for in vitro DCs generation. NKT cells proliferation assay was performed based on 3 H-thymidine incorporation assay. An increased proliferation of NKT cells was obtained from control patients compared to NKT cells obtained from LC patients regardless of the type of stimulation or treatment. In the patient group diagnosed with LC, COX-2 inhibition resulted in a significantly enhanced proliferation of NKT cells when stimulated with autologous DCs than NKT cells stimulated with DCs without COX-2 inhibition. These correlations were not present in the control group. Higher proliferation rate of NKT cells was also observed in non-metastatic and highly differentiated LC, which was independent of the type of stimulation or treatment. COX-2 inhibition could be regarded as immunotherapy-enhancing tool in patients with LC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junzhao; Yuan, Peng; Mao, Qixin [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Lu, Peng [Gastrointestinal Surgery Department, People' s Hospital of Zhengzhou, Henan (China); Xie, Tian; Yang, Hanzhao [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China); Wang, Chengzheng, E-mail: wangchengzheng@126.com [Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan (China)

    2016-09-09

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3′ untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention.

  20. 3-Methylcholanthrene inhibits lymphocyte proliferation and increases intracellular calcium levels in common carp (Cyprinus carpio L)

    International Nuclear Information System (INIS)

    Reynaud, S.; Duchiron, C.; Deschaux, P.

    2003-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. Many authors have focused on macrophage activities in fish exposed to PAHs. However, fewer studies have reported decrease in specific immunity in such fish. We investigated the intracellular mechanisms by which the 3-methylcholanthrene (3-MC) decreased lymphocyte proliferation in carp. T- and B-lymphocyte proliferation induced by Concanavalin A (Con A) and lipopolysaccharide (LPS) were inhibited by 3-MC (0.5-50 μM). 3-MC also produced a rapid and a sustained increase in intracellular calcium concentration ([Ca 2+ ] i ) (2 h minimum). However, the cytochrome P450 1A and Ah receptor inhibitor, α-naphtoflavone (a-NF), also inhibited lymphocyte proliferation and did not reverse the effects of 3-MC. Moreover, since a-NF and 3-MC increased [Ca 2+ ] i and inhibited lymphocyte proliferation it was possible that calcium release played a role in 3-MC-inhibited lymphocyte proliferation. The rise in [Ca 2+ ] i induced by 3-MC was potentiated by the inhibitor of the endoplasmic reticulum calcium ATPases, thapsigargin. Treating cells with 3-MC decreased calcium mobilization caused by thapsigargin. These results suggest that 3-MC acts on the endoplasmic reticulum, perhaps directly on calcium ATPases, to increase intracellular calcium levels in carp leucocytes

  1. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  2. Characterization of Compounds with Tumor–Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii Mycelia Produced by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Henan Zhang

    2017-04-01

    Full Text Available The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC, high-speed countercurrent chromatography (HSCCC, and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS spectroscopic methods as ergosterol (RF1, ergosta-7,22-dien-3β-yl pentadecanoate (RF3, 3,4-dihydroxy benzaldehyde(RF6, inoscavinA (RF7, baicalein(RF10, and 24-ethylcholesta-5,22-dien-3β-ol (RF13. To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  3. Addressing Information Proliferation: Applications of Information Extraction and Text Mining

    Science.gov (United States)

    Li, Jingjing

    2013-01-01

    The advent of the Internet and the ever-increasing capacity of storage media have made it easy to store, deliver, and share enormous volumes of data, leading to a proliferation of information on the Web, in online libraries, on news wires, and almost everywhere in our daily lives. Since our ability to process and absorb this information remains…

  4. Chalcones from Chinese liquorice inhibit proliferation of T cells and production of cytokines

    DEFF Research Database (Denmark)

    Barfod, Lea; Kemp, Kåre; Hansen, Majbritt

    2002-01-01

    Licochalcone A (LicA), an oxygenated chalcone, has been shown to inhibit the growth of both parasites and bacteria. In this study, we investigated the effect of LicA and four synthetic analogues on the activity of human peripheral blood mononuclear cell proliferation and cytokine production. Four...... out of five chalcones tested inhibited the proliferation of lymphocytes measured by thymidine incorporation and by flow cytometry. The production of pro- and anti-inflammatory cytokines from monocytes and T cells was also inhibited by four of five chalcones. Furthermore, intracellular detection...... of cytokines revealed that the chalcones inhibited the production rather than the release of the cytokines. Taken together, these results indicate that LicA and some analogues may have immunomodulatory effects, and may thus be candidates not only as anti-microbial agents, but also for the treatment of other...

  5. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Kourt Chatelain

    2011-01-01

    Full Text Available Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.

  6. Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    International Nuclear Information System (INIS)

    Kwon, Ho-Keun; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog; Hwang, Ji-Sun; So, Jae-Seon; Lee, Choong-Gu; Sahoo, Anupama; Ryu, Jae-Ha; Jeon, Won Kyung; Ko, Byoung Seob; Im, Chang-Rok

    2010-01-01

    Cinnamomum cassia bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8 + T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model. Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer in vitro and in vivo mouse melanoma model. Cinnamon extract strongly inhibited tumor cell proliferation in vitro and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as Bcl-2, BcL-xL and survivin. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed in vitro. Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes in vitro and in vivo mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers

  7. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  8. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  9. Black cohosh inhibits 17β-estradiol-induced cell proliferation of endometrial adenocarcinoma cells.

    Science.gov (United States)

    Park, So Yun; Kim, Hee Ja; Lee, Sa Ra; Choi, Youn-Hee; Jeong, Kyungah; Chung, Hyewon

    2016-10-01

    This study was conducted to investigate the effect of black cohosh (BC) extract on the proliferation and apoptosis of Ishikawa cells. Ishikawa human endometrial adenocarcinoma cells were treated with or without BC (1, 5, 10 and 25 μM) and cell proliferation and cytotoxicity were measured by CCK-8 assays and flow cytometry analysis. Additionally, Ishikawa cells were treated with 17β-estradiol (E2), E2 + progesterone and E2 + BC (5 and 10 μM) and the effect of BC and progesterone on E2-induced cell proliferation was analyzed. BC decreased the proliferation of Ishikawa cells at a dose-dependent rate compared with the control group (p < 0.05). The proliferation of Ishikawa cells increased in the presence of E2, whereas the subsequent addition of progesterone or BC decreased proliferation to the level of the control group (p < 0.05). The inhibitory effect of BC on E2-induced cell proliferation was greater than the inhibitory effect of progesterone. In conclusion, BC induces apoptosis in Ishikawa cells and suppresses E2-induced cell proliferation in Ishikawa cells. BC could be considered a candidate co-treatment agent of estrogen-dependent tumors, especially those involving endometrial cells.

  10. Methanol Extract of Hydroclathrus clathratus Inhibits Production of ...

    African Journals Online (AJOL)

    Methanol Extract of Hydroclathrus clathratus Inhibits Production of Nitric Oxide, Prostaglandin E2 and Tumor Necrosis Factor-α in Lipopolysaccharidestimulated BV2 Microglial Cells via Inhibition of NF-κB Activity. RGPT Jayasooriya, D-O Moon, YH Chol, C-H Yoon, G-Y Kim ...

  11. Trichilia monadelpha Bark Extracts Inhibit Carrageenan-Induced ...

    African Journals Online (AJOL)

    The present study was undertaken to evaluate the anti-inflammatory properties of aqueous (TWE), alcoholic (TAE) and petroleum ether extract (TPEE) of T. ... The reference anti-inflammatory drugs (diclofenac and dexamethasone) inhibited the chick-carrageenan-induced footpad oedema, with maximal inhibitions of ...

  12. MiR-1254 inhibits proliferation, migration and invasion of human ...

    African Journals Online (AJOL)

    MiR-1254 inhibits proliferation, migration and invasion of human brain tumour cell lines. ... The transcripts were analysed by real-time polymerase chain reaction (RT-PCR) ... Over-expression of miR- 1254 also led to significant decrease in cell ...

  13. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Hye-Jin [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Kyung-Ae [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Gwon, Mi-Ri; Jin Seong, Sook [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, Shin-Yoon [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Young-Ran, E-mail: yry@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  14. Progranulin Inhibits Human T Lymphocyte Proliferation by Inducing the Formation of Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kyu Hwan Kwack

    2017-01-01

    Full Text Available We have examined the effect of progranulin (PGRN on human T cell proliferation and its underlying mechanism. We show that PGRN inhibits the PHA-induced multiplication of T lymphocytes. It increases the number of iTregs when T lymphocytes are activated by PHA but does not do so in the absence of PHA. PGRN-mediated inhibition of T lymphocyte proliferation, as well as the induction of iTregs, was completely reversed by a TGF-β inhibitor or a Treg inhibitor. PGRN induced TGF-β secretion in the presence of PHA whereas it did not in the absence of PHA. Our findings indicate that PGRN suppresses T lymphocyte proliferation by enhancing the formation of iTregs from activated T lymphocytes in response to TGF-β.

  15. FLAX OIL FROM TRANSGENIC LINUM USITATISSIMUM SELECTIVELY INHIBITS IN VITRO PROLIFERATION OF HUMAN CANCER CELL LINES.

    Science.gov (United States)

    Gebarowski, Tomasz; Gebczak, Katarzyna; Wiatrak, Benita; Kulma, Anna; Pelc, Katarzyna; Czuj, Tadeusz; Szopa, Jan; Gasiorowski, Kazimierz

    2017-03-01

    Emulsions made of oils from transgenic flaxseeds significantly decreased in vitro proliferation of six tested human cancer cell lines in 48-h cultures, as assessed with the standard sulforhodamine assay. However, the emulsions also increased proliferation rate of normal human dermal fibroblasts and, to a lower extend, of keratinocytes. Both inhibition of in vitro proliferation of human cancer cell lines and stimulation of proliferation of normal dermal fibroblasts and keratinocytes were especially strong with the emulsion type B and with emulsion type M. Oils from seeds of transgenic flax type B and M should be considered as valuable adjunct to standard cytostatic therapy of human cancers and also could be applied to improve the treatment of skin lesions in wound healing.

  16. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing

    Directory of Open Access Journals (Sweden)

    Jun Aono, MD, PhD

    2016-01-01

    Full Text Available Proliferation of smooth muscle cells (SMCs during neointima formation is prevented by drug-eluting stents. The replicative capacity of mammalian cells is enhanced by telomerase expression; however, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target are unknown. The present study investigated the mechanisms underlying the mitogenic function of telomerase, and tested the hypothesis that everolimus, which is commonly used on drug-eluting stents, suppresses SMC proliferation by targeting telomerase. Inhibition of neointima formation by everolimus was lost in mice overexpressing telomerase reverse transcriptase (TERT, indicating that repression of telomerase confers the anti-proliferative efficacy of everolimus. Everolimus reduced TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S-phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These effects were sensitive to inhibition by everolimus. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus, and further identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT.

  17. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  18. Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori.

    Science.gov (United States)

    De Vuyst, Luc; Vincent, Pascal; Makras, Eleftherios; Leroy, Frédéric; Pot, Bruno

    2010-03-01

    Helicobacter pylori inhibition by probiotic lactobacilli has been observed in vitro and in vivo. Carefully selected probiotic Lactobacillus strains could therefore play an important role in the treatment of H. pylori infection and eradication. However, the underlying mechanism for this inhibition is not clear. The aim of this study was to examine if peptide extracts, containing bacteriocins or other antibacterial peptides, from six Lactobacillus cultures (Lactobacillus acidophilus La1, Lactobacillus amylovorus DCE 471, Lactobacillus casei YIT 9029, Lactobacillus gasseri K7, Lactobacillus johnsonii La1, and Lactobacillus rhamnosus GG) contribute to the inhibition of H. pylori. Peptide extracts from cultures of Lact. amylovorus DCE 471 and Lact. johnsonii La1 were most active, reducing the viability of H. pylori ATCC 43504 with more than 2 log units within 4 h of incubation (P < 0.001). The four other extracts were less or not active. When six clinical isolates of H. pylori were tested for their susceptibility towards five inhibitory peptide extracts, similar observations were made. Again, the peptide extracts from Lact. amylovorus DCE 471 and Lact. johnsonii La1 were the most inhibitory, while the three other extracts resulted in a much lower inhibition of H. pylori. Protease-treated extracts were inactive towards H. pylori, confirming the proteinaceous nature of the inhibitory substance.

  19. Platelet-released growth factors inhibit proliferation of primary keratinocytes in vitro.

    Science.gov (United States)

    Bayer, Andreas; Tohidnezhad, Mersedeh; Berndt, Rouven; Lippross, Sebastian; Behrendt, Peter; Klüter, Tim; Pufe, Thomas; Jahr, Holger; Cremer, Jochen; Rademacher, Franziska; Simanski, Maren; Gläser, Regine; Harder, Jürgen

    2018-01-01

    Autologous thrombocyte concentrate lysates as platelet-released growth factors (PRGF) or Vivostat Platelet Rich Fibrin (PRF ® ) represent important tools in modern wound therapy, especially in the treatment of chronic, hard-to-heal or infected wounds. Nevertheless, underlying cellular and molecular mechanisms of the beneficial clinical effects of a local wound therapy with autologous thrombocyte concentrate lysates are poorly understood. Recently, we have demonstrated that PRGF induces antimicrobial peptides in primary keratinocytes and accelerates keratinocytes' differentiation. In the present study we analyzed the influence of PRGF on primary human keratinocytes' proliferation. Using the molecular proliferation marker Ki-67 we observed a concentration- and time dependent inhibition of Ki-67 gene expression in PRGF treated primary keratinocytes. These effects were independent from the EGFR- and the IL-6-R pathway. Inhibition of primary keratinocytes' proliferation by PRGF treatment was confirmed in colorimetric cell proliferation assays. Together, these data indicate that the clinically observed positive effects of autologous thrombocytes concentrates in the treatment of chronic, hard-to-heal wounds are not based on an increased keratinocytes proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. CD147-induced cell proliferation is associated with Smad4 signal inhibition.

    Science.gov (United States)

    Qin, Hui; Rasul, Azhar; Li, Xin; Masood, Muqaddas; Yang, Guang; Wang, Na; Wei, Wei; He, Xi; Watanabe, Nobumoto; Li, Jiang; Li, Xiaomeng

    2017-09-15

    CD147 is a multifunctional trans-membrane glycoprotein, which is highly expressed in many cancers. However, the mechanism by which CD147 modulates cell proliferation is not fully understood. The aim of this study is to investigate the role of CD147 in cell proliferation associated with the TGF-β/Smad4 signaling pathway. Here, we used cell viability and clone formation assays in LNCaP prostate cancer cells to demonstrate that CD147 promotes cell proliferation. The luciferase assay and western blotting show that silencing CD147 using shRNA enhances transcription and expression of p21 WAF1 . Using immunofluorescence and nuclear-cytoplasmic separation, we show that this is primarily attributed to transport of Smad4 from the cytoplasm to nucleus. Other assays (GST pull-down, co-immunoprecipitation and immunofluorescence) demonstrate that Smad4 is a new interaction partner of CD147, with the Smad4 MH2 domain and CD147 intracellular domain (CD147-ICD) being involved in the interaction. Furthermore, we report that a phosphoserine (pSer) in CD147 (pSer252) is responsible for this interaction and inhibition of the Smad4/p21 WAF1 signal that promotes cell proliferation. Our results provide a novel molecular mechanism for CD147-induced cell proliferation associated with Smad4 signal inhibition. Copyright © 2017. Published by Elsevier Inc.

  1. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    Science.gov (United States)

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  2. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  3. Inhibition of human arterial smooth muscle (HASM) cell proliferation and collagen synthesis by protamine

    International Nuclear Information System (INIS)

    Drucker, D.E.; Graham, M.F.; Diegelmann, R.F.; Greenfield, L.J.

    1986-01-01

    Atherosclerotic plaques result from vascular smooth muscle cell proliferation and collagen deposition. The authors have been studying factors which modulate HASM cell proliferation and collagen synthesis. HASM cells were isolated from the media of normal human thoracic and infrarenal aortas and grown in vitro. Cell numbers were determined by direct counting and collagen synthesis was measured by incorporation of 3 H-proline into collagenase-digestible protein. In this study, protamine (200 μg/ml) was tested and found to cause a 55% reduction of HASM cell proliferation which was reversible when the cells were returned to control medium or when heparin (100 μg/ml) was added with protamine. Protamine caused a constant 33% decrease in non-collagen protein (NCP) synthesis per cell. In contrast, collagen synthesis was inhibited in dose dependent fashion (88% reduction at 200 μg/ml). Protamine blocks HASM cell proliferation and specifically inhibits collagen production. The exact mechanism of this inhibition is unclear but may be related to a transcriptional event since protamine has a high affinity for DNA

  4. Inhibition of LPS-induced splenocyte proliferation by ortho-substituted polychlorinated biphenyl congeners

    International Nuclear Information System (INIS)

    Smithwick, L. Ashley; Smith, Andrew; Quensen, John F.; Stack, Allison; London, Lucille; Morris, Pamela J.

    2003-01-01

    Polychlorinated biphenyls (PCBs) are persistent environmental contaminants, and their ubiquitous nature has prompted studies of their potential health hazards. As a result of their lipophilic nature, PCBs accumulate in breast milk and subsequently affect the health of offspring of exposed individuals. Biological effects of PCBs in animals have mostly been attributed to coplanar congeners, although effects of ortho congeners also have been demonstrated. To investigate the relationship of immunotoxicity and chlorine substitution pattern, the effects of PCB congeners and mixtures of ortho and non-ortho-substituted constituents of Aroclor 1242 on splenocytes from C57B1/6 mice were examined. The immunotoxic endpoints investigated included splenocyte viability, lipopolysaccharide (LPS)-induced splenocyte proliferation, and LPS-induced antibody secretion. Congeners with multiple ortho chlorines preferentially inhibited splenocyte proliferation as compared with non- or mono-ortho-substituted congeners. However, mixtures of non- and mono-ortho-substituted congeners and multi-ortho-substituted congeners inhibited LPS-induced splenocyte proliferation and antibody secretion at similar concentrations. Exposure of splenocytes to these mixtures did not activate the aryl hydrocarbon receptor (AhR) signal transduction pathway. These results suggest individual multi-ortho-substituted congeners preferentially inhibit LPS-induced splenocyte proliferation, while congeners not exhibiting an effect individually may have additive effects in a mixture to produce an immunotoxic response through an AhR-independent pathway

  5. TGF-β2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    International Nuclear Information System (INIS)

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-01-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-β2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-β2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-β2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-β2 and FGF-2 oppositely affect BCE cell proliferation and TGF-β2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-β2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-β2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-β2-induced suppression of the PI3-kinase/AKT signaling pathway

  6. Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.

    Science.gov (United States)

    Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana

    2016-04-01

    Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. In vivo antimicrobial inhibition of Punica granatum extracts as mouthwash

    Directory of Open Access Journals (Sweden)

    Dhifaf M. Al-Obaidi

    2017-12-01

    Full Text Available Background — Complex polysaccharides have been detected and characterized in Punica granatum or pomegranate constituents who may act as fungal and bacterial inhibitor as well as an anti-inflammatory effect. However, limited studies were reported on using pomegranate extracts as an anti-bacterial mouthwash. Objectives — To determine the effect of Punica granatum (pomegranate extract on microbial activity of some bacterial genus isolated from the mouth. Material and Methods — This study included preparation of three different concentrations of Punica granatum methanolic extract of 25%, 50%, and 75%. The inhibition activity of these extracts was tested on different strains such as Sm, Sa, Ec, Kp, Sg and Sf. Results — Results exhibited an effective inhibition of pomegranate extracts against most of the tested strains which were isolated from patients' mouths. The 50% and 75% concentrations of methanolic extract exhibited significant inhibition against four tested strains compared to mouthwash (P≤0.05, while the 25% concentration was less effective than the other concentrations and its antibacterial effect was non-significant in comparison with the mouthwash. Conclusions — This study indicates the inhibitory effectiveness of Punica granatum extracts of high percentage on microbial activity of some bacterial genus isolated from patients’ mouths and suggests the possibility prepare a mouthwash from pomegranate extract.

  8. Effects of Calophyllum inophyllum fruit extract on the proliferation and morphological characteristics of human breast cancer cells MCF-7

    Directory of Open Access Journals (Sweden)

    Shanmugapriya

    2016-04-01

    Full Text Available Objective: To evaluate the antiproliferative activity of Calophyllum inophyllum (C. inophyllum fruit extract against human breast cancer cells MCF-7. Methods: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays for 24 h and the morphological investigation of treated MCF-7 cells was observed under optical microscope using Giemsa staining. Results: The cytotoxic effect of C. inophyllum fruit extract against MCF-7 cancer cells was evaluated through MTT and CyQuant assays simultaneously for 24 h after treatment, which demonstrated the inhibition of cell viability with the IC50 values of 19.63 µg/mL and 27.54 µg/mL, respectively. The preliminary time-based morphological investigation of MCF-7 cells treated with the IC 50 value (23.59 µg/mL of C. inophyllum fruit extract was observed under an optical microscopy via Giemsa staining, which exhibited prominent histological characteristics of apoptosis. Conclusions: This study clearly proved that the proliferation of human breast cancer cell MCF-7 was inhibited by C. inophyllum fruit extract resulted from the induction of apoptosis in MCF-7 cells.

  9. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Karen K Y Lam

    Full Text Available Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  10. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Lam, Karen K Y; Zheng, Xingji; Forestieri, Roberto; Balgi, Aruna D; Nodwell, Matt; Vollett, Sarah; Anderson, Hilary J; Andersen, Raymond J; Av-Gay, Yossef; Roberge, Michel

    2012-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  11. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  12. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    International Nuclear Information System (INIS)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang; Xie, Ji-Sheng; Meng, Xin; Guan, Yifu; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2α (eIF2α), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2α inhibitor, or overexpression of dominant negative mutants of PERK or eIF2α, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2α branch of UPR in RES-induced inhibition of cell proliferation.

  13. PKI-587 and sorafenib alone and in combination on inhibition of liver cancer stem cell proliferation.

    Science.gov (United States)

    Gedaly, Roberto; Galuppo, Roberto; Musgrave, Yolanda; Angulo, Paul; Hundley, Jonathan; Shah, Malay; Daily, Michael F; Chen, Changguo; Cohen, Donald A; Spear, Brett T; Evers, B Mark

    2013-11-01

    Deregulated Ras/Raf/mitogen-activated protein kinase and PI3 K/AKT/mTOR signaling pathways are significant in hepatocellular carcinoma proliferation (HCC). In this study we evaluated differences in the antiproliferative effect of dual PI3 K/Akt/mTOR and Ras/Raf/mitogen-activated protein kinase inhibition of non liver cancer stem cell lines (PLC and HuH7) and liver cancer stem cell (LCSC) lines (CD133, CD44, CD24, and aldehyde dehydrogenase 1-positive cells). Flow cytometry was performed on the resulting tumors to identify the LCSC markers CD133, CD44, CD24, and aldehyde dehydrogenase 1. Methylthiazol tetrazolium assay was used to assess cellular proliferation. Finally, a Western blot assay was used to evaluate for inhibition of specific enzymes in these two signaling pathways. Using flow cytometry, we found that LCSC contain 64.4% CD133 + cells, 83.2% CD44 + cells, and 96.4% CD24 + cells. PKI-587 and sorafenib caused inhibiton of LCSC and HCC cell proliferation. PLC cells were more sensitive to PKI-587 than LCSC or Huh7 (P PKI-587 and sorafenib caused significantly more inhibition than monotherapy in HuH7, PLC, and LCSC. Using the methylthiazol tetrazolium assay, we found that the LCSC proliferation was inhibited with sorafenib monotherapy 39% at 5 μM (P PKI-587 at 0.1 μM (P = 0.002, n = 12) compared with control. The combination of PKI-587 and sorafenib, however, synergistically inhibited LCSC proliferation by 86% (P = 0.002; n = 12). LCSC (CD133+, CD44+, CD24+) were able to develop very aggressive tumors with low cell concentrations at 4 to 6 wk. Cells CD133+, CD44+, CD24+, which demonstrated at least moderate resistance to therapy in vitro. The combination of PKI-587 and sorafenib was better than either drug alone at inhibiting of LCSC and on HCC cell proliferation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Screening of plant extracts for human tyrosinase inhibiting effects.

    Science.gov (United States)

    Kim, M; Park, J; Song, K; Kim, H G; Koh, J-S; Boo, Y C

    2012-04-01

    Screening for tyrosinase (TYR) inhibitors potentially useful for control of skin pigmentation has been hampered by the limited availability of human TYR. To overcome this hurdle, we have established human embryonic kidney (HEK293)-TYR cells that constitutively express human TYR. In the current study, we assayed human TYR inhibition activities of 50 plant extracts using the lysates of transformed HEK293-TYR cells. The strongest inhibition of human TYR was shown by the extract of Vaccinium bracteatum Thunberg, followed by the extract of Morus bombycis Koidzumi. The former extract did not inhibit mushroom TYR activity whereas significant inhibition was observed with the latter extract, demonstrating the importance of using human TYR in the screening for human TYR inhibitors. Upon liquid-liquid partitioning of the extract from V. bracteatum, the active constituents were enriched in the ethyl acetate fraction, and the subsequent preparatory thin-layer chromatography identified p-coumaric acid (PCA) as the main active constituent. The hypo-pigmentation of PCA was verified in the MelanoDerm™ Skin Model. This study demonstrates that transformed HEK293-TYR cells could expedite the discovery of human TYR-specific inhibitors from natural sources which might be useful in the control of skin pigmentation. © 2012 The Authors. ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  15. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger’s ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39–56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3′-5′)-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  16. An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Ankit Rai

    Full Text Available Using cell based screening assay, we identified a novel anti-tubulin agent (Z-5-((5-(4-bromo-3-chlorophenylfuran-2-ylmethylene-2-thioxothiazolidin-4-one (BCFMT that inhibited proliferation of human cervical carcinoma (HeLa (IC(50, 7.2 ± 1.8 µM, human breast adenocarcinoma (MCF-7 (IC(50, 10.0 ± 0.5 µM, highly metastatic breast adenocarcinoma (MDA-MB-231 (IC(50, 6.0 ± 1 µM, cisplatin-resistant human ovarian carcinoma (A2780-cis (IC(50, 5.8 ± 0.3 µM and multi-drug resistant mouse mammary tumor (EMT6/AR1 (IC(50, 6.5 ± 1 µM cells. Using several complimentary strategies, BCFMT was found to inhibit cancer cell proliferation at G2/M phase of the cell cycle apparently by targeting microtubules. In addition, BCFMT strongly suppressed the dynamics of individual microtubules in live MCF-7 cells. At its half maximal proliferation inhibitory concentration (10 µM, BCFMT reduced the rates of growing and shortening phases of microtubules in MCF-7 cells by 37 and 40%, respectively. Further, it increased the time microtubules spent in the pause (neither growing nor shortening detectably state by 135% and reduced the dynamicity (dimer exchange per unit time of microtubules by 70%. In vitro, BCFMT bound to tubulin with a dissociation constant of 8.3 ± 1.8 µM, inhibited tubulin assembly and suppressed GTPase activity of microtubules. BCFMT competitively inhibited the binding of BODIPY FL-vinblastine to tubulin with an inhibitory concentration (K(i of 5.2 ± 1.5 µM suggesting that it binds to tubulin at the vinblastine site. In cultured cells, BCFMT-treatment depolymerized interphase microtubules, perturbed the spindle organization and accumulated checkpoint proteins (BubR1 and Mad2 at the kinetochores. BCFMT-treated MCF-7 cells showed enhanced nuclear accumulation of p53 and its downstream p21, which consequently activated apoptosis in these cells. The results suggested that BCFMT inhibits proliferation of several types of cancer cells including drug

  17. CXCL10 can inhibit endothelial cell proliferation independently of CXCR3.

    Directory of Open Access Journals (Sweden)

    Gabriele S V Campanella

    2010-09-01

    Full Text Available CXCL10 (or Interferon-inducible protein of 10 kDa, IP-10 is an interferon-inducible chemokine with potent chemotactic activity on activated effector T cells and other leukocytes expressing its high affinity G protein-coupled receptor CXCR3. CXCL10 is also active on other cell types, including endothelial cells and fibroblasts. The mechanisms through which CXCL10 mediates its effects on non-leukocytes is not fully understood. In this study, we focus on the anti-proliferative effect of CXCL10 on endothelial cells, and demonstrate that CXCL10 can inhibit endothelial cell proliferation in vitro independently of CXCR3. Four main findings support this conclusion. First, primary mouse endothelial cells isolated from CXCR3-deficient mice were inhibited by CXCL10 as efficiently as wildtype endothelial cells. We also note that the proposed alternative splice form CXCR3-B, which is thought to mediate CXCL10's angiostatic activity, does not exist in mice based on published mouse CXCR3 genomic sequences as an in-frame stop codon would terminate the proposed CXCR3-B splice variant in mice. Second, we demonstrate that human umbilical vein endothelial cells and human lung microvascular endothelial cells that were inhibited by CXL10 did not express CXCR3 by FACS analysis. Third, two different neutralizing CXCR3 antibodies did not inhibit the anti-proliferative effect of CXCL10. Finally, fourth, utilizing a panel of CXCL10 mutants, we show that the ability to inhibit endothelial cell proliferation correlates with CXCL10's glycosaminoglycan binding affinity and not with its CXCR3 binding and signaling. Thus, using a very defined system, we show that CXCL10 can inhibit endothelial cell proliferation through a CXCR3-independent mechanism.

  18. Estrogen receptor beta signaling inhibits PDGF induced human airway smooth muscle proliferation.

    Science.gov (United States)

    Ambhore, Nilesh Sudhakar; Katragadda, Rathnavali; Raju Kalidhindi, Rama Satyanarayana; Thompson, Michael A; Pabelick, Christina M; Prakash, Y S; Sathish, Venkatachalem

    2018-04-20

    Airway smooth muscle (ASM) cell hyperplasia driven by persistent inflammation is a hallmark feature of remodeling in asthma. Sex steroid signaling in the lungs is of considerable interest, given epidemiological data showing more asthma in pre-menopausal women and aging men. Our previous studies demonstrated that estrogen receptor (ER) expression increases in asthmatic human ASM; however, very limited data are available regarding differential roles of ERα vs. ERβ isoforms in human ASM cell proliferation. In this study, we evaluated the effect of selective ERα and ERβ modulators on platelet-derived growth factor (PDGF)-stimulated ASM proliferation and the mechanisms involved. Asthmatic and non-asthmatic primary human ASM cells were treated with PDGF, 17β-estradiol, ERα-agonist and/or ERβ-agonist and/or G-protein-coupled estrogen receptor 30 (GPR30/GPER) agonist and proliferation was measured using MTT and CyQuant assays followed by cell cycle analysis. Transfection of small interfering RNA (siRNA) ERα and ERβ significantly altered the human ASM proliferation. The specificity of siRNA transfection was confirmed by Western blot analysis. Gene and protein expression of cell cycle-related antigens (PCNA and Ki67) and C/EBP were measured by RT-PCR and Western analysis, along with cell signaling proteins. PDGF significantly increased ASM proliferation in non-asthmatic and asthmatic cells. Treatment with PPT showed no significant effect on PDGF-induced proliferation, whereas WAY interestingly suppressed proliferation via inhibition of ERK1/2, Akt, and p38 signaling. PDGF-induced gene expression of PCNA, Ki67 and C/EBP in human ASM was significantly lower in cells pre-treated with WAY. Furthermore, WAY also inhibited PDGF-activated PCNA, C/EBP, cyclin-D1, and cyclin-E. Overall, we demonstrate ER isoform-specific signaling in the context of ASM proliferation. Activation of ERβ can diminish remodeling in human ASM by inhibiting pro-proliferative signaling pathways

  19. Cytotoxicity of Thirdhand Smoke and Identification of Acrolein as a Volatile Thirdhand Smoke Chemical That Inhibits Cell Proliferation.

    Science.gov (United States)

    Bahl, Vasundhra; Weng, Nikki J-H; Schick, Suzaynn F; Sleiman, Mohamad; Whitehead, Jacklyn; Ibarra, Allison; Talbot, Prue

    2016-03-01

    Thirdhand smoke (THS) is a mixture of chemicals that remain on indoor surfaces after smoking has ceased. These chemicals can be inhaled, ingested, or absorbed dermally, and thus could impact human health. We evaluated the cytotoxicity and mode of action of fresh and aged THS, the toxicity of volatile organic chemicals (VOCs) in THS, and the molecular targets of acrolein, a VOC in THS. Experiments were done using mouse neural stem cells (mNSC), human pulmonary fibroblasts (hPF), and lung A549 epithelial cells. THS-exposed cotton cloth was extracted in Dulbecco's Eagle Medium and caused cytotoxicity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. THS extracts induced blebbing, immotility, vacuolization, cell fragmentation, severing of microfilaments and depolymerization of microtubules in mNSC. Cytotoxicity was inversely related to headspace volume in the extraction container and was lost upon aging, suggesting that VOCs in THS were cytotoxic. Phenol, 2',5'-dimethyl furan and acrolein were identified as the most cytotoxic VOCs in THS, and in combination, their cytotoxicity increased. Acrolein inhibited proliferation of mNSC and hPF and altered expression of cell cycle regulatory genes. Twenty-four hours of treatment with acrolein decreased expression of transcription factor Dp-1, a factor needed for the G1 to S transition in the cell cycle. At 48 h, WEE1 expression increased, while ANACP1 expression decreased consistent with blocking entry into and completion of the M phase of the cell cycle. This study identified acrolein as a highly cytotoxic VOC in THS which killed cells at high doses and inhibited cell proliferation at low doses. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Luteolin inhibits the colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition: an experimental study

    Directory of Open Access Journals (Sweden)

    Xin Meng

    2017-11-01

    Full Text Available Objective: To study the regulating effect of luteolin on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition. Methods: Colon cancer HT-29 cells were cultured and randomly divided into two groups, control group were treated with serum-free medium without drugs and LUT group were treated with serum-free medium containing luteolin. After 24 h of treatment, cells were collected to extract RNA, and then fluorescent quantitative PCR method was used to determine the mRNA expression of proliferation genes, migration genes and epithelial-mesenchymal transition genes. Results: After 24 h of luteolin treatment, Lrig1, TSPYL5, Bim, SOX15 and DLC1 mRNA expression in LUT group were significantly higher than those in control group while RPS15a, Bad, TRPV5, TRPV6, PLD2, IBP, SphK1, FAK, Vimentin and N-cadherin mRNA expression were significantly lower than those in control group. Conclusion: Luteolin has inhibiting effect on colon cancer HT-29 cell proliferation, migration and epithelial-mesenchymal transition.

  1. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Yanli Ge

    2012-05-01

    Full Text Available Trefoil Factor Family (TFF plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC.The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry.From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  2. Inhibition of human lung cancer cell proliferation and survival by wine

    Science.gov (United States)

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  3. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yue [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Handong, E-mail: njhdwang@hotmail.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wang, Qiang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Ding, Hui [Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Wu, Heming [Department of Neurosurgery, Nanjing Jingdu Hospital, No. 34, Biao 34, Yanggongjing Road, Nanjing 210002, Jiangsu Province (China); Pan, Hao [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2016-01-15

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluated the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.

  4. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  5. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  6. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunjun [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China); Zhang, Jinqian, E-mail: jingwanghou@yahoo.com.cn [Capital Medical University, Institute of Infectious Diseases, Beijing Ditan Hospital (China); Zhao, Ming [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Shi, Zujin [Peking University, Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering (China); Chen, Xin; He, Xihui; Han, Nanyin, E-mail: jingwanghou@sina.com [Peking University, Department of Chemical Biology, School of Pharmaceutical Sciences (China); Xu, Ruxiang, E-mail: everbright999@163.com [The Military General Hospital of Beijing PLA, Affiliated Bayi Brain Hospital (China)

    2013-08-15

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  7. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Science.gov (United States)

    Li, Yunjun; Zhang, Jinqian; Zhao, Ming; Shi, Zujin; Chen, Xin; He, Xihui; Han, Nanyin; Xu, Ruxiang

    2013-08-01

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma.

  8. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  9. D-Glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K

    International Nuclear Information System (INIS)

    Oh, Hyun-Ji; Lee, Jason S.; Song, Dae-Kyu; Shin, Dong-Hoon; Jang, Byeong-Churl; Suh, Seong-Il; Park, Jong-Wook; Suh, Min-Ho; Baek, Won-Ki

    2007-01-01

    Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6 K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-Glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K

  10. Luteolin Inhibits Angiotensin II-Stimulated VSMC Proliferation and Migration through Downregulation of Akt Phosphorylation

    Directory of Open Access Journals (Sweden)

    Tongda Xu

    2015-01-01

    Full Text Available Luteolin is a naturally occurring flavonoid found in many plants that possesses cardioprotective properties. The purpose of this study was to elucidate the effect of luteolin on vascular smooth muscle cells (VSMCs proliferation and migration induced by Angiotensin II (Ang II and to investigate the mechanism(s of action of this compound. Rat VSMCs were cultured in vitro, and the proliferation and migration of these cells following Ang II stimulation were monitored. Different doses of luteolin were added to VSMC cultures, and the proliferation and migration rate were observed by MTT and Transwell chamber assays, respectively. In addition, the expressions of p-Akt (308, p-Akt (473, and proliferative cell nuclear antigen (PCNA in VSMCs were monitored by Western blotting. This study demonstrated that luteolin has an inhibitory effect on Ang II-induced VSMC proliferation and migration. Further, the levels of p-Akt (308, p-Akt (473, and PCNA were reduced in VSMCs treated with both Ang II and luteolin compared to VSMCs treated with only Ang II. These findings strongly suggest that luteolin inhibits Ang II-stimulated proliferation and migration of VSMCs, which is partially due to downregulation of the Akt signaling pathway.

  11. Rosiglitazone Inhibits Adrenocortical Cancer Cell Proliferation by Interfering with the IGF-IR Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Luconi Michaela

    2008-07-01

    Full Text Available Rosiglitazone (RGZ, a thiazolidinedione ligand of the peroxisome proliferator-activated receptor (PPAR-γ, has been recently described as possessing antitumoral properties. We investigated RGZ effect on cell proliferation in two cell line models (SW13 and H295R of human adrenocortical carcinoma (ACC and its interaction with the signaling pathways of the activated IGF-I receptor (IGF-IR. We demonstrate a high expression of IGF-IR in the two cell lines and in ACC. Cell proliferation is stimulated by IGF-I in a dose- and time-dependent manner and is inhibited by RGZ. The analysis of the main intracellular signaling pathways downstream of the activated IGF-IR, phosphatidyl inositol 3-kinase (PI3K-Akt, and extracellular signal-regulated kinase (ERK1/2 cascades reveals that RGZ rapidly interferes with the Akt and ERK1/2 phosphorylation/activation which mediates IGF-I stimulated proliferation. In conclusion, our results suggest that RGZ exerts an inhibitory effect on human ACC cell proliferation by interfering with the PI3K/Akt and ERK1/2 signaling pathways downstream of the activated IGF-IR.

  12. A comparison of cell proliferation in normal and neoplastic intestinal epithelia following either biogenic amine depletion or monoamine oxidase inhibition.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1976-08-11

    Epithelial cell proliferation was studied in the jejunum and in the colon of normal rats, in the colon of dimethylhydrazine-treated rats and in dimethylhydrazine-induced adenocarcinoma of the colon using a stathmokinetic technique. Estimates of cell proliferation rates in these four tissues were then repeated in animals which had been depleted of biogenic animes by treatment with reserpine and in animals whose monoamine oxidase was inhibited by treatment with nialamide. In amine-depleted animals cell proliferation essentially ceased in all four tissues examined. Inhibition of monoamine oxidase did not significantly influence cell proliferation in nonmalignant tissues but accelerated cell division in colonic tumours.

  13. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin A Nacev

    Full Text Available Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA, an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50 dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  14. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Science.gov (United States)

    Nacev, Benjamin A; Liu, Jun O

    2011-01-01

    Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  15. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells.

    Science.gov (United States)

    Gu, Junyi; Lu, Zhongsheng; Ji, Chenghong; Chen, Yuchao; Liu, Yuzhao; Lei, Zhe; Wang, Longqiang; Zhang, Hong-Tao; Li, Xiangdong

    2017-09-01

    Melatonin, an indolamine mostly synthesized in the pineal gland, exerts the anti-cancer effect by various mechanisms in glioma cells. Our previous study showed that miR-155 promoted glioma cell proliferation and invasion. However, the question of whether melatonin may inhibit glioma by regulating miRNAs has not yet been addressed. In this study, we found that melatonin (100μM, 1μM and 1nM) significantly inhibited the expression of miR-155 in human glioma cell lines U87, U373 and U251. Especially, the lowest expression of miR-155 was detected in 1μM melatonin-treated glioma cells. Melatonin (1μM) inhibits cell proliferation of U87 by promoting cell apoptosis. Nevertheless, melatonin had no effect on cell cycle distribution of U87 cells. Moreover, U87 cells treated with 1μM melatonin presented significantly lower migration and invasion ability when compared with control cells. Importantly, melatonin inhibited c-MYB expression, and c-MYB knockdown reduced miR-155 expression and migration and invasion in U87 cells. Taken together, for the first time, our findings show that melatonin inhibits miR-155 expression and thereby represses glioma cell proliferation, migration and invasion, and suggest that melatonin may downregulate the expression of miR-155 via repression of c-MYB. This will provide a theoretical basis for revealing the anti-glioma mechanisms of melatonin. Copyright © 2017. Published by Elsevier Masson SAS.

  16. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  17. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing.

    Science.gov (United States)

    Aono, Jun; Ruiz-Rodriguez, Ernesto; Qing, Hua; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-01-01

    The present study sought to investigate the mechanisms underlying the mitogenic function of telomerase and to test the hypothesis that everolimus, commonly used on drug-eluting stents, suppresses smooth muscle cells (SMC) proliferation by targeting telomerase. Proliferation of SMC during neointima formation is prevented by drug-eluting stents. Although the replicative capacity of mammalian cells is enhanced by telomerase expression, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target remain to be investigated. We first employed constitutive expression of telomerase reverse transcriptase (TERT) in cell systems to study transcriptional mechanisms by which telomerase activates a mitogenic program. Second, overexpression of telomerase in mice provided a model to study the role of telomerase as a drug target for the antiproliferative efficacy of everolimus. Inhibition of neointima formation by everolimus is lost in mice overexpressing TERT, indicating that repression of telomerase confers the antiproliferative efficacy of everolimus. Everolimus reduces TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Using chromatin immunoprecipitation assays, we finally demonstrate that TERT induces E2F binding to S-phase gene promoters and supports histone acetylation, effects that are inhibited by everolimus and mediate its antiproliferative activity. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus. Our studies further identify a novel mitogenic pathway in SMC

  18. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts.

    Science.gov (United States)

    Nastasijević, Branislav; Lazarević-Pašti, Tamara; Dimitrijević-Branković, Suzana; Pašti, Igor; Vujačić, Ana; Joksić, Gordana; Vasić, Vesna

    2012-07-01

    The aim of this study was to investigate the inhibitory activity of Gentiana lutea extracts on the enzyme myeloperoxidase (MPO), as well as the antioxidant activity of these extracts and their correlation with the total polyphenol content. Extracts were prepared using methanol (100%), water and ethanol aqueous solutions (96, 75, 50 and 25%v/v) as solvents for extraction. Also, isovitexin, amarogentin and gentiopicroside, pharmacologically active constituents of G. lutea were tested as potential inhibitors of MPO. Antioxidant activity of extracts was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging test and also using cyclic voltammetry (CV). Among all extracts, the antioxidant capacity of 50% ethanol aqueous extract was the highest, both when measured using the DPPH test, with IC(50)=20.6 μg/ml, and when using CV. Also, 50% ethanol extract, showed the best inhibition of MPO activity in comparison with other extracts. In the group of the selected G. lutea constituents, gentiopicroside has proved to be the strongest inhibitor of MPO, with IC(50)=0.8 μg/ml. Also, the concentration of G. lutea constituents were determined in all extracts, using Ultra Performance Liquid Chromatography (UPLC). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  20. miR-141-3p inhibits human stromal (mesenchymal) stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Qiu, Weimin; Kassem, Moustapha

    2014-01-01

    Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21-25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling...... in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase...... activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3'UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast...

  1. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    International Nuclear Information System (INIS)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-01-01

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer

  2. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Xu, Chuan [Division of Scientific Research and Training, General Hospital of PLA Chengdu Military Area Command, Chengdu, Sichuan 610083 (China); Wang, Mei; Wang, Qinrui [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Zhou, Zhansong, E-mail: zhouzhans@sina.com [Institute of Urinary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xiang, Zhonghuai [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716 (China)

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  3. The ROCO Kinase QkgA Is Necessary for Proliferation Inhibition by Autocrine Signals in Dictyostelium discoideum▿

    OpenAIRE

    Phillips, Jonathan E.; Gomer, Richard H.

    2010-01-01

    AprA and CfaD are secreted proteins that function as autocrine signals to inhibit cell proliferation in Dictyostelium discoideum. Cells lacking AprA or CfaD proliferate rapidly, and adding AprA or CfaD to cells slows proliferation. Cells lacking the ROCO kinase QkgA proliferate rapidly, with a doubling time 83% of that of the wild type, and overexpression of a QkgA-green fluorescent protein (GFP) fusion protein slows cell proliferation. We found that qkgA− cells accumulate normal levels of ex...

  4. miR-99 inhibits cervical carcinoma cell proliferation by targeting TRIB2.

    Science.gov (United States)

    Xin, Jia-Xuan; Yue, Zhen; Zhang, Shuai; Jiang, Zhong-Hua; Wang, Ping-Yu; Li, You-Jie; Pang, Min; Xie, Shu-Yang

    2013-10-01

    MicroRNAs (miRNAs) have significant roles in cell processes, including proliferation, apoptosis and stress responses. To investigate the involvement of miR-99 in the inhibition of HeLa cell proliferation, an miR-99 gene expression vector (pU6.1/miR-99), which overexpressed miR-99 in HeLa cells after transient transfection, was constructed. The expression of miR-99 was detected by qPCR. Cell proliferation and apoptosis were analyzed by cell viability, proliferation and apoptosis assays, as well as by electron microscopy. The results showed that overexpression of miR-99 in HeLa cells increased the HeLa cell mortality rate. Moreover, miR-99 overexpression was able to markedly inhibit HeLa cell proliferation according to the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell apoptosis rate was significantly higher in pU6.1/miR-99-treated cells compared with that in the control cultures. Increases in intracellular electron density, as well as the proportion of nuclear plasma, blebbing phenomena and apoptotic bodies were observed in pU6.1/miR-99-treated cells compared with control cultures according to electron microscopy analysis. The Tribbles 2 (TRIB2) 3'-untranslated region was also observed to be targeted by miR-99 and the results further demonstrated that miR-99 was able to negatively regulate TRIB2 expression in HeLa cells The results indicate that miR-99 acts as a tumor suppressor gene in HeLa cells, establishing a theoretical basis for its application in cancer therapeutics.

  5. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells.

    Science.gov (United States)

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  7. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  8. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    Directory of Open Access Journals (Sweden)

    Yasmina Mokhtaria Boufadi

    2014-02-01

    Full Text Available Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO. By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 µM.

  9. Polydatin inhibits cell proliferation and induces apoptosis in laryngeal cancer and HeLa cells via suppression of the PDGF/AKT signaling pathway.

    Science.gov (United States)

    Li, Haixia; Shi, Baoyuan; Li, Yanyun; Yin, Fengfang

    2017-07-01

    Polydatin (PD), a stilbene compound extracted from Polygonum cuspidatum, is suggested to possess anti-cancer activities, including inhibition of cell proliferation, cell cycle arrest, and induction of apoptosis. The platelet-derived growth factor (PDGF)/AKT signaling pathway plays complex roles in tumor suppression. However, the effect of PD on the PDGF/AKT signaling pathway in laryngeal cancer and HeLa cells has not been explored. MTT assay and flow cytometry showed that PD inhibited cell proliferation and induced apoptosis in Hep-2 and AMC-HN-8 cells. Western blot analysis indicated that PD inhibited the expression levels of PDGF-B and phosphorylated AKT (p-AKT) in both cells. Treatment of PDGF-B siRNA or PDGFR inhibitor found that after the PDGF signaling was inactivated, p-AKT expression was significantly decreased in Hep-2 cells. Tumor xenograft experiment in nude mice indicated PD significantly inhibited the growth of Hep-2 cells in vivo. In conclusion, PD inhibited cell proliferation and induced apoptosis in laryngeal cancer and HeLa cells via inactivation of the PDGF/AKT signaling pathway. © 2017 Wiley Periodicals, Inc.

  10. MiR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α.

    Science.gov (United States)

    Li, Chunyan; Wang, Yulin; Lu, Shuming; Zhang, Zhuqing; Meng, Hua; Liang, Lina; Zhang, Yan; Song, Bo

    2015-11-01

    The microRNA (miRNA), miR‑34a is significant in colon cancer progression. In the present study, the role of miR‑34a in colon cancer cell proliferation and metastasis was investigated. It was found that the expression of miR‑34a in colon cancer tissues and cell lines was lower when compared with that of normal tissues and cells. Further research demonstrated that miR‑34a inhibited cell proliferation, induced G1 phase arrest, and suppressed metastasis and epithelial mesenchymal transition in colon cancer cells. Bioinformatic prediction indicated that platelet‑derived growth factor receptor α (PDGFRA) was a potential target gene of miR‑34a and a luciferase assay identified that PDGFRA was a novel direct target gene of miR‑34a. In addition, assays of western blot analyses and quantitative reverse‑transcription polymerase chain reaction confirmed that miR‑34a decreased PDGFRA mRNA expression and protein levels in colon cancer cells. Assessment of cellular function indicated that miR‑34a inhibited colon cancer progression via PDGFRA. These findings demonstrate that miR‑34a may act as a negative regulator in colon cancer by targeting PDGFRA.

  11. Cordycepin Induces Apoptosis and Inhibits Proliferation of Human Lung Cancer Cell Line H1975 via Inhibiting the Phosphorylation of EGFR

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2016-09-01

    Full Text Available Cordycepin is an active component of the traditional Chinese medicine Cordyceps sinensis and Cordyceps militaris with notable anticancer activity. Though the prominent inhibitory activity was reported in different kinds of cancer cell lines, the concrete mechanisms remain elusive. It was reported that cordycepin could be converted into tri-phosphates in vivo to confuse a number of enzymes and interfere the normal cell function. For the inhibitory mechanism of EGFR inhibitors and the structure similarity of ATP and tri-phosphated cordycepin, human lung cancer cell line H1975 was employed to investigate the inhibitory effect of cordycepin. The results showed that cordycepin could inhibit cell proliferation and induce apoptosis in a dose-dependent manner. Cell cycle analysis revealed that H1975 cells could be arrested at the G0/G1 phase after cordycepin treatment. The expression levels of apoptosis-related protein Caspase-3 and Bcl-2 and phosphorylated expression levels of EGFR, AKT and ERK1/2 were all decreased compared with the control group stimulated with EGF. However, the protein expression levels of proapoptotic protein Bax and cleaved caspase-3 were increased. These results implied that cordycepin could inhibit cell proliferation and induce apoptosis via the EGFR signaling pathway. Our results indicated that there was potential to seek a novel EGFR inhibitor from cordycepin and its chemical derivatives.

  12. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    Science.gov (United States)

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  14. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    International Nuclear Information System (INIS)

    Hou, Y.; Chu, M.; Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X.; Jin, J.

    2013-01-01

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G 2 /S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G 2 /S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment

  15. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Chu, M. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Medicine, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X. [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China); Jin, J., E-mail: jinjian31@126.com [Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Rd., Wuxi, Jiangsu 214122 (China)

    2013-06-14

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G{sub 2}/S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G{sub 2}/S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment.

  16. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoxing [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States); Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu [Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive 5018, Hattiesburg, MS 39406 (United States)

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  17. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Wang, Ruoxing; Guo, Yan-Lin

    2012-01-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: ► Inhibition of Cdks slows down mESCs proliferation. ► mESCs display remarkable recovery capacity from short-term cell cycle interruption. ► Short-term cell cycle interruption does not compromise mESC self-renewal. ► Oct4 and Nanog are up-regulated via de novo synthesis by cell cycle interruption.

  18. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  19. The Antidiabetic Drug Metformin Inhibits the Proliferation of Bladder Cancer Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-12-01

    Full Text Available Recent studies suggest that metformin, a widely used antidiabetic agent, may reduce cancer risk and improve prognosis of certain malignancies. However, the mechanisms for the anti-cancer effects of metformin remain uncertain. In this study, we investigated the effects of metformin on human bladder cancer cells and the underlying mechanisms. Metformin significantly inhibited the proliferation and colony formation of 5637 and T24 cells in vitro; specifically, metformin induced an apparent cell cycle arrest in G0/G1 phases, accompanied by a strong decrease of cyclin D1, cyclin-dependent kinase 4 (CDK4, E2F1 and an increase of p21waf-1. Further experiments revealed that metformin activated AMP-activated protein kinase (AMPK and suppressed mammalian target of rapamycin (mTOR, the central regulator of protein synthesis and cell growth. Moreover, daily treatment of metformin led to a substantial inhibition of tumor growth in a xenograft model with concomitant decrease in the expression of proliferating cell nuclear antigen (PCNA, cyclin D1 and p-mTOR. The in vitro and in vivo results demonstrate that metformin efficiently suppresses the proliferation of bladder cancer cells and suggest that metformin may be a potential therapeutic agent for the treatment of bladder cancer.

  20. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Jie Su

    2015-01-01

    Full Text Available Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II- induced proliferation and migration of vascular smooth muscle cells (VSMCs. Dichlorofluorescein diacetate (DCFH-DA staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS.

  1. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com

    2015-10-23

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases

  2. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1

    International Nuclear Information System (INIS)

    Tan, Yongsheng; Li, Yan

    2015-01-01

    This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 "l"o"w and control cells were treated with different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96"®Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 "l"o"w, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1

  3. Terminalia ferdinandiana extracts as inhibitors of Giardia duodenalis proliferation: a new treatment for giardiasis.

    Science.gov (United States)

    Rayan, P; Matthews, B; McDonnell, P A; Cock, I E

    2015-07-01

    Giardisis is a debilitating disease caused by gastrointestinal parasites of the genus Giardia. High-antioxidant T. ferdinandiana fruit extracts were investigated for the ability to block Giardia duodenalis growth. Methanolic and aqueous extracts had the most potent growth inhibitory activity (IC50 values of approximately 700 and 140 μg/ml, respectively). Ethyl acetate and chloroform extracts also inhibited G. duodenalis growth, albeit with lower potency. The hexane extract was completely devoid of G. duodenalis growth inhibitory activity. All extracts were nontoxic in the Artemia fransiscana bioassay. Nontargeted HPLC-quadrupole time-of-flight (QTOF) mass spectroscopy (with screening against three compound databases) putatively identified 17 compounds in all of the inhibitory extracts but not in the inactive hexane extract. The low toxicity of the Terminalia ferdinandiana fruit extracts and their potent G. duodenalis growth inhibitory bioactivity indicate their potential as medicinal agents in the treatment and prevention of this disease.

  4. Effect of inhibition of intermediate-conductance-Ca2+-activated K+ channels on HeLa cell proliferation

    Directory of Open Access Journals (Sweden)

    Ping Zhan

    2018-01-01

    Conclusion: CLT and blocking of IKCal gene expression effectively inhibits HeLa cell proliferation; therefore, the use of a blocking agent and RNAi both effectively downregulated the mRNA expression of IKCal, which in turn mediated the proliferation of HeLa cells, producing an antitumor effect.

  5. Inhibition of herpes simplex virus replication by tobacco extracts.

    Science.gov (United States)

    Hirsch, J M; Svennerholm, B; Vahlne, A

    1984-05-01

    Herpes simplex virus type 1 (HSV-1) has been associated with the genesis of leukoplakias, epithelial atypia, and oral cancer. Tobacco habits, such as snuff dipping, are also definitely correlated with this type of lesion. The normal cytolytic HSV-1 infection can, after in vitro inactivation, transform cells. Extracts of snuff were prepared and assayed for their ability to inhibit HSV-1 replication. Plaque formation assays of HSV-1 in the presence of snuff extract showed that a reduced number of plaques was formed. Different batches of one brand of snuff were tested for inhibition of herpes simplex virus (HSV) production. More than 99% inhibition of 24-hr HSV production was obtained with undiluted batches. The 1:5 dilutions of snuff had an inhibitory effect of 85% and 1:25 dilutions, 39%. In agreement, the attachment of the virus to the host cell and penetration of the virus to the cell nuclei were found to be inhibited as was the synthesis of viral DNA. Nicotine had an inhibitory effect, while aromatic additions to snuff were found to have no major inhibitory effect on HSV replication. Snuff extracts were prepared from different brands of snuff reported to contain high and low quantities of tobacco-specific N-nitrosamines. Brands with reported high levels of tobacco-specific N-nitrosamines had significantly greater ability to inhibit HSV replication. In conclusion, this study has shown that extracts of snuff have inhibitory effects on the production of cytolytic HSV-1 infections. A chronic snuff dipper keeps tobacco in the mouth for the major part of the day. Thus, virus shed in the oral cavity in connection with a reactivated latent HSV-1 infection has great possibilities of being affected by snuff or derivatives of snuff. It is suggested that an interaction between tobacco products and HSV-1 might be involved in the development of dysplastic lesions in the oral cavity.

  6. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation.

    Science.gov (United States)

    Li, Zheng; Li, Xingye; Chan, Matthew T V; Wu, William Ka Kei; Tan, DunXian; Shen, Jianxiong

    2017-09-01

    Neural stem cells (NSCs) are self-renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro-inflammatory cytokine interleukin-18 (IL-18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL-18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL-18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain-derived and glial cell-derived neurotrophic factors (BDNF, GDNF) in IL-18-stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL-18 may attribute to the up-regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Potential of Piper betle extracts on inhibition of oral pathogens.

    Science.gov (United States)

    Phumat, Pimpak; Khongkhunthian, Sakornrat; Wanachantararak, Phenphichar; Okonogi, Siriporn

    2017-01-01

    In the present study, antimicrobial activity of Piper betle crude ethanol extract against 4 strains of oral pathogens; Candida albicans DMST 8684, C. albicans DMST 5815, Streptococcus gordonii DMST 38731 and Streptococcus mutans DMST 18777 was compared with other medicinal plants. P. betle showed the strongest antimicrobial activity against all tested strains. Fractionated extracts of P. betle using hexane, ethyl acetate, and ethanol, respectively, were subjected to antimicrobial assay. The result revealed that the fractionated extract from ethyl acetate (F-EtOAc) possessed the strongest antimicrobial activity against all tested strains. Its inhibition zones against those pathogens were 23.00 ± 0.00, 24.33 ± 0.58, 12.50 ± 0.70 and 11.00 ± 0.00 mm, respectively and its minimum inhibitory concentrations were 0.50, 1.00, 0.50 and 1.00 mg/mL, respectively. Interestingly, the minimum concentration to completely kill those pathogens was the same for all strains and found to be 2.00 mg/mL. Killing kinetic study revealed that the activity of F-EtOAc was dose dependent. HPLC chromatograms of P. betle extracts were compared with its antimicrobial activity. An obvious peak at a retention time of 4.11 min was found to be a major component of F-EtOAc whereas it was a minor compound in the other extracts. This peak was considered to be an active compound of P. betle as it was consistent with the antimicrobial activity of F-EtOAc, the most potential extract against the tested pathogens. It is suggested that F-EtOAc is a promising extract of P. betle for inhibition of oral pathogens. Separation and structure elucidation of the active compound of this extract will be further investigated.

  8. Pirfenidone inhibits the proliferation of fibroblasts from patients with active Crohn's disease.

    Science.gov (United States)

    Kadir, Sara-Irini; Wenzel Kragstrup, Tue; Dige, Anders; Kok Jensen, Simon; Dahlerup, Jens Frederik; Kelsen, Jens

    2016-11-01

    One-third of Crohn's disease (CD) patients develop intestinal strictures that require repeated surgical intervention. Current anti-inflammatory therapies have limited effect on stricture development, which necessitates the exploration of new pharmacological approaches. Pirfenidone (PFD), a novel anti-fibrotic agent, was recently approved in Europe for the treatment of idiopathic pulmonary fibrosis (IPF). We hypothesized that observations in IPF could be transferable to intestinal fibrosis and that PFD inhibits the proliferation and extracellular matrix (ECM) turnover of gut-derived fibroblasts from CD patients. Fibroblasts were isolated from biopsies of inflamed (n = 8) and non-inflamed (n = 5) colonic mucosa. Expression of CD90 and alpha-smooth muscle actin (αSMA) expression was determined by flow cytometry. The fibroblasts were cultured with PFD (0.5, 1.0 and 2.0 mg/ml). Proliferation was evaluated with CellTiter 96(®) AQueous One Solution Cell Proliferation Assay. Production of matrix metalloproteinase-3 (MMP-3), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen were assessed using ELISA and calorimetric assays, respectively. The majority of the fibroblasts were αSMA-positive myofibroblasts. PFD inhibited fibroblast proliferation [0.94 (PFD 0.5 mg/ml); 0.76 (1.0 mg/ml); 0.58 (2.0 mg/ml)] and production of MMP-3 [0.85 (0.5 mg/ml); 0.74 (1.0 mg/ml); 0.63 (2.0 mg/ml)] dose-dependently (both p = 0.0001). The anti-proliferative effect of PFD was reversible (p = 0.0001), indicating that PFD does not act by an irreversible cytotoxic mechanism. PFD did not influence neither TIMP-1 nor collagen production. PFD inhibited the proliferation and the production of MMP-3 dose-dependently in gut-derived fibroblast from CD patients. Our observations support further studies on PFD in stricturing CD.

  9. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration

    Directory of Open Access Journals (Sweden)

    Linda A. Villani

    2016-10-01

    Full Text Available Objective: The sodium-glucose transporter 2 (SGLT2 inhibitors Canagliflozin and Dapagliflozin are recently approved medications for type 2 diabetes. Recent studies indicate that SGLT2 inhibitors may inhibit the growth of some cancer cells but the mechanism(s remain unclear. Methods: Cellular proliferation and clonogenic survival were used to assess the sensitivity of prostate and lung cancer cell growth to the SGLT2 inhibitors. Oxygen consumption, extracellular acidification rate, cellular ATP, glucose uptake, lipogenesis, and phosphorylation of AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase, and the p70S6 kinase were assessed. Overexpression of a protein that maintains complex-I supported mitochondrial respiration (NDI1 was used to establish the importance of this pathway for mediating the anti-proliferative effects of Canagliflozin. Results: Clinically achievable concentrations of Canagliflozin, but not Dapagliflozin, inhibit cellular proliferation and clonogenic survival of prostate and lung cancer cells alone and in combination with ionizing radiation and the chemotherapy Docetaxel. Canagliflozin reduced glucose uptake, mitochondrial complex-I supported respiration, ATP, and lipogenesis while increasing the activating phosphorylation of AMPK. The overexpression of NDI1 blocked the anti-proliferative effects of Canagliflozin indicating reductions in mitochondrial respiration are critical for anti-proliferative actions. Conclusion: These data indicate that like the biguanide metformin, Canagliflozin not only lowers blood glucose but also inhibits complex-I supported respiration and cellular proliferation in prostate and lung cancer cells. These observations support the initiation of studies evaluating the clinical efficacy of Canagliflozin on limiting tumorigenesis in pre-clinical animal models as well epidemiological studies on cancer incidence relative to other glucose lowering therapies in clinical populations. Keywords: AMP

  10. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shuang, E-mail: luoshuangsch@163.com [Department of Obstetrics and Gynecology, Suining Central Hospital, Suining (China); Wang, Jidong [Department of Gynecology and Obsterics, Jinan Central Hospital, Jinan (China); Ma, Ying [Department of Otorhinolaryngolgy, Suining Central Hospital, Suining (China); Yao, Zhenwei [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Pan, Hongjuan [Department of Gynecology and Obsterics, Zhongshan Hospital, Wuhan (China)

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  11. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    Science.gov (United States)

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  12. Inhibition of aldose reductase by Gentiana lutea extracts.

    Science.gov (United States)

    Akileshwari, Chandrasekhar; Muthenna, Puppala; Nastasijević, Branislav; Joksić, Gordana; Petrash, J Mark; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications.

  13. Inhibition of Aldose Reductase by Gentiana lutea Extracts

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Akileshwari

    2012-01-01

    Full Text Available Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2 activity has been implicated in the development of various secondary complications of diabetes. Thus, ALR2 inhibition could be an effective strategy in the prevention or delay of certain diabetic complications. Gentiana lutea grows naturally in the central and southern areas of Europe. Its roots are commonly consumed as a beverage in some European countries and are also known to have medicinal properties. The water, ethanol, methanol, and ether extracts of the roots of G. lutea were subjected to in vitro bioassay to evaluate their inhibitory activity on the ALR2. While the ether and methanol extracts showed greater inhibitory activities against both rat lens and human ALR2, the water and ethanol extracts showed moderate inhibitory activities. Moreover, the ether and methanol extracts of G. lutea roots significantly and dose-dependently inhibited sorbitol accumulation in human erythrocytes under high glucose conditions. Molecular docking studies with the constituents commonly present in the roots of G. lutea indicate that a secoiridoid glycoside, amarogentin, may be a potential inhibitor of ALR2. This is the first paper that shows G. lutea extracts exhibit inhibitory activity towards ALR2 and these results suggest that Gentiana or its constituents might be useful to prevent or treat diabetic complications.

  14. Inhibition of phospholipase cgamma1 and cancer cell proliferation by triterpene esters from Uncaria rhynchophylla.

    Science.gov (United States)

    Lee, J S; Kim, J; Kim, B Y; Lee, H S; Ahn, J S; Chang, Y S

    2000-06-01

    Investigation of the hooks of Uncaria rhynchophylla resulted in isolation of six phospholipase Cgamma1 (PLCgamma1) inhibitors (1-6). The structures of these compounds were elucidated as pentacyclic triterpene esters by spectroscopic and chemical analysis. Three of them, namely uncarinic acids C (1), D (2), and E (3), are newly reported as natural products. All the compounds showed dose-dependent inhibitory activities against PLCgamma1 in vitro with IC(50) values of 9.5-44.6 microM and inhibited the proliferation of human cancer cells with IC(50) values of 0.5-6.5 microg/mL.

  15. Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture.

    Science.gov (United States)

    Wu, Lili; Feyerabend, Frank; Schilling, Arndt F; Willumeit-Römer, Regine; Luthringer, Bérengère J C

    2015-11-01

    developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells.

    Science.gov (United States)

    Hashimoto, Takashi; He, Zhiwei; Ma, Wei-Ya; Schmid, Patricia C; Bode, Ann M; Yang, Chung S; Dong, Zigang

    2004-05-01

    Caffeine is a major biologically active constituent in coffee and tea. Because caffeine has been reported to inhibit carcinogenesis in UVB-exposed mice, the cancer-preventing effect of caffeine has attracted considerable attention. In the present study, the effect of caffeine in quiescent (G0 phase) cells was investigated. Pretreatment with caffeine suppressed cell proliferation in a dose-dependent manner 36 h after addition of fetal bovine serum as a cell growth stimulator. Analysis by flow cytometry showed that caffeine suppressed cell cycle progression at the G0/G1 phase, i.e., 18 h after addition of fetal bovine serum, the percentages of cells in G0/G1 phase in 1 mM caffeine-treated cells and in caffeine-untreated cells were 61.7 and 29.0, respectively. The percentage of cells in G0/G1 phase at 0 h was 75.5. Caffeine inhibited phosphorylation of retinoblastoma protein at Ser780 and Ser807/Ser811, the sites where retinoblastoma protein has been reported to be phosphorylated by cyclin-dependent kinase 4 (cdk4). Furthermore, caffeine inhibited the activation of the cyclin D1-cdk4 complex in a dose-dependent manner. However this compound did not directly inhibit the activity of this complex. In addition, caffeine did not affect p16INK4 or p27Kip1 protein levels, but inhibited the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase 3beta. Our results showed that caffeine suppressed the progression of quiescent cells into the cell cycle. The inhibitory mechanism may be due to the inhibition of cell growth signal-induced activation of cdk4, which may be involved in the inhibition of carcinogenesis in vivo.

  17. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  18. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    International Nuclear Information System (INIS)

    Cohen, Joseph R; Resnick, Daniel Z; Niewiadomski, Pawel; Dong, Hongmei; Liau, Linda M; Waschek, James A

    2010-01-01

    Hedgehog (HH) signaling is critical for the expansion of granule neuron precursors (GNPs) within the external granular layer (EGL) during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB) - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA) antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1) are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Primary MB tumorsphere cultures were prepared from thirteen ptch1 +/- /p53 +/- double mutant mice and treated with the smoothened (SMO) agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [ 3 H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Primary tumorspheres derived from ptch1 +/- /p53 +/- mice exhibit constitutive HH pathway activity

  19. Inhibition of B cell proliferation by antisense DNA to both alpha and beta forms of Fc epsilon R II.

    Science.gov (United States)

    Bhatti, L; Behle, K; Stevens, R H

    1992-10-01

    Epstein-Barr Virus (EBV) infection activates B lymphocyte proliferation through partially understood mechanisms, resulting in phenotypic changes, including the appearance of new antigens. One such antigen is Fc epsilon R II/CD-23 which may be relevant for B cell proliferation. We have used anti-sense oligonucleotides to study the importance of the two forms of this molecule for proliferation in the EBV-transformed, Fc epsilon R II +ve lymphoblastoid B cell line, RPMI 8866. Anti-sense oligodeoxynucleotides were generated to the two forms of Fc epsilon R II; Fc epsilon R IIa (alpha) and IIb (beta) which differ only in their intracytoplasmic domains. Addition of increasing concentrations of anti-sense oligonucleotides, ranging from 1 to 30 microM, significantly decreased cellular proliferation as measured by the incorporation of [3H]thymidine (inhibition range 8-88%). Optimum inhibition of cellular proliferation was apparent at 15 microM concentration of both anti-sense Fc epsilon R IIa and IIb (Fc epsilon R IIa, mean +/- SE = 75 +/- 7% inhibition, p less than 0.001; Fc epsilon R IIb, mean +/- SE = 71 +/- 7% inhibition, p less than 0.001). Anti-sense oligonucleotides complementary to the common part of Fc epsilon R II resulted in a similar inhibition of proliferation. Sense oligonucleotides did not induce significant inhibition. Preincubation of sense and anti-sense oligonucleotides resulted in an abrogation of proliferation inhibition. Moreover, none of these oligonucleotides had any effect on a Fc epsilon R II -ve cell line. Incubation with both anti-sense IIa and IIb resulted in additive, but not synergistic inhibition of proliferation. Addition of soluble Fc epsilon R II did not reverse inhibition of proliferation, suggesting that membrane-bound or intracellular rather than soluble Fc epsilon R II was important for the induced proliferation. Analysis of cell surface expression for Fc epsilon II indicated that while there was a pronounced effect on cell number

  20. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome.

    Directory of Open Access Journals (Sweden)

    Shao-hua Fan

    Full Text Available The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC.

  1. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling

    International Nuclear Information System (INIS)

    Li, Guofeng; Xu, Jingren; Li, Zengchun

    2012-01-01

    Highlights: ► RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. ► RAGE overexpression decreases Wnt/β-catenin signaling. ► RAGE overexpression decreases ERK and PI3K signaling. ► Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. ► Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGE on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.

  2. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guofeng [Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China); Xu, Jingren [Department of Traditional Chinese Orthopaedics, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China); Li, Zengchun, E-mail: lizc.2007@yahoo.com.cn [Department of Emergency Surgery, East Hospital, Tongji University School of Medicine, Shanghai 200120 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer RAGE overexpression decreases Wnt/{beta}-catenin signaling. Black-Right-Pointing-Pointer RAGE overexpression decreases ERK and PI3K signaling. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGE on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.

  3. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  4. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    International Nuclear Information System (INIS)

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-01-01

    Transforming growth factor-β1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  5. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    International Nuclear Information System (INIS)

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-01-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR

  6. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.

    Science.gov (United States)

    Xie, Liwei; Yin, Amelia; Nichenko, Anna S; Beedle, Aaron M; Call, Jarrod A; Yin, Hang

    2018-03-13

    The remarkable regeneration capability of skeletal muscle depends on coordinated proliferation and differentiation of satellite cells. The self-renewal of satellite cells is critical for long-term maintenance of muscle regeneration potential. Hypoxia profoundly affects the proliferation, differentiation, and self-renewal of cultured myoblasts. However, the physiological relevance of hypoxia and hypoxia signaling in satellite cells in vivo remains largely unknown. Here, we report that satellite cells are in an intrinsic hypoxic state in vivo and express hypoxia-inducible factor 2A (HIF2A). HIF2A promotes the stemness and long-term homeostatic maintenance of satellite cells by maintaining the quiescence, increasing the self-renewal and blocking the myogenic differentiation of satellite cells. HIF2A stabilization in satellite cells cultured under normoxia augmented their engraftment potential in regenerative muscle. Reversely, HIF2A ablation led to the depletion of satellite cells and the consequent regenerative failure in the long-term. In contrast, transient pharmacological inhibition of HIF2A accelerated muscle regeneration by increasing satellite cell proliferation and differentiation. Mechanistically, HIF2A induces the quiescence/self-renewal of satellite cells by binding the promoter of Spry1 gene and activating Spry1 expression. These findings suggest that HIF2A is a pivotal mediator of hypoxia signaling in satellite cells and may be therapeutically targeted to improve muscle regeneration.

  7. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi Hee [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of); Min, Do Sik, E-mail: minds@pusan.ac.kr [Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Geumjeong gu, Busan 609-735 (Korea, Republic of)

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  8. Studies on Inhibition of Proliferation of Enterovirus-71 by Compound YZ-LY-0.

    Science.gov (United States)

    Yang, Qingzhan; Jie, Qing; Shaw, Neil; Li, Lei; Rao, Zihe; Yin, Zheng; Lou, Zhiyong

    2015-01-01

    In recent years, hand-foot-and-mouth disease (HFMD), which is caused by Enteroviruses, has emerged as a serious illness. It affects mainly children under the age of five and results in high fatality rates. Enterovirus 71 (EV71) is the main causative agent of HFMD in China and currently there are no effective anti-viral drugs available to treat HFMD. In the present study, we screened compounds for inhibition of proliferation of EV71. Compound YZ-LY-0 stalled the life cycle of EV71. The inhibitor exhibited EC50 value of 0.29 μm against SK-EV006 strain of EV71. Notably, YZ-LY-0 had low cytotoxicity (CC50 > 100 μM) and a high selectivity index (over 300) in Vero and RD cells. YZ-LY-0 in combination with an EV71 RdRp inhibitor or an entry inhibitor showed an antagonistic effect at very low concentrations. However, at higher concentrations the inhibitors exhibited a synergistic effect in inhibiting viral replication. Preliminary results on investigation of the mechanism of inhibition indicate that YZ-LY-0 does not block the entry of the virus in the host cell, but instead inhibits an early stage of EV71 replication. Our studies provide a potential clinical therapeutic option against EV71 infections and suggest that a combined application of YZ-LY-0 with other inhibitors could be more effective in the treatment of HFMD.

  9. Bevacizumab inhibits proliferation of choroidal endothelial cells by regulation of the cell cycle.

    Science.gov (United States)

    Rusovici, Raluca; Patel, Chirag J; Chalam, Kakarla V

    2013-01-01

    The purpose of this study was to evaluate cell cycle changes in choroidal endothelial cells treated with varying doses of bevacizumab in the presence of a range of concentrations of vascular endothelial growth factor (VEGF). Bevacizumab, a drug widely used in the treatment of neovascular age-related macular degeneration, choroidal neovascularization, and proliferative diabetic retinopathy, neutralizes all isoforms of VEGF. However, the effect of intravitreal administration of bevacizumab on the choroidal endothelial cell cycle has not been established. Monkey choroidal endothelial (RF/6A) cells were treated with VEGF 50 ng/mL and escalating doses of bevacizumab 0.1-2 mg/mL for 72 hours. Cell cycle changes in response to bevacizumab were analyzed by flow cytometry and propidium iodide staining. Cell proliferation was measured using the WST-1 assay. Morphological changes were recorded by bright field cell microscopy. Bevacizumab inhibited proliferation of choroidal endothelial cells by stabilization of the cell cycle in G0/G1 phase. Cell cycle analysis of VEGF-enriched choroidal endothelial cells revealed a predominant increase in the G2/M population (21.84%, P, 0.01) and a decrease in the G0/G1 phase population (55.08%, P, 0.01). Addition of escalating doses of bevacizumab stabilized VEGF-enriched cells in the G0/G1 phase (55.08%, 54.49%, 56.3%, and 64% [P, 0.01]) and arrested proliferation by inhibiting the G2/M phase (21.84%, 21.46%, 20.59%, 20.94%, and 16.1% [P, 0.01]). The increase in G0/G1 subpopulation in VEGF-enriched and bevacizumab-treated cells compared with VEGF-enriched cells alone was dose-dependent. Bevacizumab arrests proliferation of VEGF-enriched choroidal endothelial cells by stabilizing the cell cycle in the G0/G1 phase and inhibiting the G2/M phase in a dose-dependent fashion.

  10. Inhibition of mild steel corrosion using Jatropha Curcas leaf extract

    Directory of Open Access Journals (Sweden)

    OLORUNFEMI MICHAEL AJAYI

    2014-05-01

    Full Text Available Jatropha Curcas leaf was investigated as a green inhibitor on the degradation of mild steel in 4 M HCl and 4 M H2SO4 aqueous solutions using gasometric technique. Mild steel coupons of dimension 2 × 1.5 cm were immersed in test solutions of uninhibited acid and also those with extract concentrations of 4 ml, 6 ml, 8 ml and 10 ml at 30 oC, for up to 30 minutes. The results showed that as the concentration of the extract increases, there was reduction in the corrosion rate. As the extract concentration increased from 4 ml to 10 ml at 30 minutes exposure, the volume of hydrogen gas evolved decreased from 19.1 cm3 to 11.2 cm3 in H2SO4 medium, while it reduced to 5 cm3 from 9 cm3 in HCl medium. Also, the metal surface-phytoconstituent interaction mechanism showed that 6 minutes is the best exposure time for the adsorption of the extract in both acidic media. The Jatropha Curcas leaf extract was adsorbed on the mild steel surface to inhibit corrosion, while the experimental data obtained at 30 minutes exposure in both acidic media were well fitted with the Langmuir adsorption isotherm. Hence, Jatropha Curcas leaf extract is a good and safe inhibitor in both acidic solutions.

  11. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.

    Science.gov (United States)

    Dai, Lei; Wang, Gang; Pan, Wensheng

    2017-01-01

    To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  12. Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Lei Dai

    2017-01-01

    Full Text Available To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

  13. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    Science.gov (United States)

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  14. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    International Nuclear Information System (INIS)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel; Lagaudrière-Gesbert, Cécile

    2012-01-01

    Highlights: ► P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. ► HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. ► HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  15. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiajia [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China); Zhu, Xi [Department of Urology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing (China); Zhang, Jie, E-mail: zhangjiebjmu@163.com [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China)

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  16. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France); Lagaudriere-Gesbert, Cecile, E-mail: cecile.lagaudriere-gesbert@u-psud.fr [Universite de Versailles-Saint-Quentin-en-Yvelines, Laboratoire de Genetique et Biologie Cellulaire, EA 4589, 45 avenue des Etats-Unis, 78035 Versailles (France)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  17. Human retinal pigment epithelial cells inhibit proliferation and IL2R expression of activated T cells

    DEFF Research Database (Denmark)

    Kaestel, Charlotte G; Jørgensen, Annette; Nielsen, Mette

    2002-01-01

    -Thymidine incorporation assay, respectively. T cells and RPE cells were cultured directly together or in a transwell system for determination of the effect of cell contact. The importance of cell surface molecules was examined by application of a panel of blocking antibodies (CD2, CD18, CD40, CD40L, CD54, CD58......) in addition to use of TCR negative T cell lines. The expression of IL2R-alpha -beta and -gamma chains of activated T cells was analysed by flow cytometry after incubation of T cells alone or with RPE cells. Human RPE cells were found to inhibit the proliferation of activated T cells by a cell contact......-beta and -gamma chain expression within 24 hr after removal from the coculture. It is concluded that the cultured human adult and foetal RPE cells inhibit the proliferation of activated T cells by a process that does not involve apoptosis. It depends on cell contact but the involved surface molecules were...

  18. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer. © 2014 Wiley Periodicals, Inc.

  19. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    International Nuclear Information System (INIS)

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie

    2014-01-01

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy

  20. Protective effects of anisodamine on cigarette smoke extract-induced airway smooth muscle cell proliferation and tracheal contractility

    International Nuclear Information System (INIS)

    Xu, Guang-Ni; Yang, Kai; Xu, Zu-Peng; Zhu, Liang; Hou, Li-Na; Qi, Hong; Chen, Hong-Zhuan; Cui, Yong-Yao

    2012-01-01

    Anisodamine, an antagonist of muscarinic acetylcholine receptors (mAChRs), has been used therapeutically to improve smooth muscle function, including microvascular, intestinal and airway spasms. Our previous studies have revealed that airway hyper-reactivity could be prevented by anisodamine. However, whether anisodamine prevents smoking-induced airway smooth muscle (ASM) cell proliferation remained unclear. In this study, a primary culture of rat ASM cells was used to evaluate an ASM phenotype through the ability of the cells to proliferate and express contractile proteins in response to cigarette smoke extract (CSE) and intervention of anisodamine. Our results showed that CSE resulted in an increase in cyclin D1 expression concomitant with the G0/G1-to-S phase transition, and high expression of M2 and M3. Functional studies showed that tracheal hyper-contractility accompanied contractile marker α-SMA high-expression. These changes, which occur only after CSE stimulation, were prevented and reversed by anisodamine, and CSE-induced cyclin D1 expression was significantly inhibited by anisodamine and the specific inhibitor U0126, BAY11-7082 and LY294002. Thus, we concluded that the protective and reversal effects and mechanism of anisodamine on CSE-induced events might involve, at least partially, the ERK, Akt and NF-κB signaling pathways associated with cyclin D1 via mAChRs. Our study validated that anisodamine intervention on ASM cells may contribute to anti-remodeling properties other than bronchodilation. -- Highlights: ► CSE induces tracheal cell proliferation, hyper-contractility and α-SMA expression. ► Anisodamine reverses CSE-induced tracheal hyper-contractility and cell proliferation. ► ERK, PI3K, and NF-κB pathways and cyclin D1 contribute to the reversal effect.

  1. Fasudil inhibits proliferation and migration of Hep-2 laryngeal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2018-02-01

    Full Text Available Xiaowen Zhang,1 Nan Wu2 1Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; 2The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital of China Medical University, Shenyang, China Background: Rho-kinase signal pathway is a new target for cancer therapy. Fasudil, a selective Rho-kinase inhibitor, is found to exert antitumor effects on several types of cancer, but whether fasudil has antitumor effects on laryngeal carcinoma is still unknown. The aim of this study was to determine the effects of fasudil on laryngeal carcinoma and explore the underlying molecular mechanisms in this process. Methods: After treatment with fasudil, changes in biological behaviors, including the growth, proliferation, clone formation, apoptosis, and migration of human laryngeal carcinoma cells (Hep-2 cells were observed. The influences on apoptotic protease activity factor-1 (APAF-1-mediated apoptosis pathway and the activities of matrix metalloproteinases (MMP-2 and MMP-9 were measured by Western blotting and gelatin zymography assay. Results: Half-maximal inhibitory concentration of fasudil to Hep-2 cells was ~3.40×103 µM (95% CI: 2.53–4.66×103 µM. Moreover, fasudil treatment significantly decreased the ability of growth, proliferation, clone formation, and migration of Hep-2 cells, while remarkably increased the apoptosis rate. Furthermore, the expressions of APAF-1, caspase-9, and caspase-3 significantly increased in fasudil treatment group. Meanwhile, fasudil led to a remarkable decrease in the expressions and activities of MMP-2 and MMP-9. Conclusion: Our findings first demonstrate that fasudil not only inhibits the proliferation of laryngeal carcinoma cells through activating APAF-1-mediated apoptosis pathway, but also prevents migration by inhibiting the activities of MMP-2 and MMP-9. Therefore, fasudil is an attractive antitumor drug candidate for the treatment of laryngeal carcinoma

  2. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    Energy Technology Data Exchange (ETDEWEB)

    Son, Dong Ju [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Kim, Soo Yeon [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Han, Seong Su [University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA (United States); Kim, Chan Woo [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Kumar, Sandeep [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Park, Byeoung Soo [Nanotoxtech Co., Ansan (Korea, Republic of); Lee, Sung Eun [Division of Applied Biology and Chemistry, Kyungpook National University, Daegu (Korea, Republic of); Yun, Yeo Pyo [College of Pharmacy, Chungbuk National University, Cheongju (Korea, Republic of); Jo, Hanjoong, E-mail: hjo@emory.edu [Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA (United States); Department of Bioinspired Science, Ehwa Womans University, Seoul (Korea, Republic of); Park, Young Hyun, E-mail: pyh012@sch.ac.kr [Department of Food Science and Nutrition, College of Natural Sciences, Soonchunhyang University, Asan (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  3. Blocking Ihh signaling pathway inhibits the proliferation and promotes the apoptosis of PSCs.

    Science.gov (United States)

    Xu, Kai; Guo, Fengjing; Zhang, Shuwei; Liu, Cheng; Wang, Feixiong; Zhou, Zhiguo; Chen, Anmin

    2009-02-01

    The roles of Indian hedgehog (Ihh) signaling pathway in the proliferation and apoptosis of precartilaginous stem cells (PSCs) were investigated. PSCs, labeled with fibroblast growth factor receptor 3 (FGFR-3), were isolated from neonatal rats by immunomagnetic separation. After identification with FGFR-3 and Col II, the cells were incubated with different concentrations of cyclopamine (cyclo), the specific inhibitor of Ihh signaling pathway. The morphologic changes of the cells were observed under the inverted phase contrast microscope. The mRNA expression levels of Ihh, parathyroid hormonerelated peptide (PTHrP), protein Patched (Ptch), Bcl-2 and p21 were detected by RT-PCR. The protein expression levels of Ihh and Ptch were measured by Western blot. MTT assay was used to examine the effects of cyclo on proliferation of PSCs. Apoptosis rate of PSCs was examined by Annexin V/PI assay of flow cytometric analyses. After PSCs were incubated with cyclo, obvious morphologic changes were observed as compared with the control group. The mRNA expression levels of PTHrP, Ptch and Bcl-2 were decreased to varying degrees in a cyclo dose-dependent manner. However, the expression levels of Ihh and p21 mRNA were increased. The protein expression of Ptch and Ihh had the same change as the mRNA expression. Meanwhile, cyclo could obviously inhibit the proliferation and promote the apoptosis of PSCs. The results indicated that Ihh signaling pathway plays an important role in regulating the proliferation and apoptosis of PSCs, which is probably mediated by Bcl-2 and p21.

  4. [Overexpression of liver kinase B1 inhibits the proliferation of lung cancer cells].

    Science.gov (United States)

    Li, Yang; Zhang, Libin; Wang, Ping

    2017-01-01

    Objective To explore the effect of overexpressed liver kinase B1(LKB1) on the proliferation of lung cancer cell lines. Methods The expression levels of LKB1 and PTEN in A549, NCI-H23, NCI-H157, XWLC-05, NCI-H446 lung cancer cells were detected by immunocytochemistry (ICC) and Western blotting. Plasmid pcDNA3.1 + -LKB1 and empty vector pcDNA3.1 + -null were separately transfected into the above five cell lines, and then the expression of LKB1 mRNA and protein were determined by quantitative real-time PCR and Western blotting, respectively. Finally, CCK-8 assay was used to analyze the proliferation ability of the transfected cells. Results LKB1 and PTEN were positive in NCI-H23 cells; LKB1 was negative while PTEN was positive in A549 and NCI-H446 cells; both LKB1 and PTEN were negative in NCI-H157 and XWLC-05 cells. Quantitative real-time PCR and Western blotting showed that the expression level of LKB1 significantly increased in the above cell lines transfected with plasmid pcDNA3.1 + -LKB1 compared with the ones with empty vector pcDNA3.1 + -null. Besides, CCK-8 assay showed that the overexpression of LKB1 in the lung cancer cells transfected with pcDNA3.1 + -LKB1 had an obvious inhibitory effect on cell proliferation. Conclusion The expression of LKB1 is down-regulated in most of the lung cell lines to different extent and the over-expression of LKB1 can remarkably inhibit the proliferation ability of lung cancer cell lines.

  5. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  6. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  7. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  8. Incarvine C suppresses proliferation and vasculogenic mimicry of hepatocellular carcinoma cells via targeting ROCK inhibition

    International Nuclear Information System (INIS)

    Zhang, Ji-Gang; Zhang, Dan-Dan; Wu, Xin; Wang, Yu-Zhu; Gu, Sheng-Ying; Zhu, Guan-Hua; Li, Xiao-Yu; Li, Qin; Liu, Gao-Lin

    2015-01-01

    Studies have described vasculogenic mimicry (VM) as an alternative circulatory system to blood vessels in multiple malignant tumor types, including hepatocellular carcinoma (HCC). In the current study, we aimed to seek novel and more efficient treatment strategies by targeting VM and explore the underlying mechanisms in HCC cells. Cell counting kit-8 (CCK-8) assay and colony survival assay were performed to explore the inhibitory effect of incarvine C (IVC) on human cancer cell proliferation. Flow cytometry was performed to analyze the cell cycle distribution after DNA staining and cell apoptosis by the Annexin V-PE and 7-AAD assay. The effect of IVC on Rho-associated, coiled-coil-containing protein kinase (ROCK) was determined by western blotting and stress fiber formation assay. The inhibitory role of IVC on MHCC97H cell VM formation was determined by formation of tubular network structures on Matrigel in vitro, real time-qPCR, confocal microscopy and western blotting techniques. We explored an anti-metastatic HCC agent, IVC, derived from traditional Chinese medicinal herbs, and found that IVC dose-dependently inhibited the growth of MHCC97H cells. IVC induced MHCC97H cell cycle arrest at G1 transition, which was associated with cyclin-dependent kinase 2 (CDK-2)/cyclin-E1 degradation and p21/p53 up-regulation. In addition, IVC induced apoptotic death of MHCC97H cells. Furthermore, IVC strongly suppressed the phosphorylation of the ROCK substrate myosin phosphatase target subunit-1 (MYPT-1) and ROCK-mediated actin fiber formation. Finally, IVC inhibited cell-dominant tube formation in vitro, which was accompanied with the down-regulation of VM-key factors as detected by real time-qPCR and immunofluorescence. Taken together, the effective inhibitory effect of IVC on MHCC97H cell proliferation and neovascularization was associated with ROCK inhibition, suggesting that IVC may be a new potential drug candidate for the treatment of HCC

  9. Enzalutamide inhibits proliferation of gemcitabine-resistant bladder cancer cells with increased androgen receptor expression.

    Science.gov (United States)

    Kameyama, Koji; Horie, Kengo; Mizutani, Kosuke; Kato, Taku; Fujita, Yasunori; Kawakami, Kyojiro; Kojima, Toshio; Miyazaki, Tatsuhiko; Deguchi, Takashi; Ito, Masafumi

    2017-01-01

    Advanced bladder cancer is treated mainly with gemcitabine and cisplatin, but most patients eventually become resistance. Androgen receptor (AR) signaling has been implicated in bladder cancer as well as other types of cancer including prostate cancer. In this study, we investigated the expression and role of AR in gemcitabine-resistant bladder cancer cells and also the potential of enzalutamide, an AR inhibitor, as a therapeutic for the chemoresistance. First of all, we established gemcitabine-resistant T24 cells (T24GR) from T24 bladder cancer cells and performed gene expression profiling. Microarray analysis revealed upregulation of AR expression in T24GR cells compared with T24 cells. AR mRNA and protein expression was confirmed to be increased in T24GR cells, respectively, by quantitative RT-PCR and western blot analysis, which was associated with more potent AR transcriptional activity as measured by luciferase reporter assay. The copy number of AR gene in T24GR cells determined by PCR was twice as many as that of T24 cells. AR silencing by siRNA transfection resulted in inhibition of proliferation of T24GR cells. Cell culture in charcoal-stripped serum and treatment with enzalutamide inhibited growth of T24GR cells, which was accompanied by cell cycle arrest. AR transcriptional activity was found to be reduced in T24GR cells by enzalutamide treatment. Lastly, enzalutamide also inhibited cell proliferation of HTB5 bladder cancer cells that express AR and possess intrinsic resistance to gemcitabine. Our results suggest that enzalutamide may have the potential to treat patients with advanced gemcitabine-resistant bladder cancer with increased AR expression.

  10. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoyong Wei

    2012-01-01

    Full Text Available Objective. Effects of Syringic acid (SA extracted from dendrobii on diabetic cataract (DC pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC.

  11. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    Guillen, Isabel A; Berlanga, Jorge; Camacho, Hanlet

    2013-01-01

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  12. BDE-47 and BDE-209 inhibit proliferation of Neuro-2a cells via inducing G1-phase arrest.

    Science.gov (United States)

    Chen, Hongmei; Tang, Xuexi; Zhou, Bin; Xu, Ningning; Zhou, Zhongyuan; Fang, Kuan; Wang, You

    2017-03-01

    Cell proliferation is closely related to cell cycle which is strictly regulated by genes and regulatory proteins. In the present study, we comparatively analyzed the toxic effects of BDE-47 and BDE-209 on cell proliferation of Neuro-2a cells, and the possible mechanism was discussed. The results indicated that BDE-47 significantly inhibited the cell proliferation and the cell cycle were arrest at G1 phase, while BDE-209 had little effects on either cell proliferation or cell cycle. qRT-PCR and Western blot assay presented that BDE-47 up-regulated the gene expressions of p53 and p21, which down-regulated the expresseion of cyclinD1 and CDK2, and inhibited retinoblastoma protein (pRb) phosphorylation. This process could effectively arrest the cell cycle at G1 phase, which finally caused the inhibition on Neuro-2a cell proliferation. However, BDE-209 was only up-regulated the gene expressions of p53, also suggested to be involved in the inhibition on Neuro-2a cell proliferation. Copyright © 2016. Published by Elsevier B.V.

  13. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol.

    Science.gov (United States)

    Romano, Barbara; Borrelli, Francesca; Pagano, Ester; Cascio, Maria Grazia; Pertwee, Roger G; Izzo, Angelo A

    2014-04-15

    Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo. Proliferation was evaluated in colorectal carcinoma (DLD-1 and HCT116) as well as in healthy colonic cells using the MTT assay. CBD BDS binding was evaluated by its ability to displace [(3)H]CP55940 from human cannabinoid CB1 and CB2 receptors. In vivo, the effect of CBD BDS was examined on the preneoplastic lesions (aberrant crypt foci), polyps and tumours induced by the carcinogenic agent azoxymethane (AOM) as well as in a xenograft model of colon cancer in mice. CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells. The effect of CBD BDS was counteracted by selective CB1 and CB2 receptor antagonists. Pure CBD reduced cell proliferation in a CB1-sensitive antagonist manner only. In binding assays, CBD BDS showed greater affinity than pure CBD for both CB1 and CB2 receptors, with pure CBD having very little affinity. In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer. CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hu, E-mail: austhudong@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Jing, Wu, E-mail: wujing8008@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Runpeng, Zhao; Xuewei, Xu; Min, Mu; Ru, Cai [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Yingru, Xing; Shengfa, Ni [Affiliated Cancer Hospital, Anhui University of Science and Technology (China); Rongbo, Zhang [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China)

    2016-08-19

    In recent years, increasing studies have found that pathogenic Mycobacterium tuberculosis (Mtb) inhibits autophagy, which mediates the anti-mycobacterial response, but the mechanism is not clear. We previously reported that secretory acid phosphatase (SapM) of Mtb can negatively regulate autophagy flux. Recently, another virulence factor of Mtb, early secretory antigenic target 6 (ESAT6), has been found to be involved in inhibiting autophagy, but the mechanism remains unclear. In this study, we show that ESAT6 hampers autophagy flux to boost bacillus Calmette-Guerin (BCG) proliferation and reveals a mechanism by which ESAT6 blocks autophagosome-lysosome fusion in a mammalian target of rapamycin (MTOR)-dependent manner. In both Raw264.7 cells and primary macrophages derived from the murine abdominal cavity (ACM), ESAT6 repressed autophagy flux by interfering with the autophagosome-lysosome fusion, which resulted in an increased load of BCG. Impaired degradation of LC3Ⅱ and SQSTM1 by ESAT6 was related to the upregulated activity of MTOR. Contrarily, inhibiting MTOR with Torin1 removed the ESAT6-induced autophagy block and lysosome dysfunction. Furthermore, in both Raw264.7 and ACM cells, MTOR inhibition significantly suppressed the survival of BCG. In conclusion, our study highlights how ESAT6 blocks autophagy and promotes BCG survival in a way that activates MTOR. - Highlights: • A mechanism for disruping autophagy flux induced by ESAT6. • ESAT6-inhibited autophagy is MTOR-dependent. • ESAT6-boosted BCG is MTOR-dependent.

  15. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, Kathleen A.; Klinge, Carolyn M. [University of Louisville School of Medicine, Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, Louisville, KY (United States)

    2012-04-15

    Endothelial dysfunction precedes cardiovascular disease and is accompanied by mitochondrial dysfunction. Here we tested the hypothesis that diesel exhaust particulate extracts (DEPEs), prepared from a truck run at different speeds and engine loads, would inhibit genomic estrogen receptor activation of nuclear respiratory factor-1 (NRF-1) transcription in human umbilical vein endothelial cells (HUVECs). Additionally, we examined how DEPEs affect NRF-1-regulated TFAM expression and, in turn, Tfam-regulated mtDNA-encoded cytochrome c oxidase subunit I (COI, MTCO1) and NADH dehydrogenase subunit I (NDI) expression as well as cell proliferation and viability. We report that 17{beta}-estradiol (E{sub 2}), 4-hydroxytamoxifen (4-OHT), and raloxifene increased NRF-1 transcription in HUVECs in an ER-dependent manner. DEPEs inhibited NRF-1 transcription, and this suppression was not ablated by concomitant treatment with E{sub 2}, 4-OHT, or raloxifene, indicating that the effect was not due to inhibition of ER activity. While E{sub 2} increased HUVEC proliferation and viability, DEPEs inhibited viability but not proliferation. Resveratrol increased NRF-1 transcription in an ER-dependent manner in HUVECs, and ablated DEPE inhibition of basal NRF-1 expression. Given that NRF-1 is a key nuclear transcription factor regulating genes involved in mitochondrial activity and biogenesis, these data suggest that DEPEs may adversely affect mitochondrial function leading to endothelial dysfunction and resveratrol may block these effects. (orig.)

  16. Tyrosinase inhibition and antioxidant properties of Asphodelus microcarpus extracts.

    Science.gov (United States)

    Di Petrillo, Amalia; González-Paramás, Ana Maria; Era, Benedetta; Medda, Rosaria; Pintus, Francesca; Santos-Buelga, Celestino; Fais, Antonella

    2016-11-09

    Asphodelus microcarpus belongs to the family Liliaceae that include several medicinal plants. In the traditional medicine plants of the genus Asphodelus are used to treat skin disorders such as ectodermal parasites, psoriasis, microbial infection and for lightening freckles. In order to find novel skin depigmenting agents, the present work was carry out to evaluate antioxidant activity and tyrosinase inhibitory potential of leaves, flowers and tubers extracts of A. microcarpus. The phytochemical composition of the active extract was also evaluated. Three different extracts (water, methanol and ethanol) from leaves, flowers and tubers of A. microcarpus were evaluated for their inhibitory effect on tyrosinase activity using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. Inhibition of cellular tyrosinase activity and melanin production was also investigated in melanoma B16F10 cells. Antioxidant activity, total phenolic and flavonoids contents were determined using standard in vitro methods. HPLC-DAD-MS was used to identify phenolic profile of the active extract. The results showed that all extracts have a direct inhibitory anti-tyrosinase activity, with ethanolic extract from flowers (FEE) exhibiting the stronger effect. Kinetic analysis revealed that FEE acts as an uncompetitive inhibitor with a Ki value of 0.19 mg/mL. The same effect was observed in murine melanoma B16F10 cells. Cellular tyrosinase activity as well as melanin content were reduced in FEE-treated cells. The results were comparable to that of the standard tyrosinase inhibitor (kojic acid). Furthermore, the same extract showed the highest antioxidant activity and an elevated levels of total phenolics and flavonoid content. Eleven phenolic components were identified as chlorogenic acid, luteolin derivates, naringenin and apigenin. Our findings showed that FEE from A. microcarpus inhibits tyrosinase and exerted antimelanogenesis effect in B16F10 cells. This extract also showed the highest scavenging

  17. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Zhang, Yu; Wang, Tao; He, Jianyu; He, Huaizhen; He, Langchong, E-mail: helc@mail.xjtu.edu.cn

    2015-04-15

    Chronic hypertension induces vascular remodeling. The most important factor for hypertension treatment is reducing the risk of cardiovascular disease. OW1 is a novel imperatorin derivative that exhibits vasodilative activity and antihypertensive effects in two-kidney one-clip (2K1C) renovascular hypertensive rats. It also inhibited vascular remodeling of the thoracic aorta in a previous study. Here, the inhibitory effects and mechanisms of OW1 on arterial vascular remodeling were investigated in vitro and in 2K1C hypertensive rats in vivo. OW1 (20 μM, 10 μM, 5 μM) inhibited Ang II-induced vascular smooth muscle cells (VSMCs) proliferation and ROS generation in vitro. OW1 also reversed the Ang II-mediated inhibition of α-SMA levels and stimulation of OPN levels. Histology results showed that treatment of 2K1C hypertensive rats with OW1 (20, 40, and 80 mg/kg per day, respectively for 5 weeks) in vivo significantly decreased the number of VSMCs, the aortic cross-sectional area (CSA), the media to lumen (M/L) ratio, and the content of collagen I and III in the mesenteric artery. Western blot results also revealed that OW1 stimulated the expression of α-SMA and inhibited the expression of collagen I and III on the thoracic aorta of 2K1C hypertensive rats. In mechanistic studies, OW1 acted as an ACE inhibitor and affected calcium channels. The suppression of MMP expression and the MAPK pathway may account for the effects of OW1 on vascular remodeling. OW1 attenuated vascular remodeling in vitro and in vivo. It could be a novel candidate for hypertension intervention. - Highlights: • OW1, an imperatorin derivative, attenuates vascular remodeling caused by hypertension. • OW1 inhibits VSMC proliferation and media layer hypertrophy. • OW1 acts as an ACE inhibitor and affects calcium channels. • Suppression of MMPs expression and MAPK pathway may account for the effects of OW1 on vascular remodeling.

  18. Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.

    Science.gov (United States)

    Liu, Qicai; Li, Ermao; Huang, Long; Cheng, Minsheng; Li, Li

    2018-01-01

    Background: The limb-bud and heart gene ( LBH ) was discovered in the early 21st century and is specifically expressed in the mouse embryonic limb and heart development. Increasing evidences have indicated that LBH not only plays an important role in embryo development, it is also closely correlated with the occurance and progression of many tumors. However, its function in prostate cancer (PCa) is still not well understood. Here, we explored the effects of LBH on the proliferation and migration of the PCa cell line PC3M. Methods: LBH expression in tissues and cell lines of PCa was detected by immunohistochemistry and Western blotting. Lentivirus was used to transduct the LBH gene into the PC3M cells. Stable LBH-overexpressing PC3M-LBH cells and PC3M-NC control cells were obtained via puromycin screening. Cell proliferation was examined using the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cell cycle distribution and apoptosis rate were investigated using flow cytometry. Cell migration was studied using the Transwell assay. Results: LBH expression level was down-regulated in 3 different PCa cell lines, especially in PC3M cells, compared with the normal prostate epithelial cells(RWPE-1). Cell lines of LBH-upregulated PC3M-LBH and PC3M-NC control were successfully constructed. Significantly increased LBH expression level and decreased cyclin D1 and cyclin E2 expression level was found in PC3M-LBH cells as compared to the PC3M-NC cells. The overexpression of LBH significantly inhibited PC3M cell proliferation in vitro and tumor growth in nude mice. LBH overexpression in PC3M cell, also induced cell cycle G0/G1 phase arrest and decreased the migration of PC3M cells. Conclusions : Our results reveal that LBH expression is down-regulated in the tissue and cell lines of PCa. LBH overexpression inhibits PC3M cell proliferation and tumor growth by inducing cell cycle arrest through down-regulating cyclin D1and cyclin E2 expression. LBH might

  19. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    International Nuclear Information System (INIS)

    Liu, Zengyan; Zhang, Guoqiang; Yu, Wenzheng; Gao, Na; Peng, Jun

    2016-01-01

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G_0/G_1 arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  20. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  1. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zengyan [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China); Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Zhang, Guoqiang [Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Yu, Wenzheng; Gao, Na [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Peng, Jun, E-mail: junpeng885@sina.com [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China)

    2016-01-15

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  2. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    Energy Technology Data Exchange (ETDEWEB)

    Sávio, André Luiz Ventura, E-mail: savio.alv@gmail.com [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil); Nicioli da Silva, Glenda [UFOP – Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG (Brazil); Salvadori, Daisy Maria Fávero [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil)

    2015-01-15

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  3. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    International Nuclear Information System (INIS)

    Sávio, André Luiz Ventura; Nicioli da Silva, Glenda; Salvadori, Daisy Maria Fávero

    2015-01-01

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  4. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    International Nuclear Information System (INIS)

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-01

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression

  5. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Long, Cong; Wang, Huan; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  6. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  7. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  8. Cyclin G1 inhibits the proliferation of mouse endometrial stromal cell in decidualization

    Directory of Open Access Journals (Sweden)

    Xu Qian

    2017-01-01

    Full Text Available Uterine stromal cell decidualization is a dynamic physiological process in which cell proliferation, differentiation and apoptosis are orchestrated and occur in a temporal and cell-specific manner. This process is important for successful embryo implantation. Many cell-cycle regulators are involved in decidualization. The protein cyclin G1 is a unique regulator of the cell cycle with dual functions in cell proliferation. It was reported that cyclin G1 is expressed in mouse uterine stromal cells during the period of peri-implantation. To prove the function of cyclin G1 in mouse uterine stromal cells during this period, immunohistochemistry was used to stain mouse uterine tissues on days 4-8 of pregnancy. The results showed obvious spatial and temporal expression of cyclin G1 in uterine stromal cells, and that it is expressed in the cells of the primary decidual zone (PDZ on day 5 and secondary decidual zone (SDZ on days 6 and 7, when the stromal cells experienced active proliferation and differentiation was initiated. Applying the decidualization model of cultured primary stromal cells in vitro, we further revealed that the expression of cyclin G1 is associated with decidualization of stromal cells induced by medroxyprogesterone acetate (MPA and estradiol-17β (E2. RNA interference was used for the knockdown of cyclin G1 in the induced decidual cells. Flow cytometry analysis indicated that the proportion of cells in the S stage was increased, and decreased in the G2/M phase. Our study indicates that cyclin G1, as a negative regulator of the cell cycle, plays an important role in the process of decidualization in mouse uterine stromal cells by inhibiting cell-cycle progression.

  9. Knockdown of Ran GTPase expression inhibits the proliferation and migration of breast cancer cells.

    Science.gov (United States)

    Sheng, Chenyi; Qiu, Jian; Wang, Yingying; He, Zhixian; Wang, Hua; Wang, Qingqing; Huang, Yeqing; Zhu, Lianxin; Shi, Feng; Chen, Yingying; Xiong, Shiyao; Xu, Zhen; Ni, Qichao

    2018-05-03

    Breast cancer is the second leading cause of cancer‑associated mortality in women worldwide. Strong evidence has suggested that Ran, which is a small GTP binding protein involved in the transport of RNA and protein across the nucleus, may be a key cellular protein involved in the metastatic progression of cancer. The present study investigated Ran gene expression in breast cancer tissue samples obtained from 140 patients who had undergone surgical resection for breast cancer. Western blot analysis of Ran in breast cancer tissues and paired adjacent normal tissues showed that expression of Ran was significantly increased in breast cancer tissues. Immunohistochemistry analyses conducted on formalin‑fixed paraffin‑embedded breast cancer tissue sections revealed that Ran expression was associated with tumor histological grade, nerve invasion and metastasis, vascular metastasis and Ki‑67 expression (a marker of cell proliferation). Kaplan‑Meier survival analysis showed that increased Ran expression in patients with breast cancer was positively associated with a poor survival prognosis. Furthermore, in vitro experiments demonstrated that highly migratory MDA‑MB‑231 cancer cells treated with Ran‑si‑RNA (si‑Ran), which knocked down expression of Ran, exhibited decreased motility in trans‑well migration and wound healing assays. Cell cycle analysis of Ran knocked down MDA‑MB‑231 cells implicated Ran in cell cycle arrest and the inhibition of proliferation. Furthermore, a starvation and re‑feeding (CCK‑8) assay was performed, which indicated that Ran regulated breast cancer cell proliferation. Taken together, the results provide strong in vitro evidence of the involvement of Ran in the progression of breast cancer and suggest that it could have high potential as a therapeutic target and/or marker of disease.

  10. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  11. Knockdown of TFIIS by RNA silencing inhibits cancer cell proliferation and induces apoptosis

    International Nuclear Information System (INIS)

    Hubbard, Kyle; Catalano, Jennifer; Puri, Raj K; Gnatt, Averell

    2008-01-01

    A common element among cancer cells is the presence of improperly controlled transcription. In these cells, the degree of specific activation of some genes is abnormal, and altering the aberrant transcription may therefore directly target cancer. TFIIS is a transcription elongation factor, which directly binds the transcription motor, RNA Polymerase II and allows it to read through various transcription arrest sites. We report on RNA interference of TFIIS, a transcription elongation factor, and its affect on proliferation of cancer cells in culture. RNA interference was performed by transfecting siRNA to specifically knock down TFIIS expression in MCF7, MCF10A, PL45 and A549 cells. Levels of TFIIS expression were determined by the Quantigene method, and relative protein levels of TFIIS, c-myc and p53 were determined by C-ELISA. Induction of apoptosis was determined by an enzymatic Caspase 3/7 assay, as well as a non-enzymatic assay detecting cytoplasmic mono- and oligonucleosomes. A gene array analysis was conducted for effects of TFIIS siRNA on MCF7 and MCF10A cell lines. Knockdown of TFIIS reduced cancer cell proliferation in breast, lung and pancreatic cancer cell lines. More specifically, TFIIS knockdown in the MCF7 breast cancer cell line induced cancer cell death and increased c-myc and p53 expression whereas TFIIS knockdown in the non-cancerous breast cell line MCF10A was less affected. Differential effects of TFIIS knockdown in MCF7 and MCF10A cells included the estrogenic, c-myc and p53 pathways, as observed by C-ELISA and gene array, and were likely involved in MCF7 cell-death. Although transcription is a fundamental process, targeting select core transcription factors may provide for a new and potent avenue for cancer therapeutics. In the present study, knockdown of TFIIS inhibited cancer cell proliferation, suggesting that TFIIS could be studied as a potential cancer target within the transcription machinery

  12. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases

    DEFF Research Database (Denmark)

    Theander, T G; Kharazmi, A; Pedersen, B K

    1988-01-01

    This study was undertaken to determine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (ELA) on human lymphocyte function. AP at 50 micrograms/ml and ELA at 12 micrograms/ml caused a 50% inhibition of phytohemagglutinin-induced proliferation. There was no difference...... in the effect of proteases on CD4- and CD8-positive cells. To determine the effect of proteases on interleukin-2 (IL-2)-induced cell proliferation, the proteases and IL-2 were added to the IL-2-dependent CTLL-2 cell line. AP and ELA inhibited the proliferation of these cells. When IL-2 was added in excess......, the inhibition was partly reversed. ELA at 10 micrograms/ml cleaved IL-2, as judged by size chromatography of a reaction mixture containing 125I-labeled IL-2 and the proteases. The ELA-digested IL-2 exhibited a reduced binding capacity to IL-2 receptors on the lymphocytes. Furthermore, treatment...

  13. Fluoxetine Induces Proliferation and Inhibits Differentiation of Hypothalamic Neuroprogenitor Cells In Vitro

    Science.gov (United States)

    Sousa-Ferreira, Lígia; Aveleira, Célia; Botelho, Mariana; Álvaro, Ana Rita; Pereira de Almeida, Luís; Cavadas, Cláudia

    2014-01-01

    A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs) affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells). Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells) and increased number of undifferentiated cells (SOX-2+ cells). Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY) and Cocaine-and-Amphetamine-Regulated-Transcript (CART). This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides. PMID:24598761

  14. WNT5A inhibits human dental papilla cell proliferation and migration

    International Nuclear Information System (INIS)

    Peng, L.; Ye, L.; Dong, G.; Ren, L.B.; Wang, C.L.; Xu, P.; Zhou, X.D.

    2009-01-01

    WNT proteins are a large family of cysteine-rich secreted molecules that are linked to both canonical and non-canonical signal pathways, and have been implicated in oncogenesis and tissue development. Canonical WNT proteins have been proven to play critical roles in tooth development, while little is known about the role of non-canonical WNT proteins such as WNT5A. In this study, WNT5A was localized to human dental papilla tissue and human dental papilla cells (HDPCs) cultured in vitro, using immunochemistry and RT-PCR. Recombinant adenovirus encoding full-length Wnt5a cDNA was constructed to investigate the biological role of WNT5A on HDPCs. The BrdU incorporation assay, the MTT assay and flow cytometric analysis showed that over-expression of Wnt5a strongly inhibited the proliferation of HDPCs in vitro. Wound healing and transwell migration assays indicated that over-expression of WNT5A reduced migration of HDPCs. In conclusion, our results showed that WNT5A negatively regulates both proliferation and migration of HDPCs, suggesting its important role in odontogenesis via controlling the HDPCs.

  15. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-01-01

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy

  16. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    Energy Technology Data Exchange (ETDEWEB)

    Eitsuka, Takahiro, E-mail: eitsuka@nupals.ac.jp [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata 956-8603 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  17. Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells

    International Nuclear Information System (INIS)

    Márquez-Ramírez, Sandra Gissela; Delgado-Buenrostro, Norma Laura; Chirino, Yolanda Irasema; Iglesias, Gisela Gutiérrez; López-Marure, Rebeca

    2012-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in the chemical, electrical and electronic industries. TiO 2 NPs can enter directly into the brain through the olfactory bulb and be deposited in the hippocampus region. We determined the effect of TiO 2 NPs on rat and human glial cells, C6 and U373, respectively. We evaluated proliferation by crystal violet staining, internalization of TiO 2 NPs, and cellular morphology by TEM analysis, as well as F-actin distribution by immunostaining and cell death by detecting active caspase-3 and DNA fragmentation. TiO 2 NPs inhibited proliferation and induced morphological changes that were related with a decrease in immuno-location of F-actin fibers. TiO 2 NPs were internalized and formation of vesicles was observed. TiO 2 NPs induced apoptosis after 96 h of treatment. Hence, TiO 2 NPs had a cytotoxic effect on glial cells, suggesting that exposure to TiO 2 NPs could cause brain injury and be hazardous to health.

  18. Overexpression of TOR (target of rapamycin) inhibits cell proliferation in Dictyostelium discoideum.

    Science.gov (United States)

    Swer, Pynskhem Bok; Mishra, Himanshu; Lohia, Rakhee; Saran, Shweta

    2016-05-01

    TOR (target of rapamycin) protein kinase acts as a central controller of cell growth and development of an organism. Present study was undertaken to find the expression pattern and role of TOR during growth and development of Dictyostelium discoideum. Failures to generate either knockout and/or knockdown mutants indicate that interference with its levels led to cellular defects. Thus, the effects of TOR (DDB_G0281569) overexpression specifically, cells expressing Dd(Δ211-TOR)-Eyfp mutant was analyzed. Elevated expression of (Δ211-TOR)-Eyfp reduced both cell size and cell proliferation. DdTOR was found to be closer to fungus. mRNA level of TOR was found maximally in the freshly starved/aggregate cells that gradually declined. This was also strengthened by the expression patterns observed by in situ and the analysis of β-galactosidase reporter driven by the putative TOR promoter. The TOR protein was found to be highest at the aggregate stage. The fusion protein, (Δ211-TOR)-Eyfp was localized to the cell membrane, cytosol, and the nucleus. We suggest, DdTOR to be an essential protein and high TOR expression inhibits cell proliferation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta, E-mail: etta@bgu.ac.il

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  20. MicroRNA-133a Inhibits Osteosarcoma Cells Proliferation and Invasion via Targeting IGF-1R

    Directory of Open Access Journals (Sweden)

    Guangnan Chen

    2016-02-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR. The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.

  1. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    Science.gov (United States)

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    Science.gov (United States)

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  3. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    Science.gov (United States)

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  4. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava Root

    Directory of Open Access Journals (Sweden)

    Rakhi Srivastava

    2011-01-01

    Full Text Available In Indian traditional medicine, Boerhaavia diffusa (punarnava roots have been widely used for the treatment of dyspepsia, jaundice, enlargement of spleen, abdominal pain and as an anti-stress agent. Pharmacological evaluation of the crude ethanolic extract of B. diffusa roots has been shown to possess antiproliferative and immunomodulatory properties. The extract of B. diffusa was studied for anti-proliferative effects on the growth of HeLa cells and for its effect on cell cycle. Bio-assays of extracts from B. diffusa root showed that a methanol : chloroform fraction (BDF 5 had an antiproliferative effect on HeLa cells. After 48 h of exposure, this fraction at a concentration of 200 μg mL−1 significantly reduced cell proliferation with visible morphological changes in HeLa cells. Cell cycle analysis suggests that antiproliferative effect of BDF 5 could be due to inhibition of DNA synthesis in S-phase of cell cycle in HeLa cells, whereas no significant change in cell cycle was detected in control cells. The fraction BDF 5 caused cell death via apoptosis as evident from DNA fragmentation and caspase-9 activation. Thus the extract has potential to be evaluated in detail to assess the molecular mechanism-mediated anticancer activities of this plant.

  5. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    Science.gov (United States)

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-07-01

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  6. The ROCO kinase QkgA is necessary for proliferation inhibition by autocrine signals in Dictyostelium discoideum.

    Science.gov (United States)

    Phillips, Jonathan E; Gomer, Richard H

    2010-10-01

    AprA and CfaD are secreted proteins that function as autocrine signals to inhibit cell proliferation in Dictyostelium discoideum. Cells lacking AprA or CfaD proliferate rapidly, and adding AprA or CfaD to cells slows proliferation. Cells lacking the ROCO kinase QkgA proliferate rapidly, with a doubling time 83% of that of the wild type, and overexpression of a QkgA-green fluorescent protein (GFP) fusion protein slows cell proliferation. We found that qkgA(-) cells accumulate normal levels of extracellular AprA and CfaD. Exogenous AprA or CfaD does not slow the proliferation of cells lacking qkgA, and expression of QkgA-GFP in qkgA(-) cells rescues this insensitivity. Like cells lacking AprA or CfaD, cells lacking QkgA tend to be multinucleate, accumulate nuclei rapidly, and show a mass and protein accumulation per nucleus like those of the wild type, suggesting that QkgA negatively regulates proliferation but not growth. Despite their rapid proliferation, cells lacking AprA, CfaD, or QkgA expand as a colony on bacteria less rapidly than the wild type. Unlike AprA and CfaD, QkgA does not affect spore viability following multicellular development. Together, these results indicate that QkgA is necessary for proliferation inhibition by AprA and CfaD, that QkgA mediates some but not all of the effects of AprA and CfaD, and that QkgA may function downstream of these proteins in a signal transduction pathway regulating proliferation.

  7. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts.

    Science.gov (United States)

    Rahimzadeh, Mahsa; Jahanshahi, Samaneh; Moein, Soheila; Moein, Mahmood Reza

    2014-06-01

    One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and 0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets.

  8. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-01-01

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1 −/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1 −/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1 −/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1 −/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory

  9. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  10. External beam irradiation inhibits neointimal hyperplasia after injury-induced arterial smooth muscle cell proliferation

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Dorszewski, A.; Breithardt, G.; Willich, N.

    1996-01-01

    Purpose/Objective: Restenosis after catheter-based revascularization has been demonstrated to be primarily caused by smooth muscle cell proliferation. This study examines the effects of external beam irradiation on neointimal proliferation after external injury to the central artery of the rabbit ear. Materials and Methods: 30 male New Zealand White rabbits were used in this study. Crush lesions were performed on each ear under general anesthesia and bilateral auricular nerve blockade. A single dose of 12 Gy (n=10), 16 Gy (n=10), or 20 Gy (n=10) gamma radiation was delivered to the left or right central artery of the ear 24 hours after injury; the contralateral central artery served as control. All rabbits were sacrificed after twenty-one days and the central arteries of the ear were fixed for morphometric measurements. Results: Mean (± SD) neointimal area was 0.062 ± 0.005 mm 2 (12 Gy), 0.022 ± 0.005 mm 2 (16 Gy) and 0.028 ± 0.006 mm 2 in irradiated arteries compared with 0.081 ± 0.009 mm 2 in the control group. Mean (± SD) luminal area was 0.049 ± 0.004 mm 2 (12 Gy), 0.059 ± 0.002 mm 2 (16 Gy) and 0.072 ± 0.006 mm 2 (24 Gy) in irradiated arteries compared with 0.043 ± 0.008 mm 2 in the control group. The difference in neointimal and luminal area between control and irradiated arteries was significant (p<0.05) only for the 16 and 20 Gy group compared to control. Conclusion: We conclude that in this model, external beam X-ray irradiation was successful in reducing neointimal proliferation after injury of the central artery of the rabbit ear. Marked reductions in neointimal proliferation were demonstrated in vessels subjected to 16 and 20 Gy radiation, a less prominent effect was noted for 12 Gy. Whether this approach can be used successfully to inhibit restenosis in the clinical setting requires further investigation

  11. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    Science.gov (United States)

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  12. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Xie, Jing [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Peng, Jianjun, E-mail: jianjunpeng@126.com [College of Life Sciences, Chongqing Normal University, Chongqing 401331 (China); Han, Yantao, E-mail: hanyt19@126.com [Medical College, Qingdao University, Qingdao, Shandong 266071 (China); Jiang, Qixiao; Han, Mei; Wang, Chunbo [Medical College, Qingdao University, Qingdao, Shandong 266071 (China)

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  13. Atrial natriuretic peptide: a possible mediator involved in dexamethasone's inhibition of cell proliferation in multiple myeloma.

    Science.gov (United States)

    Ding, Jiang-Hua; Chang, Yu-Sui

    2012-08-01

    Atrial natriuretic peptide (ANP) has been recognized for several decades for its role of regulating blood pressure. Recently, cumulating evidences show that ANP plays an anticancer role in various solid tumors via blocking the kinase cascade of Ras-MEK1/2-ERK1/2 with the result of inhibition of DNA synthesis. ANP, as well as its receptors (NPR-A and NPR-C) has been identified present in the embryonic stem cell and a wide range of cancer cells. Various lymphoid organs, such as lymph nodes, have been detected the presence of ANP. Multiple myeloma (MM), though the therapies have evolved significantly, is still an incurable disease as B lymphocyte cell neoplasm. Dexamethasone is the cornerstone in treatment of MM via inactivation of Ras-MEK1/2-ERK1/2 cascade reaction. Coincidently, dexamethasone can increase the expression of ANP markedly. Nevertheless, the role of ANP in MM is unclear. Based on these results above, we raise the hypothesis that ANP is involved in mediating dexamethasone's inhibition of proliferation in MM cells, which suggests that ANP may be a potential agent to treat MM. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Directory of Open Access Journals (Sweden)

    Song Xinming

    2009-08-01

    Full Text Available Abstract Background Highly active anti-retroviral therapy (HAART is the current HIV/AIDS treatment modality. Despite the fact that HAART is very effective in suppressing HIV-1 replication and reducing the mortality of HIV/AIDS patients, it has become increasingly clear that HAART does not offer an ultimate cure to HIV/AIDS. The high cost of the HAART regimen has impeded its delivery to over 90% of the HIV/AIDS population in the world. This reality has urgently called for the need to develop inexpensive alternative anti-HIV/AIDS therapy. This need has further manifested by recent clinical trial failures in anti-HIV-1 vaccines and microbicides. In the current study, we characterized a panel of extracts of traditional Chinese medicinal herbal plants for their activities against HIV-1 replication. Methods Crude and fractionated extracts were prepared from various parts of nine traditional Chinese medicinal herbal plants in Hainan Island, China. These extracts were first screened for their anti-HIV activity and cytotoxicity in human CD4+ Jurkat cells. Then, a single-round pseudotyped HIV-luciferase reporter virus system (HIV-Luc was used to identify potential anti-HIV mechanisms of these extracts. Results Two extracts, one from Euphorbiaceae, Trigonostema xyphophylloides (TXE and one from Dipterocarpaceae, Vatica astrotricha (VAD inhibited HIV-1 replication and syncytia formation in CD4+ Jurkat cells, and had little adverse effects on host cell proliferation and survival. TXE and VAD did not show any direct inhibitory effects on the HIV-1 RT enzymatic activity. Treatment of these two extracts during the infection significantly blocked infection of the reporter virus. However, pre-treatment of the reporter virus with the extracts and treatment of the extracts post-infection had little effects on the infectivity or gene expression of the reporter virus. Conclusion These results demonstrate that TXE and VAD inhibit HIV-1 replication likely by blocking

  15. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  16. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  17. Reduced RAC1 activity inhibits cell proliferation and induces apoptosis in neurofibromatosis type 2(NF2)-associated schwannoma.

    Science.gov (United States)

    Wang, Ying; Wang, Bo; Li, Peng; Zhang, Qi; Liu, Pinan

    2017-12-01

    Objective To study the function and potential mechanism of RAC1 inhibitors in NF2-associated schwannoma. Methods In this study, we the downregulation of RAC1 activity and tumor cell phenotypes by RAC1 inhibitor NSC23766 in vitro. And we further validated the anti-proliferation effect by this RAC1 inhibitor in subcutaneous xenograft tumor model and sciatic nerve model. Results Pharmacological inhibition of RAC1 could significantly inhibit the proliferation of both RT4 cells and human NF2-associated primary schwannoma cells by inducing apoptosis. Pharmacological inhibition of RAC1 effectively reduced Rac1 activity and down-regulated the pathway downstream of Rac. Moreover, pharmacological inhibition of RAC1 showed a potential antitumor effect, with low toxicity in vivo. Conclusion RAC1 inhibitors may play a therapeutic role in patients with schwannoma.

  18. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    International Nuclear Information System (INIS)

    Wang, Feng; Yang, Yong

    2014-01-01

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers

  19. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    Science.gov (United States)

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  20. Rice Hull Extract Suppresses Benign Prostate Hyperplasia by Decreasing Inflammation and Regulating Cell Proliferation in Rats.

    Science.gov (United States)

    Kim, Chae-Yun; Chung, Kyung-Sook; Cheon, Se-Yun; Lee, Jong-Hyun; Park, Youn-Bum; An, Hyo-Jin

    2016-08-01

    Even though rice hull has various physiological functions with high antioxidant potential, the molecular mechanism(s) underlying the effects of rice hull on benign prostatic hyperplasia (BPH) have not been evaluated. The aim of this study was to determine the protective effect of rice hull water extract (RHE) against BPH, which is a common disorder in elderly men and involves inflammation that induces an imbalance between cell proliferation and cell death. In this study, RHE-treated mice exhibited lower prostate weights and ratios of prostate weight to body weight compared to those for the BPH-induced group. In addition, RHE-treated mice had lower serum levels of dihydrotestosterone, mRNA expression of 5α-reductase2, and protein expressions of proliferating cell nuclear antigen (PCNA). Furthermore, RHE treatment significantly decreased cell proliferation by regulating the expression levels of inflammatory-related proteins (iNOS and COX-2) and apoptosis-associated proteins (Fas, FADD, procaspase-8, -3, and Bcl-2 family proteins). These results suggest that RHE could protect against the development of BPH through its anti-inflammatory and apoptotic properties and has good potential as a treatment for BPH.

  1. Excess thyroid hormone inhibits embryonic neural stem/progenitor cells proliferation and maintenance through STAT3 signalling pathway.

    Science.gov (United States)

    Chen, Chunhai; Zhou, Zhou; Zhong, Min; Li, Maoquan; Yang, Xuesen; Zhang, Yanwen; Wang, Yuan; Wei, Aimin; Qu, Mingyue; Zhang, Lei; Xu, Shangcheng; Chen, Shude; Yu, Zhengping

    2011-07-01

    Hyperthyroidism is prevalent during pregnancy, but little is known about the effects of excess thyroid hormone on the development of embryonic neural stem/progenitor cells (NSCs), and the mechanisms underlying these effects. Previous studies indicate that STAT3 plays a crucial role in determining NSC fate during neurodevelopment. In this study, we investigated the effects of a supraphysiological dose of 3,5,3'-L-triiodothyronine (T3) on the proliferation and maintenance of NSCs derived from embryonic day 13.5 mouse neocortex, and the involvement of STAT3 in this process. Our results suggest that excess T3 treatment inhibits NSC proliferation and maintenance. T3 decreased tyrosine phosphorylation of JAK1, JAK2 and STAT3, and subsequently inhibited STAT3-DNA binding activity. Furthermore, proliferation and maintenance of NSCs were decreased by inhibitors of JAKs and STAT3, indicating that the STAT3 signalling pathway is involved in the process of NSC proliferation and maintenance. Taken together, these results suggest that the STAT3 signalling pathway is involved in the process of T3-induced inhibition of embryonic NSC proliferation and maintenance. These findings provide data for understanding the effects of hyperthyroidism during pregnancy on fetal brain development, and the mechanisms underlying these effects.

  2. Astragaloside IV Downregulates β-Catenin in Rat Keratinocytes to Counter LiCl-Induced Inhibition of Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Fu-Lun Li

    2012-01-01

    Full Text Available Re-epithelialization is a crucial step towards wound healing. The traditional Chinese medicine, Astragalus membranaceus (Fisch Bge, has been used for hundreds of years for many kinds of ulcerated wounds. Recent research has identified the active compound in this drug as astragaloside IV (AS-IV, but the underlying molecular mechanisms of its therapeutic action on keratinocytes remain poorly understood. In this study, we used an in vitro model of ulcer-like wound processes, lithium chloride (LiCl-induced cultured mouse keratinocytes, to investigate the effects of AS-IV treatment. The effects on cell proliferation were evaluated by the MTS/PMS colorimetric assay, effects on cell migration were determined by a wound-healing scratch experiment, effects on the cell cycle were analyzed by flow cytometry, and effects on protein expression were analyzed by immunoblotting and immunofluorescence. LiCl strongly inhibited cell proliferation and migration, up-regulated β-catenin expression, and down-regulated proliferating cell nuclear antigen (PCNA expression. AS-IV treatment attenuat the inhibition of proliferation and migration, significantly reducing the enhanced β-catenin expression, and recovering PCNA and β-tubulin expression. Thus, AS-IV mediates mouse keratinocyte proliferation and migration via regulation of the Wnt signaling pathway. Down-regulating β-catenin to increase keratinocyte migration and proliferation is one mechanism by which AS-IV can promote ulcerated wound healing.

  3. Ameloblastin inhibits cranial suture closure by modulating MSX2 expression and proliferation.

    Directory of Open Access Journals (Sweden)

    Phimon Atsawasuwan

    Full Text Available Deformities of cranial sutures such as craniosynostosis and enlarged parietal foramina greatly impact human development and quality of life. Here we have examined the role of the extracellular matrix protein ameloblastin (Ambn, a recent addition to the family of non-collagenous extracellular bone matrix proteins, in craniofacial bone development and suture formation. Using RT-PCR, western blot and immunohistochemistry, Ambn was localized in mouse calvarial bone and adjacent condensed mesenchyme. Five-fold Ambn overexpression in a K14-driven transgenic mouse model resulted in delayed posterior frontal suture fusion and incomplete suture closure. Moreover, Ambn overexpressor skulls weighed 13.2% less, their interfrontal bones were 35.3% thinner, and the width between frontal bones plus interfrontal suture was 14.3% wider. Ambn overexpressing mice also featured reduced cell proliferation in suture blastemas and in mesenchymal cells from posterior frontal sutures. There was a more than 2-fold reduction of Msx2 in Ambn overexpressing calvariae and suture mesenchymal cells, and this effect was inversely proportionate to the level of Ambn overexpression in different cell lines. The reduction of Msx2 expression as a result of Ambn overexpression was further enhanced in the presence of the MEK/ERK pathway inhibitor O126. Finally, Ambn overexpression significantly reduced Msx2 down-stream target gene expression levels, including osteogenic transcription factors Runx2 and Osx, the bone matrix proteins Ibsp, ColI, Ocn and Opn, and the cell cycle-related gene CcnD1. Together, these data suggest that Ambn plays a crucial role in the regulation of cranial bone growth and suture closure via Msx 2 suppression and proliferation inhibition.

  4. Dietary pectin and calcium inhibit colonic proliferation in vivo by differing mechanisms.

    Science.gov (United States)

    Umar, S; Morris, A P; Kourouma, F; Sellin, J H

    2003-12-01

    Diet plays an important role in promoting and/or preventing colon cancer; however, the effects of specific nutrients remain uncertain because of the difficulties in correlating epidemiological and basic observations. Transmissible murine colonic hyperplasia (TMCH) induced by Citrobacter rodentium, causes significant hyperproliferation and hyperplasia in the mouse distal colon and increases the risk of subsequent neoplasia. We have recently shown that TMCH is associated with an increased abundance of cellular beta-catenin and its nuclear translocation coupled with up-regulation of its downstream targets, c-myc and cyclin D1. In this study, we examined the effects of two putatively protective nutrients, calcium and soluble fibre pectin, on molecular events linked to proliferation in the colonic epithelium during TMCH. Dietary intervention incorporating changes in calcium [high (1.0%) and low (0.1%)] and alterations in fibre content (6% pectin and fibre-free) were compared with the standard AIN-93 diet (0.5% calcium, 5% cellulose), followed by histomorphometry and immunochemical assessment of potential oncogenes. Dietary interventions did not alter the time course of Citrobacter infection. Both 1.0% calcium and 6% pectin diet inhibited increases in proliferation and crypt length typically seen in TMCH. Neither the low calcium nor fibre-free diets had significant effect. Pectin diet blocked increases in cellular beta-catenin, cyclin D1 and c-myc levels associated with TMCH by 70%, whereas neither high nor low calcium diet had significant effect on these molecules. Diets supplemented with either calcium or pectin therefore, exert anti-proliferative effects in mouse distal colon involving different molecular pathways. TMCH is thus a diet-sensitive model for examining the effect of specific nutrients on molecular characteristics of the pre-neoplastic colonic epithelium.

  5. Clofibric acid, a peroxisome proliferator-activated receptor alpha ligand, inhibits growth of human ovarian cancer.

    Science.gov (United States)

    Yokoyama, Yoshihito; Xin, Bing; Shigeto, Tatsuhiko; Umemoto, Mika; Kasai-Sakamoto, Akiko; Futagami, Masayuki; Tsuchida, Shigeki; Al-Mulla, Fahd; Mizunuma, Hideki

    2007-04-01

    Recent reports have shown that peroxisome proliferator-activated receptor (PPAR)alpha ligands reduce growth of some types of malignant tumors and prevent carcinogenesis. In this study, we investigated the inhibitory effect of clofibric acid (CA), a ligand for PPARalpha on growth of ovarian malignancy, in in vivo and in vitro experiments using OVCAR-3 and DISS cells derived from human ovarian cancer and aimed to elucidate the molecular mechanism of its antitumor effect. CA treatment significantly suppressed the growth of OVCAR-3 tumors xenotransplanted s.c. and significantly prolonged the survival of mice with malignant ascites derived from DISS cells as compared with control. CA also dose-dependently inhibited cell proliferation of cultured cell lines. CA treatment increased the expression of carbonyl reductase (CR), which promotes the conversion of prostaglandin E(2) (PGE(2)) to PGF(2alpha), in implanted OVCAR-3 tumors as well as cultured cells. CA treatment decreased PGE(2) level as well as vascular endothelial growth factor (VEGF) amount in both of OVCAR-3-tumor and DISS-derived ascites. Reduced microvessel density and induced apoptosis were found in solid OVCAR-3 tumors treated by CA. Transfection of CR expression vector into mouse ovarian cancer cells showed significant reduction of PGE(2) level as well as VEGF expression. These results indicate that CA produces potent antitumor effects against ovarian cancer in conjunction with a reduction of angiogenesis and induction of apoptosis. We conclude that CA could be an effective agent in ovarian cancer and should be tested alone and in combination with other anticancer drugs.

  6. γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells.

    Science.gov (United States)

    Song, Lihua; Du, Aiying; Xiong, Ying; Jiang, Jing; Zhang, Yao; Tian, Zhaofeng; Yan, Hongli

    2016-11-01

    γ-Aminobutyric acid (GABA) is a natural non-protein amino acid, which broadly exists in many plant parts and is widely used as an ingredient in the food industry. In mammals, it is widely distributed in central nervous system and non-neural tissues. In addition to a primary inhibitory neurotransmitter in the central nervous system, endogenous GABA content has been found to be elevated in neoplastic tissues in colon cancer. However, the effect of extraneous GABA on colon cancer has rarely been reported. In this study, we found the inhibitory effects of GABA on the proliferation of colon cancer cells (CCCs). The amino acid also suppressed metastasis of SW480 and SW620 cells. To further study the correlated mechanism, we analyzed the changes in cell cycle distribution and found that GABA suppressed cell cycle progression through G2/M or G1/S phase. Furthermore, RNA sequencing analysis revealed GABA-induced changes in the mRNA expression of 30 genes, including EGR1, MAPK4, NR4A1, Fos, and FosB, in all the three types of CCC. Importantly, GABA enhanced the anti-tumor efficacy of oxaliplatin (OXA) in subcutaneous xenograft tumor model in nude mice. The data suggest that GABA inhibits colon cancer cell proliferation perhaps by attenuating EGR1-NR4A1 axis, EGR1-Fos axis, and by disrupting MEK-EGR1 signaling pathway. This work reveals the pharmacological value of GABA derived from food and suggests that exogenous GABA might play an auxiliary role in polychemotherapy of colon cancer.

  7. Diospyros kaki Extract Inhibits Alkali Burn-Induced Corneal Neovascularization.

    Science.gov (United States)

    Yang, Sung Jae; Jo, Hyoung; Kim, Kyung-A; Ahn, Hong Ryul; Kang, Suk Woo; Jung, Sang Hoon

    2016-01-01

    The purpose of this study was to evaluate the effect of ethanol extract of Diospyros kaki (EEDK) leaves on corneal neovascularization (CoNV) in rats. One week after the alkali burns in the corneas, the CoNV area coverage in the CoNV-positive control group, 100 mg/kg EEDK group, and 200 mg/kg EEDK group was 43.3% ± 5.5%, 337.7% ± 2.5%, and 27.2% ± 4.3%, respectively. The areas of CoNV in the EEDK-treated groups were significantly different from those of the CoNV group. EEDK significantly attenuated the upregulation of vascular endothelial growth factor, fibroblast growth factor, interleukin-6, and matrix metalloproteinase-2 (MMP-2) protein levels. Orally administrated D. kaki inhibited CoNV development in rats.

  8. The dichloromethane extract of the ethnomedicinal plant Neurolaena lobata inhibits NPM/ALK expression which is causal for anaplastic large cell lymphomagenesis.

    Science.gov (United States)

    Unger, Christine; Popescu, Ruxandra; Giessrigl, Benedikt; Laimer, Daniela; Heider, Susanne; Seelinger, Mareike; Diaz, Rene; Wallnöfer, Bruno; Egger, Gerda; Hassler, Melanie; Knöfler, Martin; Saleh, Leila; Sahin, Emine; Grusch, Michael; Fritzer-Szekeres, Monika; Dolznig, Helmut; Frisch, Richard; Kenner, Lukas; Kopp, Brigitte; Krupitza, Georg

    2013-01-01

    The present study investigates extracts of Neuolaena lobata, an anti-protozoan ethnomedicinal plant of the Maya, regarding its anti-neoplastic properties. Firstly, extracts of increasing polarity were tested in HL-60 cells analyzing inhibition of cell proliferation and apoptosis induction. Secondly, the most active extract was further tested in anaplastic large cell lymphoma (ALCL) cell lines of human and mouse origin. The dichloromethane extract inhibited proliferation of HL-60, human and mouse ALCL cells with an IC50 of ~2.5, 3.7 and 2.4 µg/ml, respectively and arrested cells in the G2/M phase. The extract induced the checkpoint kinases Chk1 and Chk2 and perturbed the orchestrated expression of the Cdc25 family of cell cycle phosphatases which was paralleled by the activation of p53, p21 and downregulation of c-Myc. Importantly, the expression of NPM/ALK and its effector JunB were drastically decreased, which correlated with the activation of caspase 3. Subsequently also platelet derived growth factor receptor β was downregulated, which was recently shown to be transcriptionally controlled by JunB synergizing with ALK in ALCL development. We show that a traditional healing plant extract downregulates various oncogenes, induces tumor suppressors, inhibits cell proliferation and triggers apoptosis of malignant cells. The discovery of the 'Active Principle(s)' is warranted.

  9. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    Science.gov (United States)

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  10. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Seok [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kang, Shin-il [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Yoo, Kyu-dong [Hazardous Substances Analysis Division, Gwangju Regional Food and Drug Administration, Gwangju (Korea, Republic of); Lee, Mi-Yea [Department of Nursing Kyungbok University, Pocheon (Korea, Republic of); Yoo, Hwan-Soo; Hong, Jin-Tae [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of); Shin, Hwa-Sup [Department of Applied Biochemistry, Division of Life Science, College of Health and Biomedical Science, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, Bokyung [Department of Physiology, Konkuk Medical School, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Yun, Yeo-Pyo, E-mail: ypyun@chungbuk.ac.kr [College of Pharmacy Medical Research Center, Chungbuk National University, Cheongju (Korea, Republic of)

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  11. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    International Nuclear Information System (INIS)

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-01-01

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway

  12. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    Bruno Pereira Carreira

    2014-10-01

    Full Text Available Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO, which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSC, and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (LPS plus IFN-γ, using a culture system of subventricular zone (SVZ-derived NSC mixed with microglia cells obtained from wild-type mice (iNOS+/+ or from iNOS knockout mice (iNOS-/-. We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite, or using the peroxynitrite degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 µM, for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the

  13. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chao-Feng [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (China); Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan (China); Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan (China); Huang, Han-Li [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Peng, Chieh-Yu [Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan (China); School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Lee, Yu-Ching [The Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan (China); Ph.D. Program for Biotechnology in Medicine, Taipei Medical University, Taipei, Taiwan (China); Wang, Hui-Po [College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Teng, Che-Ming [College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Pan, Shiow-Lin, E-mail: slpan@tmu.edu.tw [The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan (China); Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 10031, Taiwan (China)

    2016-08-15

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.

  14. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    International Nuclear Information System (INIS)

    Lin, Chao-Feng; Huang, Han-Li; Peng, Chieh-Yu; Lee, Yu-Ching; Wang, Hui-Po; Teng, Che-Ming; Pan, Shiow-Lin

    2016-01-01

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [ 3 H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At the concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.

  15. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    International Nuclear Information System (INIS)

    Giallongo, Cesarina; Palumbo, Giuseppe A; Di Raimondo, Francesco; La Cava, Piera; Tibullo, Daniele; Barbagallo, Ignazio; Parrinello, Nunziatina; Cupri, Alessandra; Stagno, Fabio; Consoli, Carla; Chiarenza, Annalisa

    2013-01-01

    SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML

  16. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    Directory of Open Access Journals (Sweden)

    Giallongo Cesarina

    2013-02-01

    Full Text Available Abstract Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM, in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.

  17. Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation

    Science.gov (United States)

    Thomas, S; Przesdzing, I; Metzke, D; Schmitz, J; Radbruch, A; Baumgart, D C

    2009-01-01

    Saccharomyces boulardii (Sb) is a probiotic yeast preparation that has demonstrated efficacy in inflammatory and infectious disorders of the gastrointestinal tract in controlled clinical trials. Although patients clearly benefit from treatment with Sb, little is known on how Sb unfolds its anti-inflammatory properties in humans. Dendritic cells (DC) balance tolerance and immunity and are involved critically in the control of T cell activation. Thus, they are believed to have a pivotal role in the initiation and perpetuation of chronic inflammatory disorders, not only in the gut. We therefore decided to investigate if Sb modulates DC function. Culture of primary (native, non-monocyte-derived) human myeloid CD1c+CD11c+CD123– DC (mDC) in the presence of Sb culture supernatant (active component molecular weight < 3 kDa, as evaluated by membrane partition chromatography) reduced significantly expression of the co-stimulatory molecules CD40 and CD80 (P < 0·01) and the DC mobilization marker CC-chemokine receptor CCR7 (CD197) (P < 0·001) induced by the prototypical microbial antigen lipopolysaccharide (LPS). Moreover, secretion of key proinflammatory cytokines such as tumour necrosis factor-α and interleukin (IL)-6 were notably reduced, while the secretion of anti-inflammatory IL-10 increased. Finally, Sb supernatant inhibited the proliferation of naive T cells in a mixed lymphocyte reaction with mDC. In summary, our data suggest that Sb may exhibit part of its anti-inflammatory potential through modulation of DC phenotype, function and migration by inhibition of their immune response to bacterial microbial surrogate antigens such as LPS. PMID:19161443

  18. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  19. A small-molecule/cytokine combination enhances hematopoietic stem cell proliferation via inhibition of cell differentiation.

    Science.gov (United States)

    Wang, Lan; Guan, Xin; Wang, Huihui; Shen, Bin; Zhang, Yu; Ren, Zhihua; Ma, Yupo; Ding, Xinxin; Jiang, Yongping

    2017-07-18

    Accumulated evidence supports the potent stimulating effects of multiple small molecules on the expansion of hematopoietic stem cells (HSCs) which are important for the therapy of various hematological disorders. Here, we report a novel, optimized formula, named the SC cocktail, which contains a combination of three such small molecules and four cytokines. Small-molecule candidates were individually screened and then combined at their optimal concentration with the presence of cytokines to achieve maximum capacity for stimulating the human CD34 + cell expansion ex vivo. The extent of cell expansion and the immunophenotype of expanded cells were assessed through flow cytometry. The functional preservation of HSC stemness was confirmed by additional cell and molecular assays in vitro. Subsequently, the expanded cells were transplanted into sublethally irradiated NOD/SCID mice for the assessment of human cell viability and engraftment potential in vivo. Furthermore, the expression of several genes in the cell proliferation and differentiation pathways was analyzed through quantitative polymerase chain reaction (qPCR) during the process of CD34 + cell expansion. The SC cocktail supported the retention of the immunophenotype of hematopoietic stem/progenitor cells remarkably well, by yielding purities of 86.6 ± 11.2% for CD34 + cells and 76.2 ± 10.5% for CD34 + CD38 - cells, respectively, for a 7-day culture. On day 7, the enhancement of expansion of CD34 + cells and CD34 + CD38 - cells reached a maxima of 28.0 ± 5.5-fold and 27.9 ± 4.3-fold, respectively. The SC cocktail-expanded CD34 + cells preserved the characteristics of HSCs by effectively inhibiting their differentiation in vitro and retained the multilineage differentiation potential in primary and secondary in vivo murine xenotransplantation trials. Further gene expression analysis suggested that the small-molecule combination strengthened the ability of the cytokines to enhance the Notch

  20. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  1. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    International Nuclear Information System (INIS)

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-01-01

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  2. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Duanmin [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Su, Cunjin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Jiang, Min [Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Yating [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shi, Aiming; Zhao, Fenglun [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Zhu [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Tang, Wen, E-mail: sztangwen@163.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China)

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  3. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    Science.gov (United States)

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  4. Late A-bomb effects on proliferation and mitotic inhibition of T- and B-lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo; Yoshimoto, Yasuhiko; Sasagawa, Sumiko; Sakatani, Tatsuichiro; Macchi, M; Fujikura, Toshio; Pirofsky, B; Hamada, Tadao

    1984-11-01

    In order to investigate late effects of ionization radiation and aging on T- and B-lymphocytes, mitotic ability of T- and B-lymphocytes in the peripheral blood of 266 A-bomb survivors was examined by determining the incorporation of (/sup 3/H)-thymidine. Phytohemagglutinin (PHA) and pokeweed mitogen (PWM) were used as inducers. Furthermore, mitotic inhibition of lymphocytes induced by a lymphatic inhibitor which was in part prepared from ulex seed extracts (USE) was examined. A decreased reaction of peripheral lymphocytes to PHA was seen in men exposed to 100-199 rad; a decreased reaction to PWM was seen in women exposed to more than 200 rad. According to the age group at examination, these decreased reactions were remarkable in men aged 60 years or younger and women aged 60 years or older. Among men less than 60-year-old exposed to 100-199 rad, PWM-induced mitosis of lymphocytes tended to be inhibited remarkably by USE. These results suggest the involvement of late A-bomb effects in mitotic regulation of T- and B-lymphocytes of aged A-bomb survivors.

  5. Blockade of LGR4 inhibits proliferation and odonto/osteogenic differentiation of stem cells from apical papillae.

    Science.gov (United States)

    Zhou, Meng; Guo, Shuyu; Yuan, Lichan; Zhang, Yuxin; Zhang, Mengnan; Chen, Huimin; Lu, Mengting; Yang, Jianrong; Ma, Junqing

    2017-12-01

    During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/β-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted β-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/β-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.

  6. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang; He, Zehong; Wang, Xiuei; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn

    2017-04-01

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.

  7. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  8. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  9. The methanol seed extract of Garcinia kola attenuated angiotensin II- and lipopolyssacharide-inducedvascular smooth muscle cell proliferation and nitric oxide production

    Directory of Open Access Journals (Sweden)

    Adeolu A. Adedapo

    2016-10-01

    Full Text Available All over the world, cardiovascular diseases are a risk factor for poor health and early death with predisposing factors to include age, gender, tobacco use, physical inactivity, excessive alcohol consumption, unhealthy diet, obesity, family history of cardiovascular disease, hypertension, diabetes mellitus, hyperlipidemia, psychosocial factors, poverty and low educational status, and air pollution. It is envisaged that herbal products that can stem this trend would be of great benefit. Garcinia kola (GK, also known as bitter kola is one of such plants. Generally used as a social snack and offered to guests in some cultural settings, bitter kola has been indicated in the treatment of laryngitis, general inflammation, bronchitis, viral infections and diabetes. In this study, the effects of methanol seed extract of Garcinia kola on the proliferation of Vascular Smooth Muscle Cells (VSMCs in cell culture by Angiotensin II (Ang II and LPS-induced NO production were carried out. Confluent VSMCs were exposed to GK (25, 50 and 100 μg/ml before or after treatment with lipopolyssacharide (100μg/ml, and Angiotensin II (10-8-10-6M. Cellular proliferation was determined by MTT assay and NO production by Griess assay. Treatment with Angiotensin II (10-8, 10-6 or LPS significantly enhanced proliferation of VSM cells while LPS significantly increased nitric oxide (NO production. Treatment with GK (25, 50 & 100 μg/ml attenuated VSM cell proliferation. The results indicate that GK has potential to inhibit mitogen activated vascular cell growth and possibly inhibit inflammatory responses to LPS. Thus GK may be useful in condition that is characterized by cellular proliferation and inflammatory responses.

  10. Inhibition effect on lipid oxidation of irradiated pork by adding hawthorn flavonoid extract

    International Nuclear Information System (INIS)

    Wang Xiaoming; Liu Chao; Cao Lei; Li Kexi

    2011-01-01

    The antioxidant activity of hawthorn flavonoid extract and its inhibition effect on irradiated pork lipid oxidant were investigated. The results showed that hawthorn flavonoids had efficient scavenging effect on DPPH free radicals (DPPH ·), and the scavenging rate reached 56% while 2 ml of 0.035 mg/ml hawthorn flavonoid extract was added. Hawthorn flavonoid extract can inhibition the lipid oxidation of irradiated pork effectively and it showed a stronger inhibition ability while the hawthorn flavonoid extract were used together with Vc. It is concluded that can decrease the lipid oxidation of pork, hawthorn flavonoid extract is a remarkable natural antioxidant. (authors)

  11. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway

    International Nuclear Information System (INIS)

    Srivastava, Vikas Kumar; Gara, Rishi Kumar; Bhatt, M.L.B.; Sahu, D.P.; Mishra, Durga Prasad

    2011-01-01

    Research highlights: → Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. → CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. → CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head and neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.

  12. Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro

    DEFF Research Database (Denmark)

    Papazian, Dick; Wagtmann, Valery R; Hansen, Soren

    2015-01-01

    (DCs), we have investigated recall T cell responses in allergic patients sensitized to house dust mite, grass, and birch pollen. Conclusions: Using allergen extract-loaded DCs to stimulate autologous allergen-specific T cell lines, we show that AEC-imprinted DCs inhibit T cell proliferation...... production of both Th1 and Th2 cytokines upon re-challenge. The inhibitory effects of AECs' contact with DCs were absent when allergen extract-loaded DCs had only been exposed to AECs supernatants, but present after direct contact with AECs. We conclude that direct contact between DCs and AECs inhibits T...

  13. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  14. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  15. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Rajah, T.; Chow, S.C., E-mail: chow.sek.chuen@monash.edu

    2014-07-15

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.

  16. The inhibition of human T cell proliferation by the caspase inhibitor z-VAD-FMK is mediated through oxidative stress

    International Nuclear Information System (INIS)

    Rajah, T.; Chow, S.C.

    2014-01-01

    The caspase inhibitor benzyloxycarbony (Cbz)-L-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH

  17. Regulation of proliferation and gene expression in cultured human aortic smooth muscle cells by resveratrol and standardized grape extracts

    International Nuclear Information System (INIS)

    Wang Zhirong; Chen Yan; Labinskyy, Nazar; Hsieh Tzechen; Ungvari, Zoltan; Wu, Joseph M.

    2006-01-01

    Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol

  18. Corrosion Inhibition of Carbon Steel in HCl Solution by Some Plant Extracts

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2012-01-01

    Full Text Available The strict environmental legislations and increasing ecological awareness among scientists have led to the development of “green” alternatives to mitigate corrosion. In the present work, literature on green corrosion inhibitors has been reviewed, and the salient features of our work on green corrosion inhibitors have been highlighted. Among the studied leaves, extract Andrographis paniculata showed better inhibition performance (98% than the other leaves extract. Strychnos nuxvomica showed better inhibition (98% than the other seed extracts. Moringa oleifera is reflected as a good corrosion inhibitor of mild steel in 1 M HCl with 98% inhibition efficiency among the studied fruits extract. Bacopa monnieri showed its maximum inhibition performance to be 95% at 600 ppm among the investigated stem extracts. All the reported plant extracts were found to inhibit the corrosion of mild steel in acid media.

  19. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice.

    Directory of Open Access Journals (Sweden)

    Palanisamy Arulselvan

    Full Text Available Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice. Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index, proliferation (cyclin D1 and c-Myc, angiogenesis (VEGF and HIF-1α, and tumor invasion (MMP-9 and ICAM-1 when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer.

  20. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    International Nuclear Information System (INIS)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Sharma, Siddharth; Bishnoi, Ajay Kumar; Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila; Kumar, Atul; Gupta, Gopal

    2014-01-01

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP

  1. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  2. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  3. Paris polyphylla Suppresses Proliferation and Vasculogenic Mimicry of Human Osteosarcoma Cells and Inhibits Tumor Growth In Vivo.

    Science.gov (United States)

    Yao, Nan; Ren, Ke; Wang, Yimin; Jin, Qiaomei; Lu, Xiao; Lu, Yan; Jiang, Cuihua; Zhang, Dongjian; Lu, Jun; Wang, Chen; Huo, Jiege; Chen, Yong; Zhang, Jian

    2017-01-01

    Paris polyphylla, a traditional antipyretic-detoxicate chinese medicinal herb, has been applied extensively in cancer treatments for nearly 2000 years. The purpose of the present study is to evaluate the potential anti-osteosarcoma effects of Paris polyphylla ethanol extract (PPEE) and to investigate its underlying mechanisms. The antiproliferation activity of PPEE was tested on 143B, MG-63, U-2 OS and hFOB1.19 cells using MTT assay. The pro-apoptotic and cell cycle arrest effects of PPEE were confirmed by Hoechst 33342 staining and flow cytometry. The antimigratory, anti-invasive and antivasculogenic mimicry (VM) effects of PPEE were investigated by wound healing, Transwell and 3D culture assays. Mouse xenograft model was used to examine its anti-osteosarcoma efficacy in vivo. Hematologic profiles and hepatorenal functions were evaluated to assess the toxicity of PPEE. PPEE evidently suppressed cell proliferation of 143B, MG-63 and U-2 OS with IC50 values of 10-60[Formula: see text][Formula: see text]g/mL, but showed little cytotoxicity against normal osteoblastic cell. PPEE promoted apoptosis in 143B cell via caspase activation, increased Bax/Bcl-2 ratio and PARP cleavage. It also induced G2/M phase arrest associated with elevated phosphorylation of CDK1, Cdc25C, Chk2 and down-regulation of cyclin B1, CDK1, Cdc25C expression. Additionally, PPEE inhibited 143B cell migration, invasion and VM formation at noncytotoxic concentrations through decreasing the expression of FAK, Mig-7, MMP2 and MMP9. Finally, daily oral administration of PPEE for four weeks exhibits potent antitumor and anti-VM activity in 143B xenograft model with low toxicity. Taken together, these findings demonstrated PPEE possesses anti-osteosarcoma and anti-VM activity in vitro and in vivo, and therefore is a potential candidate for osteosarcoma treatment.

  4. Ursodeoxycholic acid but not tauroursodeoxycholic acid inhibits proliferation and differentiation of human subcutaneous adipocytes.

    Directory of Open Access Journals (Sweden)

    Lucia Mališová

    Full Text Available Stress of endoplasmic reticulum (ERS is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs. Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA, could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of

  5. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambrosio, Steven M. [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210 (United States); Han, Chunhua [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States); Pan, Li; Douglas Kinghorn, A. [Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Ding, Haiming, E-mail: ding.29@osu.edu [Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not

  6. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    International Nuclear Information System (INIS)

    D'Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Douglas Kinghorn, A.; Ding, Haiming

    2011-01-01

    Highlights: → The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). → Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). → Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. → The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. → Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like those found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF

  7. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Can [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China); Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Wang, Lili; Zhu, Lifang [Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Zhang, Chenping, E-mail: zhang_cping@163.com [Department of Head and Neck Tumors, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai 200011 (China); Zhou, Jianhua [Department of Occupational Medicine and Environmental Health, School of Public Health, Soochow University, Suzhou 215123 (China)

    2014-11-28

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future.

  8. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression

    International Nuclear Information System (INIS)

    Xiao, Can; Wang, Lili; Zhu, Lifang; Zhang, Chenping; Zhou, Jianhua

    2014-01-01

    Highlights: • miR-9 expression level was significantly decreased in OSCC tissues. • Curcumin significantly inhibited SCC-9 cells proliferation. • miR-9 mediates the inhibition of SCC-9 proliferation by curcumin. • Curcumin suppresses Wnt/β-catenin signaling in SCC-9 cells. • miR-9 mediates the suppression of Wnt/β-catenin signaling by curcumin. - Abstract: Curcumin, a phytochemical derived from the rhizome of Curcuma longa, has shown anticancer effects against a variety of tumors. In the present study, we investigated the effects of curcumin on the miR-9 expression in oral squamous cell carcinoma (OSCC) and explored the potential relationships between miR-9 and Wnt/β-catenin pathway in curcumin-mediated OSCC inhibition in vitro. As the results shown, the expression levels of miR-9 were significantly lower in clinical OSCC specimens than those in the adjacent non-tumor tissues. Furthermore, our results indicated that curcumin inhibited OSCC cells (SCC-9 cells) proliferation through up-regulating miR-9 expression, and suppressing Wnt/β-catenin signaling by increasing the expression levels of the GSK-3β, phosphorylated GSK-3β and β-catenin, and decreasing the cyclin D1 level. Additionally, the up-regulation of miR-9 by curcumin in SCC-9 cells was significantly inhibited by delivering anti-miR-9 but not control oligonucleotides. Downregulation of miR-9 by anti-miR-9 not only attenuated the growth-suppressive effects of curcumin on SCC-9 cells, but also re-activated Wnt/β-catenin signaling that was inhibited by curcumin. Therefore, our findings would provide a new insight into the use of curcumin against OSCC in future

  9. Terminalia chebula Fructus Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells and Production of Inflammatory Mediators in RAW 264.7

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lee

    2015-01-01

    Full Text Available Pathogenesis of atherosclerosis and neointima formation after angioplasty involves vascular smooth muscle cells (VSMCs migration and proliferation followed by inflammatory responses mediated by recruited macrophages in the neointima. Terminalia chebula is widely used traditional medicine in Asia for its beneficial effects against cancer, diabetes, and bacterial infection. The study was designed to determine whether Terminalia chebula fructus water extract (TFW suppresses VSMC migration and proliferation and inflammatory mediators production in macrophage (RAW 264.7. Our results showed that TFW possessed strong antioxidative effects in 1,1-diphenyl-2-picryl hydrazyl (DPPH scavenging and lipid peroxidation assays. In addition, TFW reduced nitric oxide (NO production, inducible nitric oxide synthase (iNOS, and cyclooxygenase-2 (COX-2 expression in RAW 264.7 cells. Also, TFW inhibited platelet-derived growth factor (PDGF-BB induced VSMC migration as determined by wound healing and Boyden chamber assays. The antimigratory effect of TFW was due to its inhibitory effect on metalloproteinase-9 (MMP-9 expression, focal adhesion kinase (FAK activation, and Rho-family of small GTPases (Cdc42 and RhoA expression in VSMCs. Furthermore, TFW suppressed PDGF-BB induced VSMC proliferation by downregulation of mitogen activated protein kinases (MAPKs signaling molecules. These results suggest that TFW could be a beneficial resource in the prevention of atherosclerosis.

  10. Estrogen receptor β inhibits estradiol-induced proliferation and migration of MCF-7 cells through regulation of mitofusin 2.

    Science.gov (United States)

    Ma, Li; Liu, Yueping; Geng, Cuizhi; Qi, Xiaowei; Jiang, Jun

    2013-06-01

    In the present study, we investigated whether estrogen receptor (ER) β affected the proliferation and migration of the human breast cancer cell line MCF-7 through regulation of mitofusin 2 (mfn2). A previous study reported that mfn2 may be regulated by ER through a non-classical pathway; in this pathway, the ER modulates the activities of other transcription factors by stabilizing their binding to DNA and/or recruiting coactivators to the complex. However, the previous study, unlike the study presented here, did not directly explore the interactions between ER and mfn2. Here, RT-PCR and western blot analysis were used to test the expression of mfn2 in MCF-7 cells after exposure to different doses of estradiol (E2). The ability of cells to proliferate and migrate was determined by MTT assay and a monolayer-wounding protocol, respectively. Finally, changes in MCF-7 cell biology after transfection with ERβ or mfn2 expression vectors were investigated, and the role of ERβ in mfn2 expression was also explored. Our results showed that E2 attenuated mfn2 expression in a dose-dependent manner, concomitant with the activation of proliferation and migration of MCF-7 cells. The mfn2 expression vector effectively suppressed E2-induced upregulation of PCNA and migration in MCF-7 cells. ERβ inhibited the E2-induced mfn2 downregulation that accompanied the inhibition of proliferation and migration in MCF-7 cells. Briefly, ERβ may inhibit E2-induced proliferation and migration of MCF-7 cells through regulation of mfn2.

  11. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  12. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    Directory of Open Access Journals (Sweden)

    Tomás Herraiz

    2018-01-01

    Full Text Available Monoamine oxidase (MAO catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL. Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L, being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine. L. meyenii root (maca extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2.

  13. C. elegans FOG-3/Tob can either promote or inhibit germline proliferation, depending on gene dosage and genetic context.

    Science.gov (United States)

    Snow, J J; Lee, M-H; Verheyden, J; Kroll-Conner, P L; Kimble, J

    2013-05-23

    Vertebrate Tob/BTG proteins inhibit cell proliferation when overexpressed in tissue-culture cells, and they can function as tumor suppressors in mice. The single Caenorhabditis elegans Tob/BTG ortholog, FOG-3, by contrast, was identified from its loss-of-function phenotype as a regulator of sperm fate specification. Here we report that FOG-3 also regulates proliferation in the germline tissue. We first demonstrate that FOG-3 is a positive regulator of germline proliferation. Thus, fog-3 null mutants possess fewer germ cells than normal, a modest but reproducible decrease observed for each of two distinct fog-3 null alleles. A similar decrease also occurred in fog-3/+ heterozygotes, again for both fog-3 alleles, revealing a haplo-insufficient effect on proliferation. Therefore, FOG-3 normally promotes proliferation, and two copies of the fog-3 gene are required for this function. We next overexpressed FOG-3 by removal of FBF, the collective term for FBF-1 and FBF-2, two nearly identical PUF RNA-binding proteins. We find that overexpressed FOG-3 blocks proliferation in fbf-1 fbf-2 mutants; whereas germ cells stop dividing and instead differentiate in fbf-1 fbf-2 double mutants, they continue to proliferate in fog-3; fbf-1 fbf-2 triple mutants. Therefore, like its vertebrate Tob/BTG cousins, overexpressed FOG-3 is 'antiproliferative'. Indeed, some fog-3; fbf-1 fbf-2 mutants possess small tumors, suggesting that FOG-3 can act as a tumor suppressor. Finally, we show that FOG-3 and FBF work together to promote tumor formation in animals carrying oncogenic Notch mutations. A similar effect was not observed when germline tumors were induced by manipulation of other regulators; therefore, this FOG-3 tumor-promoting effect is context dependent. We conclude that FOG-3 can either promote or inhibit proliferation in a manner that is sensitive to both genetic context and gene dosage. The discovery of these FOG-3 effects on proliferation has implications for our understanding of

  14. Prostaglandin E 2 (PgE 2 ) Inhibition By Crude Extracts Of Selected ...

    African Journals Online (AJOL)

    This study was undertaken to assess anti-inflammatory activity of crude extracts of Cassine transvaalensis Burtt-Davy, Clerodendrum uncinatum Schinz and Commiphora glandulosa Schinz using COX inhibition assay. Water extract of C. transvaalensis root bark (125mg/ml) exhibited a (90%) PGE2 inhibition in ...

  15. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation

    Directory of Open Access Journals (Sweden)

    Duangmano Suwit

    2012-10-01

    Full Text Available Abstract Background Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant Trichosanthes cucumerina L., has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines. Methods In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry. Results Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G2/M phase and the enhancement of apoptosis. Conclusions Our findings suggest that cucurbitacin B may inhibit the

  16. A peptide derived from alpha-fetoprotein inhibits the proliferation induced by estradiol in mammary tumor cells in culture.

    Science.gov (United States)

    Sierralta, Walter D; Epuñan, Maria J; Reyes, José M; Valladares, Luis E; Andersen, Thomas T; Bennett, James A; Jacobson, Herbert I; Pino, Ana M

    2008-01-01

    This study was aimed to obtain additional information on the activity of a cyclized 9-amino acid peptide (cP) containing the active site of alpha fetoprotein, which inhibits the estrogen-stimulated proliferation of tumor cells in culture and of xenografts in immunodeficient mice. Breast cancer cells cultured in the presence of 2 nM estradiol were exposed to cP for different periods and their proliferation, estradiol binding parameters, clustering tendency and expression of E-cadherin and p21Cip1 were analyzed by biochemical and cell biology methods. The proliferation of MCF7 cells was significantly decreased by the addition of 2 microg/ml cP to the medium. cP did not increase cell death rate nor alter the number of binding sites for estradiol nor the endogenous aromatase activity of MCF7 cells. cP also decreased the proliferation of estrogen-dependent ZR75-1 cells but had no effect on estrogen-independent MDA-MB-231 cells. An increased nuclear p21Cip1 expression detected after cP treatment suggests that cP slows MCF7 cell proliferation via this regulator. We propose that cP could represent a novel breast cancer therapeutic agent whose mechanism of action is different from that of tamoxifen or of inhibitors of aromatase.

  17. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    OpenAIRE

    Chauhan, Rajkiran; Garg, Urvija; Tak, R. K.

    2011-01-01

    Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase wi...

  18. Enriched Astaxanthin Extract from Haematococcus pluvialis Augments Growth Factor Secretions to Increase Cell Proliferation and Induces MMP1 Degradation to Enhance Collagen Production in Human Dermal Fibroblasts

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Chou

    2016-06-01

    Full Text Available Among many antioxidants that are used for the repairing of oxidative stress induced skin damages, we identified the enriched astaxanthin extract (EAE from Haematococcus pluvialis as a viable ingredient. EAE was extracted from the red microalgae through supercritical fluid carbon dioxide extraction. To compare the effectiveness, EAE wastreated on human dermal fibroblasts with other components, phorbol 12-myristate 13-acetate (PMA, and doxycycline. With sirius red staining and quantitative real-time polymerase chain reaction (qRT-PCR, we found that PMA decreased the collagen concentration and production while overall the addition of doxycycline and EAE increased the collagen concentration in a trial experiments. EAE increased collagen contents through inhibited MMP1 and MMP3 mRNA expression and induced TIMP1, the antagonists of MMPs protein, gene expression. As for when tested for various proteins through western blotting, it was seen that the addition of EAE increased the expression of certain proteins that promote cell proliferation. Testing those previous solutions using growth factor assay, it was noticeable that EAE had a positive impact on cell proliferation and vascular endothelial growth factor (VEGF than doxycycline, indicating that it was a better alternative treatment for collagen production. To sum up, the data confirmed the possible applications as medical cosmetology agentsand food supplements.

  19. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  20. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  1. ATG-Fresenius inhibits blood circulating cell proliferation in a dose-dependent manner: an experimental study.

    Science.gov (United States)

    Werner, I; Seitz-Merwald, I; Kiessling, A H; Kur, F; Beiras-Fernandez, A

    2014-11-01

    Antithymocyte globulin (ATG)-Fresenius (Neovii-Biotech, Graefelfing, Germany), a highly purified rabbit polyclonal antihuman T-lymphocyte immunoglobulin resulting from immunization of rabbits with the Jurkat T-lymphoblast cell line, is currently used for the prevention of acute rejection in patients receiving solid organ transplants. Our aim was to investigate the in vitro activity of ATG-Fresenius regarding the proliferation of peripheral blood mononuclear cells (PBMCs), an important mechanism of rejection after solid organ transplantation. PBMCs were isolated from 6 healthy donors. Proliferation was assayed using [(3)H] thymidine incorporation. For analysis of mitogen-stimulated proliferation, the PBMCs were incubated at 37°C with various concentrations of ATG-Fresenius in the absence/presence of 40 μg/mL phytohemagglutinin. For analysis of the mixed lymphocyte reaction, PBMCs were incubated at 37°C with various concentrations of ATG-Fresenius for 3 days. On day 3, PBMCs (stimulator cells) from allogeneic donors were incubated with 25 μg/mL mitomycin C. The responder cells (preincubated with ATG-Fresenius) were then cultured at 37°C with the stimulator cells for 6 days. Groups were compared using ANOVA and the Tukey-Kramer multiple comparison test. Preincubation of PBMCs with ATG results in concentration-dependent inhibition of phytohemagglutinin-stimulated proliferation. The effect was more pronounced after 2 and 3 days of treatment with ATG compared with 1 day. There was a concentration-dependent decrease in the mixed lymphocyte reaction-induced proliferation (up to 80%) at ATG-Fresenius concentrations as low as 0.05 to 0.5 μg/mL. No further effect on proliferation at ATG-Fresenius concentrations of 0.5 to 50 μg/mL was seen, and higher concentrations (>100 μg/mL) totally inhibited proliferation. Our in vitro results provide more evidence of the beneficial effect of ATGs in the early phase of solid organ transplantation, by reducing effector cell

  2. [Pulsatilla decoction inhibits vulvovaginal Candida albicans proliferation and reduces inflammatory cytokine levels in vulvovaginal candidiasis mice].

    Science.gov (United States)

    Xia, Dan; Zhang, Mengxiang; Shi, Gaoxiang; Xu, Zhiqing; Wu, Daqiang; Shao, Jing; Wang, Tianming; Wang, Changzhong

    2016-02-01

    significantly. Pulsatilla decoction could inhibit the proliferation of vulvovaginal C. albicans and reduces the levels of inflammatory cytokines in VVC mice.

  3. The Oligo Fucoidan Inhibits Platelet-Derived Growth Factor-Stimulated Proliferation of Airway Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chao-Huei Yang

    2016-01-01

    Full Text Available In the pathogenesis of asthma, the proliferation of airway smooth muscle cells (ASMCs is a key factor in airway remodeling and causes airway narrowing. In addition, ASMCs are also the effector cells of airway inflammation. Fucoidan extracted from marine brown algae polysaccharides has antiviral, antioxidant, antimicrobial, anticlotting, and anticancer properties; however, its effectiveness for asthma has not been elucidated thus far. Platelet-derived growth factor (PDGF-treated primary ASMCs were cultured with or without oligo-fucoidan (100, 500, or 1000 µg/mL to evaluate its effects on cell proliferation, cell cycle, apoptosis, and Akt, ERK1/2 signaling pathway. We found that PDGF (40 ng/mL increased the proliferation of ASMCs by 2.5-fold after 48 h (p < 0.05. Oligo-fucoidan reduced the proliferation of PDGF-stimulated ASMCs by 75%–99% after 48 h (p < 0.05 and induced G1/G0 cell cycle arrest, but did not induce apoptosis. Further, oligo-fucoidan supplementation reduced PDGF-stimulated extracellular signal-regulated kinase (ERK1/2, Akt, and nuclear factor (NF-κB phosphorylation. Taken together, oligo-fucoidan supplementation might reduce proliferation of PDGF-treated ASMCs through the suppression of ERK1/2 and Akt phosphorylation and NF-κB activation. The results provide basis for future animal experiments and human trials.

  4. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells

    International Nuclear Information System (INIS)

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-01-01

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1 + B220 + , a recently identified potent interferon (IFN)-γ producer. Indeed, IFN-γ was produced in those cultures, and pre-B cells lacking IFN-γ receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking β2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-γ beyond the selection imposed upon self-recognition

  5. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shan-Shan [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Jiang, Teng [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Wang, Yi; Gu, Li-Ze [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Wu, Hui-Wen [Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing (China); Tan, Lan [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Guo, Jun, E-mail: Guoj@njmu.edu.cn [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China)

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.

  6. Inhibition of Glomerular Mesangial Cell Proliferation by siPDGF-B- and siPDGFR-β-Containing Chitosan Nanoplexes.

    Science.gov (United States)

    Salva, Emine; Turan, Suna Özbaş; Akbuğa, Jülide

    2017-05-01

    Mesangioproliferative glomerulonephritis is a disease that has a high incidence in humans. In this disease, the proliferation of glomerular mesangial cells and the production of extracellular matrix are important. In recent years, the RNAi technology has been widely used in the treatment of various diseases due to its capability to inhibit the gene expression with high specificity and targeting. The objective of this study was to decrease mesangial cell proliferation by knocking down PDGF-B and its receptor, PDGFR-β. To be able to use small interfering RNAs (siRNAs) in the treatment of this disease successfully, it is necessary to develop appropriate delivery systems. Chitosan, which is a biopolymer, is used as a siRNA delivery system in kidney drug targeting. In order to deliver siRNA molecules targeted at PDGF-B and PDGFR-β, chitosan/siRNA nanoplexes were prepared. The in vitro characterization, transfection studies, and knockdown efficiencies were studied in immortalized and primary rat mesangial cells. In addition, the effects of chitosan nanoplexes on mesangial cell proliferation and migration were investigated. After in vitro transfection, the PDGF-B and PDGFR-β gene silencing efficiencies of PDGF-B and PDGFR-β targeting siRNA-containing chitosan nanoplexes were 74 and 71% in immortalized rat mesangial cells and 66 and 62% in primary rat mesangial cells, respectively. siPDGF-B- and siPDGFR-β-containing nanoplexes indicated a significant decrease in mesangial cell migration and proliferation. These results suggested that mesangial cell proliferation may be inhibited by silencing of the PDGF-B signaling pathway. Gene silencing approaches with chitosan-based gene delivery systems have promise for the efficient treatment of renal disease.

  7. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    International Nuclear Information System (INIS)

    Chen, Shan-Shan; Jiang, Teng; Wang, Yi; Gu, Li-Ze; Wu, Hui-Wen; Tan, Lan; Guo, Jun

    2014-01-01

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM

  8. Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis.

    Science.gov (United States)

    Wang, Bo; Zhang, XueBin; Wang, Wei; Zhu, ZhiZhong; Tang, Fan; Wang, Dong; Liu, Xi; Zhuang, Hao; Yan, XiaoLing

    2018-01-01

    Forkhead box K2 (FOXK2) is a member of the forkhead box family of transcription factors. Recently, researchers discovered that overexpression of FOXK2 inhibits the proliferation and metastasis of breast cancer, non-small cell lung cancer, and colorectal cancer, and is related to the clinical prognosis. However, in hepatocellular carcinoma, FOXK2 results in the opposite phenotypes. Currently, the contribution of FOXK2 to glioma pathogenesis is not clear. We evaluated the expression of FOXK2 in 151 glioma patients using immunohistochemistry assays. The associations among the expression of FOXK2, clinicopathological parameters, and the prognosis of glioma patients were statistically analyzed. We downregulated and upregulated the level of FOXK2 in glioma cells by transfections with small interfering RNA and plasmids. Then, we investigated the effects on tumor cell behavior in vitro by Cell Counting Kit-8 assays, colony-formation assay, transwell assay, and the epithelial-to-mesenchymal transition (EMT) biomarker levels. The clinical data showed that expression of FOXK2 gradually decreased with increasing World Health Organization (WHO) grades and a low level of FOXK2 indicates a poor prognosis. FOXK2 expression is negatively correlated with Ki67 expression and the WHO degree but is not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status, tumor diameter, O -6-methylguanine-DNA methyltransferase, and glutathione S -transferase pi. FOXK2 knockdown enhances glioma cell proliferation, migration, invasion, and EMT process, and, in contrast, FOXK2 overexpression inhibits glioma cell proliferation, migration, invasion, and the EMT process. Expression of FOXK2 gradually decreases with increasing WHO grades. FOXK2 inhibits tumor proliferation, migration, and invasion. FOXK2 is a critical mediator of the EMT process.

  9. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    Science.gov (United States)

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  10. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells.

    Science.gov (United States)

    Cho, Sun-Mi; Lee, Eun-Ok; Kim, Sung-Hoon; Lee, Hyo-Jeong

    2014-07-30

    The essential oil of Pinus koraiensis (EOPK) is biologically active compound obtained from the leaves of P. koraiensis. The goal of this study was to investigate the anti-cancer mechanism of EOPK in HCT116 colorectal cancer cells. HCT116 cell proliferation was assessed by conducting crystal violet and BrdU assays. To assess the effects of EOPK on cell migration, we performed a wound-healing assay. Further, the contribution of PAK1 to EOPK-induced AKT and extracellular signal-regulated kinase (ERK) suppression was assessed by siRNA-mediated PAK1 knockdown. Changes to the expression and phosphorylation of PAK1 and its effectors were determined by western blotting, and changes to the actin cytoskeleton were determined by performing an immunofluorescence assay. EOPK significantly decreased HCT116 cell proliferation and migration, and induced G1 arrest without affecting normal cells. Additionally, EOPK suppressed the expression of PAK1, and decreased ERK and AKT phosphorylation in HCT116 cells. Finally, EOPK suppressed β-catenin, cyclin D1, and CDK4/6 expression. Our studies indicate that EOPK significantly reduced proliferation and migration of colorectal cancer cells. Furthermore, EOPK suppressed PAK1 expression in a dose-dependent manner, and this suppression of PAK1 led to inhibition of ERK, AKT, and β-catenin activities. Our findings suggest that EOPK exerts its anticancer activity via the inhibition of PAK1 expression, suggesting it may be a potent chemotherapeutic agent for colorectal cancer.

  11. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjia [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Song, Ting [Nursing Department of Orthopedics 3rd Ward, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Bao, E-mail: liubao72@yahoo.com.cn [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China); Liu, Changwei, E-mail: liucw@vip.sina.com [Department of Vascular surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 (China)

    2014-10-24

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE.

  12. The p-ERK–p-c-Jun–cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract

    International Nuclear Information System (INIS)

    Li, Tianjia; Song, Ting; Ni, Leng; Yang, Genhuan; Song, Xitao; Wu, Lifei; Liu, Bao; Liu, Changwei

    2014-01-01

    Highlights: • Smooth muscle cells proliferated after exposure to cigarette smoke extract. • The p-ERK, p-c-Jun, and cyclinD1 expressions increased in the process. • The p-ERK inhibitor, U0126, can reverse these effects. • The p-ERK → p-c-Jun → cyclinD1 pathway is involved in the process. - Abstract: An epidemiological survey has shown that smoking is closely related to atherosclerosis, in which excessive proliferation of vascular smooth muscle cells (SMCs) plays a key role. To investigate the mechanism underlying this unusual smoking-induced proliferation, cigarette smoke extract (CSE), prepared as smoke-bubbled phosphate-buffered saline (PBS), was used to induce effects mimicking those exerted by smoking on SMCs. As assessed by Cell Counting Kit-8 detection (an improved MTT assay), SMC viability increased significantly after exposure to CSE. Western blot analysis demonstrated that p-ERK, p-c-Jun, and cyclinD1 expression increased. When p-ERK was inhibited using U0126 (inhibitor of p-ERK), cell viability decreased and the expression of p-c-Jun and cyclinD1 was reduced accordingly, suggesting that p-ERK functions upstream of p-c-Jun and cyclinD1. When a c-Jun over-expression plasmid was transfected into SMCs, the level of cyclinD1 in these cells increased. Moreover, when c-Jun was knocked down by siRNA, cyclinD1 levels decreased. In conclusion, our findings indicate that the p-ERK–p-c-Jun–cyclinD1 pathway is involved in the excessive proliferation of SMCs exposed to CSE

  13. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    OpenAIRE

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERR...

  14. Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Bai Hui Chen

    2015-01-01

    Full Text Available Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation and doublecortin (a marker for neuroblast. Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus.

  15. Peliminary examination of herbal extracts on the inhibition of ...

    African Journals Online (AJOL)

    Methods: The activity was quantitatively assessed on the basis of the inhibition zone, and their activity index was also calculated along with the MIC method. Results: All the plants demonstrated antimicrobial activity against H. pylori with zone of inhibition diameters ranging from 0 - 30 mm and minimum inhibitory ...

  16. MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway

    International Nuclear Information System (INIS)

    Liang, Xuan; Li, Hecheng; Fu, Delai; Chong, Tie; Wang, Ziming; Li, Zhaolun

    2016-01-01

    MicroRNAs (miRNAs) have been known to be implicated in tumorigenic programs. miR-1297 has been reported to be dysregulated and involved in cancer progression in many types of human cancers. However, the expression level and the role of miR-1297 in prostate cancer remain unclear. Herein, we aimed to investigate the potential role and molecular mechanism of miR-1297 in prostate cancer progression. We found that miR-1297 was significantly downregulated in human prostate cancer specimens as well as in several prostate cancer cell lines. In addition, functional experiments demonstrated that overexpression of miR-1297 remarkably inhibited prostate cancer cell proliferation and invasion whereas miR-1297 suppression significantly promoted prostate cancer cell proliferation and invasion. Bioinformatics analysis showed that the Astrocyte elevated gene-1 (AEG-1), a well-known oncogene, is a predicted target of miR-1297. Dual-luciferase reporter assay showed that miR-1297 was able to directly target the 3’-untranslated region of AEG-1. In addition, RT-qPCR and Western blot analysis showed that miR-1297 regulated the mRNA and protein expression levels of AEG-1. We also showed that miR-1297 was able to regulate the Wnt signaling pathway. Moreover, rescue assays indicated that AEG-1 contributed to miR-1297-endowed effects on cell proliferation and invasion as well as Wnt signaling pathway. Taken together, these findings suggest that miR-1297 inhibits prostate cancer proliferation and invasion by targeting AEG-1, thereby providing novel insight into understanding the pathogenesis of prostate cancer. Thus, miR-1297 may be a novel potential therapeutic candidate to treat prostate cancer. - Highlights: • miR-1297 is decreased in prostate cancer. • miR-1297 inhibits prostate cancer cell proliferation and invasion. • miR-1297 targets and inhibits AEG-1. • miR-1297 regulates AEG-1/Wnt signaling pathway.

  17. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts

    Directory of Open Access Journals (Sweden)

    Mahsa Rahimzadeh

    2014-06-01

    Full Text Available Objective(s:One strategy for the treatment of diabetes is inhibition of pancreatic α- amylase. Plants contains different chemical constituents with potential for inhibition of α-amylase and hence maybe used as therapeutic. Materials and Methods: Urtica dioica and Juglans regia Linn were tested for α-amylase inhibition. Different concentrations of leaf aqueous extracts were incubated with enzyme substrate solution and the activity of enzyme was measured. For determination of the type of inhibition, Dixon plot was depicted. Acarbose was used as the standard inhibitor. Results: Both plant extracts showed time and concentration dependent inhibition of α-amylase. 60% inhibition was seen with 2 mg/ml of U. dioica and0.4 mg/ml of J. regia aqueous extract. Dixon plots revealed the type of α-amylase inhibition by these two extracts as competitive inhibition. Conclusion: Determination of the type of α-amylase inhibition by these plant extracts could provide by successful use of plant chemicals as drug targets.

  18. Corrosion Inhibition of Aluminium in Acid Media By Citrullus Colocynthis Extract

    Directory of Open Access Journals (Sweden)

    Rajkiran Chauhan

    2011-01-01

    Full Text Available Inhibition of corrosion of aluminium in acid solution by methanol extract of Citrullus colocynthis plant has been studied using mass loss and thermometric measurements. It has been found that the plant extract act as a good corrosion inhibitor for aluminium in all concentrations of sulphuric and hydrochloric acid solution. The inhibition action depends on the concentration of acid and inhibitor. Results for mass loss and thermometric measurement indicate that inhibition efficiency increase with increasing inhibitor concentration. The inhibition action of the plant extract is discussed in view of Langmuir adsorption isotherm. It has been observed that the adsorption of the extract on aluminium surface is a spontaneous process. The plant extract provides a good protection to aluminium against corrosion.

  19. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zeng Hui-Lan

    2011-08-01

    Full Text Available Abstract Background The therapeutic efficacy of human mesenchymal stem cells (hMSCs for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. Results After treatment with DFO and CoCl2, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl2 treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P Conclusions The hypoxia-mimetic agents, DFO and CoCl2, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.

  20. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    Science.gov (United States)

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  1. Tob1 induces apoptosis and inhibits proliferation, migration and invasion of gastric cancer cells by activating Smad4 and inhibiting β‑catenin signaling.

    Science.gov (United States)

    Kundu, Juthika; Wahab, S M Riajul; Kundu, Joydeb Kumar; Choi, Yoon-La; Erkin, Ozgur Cem; Lee, Hun Seok; Park, Sang Gyu; Shin, Young Kee

    2012-09-01

    Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.

  2. Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes apoptosis.

    Science.gov (United States)

    Zhang, Qiang; Geng, Pei-Liang; Yin, Pei; Wang, Xiao-Lin; Jia, Jin-Peng; Yao, Jie

    2013-01-01

    To investigate the expression level of TUG1 and one of its transcript variants (n377360) in osteosarcoma cells and assess the role of TUG1 in proliferation and apoptosis in the U2OS cell line. TUG1 and n377360 expression levels in patients with osteosarcomas and the U2OS human osteosarcoma cell line were evaluated using real-time quantitative PCR. U2OS cells were transected with TUG1 and n377360 siRNA or non-targeting siRNA. MTS was performed to assess the cell proliferation and flow cytometry was applied to analyze apoptosis. We found significantly higher TUG1 and n377360 expression levels in osteosarcoma tissues compared with matched non-tumorous tissues. In line with this, suppression of TUG1 and n377360 expression by siRNA significantly impaired the cell proliferation potential of osteosarcoma cells. Furthermore, inhibition of TUG1 expression significantly promoted osteosarcoma cell apoptosis. The overexpression of TUG1 and n377360 in osteosarcoma specimens and the functional role of TUG1 and n377360 regarding cell proliferation and apoptosis in an osteosarcoma cell line provided evidence that the use of TUG1 or n377360 may be a viable but an as yet unexplored therapeutic strategy in tumors that over express these factors.

  3. Upregulation of MicroRNA-4262 Targets Kaiso (ZBTB33) to Inhibit the Proliferation and EMT of Cervical Cancer Cells.

    Science.gov (United States)

    Feng, Jing

    2017-08-11

    More and more studies have reported that dysregulation of microRNAs (miRNAs) lead to the proliferation and EMT of multiple cancers. Recently, several reports have demonstrated that dysregulation of miR-4262 is in numerous cancers. However, its role and precise mechanism in human cervical cancer (CC) have not been well clarified. Hence, my study was aim to explore the biological roles and precise mechanisms of miR-4262 in CC cell lines. In my study, I found that the level of miR-4262 is significantly decreased in CC tissues and cell lines. Moreover, decreased expression of miR-4262 was closely related to increased expression of Kaiso (ZBTB33) that belongs to the BTB/POZ family in CC tissues and cell lines. The proliferation and EMT of CC cells were inhibited by miR-4262 mimic. However, down-regulation of miR-4262 enhanced the proliferation and EMT of CC cells. Next, bioinformatics analysis predicted that miR-4262 might directly target the Kaiso gene. Besides, luciferase reporter assay had confirmed this result. Moreover, introduction of Kaiso in CC cells partially blocked the effects of miR-4262 mimic. In conclusion, miR-4262 suppressed the proliferation and EMT of CC cells by directly down-regulation of Kaiso.

  4. Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations

    International Nuclear Information System (INIS)

    Preto, Ana; Soares, Paula; Sobrinho-Simões, Manuel; Gonçalves, Joana; Rebocho, Ana P; Figueiredo, Joana; Meireles, Ana M; Rocha, Ana S; Vasconcelos, Helena M; Seca, Hugo; Seruca, Raquel

    2009-01-01

    Thyroid carcinomas show a high prevalence of mutations in the oncogene BRAF which are inversely associated with RAS or RET/PTC oncogenic activation. The possibility of using inhibitors on the BRAF pathway as became an interesting therapeutic approach. In thyroid cancer cells the target molecules, implicated on the cellular effects, mediated by inhibition of BRAF are not well established. In order to fill this lack of knowledge we studied the proliferation and survival pathways and associated molecules induced by BRAF inhibition in thyroid carcinoma cell lines harbouring distinct genetic backgrounds. Suppression of BRAF pathway in thyroid cancer cell lines (8505C, TPC1 and C643) was achieved using RNA interference (RNAi) for BRAF and the kinase inhibitor, sorafenib. Proliferation analysis was performed by BrdU incorporation and apoptosis was accessed by TUNEL assay. Levels of protein expression were analysed by western-blot. Both BRAF RNAi and sorafenib inhibited proliferation in all the cell lines independently of the genetic background, mostly in cells with BRAF V600E mutation. In BRAF V600E mutated cells inhibition of BRAF pathway lead to a decrease in ERK1/2 phosphorylation and cyclin D1 levels and an increase in p27 Kip1 . Specific inhibition of BRAF by RNAi in cells with BRAF V600E mutation had no effect on apoptosis. In the case of sorafenib treatment, cells harbouring BRAF V600E mutation showed increase levels of apoptosis due to a balance of the anti-apoptotic proteins Mcl-1 and Bcl-2. Our results in thyroid cancer cells, namely those harbouring BRAF V600E mutation showed that BRAF signalling pathway provides important proliferation signals. We have shown that in thyroid cancer cells sorafenib induces apoptosis by affecting Mcl-1 and Bcl-2 in BRAF V600E mutated cells which was independent of BRAF. These results suggest that sorafenib may prove useful in the treatment of thyroid carcinomas, particularly those refractory to conventional treatment and

  5. CORROSION INHIBITIVE PROPERTIES OF EXTRACT OF JATROPHA CURCAS LEAVES ON MILD STEEL IN HYDROCHLORIC ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    J. Odusote

    2016-09-01

    Full Text Available Jatropha curcas leaves extract was tested as a green corrosion inhibitor for mild steel in aqueous hydrochloric acid solution using gravimetric and thermometric techniques. The results reveal that the inhibition efficiency vary with concentration of the leaf extract and the time of immersion. Maximum inhibition efficiency was found to be 95.92% in 2M HCl with 0.5 g/l concentration of the extract in gravimetric method, while 87.04% was obtained in thermometric method. The inhibiting effect was attributed to the presence of alkaloids, flavonoids, saponins, tannins and phenol in the extract. The adsorption processes of the Jatropha curcas leaves extract onto the mild steel is consistent with the assumptions of Langmuir isotherm model and also found to be spontaneous. From the results, a physical adsorption mechanism is proposed for the adsorption of Jatropha curcas leaves extract onto mild steel surface.

  6. Synergistic effect of intervention of glypican-3 gene transcription combined with antitumor drugs in inhibiting hepatoma cell proliferation

    Directory of Open Access Journals (Sweden)

    YANG Jie

    2016-12-01

    Full Text Available ObjectiveTo investigate the inhibitory effect of intervention of glypican-3 (GPC3 gene transcription combined with antitumor drugs on hepatoma cell proliferation. MethodsFour types of GPC3-shRNA plasmids were established and transfected into HepG2 hepatoma cells. Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression of GPC3 to analyze its association with hepatoma cell proliferation and apoptosis. The independent samples t-test was used for comparison of continuous data between any two groups, and a one-way analysis of variance was used for comparison between multiple groups. ResultsAmong these four plasmids, shRNA1 had a transfection efficiency of >85% in the transfection of HepG2 cells and a silence efficiency of 89.3% at the mRNA level, and the protein expression of GPC3 was significantly inhibited(P<0.01). At 72 hours, the GPC3-shRNA1 co-intervention group had an HepG2 cell inhibition rate of 71.1%, significantly different from that in the negative group (t=18.092, P<0.001, an inhibition rate of migration of 89.1%, significantly lower than that in the negative group (t=8.326, P<0.001, and inhibition rates of HepG2 cell movement and invasion of 53.6% and 60.1%, which were significantly different from those in the negative group (t=52.400 and 48.245, both P<0.001. The GPC3-shRNA1 co-intervention group had a β-catenin mRNA inhibition rate of 46.9% and a Gli1 mRNA upregulation rate of 7.4%, significantly different from those in the negative group (t=30.108 and -3.551, P<0.001 and P=0.009. At 24 hours, 10 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 52.6% and 100 μmol/L sorafenib combined with shRNA1 had an inhibition rate of tumor cells of 79.5%, which were significantly different from that in the control group (t=23.314 and 50.352, both P<0.001. The half-maximal inhibitory concentrations of sorafenib, rapamycin, and erlotinib for HepG2 were 4.67±1

  7. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  8. [AntiEGFRnano inhibites proliferation and migration of estrogen-dependent Ishikawa cells of human endometrial cancer cell line].

    Science.gov (United States)

    Diao, Zhen-yu; Lu, Wu-guang; Cao, Peng; Hu, Yun-long; Zhou, Xing; Xue, Ping-ping; Shen, Li; Sun, Hai-xiang

    2012-10-01

    Nanobody is a kind of antibody from camel, which misses light chain. Nanobody has the same antigen binding specificity and affinity as mAb. Moreover, because of its small molecular weight, high stability and easy preparation, nanobody has great value of biomedical applications. In this study, we successfully prepared highly pure antiEGFR nanobody in E.coli using genetic engineering techniques. Cell proliferation assay (CCK-8 assay) and migration experiments (cell scratch test and Transwell assay) indicated that the recombinant antiEGFRnano can significantly inhibit the proliferation and migration of endometrial cancer cells. These results provide a new way of thinking and methods for EGFR-targeted therapy of endometrial cancer.

  9. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  10. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    International Nuclear Information System (INIS)

    Manceur, Aziza P.; Tseng, Michael; Holowacz, Tamara; Witterick, Ian; Weksberg, Rosanna; McCurdy, Richard D.; Warsh, Jerry J.; Audet, Julie

    2011-01-01

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  11. Saffron Aqueous Extract Inhibits the Chemically-induced Gastric Cancer Progression in the Wistar Albino Rat

    Directory of Open Access Journals (Sweden)

    S. Zahra Bathaie

    2013-01-01

    Full Text Available Objective(s: Gastric cancer is the first and second leading cause of cancer related death in Iranian men and women, respectively. Gastric cancer management is based on the surgery, radiotherapy and chemotherapy. In the present study, for the first time, the beneficial effect of saffron (Crocus sativus L. aqueous extract (SAE on the 1-Methyl-3-nitro-1-nitrosoguanidine (MNNG-induced gastric cancer in rat was investigated. Materials and Methods: MNNG was used to induce gastric cancer and then, different concentrations of SAE were administered to rats. After sacrificing, the stomach tissue was investigated by both pathologist and flow cytometry, and several biochemical parameters was determined in the plasma (or serum and stomach of rats. Results: Pathologic data indicated the induction of cancer at different stages from hyperplasia to adenoma in rats; and the inhibition of cancer progression in the gastric tissue by SAE administration; so that, 20% of cancerous rats treated with higher doses of SAE was completely normal at the end of experiment and there was no rat with adenoma in the SAE treated groups. In addition, the results of the flow cytometry/ propidium iodide staining showed that the apoptosis/proliferation ratio was increased due to the SAE treatment of cancerous rats. Moreover, the significantly increased serum LDH and decreased plasma antioxidant activity due to cancer induction fell backwards after treatment of rats with SAE. But changes in the other parameters (Ca2+, tyrosine kinase activity and carcino-embryonic antigen were not significant. Conclusion: SAE inhibits the progression of gastric cancer in rats, in a dose dependent manner.

  12. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-01-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  13. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao [Department of Chemistry, Jinan University, Guangzhou (China); Zhang, Yikai [Institute of Hematology, Jinan University, Guangzhou (China); Zheng, Shanyuan [School of Life Sciences, The Chinese University of Hong Kong, Hong Kong (China); Weng, Zeping; Ma, Jun [First Affiliated Hospital, Jinan University, Guangzhou (China); Li, Yangqiu [Institute of Hematology, Jinan University, Guangzhou (China); First Affiliated Hospital, Jinan University, Guangzhou (China); Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 (China); Xie, Xinyuan [Department of Chemistry, Jinan University, Guangzhou (China); Zheng, Wenjie, E-mail: tzhwj@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou (China)

    2016-09-02

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to “copper” cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper. - Highlights: • Nano-S selectively inhibited the mitosis of A375 and MCF-7 cells by depleting copper. • Nano-S inactivated MEK/ERK pathway through the detention of copper. • Nano-S improved the cellular uptake and anticancer activities

  14. MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Zhang, Jun; Hou, Wengen; Chai, Mingxiang; Zhao, Hongxing; Jia, Jinling; Sun, Xiaohui; Zhao, Bin; Wang, Ran

    2016-01-01

    MicroRNAs (miRNAs) play an essential role in cancer development. Several studies have indicated that miRNAs mediate tumorigenesis processes, such as, inflammation, proliferation, apoptosis and invasion. In the present study, we focused on the influence of the miR-127-3p on the proliferation, migration and invasion of osteosarcoma (OS). MiR-127-3p was found at reduced levels in OS tissues and cell lines. Overexpression of miR-127-3p in the OS cell lines significantly inhibited the cell proliferation, migration and invasion; however, inhibition of miR-127-3p increased the proliferation, migration and invasion of OS in vitro. SETD8 was identified as a direct target of miR-127-3p, and SETD8 expression decreased post miR-127-3p overexpression, while SETD8 overexpression could reverse the potential influence of miR-127-3p on the migration and invasion of OS cells. MiR-127-3p is suggested to act mainly via the suppression of SETD8 expression. Overall, the results revealed that miR-127-3p acts as a tumor suppressor and that its down-regulation in cancer may contribute to OS progression and metastasis, suggesting that miR-127-3p could be a potential therapeutic target in the treatment of OS. - Highlights: • MiR-127-3p is decreased in osteosarcoma tissues and cell lines. • MiR-127-3p overexpression suppresses cell migration and invasion in MG63 and U2OS. • SETD8 overexpression abolishes the roles of miR-127-3p in osteosarcoma.

  15. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity

    International Nuclear Information System (INIS)

    Lu, Zheng; Ping, Liang; JianBo, Zhou; XiaoBing, Huang; Yu, Wen; Zheng, Wang; Jing, Li

    2012-01-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG 2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG 2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG 2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G 1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+) BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms

  16. Inhibitive and Synergistic Properties of Ethanolic Extract of ...

    African Journals Online (AJOL)

    It was also noted that only KCl was synergistic to the ethanol extract of Anogeissus leiocarpus, while other halides tested were antagonistic. All the data acquired reveal that the ethanolic extract of Anogeissus leiocarpus act as an inhibitor in the acid environment due to the phytochemicals: saponin, tannins, flavonoid, ...

  17. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jianghong, E-mail: jianghonghou@163.com [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China); Xue, Xiaolin [Department of Cardiovascular, The First Affiliated Hospital, College of Medicine, Xi' an Jiaotong University, Xi' an 710061 (China); Li, Junnong [Department of Cardiovascular, Weinan Center Hospital, The Middle of Victory Avenue, Linwei District, Weinan City 714000 (China)

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosis patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.

  18. Pueraria mirifica inhibits 17β-estradiol-induced cell proliferation of human endometrial mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ta-Chin; Wang, Kai-Hung; Kao, An-Pei; Chuang, Kuo-Hsiang; Kuo, Tsung-Cheng

    2017-12-01

    The notion that the human endometrium may contain a population of stem cells has recently been proposed. The mesenchymal stem cells (MSCs) in the endometrium are believed to be responsible for the remarkable regenerative ability of endometrial cells. Estrogens influence the physiological and pathological processes of several hormone-dependent tissues, such as the endometrium. Pueraria mirifica (PM) is a herbal plant that contains several phytoestrogens, including isoflavones, lignans, and coumestans, and is known to exert an estrogenic effect on animal models. The present study investigated the effects of PM on the proliferation of human endometrial MSCs (hEN-MSCs). The hEN-MSCs were isolated from human endometrial tissue. The surface markers of these hEN-MSCs were identified through reverse transcription-polymerase chain reaction analysis. The proliferation potential of hEN-MSCs was measured through a cell proliferation assay. Multilineage differentiation ability was confirmed through Oil red O and von Kossa staining. This study demonstrated that 17β-estradiol-responsive MSCs with Oct-4, CD90, and CD105 gene expression can be derived from the human endometrium and that PM exerts biological effects on hEN-MSCs, specifically, enhanced cell growth rate, through the estrogen receptor. Furthermore, PM at 1500 and 2000 μg/mL significantly increased cell proliferation compared with the vehicle control, and PM concentration at 1000 μg/mL significantly inhibited the enhanced cell growth rate induced by 17β-estradiol in hEN-MSCs. This study provides new insights into the possible biological effects of PM on the proliferation of hEN-MSCs. Copyright © 2017. Published by Elsevier B.V.

  19. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    Science.gov (United States)

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  20. Fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation.

    Science.gov (United States)

    Yan, Weixin; Chen, Shouhui; Zhao, Yiyang; Ye, Xiaoyu

    2018-06-01

    The present study aimed to investigate the effect of fisetin on proliferation and apoptosis of gastric cancer cells, as well as the underlying mechanism. Proliferation in SGC7901 cancer and GES-1 normal cells was analyzed using a CCK-8 assay. Apoptosis was analyzed using an Annexin V/Propidium Iodide apoptosis kit and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was analyzed by western blot assay. Treatment of SGC7901 cells with various concentrations (1, 5, 10, 15 and 20 µM) of fisetin for 48 h resulted in a concentration dependent reduction in proliferation. Flow cytometry revealed a marked increase in apoptosis from 5 µM concentration of fisetin after 48 h. The percentage of apoptotic cells increased to 87% following treatment with 15 µM fisetin for 48 h, compared with 2% in control. Treatment of SGC7901 cells with fisetin for 48 h resulted in a reduction in the activation of ERK 1/2 in a concentration-dependent manner. The reduction in activation of ERK 1/2 was significant following treatment with 15 µM fisetin for 48 h. The inhibitory effect of fisetin on activation of ERK 1/2 was further demonstrated using the ERK 1/2 inhibitor, PD98059. The results indicated a significant reduction in the proliferation of SGC7901 cells following treatment with PD98059 (P<0.002). The reduction by PD98059 administration was comparable to that observed following fisetin treatment for 48 h. In conclusion, the current study demonstrates that fisetin inhibits the proliferation of gastric cancer cells and induces apoptosis through suppression of ERK 1/2 activation. Thus, fisetin may have therapeutic applications in the treatment of gastric cancer.

  1. MAGE-A inhibits apoptosis in proliferating myeloma cells through repression of Bax and maintenance of survivin.

    Science.gov (United States)

    Nardiello, Tricia; Jungbluth, Achim A; Mei, Anna; Diliberto, Maurizio; Huang, Xiangao; Dabrowski, Ania; Andrade, Valéria C C; Wasserstrum, Rebecca; Ely, Scott; Niesvizky, Ruben; Pearse, Roger; Coleman, Morton; Jayabalan, David S; Bhardwaj, Nina; Old, Lloyd J; Chen-Kiang, Selina; Cho, Hearn Jay

    2011-07-01

    The type I Melanoma Antigen GEnes (MAGEs) are commonly expressed in cancers, fueling speculation that they may be therapeutic targets with oncogenic potential. They form complexes with RING domain proteins that have E3 ubiquitin ligase activity and promote p53 degradation. MAGE-A3 was detected in tumor specimens from patients with multiple myeloma and its expression correlated with higher frequencies of Ki-67(+) malignant cells. In this report, we examine the mechanistic role of MAGE-A in promoting survival of proliferating multiple myeloma cells. The impact of MAGE-A3 expression on survival and proliferation in vivo was examined by immunohistochemical analysis in an independent set of tumor specimens segregated into two groups: newly diagnosed, untreated patients and patients who had relapsed after chemotherapy. The mechanisms of MAGE-A3 activity were investigated in vitro by silencing its expression by short hairpin RNA interference in myeloma cell lines and primary cells and assessing the resultant effects on proliferation and apoptosis. MAGE-A3 was detected in a significantly higher percentage of relapsed patients compared with newly diagnosed, establishing a novel correlation with progression of disease. Silencing of MAGE-A showed that it was dispensable for cell cycling, but was required for survival of proliferating myeloma cells. Loss of MAGE-A led to apoptosis mediated by p53-dependent activation of proapoptotic Bax expression and by reduction of survivin expression through both p53-dependent and -independent mechanisms. These data support a role for MAGE-A in the pathogenesis and progression of multiple myeloma by inhibiting apoptosis in proliferating myeloma cells through two novel mechanisms.

  2. Schlafen 1 inhibits the proliferation and tube formation of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Chun-yan Kuang

    Full Text Available Endothelial progenitor cells (EPCs are the major source of cells that restore the endothelium during reendothelialization. This study was designed to investigate whether Schlafen 1 (Slfn1 has an effect on the proliferation and tube formation of EPCs in vivo. Slfn1 was expressed in rat EPCs. The overexpression of Slfn1 suppressed the proliferation and tube formation of EPCs; conversely, the knockdown of Slfn1 by shRNA promoted the proliferation and tube formation of EPCs. Furthermore, when Slfn1 was overexpressed, the EPCs were arrested in the G1 phase of the cell cycle. In contrast, when Slfn1 was knocked down, the EPCs progressed into the S phase of the cell cycle. Additionally, the overexpression of Slfn1 decreased the expression of Cyclin D1, whereas the knockdown of Slfn1 increased the expression of Cyclin D1; these findings suggest that Cyclin D1 is downstream of Slfn1 in Slfn1-mediated EPC proliferation. Taken together, these results indicate a key role for Slfn1 in the regulation of EPC biological behavior, which may provide a new target for the use of EPCs during reendothelialization.

  3. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K

    1999-01-01

    cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...

  4. IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression

    DEFF Research Database (Denmark)

    Nielsen, Sebastian Rune; Hammer, Troels; Gibson, Josefine

    2013-01-01

    OBJECTIVE: IL-27 belongs to the IL-12 family of cytokines and is recognized for its role in Th cell differentiation and as an inhibitor of tumor-angiogenesis. The purpose of this study was to investigate the effect of IL-27 on proliferation of lymphatic endothelial cells to gain insight into the ...

  5. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration

    NARCIS (Netherlands)

    Fehlauer, Fabian; Muench, Martina; Rades, Dirk; Stalpers, Lukas J. A.; Leenstra, Sieger; van der Valk, Paul; Slotman, Ben; Smid, Ernst J.; Sminia, Peter

    2005-01-01

    Investigation of cell migration and proliferation of human glioma cell line spheroids (CLS) and evaluation of morphology, apoptosis, and immunohistochemical expression of MIB-1, p53, and p21 of organotypic muticellular spheroids (OMS) following cisplatin (CDDP) and irradiation (RT). Spheroids of the

  6. [Knockdown of NEDD9 inhibits the proliferation, invasion and migration of esophageal carcinoma EC109 cells].

    Science.gov (United States)

    Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie

    2016-12-01

    Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.

  7. Histamine acting on H1 receptor promotes inhibition of proliferation via PLC, RAC, and JNK-dependent pathways

    International Nuclear Information System (INIS)

    Notcovich, Cintia; Diez, Federico; Tubio, Maria Rosario; Baldi, Alberto; Kazanietz, Marcelo G.; Davio, Carlos; Shayo, Carina

    2010-01-01

    It is well established that histamine modulates cell proliferation through the activation of the histamine H1 receptor (H1R), a G protein-coupled receptor (GPCR) that is known to couple to phospholipase C (PLC) activation via Gq. In the present study, we aimed to determine whether H1R activation modulates Rho GTPases, well-known effectors of Gq/G 11 -coupled receptors, and whether such modulation influences cell proliferation. Experiments were carried out in CHO cells stably expressing H1R (CHO-H1R). By using pull-down assays, we found that both histamine and a selective H1R agonist activated Rac and RhoA in a time- and dose-dependent manner without significant changes in the activation of Cdc42. Histamine response was abolished by the H1R antagonist mepyramine, RGS2 and the PLC inhibitor U73122, suggesting that Rac and RhoA activation is mediated by H1R via Gq coupling to PLC stimulation. Histamine caused a marked activation of serum response factor activity via the H1R, as determined with a serum-responsive element (SRE) luciferase reporter, and this response was inhibited by RhoA inactivation with C3 toxin. Histamine also caused a significant activation of JNK which was inhibited by expression of the Rac-GAP β2-chimaerin. On the other hand, H1R-induced ERK1/2 activation was inhibited by U73122 but not affected by C3 or β2-chimaerin, suggesting that ERK1/2 activation was dependent on PLC and independent of RhoA or Rac. [ 3 H]-Thymidine incorporation assays showed that both histamine and the H1R agonist inhibited cell proliferation in a dose-dependent manner and that the effect was independent of RhoA but partially dependent on JNK and Rac. Our results reveal that functional coupling of the H1R to Gq-PLC leads to the activation of RhoA and Rac small GTPases and suggest distinct roles for Rho GTPases in the control of cell proliferation by histamine.

  8. Membrane-Tethered Delta-Like 1 Homolog (DLK1) Restricts Adipose Tissue Size By Inhibiting Preadipocyte Proliferation

    DEFF Research Database (Denmark)

    Mortensen, Sussi B; Jensen, Charlotte H; Schneider, Mikael

    2012-01-01

    Adipocyte renewal from preadipocytes has been shown to occur throughout life and to contribute to obesity, yet very little is known about the molecular circuits that control preadipocyte expansion. The soluble form of the preadipocyte factor (also known as pref-1) delta-like 1 homolog (DLK1(S...... in vivo. Here, we demonstrate for the first time that only membrane-bound DLK1 (DLK1(M)) exhibits a substantial repression effect on preadipocyte proliferation. Thus, by independently manipulating DLK1 isoform levels, we established that DLK1(M) inhibits G1-to-S-phase cell cycle progression and thereby...

  9. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    Directory of Open Access Journals (Sweden)

    Sajedah M Hindi

    Full Text Available Duchenne muscular dystrophy (DMD caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD. However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  10. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    Science.gov (United States)

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L.

    Directory of Open Access Journals (Sweden)

    McCoy Joe-Ann

    2011-04-01

    Full Text Available Abstract Background The mint family (Lamiaceae produces a wide variety of constituents with medicinal properties. Several family members have been reported to have antiviral activity, including lemon balm (Melissa officinalis L., sage (Salvia spp., peppermint (Mentha × piperita L., hyssop (Hyssopus officinalis L., basil (Ocimum spp. and self-heal (Prunella vulgaris L.. To further characterize the anti-lentiviral activities of Prunella vulgaris, water and ethanol extracts were tested for their ability to inhibit HIV-1 infection. Results Aqueous extracts contained more anti-viral activity than did ethanol extracts, displaying potent antiviral activity against HIV-1 at sub μg/mL concentrations with little to no cellular cytotoxicity at concentrations more than 100-fold higher. Time-of-addition studies demonstrated that aqueous extracts were effective when added during the first five hours following initiation of infection, suggesting that the botanical constituents were targeting entry events. Further analysis revealed that extracts inhibited both virus/cell interactions and post-binding events. While only 40% inhibition was maximally achieved in our virus/cell interaction studies, extract effectively blocked post-binding events at concentrations similar to those that blocked infection, suggesting that it was targeting of these latter steps that was most important for mediating inhibition of virus infectivity. Conclusions We demonstrate that aqueous P. vulgaris extracts inhibited HIV-1 infectivity. Our studies suggest that inhibition occurs primarily by interference of early, post-virion binding events. The ability of aqueous extracts to inhibit early events within the HIV life cycle suggests that these extracts, or purified constituents responsible for the antiviral activity, are promising microbicides and/or antivirals against HIV-1.

  12. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    International Nuclear Information System (INIS)

    Oguzie, Emeka E.

    2008-01-01

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H 2 SO 4 by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H 2 SO 4 as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts

  13. Evaluation of the inhibitive effect of some plant extracts on the acid corrosion of mild steel

    Energy Technology Data Exchange (ETDEWEB)

    Oguzie, Emeka E. [Electrochemistry and Materials Science Research Laboratory, Department of Chemistry, Federal University of Technology, PMB 1526, Owerri (Nigeria)], E-mail: oguziemeka@yahoo.com

    2008-11-15

    Corrosion inhibition of mild steel in 2 M HCl and 1 M H{sub 2}SO{sub 4} by extracts of selected plants was investigated using a gasometric technique at temperatures of 30 and 60 deg. C. The studied plants materials include leaf extracts Occimum viridis (OV), Telferia occidentalis (TO), Azadirachta indica (AI) and Hibiscus sabdariffa (HS) as well as extracts from the seeds of Garcinia kola (GK). The results indicate that all the extracts inhibited the corrosion process in both acid media by virtue of adsorption and inhibition efficiency improved with concentration. Synergistic effects increased the inhibition efficiency in the presence of halide additives. Inhibition mechanisms were deduced from the temperature dependence of the inhibition efficiency as well as from assessment of kinetic and activation parameters that govern the processes. Comparative analysis of the inhibitor adsorption behaviour in 2 M HCl and 1 M H{sub 2}SO{sub 4} as well as the effects of temperature and halide additives suggest that both protonated and molecular species could be responsible for the inhibiting action of the extracts.

  14. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    Science.gov (United States)

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-09-18

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition.

  15. Let-7b Regulates Myoblast Proliferation by Inhibiting IGF2BP3 Expression in Dwarf and Normal Chicken

    Science.gov (United States)

    Lin, Shumao; Luo, Wen; Ye, Yaqiong; Bekele, Endashaw J.; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2017-01-01

    The sex-linked dwarf chicken is caused by the mutation of growth hormone receptor (GHR) gene and characterized by shorter shanks, lower body weight, smaller muscle fiber diameter and fewer muscle fiber number. However, the precise regulatory pathways that lead to the inhibition of skeletal muscle growth in dwarf chickens still remain unclear. Here we found a let-7b mediated pathway might play important role in the regulation of dwarf chicken skeletal muscle growth. Let-7b has higher expression in the skeletal muscle of dwarf chicken than in normal chicken, and the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which is a translational activator of IGF2, showed opposite expression trend to let-7b. In vitro cellular assays validated that let-7b directly inhibits IGF2BP3 expression through binding to its 3′UTR region, and the protein level but not mRNA level of IGF2 would be reduced in let-7b overexpressed chicken myoblast. Let-7b can inhibit cell proliferation and induce cell cycle arrest in chicken myoblast through let-7b-IGF2BP3-IGF2 signaling pathway. Additionally, let-7b can also regulate skeletal muscle growth through let-7b-GHR-GHR downstream genes pathway, but this pathway is non-existent in dwarf chicken because of the deletion mutation of GHR 3′UTR. Notably, as the loss binding site of GHR for let-7b, let-7b has enhanced its binding and inhibition on IGF2BP3 in dwarf myoblast, suggesting that the miRNA can balance its inhibiting effect through dynamic regulate its binding to target genes. Collectively, these results not only indicate that let-7b can inhibit skeletal muscle growth through let-7b-IGF2BP3-IGF2 signaling pathway, but also show that let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chickens. PMID:28736533

  16. Inhibition of JAK3 and PKC via Immunosuppressive Drugs Tofacitinib and Sotrastaurin Inhibits Proliferation of Human B Lymphocytes In Vitro.

    Science.gov (United States)

    Martina, M N; Ramirez Bajo, M J; Bañon-Maneus, E; Moya Rull, D; Hierro-Garcia, N; Revuelta, I; Campistol, J M; Rovira, J; Diekmann, F

    2016-11-01

    Antibody-mediated response in solid organ transplantation is critical for graft dysfunction and loss. The use of immunosuppressive agents partially inhibits the B-lymphocyte response leading to a risk of acute and chronic antibody-mediated rejection. This study evaluated the impact of JAK3 and PKC inhibitors tofacitinib (Tofa) and sotrastaurin (STN), respectively, on B-cell proliferation, apoptosis, and activation in vitro. Human B cells isolated from peripheral blood of healthy volunteers were cocultured with CD40 ligand-transfected fibroblasts as feeder cells in the presence of interleukin (IL) 2, IL-10, and IL-21. The cocultures were treated with immunosuppressants Tofa, STN, and rapamycin (as a control), to analyze the proliferation and apoptosis of B cells by means of Cyquant and flow cytometry, respectively. CD27 and IgG staining were applied to evaluate whether treatments modified the activation of B cells. Tofa and STN were able to inhibit B-cell proliferation to the same extent as rapamycin, without inducing cell apoptosis. After 6 days in coculture with feeder cells, all B cells showed CD27 memory B-cell phenotype. None of the immunosuppressive treatments modified the proportion between class-switched and non-class-switched memory B cells observed in nontreated cultures. The high predominance of CD27 + CD24 + phenotype was not modified by any immunosuppressive treatment. Our results show that Tofa and STN can suppress B-cell antibody responses to an extent similar to rapamycin, in vitro; therefore these compounds may be a useful therapy against antibody-mediated rejection in transplantation. Copyright © 2016. Published by Elsevier Inc.

  17. Modulating Estrogen Receptor-related Receptor-α Activity Inhibits Cell Proliferation*

    Science.gov (United States)

    Bianco, Stéphanie; Lanvin, Olivia; Tribollet, Violaine; Macari, Claire; North, Sophie; Vanacker, Jean-Marc

    2009-01-01

    High expression of the estrogen receptor-related receptor (ERR)-α in human tumors is correlated to a poor prognosis, suggesting an involvement of the receptor in cell proliferation. In this study, we show that a synthetic compound (XCT790) that modulates the activity of ERRα reduces the proliferation of various cell lines and blocks the G1/S transition of the cell cycle in an ERRα-dependent manner. XCT790 induces, in a p53-independent manner, the expression of the cell cycle inhibitor p21waf/cip1 at the protein, mRNA, and promoter level, leading to an accumulation of hypophosphorylated Rb. Finally, XCT790 reduces cell tumorigenicity in Nude mice. PMID:19546226

  18. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    Science.gov (United States)

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (PHela cells, increased the apoptosis rate (PHela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  19. Inhibition of Proliferation of Vascular Smooth Muscle Cells by Cucurbitanes from Momordica charantia.

    Science.gov (United States)

    Tuan, Nguyen Quoc; Lee, Do-Hyung; Oh, Joonseok; Kim, Chung Sub; Heo, Kyung-Sun; Myung, Chang-Seon; Na, MinKyun

    2017-07-28

    The cucurbitaceous plant Momordica charantia L., named "bitter melon", inhabits Asia, Africa, and South America and has been used as a traditional medicine. The atypical proliferation of vascular smooth muscle cells (VSMCs) plays an important role in triggering the pathogenesis of cardiovascular diseases. Platelet-derived growth factor (PDGF) is regarded as the most powerful growth factor in promoting the intimal accumulation of VSMCs. The current study features the identification of six new cucurbitane-type triterpenoids (1-6) from the fruits of M.  charantia, utilizing diverse chromatographic and spectroscopic techniques. In particular, the 2D structure of 1 was confirmed utilizing the long-range HSQMBC NMR pulse, capable of measuring heteronuclear long-range correlations ( 4-6 J CH ). The cucurbitanes were also assessed for their inhibitory activity against PDGF-induced VSMC proliferation. This current study may constitute a basis for developing those chemotypes into sensible pharmacophores alleviating cardiovascular disorders.

  20. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kiyoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Ii, Masaaki, E-mail: masaii@art.osaka-med.ac.jp [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Asahi, Michio [Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka (Japan); Azuma, Haruhito [Department of Urology, Faculty of Medicine, Osaka Medical College, Osaka (Japan)

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  2. Echinococcus multilocularis vesicular fluid inhibits activation and proliferation of natural killer cells.

    Science.gov (United States)

    Bellanger, Anne-Pauline; Mougey, Valentine; Pallandre, Jean-Rene; Gbaguidi-Haore, Houssein; Godet, Yann; Millon, Laurence

    2017-08-25

    Alveolar echinococcosis is a severe chronic helminthic disease that mimics slow-growing liver cancer. The immune evasion strategy of Echinococcus multilocularis Leuckart, 1863 remains poorly understood. The aim of this study was to investigate in vitro the impact of E. multilocularis vesicular fluid (Em-VF) on peripheral blood mononuclear cells (PBMC) and on natural killer (NK) cells. PBMC and NK cells were exposed to Em-VF (1 µg/ml) during six days. The effect of Em-VF was assessed on CD69, viability and proliferation, and on and transforming growth factor β (TGF-β), interferon γ (IFN-γ), interleukin 17 (IL-17) and interleukin 10, using flow cytometry and ELISA, respectively. Exposure to Em-VF had no bearing on PBMC's viability, proliferation and expression of CD69. In contrast, higher levels of IL-17 at day three and of TGF-β at day six were observed in PBMC supernatant after exposure to Em-VF (p Wilcoxon signed-rank test). Exposure to Em-VF induced a significant decrease of CD69 expression of NK cells at day three and a significant decrease of proliferation of NK cells at day six (p Wilcoxon signed-rank test). In contrast, NK cells viability and levels of cytokines did not vary significantly over Em-VF stimulation. Exposure to Em-VF had a significant bearing on activation and proliferation of NK cells. NK cells may play an important role in the immune response of the host against E. multilocularis.

  3. [Knock-down of ZEB1 inhibits the proliferation, invasion and migration of gastric cancer cells].

    Science.gov (United States)

    Chen, Dengyu; Chu, Yifan; Zheng, Qingwei; Xu, Zhiben; Zhou, Ping; Li, Sheng

    2017-08-01

    Objective To down-regulate the expression of zinc-finger E-box binding homeobox 1 (ZEB1) gene by shRNA, and investigate its effect on invasion, migration and proliferation, as well as the related gene expressions of lncRNA HOTAIR and E-cadherin in human gastric cancer BGC823 cells. Methods RNA interfering (RNAi) was used to knock down ZEB1 in gastric cancer BGC823 cells. The recombinant plasmid shZEB1 was constructed and transfected into the gastric cancer BGC823 cells by Lipofectamine TM 2000, and the stably transfected cells were isolated by G418 selection and limited dilution. The expression of ZEB1 mRNA and protein was detected by real-time quantitative PCR and Western blot analysis. Cell proliferation was determined by MTT assay, and the invasion and migration abilities of BGC823 cells were monitored by Transwell TM invasion assay and wound healing assay, respectively. The expressions of lncRNA HOTAIR and E-cadherin mRNA were detected by real-time quantitative PCR. Results After ZEB1 expression was successfully down-regulated in BGC823 cells by siRNA, the proliferation, invasion and migration rates in shZEB1 transfection group were significantly lower than those in control group; meanwhile, the expression of lncRNA HOTAIR was reduced and E-cadherin expression was enhanced. Conclusion Knock-down of ZEB1 expression by RNA interference can decease lncRNA HOTAIR expression and restrain cell proliferation, invasion and migration in gastric cancer BGC823 cells.

  4. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    International Nuclear Information System (INIS)

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-01-01

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa

  5. [Regulatory T cells inhibit proliferation of mouse lymphoma cell line EL4 in vitro].

    Science.gov (United States)

    Zhang, Chen; Kong, Yan; Guo, Jun; Ying, Zhi-Tao; Yuan, Zhi-Hong; Zhang, Yun-Tao; Zheng, Wen; Song, Yu-Qin; Li, Ping-Ping; Zhu, Jun

    2010-10-01

    This study was aimed to investigate the effect of regulatory T (Treg) cells on the T cell lymphoma EL4 cells and its mechanism in vitro. C57BL/6 mouse Treg cells were isolated by magnetic cell sorting (MACS). The purity of Treg cells and their expression of Foxp3 were identified by flow cytometry (FCM) and PT-PCR respectively. The suppression of Treg cells on EL4 cells was detected by 3H-TdR method. At the same time, enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokine TGF-β1 and IL-10. The results showed that CD4+CD25+ T cells could be successfully isolated by MACS with the purity reaching 94.52% and the expression of Foxp3 reaching 84.72%. After sorting, the expression of Foxp3 mRNA could be detected by RT-PCR. 3H-TdR assay confirmed that regulatory T cells could suppress the proliferation of EL4 cells with or without antigen presenting cells (APC) or dendritic cells (DC), APC or DC might effectively enhance the suppression. In addition, DC alone also suppressed the proliferation. TGF-β1 and IL-10 could be detected in the supernatant by ELISA. It is concluded that the Treg cells can obviously suppress the proliferation of T cell lymphoma cells in vitro, APC or DC can enhance this suppressive effect, while the DC alone also can suppress the proliferation of EL4 cells, the TGF-β1 and IL-10 cytokine pathway may be one of the mechanisms of suppression.

  6. Methanol Extract of Polyopes lancifolius Inhibits the Expression of ...

    African Journals Online (AJOL)

    The level of nitric oxide (NO) production was analyzed using Griess reaction. ... Investigation of the effect of MEPL on nuclear factor-κB (NF-κB) activity, which is a potential transcriptional factor for regulating inflammatory genes such as iNOS, COX-2 and TNF-α, showed that MEPL substantially inhibited the LPS-induced ...

  7. shRNA-mediated EMMPRIN silencing inhibits human leukemic monocyte lymphoma U937 cell proliferation and increases chemosensitivity to adriamycin.

    Science.gov (United States)

    Gao, Hui; Jiang, Qixiao; Han, Yantao; Peng, Jianjun; Wang, Chunbo

    2015-03-01

    EMMPRIN is a widely distributed cell surface glycoprotein, which plays an important role in tumor progression and confers resistance to some chemotherapeutic drugs. Recent studies have shown that EMMPRIN overexpression indicates poor prognosis in acute myeloid leukemia (AML). However, little was known on the role of EMMPRIN in leukemia. Human leukemia cell line U937 was stably transfected with a EMMPRIN-targeted shRNA-containing vector to investigate the effect of EMMPRIN on cellular functions. EMMPRIN expression was monitored by qRT-PCR and Western blotting. Cell viability and proliferation were determined by trypan blue exclusion and BrdU labeling, respectively. Cell cycle and apoptosis were analyzed by flow cytometry. Cytotoxicity of chemotherapeutic agent adriamycin on cells was assessed by MTT assay. Knockdown of EMMPRIN gene significantly inhibited cell viability and decreased cell proliferation. Fluorescence-activated cell-sorting analysis revealed that the reduced EMMPRIN expression resulted in cell cycle arrest at G1 phase and induced apoptosis. Meanwhile, western blotting analysis showed that EMMPRIN knockdown was associated with downregulation of cell cycle- and apoptosis-related molecules including cyclin D1, cyclin E, as well as increase in cleavage of caspase-3 and PARP. This study also showed that silencing of EMMPRIN sensitized U937 cells to Adriamycin. EMMPRIN is involved in proliferation, growth, and chemosensitivity of human AML line U937, indicating that EMMPRIN may be a promising therapeutic target for AML.

  8. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    Science.gov (United States)

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  9. Genipin inhibits TNF-α-induced vascular smooth muscle cell proliferation and migration via induction of HO-1.

    Directory of Open Access Journals (Sweden)

    Fengrong Jiang

    Full Text Available Vascular smooth muscle cell (VSMC proliferation and migration triggered by inflammatory stimuli contributes importantly to the pathogenesis of atherosclerosis and restenosis. On the other hand, genipin, an aglycon of geniposide, exhibits diverse pharmacological functions such as antitumor and anti-inflammatory effects. The protective effects of genipin on the cardiovascular system have also been reported. However, the molecular mechanism involved remains unknown. This study aimed to elucidate the precise function of genipin in VSMCs, focusing particularly on the role of heme oxygenase-1 (HO-1, a potent anti-inflammatory enzyme. We found that pretreatment of genipin induced HO-1 mRNA and protein levels, as well as its activity in VSMCs. Genipin inhibited TNF-α-induced VSMC proliferation and migration in a dose-dependent manner. At the molecular level, genipin prevented ERK/MAPK and Akt phosphorylation while left p38 MAPK and JNK unchanged. Genipin also blocked the increase of ROS generation induced by TNF-α. More importantly, the specific HO-1 siRNA partially abolished the beneficial effects of genipin on VSMCs. These results suggest that genipin may serve as a novel drug in the treatment of these pathologies by inducing HO-1 expression/activity and subsequently decreasing VSMC proliferation and migration.

  10. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma.

    Science.gov (United States)

    Tan, Xin-Yu; Chang, Shi; Liu, Wei; Tang, Hui-Huan

    2014-03-01

    To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (philar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.

  11. Low Dose Cadmium Inhibits Proliferation of Human Renal Mesangial Cells via Activation of the JNK Pathway

    Science.gov (United States)

    Chen, Xiaocui; Li, Jing; Cheng, Zuowang; Xu, Yinghua; Wang, Xia; Li, Xiaorui; Xu, Dongmei; Kapron, Carolyn M.; Liu, Ju

    2016-01-01

    Cadmium (Cd) is a heavy metal and environmental pollutant. The kidney is the principal target organ of Cd exposure. Previously, we found that low concentration of Cd damages the integrity of the glomerular filtration barrier. However, little is known about the effects of Cd on renal mesangial cells, which provide structural support for the glomerular capillary loops and regulate intraglomerular blood flow. In this study, human renal mesangial cells (HRMCs) were cultured in the presence of serum and treated with 4 μM Cd. We found that Cd activates the c-Jun N-terminal kinase (JNK) pathway, and increases the protein levels of c-Jun and c-Fos. Cd treatment also induces a decrease in proliferation and an increase in apoptosis of HRMCs, but only the decrease in HRMC proliferation was reversed by pretreatment with SP600125, an inhibitor of the JNK pathway. In addition, Cd does not change the expression of α-smooth muscle actin and platelet-derived growth factor receptor-β, the markers of mesangial cells, or the alignment of the filamentous actin (F-actin) cytoskeleton of HRMCs. Our data indicate that the JNK pathway mediates the inhibitory effects of Cd on HRMC proliferation. PMID:27739415

  12. Novel agmatine analogue, γ-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    International Nuclear Information System (INIS)

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur; Simonian, Alina R.; Soininen, Pasi; Vepsalainen, Jouko; Khomutov, Alex R.; Madhubala, Rentala

    2008-01-01

    The efficacy of γ-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K i value of ∼60 μM. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK a 6.71 and at physiological pH the analogue can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels

  13. Inositol Hexaphosphate Inhibits Proliferation and Induces Apoptosis of Colon Cancer Cells by Suppressing the AKT/mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2017-10-01

    Full Text Available Abstract: AKT, a serine/threonine protein kinase and mammalian target of rapamycin (mTOR plays a critical role in the proliferation and resistance to apoptosis that are essential to the development and progression of colon cancer. Therefore, AKT/mTOR signaling pathway has been recognized as an attractive target for anticancer therapy. Inositol hexaphosphate (InsP6, a natural occurring phytochemical, has been shown to have both preventive and therapeutic effects against various cancers, however, its exact molecular mechanisms of action are not fully understood. The aim of the in vitro study was to investigate the anticancer activity of InsP6 on colon cancer with the focus on inhibiting the AKT1 kinase and p70S6K1 as mTOR effector, in relation to proliferation and apoptosis of cells. The colon cancer Caco-2 cells were cultured using standard techniques and exposed to InsP6 at different concentrations (1 mM, 2.5 mM and 5 mM. Cellular proliferative activity was monitored by 5-bromo-2′-deoxyuridine (BrdU incorporation into cellular DNA. Flow cytometric analysis was performed for cell cycle progression and apoptosis studies. Real-time RT-qPCR was used to validate mRNA levels of CDNK1A, CDNK1B, CASP3, CASP9, AKT1 and S6K1 genes. The concentration of p21 protein as well as the activities of caspase 3, AKT1 and p70S6K1 were determined by the ELISA method. The results revealed that IP6 inhibited proliferation and stimulated apoptosis of colon cancer cells. This effect was mediated by an increase in the expression of genes encoding p21, p27, caspase 3, caspase 9 as well a decrease in transcription of AKT1 and S6K1. InsP6 suppressed phosphorylation of AKT1 and p70S6K1, downstream effector of mTOR. Based on these studies it may be concluded that InsP6 can reduce proliferation and induce apoptosis through inhibition of the AKT/mTOR pathway and mTOR effector followed by modulation of the expression and activity of several key components of these pathways in

  14. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    International Nuclear Information System (INIS)

    Wang, Suna; Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-01-01

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative RT PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  15. Knockdown of TMEM16A suppressed MAPK and inhibited cell proliferation and migration in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Deng L

    2016-01-01

    Full Text Available Liang Deng,1,* Jihong Yang,2,* Hongwu Chen,3 Bo Ma,4 Kangming Pan,1 Caikun Su,1 Fengfeng Xu,1 Jihong Zhang1 1Department of Hepatobiliary Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 2Department of General Surgery, The Affiliated Hospital of Hebei University, Baoding, 3Department of Emergency, 4Department of Gastroenterology, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China*These authors contributed equally to this workAbstract: TMEM16A plays an important role in cell proliferation in various cancers. However, less was known about the expression and role of TMEM16A in hepatocellular carcinoma. We screened the expression of TMEM16A in patients’ hepatocellular carcinoma tissues, and also analyzed the biological function of hepatocellular carcinoma cells by knockdown of TMEM16A, as well as the expression of MAPK signaling proteins, including p38, p-p38, ERK1/2, p-ERK1/2, JNK, and p-JNK, and cell cycle regulatory protein cyclin D1 in TMEM16A siRNA-transfected SMMC-7721 cells by Western blot. Our results showed that TMEM16A was overexpressed in hepatocellular carcinoma tissues. Inhibition of TMEM16A suppressed the cell proliferation, migration, and invasion, and cell cycle progression but did not influence the cell apoptosis. TMEM16A siRNA-suppressed cancer cell proliferation and tumor growth were accompanied by a reduction of p38 and ERK1/2 activation and cyclin D1 induction, and were not influenced by other tested MAPK signaling proteins. In addition, inhibition of TMEM16A suppressed tumorigenicity in vivo. TMEM16A is overexpressed in hepatocellular carcinoma, and that inhibition of TMEM16A suppressed MAPK and growth of hepatocellular carcinoma. TMEM16A could be a potentially novel therapeutic target for human cancers, including hepatocellular carcinoma.Keywords: TMEM16A, cell cycle, proliferation, apoptosis

  16. Downregulation of mouse CCR3 by lentiviral shRNA inhibits proliferation and induces apoptosis of mouse eosinophils.

    Science.gov (United States)

    Zhu, Xin-Hua; Liao, Bing; Xu, Yi; Liu, Ke; Huang, Yun; Huang, Quan-Long; Liu, Yue-Hui

    2017-02-01

    RNA interference has been considered as an effective gene silencing method in basic and preclinical investigations. The aims of the present study were to construct a lentiviral vector expressing a short hairpin RNA (shRNA) targeting the murine CC chemokine receptor 3 (mCCR3), and to investigate its effects on the proliferation and apoptosis of mouse eosinophils. A recombinant lentiviral vector expressing four fragments of mouse CCR3 shRNA (pLVX‑mCCR3‑1+2+3+4‑shRNA) was constructed using subcloning techniques. This novel lentivirus was then packaged into 293T cells by co‑transduction with plasmids, including Baculo p35, pCMV R8.2 and VSV. The interference effects of the vector were verified using polymerase chain reaction (PCR) and western blot analyses. The effects of the interference on the proliferation and apoptosis of mouse eosinophils were investigated using 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑carboxymethoxyphenyl)‑2‑(4‑sulfophenyl)‑2H‑tetrazolium and terminal deoxynucleotidyl transferase dUTP nick end labeling methods, respectively. The results of the PCR and western blot analyses confirmed that the novel recombinant vector, pLVX‑mCCR3‑1+2+3+4‑shRNA, had high efficiency in inhibiting the mRNA and protein expression levels of mCCR3 in mouse eosinophils. The downregulation of mCCR3 significantly inhibited proliferation of the eosinophils. Furthermore, the present study found that the downregulation of mCCR3 significantly promoted apoptosis of the eosinophils. Therefore, the downregulation of mCCR3 led to the inhibition of proliferation and induction of apoptosis in mouse eosinophils. The predominant characteristics of allergic rhinitis are eosinophil infiltration and release of inflammatory mediators, which appear in a variety of clinical manifestations. The results of the present study indicate that mCCR3 silencing may serve as a putative approach for the treatment of allergic rhinitis.

  17. Phorbol Esters Isolated from Jatropha Meal Induced Apoptosis-Mediated Inhibition in Proliferation of Chang and Vero Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-10-01

    Full Text Available The direct feeding of Jatropha meal containing phorbol esters (PEs indicated mild to severe toxicity symptoms in various organs of different animals. However, limited information is available on cellular and molecular mechanism of toxicity caused by PEs present in Jatropha meal. Thus, the present study was conducted to determine the cytotoxic and mode of action of PEs isolated from Jatropha meal using human hepatocyte (Chang and African green monkey kidney (Vero cell lines. The results showed that isolated PEs inhibited cell proliferation in a dose-dependent manner in both cell lines with the CC50 of 125.9 and 110.3 μg/mL, respectively. These values were compatible to that of phorbol 12-myristate 13-acetate (PMA values as positive control i.e., 124.5 and 106.3 μg/mL respectively. Microscopic examination, flow cytometry and DNA fragmentation results confirmed cell death due to apoptosis upon treatment with PEs and PMA at CC50 concentration for 24 h in both cell lines. The Western blot analysis revealed the overexpression of PKC-δ and activation of caspase-3 proteins which could be involved in the mechanism of action of PEs and PMA. Consequently, the PEs isolated form Jatropha meal caused toxicity and induced apoptosis-mediated proliferation inhibition toward Chang and Vero cell lines involving over-expression of PKC-δ and caspase-3 as their mode of actions.

  18. RIP3 Inhibits Inflammatory Hepatocarcinogenesis but Promotes Cholestasis by Controlling Caspase-8- and JNK-Dependent Compensatory Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Mihael Vucur

    2013-08-01

    Full Text Available For years, the term “apoptosis” was used synonymously with programmed cell death. However, it was recently discovered that receptor interacting protein 3 (RIP3-dependent “necroptosis” represents an alternative programmed cell death pathway activated in many inflamed tissues. Here, we show in a genetic model of chronic hepatic inflammation that activation of RIP3 limits immune responses and compensatory proliferation of liver parenchymal cells (LPC by inhibiting Caspase-8-dependent activation of Jun-(N-terminal kinase in LPC and nonparenchymal liver cells. In this way, RIP3 inhibits intrahepatic tumor growth and impedes the Caspase-8-dependent establishment of specific chromosomal aberrations that mediate resistance to tumor-necrosis-factor-induced apoptosis and underlie hepatocarcinogenesis. Moreover, RIP3 promotes the development of jaundice and cholestasis, because its activation suppresses compensatory proliferation of cholangiocytes and hepatic stem cells. These findings demonstrate a function of RIP3 in regulating carcinogenesis and cholestasis. Controlling RIP3 or Caspase-8 might represent a chemopreventive or therapeutic strategy against hepatocellular carcinoma and biliary disease.

  19. Butyrate Inhibits Cancerous HCT116 Colon Cell Proliferation but to a Lesser Extent in Noncancerous NCM460 Colon Cells.

    Science.gov (United States)

    Zeng, Huawei; Taussig, David P; Cheng, Wen-Hsing; Johnson, LuAnn K; Hakkak, Reza

    2017-01-01

    Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits chemoprevention effects on colon cancer development. However, the mechanistic action of butyrate remains to be determined. We hypothesize that butyrate inhibits cancerous cell proliferation but to a lesser extent in noncancerous cells through regulating apoptosis and cellular-signaling pathways. We tested this hypothesis by exposing cancerous HCT116 or non-cancerous NCM460 colon cells to physiologically relevant doses of butyrate. Cellular responses to butyrate were characterized by Western analysis, fluorescent microscopy, acetylation, and DNA fragmentation analyses. Butyrate inhibited cell proliferation, and led to an induction of apoptosis, genomic DNA fragmentation in HCT116 cells, but to a lesser extent in NCM460 cells. Although butyrate increased H3 histone deacetylation and p21 tumor suppressor expression in both cell types, p21 protein level was greater with intense expression around the nuclei in HCT116 cells when compared with that in NCM460 cells. Furthermore, butyrate treatment increased the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2), a survival signal, in NCM460 cells while it decreased p-ERK1/2 in HCT116 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic potential in HCT116 cells may confer the increased sensitivity of cancerous colon cells to butyrate in comparison with noncancerous colon cells.

  20. Downregulation of HDAC9 inhibits cell proliferation and tumor formation by inducing cell cycle arrest in retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiting; Wu, Dan; Xia, Fengjie; Xian, Hongyu; Zhu, Xinyue [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China); Cui, Hongjuan, E-mail: hcui@swu.edu.cn [State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400716 (China); Huang, Zhenping, E-mail: huangzhenping19633@163.com [Medical School of Nanjing University, Department of Ophthalmology, Jinling Hospital, Nanjing, 210002 (China)

    2016-04-29

    Histone deacetylase 9 (HDAC9) is a member of class II HDACs, which regulates a wide variety of normal and abnormal physiological functions. Recently, HDAC9 has been found to be overexpressed in some types of human cancers. However, the role of HDAC9 in retinoblastoma remains unclear. In this study, we found that HDAC9 was commonly expressed in retinoblastoma tissues and HDAC9 was overexpressed in prognostically poor retinoblastoma patients. Through knocking down HDAC9 in Y79 and WERI-Rb-1 cells, the expression level of HDAC9 was found to be positively related to cell proliferation in vitro. Further investigation indicated that knockdown HDAC9 could significantly induce cell cycle arrest at G1 phase in retinoblastoma cells. Western blot assay showed downregulation of HDAC9 could significantly decrease cyclin E2 and CDK2 expression. Lastly, xenograft study in nude mice showed that downregulation of HDAC9 inhibited tumor growth and development in vivo. Therefore, our results suggest that HDAC9 could serve as a novel potential therapeutic target in the treatment of retinoblastoma. - Highlights: • High expression of HDAC9 correlates with poor patient prognosis. • Downregulation of HDAC9 inhibits cell proliferation in retinoblastoma cells. • Downregulation of HDAC9 induces cell cycle arrest at G1 phase in retinoblastoma cells. • Downregulation of HDAC9 suppresses tumor growth in nude mice.

  1. The ATM and ATR inhibitors CGK733 and caffeine suppress cyclin D1 levels and inhibit cell proliferation

    International Nuclear Information System (INIS)

    Alao, John P; Sunnerhagen, Per

    2009-01-01

    The ataxia telangiectasia mutated (ATM) and the ATM- related (ATR) kinases play a central role in facilitating the resistance of cancer cells to genotoxic treatment regimens. The components of the ATM and ATR regulated signaling pathways thus provide attractive pharmacological targets, since their inhibition enhances cellular sensitivity to chemo- and radiotherapy. Caffeine as well as more specific inhibitors of ATM (KU55933) or ATM and ATR (CGK733) have recently been shown to induce cell death in drug-induced senescent tumor cells. Addition of these agents to cancer cells previously rendered senescent by exposure to genotoxins suppressed the ATM mediated p21 expression required for the survival of these cells. The precise molecular pharmacology of these agents however, is not well characterized. Herein, we report that caffeine, CGK733, and to a lesser extent KU55933, inhibit the proliferation of otherwise untreated human cancer and non-transformed mouse fibroblast cell lines. Exposure of human cancer cell lines to caffeine and CGK733 was associated with a rapid decline in cyclin D1 protein levels and a reduction in the levels of both phosphorylated and total retinoblastoma protein (RB). Our studies suggest that observations based on the effects of these compounds on cell proliferation and survival must be interpreted with caution. The differential effects of caffeine/CGK733 and KU55933 on cyclin D1 protein levels suggest that these agents will exhibit dissimilar molecular pharmacological profiles

  2. Extract of Indian green mussel, Perna viridis (L.) shows inhibition of blood capillary formation in vitro

    Digital Repository Service at National Institute of Oceanography (India)

    Mirshahi, M.; Mirshahi, P.; Negro, S.; Soria, J.; Sreekumar, P.K.; Kotnala, S.; Therwath, A; Chatterji, A

    The extract of the Indian green mussel (Perna viridis L.) was found to inhibit the formation of endothelial cell capillary tube in a concentration dependent manner in vitro. At a concentration of 5 mg/ml of crude extract, there no formation...

  3. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  4. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase.

    Science.gov (United States)

    Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina

    2012-11-15

    Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense

  5. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2

    International Nuclear Information System (INIS)

    Wang, Xuan; Xia, Ying

    2016-01-01

    microRNAs (miRNAs) play a vital role in tumor development and progression. In this study, we aimed to determine the expression and biological roles of miR-328 in cervical cancer and identify its direct target gene. Our data showed that miR-328 was significantly downregulated in human cervical cancer tissues and cells. Re-expression of miR-328 inhibited cervical cancer cell proliferation and colony formation in vitro and suppressed the growth of xenograft tumors in vivo. Bioinformatic analysis predicted TCF7L2 (an essential effector of canonical Wnt signaling) as a target gene of miR-328, which was confirmed by luciferase reporter assays. Enforced expression of miR-328 led to a decline in the expression of endogenous TCF7L2 in cervical cancer cells. In cervical cancer tissues, TCF7L2 protein levels were negatively correlated with miR-328 expression levels (r = −0.462, P = 0.017). Small interfering RNA-mediated knockdown of TCF7L2 significantly impaired the proliferation and colony formation of cervical cancer cells. Ectopic expression of a miRNA-resistant form of TCF7L2 significantly reversed the growth suppressive effects of miR-328 on cervical cancer cells, which was accompanied by induction of cyclin D1 expression. Taken together, our results provide first evidence for the growth suppressive activity of miR-328 in cervical cancer, which is largely ascribed to downregulation of TCF7L2. Restoration of miR-328 may have therapeutic potential in cervical cancer. -- Highlights: •miR-328 inhibits cervical cancer cell growth and tumorigenesis. •TCF7L2 is a direct target gene of miR-328 in cervical cancer. •Knockdown of TCF7L2 impairs the proliferation and colony formation of cervical cancer cells.

  6. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    Science.gov (United States)

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  7. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    International Nuclear Information System (INIS)

    Erdmann, Kati; Ringel, Jessica; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P; Fuessel, Susanne; Hampel, Silke

    2014-01-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  8. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  9. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuan [Department of Gynaecology, Qilu Hospital, Shandong University, Jinan (China); Department of Gynaecology, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai (China); Xia, Ying, E-mail: YingXia2006@qq.com [Department of Gynecology, Huadong Hospital, Fudan University, Shanghai, 200040 (China)

    2016-06-24

    microRNAs (miRNAs) play a vital role in tumor development and progression. In this study, we aimed to determine the expression and biological roles of miR-328 in cervical cancer and identify its direct target gene. Our data showed that miR-328 was significantly downregulated in human cervical cancer tissues and cells. Re-expression of miR-328 inhibited cervical cancer cell proliferation and colony formation in vitro and suppressed the growth of xenograft tumors in vivo. Bioinformatic analysis predicted TCF7L2 (an essential effector of canonical Wnt signaling) as a target gene of miR-328, which was confirmed by luciferase reporter assays. Enforced expression of miR-328 led to a decline in the expression of endogenous TCF7L2 in cervical cancer cells. In cervical cancer tissues, TCF7L2 protein levels were negatively correlated with miR-328 expression levels (r = −0.462, P = 0.017). Small interfering RNA-mediated knockdown of TCF7L2 significantly impaired the proliferation and colony formation of cervical cancer cells. Ectopic expression of a miRNA-resistant form of TCF7L2 significantly reversed the growth suppressive effects of miR-328 on cervical cancer cells, which was accompanied by induction of cyclin D1 expression. Taken together, our results provide first evidence for the growth suppressive activity of miR-328 in cervical cancer, which is largely ascribed to downregulation of TCF7L2. Restoration of miR-328 may have therapeutic potential in cervical cancer. -- Highlights: •miR-328 inhibits cervical cancer cell growth and tumorigenesis. •TCF7L2 is a direct target gene of miR-328 in cervical cancer. •Knockdown of TCF7L2 impairs the proliferation and colony formation of cervical cancer cells.

  10. Yongdamsagan-tang, a traditional herbal formula, inhibits cell growth through the suppression of proliferation and inflammation in benign prostatic hyperplasia epithelial-1 cells.

    Science.gov (United States)

    Park, Eunsook; Lee, Mee-Young; Seo, Chang-Seob; Jeon, Woo-Young; Shin, Hyeun-Kyoo

    2017-09-14

    Benign prostatic hyperplasia (BPH), also called benign enlargement of the prostate, is a progressive disease that is observed in most elderly men. Yongdamsagan-tang, a traditional herbal formula, is used commonly for the treatment of inflammation-related diseases. Although the therapeutic efficacy of Yongdamsagan-tang against BPH in vivo was reported previously, its underlying mechanisms are not clearly understood. In this study, we investigated the effect of Yongdamsagan-tang water extract (YSTE) and its mechanism on the growth of human BPH epithelial BPH-1 cells. YSTE was extracted from 11 herbaceous plants and its chemical composition was analyzed by High-performance liquid chromatography (HPLC). YSTE was treated in the epithelial BPH-1 cell line and then cell lysates or supernant were used to evaluate cell viability, cell cycle, proliferation and cytokine production. HPLC revealed that Baicalin and gentiopicroside were involved as the major compounds of YSTE. YSTE treatment in BPH-1 cells repressed cell viability in a dose-dependent manner. Regarding the inhibitory mechanisms of YSTE on cell growth, YSTE inhibited cell proliferation via a decrease in endogenous cyclin D1 protein levels and arrest at the S phase during cell-cycle progression. Furthermore, YSTE treatment in BPH-1 cells suppressed prostaglandin E 2 production and cyclooxygenase-2 (COX-2) protein levels. The secretion of the proinflammatory cytokines, interleukin-8 and interleukin-6, was also reduced by YSTE treatment. YSTE in BPH-1 cells showed antiproliferative and anti-inflammatory activities via cell-cycle arrest and downregulation of COX-2 expression, respectively. Taken together, the results of the present study will enhance our understanding of the mechanisms underlying the effect of YSTE in BPH. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Inhibition of pancreatic lipase and amylase by extracts of different spices and plants.

    Science.gov (United States)

    Sellami, Mohamed; Louati, Hanen; Kamoun, Jannet; Kchaou, Ali; Damak, Mohamed; Gargouri, Youssef

    2017-05-01

    The aim of this study is to search new anti-obesity and anti-diabetic agents from plant and spices crude extracts as alternative to synthetic drugs. The inhibitory effect of 72 extracts was evaluated, in vitro, on lipase and amylase activities. Aqueous extracts of cinnamon and black tea exhibited an appreciable inhibitory effect on pancreatic amylase with IC 50 values of 18 and 87 μg, respectively. Aqueous extracts of cinnamon and mint showed strong inhibitory effects against pancreatic lipase with IC 50 of 45 and 62 μg, respectively. The presence of bile salts and colipase or an excess of interface failed to restore the lipase activity. Therefore, the inhibition of pancreatic lipase, by extracts of spices and plants, belongs to an irreversible inhibition. Crude extract of cinnamon showed the strongest anti-lipase and anti-amylase activities which offer a prospective therapeutic approach for the management of diabetes and obesity.

  12. Identification of 6-octadecynoic acid from a methanol extract of Marrubium vulgare L. as a peroxisome proliferator-activated receptor γ agonist

    Energy Technology Data Exchange (ETDEWEB)

    Ohtera, Anna; Miyamae, Yusaku; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Kawachi, Atsushi; Kawada, Kiyokazu; Han, Junkyu; Isoda, Hiroko [Alliance for Research on North Africa (ARENA), University of Tsukuba, Ibaraki 305-8572 (Japan); Faculty of Life and Environment, University of Tsukuba, Ibaraki 305-8572 (Japan); Neffati, Mohamed [Arid Zone Research Institute (IRA), Médenine 4119 (Tunisia); Akita, Toru; Maejima, Kazuhiro [Nippon Shinyaku CO., LTD., Kyoto 601-8550 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan); Mori, Naoki; Irie, Kazuhiro [Graduate School of Agriculture, Kyoto University, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8502 (Japan)

    2013-10-18

    Highlights: •6-ODA, a rare fatty acid with a triple bond, was identified from Marrubium vulgare. •6-ODA was synthesized from petroselinic acid as a starting material. •6-ODA stimulated lipid accumulation in HSC-T6 and 3T3-L1 cells. •The first report of a fatty acid with a triple bond functioning as a PPARγ agonist. •This study sheds light on novel functions of a fatty acid with a triple bond. -- Abstract: 6-Octadecynoic acid (6-ODA), a fatty acid with a triple bond, was identified in the methanol extract of Marrubium vulgare L. as an agonist of peroxisome proliferator-activated receptor γ (PPARγ). Fibrogenesis caused by hepatic stellate cells is inhibited by PPARγ whose ligands are clinically used for the treatment of diabetes. Plant extracts of Marrubium vulgare L., were screened for activity to inhibit fibrosis in the hepatic stellate cell line HSC-T6 using Oil Red-O staining, which detects lipids that typically accumulate in quiescent hepatic stellate cells. A methanol extract with activity to stimulate accumulation of lipids was obtained. This extract was found to have PPARγ agonist activity using a luciferase reporter assay. After purification using several chromatographic methods, 6-ODA, a fatty acid with a triple bond, was identified as a candidate of PPARγ agonist. Synthesized 6-ODA and its derivative 9-octadecynoic acid (9-ODA), which both have a triple bond but in different positions, activated PPARγ in a luciferase reporter assay and increased lipid accumulation in 3T3-L1 adipocytes in a PPARγ-dependent manner. There is little information about the biological activity of fatty acids with a triple bond, and to our knowledge, this is the first report that 6-ODA and 9-ODA function as PPARγ agonists.

  13. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Science.gov (United States)

    2011-01-01

    Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG) by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt.) significantly dampened the postprandial hyperglycemia by 78.2% and 52.0% in maltose and sucrose

  14. Cinnamon extract inhibits α-glucosidase activity and dampens postprandial glucose excursion in diabetic rats

    Directory of Open Access Journals (Sweden)

    Thirumurugan Kavitha

    2011-06-01

    Full Text Available Abstract Background α-glucosidase inhibitors regulate postprandial hyperglycemia (PPHG by impeding the rate of carbohydrate digestion in the small intestine and thereby hampering the diet associated acute glucose excursion. PPHG is a major risk factor for diabetic vascular complications leading to disabilities and mortality in diabetics. Cinnamomum zeylanicum, a spice, has been used in traditional medicine for treating diabetes. In this study we have evaluated the α-glucosidase inhibitory potential of cinnamon extract to control postprandial blood glucose level in maltose, sucrose loaded STZ induced diabetic rats. Methods The methanol extract of cinnamon bark was prepared by Soxhlet extraction. Phytochemical analysis was performed to find the major class of compounds present in the extract. The inhibitory effect of cinnamon extract on yeast α-glucosidase and rat-intestinal α-glucosidase was determined in vitro and the kinetics of enzyme inhibition was studied. Dialysis experiment was performed to find the nature of the inhibition. Normal male Albino wistar rats and STZ induced diabetic rats were treated with cinnamon extract to find the effect of cinnamon on postprandial hyperglycemia after carbohydrate loading. Results Phytochemical analysis of the methanol extract displayed the presence of tannins, flavonoids, glycosides, terpenoids, coumarins and anthraquinones. In vitro studies had indicated dose-dependent inhibitory activity of cinnamon extract against yeast α-glucosidase with the IC 50 value of 5.83 μg/ml and mammalian α-glucosidase with IC 50 value of 670 μg/ml. Enzyme kinetics data fit to LB plot pointed out competitive mode of inhibition and the membrane dialysis experiment revealed reversible nature of inhibition. In vivo animal experiments are indicative of ameliorated postprandial hyperglycemia as the oral intake of the cinnamon extract (300 mg/kg body wt. significantly dampened the postprandial hyperglycemia by 78.2% and 52

  15. Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.

    Directory of Open Access Journals (Sweden)

    Kentaro Kato

    Full Text Available Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs in a progenitor state, but what factor may enable oligodendrocyte (OL differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.

  16. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis.

    Science.gov (United States)

    Xu, Longjiang; Leng, Hong; Shi, Xin; Ji, Jiang; Fu, Jinxiang; Leng, Hong

    2017-06-01

    MicroRNAs (miRNAs) have been demonstrated to contribute to malignant progression in psoriasis development. The purposes of the study was to evaluated the effects of miRNA-155 on cell proliferation, migration and apoptosis in psoriasis development via PTEN singaling pathway and identify its direct target protein. Quantitative real-time RT-PCR (qRT-PCR) was performed to examine the level of miR-155 in psoriasis cells, miR-155 was downregulated in a psoriasis cell line Hacat by transfected with small interfering RNA (siRNA), respectively. Cell survival was detected by the MTT assay and colony formation assay. Cell migration and invasion were measured via wound-healing assayand transwell assay. In addition, cell cycle and apoptosis about psoriasis cells was measured by flow cytometry. In this study, qRT-PCR assay showed that the expressions of miR-155 mRNA in psoriasis tissues were significantly higher than that in normal tissues. The assays about cell growth and proliferation showed that miR-155 knockdown led to a significant decrease in cell proliferation which was determined by MTT assay and colony formation assay compared to those of Lv-NC cells. Flow cytometry analysis showed that depletion of miR-155 could cause cell cycle change and the number of apoptotic cells was significantly increased in Lv-miR155 cells compared with control cells. In addition, the expression of several apoptosis-related factors were dramatically changed, such as PTEN, PIP 3 , AKT, p-AKT, Bax and Bcl-2. Our findings indicate that down-regulation of miR-155 significantly inhibits proliferation, migration, invasion and promotes apoptosis through PTEN singaling pathway in psoriasis cells. miR-155 might function as an oncogene miRNA in the progress of psoriasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation.

    Science.gov (United States)

    Ordway, Diane; Hohmann, Judit; Viveiros, Miguel; Viveiros, Antonio; Molnar, Joseph; Leandro, Clara; Arroz, Maria Jorge; Gracio, Maria Amelia; Amaral, Leonard

    2003-05-01

    Although alkaloids from the family Aizoaceae have anticancer activity, species of this family have received little attention. Because these alkaloids also exhibit properties normally associated with compounds that have activity at the level of the plasma membrane, a methanol extract of Carpobrotus edulis, a common plant found along the Portuguese coast, was studied for properties normally associated with plasma membrane active compounds. The results of this study show that the extract is non-toxic at concentrations that inhibit a verapamil sensitive efflux pump of L5178 mouse T cell lymphoma cell line thereby rendering these multi-drug resistant cells susceptible to anticancer drugs. These non-toxic concentrations also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus and to promote the release of lymphokines associated with cellular immune functions. The extract also induces the proliferation of THP-1 cells within 1 day of exposure to quantities normally associated with phytohaemagglutinin. The potential role of the compound(s) isolated from this plant in cancer biology is intriguing and is currently under investigation. It is supposed that the resistance modifier and immunomodulatory effect of this plant extract can be exploited in the experimental chemotherapy of cancer and bacterial or viral infections. Copyright 2003 John Wiley & Sons, Ltd.

  18. Methanol Extract of Codonopsis pilosula Inhibits Inducible Nitric ...

    African Journals Online (AJOL)

    Purpose: To evaluate the mechanism of antioxidant activity of the methanol extract of Codonopsis pilosula. Methods: Anti-oxidative properties were assessed by measuring free radical scavenging activity, nitric oxide (NO) levels, protein oxidation and reducing power, while the mechanism of antioxidative effect of ...

  19. Signaling pathways regulated by Brassicaceae extract inhibit the ...

    African Journals Online (AJOL)

    Background: The goal of this study was identification signaling molecules mediated the formation of AGEs in brain of rats injected with CdCl2 and the role of camel whey proteins and Brassicaceae extract on formation of AGEs in brain. Methods: Ninety male rats were randomly grouped into five groups; Normal control (GpI) ...

  20. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    Science.gov (United States)

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  1. Non-multipotent stroma inhibit the proliferation and differentiation of mesenchymal stromal cells in vitro.

    Science.gov (United States)

    Rosu-Myles, Michael; Fair, Joel; Pearce, Nelson; Mehic, Jelica

    2010-10-01

    The ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood. C57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU. At a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10-20% increase in the frequency of proliferating CD105(-) cells. Removal of CD105(-) stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105(-) cells. This work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.

  2. miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer.

    Science.gov (United States)

    Libório-Kimura, Tatiana N; Jung, Hyun Min; Chan, Edward K L

    2015-02-01

    miR-494 was identified as a candidate of the most significantly underexpressed microRNAs (miRNAs) in our oral cancer screen. The aim of this study was to validate whether miR-494 has a functional role in oral cancer. Quantitative miRNA analyses were performed on oral tumor RNA and oral cancer cell lines. HOXA10 was selected for further analysis based on bioinformatics analysis of miR-494 targets and a previous report of overexpression of HOXA10 in oral cancer. Transient transfection of miRNA-mimic and inhibitor were performed in SCC-25 (tongue), CAL 27 (tongue), and FaDu (pharynx) cancer cells and regulation of HOXA10 by miR-494 was investigated. Dual luciferase assay was used to verify the interaction between miR-494 and HOXA10 in reporter cells. The effect of miR-494 on cell proliferation was examined. Our data showed that miR-494 was underexpressed whereas HOXA10 was overexpressed in oral cancer compared to normal tissues. An inverse correlation between miR-494 and HOXA10 was observed in the human tissues (pcancer cell lines significantly reduced the expression of HOXA10 mRNA. The luciferase reporter that contains the 3'UTR of HOXA10 showed a significantly reduced luciferase activity by miR-494 indicating a direct interaction between HOXA10 and miR-494. Significant reduction in cell proliferation was demonstrated in tongue cancer cells transfected with miR-494. miR-494 repressed the expression of HOXA10 and also reduced the proliferation of oral cancer cells. These data give more evidence of the role of miR-494 as a tumor suppressor miRNA in oral cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells.

    Science.gov (United States)

    Binó, Lucia; Kučera, Jan; Štefková, Kateřina; Švihálková Šindlerová, Lenka; Lánová, Martina; Kudová, Jana; Kubala, Lukáš; Pacherník, Jiří

    2016-01-25

    Hypoxic conditions are suggested to affect the differentiation status of stem cells (SC), including embryonic stem cells (ESC). Hypoxia inducible factor (HIF) is one of the main intracellular molecules responsible for the cellular response to hypoxia. Hypoxia stabilizes HIF by inhibiting the activity of HIF prolyl-hydroxylases (PHD), which are responsible for targeting HIF-alpha subunits for proteosomal degradation. To address the impact of HIF stabilization on the maintenance of the stemness signature of mouse ESC (mESC), we tested the influence of the inhibition of PHDs and hypoxia (1% O2 and 5% O2) on spontaneous ESC differentiation triggered by leukemia inhibitory factor withdrawal for 24 and 48 h. The widely used panhydroxylase inhibitor dimethyloxaloylglycine (DMOG) and PHD inhibitor JNJ-42041935 (JNJ) with suggested higher specificity towards PHDs were employed. Both inhibitors and both levels of hypoxia significantly increased HIF-1alpha and HIF-2alpha protein levels and HIF transcriptional activity in spontaneously differentiating mESC. This was accompanied by significant downregulation of cell proliferation manifested by t