WorldWideScience

Sample records for extracellular potassium levels

  1. Multistability in a neuron model with extracellular potassium dynamics

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  2. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    Science.gov (United States)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  3. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  4. Baseline extracellular potassium level as an indicator of the rate of increase of the same on further storage in CPDA-1 whole blood units: a potential approach to complement FIFO system for prioritisation of blood bags for release from blood-banks.

    Science.gov (United States)

    Baliarsingh, S; Jaiswal, M

    2014-02-01

    Potassium levels in stored blood bags increases as they age. Hyperkalemia in transfused blood has undesirable cardiac effects. Within a 19-month period, baseline and weekly samples from 15 CPDA-1 whole blood bags were collected till 28 days of storage and analysed for potassium, sodium, uric acid, albumin and whole blood haemoglobin. One unit increase in baseline (0 day) potassium in extracellular fluid of blood units was associated with the following increases in potassium levels on later days of storage: around two unit increase at 1 week (r2 = 0·50, P values. For CPDA-1 blood bags (i) low baseline potassium blood bags might be preferred for transfusion in cases demanding a low potassium load and (ii) coordinating the ‘first-in-first-out’ (FIFO) policy with ‘early release of blood-bags with high initial potassium’ might be helpful in improving the release of suitable blood units from blood-banks.

  5. Can Diuretics Decrease Your Potassium Level?

    Science.gov (United States)

    ... of low potassium? Can diuretics decrease your potassium level? Answers from Sheldon G. Sheps, M.D. Yes, ... your urine. This can lead to low potassium levels in your blood (hypokalemia). Signs and symptoms of ...

  6. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    Science.gov (United States)

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Body water, extracellular water, body potassium, and exchangeable sodium in body builders using anabolic steroids

    International Nuclear Information System (INIS)

    Wang, J.; Colt, E.D.W.; Pierson, R.N. Jr.

    1986-01-01

    Nine competitive male body builders aged 21 to 34 who were determined to take anabolic steroids were studied before and 6 to 10 weeks after a training cycle which included steroid administration. A control group of nine subjects matched in age and duration of competitive career, but using only natural training methods were studied on a single occasion while in training. Total body potassium (TBK) by 40 K, total body water (TBW) by 3 H 2 O dilution, extracellular water (ECW) by 35 SO 4 dilution and zero time extrapolation, and exchangeable sodium by 24 Na dilution were measured before and after training. Intracellular water (ICW) was calculated from TBW - ECW. Initially steroid users had a greater skeletal muscle mass than control subjects, and obtained a further weight gain on steroids, all in skeletal muscle, based on parallel increases in TBK and ICW. Other body composition measurements did not change significantly. A single steroid user became ill taking steroids, decreased potassium by 5%, and increased extracellular water, changes which may represent the effects of hepatic dysfunction which occurred while on anabolic steroids

  8. Low potassium level

    Science.gov (United States)

    ... treat and prevent low level of potassium. These foods include: Avocados Baked potato Bananas Bran Carrots Cooked lean beef Milk Oranges Peanut butter Peas and beans Salmon Seaweed Spinach Tomatoes Wheat germ

  9. Neural synchronization via potassium signaling

    DEFF Research Database (Denmark)

    Postnov, Dmitry E; Ryazanova, Ludmila S; Mosekilde, Erik

    2006-01-01

    Using a relatively simple model we examine how variations of the extracellular potassium concentration can give rise to synchronization of two nearby pacemaker cells. With the volume of the extracellular space and the rate of potassium diffusion as control parameters, the dual nature of this reso...

  10. High potassium level

    Science.gov (United States)

    ... level is very high, or if you have danger signs, such as changes in an ECG . Emergency ... Seifter JL. Potassium disorders. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  11. Potassium Chloride Versus Voltage Clamp Contractures in Ventricular Muscle

    Science.gov (United States)

    Morad, M.; Reeck, S.; Rao, M.

    1981-01-01

    In frog ventricle, developed tension was markedly larger in response to depolarization caused by a voltage clamp step than to depolarization induced by high concentrations of potassium chloride. Measurement of extracellular potassium activity at the surface and at the depth of muscle during the development of contractures showed that the diffusion of potassium is much slower than the spread of depolarization through the cross section of muscle. These two observations suggest that competition between the depolarizing and the negative inotropic effects of an increase in the extracellular potassium ion concentration may determine the time course and magnitude of contractile tension in heart muscle.

  12. Serum Sodium and Potassium Levels in Cerebro-vascular Accident Patients.

    Science.gov (United States)

    Farahmand, Farahmand; Choobi Anzali, Babak; Heshmat, Ramin; Ghafouri, Hamed-Basir; Hamedanchi, Sepehr

    2013-05-01

    We aim to assess serum sodium and potassium levels in patients with different types of cerebro-vascular accidents (CVA) in comparison to control group. A comparative cross-sectional study conducted on patients admitted to the emergency department from January to August 2012. Control group consisted of patients admitted to emergency department due to common cold, urinary tract infection, low back pain, cluster, and tension headache or migraine. Serum sodium and potassium levels were measured via standard laboratory methods. There were 77 patients in control group and 78 in CVA group. Forty nine patients from the CVA group had ischemic CVA, 11 had hemorrhagic CVA and 18 suffered a transient ischemic attack (TIA). Serum sodium level in control group was significantly lower than in patients with TIA, ischemic CVA, and hemorrhagic CVA (P < 0.001). Serum potassium level in control group was higher than patients with TIA, ischemic CVA, and hemorrhagic CVA (P < 0.001). Patients with hemorrhagic CVA showed significantly lower serum potassium level than patients with TIA and ischemic CVA (P < 0.001). Correspondingly, it was observed that serum sodium to potassium ratio was higher in patients with TIA, ischemic CVA, and hemorrhagic CVA (P < 0.001). In patients with hemorrhagic CVA serum sodium to potassium ratio was higher when compared to patients with TIA and ischemic CVA (P < 0.001). This study shows that higher serum sodium and lower serum potassium level may be associated with higher incidence of CVA. Further studies are paramount to elucidate the role of serum electrolyte levels in vascular events.

  13. Evaluation of the potassium adsorption capacity of a potassium adsorption filter during rapid blood transfusion.

    Science.gov (United States)

    Matsuura, H; Akatsuka, Y; Muramatsu, C; Isogai, S; Sugiura, Y; Arakawa, S; Murayama, M; Kurahashi, M; Takasuga, H; Oshige, T; Yuba, T; Mizuta, S; Emi, N

    2015-05-01

    The concentration of extracellular potassium in red blood cell concentrates (RCCs) increases during storage, leading to risk of hyperkalemia. A potassium adsorption filter (PAF) can eliminate the potassium at normal blood transfusion. This study aimed to investigate the potassium adsorption capacity of a PAF during rapid blood transfusion. We tested several different potassium concentrations under a rapid transfusion condition using a pressure bag. The adsorption rates of the 70-mEq/l model were 76·8%. The PAF showed good potassium adsorption capacity, suggesting that this filter may provide a convenient method to prevent hyperkalemia during rapid blood transfusion. © 2015 International Society of Blood Transfusion.

  14. Influence of Herbal Complexes Containing Licorice on Potassium Levels: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    WooSang Jung

    2014-01-01

    Full Text Available To observe the influence of these complexes on potassium levels in a clinical setting, we investigated the influence of herbal complexes containing licorice on potassium levels. We retrospectively examined the medical records of patients treated with herbal complexes containing licorice from January 1, 2010, to December 31, 2010. We recorded the changes in the levels of potassium, creatinine, and blood urea nitrogen and examined the differences between before and after herbal complexes intake using a paired t-test. In addition, we investigated the prevalence of hypokalemia among these patients and reviewed such patients. We identified 360 patients who did not show significant changes in the levels of potassium and creatinine (P=0.815, 0.289. We observed hypokalemia in 6 patients. However, in 5 patients, the hypokalemia did not appear to be related to the licorice. Thus, we could suggest that herbal complexes containing licorice do not significantly influence the potassium levels in routine clinical herbal therapies. However, we propose that follow-up examination for potassium levels is required to prevent any unpredictable side effects of administration of licorice in routine herbal medicine care.

  15. Solid contact potassium selective electrodes for biomedical applications – a review

    NARCIS (Netherlands)

    van de Velde, Lennart; d'Angremont, E.; Olthuis, Wouter

    2016-01-01

    Ion-selective electrodes (ISE) are used in several biomedical applications, including laboratory sensing of potassium concentration in blood and urine samples. For on-site determination of potassium concentration and usage in other applications such as determination of extracellular potassium

  16. Sodium and potassium urinary excretion levels of preschool children: Individual, daily, and seasonal differences.

    Science.gov (United States)

    Yasutake, Kenichiro; Nagafuchi, Mikako; Izu, Ryoji; Kajiyama, Tomomi; Imai, Katsumi; Murata, Yusuke; Ohe, Kenji; Enjoji, Munechika; Tsuchihashi, Takuya

    2017-06-01

    In this study, the authors measured sodium and potassium concentrations in spot urine samples of preschool children on multiple days, and evaluated individual, daily, and seasonal effects. A total of 104 healthy preschool children aged 4 to 5 years were studied. Urine samples were collected from the first urine of the day after waking for three consecutive days (Monday-Wednesday) four times a year (spring, summer, autumn, winter). The authors estimated the daily urine volume as 500 mL and daily creatinine excretion as 300 mg, and used these to calculate daily sodium and potassium excretion levels. Daily sodium and potassium excretion levels and sodium to potassium ratios were highly variable. The coefficient variant in the children's excretion levels were also high within and between individuals. Sodium excretion levels and sodium to potassium ratios were higher on Monday (weekend sodium intakes) than Tuesday. Season had no effect on sodium or potassium excretion levels, but the sodium to potassium ratio was higher in summer than in winter. In conclusion, levels of urinary sodium excretion are comparatively high and those of potassium are low in preschool students, with high variability within and between individuals. ©2017 Wiley Periodicals, Inc.

  17. Extracellular Bio-imaging of Acetylcholine-stimulated PC12 Cells Using a Calcium and Potassium Multi-ion Image Sensor.

    Science.gov (United States)

    Matsuba, Sota; Kato, Ryo; Okumura, Koichi; Sawada, Kazuaki; Hattori, Toshiaki

    2018-01-01

    In biochemistry, Ca 2+ and K + play essential roles to control signal transduction. Much interest has been focused on ion-imaging, which facilitates understanding of their ion flux dynamics. In this paper, we report a calcium and potassium multi-ion image sensor and its application to living cells (PC12). The multi-ion sensor had two selective plasticized poly(vinyl chloride) membranes containing ionophores. Each region on the sensor responded to only the corresponding ion. The multi-ion sensor has many advantages including not only label-free and real-time measurement but also simultaneous detection of Ca 2+ and K + . Cultured PC12 cells treated with nerve growth factor were prepared, and a practical observation for the cells was conducted with the sensor. After the PC12 cells were stimulated by acetylcholine, only the extracellular Ca 2+ concentration increased while there was no increase in the extracellular K + concentration. Through the practical observation, we demonstrated that the sensor was helpful for analyzing the cell events with changing Ca 2+ and/or K + concentration.

  18. Noise Controlled Synchronization in Potassium Coupled Neural Models

    DEFF Research Database (Denmark)

    Postnov, D. E.; Ryazanova, L. S.; Zhirin, R. A.

    2007-01-01

    The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we......-temporal oscillations in neuronal ensembles....

  19. Serum Potassium Levels and Outcome in Acute Heart Failure (Data from the PROTECT and COACH Trials).

    Science.gov (United States)

    Tromp, Jasper; Ter Maaten, Jozine M; Damman, Kevin; O'Connor, Christopher M; Metra, Marco; Dittrich, Howard C; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Davison, Beth; Cleland, John G F; Givertz, Michael M; Bloomfield, Daniel M; van der Wal, Martje H L; Jaarsma, Tiny; van Veldhuisen, Dirk J; Hillege, Hans L; Voors, Adriaan A; van der Meer, Peter

    2017-01-15

    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the Patients Hospitalized with acute heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion trial. Patients were grouped according to low potassium (5.0 mEq/l) levels. Results were verified in a validation cohort of 1,023 patients. Mean age of patients was 71 ± 11 years, and 66% were men. Low potassium was present in 115 patients (6%), normal potassium in 1,576 (84%), and high potassium in 176 (9%). Potassium levels increased during hospitalization (0.18 ± 0.69 mEq/l). Patients with high potassium more often used angiotensin-converting enzyme inhibitors and mineralocorticoid receptor antagonists before admission, had impaired baseline renal function and a better diuretic response (p = 0.005), independent of mineralocorticoid receptor antagonist usage. During 180-day follow-up, a total of 330 patients (18%) died. Potassium levels at admission showed a univariate linear association with mortality (hazard ratio [log] 2.36, 95% confidence interval 1.07 to 5.23; p = 0.034) but not after multivariate adjustment. Changes of potassium levels during hospitalization or potassium levels at discharge were not associated with outcome after multivariate analysis. Results in the validation cohort were similar to the index cohort. In conclusion, high potassium levels at admission are associated with an impaired renal function but a better diuretic response. Changes in potassium levels are common, and overall levels increase during hospitalization. In conclusion, potassium levels at admission or its change during hospitalization are not associated with mortality after multivariate adjustment. Copyright © 2016 The Authors. Published by Elsevier Inc

  20. Extrarenal potassium adaptation: role of skeletal muscle

    International Nuclear Information System (INIS)

    Blachley, J.D.; Crider, B.P.; Johnson, J.H.

    1986-01-01

    Following the ingestion of a high-potassium-content diet for only a few days, the plasma potassium of rats rises only modestly in response to a previously lethal dose of potassium salts. This acquired tolerance, termed potassium adaptation, is principally the result of increased capacity to excrete potassium into the urine. However, a substantial portion of the acute potassium dose is not immediately excreted and is apparently translocated into cells. Previous studies have failed to show an increase in the content of potassium of a variety of tissues from such animals. Using 86 Rb as a potassium analogue, we have shown that the skeletal muscle of potassium-adapted rats takes up significantly greater amounts of potassium in vivo in response to an acute challenge than does that of control animals. Furthermore, the same animals exhibit greater efflux of 86 Rb following the termination of the acute infusion. We have also shown that the Na+-K+-ATPase activity and ouabain-binding capacity of skeletal muscle microsomes are increased by the process of potassium adaptation. We conclude that skeletal muscle is an important participant in potassium adaptation and acts to temporarily buffer acute increases in the extracellular concentration of potassium

  1. Low Potassium (Hypokalemia)

    Science.gov (United States)

    Symptoms Low potassium (hypokalemia) By Mayo Clinic Staff Low potassium (hypokalemia) refers to a lower than normal potassium level ... 2 millimoles per liter (mmol/L). A very low potassium level (less than 2.5 mmol/L) ...

  2. Concentration of Potassium in Plasma, Erythrocytes, and Muscle Tissue in Cows with Decreased Feed Intake and Gastrointestinal Ileus.

    Science.gov (United States)

    Schneider, S; Müller, A; Wittek, T

    2016-01-01

    Healthy cows consume large amounts of potassium and a sudden loss in appetite can lead to hypokalemia. The routine method to evaluate potassium homeostasis is the measurement of the extracellular potassium in plasma or serum, but this does not provide information about the intracellular potassium pool. To evaluate potassium homeostasis by comparing the extracellular and intracellular potassium concentration in cows with reduced feed intake and gastrointestinal ileus. Twenty cows 1-3 days postpartum (group 1) and 20 cows with gastrointestinal ileus (group 2). Observational cross-sectional study. Plasma potassium was measured by using an ion-sensitive electrode. Intracellular potassium was measured in erythrocytes and muscle tissue (muscle biopsy) by using inductively coupled plasma optical emission spectroscopy. Cows of group 1 did not have hypokalemia. Overall cows with gastrointestinal ileus were hypokalemic (mean ± SD, 2.9 mmol/L ± 0.78), but potassium concentration in erythrocytes and muscle tissue was not lower than in postpartum cows. Intracellular potassium in erythrocytes varied very widely; group 1: 3497-10735 mg/kg (5559 ± 2002 mg/kg), group 2: 4139-21678 mg/kg (7473 ± 4034 mg/kg). Potassium in muscle tissue did not differ between group 1 (3356 ± 735 mg/kg wet weight) and group 2 (3407 ± 1069 mg/kg wet weight). No association between extracellular and intracellular potassium concentrations was detected. That measurement of plasma potassium concentration is not sufficient to evaluate potassium metabolism of cows. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  3. Elevated potassium levels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Thomsen, Reimar W; Nicolaisen, Sia K; Hasvold, Pål

    2018-01-01

    Background: Data on the true burden of hyperkalemia (HK) in patients with chronic kidney disease (CKD) in a real-world setting are scarce. Methods: The incidence rate of HK [first blood test with an elevated blood potassium level level >5.0 mmol/L] in primary or hospital care was assessed...

  4. The effect of serum potassium level on in-hospital and long-term mortality in ST elevation myocardial infarction.

    Science.gov (United States)

    Keskin, Muhammed; Kaya, Adnan; Tatlısu, Mustafa Adem; Hayıroğlu, Mert İlker; Uzman, Osman; Börklü, Edibe Betül; Çinier, Göksel; Çakıllı, Yasin; Yaylak, Barış; Eren, Mehmet

    2016-10-15

    Current studies evaluating the effect of serum potassium levels on mortality in patients with ST elevation myocardial infarction (STEMI) are lacking. We analyzed retrospectively 3760 patients diagnosed with STEMI. Mean serum potassium levels were categorized accordingly: <3.0, 3.0 to <3.5, 3.5 to <4.0, 4.0 to <4.5, 4.5 to <5.0, 5.0 to <5.5, and ≥5.5mEq/L. The lowest mortality was determined in patients with serum potassium level of 4 to <4.5mEq/L whereas mortality was higher in patients with serum potassium levels of ≥5.0 and <3.5mEq/L. In a multivariable Cox-proportional regression analysis, the mortality risk was higher for patients with serum potassium levels of ≥5mEq/L [hazard ratio (HR), 2.11; 95% confidence interval (CI) 1.23-4.74 and HR, 4.20; 95% CI 1.08-8.23, for patients with potassium levels of 5 to <5.5mEq/L and ≥5.5mEq/L, respectively]. In-hospital and long-term mortality risks were also higher for patients with serum potassium levels of ≤3.5mEq/L. Conversely, ventricular arrhythmias were higher only for patients with serum potassium level of ≤3.5mEq/L. Furthermore, a significant relationship was found between the patient with serum potassium levels of ≤3.5mEq/L and ventricular arrhythmias. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Translocation kinetics of 14C-photosynthate in hybrid rice grown at different potassium levels

    International Nuclear Information System (INIS)

    Jiang Dean; Shen Yuwei; Xie Xuemin; Rao Lihua; Lu Qing

    1993-01-01

    The kinetics of translocation of 14 C-assimilate in hybrid rice plant was studied with 14 CO 2 fed to functional leaf at the tillering and filling stages. The result indicated that the relationship between percentage (V) of photosynthate exporting out of the source leaf or that of assimilate into sink, expanding young leaf or filling panicle, respectively,and time(t)after introducing 14 CO 2 into the leaf was extremely coincided with the regression equation : v = V (t + k)/K m + (t + k). At the tillering stage, fully extended top leaf could export 66% ∼ 79% of its photosynthate assimilated at different potassium levels, and both export potential and rate of 14 C-photosynthate in the fed leaf decreased under the low potassium (1 ppm K supplied), but the rate obviously increased in the superfluous potassium (80 ppm K supplied) in spite of slightly low exporting capacity. Main sink, the expanding young leaf on the top of stem could obtain 28% ∼ 59% of 14 C-assimilate at various potassium levels. Both the importation potential and rate were lowered with low potassium application while hastened by super-supplied potassium at the same development stage. At the filling stage, source, flag leaf, was able to export 83% ∼ 97% of its photosynthate and low potassium (5 ppm) application not only delayed the time of 14 C-photosynthate exportation but also diminished the export rate, whereas the rate was accelerated by superfluous potassium. Low potassium resulted in decrease both in the capacity and in the rate of assimilate importing into grain, nevertheless, high potassium caused decrease of percentage assimilate importing into grain and the increase of improving rate. Therefore, it was strategically considered that neither deficient nor superfluous potassium application was beneficial for assimilate transportation

  6. Determination of Optimum Nitrogen and Potassium Levels for potato Production in Central high lands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Shunka Egata

    2017-02-01

    Full Text Available To determine the required levels of nitrogen and potassium, an experiment was conducted at Holetta Agricultural Research Center and Jeldu sub Center from 2014-2015 using three factors (Jalenie, Gudenie and Belete potato varies; 87, 110, 133kg/ha nitrogen rates and 0, 34.5, 69, 103.5kg/ha potassium in the form of K2O levels and as a completely randomized block design arrangement with three replications. In each location every year the 36 treatments (4 potassium oxide levels x 3 nitrogen levels x 3 varieties were assigned in random combinations to 36 plots of one block in a random case which was replicated in to two additional blocks of different randomizations in order to make total of three replications/blocks. Data were analyzed by SAS software Version 9.2. Potassium rates significantly affected the total yield and marketable yield as compared to the control treatment. Application of potassium at 103.5 kg/ha produced significantly a higher marketable yield than all rates. As compared to Jeldu, the Holetta location produced the maximum highly significant yield and yield component. Interaction of potassium and nitrogen fertilizers affected marketable tuber numbers and plant height significantly. In 2014, Belete produced the highest (27.31 ton/ha marketable yield at an application of 34.5 kg/ha potassium and 110 kg/ha nitrogen while Gudenie produced the highest (30.53 ton/ha marketable yield at an application of 69 kg/ ha potassium and 110 kg/ha nitrogen rates in 2015. It is better to apply 69 kg/ha potassium and 110 kg/ha nitrogen to potato production for reasonable yield at sites similar to experimental locations. It can be concluded that, interaction of nitrogen and potassium rates significantly affected plant height and marketable tuber numbers.

  7. Effects of moisture level and potassium on NH4+ nitrification and ...

    African Journals Online (AJOL)

    To understand the impact of moisture level and potassium on NH4+ nitrification a greenhouse and laboratory studies were conducted using surface soil of Typic Hapludert (0–30 cm) of Ginchi, central Ethiopia. The treatments were two levels of moisture and three levels of fertilizer (six combinations replicated three times).

  8. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    International Nuclear Information System (INIS)

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition

  9. Short-term mortality risk of serum potassium levels in hypertension

    DEFF Research Database (Denmark)

    Krogager, Maria Lukacs; Torp-Pedersen, Christian; Mortensen, Rikke Nørmark

    2017-01-01

    .0 mmol/L (hyperkalaemia). Outcome was 90-day mortality, estimated with multivariable Cox proportional hazard model, with the potassium interval of 4.1-4.4 mmol/L as reference. During 90-day follow-up, mortalities in the seven strata were 4.5, 2.7, 1.8, 1.5, 1.7, 2.7, and 3.6%, respectively. Adjusted risk...... for death was statistically significant for patients with hypokalaemia [hazard ratio (HR): 2.80, 95% confidence interval (95% CI): 2.17-3.62], and hyperkalaemia (HR: 1.70, 95% CI: 1.36-2.13). Notably, normal potassium levels were also associated with increased mortality: K: 3.5- 3.7 mmol/L (HR: 1.70, 95% CI...

  10. Level of radioactive strontium-90, potassium-40 in bone tissues of sheep

    International Nuclear Information System (INIS)

    Bandi, D.; Andrei, S.; Ehnkhtuya, Ts.

    1992-01-01

    We have studied the level of strontium-90 and potassium-40 in bone tissues of sheep. Level of the radioactive elements in its bone tissues decreases depending on its ripeness, but a strong decrease was observable in its old ages

  11. Reduction of Cs-137 levels in plants and fungi after potassium fertilization in a Swedish forest

    International Nuclear Information System (INIS)

    Nikolova, I.

    1998-01-01

    The uptake of 137 Cs in plants in forest ecosystems are much higher than in agricultural ecosystems. One reason could be that the concentrations of mineral nutrients usually are at much lower levels in forest soils compared to soil from arable land. On the other hand there are often rather weak correlation between the concentrations of exchangeable potassium in forest soils and the levels of 137 Cs in, e. g., dwarf-shrubs. The variations of the potassium levels are rather small in forest soils. This deficit can be offset by fertilization with potassium. The aim of the present study was to investigate the effects of potassium fertilization on the uptake of 137 Cs in a rather nutrient poor forest ecosystem - a rocky area with a rather shallow soil layer with high organic content. The potassium was spread in May 1992 by using normal agricultural equipment in efforts to get to 200 kg of potassium chloride per hectare. Three plots about 200 m 2 each were selected on the fertilized area and used for sampling of blueberry, lingonberry and heather. One sampling was performed before the spreading and then at least once a year up to 1997. During the mushroom season, the fruit bodies of the commonest species of fungi were collected within the 3 plots. A closely located rocky area was selected as the control area. The 137 Cs levels in blueberry and lingonberry only showed a minor decrease during the 1992 vegetation period. In contrast, heather showed a marked decrease of about 50 % already the first year. In mushrooms (Lactarius rufus and Rozites caperatus) the decrease was even more pronounced. In 1997, 5 vegetation periods after the fertilization, the Cs-137 levels in blueberry, lingonberry and heather were 633, 926 and 3,22 Bq/kg, respectively, amounting to 23%, 53%, and 24% of the control levels (2767, 1741 and 13,2 Bq/kg, respectively). Even fruit bodies of the fungi showed 137 Cs levels around 30 to 50 % of that in the control area. Thus, potassium fertilization appears

  12. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    Science.gov (United States)

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  13. Short-term mortality risk of serum potassium levels in acute heart failure following myocardial infarction

    DEFF Research Database (Denmark)

    Krogager, Maria Lukács; Eggers-Kaas, Lotti; Aasbjerg, Kristian

    2015-01-01

    /L, normal potassium 4.3-4.5 mmol/L, high normal potassium 4.6-5.0 mmol/L, mild hyperkalaemia 5.1-5.5 mmol/L, and severe hyperkalaemia: >5.5 mmol/L. Follow-up was 90 days and using normal potassium 3.9-4.2 mmol/L as a reference, we estimated the risk of death with a multivariable-adjusted Cox proportional.......14-3.19], and mild and severe hyperkalaemia (HR: 2, CI: 1.25-3.18 and HR: 5.6, CI: 3.38-9.29, respectively). Low and high normal potassium were also associated with increased mortality (HR: 1.84, CI: 1.23-2.76 and HR: 1.55, CI: 1.09-2.22, respectively). CONCLUSION: Potassium levels outside the interval 3.9-4.5 mmol...

  14. Excitation block in a nerve fibre model owing to potassium-dependent changes in myelin resistance.

    Science.gov (United States)

    Brazhe, A R; Maksimov, G V; Mosekilde, E; Sosnovtseva, O V

    2011-02-06

    The myelinated nerve fibre is formed by an axon and Schwann cells or oligodendrocytes that sheath the axon by winding around it in tight myelin layers. Repetitive stimulation of a fibre is known to result in accumulation of extracellular potassium ions, especially between the axon and the myelin. Uptake of potassium leads to Schwann cell swelling and myelin restructuring that impacts the electrical properties of the myelin. In order to further understand the dynamic interaction that takes place between the myelin and the axon, we have modelled submyelin potassium accumulation and related changes in myelin resistance during prolonged high-frequency stimulation. We predict that potassium-mediated decrease in myelin resistance leads to a functional excitation block with various patterns of altered spike trains. The patterns are found to depend on stimulation frequency and amplitude and to range from no block (less than 100 Hz) to a complete block (greater than 500 Hz). The transitional patterns include intermittent periodic block with interleaved spiking and non-spiking intervals of different relative duration as well as an unstable regime with chaotic switching between the spiking and non-spiking states. Intermittent conduction blocks are accompanied by oscillations of extracellular potassium. The mechanism of conductance block based on myelin restructuring complements the already known and modelled block via hyperpolarization mediated by the axonal sodium pump and potassium depolarization.

  15. A new model for the estimation of time of death from vitreous potassium levels corrected for age and temperature.

    Science.gov (United States)

    Zilg, B; Bernard, S; Alkass, K; Berg, S; Druid, H

    2015-09-01

    Analysis of potassium concentration in the vitreous fluid of the eye is frequently used by forensic pathologists to estimate the postmortem interval (PMI), particularly when other methods commonly used in the early phase of an investigation can no longer be applied. The postmortem rise in vitreous potassium has been recognized for several decades and is readily explained by a diffusion of potassium from surrounding cells into the vitreous fluid. However, there is no consensus regarding the mathematical equation that best describes this increase. The existing models assume a linear increase, but different slopes and starting points have been proposed. In this study, vitreous potassium levels, and a number of factors that may influence these levels, were examined in 462 cases with known postmortem intervals that ranged from 2h to 17 days. We found that the postmortem rise in potassium followed a non-linear curve and that decedent age and ambient temperature influenced the variability by 16% and 5%, respectively. A long duration of agony and a high alcohol level at the time of death contributed less than 1% variability, and evaluation of additional possible factors revealed no detectable impact on the rise of vitreous potassium. Two equations were subsequently generated, one that represents the best fit of the potassium concentrations alone, and a second that represents potassium concentrations with correction for decedent age and/or ambient temperature. The former was associated with narrow confidence intervals in the early postmortem phase, but the intervals gradually increased with longer PMIs. For the latter equation, the confidence intervals were reduced at all PMIs. Therefore, the model that best describes the observed postmortem rise in vitreous potassium levels includes potassium concentration, decedent age, and ambient temperature. Furthermore, the precision of these equations, particularly for long PMIs, is expected to gradually improve by adjusting the

  16. Race, Serum Potassium, and Associations With ESRD and Mortality.

    Science.gov (United States)

    Chen, Yan; Sang, Yingying; Ballew, Shoshana H; Tin, Adrienne; Chang, Alex R; Matsushita, Kunihiro; Coresh, Josef; Kalantar-Zadeh, Kamyar; Molnar, Miklos Z; Grams, Morgan E

    2017-08-01

    Recent studies suggest that potassium levels may differ by race. The basis for these differences and whether associations between potassium levels and adverse outcomes differ by race are unknown. Observational study. Associations between race and potassium level and the interaction of race and potassium level with outcomes were investigated in the Racial and Cardiovascular Risk Anomalies in Chronic Kidney Disease (RCAV) Study, a cohort of US veterans (N=2,662,462). Associations between African ancestry and potassium level were investigated in African Americans in the Atherosclerosis Risk in Communities (ARIC) Study (N=3,450). Race (African American vs non-African American and percent African ancestry) for cross-sectional analysis; serum potassium level for longitudinal analysis. Potassium level for cross-sectional analysis; mortality and end-stage renal disease for longitudinal analysis. The RCAV cohort was 18% African American (N=470,985). Potassium levels on average were 0.162mmol/L lower in African Americans compared with non-African Americans, with differences persisting after adjustment for demographics, comorbid conditions, and potassium-altering medication use. In the ARIC Study, higher African ancestry was related to lower potassium levels (-0.027mmol/L per each 10% African ancestry). In both race groups, higher and lower potassium levels were associated with mortality. Compared to potassium level of 4.2mmol/L, mortality risk associated with lower potassium levels was lower in African Americans versus non-African Americans, whereas mortality risk associated with higher levels was slightly greater. Risk relationships between potassium and end-stage renal disease were weaker, with no difference by race. No data for potassium intake. African Americans had slightly lower serum potassium levels than non-African Americans. Consistent associations between potassium levels and percent African ancestry may suggest a genetic component to these differences. Higher and

  17. Potassium-transporting proteins in skeletal muscle: cellular location and fiber-type differences

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force developm......Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force......, but is suggested primarily to participate in K+ release to the interstitium. Because there is restricted diffusion of K+ to the interstitium, K+ released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important...

  18. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  19. Effects of levels of potassium and nitrogen on yields and post-harvest conservation of onions in winter

    Directory of Open Access Journals (Sweden)

    Geraldo Milanez de Resende

    2014-08-01

    Full Text Available Potassium and nitrogen are the elements present in the highest percentage in the onion dry matter. The objective of this experiment was to evaluate yield and post-harvest conservation of Vale Ouro IPA-11 onion cultivar regarding to nitrogen and potassium levels. The experiment was carried out in Petrolina-PE, Brazil, from June to September 2009. The experimental design was a completely randomized block in a 4 x 3 factorial design, composed of four nitrogen levels (0, 60, 120 and 180 kg ha-1 and three potassium levels (0, 90 and 180 kg ha-1 with three replications. The highest yield of commercial bulbs was achieved at an estimated N level of 172.6 kg ha-1. The lowest yield of noncommercial bulbs was estimated at N level of 147.0 kg ha-1. Lower percentage of smaller bulbs (class 2 were obtained by increasing levels of N x K, with a quadratic effect at the dose of 90 kg ha-1 K2O and minimum production point with 127.6 kg N ha-1 (20.3%. Regarding larger caliber bulbs (class 4, linear effects were found both in the absence and for the level of 90 kg ha-1 of K2O as levels of N were increased. When the highest level of 180 kg ha-1 K2O was applied, the level of 92.8 kg ha-1 of N was estimated as the one that would promote the highest bulb yield of this class (35.4%, and 5.3% was found in the lack of potassium fertilization.

  20. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase.

    Directory of Open Access Journals (Sweden)

    Patrizia Pellegatti

    2008-07-01

    Full Text Available There is growing awareness that tumour cells build up a "self-advantageous" microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP.Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours.Our results show that ATP in the tumour interstitium is in the hundreds micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.

  1. 21 CFR 184.1622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in infant...

  2. Oral potassium supplementation in surgical patients.

    Science.gov (United States)

    Hainsworth, Alison J; Gatenby, Piers A

    2008-08-01

    Hospital inpatients are frequently hypokalaemic. Low plasma potassium levels may cause life threatening complications, such as cardiac arrhythmias. Potassium supplementation may be administered parenterally or enterally. Oral potassium supplements have been associated with oesophageal ulceration, strictures and gastritis. An alternative to potassium salt tablets or solution is dietary modification with potassium rich food stuffs, which has been proven to be a safe and effective method for potassium supplementation. The potassium content of one medium banana is equivalent to a 12 mmol potassium salt tablet. Potassium supplementation by dietary modification has been shown to be equally efficacious to oral potassium salt supplementation and is preferred by the majority of patients. Subsequently, it is our practice to replace potassium using dietary modification, particularly in surgical patients having undergone oesophagogastrectomy or in those with peptic ulcer disease.

  3. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  4. Smoking is associated with increased levels of extracellular peptidylarginine deiminase 2 (PAD2) in the lungs

    DEFF Research Database (Denmark)

    Damgaard, Dres; Friberg Bruun Nielsen, Michael; Quisgaard Gaunsbaek, Maria

    2015-01-01

    lavage (BAL) fluid from smokers, but intracellularly located PAD cannot be responsible for citrullination of extracellular self-antigens. We aimed to establish a link between smoking and extracellular PAD2 in the lungs. METHODS: BAL fluid samples were obtained from 13 smokers and 11 nonsmoking controls...... fluids from smokers as compared to non-smokers (p=0.018). The PAD2 content correlated with the overall CRP levels (p=0.009) and cell count (p=0.016). CONCLUSIONS: This first demonstration of increased levels of extracellular PAD2 in the lungs of smokers supports the hypothesis that smoking promotes...

  5. A Model to Determine the Level of Serum Aldosterone in the Workers Attributed to the Combined Effects of Sound Pressure Level, Exposure Time and Serum Potassium Level: A Field-Based Study

    Directory of Open Access Journals (Sweden)

    Parvin Nassiri

    2016-09-01

    Full Text Available Background Occupational exposure to excessive noise is one of the biggest work-related challenges in the world. This phenomenon causes the release of stress-related hormones, which in turn, negatively affects cardiovascular risk factors. Objectives The current study study aimed to determine the level of workers’ serum aldosterone in light of the combined effect of sound pressure level, exposure time and serum potassium level. Methods This cross-sectional, descriptive, analytical study was conducted on 45 workers of Gol-Gohar Mining and Industrial Company in the fall of 2014. The subjects were divided into three groups (one control and two case groups, each including 15 workers. Participants in the control group were selected from workers with administrative jobs (exposure to the background noise. On the other hand, participants in the case groups were selected from the concentrator and pelletizing factories exposed to excessive noise. Serum aldosterone and potassium levels of participants were assessed at three different time intervals: at the beginning of the shift and before exposure to noise (7:30 - 8:00 AM, during exposure to noise (10:00 - 10:30 AM, and during continuous exposure (1:30 - 2:00 PM. The obtained data were transferred into SPSS ver. 18. Repeated measures analysis of variance (ANOVA was used to develop the statistical model of workers’ aldosterone level in light of the combined effect of sound pressure level, exposure time, and serum potassium level. Results The results of the final statistical model to determine the level of serum aldosterone based on the combined effect of sound pressure level, exposure time and serum potassium level indicated that the sound pressure level had a significant influence on the human’s serum aldosterone level (P = 0.04. In addition, the effects of exposure time and serum potassium on aldosterone level were statistically significant with P-values of 0.008 and 0.001, respectively. Conclusions

  6. Atomic energy levels of the iron-period elements: potassium through nickel

    International Nuclear Information System (INIS)

    Sugar, J.; Corliss, C.

    1985-01-01

    Experimentally derived energy levels of the elements from potassium to nickel in all stages of ionization are critically compiled. The data for each level include its position in /cm (relative to the ground state), configuration, term designation, J-value, and, where available, the g-value and two leading percentages of the eigenvector composition in the most appropriate coupling scheme. For the He I and H I isoelectronic sequences, calculated level positions are given because they are considered more accurate than the measurements presently available. Ionization energies for each ion are derived either from Rydberg series, extrapolation, or calculation. Complete references are given for the compiled data

  7. Potassium supplements for oral diarrhoea regimens.

    Science.gov (United States)

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Rust, J; Tome, F C

    1980-10-18

    A study is proposed for supplementing potassium loss from diarrhea in rehydration therapies with fresh fruit and other naturally potassium-rich foods. Bananas contain .1 mol of potassium per gm. Freshly squeezed lemon or orange juices were tested for potassium and sodium content and found to have very low potassium concentration. Therefore, the banana was chosen for an upcoming study that will determine if infants and children suffering from diarrhea can ingest the amounts of the fruit necessary to elevate the potassium level sufficiently. Bananas as the potassium source are thought to be well-accepted in developing areas.

  8. Potassium sensing histidine kinase in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Gontang, Erin A; Kolter, Roberto

    2010-01-01

    The soil-dwelling organism Bacillus subtilis is able to form multicellular aggregates known as biofilms. It was recently reported that the process of biofilm formation is activated in response to the presence of various, structurally diverse small-molecule natural products. All of these small-molecule natural products made pores in the membrane of the bacterium, causing the leakage of potassium cations from the cytoplasm of the cell. The potassium cation leakage was sensed by the membrane histidine kinase KinC, triggering the genetic pathway to the production of the extracellular matrix that holds cells within the biofilm. This chapter presents the methodology used to characterize the leakage of cytoplasmic potassium as the signal that induces biofilm formation in B. subtilis via activation of KinC. Development of novel techniques to monitor activation of gene expression in microbial populations led us to discover the differentiation of a subpopulation of cells specialized to produce the matrix that holds all cells together within the biofilm. This phenomenon of cell differentiation was previously missed by conventional techniques used to monitor transcriptional gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Chloride is essential for contraction of afferent arterioles after agonists and potassium

    DEFF Research Database (Denmark)

    Jensen, B L; Ellekvist, Peter; Skøtt, O

    1997-01-01

    to norepinephrine, angiotensin II (ANG II), and potassium were measured after chloride depletion and compared with controls. Chloride depletion did not change arteriolar diameters, but the response to norepinephrine was markedly reduced when chloride was substituted with gluconate (n = 6) or isethionate (n = 6......). Reintroduction of chloride fully restored the sensitivity to norepinephrine. Contractions after ANG II and potassium were totally abolished in the absence of chloride (n = 6). In additional experiments (n = 7), the arteriolar contraction to 100 mM potassium was abolished only 1 min after removal of extracellular......A depolarizing chloride efflux has been suggested to activate voltage-dependent calcium channels in renal afferent arteriolar smooth muscle cells in response to vasoconstrictors. To test this proposal, rabbit afferent arterioles were microperfused, and the contractile dose responses...

  10. Neuropeptide Y infusion into the shell region of the rat nucleus accumbens increases extracellular levels of dopamine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Wegener, Gregers; Hasselstrøm, Jørgen

    2009-01-01

    Increases in extracellular dopamine in the shell region of the nucleus accumbens are centrally involved in mediating reinforcement of addictive drugs. Neuropeptide Y (NPY) and its receptors are present in the nucleus accumbens and have been implicated in addiction mechanisms. This study further...... explored the potential role of NPY in addiction mechanisms using microdialysis to measure extracellular dopamine in vivo after infusion of NPY directly into the accumbal shell region of adult rats. NPY was found to dose-dependently increase extracellular dopamine levels, indicating that NPY could play...... an important role in drug reinforcement by modulating accumbal dopamine levels...

  11. Extracellular KCl effect on organic bound tritium in human cells

    International Nuclear Information System (INIS)

    Gonen, Rafi; Uzi, German; Priel, Esther; Alfassi, Zeev B.

    2008-01-01

    Tritium atoms can replace hydrogen atoms in organic compounds, forming Organic Bound Tritium. Therefore, exposure of the body to tritium may lead to binding of tritium in tissue molecules, retaining it in the body longer than HTO, and causing higher doses. Ignoring this effect when evaluating inner exposures, may lead to under-estimation of tritium exposures. It was published, that tritium bound to some organic molecules has the potential to accumulate in organisms at higher levels as in the surrounding media. In order to investigate this effect and to identify physiological factors, OBT production in human malignant MG-63 osteoblast cells was studied. The purpose of the present work was to investigate the influence of the ionic extracellular potassium concentration on the amount of tritium in cells. Potassium is known as an ionic compound present in the body, which has the potential to cause cells swelling. Therefore, cells were exposed to isotonic and hypotonic media, supplemented with different concentrations of KCl, and the tritium accumulations were determined after incubation with HTO. An increase in the total Organic Bound Tritium production was observed, as well as an increase of the intracellular HTO content when increasing the KCl concentration. (author)

  12. Firing patterns and synchronization in nonsynaptic epileptiform activity: the effect of gap junctions modulated by potassium accumulation

    International Nuclear Information System (INIS)

    Santos, D O C; Dickman, R; Rodrigues, A M; De Almeida, A C G

    2009-01-01

    Several lines of evidence point to the modification of firing patterns and of synchronization due to gap junctions (GJs) as having a role in the establishment of epileptiform activity (EA). However, previous studies consider GJs as ohmic resistors, ignoring the effects of intense variations in ionic concentration known to occur during seizures. In addition to GJs, extracellular potassium is regarded as a further important factor involved in seizure initiation and sustainment. To analyze how these two mechanisms act together to shape firing and synchronization, we use a detailed computational model for in vitro high-K + and low-Ca 2+ nonsynaptic EA. The model permits us to explore the modulation of electrotonic interactions under ionic concentration changes caused by electrodiffusion in the extracellular space, altered by tortuosity. In addition, we investigate the special case of null GJ current. Increased electrotonic interaction alters bursts and action potential frequencies, favoring synchronization. The particularities of pattern changes depend on the tortuosity and array size. Extracellular potassium accumulation alone modifies firing and synchronization when the GJ coupling is null

  13. Effect of elevated potassium ion concentrations on electrically evoked release of (/sup 3/H)acetylcholine in slices of rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Szerb, J C; Hadhazy, P; Dudar, J D [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Physiology and Biophysics

    1978-01-01

    To establish the effect of raising the concentration of extracellular potassium ions on axonal conduction and transmitter release in a mammalian central pathway, the septohippocampal cholinergic tract, the rate of (/sup 3/H) acetylcholine release evoked by electrical stimulation was measured in rat hippocampal slices superfused with Krebs' solution containing 3-15 mM K/sup +/. The evoked release of (/sup 3/H) acetylcholine was abolished by the presence of tetrodotoxin or by the omission of Ca/sup 2 +/ in the superfusion medium, indicating that it originated from terminals depolarized by conducted action potentials. Potassium concentrations between 3 and 8 mM had no effect but 10-15 mM K/sup +/ reduced the rate of evoked release and decreased the size of the releasable pool of (/sup 3/H) acetylcholine. Decreasing the sodium content of the Krebs' solution to 97 mM or less had effects similar to those of elevated (K/sup +/). Elevated K/sup +/ (10-15 mM) reversibly reduced the size of compound action potentials in the fimbria and the alveus. The results suggest that extracellular potassium concentrations occurring under physiological conditions do not affect axonal conduction and transmitter release but that both are reduced in pathological states when extracellular (K/sup +/) above 8 mM occur.

  14. Chronic potassium depletion increases adrenal progesterone production that is necessary for efficient renal retention of potassium.

    Science.gov (United States)

    Elabida, Boutaïna; Edwards, Aurélie; Salhi, Amel; Azroyan, Anie; Fodstad, Heidi; Meneton, Pierre; Doucet, Alain; Bloch-Faure, May; Crambert, Gilles

    2011-08-01

    Modern dietary habits are characterized by high-sodium and low-potassium intakes, each of which was correlated with a higher risk for hypertension. In this study, we examined whether long-term variations in the intake of sodium and potassium induce lasting changes in the plasma concentration of circulating steroids by developing a mathematical model of steroidogenesis in mice. One finding of this model was that mice increase their plasma progesterone levels specifically in response to potassium depletion. This prediction was confirmed by measurements in both male mice and men. Further investigation showed that progesterone regulates renal potassium handling both in males and females under potassium restriction, independent of its role in reproduction. The increase in progesterone production by male mice was time dependent and correlated with decreased urinary potassium content. The progesterone-dependent ability to efficiently retain potassium was because of an RU486 (a progesterone receptor antagonist)-sensitive stimulation of the colonic hydrogen, potassium-ATPase (known as the non-gastric or hydrogen, potassium-ATPase type 2) in the kidney. Thus, in males, a specific progesterone concentration profile induced by chronic potassium restriction regulates potassium balance.

  15. Effect of exhausting exercise and calcium supplementation on potassium, magnesium, copper, zinc and calcium levels in athletes

    International Nuclear Information System (INIS)

    Cinar, V.; Baltaci, A.K.; Mogulkoc, R.

    2009-01-01

    Present study was performed to determine four week calcium supplementation and athleticism exercise on plasma potassium, calcium, magnesium, cupper and zinc levels in resting and exhaustion. Research was carried out on 30 healthy male people. Group 1; Exercise, Group 2; Exercise + Calcium supplementation, Group 3; Sedentary + Calcium supplemented. All elements levels increased by exhausting exercise (P<0.05). Plasma K and Ca levels increased in exercise group after supplementation (P<0.05). Ca levels increased in exercise + supplemented group (P<0.05). This increase was much more in group three (P<0.05). Plasma Cu levels increased by Ca supplementation in sedentary (P<0.05). Exhausting exercise increased Zn levels in sedentary after supplementation (P<0.05). The results of present study show that calcium supplementation for 4 week does not have clear affect on potassium and Mg. However, calcium levels were increased by supplementation and Cu after the supplementation. It was also exhausting exercise that caused increase in all parameters. (author)

  16. Primary afferent depolarization and changes in extracellular potassium concentration induced by L-glutamate and L-proline in the isolated spinal cord of the frog.

    Science.gov (United States)

    Vyklický, L; Vyskocil, F; Kolaj, M; Jastreboff, P

    1982-10-08

    To test the hypothesis that L-proline acts as an antagonist on glutamate receptors [17, 18], the interaction between L-glutamate and L-proline was studied in the isolated spinal cord of the frog. Glutamate at concentrations of 10(-6) -5 x 10(-3) mol/l depolarized the primary afferent fibres and increased extracellular potassium concentration, [K+]e, by 0.3-4 mmol/l. Repeated applications lead to inactivation of the response. L-Proline at 5 x 10(-3) -10(-2) mol/l, also depolarized the primary afferents and increased [K+]e by 0.5-2 mmol/l, but there was only a slight decrease of the effects after repeated application. The effects were additive when the amino acids were applied simultaneously. The effect of L-proline was still present when it was applied during inactivation of the glutamate receptors. This suggests that L-glutamate and L-proline act on different receptors.

  17. Effect of polacrilin potassium as disintegrant on bioavailability of diclofenac potassium in tablets : a technical note.

    Science.gov (United States)

    Bele, Mrudula H; Derle, Diliprao V

    2012-09-01

    Polacrilin potassium is an ion exchange resin used in oral pharmaceutical formulations as a tablet disintegrant. It is a weakly acidic cation exchange resin. Chemically, it is a partial potassium salt of a copolymer of methacrylic acid with divinyl benzene. It ionizes to an anionic polymer chain and potassium cations. It was hypothesized that polacrilin potassium may be able to improve the permeability of anionic drugs according to the Donnan membrane phenomenon. The effect of polacrilin potassium on the permeability of diclofenac potassium, used as a model anionic drug, was tested in vitro using diffusion cells and in vivo by monitoring serum levels in rats. The amount of drug permeated across a dialysis membrane in vitro was significantly more in the presence of polacrilin potassium. Significant improvement was found in the extent of drug absorption in vivo. It could be concluded that polacrilin potassium may be used as a high-functionality excipient for improving the bioavailability of anionic drugs having poor gastrointestinal permeability.

  18. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    Science.gov (United States)

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  19. Benefit and risk assessment of increasing potassium intake by replacement of sodium chloride with potassium chloride in industrial food products in Norway.

    Science.gov (United States)

    Steffensen, Inger-Lise; Frølich, Wenche; Dahl, Knut Helkås; Iversen, Per Ole; Lyche, Jan Ludvig; Lillegaard, Inger Therese Laugsand; Alexander, Jan

    2018-01-01

    High sodium chloride (NaCl) intake is associated with health risks. NaCl may be replaced by potassium chloride (KCl) to decrease sodium intake. However, increased potassium may also have negative health effects. We conducted a benefit and risk assessment of increasing potassium by ratios of 30:70, 50:50, 70:30 (weight % K + : weight % Na + ) in children, adolescents and adults in Norway, using intake data from national food consumption surveys and available literature on potassium health effects. An intake of at least 3.5 g/day of potassium decreases risk of stroke and hypertension, and this level was used in the benefit assessment of the healthy population. Three g/day of potassium added to mean food intake is assumed safe, and these levels were used in the risk assessment. Not all persons reached the protective level of potassium, and increasing numbers exceeded the safe levels, in these scenarios. In addition, elderly above 85 years and infants below one year of age, as well as several patient groups and medication users, are particularly vulnerable to hyperkalemia. In conclusion, the number of Norwegians facing increased risk is far greater than the number likely to benefit from this replacement of sodium with potassium in industrially produced food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessment of changes in plasma hemoglobin and potassium levels in red cell units during processing and storage.

    Science.gov (United States)

    Saini, Nishant; Basu, Sabita; Kaur, Ravneet; Kaur, Jasbinder

    2015-06-01

    Red cell units undergo changes during storage and processing. The study was planned to assess plasma potassium, plasma hemoglobin, percentage hemolysis during storage and to determine the effects of outdoor blood collection and processing on those parameters. Blood collection in three types of blood storage bags was done - single CPDA bag (40 outdoor and 40 in-house collection), triple CPD + SAGM bag (40 in-house collection) and quadruple CPD + SAGM bag with integral leukoreduction filter (40 in-house collection). All bags were sampled on day 0 (day of collection), day 1 (after processing), day 7, day 14 and day 28 for measurement of percentage hemolysis and potassium levels in the plasma of bag contents. There was significant increase in percentage hemolysis, plasma hemoglobin and plasma potassium level in all the groups during storage (p levels during the storage of red blood cells. Blood collection can be safely undertaken in outdoor blood donation camps even in hot summer months in monitored blood transport boxes. SAGM additive solution decreases the red cell hemolysis and allows extended storage of red cells. Prestorage leukoreduction decreases the red cell hemolysis and improves the quality of blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Serum potassium levels and long-term mortality in the elderly with hypertension].

    Science.gov (United States)

    Heras Benito, M; Fernández-Reyes, M J; Guerrero Díaz, M T; Muñoz Pascual, A

    There is increasing evidence that small variations within the normal range (3.5-5mEq/L) of potassium are associated with mortality. To determine whether there is an association between serum potassium level (sK) and mortality in a cohort of elderly hypertensive patients. A retrospective, observational study was conducted on patients who had sK levels available in a period of clinical stability during their recruitment between January and April 2006 and followed-up for 10 years. The study obtained a total of 62 stable patients, with a mean age of 82.19±6 years (range 69-97), with 74.2% women, 33.9% diabetics, 20.3% with a history of heart failure, Ischaemic heart disease was observed in 19.4% and 44.3% received Angiotensin Converting Enzyme (ACE) inhibitors. An analysis was performed on the mortality rate during the 10 year period. The statistics were performed using the SPSS15.0 package. There were 49 deaths. The sK had a normal distribution. Baseline mean sK levels and median were 4.45±0.5mEq/L (range 3.1-5.5 mEq/L). Baseline sK levels were significantly higher in diabetic patients and patients on ACE inhibitors. The patients that died had higher sK levels (4.53±0.49mEq/L versus 4.14±0.40mEq/L, P=.011). Survival estimated using Kaplan Meier showed that patients with sK levels higher than the median and P75 had higher mortality. In our study, sK levels greater than 4.45mEq/L were associated with mortality. When selecting antihypertensive treatment in hypertensive elderly patients,, the use of ACE inhibitors should be assessed individually, with close monitoring at sK levels and try to keep them in the lower limit of the normal range (<4.45 mEq/L). Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?

    Science.gov (United States)

    Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin

    2012-04-07

    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

  3. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    International Nuclear Information System (INIS)

    Liu, Jing; Parsons, Loren; Pope, Carey

    2013-01-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  4. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States); Parsons, Loren [Committee on Neurobiology of Affective Disorders, The Scripps Research Institute, La Jolla, CA (United States); Pope, Carey, E-mail: carey.pope@okstate.edu [Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK (United States)

    2013-11-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  5. Role of hemolysis in potassium release by iodinated contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.; Nakamura, T.; Shimizu, Y. [Department of Radiology, Kyoto City Hospital (Japan)

    1999-09-01

    It has been demonstrated that an iodinated contrast medium (CM) causes release of potassium into blood vessel lumina, resulting in an increase in serum potassium. The purpose of the present study was to assess whether this potassium release is due to hemolysis. Fresh human blood was mixed in vitro with CM at a ratio of 10:2. Potassium release rates were determined, and serum haptoglobin and free hemoglobin were measured after 30 min of exposure to CM. To compare the potassium release curve between CM exposure and true hemolysis induced by distilled water, fresh human blood was also mixed with distilled water. The level of serum haptoglobin decreased due to hemodilution. Changes in haptoglobin were not correlated with potassium release rates. The serum free hemoglobin level did not increase significantly, and there was no correlation between changes in the free hemoglobin level and the rate of potassium release. Hemolysis caused by water occurred instantaneously, whereas potassium release caused by CM was a slow response, which was linearly correlated with exposure time. Potassium release from blood cannot be explained by hemolysis. (orig.) With 4 figs., 4 tabs., 3 refs.

  6. Serum potassium decline during hospitalization for acute decompensated heart failure is a predictor of 6-month mortality, independent of N-terminal pro-B-type natriuretic peptide levels: An individual patient data analysis.

    Science.gov (United States)

    Salah, Khibar; Pinto, Yigal M; Eurlings, Luc W; Metra, Marco; Stienen, Susan; Lombardi, Carlo; Tijssen, Jan G; Kok, Wouter E

    2015-09-01

    Limited data exist for the role of serum potassium changes during hospitalization for acute decompensated heart failure (ADHF). The present study investigated the long-term prognostic value of potassium changes during hospitalization in patients admitted for ADHF. Our study is a pooled individual patient data analysis assembled from 3 prospective cohorts comprising 754 patients hospitalized for ADHF. The endpoint was all-cause mortality within 180 days after discharge. Serum potassium levels and N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels were measured at admission and at discharge. A percentage decrease >15% in serum potassium levels occurred in 96 (13%) patients, and an absolute decrease of >0.7 mmol/L in serum potassium levels occurred in 85 (12%) patients; and both were predictors of poor outcome independent of admission or discharge serum potassium. After the addition of other strong predictors of mortality-a 30% change in NT-proBNP during hospitalization, discharge levels of NT-proBNP, renal markers, and other relevant clinical variables-the multivariate hazard ratio of serum potassium percentage reduction of >15% remained an independent predictor of 180-day mortality (hazard ratio 2.06, 95% CI 1.14-3.73). A percentage serum potassium decline of >15% is an independent predictor of 180-day all-cause mortality on top of baseline potassium levels, NT-proBNP levels, renal variables, and other relevant clinical variables. This suggest that patients hospitalized for ADHF with a decline of >15% in serum potassium levels are at risk and thus monitoring and regulating of serum potassium level during hospitalization are needed in these patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies

    OpenAIRE

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick

    2017-01-01

    Objectives Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, ...

  8. Computational study on potassium picrate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xue-Hai; Lu, Ya-Lin; Ma, Xiu-Fang; Xiao, He-Ming [Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094 (China)

    2006-08-15

    DFT calculation at the B3LYP level was performed on crystalline potassium picrate. The frontier bands are slightly fluctuant. The energy gap between the highest occupied crystal orbital (HOCO) and the lowest unoccupied crystal orbital (LUCO) is 0.121 a.u. (3.29 eV). The carbon atoms that are connected with the nitro groups make up the narrow lower energy bands, with small contributions from nitro oxygen and phenol oxygen. The higher energy bands consist of orbitals from the nitro groups and carbon atom. The potassium bears almost 1 a.u. positive charge. The potassium forms ionic bonding with the phenol oxygen and the nitro oxygen at the same time. The crystal lattice energy is predicted to be -574.40 kJ/mol at the B3LYP level determined with the effective core pseudopotential HAYWSC-31G basis set for potassium and 6-31G** basis set for other atoms. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Formation of neutrophil extracellular traps under low oxygen level

    Directory of Open Access Journals (Sweden)

    Katja Branitzki-Heinemann

    2016-11-01

    Full Text Available Since their discovery, neutrophil extracellular traps (NETs have been characterized as a fundamental host innate immune defense mechanism. Conversely, excessive NET release may have a variety of detrimental consequences for the host. A fine balance between NET formation and elimination is necessary to sustain a protective effect during an infectious challenge. Our own recently published data revealed that stabilization of hypoxia inducible factor 1α (HIF-1α by the iron chelating HIF-1α-agonist desferoxamine or AKB-4924 enhanced the release of phagocyte extracellular traps. Since HIF-1α is a global regulator of the cellular response to low oxygen, we hypothesized that NET formation may be similarly increased under low oxygen conditions. Hypoxia occurs in tissues during infection or inflammation, mostly due to overconsumption of oxygen by pathogens and recruited immune cells. Therefore, experiments were performed to characterize the formation of NETs under hypoxic oxygen conditions compared to normoxia. Human blood-derived neutrophils were isolated and incubated under normoxic (21% oxygen level and compared to hypoxic (1% conditions. Dissolved oxygen levels were monitored in the primary cell culture using a Fibox4-PSt3 measurement system. The formation of NETs was quantified by fluorescence microscopy in response to the known NET-inducer phorbol 12-myristate 13-acetate (PMA or S. aureus wildtype and a nuclease-deficient mutant. In contrast to our hypothesis, spontaneous NET formation of neutrophils incubated under hypoxia was distinctly reduced compared to control neutrophils incubated under normoxia. Furthermore, neutrophils incubated under hypoxia showed significantly reduced formation of NETs in response to PMA. Gene expression analysis revealed that mRNA level of hif-1α as well as hif-1α target genes was not altered. However, in good correlation to the decreased NET formation under hypoxia, the cholesterol content of the neutrophils was

  10. Effect of palytoxin on the sodium–potassium pump: model and simulation

    International Nuclear Information System (INIS)

    Rodrigues, Antônio M; Infantosi, Antonio F C; Almeida, Antônio-Carlos G

    2008-01-01

    We propose a reaction model for the palytoxin–sodium–potassium (PTX–Na + /K + ) pump complex. The model, which is similar to the Albers–Post model for Na + /K + -ATPase, is used to elucidate the effect of PTX on Na + /K + -ATPase during the enzyme interactions with Na + and/or K + ions. Conformational substates and reactions for the pump are incorporated into the Albers–Post model to represent enzymes with or without bound PTX. A mathematical model based on the reaction scheme is used in simulations modeling experimental studies of PTX-induced ionic currents. Our simulations suggest that (i) extracellular Na + as well as K + promotes PTX-induced channel blockage; (ii) extracellular K + accelerates PTX unbinding; and (iii) K + occlusion in the PTX–pump complex is essential for describing the PTX-induced current dynamics

  11. 21 CFR 862.1600 - Potassium test system.

    Science.gov (United States)

    2010-04-01

    ... potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor electrolyte balance in the diagnosis and treatment of diseases conditions characterized by low or high blood potassium levels. (b) Classification. Class II. ...

  12. Nutritional potassium requirement for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2011-12-01

    Full Text Available The objective of this study was to evaluate the potassium requirement for laying Japanese quails. Two hundred and forty quails were distributed in a randomized block design, with five treatments and six replicates, with eight birds each. The treatments consisted of a basal diet deficient in potassium (K (2.50 g/kg, supplemented with potassium carbonate, to replace the inert, to reach levels of 2.50, 3.50, 4.50, 5.50 and 6.50 (g/kg of K in the diet. There was a quadratic effect of K levels on feed intake, egg production, egg mass and feed conversion per egg mass and per egg dozen, estimating the requirements of 4.26, 4.41, 4.38, 4.43 and 4.48 (g/kg of K diet, respectively. There was no significant effect on the levels of K in the diet on egg weight, albumen weight, percentage of yolk or shell and yolk color. However, yolk and shell weights reduced and the albumen percentage increased linearly with increasing levels of K in the diet. Despite the reduction of shell weight, the increased levels of K did not influence the specific gravity and shell thickness. The use of 4.41 g/kg of potassium is recommended in the diet for laying Japanese quails.

  13. 21 CFR 184.1610 - Potassium alginate.

    Science.gov (United States)

    2010-04-01

    ...: Category of food Maximum level of use in food (as served) (percent) Functional use Confections and...) of this chapter 0.25 Do. All other food categories 0.01 Do. (d) Prior sanctions for potassium... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food...

  14. Modulation of Kir4.1 and Kir4.1-Kir5.1 channels by extracellular cations

    DEFF Research Database (Denmark)

    Søe, Rikke; Andreasen, Mogens; Klærke, Dan Arne

    2009-01-01

    This work demonstrates that extracellular Na(+) modulates the cloned inwardly rectifying K(+) channels Kir4.1 and Kir4.1-Kir5.1. Whole-cell patch clamp studies on astrocytes have previously indicated that inward potassium currents are regulated by external Na(+). We expressed Kir4.1 and Kir4.1-Kir5.......1 in Xenopus oocytes to disclose if Kir4.1 and/or Kir4.1-Kir5.1 at the molecular level are responsible for the observed effect of [Na(+)](o) and to investigate the regulatory mechanism of external cations further. Our results showed that Na(+) has a biphasic modulatory effect on both Kir4.1 and Kir4.1-Kir5.......1 currents. Depending on the Na(+)-concentration and applied voltage, the inward Kir4.1/Kir4.1-Kir5.1 currents are either enhanced or reduced by extracellular Na(+). The Na(+) activation was voltage-independent, whereas the Na(+)-induced reduction of the Kir4.1 and Kir4.1-Kir5.1 currents was both...

  15. The association between fluid balance and mortality in patients with ARDS was modified by serum potassium levels: a retrospective study

    Directory of Open Access Journals (Sweden)

    Zhongheng Zhang

    2015-02-01

    Full Text Available Background and Objective. Acute respiratory distress syndrome (ARDS is characterized by pulmonary edema and may benefit from conservative fluid management. However, conflicting results exist in the literature. The study aimed to investigate the association between mean fluid balance and mortality outcome in ARDS patients who required invasive mechanical ventilation.Methods. The study was a secondary analysis of a prospectively collected dataset obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center. ARDS patients with invasive mechanical ventilation were eligible. Demographic and laboratory data were extracted from the dataset. Multivariable regression model was built by stepwise selection of covariates. A fractional polynomial approach was used to test the linearity of mean fluid balance in the model. The potential interactions of mean fluid balance with other variables were tested.Main Results. A total of 282 patients were eligible for the analysis, including 61 non-survivors with a mortality rate of 21.6%. After stepwise regression analysis, mean fluid balance remained to be an independent predictor of death (OR: 1.00057; 95% CI [1.00034–1.00080]. The two-term model obtained using fractional polynomial analysis was not superior to the linear model. There was significant interaction between mean fluid balance and serum potassium levels (p = 0.011. While the risk of death increased with increasing mean fluid balance at potassium levels of 1.9, 2.9 , 3.9 and 4.9 mmol/l, the risk decreased at potassium level of 5.9 mmol/l.Conclusion. The present study demonstrates that more positive fluid balance in the first 8 days is significantly associated with increased risk of death. However, the relationship between mean fluid balance and mortality can be modified by serum potassium levels. With hyperkalemia, more positive fluid balance is associated with reduced risk of death.

  16. Chaotic Dynamics Mediates Brain State Transitions, Driven by Changes in Extracellular Ion Concentrations

    DEFF Research Database (Denmark)

    Rasmussen, Rune; H. Jensen, Mogens; L. Heltberg, Mathias

    2017-01-01

    Previous studies have suggested that changes in extracellular ion concentrations initiate the transition from an activity state that characterizes sleep in cortical neurons to states that characterize wakeful- ness. However, because neuronal activity and extra- cellular ion concentrations...... are interdependent, isolating their unique roles during sleep-wake transitions is not possible in vivo. Here, we extend the Averaged-Neuron model and demonstrate that, although changes in extracellular ion concentrations occur concurrently, decreasing the conductance of calcium-dependent potassium channels initiates...... the transition from sleep to wakefulness. We find that sleep is governed by stable, self-sustained oscillations in neuronal firing patterns, whereas the quiet awake state and active awake state are both governed by irregular oscillations and chaotic dynamics; transitions between these separable awake states...

  17. Effects of treadmill running on extracellular basal levels of glutamate and GABA at dentate gyrus of streptozotocin-induced diabetic rats

    Science.gov (United States)

    Reisi, Parham; Alaei, Hojjatallah; Babri, Shirin; Sharifi, Mohammad Reza; Mohaddes, Gisue; Soleimannejad, Elaheh; Rashidi, Bahman

    2010-01-01

    BACKGROUND: The present study evaluated the effects of treadmill running on extracellular basal levels of glutamate and GABA at dentate gyrus of streptozotocin-induced diabetic rats. METHODS: After 12 weeks of diabetes induction and exercise period, extracellular levels of glutamate and GABA were investigated. RESULTS: The results showed that glutamate levels were significantly decreased in diabetes-rest group comparing to the control-rest and the diabetes-exercise groups. CONCLUSIONS: The findings support the possibility that treadmill running is helpful in alleviating neurotransmitter homeostasis and alterations in transmission in diabetes mellitus. PMID:21526077

  18. Use of potassium-42 in the study of kidney functioning

    International Nuclear Information System (INIS)

    Morel, F.; Guinnebault, M.

    1959-01-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [fr

  19. Height, leaf nymber, chemical composition and dry matter production of Stylosanthes Campo Grande at different levels of potassium and zinco.

    Directory of Open Access Journals (Sweden)

    Françoise Mara Gomes

    2015-10-01

    Full Text Available The objective of this study was to determine plant height, total number of leaves, number of live leaves, chemical composition and dry mass production of Stylosanthes cv. Campo Grande at first cut and after 21 days of regrowth at different levels of potassium (K2O with and without zinc (Zn. The experiment was conducted using a randomized block design in a 4 x 2 factorial scheme consisting of four repetitions. Four levels of K2O (0, 120, 240 and 360 mg/dm3 with and without Zn (0 and 6 mg/dm3 were used. There was no effect of the interaction between K2O and Zn levels on the structural characteristics of Stylosanthes cv. Campo Grande, and no independent effects of the different levels of K2O and Zn were observed. The mean plant height, total number of leaves and number of live leaves were 21.2 cm, 30.2 and 27.2, respectively. Dry mass production did not differ between K2O and Zn levels, with a mean production of 3.7 g/pot. There was also no effect of the interaction between K2O and Zn levels on dry matter and neutral detergent fiber content, and no independent effects of the different levels of K2O and Zn were observed, with mean values of 29.3% and 46.9% dry matter, respectively. However, an effect of the interaction between K2O and Zn levels was observed for crude protein content, which exhibited a quadratic response. Re2growth increased linearly with increasing K2O levels. Although the highest crude protein content was obtained at zero levels of potassium and zinc, potassium fertilization is advantageous since it increases the regrowth of Stylosanthes cv. Campo Grande in 21 days.

  20. Electrolyte Balance of the Inner Ear Investigated by Neutron Activation Analysis of the Sodium and Potassium Content

    International Nuclear Information System (INIS)

    Ördögh, Mary; Miriszlai, E.

    1967-01-01

    Even the few experimental data that have been obtained from investigations of the inner ear are an important contribution to our biochemical knowledge of the sense organs. The apparent discrepancies between some experimental results have prompted comparative studies on the sodium and potassium concentrations in the inner-ear fluids, the liquor cerebrospinalis, the mammalian and human serum. The results of these studies are expected to give a good approximation of the intracellular and extracellular electrolyte concentrations and to yield important information on the physiological and pathological conditions of the inner ear as well as on the mechanism of hearing. The experimental material is obtained from guinea pigs by penetration through the round window (fenestra rotunda). The sodium and potassium content is determined by neutron activation analysis. Potassium is precipitated from the irradiated samples by sodium tetraphenyl borate reagent, so that the sodium activity retained by the filtrate can be directly counted. Since a single precipitation of potassium does not yield end products free from sodium contamination, the precipitate is dissolved in acetone and precipitated again with sodium tetraphenyl borate. The product of the second precipitation is radiochemically pure. In simultaneous experiments, potassium was separated from the much higher sodium activity by isotopic exchange. The irradiated sample is added to an experimentally determined inactive potassium tetraphenyl borate precipitate that adsorbs the total potassium activity present without adsorbing any sodium. The separation of potassium by isotopic exchange has the advantage of yielding in a single step a sufficiently pure product without any sodium contamination. For comparison, sodium and potassium were also determined by flame photometry. (author)

  1. Increased Urinary Extracellular Vesicle Sodium Transporters in Cushing's Syndrome with Hypertension.

    Science.gov (United States)

    Salih, Mahdi; Bovée, Dominique M; van der Lubbe, Nils; Danser, Alexander H J; Zietse, Robert; Feelders, Richard A; Hoorn, Ewout J

    2018-05-02

    Increased renal sodium reabsorption contributes to hypertension in Cushing's syndrome (CS). Renal sodium transporters can be analyzed non-invasively in urinary extracellular vesicles (uEVs). To analyze renal sodium transporters in uEVs of patients with CS and hypertension. Observational study. University hospital. uEVs were isolated by ultracentrifugation and analyzed by immunoblotting in 10 CS patients and 7 age-matched healthy subjects. In 7 CS patients uEVs were analyzed before and after treatment. uEV protein abundance. The 10 CS patients were divided in those with suppressed and non-suppressed renin-angiotensin-aldosterone system (RAAS, n = 5/group). CS patients with suppressed RAAS had similar blood pressure but significantly lower serum potassium than CS patients with non-suppressed RAAS. Compared to healthy subjects, only those with suppressed RAAS had higher phosphorylated Na+-K+-Cl- cotransporter type 2 (pNKCC2) and higher total and phosphorylated Na+-Cl- cotransporter (NCC) in uEVs. Serum potassium but not urinary free cortisol correlated with pNKCC2, pNCC, and NCC in uEVs. Treatment of CS reversed the increases in pNKCC2, NCC, and pNCC. CS increases renal sodium transporter abundance in uEVs especially in patients with hypertension and suppressed RAAS. As potassium has recently been identified as an important driver of NCC activity, low serum potassium may also contribute to increased renal sodium reabsorption and hypertension in CS. These results may also be relevant for hypertension induced by exogenous glucocorticoids.

  2. Dopamine D1 receptor-dependent regulation of extracellular citrulline level in the rat nucleus accumbens during conditioned fear response.

    Science.gov (United States)

    Saulskaya, Natalia B; Fofonova, Nellia V; Sudorghina, Polina V; Saveliev, Sergey A

    2008-08-01

    Nucleus accumbens (N.Acc) contains a subclass of nitric oxide (NO)-generating interneurons that are presumably regulated by the dopamine input. Receptor mechanisms underlying dopamine-NO interaction in the N.Acc are poorly understood. In the current study, we used in vivo microdialysis combined with high-performance liquid chromatography to examine participation of dopamine D1 receptors in regulation of extracellular levels of citrulline (an NO co-product) in the medial N.Acc of Sprague-Dawley rats during both pharmacological challenge and a conditioned fear response. The intraaccumbal infusion of the D1 receptor agonist SKF-38393 (100-500 microM) increased dose-dependently the local dialysate citrulline levels. The SKF-38393-induced increase in extracellular citrulline was prevented by intraaccumbal infusions of 500 microM 7-nitroindazole, a neuronal NO synthase inhibitor. In behavioral microdialysis experiment, the accumbal levels of extracellular citrulline markedly increased in rats given a mild footshock paired with tone. The presentation of the tone previously paired with footshock (the conditioned fear response) produced a "conditioned" rise of extracellular citrulline levels in the N.Acc which was attenuated by intraaccumbal infusion of 100 microM SCH-23390, a dopamine D1 receptor antagonist, and prevented by intraaccumbal infusion of 500 microM 7-nitroindazole. The results suggest that in the N.Acc, the dopamine D1 receptors might regulate the neuronal NO synthase activity; this dopamine-dependent mechanism seems to participate in activation of the neuronal NO synthase and probably NO formation in this brain area during the conditioned fear response.

  3. Variable Potassium Concentrations: Which Is Right and Which Is Wrong?

    Science.gov (United States)

    Theparee, Talent; Benirschke, Robert C; Lee, Hong-Kee

    2017-05-01

    Reverse pseudohyperkalemia is a term used to describe in vitro, falsely elevated potassium concentrations in plasma specimens that occur in association with extreme leukocytosis and are commonly associated with hematologic malignant neoplasms. Tumor lysis syndrome is an in vivo lysis of tumor cells that leads to elevated levels of potassium, uric acid, phosphate, and lactate dehydrogenase, as well as decreased calcium concentrations. Herein, we report a case of a 66-year-old Caucasian man with stage IV mantle-cell lymphoma who has elevated levels of potassium, uric acid, and phosphorus, as well as a white blood cell (WBC) count greater than 100,000 cells per mm3. The patient initially was diagnosed as having tumor lysis syndrome. His subsequent potassium concentrations in whole blood remained elevated even after hemodialysis; however, his serum potassium concentrations were decreased. The patient then was diagnosed accurately as having reverse pseudohyperkalemia, and accurate potassium measurements were obtained via serum specimens. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  5. Potassium fluorotitanate preparation

    International Nuclear Information System (INIS)

    Perillo, Patricia; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    In order to determine the best conditions for potassium fluotitanate preparation as intermediate step in the electrolytic production of metalic titanium, the effects of a number of experimental variables have been studied. This method is a process of sintering titanium dioxide with potassium fluosilicate and potassium chloride, followed by leaching with boiling water and further crystallization by cooling the solution. An overall yield of 90% has been attained under the following conditions: working temperature: 750 deg C; heating time for sintering: 3 hours; molar ratio: titanium dioxide: potassium fluosilicate: potassium chloride: 1 : 2 : 0.4; number of leachings: 6. (Author) [es

  6. Altered potassium homeostasis in Crohn's disease

    International Nuclear Information System (INIS)

    Schober, O.; Hundeshagen, H.; Bosaller, C.; Lehr, L.

    1983-01-01

    The total body potassium (TBK), serum potassium, and the number of red blood cell ouabain-binding sites was studied in 94 patients with Crohn's diease. TBK was measured by counting the endogenous 40 K in a whole body counter. TBK was 87%+-13% in 94 patients was Crohn's disease, while in control subjects, it was 97%+-12% (n=24). This significant reduction in TBK was accompanied by normal serum potassium levels (4.4+-0.5 mM). TBK was significantly correlated with the Crohn's disease activity index (r=0.79, n=113, P 3 H-ouabain showed a significant increse in the number of Na-K pumps in Crohn's disease (396+-65, n=27) compared with the control group. 290+-45 (n=24). These results support the suggestion that changes in TBK may regulate the synthesis of Na-K pump molecules. The total body potassium depletion and the need for a preoperative nutritional support in Crohn's disease are discussed. (orig.)

  7. Determinants of renal potassium excretion in critically ill patients : The role of insulin therapy

    NARCIS (Netherlands)

    Hoekstra, Miriam; Yeh, Lu; Oude Lansink, Annemieke; Vogelzang, Mathijs; Stegeman, Coen A.; Rodgers, Michael G. G.; van der Horst, Iwan C. C.; Wietasch, Gotz; Zijlstra, Felix; Nijsten, Maarten W. N.

    Objectives: Insulin administration lowers plasma potassium concentration by augmenting intracellular uptake of potassium. The effect of insulin administration on renal potassium excretion is unclear. Some studies suggest that insulin has an antikaliuretic effect although plasma potassium levels were

  8. Potassium acceptor doping of ZnO crystals

    Directory of Open Access Journals (Sweden)

    Narendra S. Parmar

    2015-05-01

    Full Text Available ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  9. Potassium acceptor doping of ZnO crystals

    Science.gov (United States)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  10. Potassium acceptor doping of ZnO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, Narendra S., E-mail: nparmar@wsu.edu; Lynn, K. G. [Center for Materials Research, Washington State University, Pullman, Washington 99164-2711 (United States); Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States); Corolewski, Caleb D.; McCluskey, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814 (United States)

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  11. Electrocardiography and serum potassium before and after hemodialysis sessions

    International Nuclear Information System (INIS)

    Tarif, N.; Al-Wakeel, Jamal Saleh; Sulaimani, F.; Memon, Nawaz Ali; Al-Suwaida, Abdul Kareem; Yamani, H.; Bakhsh, Ahmed Jahangir

    2008-01-01

    This study was undertaken to assess potassium level and electrocardiographic (ECG) changes post hemodialysis and whether fall in potassium level during hemodialysis may potentiate cardiac arrythemia. We studied 21 chronic hemodialysis (HD) patients who had their serum electrolytes measured before and after dialysis session and ECG performed at the same time. The patients included 14 females and 7 males with a mean age of 53.1+-15.6 years and range from 26 to 81 years; 9 (43%) patients were diabetics. All the patients had been on dialysis for a minimum of 6 months each Pre-HD serum potassium levels had no correlation with any ECG parameters except a negative correlation with T wave amplitude r=-0.5, p=0.021. ECG parameters significantly changed post-HD; the T wave amplitude decreased and the R wave amplitude increased. A comparatively higher R wave significantly decreased the T to R wave ratio post dialysis. The QRS duration and QTc interval also increased significantly. The patients with post-HD serum potassium of 3.5 mmol/L had a higher R wave amplitude and a significantly less T to R wave ratio (11.8+-9.7 vs 6.4+-5.1, p=0.045 and 0.4+-0.38 vs 1.0+-0.97, p=0.049, respectively. In patients with serum potassium decrement of >2.0 mmol/L, the T to R wave ratio decreased significantly, 0.32+-0.21 vs 0.85+-0.26, p=0.023; The T wave amplitude decreased more than the rise in R wave. Multiple regression analysis did not reveal any relationship of pre or post HD ECG changes and serum potassium, serum calcium or net change in serum potassium post-HD. We conclude that post-HD serum potassium decrement results in a decrease in T to R wave ratio on ECG; this change may have an arrhythmogenic potential. (author)

  12. Serum Potassium Levels and Outcome in Acute Heart Failure (Data from the PROTECT and COACH Trials)

    OpenAIRE

    Tromp, Jasper; ter Maaten, Jozine M.; Damman, Kevin; OConnor, Christopher M.; Metra, Marco; Dittrich, Howard C.; Ponikowski, Piot; Teerlink, John R.; Cotter, Gad; Davison, Beth; Cleland, John G. F.; Givertz, Michael M.; Bloomfield, Daniel M.; van der Wal, Martje H. L.; Jaarsma, Tiny

    2017-01-01

    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the Patients Hospitalized with acute heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion trial. Patients were grouped according to low potassium (amp;lt;3.5 mEq/...

  13. ROLE OF POTASSIUM IN THE OXIDATIVE METABOLISM OF MICROCOCCUS SODONENSIS1

    Science.gov (United States)

    Perry, Jerome J.; Evans, James B.

    1961-01-01

    Perry, Jerome J. (The University of Chicago, Chicago, Ill.), and James B. Evans. Role of potassium in the oxidative metabolism of Micrococcus sodonensis. J. Bacteriol. 82:551–555. 1961.—An absolute potassium requirement has been established for the growth of Micrococcus sodonensis with lactate or pyruvate as substrate. Potassium at 0.67 × 10−2m concentration was necessary for maximal growth. Resting cell and cell-free preparations from cells grown on minimal levels of potassium were stimulated by potassium but, due to residual or bound cation, did not show an absolute requirement. Rubidium and cesium replaced potassium in these cells although cesium is much less effective. PMID:14485577

  14. Performance and mechanism of sludge dewaterability enhanced by potassium ferrate pretreatment and calcium chloride addition

    Directory of Open Access Journals (Sweden)

    Yali Liu

    2017-06-01

    Full Text Available The potential benefits and mechanisms of potassium ferrate pretreatment and calcium chloride addition on sludge dewaterability were investigated in this study. The capillary suction time (CST was used to evaluate sludge dewaterability. Results indicated that potassium ferrate of 0.1 g/g total solids (TS and calcium chloride of 0.4 g/g TS were optimal parameters, and corresponding CST reached 43.7 s. Soluble organics in extracellular polymeric substances (EPS were determined by three-dimensional excitation-emission matrix fluorescence spectroscopy, which was used to explain the mechanism of sludge dewaterability. The fluorescence intensities of protein-like and humic-like substances in EPS had a negative relationship with the CST. Scanning electron microscopy images indicated that calcium chloride neutralized the surface charge of particles, making the soluble protein-like substances agglomerate and form bigger flocs, consequently enhancing sludge dewaterability.

  15. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    Science.gov (United States)

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  16. Association of Levels of Antibodies from Patients with Inflammatory Bowel Disease with Extracellular Proteins of Food and Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Arancha Hevia

    2014-01-01

    Full Text Available Inflammatory bowel disease (IBD is an autoimmune disease characterized by a chronic inflammation of the gastrointestinal tract mucosa and is related to an abnormal immune response to commensal bacteria. Our aim of the present work has been to explore the levels of antibodies (IgG and IgA raised against extracellular proteins produced by LAB and its association with IBD. We analyzed, by Western-blot and ELISA, the presence of serum antibodies (IgA and IgG developed against extracellular protein fractions produced by different food bacteria from the genera Bifidobacterium and Lactobacillus. We used a sera collection consisting of healthy individuals (HC, n=50, Crohn's disease patients (CD, n=37, and ulcerative colitis patients (UC, n=15. Levels of IgA antibodies developed against a cell-wall hydrolase from Lactobacillus casei subsp. rhamnosus GG (CWH were significantly higher in the IBD group (P<0.002; n=52. The specificity of our measurements was confirmed by measuring IgA antibodies developed against the CWH peptide 365-VNTSNQTAAVSAS-377. IBD patients appeared to have different immune response to food bacteria. This paper sets the basis for developing systems for early detection of IBD, based on the association of high levels of antibodies developed against extracellular proteins from food and probiotic bacteria.

  17. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  18. Alterations in brain extracellular dopamine and glycine levels following combined administration of the glycine transporter type-1 inhibitor Org-24461 and risperidone.

    Science.gov (United States)

    Nagy, Katalin; Marko, Bernadett; Zsilla, Gabriella; Matyus, Peter; Pallagi, Katalin; Szabo, Geza; Juranyi, Zsolt; Barkoczy, Jozsef; Levay, Gyorgy; Harsing, Laszlo G

    2010-12-01

    The most dominant hypotheses for the pathogenesis of schizophrenia have focused primarily upon hyperfunctional dopaminergic and hypofunctional glutamatergic neurotransmission in the central nervous system. The therapeutic efficacy of all atypical antipsychotics is explained in part by antagonism of the dopaminergic neurotransmission, mainly by blockade of D(2) dopamine receptors. N-methyl-D-aspartate (NMDA) receptor hypofunction in schizophrenia can be reversed by glycine transporter type-1 (GlyT-1) inhibitors, which regulate glycine concentrations at the vicinity of NMDA receptors. Combined drug administration with D(2) dopamine receptor blockade and activation of hypofunctional NMDA receptors may be needed for a more effective treatment of positive and negative symptoms and the accompanied cognitive deficit in schizophrenia. To investigate this type of combined drug administration, rats were treated with the atypical antipsychotic risperidone together with the GlyT-1 inhibitor Org-24461. Brain microdialysis was applied in the striatum of conscious rats and determinations of extracellular dopamine, DOPAC, HVA, glycine, glutamate, and serine concentrations were carried out using HPLC/electrochemistry. Risperidone increased extracellular concentrations of dopamine but failed to influence those of glycine or glutamate measured in microdialysis samples. Org-24461 injection reduced extracellular dopamine concentrations and elevated extracellular glycine levels but the concentrations of serine and glutamate were not changed. When risperidone and Org-24461 were added in combination, a decrease in extracellular dopamine concentrations was accompanied with sustained elevation of extracellular glycine levels. Interestingly, the extracellular concentrations of glutamate were also enhanced. Our data indicate that coadministration of an antipsychotic with a GlyT-1 inhibitor may normalize hypofunctional NMDA receptor-mediated glutamatergic neurotransmission with reduced

  19. Handling of potassium

    International Nuclear Information System (INIS)

    Schwarz, N.; Komurka, M.

    1983-03-01

    As a result for the Fast Breeder Development extensive experience is available worldwide with respect to Sodium technology. Due to the extension of the research program to topping cycles with Potassium as the working medium, test facilities with Potassium have been designed and operated in the Institute of Reactor Safety. The different chemical properties of Sodium and Potassium give rise in new safety concepts and operating procedures. The handling problems of Potassium are described in the light of theoretical properties and own experiences. Selected literature on main safety and operating problems complete this report. (Author) [de

  20. The inhibitory effects of potassium chloride versus potassium silicate application on 137Cs uptake by rice

    International Nuclear Information System (INIS)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-01-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of 137 Cs by rice plants in two pot experiments. The 137 Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K + ) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K + concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K + for rice plants in the soil, which led to a greater uptake of 137 Cs after the potassium silicate application than after the application of potassium chloride. The 137 Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. - Highlights: • Potassium application reduced 137 Cs uptake by rice grown in pot experiments. • Readily available K fertilizer more effectively decreased brown rice 137 Cs concentration. • Potassium should be applied before heading to reduce brown rice 137 Cs concentration.

  1. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    Science.gov (United States)

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Serum Potassium Levels and Outcome in Acute Heart Failure (Data from the PROTECT and COACH Trials)

    NARCIS (Netherlands)

    Tromp, Jasper; ter Maaten, Jozine M.; Damman, Kevin; O'Connor, Christopher M.; Metra, Marco; Dittrich, Howard C.; Ponikowski, Piotr; Teerlink, John R.; Cotter, Gad; Davison, Beth; Cleland, John G. F.; Givertz, Michael M.; Bloomfield, Daniel M.; van der Wal, Martje H. L.; Jaarsma, Tiny; van Veldhuisen, Dirk J.; Hillege, Hans L.; Voors, Adriaan A.; van der Meer, Peter

    2017-01-01

    Serum potassium is routinely measured at admission for acute heart failure (AHF), but information on association with clinical variables and prognosis is limited. Potassium measurements at admission were available in 1,867 patients with AHF in the original cohort of 2,033 patients included in the

  3. Effects of phosphorus and potassium levels on the yield of the tuber variety Criolla Colombia in the department of Cundinamarca

    Directory of Open Access Journals (Sweden)

    Rozo M. Yohana Carolina

    2011-08-01

    Full Text Available

    In the locations of Zipaquirá and Cogua located in the department of Cundinamarca, the effects of applying different levels of phosphorus and potassium on tuber yield and specific gravity in the diploid potato variety Criolla Colombia were evaluated. The design used a completely randomized block with three replications and a 4 x 4 factorial structure, where the first factor corresponds to phosphorus (0, 50, 100 and 150 kg ha-1 P2O5, and the second, potassium (0, 50, 100 and 150 kg ha-1 k2O. The variables evaluated were specific gravity and tuber yield in the categories: first (PT1, second (PT2, third (PT3 and total (PTT. In Zipaquirá, there were differences in the phosphorus factor for the yield variables PT1, PT2 and PTT, while in the town of Cogua, the only difference for this factor was found in the variable PTT. In these variables, the levels of 50, 100 and 150 kg ha-1 of P2O5 produced higher yields that were equal and above that of the 0 kg ha-1 P2O5 level. In the potassium factor, differences were found only for the yield variable PT3 in the town of Cogua. The specific gravity did not respond to the P or K factors evaluated.

  4. Cesium immobilization into potassium magnesium phosphate matrix

    International Nuclear Information System (INIS)

    Sayenko, S.Y.; Shkuropatenko, V.A.; Bereznyak, O.P.; Hodyreva, Y.S.; Tarasov, R.V.; Virych, V.D.; Ulybkina, E.A.; Pylypenko, O.V.; Kholomeev, G.O.; Zykova, A.V.; Wagh, Arun S.

    2017-01-01

    The possibility of isomorphous substitution of potassium ions by cesium ions in the structure of potassium magnesium phosphate KMgPO 4 centred dot 6H 2 O (PMP) was shown. It was established, that the Cs included into the PMP matrix does not transfer to the environment during high temperatures heating process (1176 deg C, 3 hours). Analysis of the IR absorption spectrum of the PMP sample has demonstrated that an increase in the amount of additive of the cesium chloride resulted in the shift of the main bands in the spectrum to the low-frequency region with average shift value 10 cm -1 , which indicates the strengthening of bonds in the crystal lattice of matter. The calculated degree of substitution of potassium by cesium during energy release process in the PMP matrix at the level of vitrified high level wastes is about 4%, i. e. the PMP matrix should correspond to the formula K 0.96 Cs 0.04 MgPO 4 centred dot 6H 2 O.

  5. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  6. Modulation of memory with septal injections of morphine and glucose: effects on extracellular glucose levels in the hippocampus.

    Science.gov (United States)

    McNay, Ewan C; Canal, Clinton E; Sherwin, Robert S; Gold, Paul E

    2006-02-28

    The concentration of glucose in the extracellular fluid (ECF) of the hippocampus decreases substantially during memory testing on a hippocampus-dependent memory task. Administration of exogenous glucose, which enhances task performance, prevents this decrease, suggesting a relationship between hippocampal glucose availability and memory performance. In the present experiment, spontaneous alternation performance and task-related changes in hippocampal ECF glucose were assessed in rats after intraseptal administration of morphine, which impairs memory on a spontaneous alternation task, and after co-administration of intraseptal glucose, which attenuates that impairment. Consistent with previous findings, spontaneous alternation testing resulted in a decrease in hippocampal ECF glucose levels in control rats. However, rats that received intraseptal morphine prior to testing showed memory impairments and an absence of the task-related decrease in hippocampal ECF glucose levels. Intraseptal co-administration of glucose with morphine attenuated the memory impairment, and ECF glucose levels in the hippocampus decreased in a manner comparable to that seen in control rats. These data suggest that fluctuations in hippocampal ECF glucose levels may be a marker of mnemonic processing and support the view that decreases in extracellular glucose during memory testing reflect increased glucose demand during memory processing.

  7. Potassium as an index of fruit content in baby food products. Part I. Banana-containing and apricot-containing products.

    Science.gov (United States)

    Harvey, R A; Theuer, R C

    1991-01-01

    Percentage ingredient labeling has been proposed for baby foods. We determined whether or not the potassium content of baby foods could be used to verify the quantity of fruit when the characterizing ingredients were apricots or bananas, fruits rich in potassium. Official values for potassium in fruit (USDA Handbook No. 8-9) did not agree well with actual analyses. The potassium levels of products of known composition were accurately predicted from analyses of the actual ingredients used to make the foods. For banana-containing monofruit products of variable or unknown composition, potassium analysis led to fruit level estimates consistent with either the known composition or the label declaration. For products of unknown composition made with apricot concentrate, however, potassium analysis led to fruit level estimates lower than the probable fruit content. The quantity of fruit in baby foods made with potassium-rich fruits can be estimated from the potassium content if the potassium value for the fruit is representative of the actual ingredients used to make the product. If potassium analysis is to be used to verify compliance with percentage ingredient labeling, there must be statutory specification of the single-strength fruit level for fruit reconstituted from concentrate.

  8. Mechanism of cesium sorption on potassium titanium hexacyanoferrate

    International Nuclear Information System (INIS)

    Sun Yongxia; Xu Shiping; Song Chongli

    1998-01-01

    The mechanism of cesium sorption on potassium titanium hexacyanoferrate is described. The dependence of the sorption speed on temperature, particle granule size, and the stirring speed is studied. The results show that the sorption process is controlled by liquid film diffusion and particle diffusion. An exchange reaction occurs mainly between K + in the exchanger and Cs + in the solution, i.e. potassium titanium hexacyanoferrate, and Cs + of simulated high-level liquid waste

  9. Penicillin V Potassium

    Science.gov (United States)

    Penicillin V potassium is used to treat certain infections caused by bacteria such as pneumonia and other ... heart valves and other symptoms) from coming back. Penicillin V potassium is in a class of medications ...

  10. Potassium maldistribution revisited

    African Journals Online (AJOL)

    Background:This study investigated maldistribution of concentrated 15% potassium chloride after injection into .... and latter experiments referred to for example as “Control 1” ..... be further investigated as a reliable, simple method of potassium.

  11. Agreement of serum potassium measured by blood gas and biochemistry analyzer in patients with moderate to severe hyperkalemia.

    Science.gov (United States)

    Acikgoz, Seyyid Bilal; Genc, Ahmet Bilal; Sipahi, Savas; Yildirim, Mehmet; Cinemre, Behice; Tamer, Ali; Solak, Yalcin

    2016-05-01

    Several studies investigated the agreement between central laboratory biochemistry analyzers and blood gas analyzers for potassium measurements. However, data are scarce when the potassium level is moderate to severely high. We aimed to evaluate the agreement between central laboratory biochemistry analyzers and blood gas analyzer in terms of serum potassium level measurement because differences in potassium at this level translate into very different clinical actions. This was a retrospective medical record review study in which patients who presented to the emergency department and had serum potassium levels ≥6mmol/L were included. Patients who did not have simultaneous potassium measurement by blood gas analyzer were excluded. We included all patients meeting potassium criteria irrespective of their underlying disease or comorbidities. We evaluated agreement between the measurement methods with Pearson correlation, Bland-Altman plot, and Sign test. A total of 118 blood sample pairs were included. The mean serum potassium level measured by biochemistry analyzer was 6.78±0.79mmol/L, whereas it was 6.16±0.86mmol/L by blood gas analyzer (Pbiochemistry analyzer. The mean difference between the methods was 0.62±0.43mmol/L. In patients with moderate to severe hyperkalemia, blood gas analyzer and biochemistry analyzer gives significantly different serum potassium results which may be clinically important. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. 21 CFR 184.1619 - Potassium carbonate.

    Science.gov (United States)

    2010-04-01

    ... solution of potassium hydroxide with excess carbon dioxide to produce potassium carbonate; (3) By treating a solution of potassium hydroxide with carbon dioxide to produce potassium bicarbonate, which is... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food...

  13. Ethanol drinking reduces extracellular dopamine levels in the posterior ventral tegmental area of nondependent alcohol-preferring rats.

    Science.gov (United States)

    Engleman, Eric A; Keen, Elizabeth J; Tilford, Sydney S; Thielen, Richard J; Morzorati, Sandra L

    2011-09-01

    Moderate ethanol exposure produces neuroadaptive changes in the mesocorticolimbic dopamine (DA) system in nondependent rats and increases measures of DA neuronal activity in vitro and in vivo. Moreover, moderate ethanol drinking and moderate systemic exposure elevates extracellular DA levels in mesocorticolimbic projection regions. However, the neuroadaptive changes subsequent to moderate ethanol drinking on basal DA levels have not been investigated in the ventral tegmental area (VTA). In the present study, adult female alcohol-preferring (P) rats were divided into alcohol-naive, alcohol-drinking, and alcohol-deprived groups. The alcohol-drinking group had continuous access to water and ethanol (15%, vol/vol) for 8 weeks. The alcohol-deprived group had 6 weeks of access followed by 2 weeks of ethanol deprivation, 2 weeks of ethanol re-exposure, followed again by 2 weeks of deprivation. The deprived rats demonstrated a robust alcohol deprivation effect (ADE) on ethanol reinstatement. The alcohol-naïve group had continuous access to water only. In the last week of the drinking protocol, all rats were implanted with unilateral microdialysis probes aimed at the posterior VTA and no-net-flux microdialysis was conducted to quantify extracellular DA levels and DA clearance. Results yielded significantly lower basal extracellular DA concentrations in the posterior VTA of the alcohol-drinking group compared with the alcohol-naive and alcohol-deprived groups (3.8±0.3nM vs. 5.0±0.5nM [Palcohol-drinking and alcohol-naive groups (72±2% vs. 46±4%, respectively) and not significantly different (P=.051) between alcohol-deprived and alcohol-naive groups (61±6% for the alcohol-deprived group). The data indicate that reductions in basal DA levels within the posterior VTA occur after moderate chronic ethanol intake in nondependent P rats. This reduction may result, in part, from increased DA uptake and may be important for the maintenance of ethanol drinking. These adaptations

  14. Potassium adsorption ratios as an indicator for the fate of agricultural potassium in groundwater

    NARCIS (Netherlands)

    Griffioen, J.

    2001-01-01

    Fertilization of agricultural land in groundwater infiltration areas often causes deterioration of groundwater quality. In addition to nitrogen and phosphorous, potassium deserves attention. The fate of potassium in the subsurface is controlled mainly by cation-exchange. Use of the Potassium

  15. Dirac-Fock calculation of oscillator strengths and lifetimes of levels for ions of potassium isoelectronic series

    International Nuclear Information System (INIS)

    Zilitis, V.A.

    1989-01-01

    Oscillator forces, f, of 4s-4p, 4p-5s, 3d-4p and 3d-4f transitions for 13 terms of the potassium isoelectric line (from K to U 73+ ) are calculated by the Dirac-Fock method. Nonmonotonous change in values f along the isoelectric line is detected in some cases. Radiation life times of levels 4p 1/2 , 4p 3/2 and 5s 1/2 are also calculated. Similar values, which can be approximated by formula τ≅ 5x10 -8 Z ef -3 .3 , where Z ef - the effective charge, are obtained for life times of these levels. Values obtained for f and τ are compared with data of other authors

  16. Commensal Bacteria-Induced Inflammasome Activation in Mouse and Human Macrophages Is Dependent on Potassium Efflux but Does Not Require Phagocytosis or Bacterial Viability.

    Directory of Open Access Journals (Sweden)

    Kejie Chen

    Full Text Available Gut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß. Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis. B. infantis and B. fragilis induced IL-1ß secretion by primary mouse bone marrow-derived macrophages after overnight incubation. IL-1ß secretion also occurred in response to heat-killed bacteria and was only partly reduced when phagocytosis was inhibited with cytochalasin D. Similar results were obtained with a wild-type immortalized mouse macrophage cell line but neither B. infantis nor B. fragilis induced IL-1ß secretion in a mouse macrophage line lacking the nucleotide-binding/leucine-rich repeat pyrin domain containing 3 (NLRP3 inflammasome. IL-1ß secretion in response to B. infantis and B. fragilis was significantly reduced when the wild-type macrophage line was treated with inhibitors of potassium efflux, either increased extracellular potassium concentrations or the channel blocker ruthenium red. Both live and heat-killed B. infantis and B. fragilis also induced IL-1ß secretion by human macrophages (differentiated THP-1 cells or primary monocyte-derived macrophages after 4 hours of infection, and the secretion was inhibited by raised extracellular potassium and ruthenium red but not by cytochalasin D. Taken together, our findings indicate that the commensal bacteria B. infantis and B. fragilis activate the NLRP3 inflammasome in both mouse and human macrophages by a mechanism that involves potassium efflux and that does not require bacterial viability or phagocytosis.

  17. Potassium in milk and milk products

    International Nuclear Information System (INIS)

    Sombrito, E.Z.; Nuguid, Z.F.S.; Tangonan, M.C.

    1989-01-01

    The amount of potassium in imported processed milk was determined by gamma spectral analysis. The results show that the potassium content of diluted infant formula milk is closest to the reported mean concentration of potassium in human milk while other milk types have potassium values similar to the potassium content of cow milk. (Auth.). 2 figs., 5 refs

  18. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation.

    Science.gov (United States)

    Gundlach, Jan; Herzberg, Christina; Hertel, Dietrich; Thürmer, Andrea; Daniel, Rolf; Link, Hannes; Stülke, Jörg

    2017-07-05

    Potassium is the most abundant metal ion in every living cell. This ion is essential due to its requirement for the activity of the ribosome and many enzymes but also because of its role in buffering the negative charge of nucleic acids. As the external concentrations of potassium are usually low, efficient uptake and intracellular enrichment of the ion is necessary. The Gram-positive bacterium Bacillus subtilis possesses three transporters for potassium, KtrAB, KtrCD, and the recently discovered KimA. In the absence of the high-affinity transporters KtrAB and KimA, the bacteria were unable to grow at low potassium concentrations. However, we observed the appearance of suppressor mutants that were able to overcome the potassium limitation. All these suppressor mutations affected amino acid metabolism, particularly arginine biosynthesis. In the mutants, the intracellular levels of ornithine, citrulline, and arginine were strongly increased, suggesting that these amino acids can partially substitute for potassium. This was confirmed by the observation that the supplementation with positively charged amino acids allows growth of B. subtilis even at the extreme potassium limitation that the bacteria experience if no potassium is added to the medium. In addition, a second class of suppressor mutations allowed growth at extreme potassium limitation. These mutations result in increased expression of KtrAB, the potassium transporter with the highest affinity and therefore allow the acquisition and accumulation of the smallest amounts of potassium ions from the environment. IMPORTANCE Potassium is essential for every living cell as it is required for the activity for many enzymes and for maintaining the intracellular pH by buffering the negative charge of the nucleic acids. We have studied the adaptation of the soil bacterium Bacillus subtilis to life at low potassium concentrations. If the major high-affinity transporters are missing, the bacteria are unable to grow

  19. 21 CFR 184.1625 - Potassium citrate.

    Science.gov (United States)

    2010-04-01

    ... acid with potassium hydroxide or potassium carbonate. It occurs as transparent crystals or a white... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS...

  20. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The Limitation Amount of Available Potassium for Wheat in a Loess Soil

    Directory of Open Access Journals (Sweden)

    M. Vafakhah

    2014-04-01

    Full Text Available The objective of this study was determining the most limiting plant growth factor in the wheat root zone dominated by illite in clay fraction and a high specific surface with ample ammonium acetate extractible potassium. A completely randomized block design with 4 replicates was used in Seyed Miran Research Farm (Gorgan during 2009-2010 growing season. Treatments were mineral fertilizers (to achieve different levels of yields, gypsum (1000 Kg/ha calcium, calcium chloride (1000 Kg ha-1 Ca, urea (93 Kg ha-1 N and potassium chloride (105 Kg ha-1 K combined, gypsum (1000 Kg ha-1 Ca and potassium chloride (105 Kg ha-1 K combined, calcium chloride (1000 Kg ha-1 Ca and potassium chloride (105 Kg ha-1 K combined and control. Wheat cultivar (N-80-19 was planted in experimental site at 2009/12/9. The results showed that potassium is the most limiting plant growth factor in the site of the experiment. Electric diffuse double layer is expected to be truncated with a high specific surface soil in this area minimizing the soil solution-diffuse double layer interface for rapid potassium diffusion. The highest yield grain and straw with urea and potassium chloride showed a greater effect on plant and soil potassium concentrations. A greater potassium diffusion rate may be achieved as a result of greater concentration gradients between the exchange sites and soil solution by potassium fertilization and more potassium excess. Ammonium from urea diminished potassium fixation with illite and increased potassium root uptake.

  2. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    Directory of Open Access Journals (Sweden)

    Y Hu

    2015-09-01

    Full Text Available The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA and 5-hydroxytryptamine (5-HT levels were subsequently detected with high-performance liquid chromatography (HPLC. For immunohistochemistry study, the expression of DRD 2 and HT 2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P0.05. Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue.

  3. Potassium and Your CKD Diet

    Science.gov (United States)

    ... vegetable in your diet, leach them before using. Leaching is a process by which some potassium can be pulled out ... out of my favorite high-potassium vegetables? The process of leaching will help pull potassium out of some high- ...

  4. Potassium evaluation in blood of Brazilian athletes using NAA

    International Nuclear Information System (INIS)

    Kovacs, L.; Zamboni, C.B.; Nunes, L.A.S.; Lourenco, T.F.; Macedo, D. Vaz de

    2010-01-01

    Full text: According to nutrition sources an athlete needs per day at least one gram of potassium for keeping the correct mineral balance in the organism. Its deficiency or even instantaneous low concentration in blood can diminish the athlete performance originating nervous irritability, muscular weakness, and mental disorientation and in more several causes cardiac arrhythmias. In this study the K levels in blood were determined in athletes submitted to constant load exercise at treadmill at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil) using Neutron Activation Analyses (NAA). The blood samples were collected from male athletes, age 18 to 26 years, before and after the physical training. Immediately after the collection an amount of 10 micro liters of whole blood was transferred to the filter paper and dried for a few minutes using an infrared lamp. To determine the concentration of potassium each sample was irradiated in the nuclear reactor (IEA-R1, 2-4MW, pool type) at IPEN and was gamma counted using an HPGe Spectrometer of High Energy Resolution. The concentrations of the selected element, 1525keV related to the potassium activated 42 K, were calculated using in -house software. The potassium levels were evaluated before and after the physical exercise and the data were compared with the normal range. (author)

  5. Obtaining of potassium dicyan-argentate

    International Nuclear Information System (INIS)

    Sattarova, M.A.; Solojenkin, P.M.

    1997-01-01

    This work is devoted to obtaining of potassium dicyan-argentate. By means of exchange reaction between silver nitrate and potassium cyanide the potassium dicyan-argentate was synthesized. The analysis of obtained samples was carried out by means of titration and potentiometry.

  6. Correlation between Creatinine Clearance and Transtubular Potassium Concentration Gradient in old people and chronic renal disease patients

    International Nuclear Information System (INIS)

    Musso, C.; Imperiali, N.; Algranati, L.; Miguel, R.D.; Liakopoulos, V.; Stefanidis, I.

    2007-01-01

    Senescence and chronic kidney disease (CKD) reduce progressively glomerular filtration rate (GFR) which usually results in an increase in potassium renal secretion. To evaluate whether the transtubular potassium concentration gradient (TTKG) is more accurate parameter for evaluating the renal secretion of this cation than using fractional excretion of potassium as its urinary secretion marker, we studied 55 subjects, 43 of them were healthy elderly volunteers and 12 were CKD patients. Exclusion criteria were: abnormal plasma potassium level or presence of any disease or drug that could induce alteration of balance of this electrolyte levels. All the subjects were on a diet with potassium content around 50 mmol/day. The curves, which demonstrate the relationship between creatinine clearance and TTKG and the grade of correlation between these two parameters were analyzed in both groups. We found that the transtubular potassium concentration gradient had a significant negative correlation with the creatinine clearance level in the healthy elderly group, while there was no correlation in the CKD group. (author)

  7. Serum Potassium Levels Inversely Correlate with D-Dimer In Patients with Acute-Onset Atrial Fibrillation

    International Nuclear Information System (INIS)

    Cervellin, Gianfranco; Bonfanti, Laura; Picanza, Alessandra; Lippi, Giuseppe

    2015-01-01

    D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared to subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared with subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. The aim of this study was to investigate correlations between D-dimer and serum potassium in acute-onset AF (AAF). To investigate the potential correlation between the values of serum potassium and D-dimer in patients with AAF, we retrospectively reviewed clinical and laboratory data of all emergency department visits for AAF in 2013. Among 271 consecutive AAF patients with D-dimer assessments, those with hypokalemia (n = 98) had significantly higher D-dimer values than normokalemic patients (139 versus 114 ng/mL, p = 0.004). The rate of patients with D-dimer values exceeding the diagnostic cut-off was higher in the group of patients with hypokalemia than in those with normal serum potassium (26.5% versus 16.2%; p = 0.029). An inverse and highly significant correlation was found between serum potassium and D-dimer (r = −0.21; p < 0.001), even after adjustments for age and sex (beta coefficient −94.8; p = 0.001). The relative risk for a positive D-dimer value attributed to hypokalemia was 1.64 (95% CI, 1.02 to 2.63; p = 0.040). The correlation remained statistically significant in patients free from antihypertensive drugs (r = −0.25; p = 0.018), but not in those taking angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, or diuretics. The inverse correlation between values of potassium and D-dimer in patients with AAF provides important and complementary information about the thromboembolic risk of these patients

  8. Serum Potassium Levels Inversely Correlate with D-Dimer In Patients with Acute-Onset Atrial Fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Cervellin, Gianfranco, E-mail: gcervellin@ao.pr.it; Bonfanti, Laura; Picanza, Alessandra; Lippi, Giuseppe [1Academic Hospital of Parma (Italy)

    2015-03-15

    D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared to subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared with subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. The aim of this study was to investigate correlations between D-dimer and serum potassium in acute-onset AF (AAF). To investigate the potential correlation between the values of serum potassium and D-dimer in patients with AAF, we retrospectively reviewed clinical and laboratory data of all emergency department visits for AAF in 2013. Among 271 consecutive AAF patients with D-dimer assessments, those with hypokalemia (n = 98) had significantly higher D-dimer values than normokalemic patients (139 versus 114 ng/mL, p = 0.004). The rate of patients with D-dimer values exceeding the diagnostic cut-off was higher in the group of patients with hypokalemia than in those with normal serum potassium (26.5% versus 16.2%; p = 0.029). An inverse and highly significant correlation was found between serum potassium and D-dimer (r = −0.21; p < 0.001), even after adjustments for age and sex (beta coefficient −94.8; p = 0.001). The relative risk for a positive D-dimer value attributed to hypokalemia was 1.64 (95% CI, 1.02 to 2.63; p = 0.040). The correlation remained statistically significant in patients free from antihypertensive drugs (r = −0.25; p = 0.018), but not in those taking angiotensin-receptor blockers, angiotensin-converting enzyme inhibitors, or diuretics. The inverse correlation between values of potassium and D-dimer in patients with AAF provides important and complementary information about the thromboembolic risk of these patients.

  9. Phosphatidic acid accumulation and catecholamine release in adrenal chromaffin cells: stimulation by high potassium and by nicotine, and effect of a diacylglycerol kinase inhibitor R 59 022.

    Science.gov (United States)

    Owen, P J; Jones, J A; Boarder, M R

    1991-09-01

    Using primary cultures of bovine adrenal chromaffin cells labelled with 32Pi, we show that stimulation with bradykinin, nicotine, or a depolarising concentration of potassium stimulates the accumulation of [32P]phosphatidic acid. The effects of nicotine and potassium are smaller than the effect of bradykinin, and are dependent entirely on extracellular calcium. The diacylglycerol kinase inhibitor R 59 022 attenuates the formation of phosphatidic acid by nicotine and depolarising concentrations of potassium. This inhibitor also blocks the nicotine and potassium stimulation of noradrenaline release from chromaffin cells. Using 45Ca2+ influx studies, we show that the nicotine-evoked calcium influx is also attenuated by R 59 022. These observations contrast with those in another report in which we showed that bradykinin stimulation of either [32P]phosphatidic acid accumulation or noradrenaline release is not affected by R 59 022. It is likely that the calcium influx produced by nicotine and depolarising potassium is blocked by R 59 022 by a mechanism that is independent of its ability to block diacylglycerol kinase. The nicotine- and potassium-stimulated [32P]phosphatidic acid accumulation is a consequence of this calcium influx and presumably reflects calcium activation of either phospholipase C or phospholipase D.

  10. Parathyroid hormone impairs extrarenal potassium tolerance in the rat

    International Nuclear Information System (INIS)

    Sugarman, A.; Kahn, T.

    1988-01-01

    The effect of parathyroid hormone (PTH) on the extrarenal disposition of an acute potassium load was examined in acutely nephrectomized rats infused with KCl alone or in combination with PTH, with serial monitoring of plasma potassium every 10 min. The rise in plasma potassium concentration (ΔPK) in the PTH group was higher than control. PTH was then administered along with KCl to two groups of nephrectomized and acutely thyroparathyroidectomized (TPTX) rats in doses of 1 and 0.25 U · kg -1 · min -1 for 90 min. ΔPK with PTH in both groups was higher than TPTX control. The two higher doses of PTH resulted in a decrease in mean arterial pressure from their respective controls. A similar reduction in arterial pressure in three groups of nephrectomized rats by administration of hydralazine or nitroprusside or by acute blood loss did not change ΔPK subsequent to potassium infusion from that in control rats. Furthermore, the lowest dose of PTH did not lower arterial pressure from its respective control. Therefore, hypotension is not a cause for the PTH-induced potassium intolerance. Serum levels of insulin, aldosterone, catecholamines, calcium, plasma HCO 3 concentration, and pH were not different in PTH-infused vs. respective control rats. These data suggest that PTH impairs extrarenal potassium disposal in the rat. The effect of PTH may relate to enhanced calcium entry into cells

  11. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  12. Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation

    Science.gov (United States)

    Lenoir, Magalie

    2012-01-01

    Glucose, a primary energetic substrate for neural activity, is continuously influenced by two opposing forces that tend to either decrease its extracellular levels due to enhanced utilization in neural cells or increase its levels due to entry from peripheral circulation via enhanced cerebral blood flow. How this balance is maintained under physiological conditions and changed during neural activation remains unclear. To clarify this issue, enzyme-based glucose sensors coupled with high-speed amperometry were used in freely moving rats to evaluate fluctuations in extracellular glucose levels induced by brief audio stimulus, tail pinch (TP), social interaction with another rat (SI), and intravenous cocaine (1 mg/kg). Measurements were performed in nucleus accumbens (NAcc) and substantia nigra pars reticulata (SNr), which drastically differ in neuronal activity. In NAcc, where most cells are powerfully excited after salient stimulation, glucose levels rapidly (latency 2–6 s) increased (30–70 μM or 6–14% over baseline) by all stimuli; the increase differed in magnitude and duration for each stimulus. In SNr, where most cells are transiently inhibited by salient stimuli, TP, SI, and cocaine induced a biphasic glucose response, with the initial decrease (−20–40 μM or 5–10% below baseline) followed by a reboundlike increase. The critical role of neuronal activity in mediating the initial glucose response was confirmed by monitoring glucose currents after local microinjections of glutamate (GLU) or procaine (PRO). While intra-NAcc injection of GLU transiently increased glucose levels in this structure, intra-SNr PRO injection resulted in rapid, transient decreases in SNr glucose. Therefore, extracellular glucose levels in the brain change very rapidly after physiological and pharmacological stimulation, the response is structure specific, and the pattern of neuronal activity appears to be a critical factor determining direction and magnitude of physiological

  13. Trichomonas vaginalis NTPDase and ecto-5'-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction.

    Science.gov (United States)

    Menezes, Camila Braz; Durgante, Juliano; de Oliveira, Rafael Rodrigues; Dos Santos, Victor Hugo Jacks Mendes; Rodrigues, Luiz Frederico; Garcia, Solange Cristina; Dos Santos, Odelta; Tasca, Tiana

    2016-05-01

    Trichomonas vaginalis is the aethiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease in the world. The purinergic signaling pathway is mediated by extracellular nucleotides and nucleosides that are involved in many biological effects as neurotransmission, immunomodulation and inflammation. Extracellular nucleotides can be hydrolyzed by a family of enzymes known as ectonucleotidases including the ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) family which hydrolyses nucleosides triphosphate and diphosphate as preferential substrates and ecto-5'-nucleotidase which catalyzes the conversion of monophosphates into nucleosides. In T. vaginalis the E-NTPDase and ecto-5'-nucleotidase activities upon adenine nucleotides have already been characterized in intact trophozoites but little is known concerning guanine nucleotides and nucleoside. These enzymes may exert a crucial role on nucleoside generation, providing the purine sources for the synthesis de novo of these essential nutrients, sustaining parasite growth and survival. In this study, we investigated the hydrolysis profile of guanine-related nucleotides and nucleoside in intact trophozoites from long-term-grown and fresh clinical isolates of T. vaginalis. Knowing that guanine nucleotides are also substrates for T. vaginalis ectoenzymes, we evaluated the profile of nucleotides consumption and guanosine uptake in trophozoites submitted to a serum limitation condition. Results show that guanine nucleotides (GTP, GDP, GMP) were substrates for T. vaginalis ectonucleotidases, with expected kinetic parameters for this enzyme family. Different T. vaginalis isolates (two from the ATCC and nine fresh clinical isolates) presented a heterogeneous hydrolysis profile. The serum culture condition increased E-NTPDase and ecto-5'-nucleotidase activities with high consumption of extracellular GTP generating enhanced GDP, GMP and guanosine levels as demonstrated by HPLC, with final

  14. LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization.

    Directory of Open Access Journals (Sweden)

    Rossana Migheli

    Full Text Available The leucine-rich repeat kinase 2 (LRRK2 gene was found to play a role in the pathogenesis of both familial and sporadic Parkinson's disease (PD. LRRK2 encodes a large multi-domain protein that is expressed in different tissues. To date, the physiological and pathological functions of LRRK2 are not clearly defined. In this study we have explored the role of LRRK2 in controlling vesicle trafficking in different cellular or animal models and using various readouts. In neuronal cells, the presence of LRRK2(G2019S pathological mutant determines increased extracellular dopamine levels either under basal conditions or upon nicotine stimulation. Moreover, mutant LRRK2 affects the levels of dopamine receptor D1 on the membrane surface in neuronal cells or animal models. Ultrastructural analysis of PC12-derived cells expressing mutant LRRK2(G2019S shows an altered intracellular vesicle distribution. Taken together, our results point to the key role of LRRK2 to control vesicle trafficking in neuronal cells.

  15. Potassium iodide capsule treatment of feline sporotrichosis.

    Science.gov (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  16. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  17. 21 CFR 184.1643 - Potassium sulfate.

    Science.gov (United States)

    2010-04-01

    ... hydroxide or potassium carbonate. (b) The ingredient meets the specifications of the “Food Chemicals Codex... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg...

  18. Quantification of potassium levels in cells treated with Bordetella adenylate cyclase toxin

    Czech Academy of Sciences Publication Activity Database

    Wald, Tomáš; Petry-Podgorska, Inga; Fišer, Radovan; Matoušek, Tomáš; Dědina, Jiří; Osička, Radim; Šebo, Peter; Mašín, Jiří

    2014-01-01

    Roč. 450, APR 2014 (2014), s. 57-62 ISSN 0003-2697 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR GA13-14547S; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 ; RVO:68081715 Keywords : Potassium * Adenylate cyclase toxin * RTX Subject RIV: CE - Biochemistry Impact factor: 2.219, year: 2014

  19. Potassium evaluation in blood of Brazilian athletes using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, L.; Zamboni, C.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Nunes, L.A.S.; Lourenco, T.F.; Macedo, D. Vaz de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    Full text: According to nutrition sources an athlete needs per day at least one gram of potassium for keeping the correct mineral balance in the organism. Its deficiency or even instantaneous low concentration in blood can diminish the athlete performance originating nervous irritability, muscular weakness, and mental disorientation and in more several causes cardiac arrhythmias. In this study the K levels in blood were determined in athletes submitted to constant load exercise at treadmill at LABEX (Laboratorio de Bioquimica do Exercicio - UNICAMP, Brazil) using Neutron Activation Analyses (NAA). The blood samples were collected from male athletes, age 18 to 26 years, before and after the physical training. Immediately after the collection an amount of 10 micro liters of whole blood was transferred to the filter paper and dried for a few minutes using an infrared lamp. To determine the concentration of potassium each sample was irradiated in the nuclear reactor (IEA-R1, 2-4MW, pool type) at IPEN and was gamma counted using an HPGe Spectrometer of High Energy Resolution. The concentrations of the selected element, 1525keV related to the potassium activated {sup 42}K, were calculated using in -house software. The potassium levels were evaluated before and after the physical exercise and the data were compared with the normal range. (author)

  20. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  1. Intracellular and non-neuronal targets of voltage-gated potassium channel complex antibodies.

    Science.gov (United States)

    Lang, Bethan; Makuch, Mateusz; Moloney, Teresa; Dettmann, Inga; Mindorf, Swantje; Probst, Christian; Stoecker, Winfried; Buckley, Camilla; Newton, Charles R; Leite, M Isabel; Maddison, Paul; Komorowski, Lars; Adcock, Jane; Vincent, Angela; Waters, Patrick; Irani, Sarosh R

    2017-04-01

    Autoantibodies against the extracellular domains of the voltage-gated potassium channel (VGKC) complex proteins, leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-2 (CASPR2), are found in patients with limbic encephalitis, faciobrachial dystonic seizures, Morvan's syndrome and neuromyotonia. However, in routine testing, VGKC complex antibodies without LGI1 or CASPR2 reactivities (double-negative) are more common than LGI1 or CASPR2 specificities. Therefore, the target(s) and clinical associations of double-negative antibodies need to be determined. Sera (n=1131) from several clinically defined cohorts were tested for IgG radioimmunoprecipitation of radioiodinated α-dendrotoxin ( 125 I-αDTX)-labelled VGKC complexes from mammalian brain extracts. Positive samples were systematically tested for live hippocampal neuron reactivity, IgG precipitation of 125 I-αDTX and 125 I-αDTX-labelled Kv1 subunits, and by cell-based assays which expressed Kv1 subunits, LGI1 and CASPR2. VGKC complex antibodies were found in 162 of 1131 (14%) sera. 90 of these (56%) had antibodies targeting the extracellular domains of LGI1 or CASPR2. Of the remaining 72 double-negative sera, 10 (14%) immunoprecipitated 125 I-αDTX itself, and 27 (38%) bound to solubilised co-expressed Kv1.1/1.2/1.6 subunits and/or Kv1.2 subunits alone, at levels proportionate to VGKC complex antibody levels (r=0.57, p=0.0017). The sera with LGI1 and CASPR2 antibodies immunoprecipitated neither preparation. None of the 27 Kv1-precipitating samples bound live hippocampal neurons or Kv1 extracellular domains, but 16 (59%) bound to permeabilised Kv1-expressing human embryonic kidney 293T cells. These intracellular Kv1 antibodies mainly associated with non-immune disease aetiologies, poor longitudinal clinical-serological correlations and a limited immunotherapy response. Double-negative VGKC complex antibodies are often directed against cytosolic epitopes of Kv1 subunits and occasionally against

  2. Serum Potassium Levels Inversely Correlate with D-Dimer In Patients with Acute-Onset Atrial Fibrillation.

    Science.gov (United States)

    Cervellin, Gianfranco; Bonfanti, Laura; Picanza, Alessandra; Lippi, Giuseppe

    2014-12-09

    Background: D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared to subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. Objective: D-dimer values are frequently increased in patients with atrial fibrillation (AF) compared with subjects in sinus rhythm. Hypokalemia plays a role in several cardiovascular diseases, but little is known about the association with AF. The aim of this study was to investigate correlations between D-dimer and serum potassium in acute-onset AF (AAF). Methods: To investigate the potential correlation between the values of serum potassium and D-dimer in patients with AAF, we retrospectively reviewed clinical and laboratory data of all emergency department visits for AAF in 2013. Results: Among 271 consecutive AAF patients with D-dimer assessments, those with hypokalemia (n = 98) had significantly higher D-dimer values than normokalemic patients (139 versus 114 ng/mL, p = 0.004). The rate of patients with D-dimer values exceeding the diagnostic cut-off was higher in the group of patients with hypokalemia than in those with normal serum potassium (26.5% versus 16.2%; p = 0.029). An inverse and highly significant correlation was found between serum potassium and D-dimer (r = -0.21; p enzima conversora de angiotensina e diuréticos. Conclusões: A correlação inversa existente entre os níveis séricos de potássio e D-dímero em pacientes com FAA fornece informações importantes sobre o risco de tromboembolismo nestes pacientes.

  3. The heart and potassium: a banana republic.

    Science.gov (United States)

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium.

  4. New nonabsorbable potassium-exchange resins in hyperkalaemia

    NARCIS (Netherlands)

    Roscioni, Sara S.; Lambers Heerspink, Hiddo

    New data suggest that treatment with patiromer or sodium zirconium cyclosilicate for up to 8 weeks reduces plasma potassium levels in hyperkalaemic patients. If proven safe and effective for long-term use, these therapies might be administered together with intensive renin-angiotensin-aldosterone

  5. Increased serum potassium affects renal outcomes

    DEFF Research Database (Denmark)

    Miao, Y; Dobre, D; Heerspink, H J Lambers

    2011-01-01

    To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy.......To assess the effect of an angiotensin receptor blocker (ARB) on serum potassium and the effect of a serum potassium change on renal outcomes in patients with type 2 diabetes and nephropathy....

  6. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation.

    Science.gov (United States)

    Lu, Yen-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Chen, Shih-Ann; Chen, Yi-Jen

    2013-06-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, pcollagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  8. Quality in the pepper under different fertigation managements and levels of nitrogen and potassium

    Directory of Open Access Journals (Sweden)

    Francisco de Assis de Oliveira

    Full Text Available ABSTRACTThe rational use of nutrients is of fundamental importance for obtaining high productivity of high nutritional quality. This work was developed with the aim of evaluating the quality of pepper fruit grown under different fertigation managements and different levels of nitrogen and potassium. The experimental design was of randomised blocks in a 3 x 6 factorial scheme with four replications. The treatments resulted from the combination of three fertigation managements (M1-based on the rate of absorption; M2-monitoring the conductivity of the soil solution; M3-monitoring concentrations of N and K ions in the soil solution with six levels of N and K (N0K0, N50K50, N100K100, N150K150, N200K200 and N300K300 as a percentage of the recommended dosage for the crop under conventional fertigation (M1 or hydroponics (M2 and M3. Fruit quality was evaluated for the following characteristics: pH, soluble solids, titratable acidity, vitamin C content and the ratio of soluble solids to titratable acidity. The different fertigation managements only affected the levels of soluble solids (SS and titratable acidity (TA, reducing the SS and TA. The variables under study were adjusted for the levels of N and K using quadratic models.

  9. The Link between Potassium and Mild Cognitive Impairment in Mexican-Americans

    Directory of Open Access Journals (Sweden)

    Raul M. Vintimilla

    2018-04-01

    Full Text Available Background: Recent evidence suggests that increasing dietary intake of minerals reduces the risk of dementia. This study aimed to examine the relationship between potassium and diagnosis of mild cognitive impairment (MCI in a sample of older Mexican-Americans from rural and urban populations. Methods: The sample was formed of a total of 139 participants with MCI and 371 normal controls from two independent cohorts: a rural cohort (Facing Rural Obstacles to Healthcare Now through Intervention, Education and Research [Project FRONTIER] and an urban cohort (the Health and Aging Brain among Latino Elders [HABLE] study. Serum electrolytes examined were sodium and potassium. Age and education were entered in the model as covariates. Results: Across both cohorts, the Project FRONTIER (OR = 3.1; p = 0.01 and the HABLE Project (OR = 2.0; p = 0.04, the results indicated that serum potassium levels significantly increased the risk of diagnosis of MCI. Conclusion: Our finding suggested a link between serum potassium levels and a diagnosis of MCI in Mexican-Americans. The results of this study support a previous research which has suggested that the risk factors for MCI may vary by ethnicity.

  10. Disulfide mapping the voltage-sensing mechanism of a voltage-dependent potassium channel.

    Science.gov (United States)

    Nozaki, Tomohiro; Ozawa, Shin-Ichiro; Harada, Hitomi; Kimura, Tomomi; Osawa, Masanori; Shimada, Ichio

    2016-11-17

    Voltage-dependent potassium (Kv) channels allow for the selective permeability of potassium ions in a membrane potential dependent manner, playing crucial roles in neurotransmission and muscle contraction. Kv channel is a tetramer, in which each subunit possesses a voltage-sensing domain (VSD) and a pore domain (PD). Although several lines of evidence indicated that membrane depolarization is sensed as the movement of helix S4 of the VSD, the detailed voltage-sensing mechanism remained elusive, due to the difficulty of structural analyses at resting potential. In this study, we conducted a comprehensive disulfide locking analysis of the VSD using 36 double Cys mutants, in order to identify the proximal residue pairs of the VSD in the presence or absence of a membrane potential. An intramolecular SS-bond was formed between 6 Cys pairs under both polarized and depolarized environment, and one pair only under depolarized environment. The multiple conformations captured by the SS-bond can be divided by two states, up and down, where S4 lies on the extracellular and intracellular sides of the membrane, respectively, with axial rotation of 180°. The transition between these two states is caused by the S4 translocation of 12 Å, enabling allosteric regulation of the gating at the PD.

  11. Preparation of potassium-reduced tantalum powders

    International Nuclear Information System (INIS)

    Kolosov, V.N.; Miroshnichenko, M.N.; Orlov, V.M.; Prokhorova, T.Yu.

    2005-01-01

    Characteristics of tantalum powders prepared by reduction of molten potassium heptafluorotantalate with liquid potassium are studied in a temperature range of 750 - 850 deg C using potassium chloride as a flux at a ratio of K 2 TaF 7 : KCl = 1, 2, and 3. The use of potassium as a reducing agent facilitates washing of tantalum powders for impurity salt removal, reduces sodium content and leakage currents in the anodes. As compared to sodium process, the potassium reduction results in a high yield of sponge material, a decrease in the specific surface area and yield of tantalum powder suitable for manufacture of capacitor anodes [ru

  12. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel.

    Science.gov (United States)

    Sesti, Federico; Rajan, Sindhu; Gonzalez-Colaso, Rosana; Nikolaeva, Natalia; Goldstein, Steve A N

    2003-04-01

    MVP, a Methanococcus jannaschii voltage-gated potassium channel, was cloned and shown to operate in eukaryotic and prokaryotic cells. Like pacemaker channels, MVP opens on hyperpolarization using S4 voltage sensors like those in classical channels activated by depolarization. The MVP S4 span resembles classical sensors in sequence, charge, topology and movement, traveling inward on hyperpolarization and outward on depolarization (via canaliculi in the protein that bring the extracellular and internal solutions into proximity across a short barrier). Thus, MVP opens with sensors inward indicating a reversal of S4 position and pore state compared to classical channels. Homologous channels in mammals and plants are expected to function similarly.

  13. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics

    International Nuclear Information System (INIS)

    Trendewicz, Anna; Evans, Robert; Dutta, Abhijit; Sykes, Robert; Carpenter, Daniel; Braun, Robert

    2015-01-01

    This paper proposes modifications to an existing cellulose pyrolysis mechanism in order to include the effect of potassium on product yields and composition. The changes in activation energies and pre-exponential factors due to potassium were evaluated based on the experimental data collected from pyrolysis of cellulose samples treated with different levels of potassium (0–1% mass fraction). The experiments were performed in a pyrolysis reactor coupled to a molecular beam mass spectrometer (MBMS). Principal component analysis (PCA) performed on the collected data revealed that cellulose pyrolysis products could be divided into two groups: anhydrosugars and other fragmentation products (hydroxyacetaldehyde, 5-hydroxymethylfurfural, acetyl compounds). Multivariate curve resolution (MCR) was used to extract the time resolved concentration score profiles of principal components. Kinetic tests revealed that potassium apparently inhibits the formation of anhydrosugars and catalyzes char formation. Therefore, the oil yield predicted at 500 ° C decreased from 87.9% from cellulose to 54.0% from cellulose with 0.5% mass fraction potassium treatment. The decrease in oil yield was accompanied by increased yield of char and gases produced via a catalyzed dehydration reaction. The predicted char and gas yield from cellulose were 3.7% and 8.4%, respectively. Introducing 0.5% mass fraction potassium treatment resulted in an increase of char yield to 12.1% and gas yield to 33.9%. The validation of the cellulose pyrolysis mechanism with experimental data from a fluidized-bed reactor, after this correction for potassium, showed good agreement with our results, with differences in product yields of up to 5%

  14. Influence of Potassium on Sapric Peat under Different Environmental Conditions

    Science.gov (United States)

    Tajuddin, Syafik Akmal Mohd; Rahman, Junita Abdul; Rahim, Nor Haakmal Abd; Saphira Radin Mohamed, Radin Maya; Saeed Abduh Algheethi, Adel Ali, Dr

    2018-04-01

    Potassium is mainly present in soil in the natural form known as the K-bearing mineral. Potassium is also available in fertilizer as a supplement to plants and can be categorized as macronutrient. The application of potassium improves the texture and structure of the soil beside to improves plant growth. The main objective of this study was to determine the concentration of potassium in sapric peat under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of potassium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of potassium for flush condition at outlet 4 was 13.58 ppm. Similarly, sapric under rainwater condition recorded the highest value of 13.32 and 12.34 ppm respectively at outlet 4 for wet and dry condition. However, the difference in Sapric, rainwater and fertilizer category showed that the highest value for the wet condition was achieved at outlet 2 with 13.99 ppm while highest value of 14.82 ppm was obtained for the dry condition at the outlet 3. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of potassium in the soil which was influenced by the environmental conditions.

  15. The role of glutathione in DNA damage by potassium bromate in vitro.

    Science.gov (United States)

    Parsons, J L; Chipman, J K

    2000-07-01

    We have investigated the role of reduced glutathione (GSH) in the genetic toxicity of the rodent renal carcinogen potassium bromate (KBrO(3)). A statistically significant increase in the concentration of 8-oxodeoxyguanosine (8-oxodG) relative to deoxyguanosine was measured following incubation of calf thymus DNA with KBrO(3) and GSH or N-acetylcysteine (NACys). This was dependent on these thiols and was associated with the loss of GSH and production of oxidized glutathione. A short-lived (potassium chlorate (KClO(3)) or potassium iodate (KIO(3)) were used instead of KBrO(3), though GSH depletion also occurred with KIO(3), but not with KClO(3). Other reductants and thiols in combination with KBrO(3) did not cause a significant increase in DNA oxidation. DNA strand breakage was also induced by KBrO(3) in human white blood cells (5 mM) and rat kidney epithelial cells (NRK-52E, 1.5 mM). This was associated with an apparent small depletion of thiols in NRK-52E cells at 15 min and with an elevation of 8-oxodG at a delayed time of 24 h. Depletion of intra-cellular GSH by diethylmaleate in human lymphocytes decreased the amount of strand breakage induced by KBrO(3). Extracellular GSH, however, protected against DNA strand breakage by KBrO(3), possibly due to the inability of the reactive product to enter the cell. In contrast, membrane-permeant NACys enhanced KBrO(3)-induced DNA strand breakage in these cells. DNA damage by KBrO(3) is therefore largely dependent on access to intracellular GSH.

  16. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    Directory of Open Access Journals (Sweden)

    Michael S. Stone

    2016-07-01

    Full Text Available Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+ ATPase pump. Approximately 90% of potassium consumed (60–100 mEq is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN is the leading cause of cardiovascular disease (CVD and a major financial burden ($50.6 billion to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health.

  17. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  18. Direct determination of calcium, sodium and potassium in fermented milk products

    Directory of Open Access Journals (Sweden)

    Kravić Snežana Ž.

    2012-01-01

    Full Text Available The aim of this study was the investigation of the possibilities of direct determination of calcium, sodium and potassium in the commercial and kombucha-based fermented milk products by flame photometry. Two procedures were used for sample preparation: simple dilution with water (direct method and extraction with mineral acid. Calcium, sodium and potassium levels determined after mentioned sample preparation methods were compared. The results showed that the differences between the values obtained for the different sample treatment were within the experimental error at the 95% confidence level. Compared to the method based on extraction with mineral acid, the direct method is efficient, faster, simpler, cheaper, and operates according to the principles of Green Chemistry. Consequently, the proposed method for the direct determination of calcium, sodium and potassium could be applied for the rapid routine analysis of the mineral content in the fermented dairy products. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  19. 21 CFR 582.5622 - Potassium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use. This...

  20. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.

    Science.gov (United States)

    de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco

    2018-03-23

    Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.

  1. Potassium distribution in sugar cane

    International Nuclear Information System (INIS)

    Medina, N.H.

    2014-01-01

    In this work the distribution of potassium in sugarcane has been studied during its growth in two different conditions. In the first one the sugarcane soil was prepared with natural fertilizers, using sugarcane bagasse and, in another plantation the soil was prepared with commercial fertilizer NPK with a proportion of 10-10-10. For the measurement of potassium concentration in each part of the plant, gamma ray spectrometry techniques have been used to measure gamma-rays emitted from the radioisotope 40 K present in the sugarcane samples. The concentration of potassium in roots, stems and leaves were measured periodically. The results for sugarcane cultivated in soil with natural fertilizer show a higher concentration of potassium at the beginning of plant development and over time there is an oscillatory behavior in this concentration in each part of the plant, reaching a lower concentration in the adult plant. The results for the plant grown in soil with NPK fertilizer, indicate that the potassium concentration is higher in the stem at the beginning of cultivation and remained practically constant over time in various parts of the plant, with higher values in the leaves and stem than at the root. On the other hand, the results obtained using fertilizer NPK shows a lower potassium concentration, since the fertilizer provoked a much higher growth rate. (author)

  2. 21 CFR 172.160 - Potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing...

  3. The Trk Potassium Transporter Is Required for RsmB-Mediated Activation of Virulence in the Phytopathogen Pectobacterium wasabiae.

    Science.gov (United States)

    Valente, Rita S; Xavier, Karina B

    2016-01-15

    Pectobacterium wasabiae (previously known as Erwinia carotovora) is an important plant pathogen that regulates the production of plant cell wall-degrading enzymes through an N-acyl homoserine lactone-based quorum sensing system and through the GacS/GacA two-component system (also known as ExpS/ExpA). At high cell density, activation of GacS/GacA induces the expression of RsmB, a noncoding RNA that is essential for the activation of virulence in this bacterium. A genetic screen to identify regulators of RsmB revealed that mutants defective in components of a putative Trk potassium transporter (trkH and trkA) had decreased rsmB expression. Further analysis of these mutants showed that changes in potassium concentration influenced rsmB expression and consequent tissue damage in potato tubers and that this regulation required an intact Trk system. Regulation of rsmB expression by potassium via the Trk system occurred even in the absence of the GacS/GacA system, demonstrating that these systems act independently and are both required for full activation of RsmB and for the downstream induction of virulence in potato infection assays. Overall, our results identified potassium as an essential environmental factor regulating the Rsm system, and the consequent induction of virulence, in the plant pathogen P. wasabiae. Crop losses from bacterial diseases caused by pectolytic bacteria are a major problem in agriculture. By studying the regulatory pathways involved in controlling the expression of plant cell wall-degrading enzymes in Pectobacterium wasabiae, we showed that the Trk potassium transport system plays an important role in the regulation of these pathways. The data presented further identify potassium as an important environmental factor in the regulation of virulence in this plant pathogen. We showed that a reduction in virulence can be achieved by increasing the extracellular concentration of potassium. Therefore, this work highlights how elucidation of the

  4. Proapoptotic Role of Potassium Ions in Liver Cells

    Directory of Open Access Journals (Sweden)

    Zhenglin Xia

    2016-01-01

    Full Text Available Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1.

  5. A Pilot Study Exploring the Plasma Potassium Variation in Dogs Undergoing Steroid Therapy and Its Clinical Importance.

    Science.gov (United States)

    Baltar, Marina; Costa, Alexandra; Carreira, L Miguel

    2016-06-01

    In most situations in veterinary medicine, glucocorticoids are the drugs of choice used, that is, to reduce the inflammatory response or limit an inappropriate immune response. Their use in long-term therapy may cause side effects that may weaken the patient. The aim of the study was to evaluate possible variations in the plasma potassium concentrations and their clinical relevance in dogs undergoing steroid therapy with methylprednisolone in anti-inflammatory doses. The study used a sample of 21 dogs (n = 21) presented for consultation, with a clinical condition requiring a corticosteroid therapeutic protocol with an anti-inflammatory dose of methylprednisolone. All the individuals were submitted to a corticosteroid therapeutic protocol administered orally during 18 days. During this period, 3 time points were considered: T0 (the day the prescription was first given), T1 (3 days later), and T2 (8 days later). Blood samples were collected from a peripheral vein to measure plasma potassium concentrations in T0, T1, and T2. Corticosteroid therapy on an outpatient basis statistically significantly decreased plasma potassium levels, especially between T1 and T2 (P = .03). The plasma potassium levels decreased in 12.5% of the males, compared with a decrease of 23.1% in the females. No statistically significant relationships were observe between the decreased plasma potassium levels and age, clinical condition, and patient׳s body weight. However, we found a statistically significant association between decreased plasma potassium levels and sex. The study results may justify the need for the systematic prescription of potassium supplements in patients undergoing steroid therapy, similar to what already occurs in human medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Potassium adsorption behaviour of three Malaysian rice soils

    International Nuclear Information System (INIS)

    Choudhury, A.T.M.A.; Khanif, Y.M.

    2003-01-01

    Potassium (K) deficiency exists in different rice growing areas of Malaysia. A study on K adsorption was carried out in three Malaysian rice soils (Guar, Hutan and Kangar series) using six levels of K (0.00,28.77, 33.57, 38.37, 43.16 and 47.96 mmol kg/sup -1/). The data on K adsorption were fitted into Langmuir, Freundlich, and Temkin adsorption equations. Adsorption data were also correlated with pH, cation exchange capacity and organic matter content of the soils. Potassium adsorption increased linearly with increasing level of added K in all the three soils. The rate of increase was the highest in Guar series followed by Kangar and Hutan series, respectively. Potassium adsorption in two soils (Hutan and Kangar) fitted into Langmuir equation while he adsorption data in Guar series did not fit into this equation. Adsorption data in none of the soils fitted well in Freundlich and Temkin adsorption equations. Correlation between K adsorption and pH was significant (r = 0.881,), whereas, correlation of K adsorption with either organic matter content or cation exchange capacity was non-significant. The results of this study indicated that K adsorption is mainly dependent on soil pH. In soils with higher adsorption capacity, more K fertilizer may be needed to get immediate crop response. (author)

  7. On mobility of cesium-137, sodium, potassium in various types of soils and prediction of cesium-137 cumulation in agricultural plants

    International Nuclear Information System (INIS)

    Ashkinazi, Eh.I.

    1990-01-01

    Mobility of cesium-137, sodium and potassium in the natural environment in podzolic gray and chernozem medium-loamy, sward podzolic sandy soils and chernozem has been studied. Durability of fixation of cesium-137 increases in a number of soils and increase of the level of metabolic potassium. Coefficient of transition of level of metabolic cesium-137 by potassium and sodium, and of sodium by potassium. The mentioned above coefficients can be used for the prediction of cesium-137 cumulation in plants

  8. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  9. Dietary Sodium and Potassium Intake is Not Associated with Elevated Blood Pressure in US Adults with No Prior History of Hypertension

    Science.gov (United States)

    Sharma, Shailendra; McFann, Kim; Chonchol, Michel; Kendrick, Jessica

    2014-01-01

    The relationship between dietary sodium and potassium intake with elevated blood pressure (BP) levels is unclear. We examined the association between dietary sodium and potassium intake and BP levels in 6985 adults 18 years of age or older with no prior history of hypertension who participated in the National Health and Nutrition Examination Survey (2001–2006). After adjustment for age, sex, race, body mass index, diabetes and eGFR, there was no association between higher quartiles of sodium or potassium intake with the risk of a BP >140/90 mmHg or >130/80 mmHg. There was also no relationship between dietary sodium and potassium intake with BP when systolic and diastolic BP were measured as continuous outcomes (p=0.68 and p=0.74, respectively). Furthermore, no association was found between combinations of sodium and potassium intake with elevated BP. In the US adult population without hypertension, increased dietary sodium or low potassium intake was not associated with elevated BP levels. PMID:24720647

  10. Cesium-137 and potassium contents in low-teens in areas of different fall-out levels in Japan

    International Nuclear Information System (INIS)

    Ueda, Keiko; Anzai, Ikuro; Togo, Masami; Katsunuma, Haruo

    1977-01-01

    Comparative measurements were made by a whole body counter equipped in the University of Tokyo with regard to the 137 Cs body burden of 88 Japanese male low-teens in Akita and Tokyo. In spite of the heavy fall-out level in Akita, the mean 137 Cs body burden was significantly lower than that in Tokyo where the fall-out deposition was about half. The major cause of the difference in the body burden was considered to be the difference in the daily volume of milk consumption in the two groups which was disclosed from the results of an interview with each subject. The 137 Cs content showed a very low correlation with the potassium content in each group. The fact raised an important question concerning the effectiveness of the concept of ''cesium unit'' for describing the level of internal contamination in man. (auth.)

  11. Cesium-137 and potassium contents in low-teens in areas of different fall-out levels in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K; Anzai, I; Togo, M; Katsunuma, H [Tokyo Univ. (Japan). Faculty of Medicine

    1977-05-01

    Comparative measurements were made by a whole body counter equipped in the University of Tokyo with regard to the /sup 137/Cs body burden of 88 Japanese male low-teens in Akita and Tokyo. In spite of the heavy fall-out level in Akita, the mean /sup 137/Cs body burden was significantly lower than that in Tokyo where the fall-out deposition was about half. The major cause of the difference in the body burden was considered to be the difference in the daily volume of milk consumption in the two groups which was disclosed from the results of an interview with each subject. The /sup 137/Cs content showed a very low correlation with the potassium content in each group. The fact raised an important question concerning the effectiveness of the concept of ''cesium unit'' for describing the level of internal contamination in man.

  12. [Sodium and potassium content of various Chilean foods].

    Science.gov (United States)

    Alvarez de Araya, C; Farah, M; Zuccarelli, M T; Masson, L

    1981-03-01

    Sodium and potassium contents of 40 high-protein dietary products were determined in order to complete the Table de Composición Química se Alimentos Chilenos (Chemical Composition Table of Chilean Foods). These cations' level must be strictly controlled in diets of many renal and heart patients. In Chile, Nutritionists who are in charge of preparing these diets, do not have a national composition table related to the sodium and potassium content for most of the food products. Samples of fluid cow's milk, dried milk with different fat contents, some cheeses, hen eggs, bovine entrails, some meat derivates and several meat cuts, including bovine, pork, lamb and chicken were studied.

  13. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  14. Potassium chloride production by microcline chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Orosco, Pablo, E-mail: porosco@unsl.edu.ar [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina); Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, San Luis (Argentina); Ruiz, María del Carmen [Instituto de Investigaciones en Tecnología Química (INTEQUI), Chacabuco y Pedernera, San Luis (Argentina)

    2015-08-10

    Highlights: • Use of chlorination for the KCl production. • The reagents used were microcline, hydromagnesite and chlorine. • Isothermal and non-isothermal assays were performed in Cl{sub 2}–N{sub 2} mixture. • The chlorination generated KCl at 700 °C. • The chlorination products promote KCl formation. - Abstract: The potassium chloride is one of the most important fertilizers used in agriculture. The current demand of this salt makes interesting the study of potassium chloride production from unconventional potassium resources. In this work the potassium chloride production by chlorination of microcline was investigated. The starting reagents were microcline, hydromagnesite and chlorine. Non-isothermal and isothermal chlorination assays were carried out in a thermogravimetric device adapted to work in corrosive atmospheres. The temperature effect on potassium extraction and the phase transformations produced during chlorination of microcline were studied. The reagents and reaction products were analyzed by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The experimental results indicated that by chlorination of microcline an important extraction of potassium in the temperature range from 800 to 900 °C was produced. Moreover, at 800 °C the forsterite, enstatite and magnesium aluminate spinel phases were generated.

  15. Impact of potassium bromate and potassium iodate in a pound cake system.

    Science.gov (United States)

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.

  16. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 2: The intake of sodium and potassium.

    Science.gov (United States)

    Gątarska, Anna; Ciborska, Joanna; Tońska, Elżbieta

    Natural mineral waters are purchased and consumed according to consumer preferences and possible recommendations. The choice of appropriate water should take into account not only the general level of mineralization but also the content of individual components, including electrolytes such as sodium and potassium. Sodium is necessary to ensure the proper physiological functions of the body. It is defined as a health risk factor only when its excessive intake occurs. Potassium acts antagonistically towards sodium and calcium ions, contributes to a reduction of the volume of extracellular fluids and at the same time reduces muscle tension and permeability of cell membranes. The demand for sodium and potassium is of particular importance in people expending significant physical effort, where an increased electrolyte supply is recommended. The aim of the study was to estimate the content of sodium and potassium in natural mineral waters available in the Polish market and to evaluate the intake of those components with the commercially available mineral waters by different groups of consumers at the assumed volume of their consumption. The research material consisted of natural mineral waters of forty various brands available on the Polish market. The examined products were either produced in Poland or originated in other European countries. Among the products under examination, about 30% of the waters were imported from Lithuania, Latvia, the Czech Republic, France, Italy and Germany. A sample for analyses consisted of two package units of the examined water from different production lots. Samples for research were collected at random. The study was conducted with the same samples in in which calcium and magnesium content was determined, which was the subject of the first part of the study. The content of sodium and potassium was determined using the emission technique (acetylene-air flame), with the use of atomic absorption spectrometer – ICE 3000 SERIES – THERMO

  17. Interacting influence of potassium and polychlorinated biphenyl on cortisol and aldosterone biosynthesis

    International Nuclear Information System (INIS)

    Li, L.-A.; Lin, Tsu-Chun Emma

    2007-01-01

    Giving human adrenocortical H295R cells 14 mM KCl for 24 h significantly induced not only aldosterone biosynthesis but also cortisol biosynthesis. Pre-treating the cells with polychlorinated biphenyl 126 (PCB126) further increased potassium-induced aldosterone and cortisol productions in a dose-dependent manner, but all examined concentrations of PCB126 had little effect on the yields of precursor steroids progesterone and 17-OH-progesterone. Subsequent examinations revealed that CYP11B1 and CYP11B2 genes, responsible for the respective final steps of the cortisol and aldosterone biosynthetic pathways, exhibited increased responsiveness to PCB126 under high potassium. While 10 -5 M PCB126 was needed to induce a significant increase in the basal mRNA abundance of either gene, PCB126 could enhance potassium-induced mRNA expression of CYP11B1 at 10 -7 M and CYP11B2 at 10 -9 M. Actually, potassium and PCB126 synergistically upregulated mRNA expression of both genes. Potassium raised the transcriptional rates of CYP11B1 and CYP11B2 probably through a conserved Ad5 cis-element, whereas PCB126 appeared to regulate these two genes at the post-transcriptional level. Positive potassium-PCB126 synergism was also detected in CYP11B2 enzyme activity estimated by aldosterone/progesterone ratio. In contrast, potassium and PCB126 increased CYP11B1 enzyme activity or cortisol/17-OH-progesterone ratio additively. Moreover, potassium improved the time effect of PCB126 on gene expression and enzyme activity of CYP11B2, but not the PCB126 time response of CYP11B1. These data demonstrated that potassium differentially enhanced the potency of PCB126 to induce CYP11B1- and CYP11B2-mediated steroidogenesis

  18. The relation of potassium and sodium intakes to diet cost among U.S. adults.

    Science.gov (United States)

    Drewnowski, A; Rehm, C D; Maillot, M; Monsivais, P

    2015-01-01

    The 2010 Dietary Guidelines recommended that Americans increase potassium and decrease sodium intakes to reduce the burden of hypertension. One reason why so few Americans meet the recommended potassium or sodium goals may be perceived or actual food costs. This study explored the monetary costs associated with potassium and sodium intakes using national food prices and a representative sample of US adults. Dietary intake data from the 2001-2002 National Health and Nutrition Examination Survey were merged with a national food prices database. In a population of 4744 adults, the association between the energy-adjusted sodium and potassium intakes, and the sodium-to-potassium ratio (Na:K) and energy-adjusted diet cost was evaluated. Diets that were more potassium-rich or had lower Na:K ratios were associated with higher diet costs, while sodium intakes were not related to cost. The difference in diet cost between extreme quintiles of potassium intakes was $1.49 (95% confidence interval: 1.29, 1.69). A food-level analysis showed that beans, potatoes, coffee, milk, bananas, citrus juices and carrots are frequently consumed and low-cost sources of potassium. Based on existing dietary data and current American eating habits, a potassium-dense diet was associated with higher diet costs, while sodium was not. Price interventions may be an effective approach to improve potassium intakes and reduce the Na:K ratio of the diet. The present methods helped identify some alternative low-cost foods that were effective in increasing potassium intakes. The identification and promotion of lower-cost foods to help individuals meet targeted dietary recommendations could accompany future dietary guidelines.

  19. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    Science.gov (United States)

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-07-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion.

  20. Leaching of potassium in a lysimeter experiment

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1996-11-01

    Leaching of potassium was studied in the lysimeter plant in Seibersdorf/Austria (Pannonian climate). Averaged over three years, gravitational water amounted to 15.7% of the sum of precipitation (mean 485 mm) and irrigation (mean 138 mm). Differences between the four soils with respect to drainage were explained by the specific percentage of the soil skeleton. The average yearly potassium leaching ranged from 3.64 kg K/ha·yr (Dystric-Cambisol) to 22.7 kg K/ha·yr (drained Gleysol). Correlation between gravitational water volume and potassium leaching were only significant for one out of four soil types. No correlation was observed between extractable potassium in the soil profiles and potassium leaching. (author)

  1. Dietary reference values for potassium

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives dietary reference values (DRVs) for potassium. The Panel decides to set DRVs on the basis of the relationships between potassium intake and blood pressure and stroke...

  2. Ammonium nitrate-potassium nitrate system

    Energy Technology Data Exchange (ETDEWEB)

    Cady, H.H.

    1981-01-01

    A portion of the binary phase diagram for the system ammonium nitrate-potassium nitrate has been determined from -55/sup 0/C to 185/sup 0/C. Results are presented for the ammonium-nitrate-rich end of the system up to 30 wt% potassium nitrate.

  3. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  4. The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis

    NARCIS (Netherlands)

    Heeneman, Sylvia; Cleutjens, Jack P.; Faber, Birgit C.; Creemers, Esther E.; van Suylen, Robert-Jan; Lutgens, Esther; Cleutjens, Kitty B.; Daemen, Mat J.

    2003-01-01

    The extracellular matrix is no longer seen as the static embedding in which cells reside; it has been shown to be involved in cell proliferation, migration and cell-cell interactions. Turnover of the different extracellular matrix components is an active process with multiple levels of regulation.

  5. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  6. The Effect of ringer Lactate as the Priming Solution of the Cardiopulmonary by Pass Circuit on Plasma Potassium Levels after Open Heart Surgery in Children

    Directory of Open Access Journals (Sweden)

    Arash Peivandi Yazdi

    2015-11-01

    Full Text Available Background: Conduct of cardiopulmonary bypass (CPB due to the higher volume of priming solution in comparison to the total blood volume in children requires careful consideration. Recently attention has been focused on the potential risk of hyperkalemia in these patients. Given its significant effects on cardiac rhythm, hyperkalemia is considered a medical emergency. In this cross-sectional study we aimed to determine the changes in K+ and other electrolytes following CPB in a pediatric cardiac surgery setting. Method: Sixty children scheduled for pediatric cardiac surgery weighing more than 5 kilograms with Hct level above 30% were enrolled. The prime solution used was Ringer-lactate. Venous blood were collected at defined time points: before, during and after CPB and at discharge. A p-value of less than 0.05 was considered statistically significant. Results: Mean age of the studied patients was 3.69±2.77 years. A rise in potassium levels during surgery was recorded. Also a significant difference in the potassium levels before surgery and at discharge were observed (p=0.007. A significant drop and a subsequent rise in the Hct level was seen overtime whereas a significant decrease in the PH and bicarbonate levels were detected. 31 experienced cardiac arrhythmia after undergoing CPB. Conclusion: A K+-free crystalloid that will offset the K+ load of stored blood is highly anticipated in these patients

  7. Genetics Home Reference: potassium-aggravated myotonia

    Science.gov (United States)

    ... aggravated by eating potassium-rich foods such as bananas and potatoes. Stiffness occurs in skeletal muscles throughout the body. Potassium-aggravated myotonia ranges in severity from mild episodes ...

  8. Physic nut seed productivity (Jatropha curcas L.), in rainy season, under different drip irrigation levels and potassium dosages; Produtividade de sementes de pinhao-manso (Jatropha curcas L.), da estacao chuvosa, submetido a diferentes laminas de irrigacao e adubacao potassica

    Energy Technology Data Exchange (ETDEWEB)

    Deus, Fabio Ponciano de; Faria, Manoel Alves de; Portela, Jaqueline Damyane [Universidade Federal de Lavras (DEG/UFLA), Lavras, MG (Brazil). Dept. de Engenharia], E-mail: fpdagricola@yahoo.com.br; Oliveira, Ednaldo Liberato de [Centro Federal de Educacao Tecnologica (CEFET), Januaria, MG (Brazil)

    2010-07-01

    The aim of this research was to value the Physic nut seed productivity, in rainy season, under different drip irrigation levels and potassium dosages, for 2008, 2009 and for the accumulated of theses years, in Lavras - MG, Brazil. The experimental design was the one of randomized blocks, in split plot design, with four replicates. The treatment levels were four water levels (plots) and four potassium dosages (subplots). The irrigation was applied based on the amount estimated by the water balance considering the class A pan evaporation (ECA) and rain depths - L{sub 0} (non irrigated), L{sub 40}, L{sub 80} and L{sub 120} (40, 80 and 120% of the balance respectively). The potassium dosages were K{sub 30}, K{sub 60}, K{sub 90} and K{sub 120} (30, 60, 90 and 120 kg.ha{sup -1} respectively). It was used the drip irrigation system. It was used the Sisvar 4.0 software, for analysis of variance and the Tukey test at 5% level of probability to compare the means. However, it was possible to observe in rainy season, that the irrigation has not changed the Physic nut seed productivity. The potassium level 120 kg.ha{sup -1} in all significant situations was the treatment with higher productivity. (author)

  9. Alcohol and the calcium-dependent potassium transport of human erythrocytes

    International Nuclear Information System (INIS)

    Harris, R.A.; Caldwell, K.K.

    1985-01-01

    In vitro exposure of human red blood cells to ethanol (100 and 400 mM) was found to increase the initial rate of calcium-dependent potassium efflux through the red cell membrane. This effect of ethanol was apparently not due to an elevation of the intracellular free calcium but rather to a direct action of the drug on the transport process as, (1) intracellular calcium concentrations were tightly buffered with EGTA, (2) ethanol did not alter the efflux of 45 Ca from the cells, and (3) dantrolene, which has been proposed to counteract the effect of ethanol on intracellular calcium levels in the erythrocyte, did not inhibit the stimulatory action of ethanol. The efflux of potassium from erythrocytes obtained from chronic alcoholics was not different from that of erythrocytes from non-alcoholic individuals. The relationship of these findings to neuronal potassium transport is discussed

  10. Does Electroconvulsive therapy aggravate the rise in potassium and ...

    African Journals Online (AJOL)

    Background: Potassium and creatine kinase levels increase after the administration of suxamethonium. This rise may be exaggerated by the combination of suxamethonium fasciculation and the modified tonic/clonic convulsion induced by electroconvulsive therapy. This study compared the magnitude of increase in ...

  11. Does short-term potassium fertilization improve recovery from drought stress in laurel?

    Science.gov (United States)

    Oddo, Elisabetta; Inzerillo, Simone; Grisafi, Francesca; Sajeva, Maurizio; Salleo, Sebastiano; Nardini, Andrea

    2014-08-01

    Xylem hydraulic conductance varies in response to changes in sap solute content, and in particular of potassium (K(+)) ion concentration. This phenomenon, known as the 'ionic effect', is enhanced in embolized stems, where it can compensate for cavitation-induced loss of hydraulic conductance. Previous studies have shown that in well-watered laurel plants (Laurus nobilis L.), potassium concentration of the xylem sap and plant hydraulic conductance increased 24 h after fertilization with KCl. The aim of this work was to test whether water-stressed laurel plants, grown under low potassium availability, could recover earlier from stress when irrigated with a KCl solution instead of potassium-free water. Two-year-old potted laurel seedlings were subjected to water stress by suspending irrigation until leaf conductance to water vapour (g(L)) dropped to ∼30% of its initial value and leaf water potential (ψ(L)) reached the turgor loss point (ψ(TLP)). Plants were then irrigated either with water or with 25 mM KCl and monitored for water status, gas exchange and plant hydraulics recovery at 3, 6 and 24 h after irrigation. No significant differences were found between the two experimental groups in terms of ψ(L), g(L), plant transpiration, plant hydraulic conductance or leaf-specific shoot hydraulic conductivity. Analysis of xylem sap potassium concentration showed that there were no significant differences between treatments, and potassium levels were similar to those of potassium-starved but well-watered plants. In conclusion, potassium uptake from the soil solution and/or potassium release to the xylem appeared to be impaired in water-stressed plants, at least up to 24 h after relief from water stress, so that fertilization after the onset of stress did not result in any short-term advantage for recovery from drought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Use of X-ray microanalysis for study of cation distribution in potassium deficient pumpkin roots

    Directory of Open Access Journals (Sweden)

    Natalia Burmistrova

    2014-01-01

    Full Text Available Ice slices of root tissues were investigated by X-ray microanalysis. It is shown that the cytoplasm of the meristematic and differentiated cells of potassium dificiest roots maintains a high potassium level. The vacuoles of various root cells loose more K and accumulate more Na and Mg than does the cytoplasm.

  13. Qualitative Carbohydrate Analysis using Alkaline Potassium ...

    Indian Academy of Sciences (India)

    IAS Admin

    CLASSROOM. 285. RESONANCE | March 2016. Qualitative Carbohydrate Analysis using Alkaline. Potassium Ferricyanide. Keywords. Alkaline potassium ferricyanide, qualitative ... Carbohydrates form a distinct class of organic compounds often .... Laboratory Techniques: A contemporary Approach, W B Saunders Com-.

  14. Suicidal ingestion of potassium permanganate crystals: a rare encounter.

    Science.gov (United States)

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A C; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8(th) day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion.

  15. Reproducibility of Serum Potassium Values in Serum From Blood Samples Stored for Increasing Times Prior to Centrifugation and Analysis.

    Science.gov (United States)

    Harper, Aaron; Lu, Chuanyong; Sun, Yi; Garcia, Rafael; Rets, Anton; Alexis, Herol; Saad, Heba; Eid, Ikram; Harris, Loretta; Marshall, Barbara; Tafani, Edlira; Pincus, Matthew R

    2016-05-01

    The goal of this work was to determine if immediate versus postponed centrifugation of samples affects the levels of serum potassium. Twenty participants donated normal venous blood that was collected in four serum separator tubes per donor, each of which was analyzed at 0, 1, 2, or 4 hr on the Siemens Advia 1800 autoanalyzer. Coefficients of variation (CVs) for potassium levels ranged from 0% to 7.6% with a mean of 3 ± 2%. ANOVA testing of the means for all 20 samples showed a P-value of 0.72 (>0.05) indicating that there was no statistically significant difference between the means of the samples at the four time points. Sixteen samples were found to have CVs that were ≤5%. Two samples showed increases of potassium from the reference range to levels higher than the upper reference limit, one of which had a 4-hr value that was within the reference or normal range (3.5-5 mEq/l). Overall, most samples were found to have reproducible levels of serum potassium. Serum potassium levels from stored whole blood collected in serum separator tubes are, for the most part, stable at room temperature for at least 4 hr prior to analysis. However, some samples can exhibit significant fluctuations of values. © 2015 Wiley Periodicals, Inc.

  16. Alteration of hemorrhagic aldosterone response during sodium restriction, potassium supplement and diuresis

    International Nuclear Information System (INIS)

    Sung, H.K.; Ryu, Y.W.; Joo, B.S.; Koh, J.W.; Park, K.W.; Lee, J.K.

    1977-01-01

    Effect of sodium restriction with or without potassium supplement and furosemide diuresis on plasma aldosterone response to mild hemorrhage were studied in normotensive young volunteers. After an overnight fast, blood were drawn just before and 10, 20, 30, 50, 70, 90, and 120 minutes after the 3 H-aldosterone injection. The sum of blood delivered reached over 100ml (during two hours). Plasma aldosterone and renin were measured by means of radiommunoassay. The results were as followed: 1. Hemorrhage resulted in a moderate increase in plasma aldosterone level of volunteers with normal diet. 2. The mean figures of plasma aldosterone in subjects with sodium restriction and diuresis were likewise significantly increased by hemorrhage, however, the figure of the subjects with potassium supplement who already shown higher plasma level was without effect on hemorrhage. 3. Hemorrhage produced slight decrease in serum sodium concentration in every experimental conditions, although the changes were not significant. 4. Plasma renin activities after the hemorrhage followed a similar pattern with that of aldosterone, increased during sodium restriction or diuresis and unaffected during potassium supplement. (author)

  17. Alteration of Hemorrhagic Aldosterone Response During Sodium Restriction, Potassium Supplement and Diuresis

    International Nuclear Information System (INIS)

    Sung, Ho Kyung; Ryu, Yong Wun; Koh, Joo Whan; Park, Kee Won; Lee, Jang Kyu

    1977-01-01

    Effect of sodium restriction with or without potassium supplement and furosemide diuresis on plasma aldosterone response to mild hemorrhage were studied in normotensive young volunteers. After an overnight fast, blood were drawn just before and 10, 20, 30, 50, 70, 90, and 120 minutes after the 3H-aldosterone injection. The sum of blood delivered reached over 100 ml (during two hours). Plasma aldosterone and renin were measured by means of radioimmunoassay. The results were as followed; 1) Hemorrhage resulted in a moderate increase in plasma aldosterone level of volunteers with normal diet. 2) The mean figures of plasma aldosterone in subjects with sodium restriction and diuresis were likewise significantly increased by hemorrhage, however, the figure of the subjects with potassium supplement who already shown higher plasma level was without effect on hemorrhage. 3) Hemorrhage produced slight decrease in serum sodium concentration in every experimental conditions, although the changes were not significant. 4) Plasma renin activities after the hemorrhage followed a similar pattern with that of aldosterone, increased during sodium restriction or diuresis and unaffected during potassium supplement.

  18. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  19. Potassium uptake and redistribution in Cabernet Sauvignon and Syrah grape tissues and its relationship with grape quality parameters.

    Science.gov (United States)

    Ramos, María Concepción; Romero, María Paz

    2017-08-01

    The present study investigated the potassium (K) levels in petiole and other grape tissues during ripening in Vitis vinifera Shiraz and Cabernet Sauvignon, grown in areas with differences in vigour, as well as with and without leaf thinning. Potassium levels in petiole, seeds, skin and flesh were related to grape pH, acidity, berry weight and total soluble solids. Differences in K levels in petiole were in accordance with the differences in soil K. Leaf thinning gave rise to higher K levels in petiole but, in grape tissues, the differences were not significant in all samplings, with greater differences at the end of the growing cycle. Potassium levels per berry in grape tissues increased from veraison to harvest, with K mainly accumulated in skins and, to a lesser extent, in flesh. Potassium levels in flesh positively correlated with pH and total soluble solids, whereas the correlation with titratable acidity was negative. Grape juice pH and total soluble solids positively correlated with K, whereas titratable acidity correlated negatively. Leaf thinning increased K levels in petiole, although differences in K levels in grape tissues were not significant. This suggests the need to consider the K berry concentration when aiming to optimise K fertilisation programmes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  1. Potassium test

    Science.gov (United States)

    ... hyperkalemia ) may be due to: Addison disease (rare) Blood transfusion Certain medicines Crushed tissue injury Hyperkalemic periodic paralysis ... released. This may cause a falsely high result. Alternative Names Hypokalemia test; K+ Images Blood test References Mount DB. Disorders of potassium balance. ...

  2. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  3. Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex.

    Science.gov (United States)

    Dash, Michael B; Tononi, Giulio; Cirelli, Chiara

    2012-07-01

    It is well established that brain metabolism is higher during wake and rapid eye movement (REM) sleep than in nonrapid eye movement (NREM) sleep. Most of the brain's energy is used to maintain neuronal firing and glutamatergic transmission. Recent evidence shows that cortical firing rates, extracellular glutamate levels, and markers of excitatory synaptic strength increase with time spent awake and decline throughout NREM sleep. These data imply that the metabolic cost of each behavioral state is not fixed but may reflect sleep-wake history, a possibility that is investigated in the current report. Chronic (4d) electroencephalographic (EEG) recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of oxygen ([oxy]) and lactate ([lac]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to sleep deprivation. Basic sleep research laboratory. Wistar Kyoto (WKY) adult male rats. N/A. Within 30-60 sec [lac] and [oxy] progressively increased during wake and REM sleep and declined during NREM sleep (n = 10 rats/metabolite), but with several differences. [Oxy], but not [lac], increased more during wake with high motor activity and/or elevated EEG high-frequency power. Meanwhile, only the NREM decline of [lac] reflected sleep pressure as measured by slow-wave activity, mirroring previous results for cortical glutamate. The observed state-dependent changes in cortical [lac] and [oxy] are consistent with higher brain metabolism during waking and REM sleep in comparison with NREM sleep. Moreover, these data suggest that glycolytic activity, most likely through its link with glutamatergic transmission, reflects sleep homeostasis.

  4. Nuclear magnetic resonance studies of intracellular ions in perfused from heart

    International Nuclear Information System (INIS)

    Burnstein, D.; Fossel, E.T.

    1987-01-01

    Intracellular sodium, potassium, and lithium were observed in a perfused frog heart by nuclear magnetic resonance (NMR) spectroscopy. A perfusate buffer containing the shift reagent, dysprosium tripolyphosphate, was used in combination with mathematical filtering or presaturation of the extracellular resonance to separate the intra- and extracellular sodium NMR signals. Addition of 10 μM ouabain to the perfusate, perfusion with a zero potassium, low-calcium buffer, and replacement of 66% of the perfusate sodium with lithium resulted in changes in the intracellular sodium levels. An increase of 45% in the intracellular sodium was observed when changing the pacing rate from 0 to 60 beats/min (with proportional changes for intermediate pacing rates). The ratio of intracellular potassium to sodium concentration was determined to be 2.3 by NMR, indicating that a substantial amount of the intracellular potassium is undetectable with these NMR method. In addition, intracellular lithium was observed during perfusion with a lithium-containing perfusate

  5. Extracellular signaling and multicellularity in Bacillus subtilis.

    Science.gov (United States)

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Errors in potassium balance

    International Nuclear Information System (INIS)

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by 40 K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies

  7. Interaction between Single Nucleotide Polymorphism and Urinary Sodium, Potassium, and Sodium-Potassium Ratio on the Risk of Hypertension in Korean Adults

    Directory of Open Access Journals (Sweden)

    Yeong Mi Park

    2017-03-01

    Full Text Available Hypertension is a complex disease explained with diverse factors including environmental factors and genetic factors. The objectives of this study were to determine the interaction effects between gene variants and 24 h estimated urinary sodium and potassium excretion and sodium-potassium excretion ratios on the risk of hypertension. A total of 8839 participants were included in the genome-wide association study (GWAS to find genetic factors associated with hypertension. Tanaka and Kawasaki formulas were applied to estimate 24 h urinary sodium and potassium excretion. A total of 4414 participants were included in interaction analyses to identify the interaction effects of gene variants according to 24 h estimated urinary factors on the risk of hypertension. CSK rs1378942 and CSK-MIR4513 rs3784789 were significantly modified by urinary sodium-potassium excretion ratio. In addition, MKLN rs1643270 with urinary potassium excretion, LOC101929750 rs7554672 with urinary sodium and potassium excretion, and TENM4 rs10466739 with urinary sodium-potassium excretion ratio showed significant interaction effects. The present study results indicated that the mutant alleles of CSK rs1378942 and CSK-MIR4513 rs3784789 had the strongest protective effects against hypertension in the middle group of 24 h estimated urinary sodium-potassium excretion ratio. Further studies are needed to replicate these analyses in other populations.

  8. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  9. Microinjection study on potassium transport of rat kidney

    International Nuclear Information System (INIS)

    Miyamoto, Makoto

    1978-01-01

    Wister rate were divided into the following four groups. (A) control group (B) high-potassium diet group (C) low-potassium diet group (D) nephron population reduction (N.P.R.) group. Microinjection of the artificial solutions containing both 86 Rb and 3 H-inulin were performed into the proximal and distal convoluted tubules as well as cortical peritubular capillaries in rats undergoing mannitol diuresis. Excretory patterns of these substances were analyzed in successive urine samples. 3 H-inulin is entirely recovered in the urine of the experimental kidney following the injection into the proximal and distal tubules. 86 Rb is an adequate tracer for potassium and is absorbed into the potassium pool from either proximal tubular injections or peritubular capillaries. 86 Rb excreted with a time course similar to that of 3 H-inulin is termed as 'direct recovery' and that excreted more slowly, 'delayed recovery'. The 86 Rb recoveries which were obtained after proximal injections were independent of the injection site and averaged 9%. Secretion of 86 Rb into the urine was stimulate during enhanced K secretion and decreased during reduced K secretion along the distal nephron. Distal tubular injections gave 100% direct recovery in control, high-K diet, and N.P.R. rats. It was apparent that the 86 Rb recovery was significantly reduced, although not delayed, in animals deprived of dietary potassium for several weeks. At the collecting duct, the extensive net potassium reabsorption is observed in potassium depleted rats, whereas K absorption might be reduced or even secretion is seemingly taking place in potassium loading rats. In conclution, distal convolution and collecting duct play the major role in the regulation of urinary potassium excretion. (auth.)

  10. Regulation of renal Na+-K-ATPase in the rat: role of increased potassium transport

    International Nuclear Information System (INIS)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-01-01

    The purpose of this study was to characterize the alterations in collecting tubule Na + -K + -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na + -K + -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na + -K + -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na + -K + -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na + -K + -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na + -K + -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading

  11. Regulation of renal Na -K-ATPase in the rat: role of increased potassium transport

    Energy Technology Data Exchange (ETDEWEB)

    Mujais, S.K.; Chekal, M.A.; Hayslett, J.P.; Katz, A.I.

    1986-08-01

    The purpose of this study was to characterize the alterations in collecting tubule Na -K -ATPase activity produced by sustained increments in dietary potassium in the rat and to evaluate the role of aldosterone in their generation. In adrenal-intact animals, feeding a high-potassium diet or administration of a high physiological dose of aldosterone, which simulates the delivery rate of this hormone during potassium loading, caused marked increments in Na -K -ATPase activity in the cortical collecting tubule (CCT) but had no effect on the enzyme in the inner stripe of the medullary collecting tubule (MCT). A significant increase in enzyme activity was also observed after smaller dietary potassium increments and after 4 days of dietary potassium load. In adrenalectomized rats provided with physiological replacement doses of corticosterone and aldosterone, Na -K -ATPase activity in both CCT and MCT was similar to that of adrenal-intact controls but remained unchanged after 7 days on the potassium-enriched (10-fold) diet. In contrast, adrenalectomized animals receiving the high physiological dose of aldosterone displayed an increase in Na -K -ATPase activity of CCT comparable with that of adrenal-intact animals, whereas the enzyme activity in the MCT was unaffected. In conclusion, 1) following chronic potassium loading Na -K -ATPase activity increases significantly in the CCT with no change in its activity in the inner stripe of the MCT; 2) this increase in enzyme activity occurs in a time-dependent fashion and in proportion to the potassium load; and 3) the stimulation of Na -K -ATPase activity in adrenal-replaced rats is facilitated by augmented levels of aldosterone, such as those actually observed in adrenal-intact rats subjected to chronic potassium loading.

  12. 21 CFR 172.375 - Potassium iodide.

    Science.gov (United States)

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be...

  13. Urinary potassium is a potential biomarker of disease activity in Ulcerative colitis and displays in vitro immunotolerant role.

    Science.gov (United States)

    Goyal, Sandeep; Rampal, Ritika; Kedia, Saurabh; Mahajan, Sandeep; Bopanna, Sawan; Yadav, Devesh P; Jain, Saransh; Singh, Amit Kumar; Wari, Md Nahidul; Makharia, Govind; Awasthi, Amit; Ahuja, Vineet

    2017-12-22

    We evaluated the in-vitro effect of potassium on CD4 + T cells and the role of urinary potassium as a potential biomarker of disease activity in patients with ulcerative colitis (UC). This prospective observational cohort study included healthy controls (n = 18) and UC patients [n = 30, median age: 40 (IQR: 28-46) years, 17 males)] with active disease(assessed by Mayo score) from September 2015-May 2016. Twenty-four hours urinary potassium along with fecal calprotectin (FCP) were estimated in UC patients (at baseline and follow-up after 3-6 months) and controls. In healthy volunteers, we also assessed the effect of potassium on CD4 + T cells differentiated in the presence of Th17 polarizing condition. UC patients had significantly higher FCP (368.2 ± 443.04 vs 12.44 ± 27.51, p < 0.001) and significantly lower urinary potassium (26.6 ± 16.9 vs 46.89 ± 35.91, p = 0.01) levels than controls. At follow-up, a significant increase in urinary potassium among patients who had clinical response [n = 22, 21.4 (14.4-39.7) to 36.5 (20.5-61.6), p = 0.04] and remission [n = 12, 18.7 (9.1-34.3) to 36.5 (23.4-70.5), p = 0.05] was accompanied with a parallel decline in FCP. On in-vitro analysis, potassium under Th17 polarizing conditions significantly inhibited IL-17 and interferon-[Formula: see text] expression while favoring the induction of FoxP3 + T cells. Therefore, urinary potassium levels are inversely associated with disease activity in UC with in-vitro data supporting an immune-tolerant role of potassium.

  14. Response of extracellular zinc in the ventral hippocampus against novelty stress.

    Science.gov (United States)

    Takeda, Atsushi; Sakurada, Naomi; Kanno, Shingo; Minami, Akira; Oku, Naoto

    2006-10-01

    An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes.

  15. Potassium Iodide

    Science.gov (United States)

    ... certain other liquids including low-fat white or chocolate milk, flat soda, orange juice, raspberry syrup, or ... Potassium iodide may cause side effects. Tell your doctor if any of these symptoms are severe or do not go away: swollen glands metallic taste in the ...

  16. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test.

    Science.gov (United States)

    Tenan, Matthew S; McMurray, Robert G; Blackburn, B Troy; McGrath, Melanie; Leppert, Kyle

    2011-02-01

    Local muscle fatigue may be related to potassium efflux from the muscle cell and/or lactate accumulation within the muscle. Local fatigue causes a decrease in median frequency (MPF) of the electromyogram's power spectrum during isometric contractions but its relationship to changes in potassium and lactate during dynamic exercise is equivocal. Thus, this investigation evaluated relationships between changes in the MPF from the vastus lateralis and blood levels of lactate and potassium during an incremental cycling test and recovery. Trained cyclists (n=8) completed a discontinuous, graded cycle test to exhaustion under normal and glycogen-reduced conditions. The glycogen reduced condition promoted an environment of lower lactate production while permitting a consistent potassium response. Blood samples and maximal isometric EMG data were collected at the end of each stage and during recovery. Maximal lactate levels were ∼ 60% lower in the glycogen reduced condition; potassium was similar between trials. MPF did not change significantly at volitional fatigue. Further, MPF was not significantly related to lactate (p>0.27) or potassium (p>0.16) in either condition. Though both lactate and potassium have been implicated as factors relating to local muscle fatigue, neither is significantly related to changes in MPF during or after progressive exercise on a cycle ergometer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Lack of genotoxicity of potassium iodate in the alkaline comet assay and in the cytokinesis-block micronucleus test. Comparison to potassium bromate.

    Science.gov (United States)

    Poul, J M; Huet, S; Godard, T; Sanders, P

    2004-02-01

    Iodine could be added to the diet of human population in the form of iodide or iodate but iodate had not been adequately tested for genotoxicity and carcinogenicity. In the present study, genotoxic effects of potassium iodate were evaluated in vitro using the alkaline comet assay and the cytokinesis-block micronucleus assay on CHO cells and compared to halogenate salt analogues potassium bromate and chlorate and also to their respective reduced forms (potassium iodide, bromide and chloride). The results showed that the comet assay failed to detect the presence of DNA damage after a treatment of cells by potassium iodate for concentrations up to 10 mM. This absence of primary DNA damage was confirmed in the cytokinesis-block micronucleus assay. In the same way, results showed that potassium chlorate as well as potassium iodide, bromide and chloride did not induced DNA damage in the alkaline comet assay for doses up to 10 mM. By contrast, potassium bromate exposure led to an increase in both DNA damage and frequency of micronucleated cells. The repair of bromate-induced DNA damage was incomplete 24 h after the end of treatment. These results seem to indicate that potassium bromate would induce DNA damage by several mechanisms besides oxidative stress.

  18. Identification of an evolutionarily conserved extracellular threonine residue critical for surface expression and its potential coupling of adjacent voltage-sensing and gating domains in voltage-gated potassium channels.

    Science.gov (United States)

    Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T

    2008-10-31

    The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.

  19. Suicidal Ingestion of Potassium Permanganate Crystals: A Rare Encounter

    OpenAIRE

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A. C.; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ...

  20. Potassium Blood Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Potassium, Serum; 426–27 p. Lab ...

  1. Tomato yield and potassium concentrations in soil and in plant petioles as affected by potassium fertirrigation

    Directory of Open Access Journals (Sweden)

    FONTES PAULO CEZAR REZENDE

    2000-01-01

    Full Text Available Tomato (Lycopersicon esculentum Mill. cv. Santa Clara was grown on a silt clay soil with 46 mg dm-3 Mehlich 1 extractable K, to evaluate the effects of trickle-applied K rates on fruit yield and to establish K critical concentrations in soil and in plant petioles. Six potassium rates (0, 48, 119, 189, 259 and 400 kg ha-1 K were applied in a randomized complete block design with four replications. Soil and plant K critical levels were determined at two plant growth stages (at the beginning of the second and fourth cluster flowering. Total, marketable and weighted yields increased with K rates, reaching their maximum of 86.4, 73.4, and 54.9 ton ha-1 at 198, 194, and 125 kg ha-1 K , respectively. At the first soil sampling date K critical concentrations in the soil associated with K rates for maximum marketable and weighted yields were 92 and 68 mg dm-3, respectively. Potassium critical concentrations in the dry matter of the petioles sampled by the beginning of the second and fourth cluster flowering time, associated with maximum weighted yield, were 10.30 and 7.30 dag kg-1, respectively.

  2. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Friedrich, E-mail: Friedrich.Roth@cfel.de [Center for Free-Electron Laser Science / DESY, Notkestraße 85, D-22607 Hamburg (Germany); Knupfer, Martin, E-mail: M.Knupfer@ifw-dresden.de [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany)

    2015-10-21

    We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.

  3. Physiological Response of Common Glasswort (Salicornia europaea L. to Potassium Nano-Particles Grown in Saline Soils around the Lake Urmia

    Directory of Open Access Journals (Sweden)

    Alireza Pirzad

    2016-06-01

    Full Text Available To evaluate the effects of spraying potassium nano-particles on the osmolytes, photosynthetic pigments, total carotenoids and nutrients of aerial parts of common glasswort (Salicornia europaea L., a factorial experiment based on randomized complete block design with three replications was conducted at the marginal lands of Lake Urmia in 2012. The treatments consisted of application of potassium nano-particle concentrations at five levels (0, 1, 2, 3 and 4 g/l of K nano-particles applied, once, twice and three times. Results of analysis of variance (ANOVA showed that there were significant interaction between the levels and concentrations of potassium nano-particles sprayings on aerial parts with respect to their contents proline, total soluble carbohydrates, total chlorophyll, chlorophyll a and b, total carotenoids (xanthophyll and carotene and nutrients (nitrogen, phosphorus, potassium, calcium and sodium. The highest levels of proline (1.84 mg/g dry weight at one time spraying 4 g/l of K, total soluble carbohydrates (66.9 mg/g dry weight at three times spraying 4 g/l, total chlorophyll (26.23 mg/g fresh weight and chlorophyll b (22.85 mg/g fresh weight at two times of water spraying, and chlorophyll a (9.93 mg/g fresh weight at three times of 4g/l of potassium nano-particles sprayings were obtained. The highest nitrogen (0.95 % of aerial parts and phosphorus (2.99 g/kg dry weight of aerial parts contents were obtained from three times water spraying. However, the highest amounts of aerial plant part of potassium (65.08 g/kg dry weight and sodium (403 g/kg dry weight belonged to the two times, and calcium (29.23 g/kg dry weight to the three times spraying of 4 g/l nano-potassium. Despite of the high concentration of osmolytes by potassium spraying, the nutrient accumulations levels were not significantly different from each other.

  4. Urinary potassium to urinary potassium plus sodium ratio can accurately identify hypovolemia in nephrotic syndrome: a provisional study.

    Science.gov (United States)

    Keenswijk, Werner; Ilias, Mohamad Ikram; Raes, Ann; Donckerwolcke, Raymond; Walle, Johan Vande

    2018-01-01

    There is evidence pointing to a decrease of the glomerular filtration rate (GFR) in a subgroup of nephrotic children, likely secondary to hypovolemia. The aim of this study is to validate the use of urinary potassium to the sum of potassium plus sodium ratio (UK/UK+UNa) as an indicator of hypovolemia in nephrotic syndrome, enabling detection of those patients who will benefit from albumin infusion. We prospectively studied 44 nephrotic children and compared different parameters to a control group (36 children). Renal perfusion and glomerular permeability were assessed by measuring clearance of para-aminohippurate and inulin. Vaso-active hormones and urinary sodium and potassium were also measured. Subjects were grouped into low, normal, and high GFR groups. In the low GFR group, significantly lower renal plasma flow (p = 0.01), filtration fraction (p = 0.01), and higher UK/UK+UNa (p = 0.03) ratio were noted. In addition, non-significant higher plasma renin activity (p = 0.11) and aldosteron (p = 0.09) were also seen in the low GFR group. A subgroup of patients in nephrotic syndrome has a decrease in glomerular filtration, apparently related to hypovolemia which likely can be detected by a urinary potassium to potassium plus sodium ratio > 0.5-0.6 suggesting benefit of albumin infusion in this subgroup. What is Known: • Volume status can be difficult to assess based on clinical parameters in nephrotic syndrome, and albumin infusion can be associated with development of pulmonary edema and fluid overload in these patients. What is New: • Urinary potassium to the sum of urinary potassium plus sodium ratio can accurately detect hypovolemia in nephrotic syndrome and thus identify those children who would probably respond to albumin infusion.

  5. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  6. On the fusibility of potassium heptafluorotantalate

    International Nuclear Information System (INIS)

    Agulyanskij, A.I.; Bessonova, V.A.

    1983-01-01

    Phase transformations of potassium heptafluorotantalate near the liquidus temperature have been studied. Thermograms and polytherm of the electric condUctivity of potassium heptafluorotantalate, thermogram of the mechanical mixture 0.5 K 2 TaF 7 +0.5 KF and thermogram of K 3 TaF 8 crystallization are plotted. The phase diagram of the K 2 TaF 7 -KF system is presented. In the temperature range 746 to 778 deg, i.e. above K 2 TaF 7 melting point, the melt is shown to remain heterogeneous. A portion of the phase diagram rich in potassium heptafluorotantalate is qualified as an ordinary eutectics

  7. Extracellular deoxyribonuclease production by periodontal bacteria.

    Science.gov (United States)

    Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R

    2012-08-01

    Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.

  8. Extracellular matrix protein fibulin-1 plasma levels are associated with increased cardiovascular risk in chronic kidney disease

    DEFF Research Database (Denmark)

    Scholze, Alexandra

    INTRODUCTION AND AIMS: Fibulin-1 is one of the few extracellular matrix proteins present in blood in high concentrations. We aimed to define the relationship between plasma fibulin-1 levels and risk markers of cardiovascular disease in patients with chronic kidney disease. METHODS: Plasma fibulin-1...... hemodynamic and arterial stiffness indices. RESULTS: We observed a positive correlation of fibulin-1 levels with age (r=0.38; p=0.033), glycated hemoglobin (r=0.80; p=0.003), creatinine (r=0.35; p=0.045), and fibrinogen (r=0.39; p=0.027). Glomerular filtration rate and fibulin-1 were inversely correlated (r......=-0.57; p=0.022). There was a positive correlation between fibulin-1 and central pulse pressure (r=0.44; p=0.011) and central augmentation pressure (r=0.55; p=0.001). In a multivariable regression model, diabetes, creatinine, fibrinogen and central augmentation pressure were independent predictors...

  9. Evaluation of the effects of occupational noise exposure on serum aldosterone and potassium among industrial workers

    Directory of Open Access Journals (Sweden)

    Sajad Zare

    2016-01-01

    Full Text Available The existing literature indicates that occupational exposure to noise may have adverse effects on workers′ health. The aim of this study was to evaluate the possible effects of exposure to different sound pressure levels (SPLs on serum aldosterone and potassium concentration among Iranian blue collar workers in Golgohar Mining and Industrial Company in Sirjan, Kerman Province, Iran. This case-control study was performed on 45 workers of Golgohar Mining and Industrial Company. The subjects consisted of 30 workers from manufacturing departments and 15 office employees of the mining company. The controls, mainly with administrative jobs were exposed to 72 dBA SPL. Cases, in two separate groups, were exposed to noise levels of 88 dBA and 103 dBA, respectively. Noise intensity was measured at the desired locations. Noise measurements were performed according to the International Organization for Standardization (ISO 9612. To measure the serum aldosterone and potassium concentrations, a 5 mL blood sample was taken from each worker at the specified time intervals and aldosterone concentration was determined using enzyme-linked immunosorbent assay (ELISA test in the laboratory. Repeated measurement and Spearman′s correlation coefficient analysis were used with α = 0.05. Exposure to the different levels of sound pressure resulted in different aldosterone concentrations and meanwhile an increase in the SPL did not affect the concentration of potassium. From 10:00 AM to 10:30 AM, as SPL increased, aldosterone concentrations did not increase significantly but from 13:30 PM to 14:00 PM, raised SPL led to a significant increase in aldosterone concentration. However, there was no correlation between the concentration of potassium and different factors. This study indicated that increases in SPLs affect aldosterone concentration but at the same time do not have significant effects on serum potassium level.

  10. Removal of uranium and priority pollutant metals from Fernald Environmental Management Project wastewater utilizing potassium ferrate

    International Nuclear Information System (INIS)

    Hampshire, Lyle H.; Potts, Michael E.

    1992-01-01

    A side-by-side treatment comparison between calcium hydroxide and TRU/Clear '4', a potassium ferrate based wastewater treatment chemical, was performed in a process wastewater and stormwater treatment facility. Results from the full-scale plant testing demonstrated that potassium ferrate could achieve the same treatment levels as calcium hydroxide while generating 55% less sludge than the calcium hydroxide treatment. The testing also showed that utilization of potassium ferrate would minimize the volume of sludge generated and assist in the reduction of total waste management costs associated with storage, monitoring, transportation, and final disposition of generated sludge. (author)

  11. Intracellular mediators of potassium-induced aldosterone secretion

    International Nuclear Information System (INIS)

    Ganguly, A.; Chiou, S.; Davis, J.S.

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP 2 ) in 3 H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium

  12. Expression of intra- and extracellular granzymes in patients with typhoid fever.

    Science.gov (United States)

    de Jong, Hanna K; Garcia-Laorden, Maria Isabel; Hoogendijk, Arie J; Parry, Christopher M; Maude, Rapeephan R; Dondorp, Arjen M; Faiz, Mohammed Abul; van der Poll, Tom; Wiersinga, Willem Joost

    2017-07-01

    Typhoid fever, caused by the intracellular pathogen Salmonella (S.) enterica serovar Typhi, remains a major cause of morbidity and mortality worldwide. Granzymes are serine proteases promoting cytotoxic lymphocytes mediated eradication of intracellular pathogens via the induction of cell death and which can also play a role in inflammation. We aimed to characterize the expression of extracellular and intracellular granzymes in patients with typhoid fever and whether the extracellular levels of granzyme correlated with IFN-γ release. We analyzed soluble protein levels of extracellular granzyme A and B in healthy volunteers and patients with confirmed S. Typhi infection on admission and day of discharge, and investigated whether this correlated with interferon (IFN)-γ release, a cytokine significantly expressed in typhoid fever. The intracellular expression of granzyme A, B and K in subsets of lymphocytic cells was determined using flow cytometry. Patients demonstrated a marked increase of extracellular granzyme A and B in acute phase plasma and a correlation of both granzymes with IFN-γ release. In patients, lower plasma levels of granzyme B, but not granzyme A, were found at day of discharge compared to admission, indicating an association of granzyme B with stage of disease. Peripheral blood mononuclear cells of typhoid fever patients had a higher percentage of lymphocytic cells expressing intracellular granzyme A and granzyme B, but not granzyme K, compared to controls. The marked increase observed in extra- and intracellular levels of granzyme expression in patients with typhoid fever, and the correlation with stage of disease, suggests a role for granzymes in the host response to this disease.

  13. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  14. 21 CFR 582.1613 - Potassium bicarbonate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1613 Potassium bicarbonate. (a)...

  15. A novel potassium deficiency-induced stimulon in Anabaena torulosa

    Indian Academy of Sciences (India)

    Unknown

    torulosa and of nine proteins in Escherichia coli. These were termed potassium deficiency-induced proteins or. PDPs and constitute hitherto unknown potassium deficiency–induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the ...

  16. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  17. Use of potassium-42 in the study of kidney functioning; Emploi du patassium-12 pour l'etude du fonctionnement renal

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F; Guinnebault, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [French] Apres injection intraveineuse au lapin de radiopotassium comme indicateur, l'analyse des courbes de la radioactivite specifique du potassium, mesuree en fonction du temps dans le plasma arteriel, dans le plasma veineux efferent du rein, dans l'urine et dans diverses regions du rein, lui-meme, permet de montrer: 1)que la vitesse de renouvellement du potassium contenu dans les cellules du cortex (tubes contournes proximaux et distaux), apparait tres grande et semble limitee par le debit sanguin renal. 2) que le vitesse de renouvellement du potassium contenu dans les regions profondes (anses de Henle et tubes collecteurs) est beaucoup plus faible. 3) que le potassium de l'urine a pour precurseur le potassium des cellules des tubes contournes et non celui des cellules des anses de Henle ou des canaux collecteurs, ni celui du filtrat glomerulaire. 4) que le potassium filtre au niveau des glomerules serait entierement reabsorbe au

  18. Acute toxicity of potassium permanganate to fingerlings of the ...

    African Journals Online (AJOL)

    Laboratory static bioassays were conducted to determine the 96-h LC50 and the lethal levels of concentrations of the aquaculture therapeutant, potassium permanganate (KMnO4) on fingerlings (mean weight, 6.24 ± 0.15 g and mean length, 4.25 ± 0.07 cm) of the African catfish, Clarias gariepinus. A total number of one ...

  19. Effect of different rates of potassium fertilizer and soil moisture on nitrogen and potassium use efficiencies and tomato yield using an 15N isotopic dilution technique

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Al-Ain, F.; Al-Chamma'a, M.

    2005-03-01

    A pot experiment was conducted to evaluate the response of tomato to 4 potassium rates (0, 90, 120, 150 kg K 2 O/ha), one rate of N (150 kg/ha) and two irrigation regimes 65 % and 85 % of field capacity (FC) on yield and the efficient use of N and K fertilizers. Results showed that dry matter yield was positively correlated with the rate of K fertilizer applied under the two irrigation regimes. However the increase in production of fruits and dry matter was higher at the 85% FC. The K-uptake in fruit and whole plant increased with increasing K application levels and was higher at the 85 % but the opposite was observed in shoots and roots. Potassium use efficiency increased with increasing K levels at the two irrigation regimes and the values were higher at the 85 %. The nitrogen use efficiency in shoots, roots , fruits and the whole plant increased with increasing K levels and was highest at the 85 % FC and 150 kg K 2 O/ ha fertilizer rate. (Authors)

  20. Effects of Long-term Fertilization on Potassium Fixation Capacity in Brown Soil

    Science.gov (United States)

    Li, Na; Guo, Chunlei; Wang, Yue; Gao, Tianyi; Yang, Jinfeng; Han, Xiaori

    2018-01-01

    This study concentrated on the research of features of fixation. The objective of this study was to provide theoretical foundation of rational application of potassium fertilizer along with improving fertilizer availability ratio. A 32 years long-term experiment was conducted to evaluate the effects of fertilizer application on potassium changes and the factors affecting K fixation on brown soil by simulation in laboratory. When the concentration of exogenous potassium was in range of 400∼4000 mg·kg-1, potassium fixation capacity increased along with the rise of concentration of exogenous potassium, whereas K fixation rate reduced; Compared with no-potassium fertilizer, application of potassium fertilizer and organic fertilizer reduced soil potassium fixation capacity. Potassium rate and fixation-release of potassium character in soil should be taken into comprehensive consideration for rational fertilization to maintain or improve soil fertility for increasing potassium fertilizers efficiency in agriculture.

  1. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis.

    Directory of Open Access Journals (Sweden)

    Wei Xiong

    Full Text Available AIM: Neurotransmitter release is elicited by an elevation of intracellular Ca(2+ concentration ([Ca(2+](i. The action potential triggers Ca(2+ influx through Ca(2+ channels which causes local changes of [Ca(2+](i for vesicle release. However, any direct role of extracellular Ca(2+ (besides Ca(2+ influx on Ca(2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG neurons and chromaffin cells, widely used models for studying vesicle exocytosis. RESULTS: Using photolysis of caged Ca(2+ and caffeine-induced release of stored Ca(2+, we found that extracellular Ca(2+ inhibited exocytosis following moderate [Ca(2+](i rises (2-3 µM. The IC(50 for extracellular Ca(2+ inhibition of exocytosis (ECIE was 1.38 mM and a physiological reduction (∼30% of extracellular Ca(2+ concentration ([Ca(2+](o significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca(2+](o. The calcimimetics Mg(2+, Cd(2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca(2+-sensing receptor (CaSR was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. CONCLUSION/SIGNIFICANCE: As an extension of the classic Ca(2+ hypothesis of synaptic release, physiological levels of extracellular Ca(2+ play dual roles in evoked exocytosis by providing a source of Ca(2+ influx, and by directly regulating quantal size and release probability in neuronal cells.

  2. Population coherent control of Rydberg potassium atom via adiabatic passage

    International Nuclear Information System (INIS)

    Jiang Li-Juan; Zhang Xian-Zhou; Jia Guang-Rui; Zhang Yong-Hui; Xia Li-Hua

    2013-01-01

    The time-dependent multilevel approach (TDMA) and B-spline expansion technique are used to study the coherent population transfer between the quantum states of a potassium atom by a single frequency-chirped microwave pulse. The Rydberg potassium atom energy levels of n = 6–15, l = 0–5 states in zero field are calculated and the results are in good agreement with other theoretical values. The time evolutions of the population transfer of the six states from n = 70 to n = 75 in different microwave fields are obtained. The results show that the coherent control of the population transfer from the lower states to the higher ones can be accomplished by optimizing the microwave pulse parameters. (atomic and molecular physics)

  3. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  4. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  5. Synthesis and derivatographic investigation of potassium octacyanotungstate (4)

    International Nuclear Information System (INIS)

    Kovbashin, V.I.; Dovgej, V.V.; Chernyak, B.I.

    1983-01-01

    The interaction between the rated quantities of potassium cyanide and WO(OH) 3 hydroxide resulted in preparation of potassium dioxytetracyanotungstate (4), K 4 [WO 2 (CN) 4 ]X6H 2 O. The latter, while interacting with a saturated potassium cyanide solution in a carbon dioxide flow transforms to potassium octacyanotungstate (4). The process of K 4 [W(CH) 8 ]x2H 2 O compound thermolysis in argon atmosphere is studied. It is found that, after dehydration of the complex, there occurs thermal transformation of K 4 [W(CN) 8 ] to K 3 [W(CN) 7 ] and then to K 3 [W(CN) 6 ]. The thermolysis final product is tungsten carbide WC

  6. 75 FR 23298 - Potassium Permanganate From China

    Science.gov (United States)

    2010-05-03

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on potassium permanganate from China. SUMMARY: The... on potassium permanganate from China would be likely to lead to continuation or recurrence of...

  7. 75 FR 51112 - Potassium Permanganate From China

    Science.gov (United States)

    2010-08-18

    ... Permanganate From China AGENCY: United States International Trade Commission. ACTION: Scheduling of an expedited five-year review concerning the antidumping duty order on potassium permanganate from China... of the antidumping duty order on potassium permanganate from China would be likely to lead to...

  8. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to 125 milligrams (200,000 units) or 250 milligrams (400,000 units) of penicillin V. (b) Sponsors. See...

  9. Regulation of extrarenal potassium homeostasis by adrenal hormones in rats.

    Science.gov (United States)

    Bia, M J; Tyler, K A; DeFronzo, R A

    1982-06-01

    The effect of chronic (7-10 days) adrenal insufficiency on extrarenal potassium tolerance was examined by infusing potassium into rats after acute nephrectomy. The increment in plasma potassium concentration was significantly higher in glucocorticoid-replaced adrenalectomized rats versus controls (max delta PK 3.59 +/-0.11 vs. 2.93 +/- 0.08 meq/liter; P less than 0.001). The impairment in extrarenal potassium tolerance in adrenalectomized rats could not be attributed to acidemia, hypotension, changes in plasma insulin or glucose concentration, or potassium retention prior to study. Acute replacement with aldosterone resulted in significant improvement in the rise in plasma potassium after KCl (max delta PK 3.18 +/- 0.06 meq/liter; P less than 0.005 compared with aldosterone-deficient adrenalectomized rats but higher than in controls, P less than 0.02). If given on a chronic basis, aldosterone replacement led to a complete correction of the defect (max delta PK = 2.89 +/- 0.08 meq/liter). Acute epinephrine replacement in adrenalectomized rats also returned potassium tolerance to normal (max delta PK = 3.02 +/- 0.10 meq/liter). The results demonstrate that extrarenal potassium tolerance is impaired in chronic adrenal insufficiency and suggest that both aldosterone and epinephrine deficiency may contribute to the defect, since replacement with either hormone returns potassium tolerance toward normal. Accordingly, both aldosterone and epinephrine have important extrarenal mechanisms of action.

  10. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion.

    Science.gov (United States)

    Thurlow, John S; Little, Dustin J; Baker, Thomas P; Yuan, Christina M

    2013-06-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion.

  11. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    Science.gov (United States)

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion. PMID:26064493

  12. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  13. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources of...

  14. Use of potassium-42 in the study of kidney functioning; Emploi du patassium-12 pour l'etude du fonctionnement renal

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F.; Guinnebault, M. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Following an intravenous injection of potassium-42 as indicator, an analysis of the specific activity vs. time curve in arterial plasma, in venous plasma efferent from the kidney, in urine and in various regions of the kidney of rabbits reveals that: 1) The turnover rate of potassium in the cortex cells (proximal and distal convoluted tubes) is very large, being limited only by renal blood flow. 2) The turnover rate of potassium in deep regions (Henle loops and collector tubules) is much smaller. 3) Potassium in the urine comes from cells of the convoluted tubes and not from cells of Henle loops, collector ducts, or glomerular filtrate. 4) Any potassium filtered at the level of the glomerules would be entirely reabsorbed at the level of the proximal tube, while total potassium in the urine results from a process of excretion by cells of the distal tube. These results are comparable with the assumption that the movement of potassium between interstitial medium and convoluted tube cells results from entirely passive processes. (author) [French] Apres injection intraveineuse au lapin de radiopotassium comme indicateur, l'analyse des courbes de la radioactivite specifique du potassium, mesuree en fonction du temps dans le plasma arteriel, dans le plasma veineux efferent du rein, dans l'urine et dans diverses regions du rein, lui-meme, permet de montrer: 1)que la vitesse de renouvellement du potassium contenu dans les cellules du cortex (tubes contournes proximaux et distaux), apparait tres grande et semble limitee par le debit sanguin renal. 2) que le vitesse de renouvellement du potassium contenu dans les regions profondes (anses de Henle et tubes collecteurs) est beaucoup plus faible. 3) que le potassium de l'urine a pour precurseur le potassium des cellules des tubes contournes et non celui des cellules des anses de Henle ou des canaux collecteurs, ni celui du filtrat glomerulaire. 4) que le potassium filtre au niveau des glomerules serait entierement

  15. Neutrophil extracellular traps promote deep vein thrombosis in mice

    Science.gov (United States)

    Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D.

    2011-01-01

    Summary Background Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be pro-thrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective To explore the source and role of extracellular chromatin in DVT. Methods We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared to sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs’ structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development. PMID:22044575

  16. Isolation and genetic analysis of Aspergillus niger mutants with reduced extracellular glucoamylase

    International Nuclear Information System (INIS)

    Valent, G.U.; Calil, M.R.; Bonatelli Junior, R.

    1992-01-01

    Mutants with impaired production of extracellular glucoamylase were isolated at a high frequency (2% of survivors) from an Aspergillus niger strain treated with UV light. These were designated as low glucoamylase producers (lgp, up to 30% of the parental yield) and medium producers (mgp, a 35 to 50% decrease in enzyme level). All the mutants were shown to be recessive; one strain segregated two unlinked genes. Complementation tests, and segregation from heterozygous diploid, suggested at least three to four unlinked genes, each able to impair glucoamylase production. There is evidence of a single structural gene for glucoamylase in A. niger. Therefore, as production of extracellular enzymes is normally the final result of several steps at intracellular and membrane levels, including regulation of enzyme synthesis, we suggest intergenic interaction that controls extracellular enzyme accumulation and that mutation in any of these genes would result in impaired production. (author)

  17. Extracellular metabolites in the cortex and hippocampus of epileptic patients.

    Science.gov (United States)

    Cavus, Idil; Kasoff, Willard S; Cassaday, Michael P; Jacob, Ralph; Gueorguieva, Ralitza; Sherwin, Robert S; Krystal, John H; Spencer, Dennis D; Abi-Saab, Walid M

    2005-02-01

    Interictal brain energy metabolism and glutamate-glutamine cycling are impaired in epilepsy and may contribute to seizure generation. We used the zero-flow microdialysis method to measure the extracellular levels of glutamate, glutamine, and the major energy substrates glucose and lactate in the epileptogenic and the nonepileptogenic cortex and hippocampus of 38 awake epileptic patients during the interictal period. Depth electrodes attached to microdialysis probes were used to identify the epileptogenic and the nonepileptogenic sites. The epileptogenic hippocampus had surprisingly high basal glutamate levels, low glutamine/glutamate ratio, high lactate levels, and indication for poor glucose utilization. The epileptogenic cortex had only marginally increased glutamate levels. We propose that interictal energetic deficiency in the epileptogenic hippocampus could contribute to impaired glutamate reuptake and glutamate-glutamine cycling, resulting in persistently increased extracellular glutamate, glial and neuronal toxicity, increased lactate production together with poor lactate and glucose utilization, and ultimately worsening energy metabolism. Our data suggest that a different neurometabolic process underlies the neocortical epilepsies.

  18. Suramin Inhibits Osteoarthritic Cartilage Degradation by Increasing Extracellular Levels of Chondroprotective Tissue Inhibitor of Metalloproteinases 3.

    Science.gov (United States)

    Chanalaris, Anastasios; Doherty, Christine; Marsden, Brian D; Bambridge, Gabriel; Wren, Stephen P; Nagase, Hideaki; Troeberg, Linda

    2017-10-01

    Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C 51 H 40 N 6 O 23 S 6 ) bound to TIMP-3 with a K D value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonyl bis (imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)] bis -1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis. Copyright © 2017 by The Author(s).

  19. Refractory hyperglycaemia induced by glucose-insulin-potassium infusion in acute myocardial infarction

    NARCIS (Netherlands)

    Svilaas, Tone; van der Horst, I.C.C.; Nijsten, M.W.N.; Zijlstra, F.

    2006-01-01

    Background. Recent randomised clinical trials have not confirmed the beneficial effects of glucose-insulin-potassium (GIK) infusion observed in experimental models of myocardial ischaemia and infarction. Methods. We investigated glucose levels and insulin dose in 107 patients treated with

  20. The effect of foliar feeding of potassium salts and urea in spinach on gas exchange, leaf yield and quality

    Directory of Open Access Journals (Sweden)

    Edward Borowski

    2012-12-01

    Full Text Available In a pot experiment conducted in a phytotron, the effectiveness of foliar feeding of different potassium salts, with and without the addition of 0.5% CO(NH22, in spinach (Spinacia oleracea L. was investigated. Potassium was applied 3 times in the form of 1% solutions KCl, KNO3, K2SO4 and C6H5K3O7•H2O, compared to water as the control treatment. The obtained results show that foliar feeding of potassium salts in spinach is an efficient method of supplementing the level of K+ in plants during vegetation. Plants fed with KNO3 had the highest content of potassium in leaves, and those fertilized with K2SO4, C6H5K3O7 × H2O and KCl had an only slightly lower potassium content. The application of potassium salts resulted in more intensive gas exchange in leaves (stomatal conductance, photosynthesis, transpiration and, as a consequence of that, increased leaf yield. Potassium nitrate and citrate influenced most effectively the abovementioned processes. The treatment of spinach with potassium salts resulted in an increased content of protein, chlorophyll, carotenoids, nitrates and iron as well as a decreased content of vitamin C and calcium in leaves.

  1. Estimating 24-h urinary sodium/potassium ratio from casual ('spot') urinary sodium/potassium ratio: the INTERSALT Study.

    Science.gov (United States)

    Iwahori, Toshiyuki; Miura, Katsuyuki; Ueshima, Hirotsugu; Chan, Queenie; Dyer, Alan R; Elliott, Paul; Stamler, Jeremiah

    2017-10-01

    Association between casual and 24-h urinary sodium-to-potassium (Na/K) ratio is well recognized, although it has not been validated in diverse demographic groups. Our aim was to assess utility across and within populations of casual urine to estimate 24-h urinary Na/K ratio using data from the INTERSALT Study. The INTERSALT Study collected cross-sectional standardized data on casual urinary sodium and potassium and also on timed 24-h urinary sodium and potassium for 10 065 individuals from 52 population samples in 32 countries (1985-87). Pearson correlation coefficients and agreement were computed for Na/K ratio of casual urine against 24-h urinary Na/K ratio both at population and individual levels. Pearson correlation coefficients relating means of 24-h urine and casual urine Na/K ratio were r = 0.96 and r = 0.69 in analyses across populations and individuals, respectively. Correlations of casual urine Na/creatinine and K/creatinine ratios with 24-h urinary Na and K excretion, respectively, were lower than correlation of casual and 24-h urinary Na/K ratio in analyses across populations and individuals. The bias estimate with the Bland-Altman method, defined as the difference between Na/K ratio of 24-h urine and casual urine, was approximately 0.4 across both populations and individuals. Spread around, the mean bias was higher for individuals than populations. With appropriate bias correction, casual urine Na/K ratio may be a useful, low-burden alternative method to 24-h urine for estimation of population urinary Na/K ratio. It may also be applicable for assessment of the urinary Na/K ratio of individuals, with use of repeated measurements to reduce measurement error and increase precision. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association

  2. Nebulized salbutamol for asthma: Effects on serum potassium and phosphate levels at the 60 min

    Directory of Open Access Journals (Sweden)

    M. Sahan

    2013-09-01

    Full Text Available Objective: We conducted this prospective study to expand available information in relation to serum phosphate levels in treatment of acute asthma. A β-adrenergic agonist, salbutamol, was used for this purpose. Material and methods: Twenty-six patients who met the inclusion criteria as; age over 16 years, asthma history, and an acute exacerbation were included. Serum blood urea nitrogen, creatinine, glucose were within normal limits in all the patients. None of the patients were on chronic theophylline therapy. Baseline serum phosphate and potassium levels were measured. Nebulized salbutamol (2.5 mg was used three times at every hour. After 60 min, serum phosphate and potassium levels were measured. Results: Serum phosphate levels decreased from 3.7 ± 0.9 mg/dL (baseline to 3.6±0.9 mg/dL at 60 min. This decrease was not statistically significant (p = 0.373. Serum potassium levels decreased significantly (p < 0.001 from 4.6 ± 0.7 mmol/L (baseline to 4.3 ± 0.7 mmol/L (60 min. Conclusion: Administration of nebulized salbutamol during the emergency treatment of acute exacerbation of asthma is not associated with a statistical decrease in serum phosphate. There was significant hypokalemia. This study indicates that a further study is needed to elucidate the clinical significance of nebulized salbutamol on serum phosphate. Resumo: Objetivo: Levámos a cabo este estudo prospetivo para ampliar a informação disponível relativamente aos níveis de fosfato sérico no tratamento de asma aguda. Foi utilizado um agonista β-adrenérgico, salbutamol, para este efeito. Materiais e métodos: Foram incluídos 26 doentes que cumpriam os critérios de inclusão de: idade superior a 16 anos, história de asma, incluindo uma exacerbação aguda. A ureia do soro sanguíneo, creatinina e glucose estavam nos limites normais em todos os doentes. Nenhum dos doentes era

  3. Patterns of sodium and potassium excretion and blood pressure in the African Diaspora.

    Science.gov (United States)

    Tayo, B O; Luke, A; McKenzie, C A; Kramer, H; Cao, G; Durazo-Arvizu, R; Forrester, T; Adeyemo, A A; Cooper, R S

    2012-05-01

    Habitual levels of dietary sodium and potassium are correlated with age-related increases in blood pressure (BP) and likely have a role in this phenomenon. Although extensive published evidence exists from randomized trials, relatively few large-scale community surveys with multiple 24-h urine collections have been reported. We obtained three 24-h samples from 2704 individuals from Nigeria, Jamaica and the United States to evaluate patterns of intake and within-person relationships with BP. The average (±s.d.) age and weight of the participants across all the three sites were 39.9±8.6 years and 76.1±21.2 kg, respectively, and 55% of the total participants were females. Sodium excretion increased across the East-West gradient (for example, 123.9±54.6, 134.1±48.8, 176.6±71.0 (±s.d.) mmol, Nigeria, Jamaica and US, respectively), whereas potassium was essentially unchanged (for example, 46.3±22.9, 40.7±16.1, 44.7±16.4 (±s.d.) mmol, respectively). In multivariate analyses both sodium (positively) and potassium (negatively) were strongly correlated with BP (P<0.001); quantitatively the association was stronger, and more consistent in each site individually, for potassium. The within-population day-to-day variation was also greater for sodium than for potassium. Among each population group, a significant correlation was observed between sodium and urine volume, supporting the prior finding of sodium as a determinant of fluid intake in free-living individuals. These data confirm the consistency with the possible role of dietary electrolytes as hypertension risk factors, reinforcing the relevance of potassium in these populations.

  4. Evaluating Status Change of Soil Potassium from Path Model

    Science.gov (United States)

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  5. Potassium Silicate Foliar Fertilizer Grade from Geothermal Sludge and Pyrophyllite

    Directory of Open Access Journals (Sweden)

    Muljani Srie

    2016-01-01

    Full Text Available Potassium silicate fertilizer grade were successfully produced by direct fusion of silica (SiO2 and potasium (KOH and K2CO3 in furnaces at temperatures up to melting point of mixture. The geothermal sludge (98% SiO2 and the pyrophyllite (95% SiO2 were used as silica sources. The purposes of the study was to synthesise potassium silicate fertilizer grade having solids concentrations in the range of 31-37% K2O, and silica in the range of 48-54% SiO2. The weight ratio of silicon dioxide/potasium solid being 1:1 to 5:1. Silica from geothermal sludge is amorphous, whereas pyrophylite is crystalline phase. The results showed that the amount of raw materials needed to get the appropriate molar ratio of potassium silicate fertilizer grade are different, as well as the fusion temperature of the furnace. Potassium silicate prepared from potassium hydroxide and geothermal sludge produced a low molar ratio (2.5: 1 to 3: 1. The potassium required quite small (4:1 in weight ratio, and on a fusion temperature of about 900 °C. Meanwhile, the potassium silicate prepared from pyrophyllite produced a high molar ratio (1.4 - 9.4 and on a fusion temperature of about 1350 °C, so that potassium needed large enough to meet the required molar ratio for the fertilizer grade. The product potassium silicate solid is amorphous with a little trace of crystalline.

  6. Observations of the dynamics of ionic potassium-38 in brain

    International Nuclear Information System (INIS)

    Duncan, C.C.; Lambrecht, R.M.; Bennett, G.W.; Rescigno, A.; Ment, L.R.

    1984-01-01

    Short time course potassium dynamics in brain were investigated in the cat. 38 K (T1/2 . 7.6m) was prepared on the BNL 60'' cyclotron by the 40 Ar(p, 3n) 38 K reaction. Positron decay in brain was measured by the limited angle of view positron camera (LAPC). Radioactivity corrected for physical decay following intravenous bolus injection of 38 K showed an initial peak followed by a washout phase with a subsequent monotonic increase. The slope of the washout phase was linearly related to PaCO2 and the subsequent monotonic increase paralleled the arterial concentration of the tracer. No significant changes in 38 K radioactivity were determined following coma producing levels of phenobarbital or seizure producing doses of potassium penicillin as compared to control

  7. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  8. Determination of potassium in feldspars by beta counting using a GM multicounter system

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L; Mejdahl, V

    1985-01-01

    A gas flow multicounter system developed at Risoe National laboratory for low-level beta counting applications was adopted for measuring potassium in feldspars extracted from archaeological and geological materials, in connection with TL dating work. A guard counter reduces the background by using an anticoincidence technique. Calibration was accomplished by measuring KCl and a feldspar standard. A potassium content of 1% yields a net beta count rate (background subtracted) of about 40 c.p.h.; the background is around 15 c.p.h. The precision in repeated measurements is better than 2% and the estimated accuracy is about 3%.

  9. Filtration recovery of extracellular DNA from environmental water samples

    Science.gov (United States)

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  10. Performance analysis of a potassium-steam two stage vapour cycle

    International Nuclear Information System (INIS)

    Mitachi, Kohshi; Saito, Takeshi

    1983-01-01

    It is an important subject to raise the thermal efficiency in thermal power plants. In present thermal power plants which use steam cycle, the plant thermal efficiency has already reached 41 to 42 %, steam temperature being 839 K, and steam pressure being 24.2 MPa. That is, the thermal efficiency in a steam cycle is facing a limit. In this study, analysis was made on the performance of metal vapour/steam two-stage Rankine cycle obtained by combining a metal vapour cycle with a present steam cycle. Three different combinations using high temperature potassium regenerative cycle and low temperature steam regenerative cycle, potassium regenerative cycle and steam reheat and regenerative cycle, and potassium bleed cycle and steam reheat and regenerative cycle were systematically analyzed for the overall thermal efficiency, the output ratio and the flow rate ratio, when the inlet temperature of a potassium turbine, the temperature of a potassium condenser, and others were varied. Though the overall thermal efficiency was improved by lowering the condensing temperature of potassium vapour, it is limited by the construction because the specific volume of potassium in low pressure section increases greatly. In the combinatipn of potassium vapour regenerative cycle with steam regenerative cycle, the overall thermal efficiency can be 58.5 %, and also 60.2 % if steam reheat and regenerative cycle is employed. If a cycle to heat steam with the bled vapor out of a potassium vapour cycle is adopted, the overall thermal efficiency of 63.3 % is expected. (Wakatsuki, Y.)

  11. Evaluating status change of soil potassium from path model.

    Directory of Open Access Journals (Sweden)

    Wenming He

    Full Text Available The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K. Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K, the chemical index of alteration (CIA, Soil Organic Matter in soil solution (SOM, Na and total nitrogen in soil solution (TN, and key indirect factors were Carbonate (CO3, Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK, Non-exchangeable potassium (neK and water-soluble potassium (wsK under influences of specific environmental parameters. In reversible equilibrium state of [Formula: see text], K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of [Formula: see text], K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth.

  12. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release.

    Science.gov (United States)

    Matsunaga, James; Medeiros, Marco A; Sanchez, Yolanda; Werneid, Kristian F; Ko, Albert I

    2007-10-01

    The life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.

  13. 21 CFR 250.108 - Potassium permanganate preparations as prescription drugs.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Potassium permanganate preparations as... or Prescription Status of Specific Drugs § 250.108 Potassium permanganate preparations as... women resulting from the misuse of potassium permanganate in an effort to induce abortion. Reports from...

  14. Potassium isotope abundances in Australasian tektites and microtektites.

    Science.gov (United States)

    Herzog, G. F.; O'D. Alexander, C. M.; Berger, E. L.; Delaney, J. S.; Glass, B. P.

    2008-10-01

    We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1 1.6 wt%, are lower than published average values, 1.9 2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12‰ (1σ mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7‰ (1σ mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from -10.6 ± 1.4‰ to +13.8 ± 1.5‰ and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite-forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.

  15. Potassium doped MWCNTs for hydrogen storage enhancement

    International Nuclear Information System (INIS)

    Adabi Qomi, S.; Gashtasebi, M.; Khoshnevisan, B.

    2012-01-01

    Here we have used potassium doped MWCNTs for enhancement of hydrogen storage process. XRD and SEM images have confirmed the doping of potassium. For studying the storage process a hydrogenic battery set up has been used. In the battery the working electrode has been made of the silver foam deposited by the doped MWCNTs electrophoretically.

  16. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.

    Science.gov (United States)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-07-07

    Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective

  17. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: a dialysis study of circadian variation and stress-induced modulation.

    Science.gov (United States)

    Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain

    2012-05-03

    Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-01-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  19. Autocrine signal transmission with extracellular ligand degradation

    Science.gov (United States)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  20. Comparative study of sodium and potassium in different types of gallstones and in serum of subjects with gallstones and controls

    International Nuclear Information System (INIS)

    Channa, N.A.; Ghanghro, A.B.; Soomro, A.M.

    2008-01-01

    The study comprises evaluation of sodium and potassium in the pathogenesis of human gallstones as well as measurement of the concentration of these elements in gallstones and in sera of 109 gallstone subjects and 100 controls (age and sex matched with no personal or family history of gallstone disease). It was observed that serum concentrations for both sodium and potassium were comparable (p<0.05) between gallstone subjects and control subjects. In gallstones the concentration of sodium was significantly higher as compared to potassium (p<0.5). Normal sodium to potassium ratio was seen in serum of gallstone subject, whereas, low sodium to potassium ratio was seen in gallstone carriers. Amongst the different types of gallstones, significantly high (p<0.05) concentrations of sodium and potassium were seen in calcium bilirubinate gallstones. The levels for these mineral elements were also raised in serum of pure calcium carbonate gallstone subjects. The results demonstrate that the higher concentration of sodium and potassium in gallstones may involve in both calcium bilirubinate gallstones and in serum of calcium carbonate gallstone subjects, which indicate their association with calcium in the precipitation of calcium bilirubinate and calcium carbonate in bile. Furthermore, low sodium to potassium ratio in gallstones indicates low ratio in bile of gallstone subjects. (author)

  1. Comparative Study of Sodium and Potassium in Different Types of Gallstones and in Serum of Subjects with Gallstones and Controls

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Soomro

    2008-06-01

    Full Text Available The study comprises evaluation of sodium and potassium in the pathogenesis of human gallstones as well as measurement of the concentration of these elements in gallstones and in sera of 109 gallstone subjects and 100 controls (age and sex matched with no personal or family history of gallstone disease. It was observed that serum concentrations for both sodium and potassium were comparable (p>0.05 between gallstone subjects and control subjects. In gallstones the concentration of sodium was significantly higher as compared to potassium (p<0.05. Normal sodium to potassium ratio was seen in serum of gallstone subjects, whereas, low sodium to potassium ratio was seen in gallstone carriers. Amongst the different types of gallstones, significantly high (p<0.05 concentrations of sodium and potassium were seen in calcium bilirubinate gallstones. The levels for these mineral elements were also raised in serum of pure calcium carbonate gallstone subjects.The results demonstrate that the higher concentration of sodium and potassium in gallstones may involve in both calcium bilirubinate gallstones and in serum of calcium carbonate gallstone subjects, which indicate their association with calcium in the precipitation of calcium bilirubinate and calcium carbonate in bile. Furthermore, low sodium to potassium ratio in gallstones indicates low ratio in bile of gallstone subjects.

  2. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  3. Sodium and potassium intake in South Africa: an evaluation of 24-hour urine collections in a white, black, and Indian population.

    Science.gov (United States)

    Swanepoel, Bianca; Schutte, Aletta E; Cockeran, Marike; Steyn, Krisela; Wentzel-Viljoen, Edelweiss

    2016-11-01

    Limited number of studies on salt intake has been conducted in the South Africa. The present study established the sodium and potassium excretion (24-hour urine collection) of three different South African populations. In total, 692 successful 24-hour urine collections were analyzed for sodium, potassium, and iodine levels. The median sodium and potassium excretion was 122.9 and 33.5 mmol/d, respectively, and the median salt intake was 7.2 g/d. The majority (92.8%) of the population did not meet the recommended potassium intake/d, and 65.6% consumed more than 6 g of salt/d. Potassium excretion showed a linear relationship with salt intake (P-trend ≤ .001). The median sodium-to-potassium ratio was 3.5. These findings support the South African government's sodium reduction legislation, as well as global initiatives. More consideration should be given to promoting the intake of potassium-rich foods, as this may have a greater public health impact than focusing only on dietary sodium reduction. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  4. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  5. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  6. Thermogravimetric studies of high temperature reactions between potassium salts and chromium

    International Nuclear Information System (INIS)

    Lehmusto, J.; Lindberg, D.; Yrjas, P.; Skrifvars, B.-J.; Hupa, M.

    2012-01-01

    Highlights: ► K 2 CO 3 reacted with Cr 2 O 3 forming K 2 CrO 4 . ► Presence of chlorine did not alone explain the initiation of accelerated oxidation. ► More light was shed to the role of chromates in accelerated oxidation. ► Accelerated oxidation of chromia protected steels occurs in two consecutive stages. ► Both potassium and chloride are required, so that both stages of reaction occur. - Abstract: This study compares the high temperature reactions of potassium chloride (KCl) and potassium carbonate (K 2 CO 3 ), two salts found in fly ashes formed in biomass combustion, with both pure metallic chromium (Cr) and chromium oxide (Cr 2 O 3 ). The reactions were investigated with thermogravimetric measurements and the results discussed based on thermodynamic calculations. In simple terms: potassium chloride reacted with chromium forming potassium chromate (K 2 CrO 4 ) and chromium oxide. Potassium chloride did not react with chromium oxide. Potassium carbonate reacted with chromium oxide, but not with chromium. The presence of potassium is sufficient to initiate accelerated oxidation, but chloride is needed to sustain it.

  7. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Shepheard, Stephanie R; Chataway, Tim; Schultz, David W; Rush, Robert A; Rogers, Mary-Louise

    2014-01-01

    Objective biomarkers for amyotrophic lateral sclerosis would facilitate the discovery of new treatments. The common neurotrophin receptor p75 is up regulated and the extracellular domain cleaved from injured neurons and peripheral glia in amyotrophic lateral sclerosis. We have tested the hypothesis that urinary levels of extracellular neurotrophin receptor p75 serve as a biomarker for both human motor amyotrophic lateral sclerosis and the SOD1(G93A) mouse model of the disease. The extracellular domain of neurotrophin receptor p75 was identified in the urine of amyotrophic lateral sclerosis patients by an immuno-precipitation/western blot procedure and confirmed by mass spectrometry. An ELISA was established to measure urinary extracellular neurotrophin receptor p75. The mean value for urinary extracellular neurotrophin receptor p75 from 28 amyotrophic lateral sclerosis patients measured by ELISA was 7.9±0.5 ng/mg creatinine and this was significantly higher (pneurotrophin receptor p75 was also readily detected in SOD1(G93A) mice by immuno-precipitation/western blot before the onset of clinical symptoms. These findings indicate a significant relation between urinary extracellular neurotrophin receptor p75 levels and disease progression and suggests that it may be a useful marker of disease activity and progression in amyotrophic lateral sclerosis.

  8. Four-wave mixing and parametric four-wave mixing near the 4P-4S transition of the potassium atom

    International Nuclear Information System (INIS)

    Katharakis, M; Merlemis, N; Serafetinides, A; Efthimiopoulos, T

    2002-01-01

    Potassium 4S 1/2 -6S 1/2 two-photon excitation initiates the emission of several internally generated photons. For the first time two emission lines, one close to and one below the potassium 4P 3/2 level, are reported for low pumping intensity. Radiation emitted below the 4P 3/2 level is due to a parametric four-wave mixing process that uses the photons emitted at the 5P 3/2 -4S 1/2 transition and a two-step four-wave mixing process generates the line emitted close to the 4P 3/2 level

  9. Elevated extracellular potassium ion concentrations suppress ...

    African Journals Online (AJOL)

    To address this question, we examined how elevations of [K+]o affect hippocampal oscillations in Scn1a mutant mouse, a mouse model of Dravet syndrome, a devastating genetic-epilepsy associated with gliosis, a major cause of dysregulated K+ homeostasis in epileptic brain. Methods: To this end, performing local field ...

  10. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates.

    Science.gov (United States)

    Bayne, E K; Anderson, M J; Fambrough, D M

    1984-10-01

    Monoclonal antibodies recognizing laminin, heparan sulfate proteoglycan, fibronectin, and two apparently novel connective tissue components have been used to examine the organization of extracellular matrix of skeletal muscle in vivo and in vitro. Four of the five monoclonal antibodies are described for the first time here. Immunocytochemical experiments with frozen-sectioned muscle demonstrated that both the heparan sulfate proteoglycan and laminin exhibited staining patterns identical to that expected for components of the basal lamina. In contrast, the remaining matrix constituents were detected in all regions of muscle connective tissue: the endomysium, perimysium, and epimysium. Embryonic muscle cells developing in culture elaborated an extracellular matrix, each antigen exhibiting a unique distribution. Of particular interest was the organization of extracellular matrix on myotubes: the build-up of matrix components was most apparent in plaques overlying clusters of an integral membrane protein, the acetylcholine receptor (AChR). The heparan sulfate proteoglycan was concentrated at virtually all AChR clusters and showed a remarkable level of congruence with receptor organization; laminin was detected at 70-95% of AChR clusters but often was not completely co-distributed with AChR within the cluster; fibronectin and the two other extracellular matrix antigens occurred at approximately 20, 8, and 2% of the AChR clusters, respectively, and showed little or no congruence with AChR. From observations on the distribution of extracellular matrix components in tissue cultured fibroblasts and myogenic cells, several ideas about the organization of extracellular matrix are suggested. (a) Congruence between AChR clusters and heparan sulfate proteoglycan suggests the existence of some linkage between the two molecules, possibly important for regulation of AChR distribution within the muscle membrane. (b) The qualitatively different patterns of extracellular matrix

  11. Electrical properties of the potassium polytitanate compacts

    International Nuclear Information System (INIS)

    Goffman, V.G.; Gorokhovsky, A.V.; Kompan, M.M.; Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V.; Fedorov, F.S.

    2014-01-01

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10 4 –10 5 . • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10 −2 to 10 −6 –10 −7 Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10 −2 Sm/m (high frequencies, ion conductivity) up to 10 −6 –10 −7 Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10 4 –10 5 . This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures

  12. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  13. Dermal extracellular lipid in birds.

    Science.gov (United States)

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  14. Involvement of amygdalar extracellular zinc in rat behavior for passive avoidance.

    Science.gov (United States)

    Takeda, Atsushi; Minami, Akira; Yamaide, Rie; Oku, Naoto

    2004-03-25

    On the basis of the evidence that zinc is released from glutamatergic neuron terminals in the amygdala, the effect of chelation of amygdalar extracellular zinc on glutamate release from the neuron terminals was studied by using in vivo microdialysis. When the amygdala was perfused with 100 microM CaEDTA to chelate extracellular zinc, glutamate concentration in the perfusate was decreased significantly, whereas that tended to be increased by perfusion with 100 microM ZnEDTA as a control. The effect of CaEDTA on extracellular glutamate levels was different between the amygdala and hippocampus, implying that modulation of glutamate signaling by zinc is different between them. To evaluate chelation of zinc in rat behavior, perfusion of the amygdala with CaEDTA was started 40 min before behavioral test for passive avoidance. The behavior for passive avoidance was impaired during perfusion with CaEDTA. On the other hand, the behavior during perfusion with ZnEDTA was more rapidly developed than that with vehicle only. These results suggest that amygdalar extracellular zinc is involved in the behavior for passive avoidance.

  15. Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space

    DEFF Research Database (Denmark)

    Østby, Ivar; Øyehaug, Leiv; Einevoll, Gaute T

    2009-01-01

    Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance and astr......Neuronal stimulation causes approximately 30% shrinkage of the extracellular space (ECS) between neurons and surrounding astrocytes in grey and white matter under experimental conditions. Despite its possible implications for a proper understanding of basic aspects of potassium clearance...... concentrations observed in connection with neuronal stimulation, the actions of the Na(+)/K(+)/Cl(-) (NKCC1) and the Na(+)/HCO(3) (-) (NBC) cotransporters appear to be critical determinants for achieving observed quantitative levels of ECS shrinkage. Considering the current state of knowledge, the model...

  16. Antioxidative phytochemicals from Rhododendron oldhamii Maxim. leaf extracts reduce serum uric acid levels in potassium oxonate-induced hyperuricemic mice.

    Science.gov (United States)

    Tung, Yu-Tang; Lin, Lei-Chen; Liu, Ya-Ling; Ho, Shang-Tse; Lin, Chi-Yang; Chuang, Hsiao-Li; Chiu, Chien-Chao; Huang, Chi-Chang; Wu, Jyh-Horng

    2015-12-01

    Some of the genus Rhododendron was used in traditional medicine for arthritis, acute and chronic bronchitis, asthma, pain, inflammation, rheumatism, hypertension and metabolic diseases and many species of the genus Rhododendron contain a large number of phenolic compounds and antioxidant properties that could be developed into pharmaceutical products. In this study, the antioxidative phytochemicals of Rhododendron oldhamii Maxim. leaves were detected by an online HPLC-DPPH method. In addition, the anti-hyperuricemic effect of the active phytochemicals from R. oldhamii leaf extracts was investigated using potassium oxonate (PO)-induced acute hyperuricemia. Six phytochemicals, including (2R, 3R)-epicatechin (1), (2R, 3R)-taxifolin (2), (2R, 3R)-astilbin (3), hyposide (4), guaijaverin (5), and quercitrin (6), were isolated using the developed screening method. Of these, compounds 3, 4, 5, and 6 were found to be major bioactive phytochemicals, and their contents were determined to be 130.8 ± 10.9, 105.5 ± 8.5, 104.1 ± 4.7, and 108.6 ± 4.0 mg per gram of EtOAc fraction, respectively. In addition, the four major bioactive phytochemicals at the same dosage (100 mmol/kg) were administered to the abdominal cavity of potassium oxonate (PO)-induced hyperuricemic mice, and the serum uric acid level was measured after 3 h of administration. H&E staining showed that PO-induced kidney injury caused renal tubular epithelium nuclear condensation in the cortex areas or the appearance of numerous hyaline casts in the medulla areas; treatment with 100 mmol/kg of EtOAc fraction, (2R, 3R)-astilbin, hyposide, guaijaverin, and quercitrin significantly reduced kidney injury. In addition, the serum uric acid level was significantly suppressed by 54.1, 35.1, 56.3, 56.3, and 53.2 %, respectively, by the administrations of 100 mmol/kg EtOAc fraction and the derived major phytochemicals, (2R, 3R)-astilbin, hyposide, guaijaverin, and quercitrin, compared to the PO group. The administration

  17. (Vapour + liquid) equilibria, volumetric and compressibility behaviour of binary and ternary aqueous solutions of 1-hexyl-3-methylimidazolium chloride, methyl potassium malonate, and ethyl potassium malonate

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Mahdavi, Adibeh

    2012-01-01

    Highlights: ► VLE and volumetry of binary and ternary [C 6 mim][Cl], MPM and EPM aqueous solutions. ► Constant a w lines show small negative deviation from the linear isopiestic relation. ► Solute–water interactions follow the order: EPM > MPM > [C 6 mim][Cl]. ► MPM and EPM have a very weak salting-out effect on [C 6 mim][Cl] aqueous solutions. - Abstract: (Vapour + liquid) equilibrium data (water activity, vapour pressure, osmotic coefficient, and activity coefficient) of binary aqueous solutions of 1-hexyl-3-methylimidazolium chloride ([C 6 mim][Cl]), methyl potassium malonate, and ethyl potassium malonate and ternary {[C 6 mim][Cl] + methyl potassium malonate} and {[C 6 mim][Cl] + ethyl potassium malonate} aqueous solutions were obtained through the isopiestic method at T = 298.15 K. These results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solutions at molality about 0.4 mol · kg −1 . The constant water activity lines of all the ternary systems investigated show small negative deviations from the linear isopiestic relation (Zdanovskii–Stokes–Robinson rule) derived using the semi-ideal hydration model. The density and speed of sound measurements were carried out on solutions of methyl potassium malonate and ethyl potassium malonate in water and of [C 6 mim][Cl] in aqueous solutions of 0.25 mol · kg −1 methyl potassium malonate and ethyl potassium malonate at T = (288.15 to 308.15) K at atmospheric pressure. From the experimental density and speed of sound data, the values of the apparent molar volume, apparent molar isentropic compressibility and excess molar volume were evaluated and from which the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility were calculated at each temperature. Although, there are no clear differences between the values of the apparent molar volume of [C 6 mim][Cl] in pure water and in methyl potassium malonate or ethyl

  18. Impact of Potassium Foliar Application in Alleviating the Harmful Effects of Salinity in Spinach

    Directory of Open Access Journals (Sweden)

    Amirhooshang jalali

    2017-02-01

    Full Text Available Introduction: Spinach is an important leafy vegetable in the cold season, and despite the fact that is considered as low-calorie food source contains significant amount of minerals such as iron, and vitamin A and C. According to the University of Utah 3.8 dS m-1 is salinity tolerance threshold for the spinach and yield decrease that have been reported by 10%, 25% and 50% at 5.5, 7 and 8 dS m-1 salinity. The necessity to supply adequate potassium has been demonstrated in salinity conditions. In salt stress conditions, foliar application of K in spinach, reduces the harmful effects of salt and increase the ratio of potassium to sodium (1.61 to 2.72. Foliar application of K with prevent of potassium transfer from root to shoot is causing continuation of photosynthesis and reduce the effects of salinity. Absorption of potassium from the leaves depends on the type of used compound. In this context, characteristics of plant (leaves with a waxy composition, duration of growth and leaf area are important. 100 kg ha-1 of potassium in salt stress conditions by reducing the absorption of sodium, increased salt tolerance on the sunflower. Materials and Methods: In order to evaluate the foliar application of K on the yield and yield components of spinach in salt stress condition, a study was conducted in 2012 by using split plot randomized based on complete block design with four replications at Isfahan Agricultural and Natural Resources Research Station. Three levels of irrigation water salinity consisted of a control (2 dS m-1, well water with salinity (4 dS m-1 and well water with salinity (8dS m-1 arranged in main plots and two levels of control and foliar applications of potassium fertilizer containing potassium oxide solubility in water (2.5 ml per liter arranged in subplots. Statistical analysis was conducted by using SAS software and statistical tests were compared with Duncan at 5 percent. Result and Discussions: The results showed that the yield of

  19. The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Stephanie R Shepheard

    Full Text Available Objective biomarkers for amyotrophic lateral sclerosis would facilitate the discovery of new treatments. The common neurotrophin receptor p75 is up regulated and the extracellular domain cleaved from injured neurons and peripheral glia in amyotrophic lateral sclerosis. We have tested the hypothesis that urinary levels of extracellular neurotrophin receptor p75 serve as a biomarker for both human motor amyotrophic lateral sclerosis and the SOD1(G93A mouse model of the disease. The extracellular domain of neurotrophin receptor p75 was identified in the urine of amyotrophic lateral sclerosis patients by an immuno-precipitation/western blot procedure and confirmed by mass spectrometry. An ELISA was established to measure urinary extracellular neurotrophin receptor p75. The mean value for urinary extracellular neurotrophin receptor p75 from 28 amyotrophic lateral sclerosis patients measured by ELISA was 7.9±0.5 ng/mg creatinine and this was significantly higher (p<0.001 than 12 controls (2.6±0.2 ng/mg creatinine and 19 patients with other neurological disease (Parkinson's disease and Multiple Sclerosis; 4.1±0.2 ng/mg creatinine. Pilot data of disease progression rates in 14 MND patients indicates that p75NTR(ECD levels were significantly higher (p = 0.0041 in 7 rapidly progressing patients as compared to 7 with slowly progressing disease. Extracellular neurotrophin receptor p75 was also readily detected in SOD1(G93A mice by immuno-precipitation/western blot before the onset of clinical symptoms. These findings indicate a significant relation between urinary extracellular neurotrophin receptor p75 levels and disease progression and suggests that it may be a useful marker of disease activity and progression in amyotrophic lateral sclerosis.

  20. Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta 2-adrenergic stimulation with terbutaline in healthy subjects

    DEFF Research Database (Denmark)

    Tveskov, C; Djurhuus, M S; Klitgaard, N A

    1994-01-01

    OBJECTIVE: To study the effect of intravenous (i.v.) terbutaline on potassium (K) and magnesium (Mg) distribution, ECG changes, and prevalence of ventricular ectopic beats in healthy subjects. DESIGN: Randomized double-blind, placebo-controlled crossover. Subjects received either placebo or terbu......OBJECTIVE: To study the effect of intravenous (i.v.) terbutaline on potassium (K) and magnesium (Mg) distribution, ECG changes, and prevalence of ventricular ectopic beats in healthy subjects. DESIGN: Randomized double-blind, placebo-controlled crossover. Subjects received either placebo......-potassium pump number. Urinary excretion of potassium and magnesium. ECG changes (T-wave and QTC interval) and the number of ventricular ectopic beats. MAIN RESULTS: Terbutaline produced an immediate decrease in serum potassium level from 4.17 (4.04 to 4.30) mmol/L to a nadir of 3.32 (3.06 to 3.58) mmol/L (p ... of sodium-potassium pumps. Furthermore, terbutaline induced changes in ECG with a highly significant lengthening of the QTc interval but with an unchanged number of ventricular ectopic beats in healthy subjects....

  1. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  2. Effect of potassium ferrate on disintegration of waste activated sludge (WAS).

    Science.gov (United States)

    Ye, Fenxia; Ji, Haizhuang; Ye, Yangfang

    2012-06-15

    The activated sludge process of wastewater treatment results in the generation of a considerable amount of excess activated sludge. Increased attention has been given to minimization of waste activated sludge recently. This paper investigated the effect of potassium ferrate oxidation pretreatment on the disintegration of the waste activated sludge at various dosages of potassium ferrate. The results show that potassium ferrate pretreatment disintegrated the sludge particle, resulting in the reduction of total solid content by 31%. The solubility (SCOD/TCOD) of the sludge increased with the increase of potassium ferrate dosage. Under 0.81 g/g SS dosage of potassium ferrate, SCOD/TCOD reached 0.32. Total nitrogen (TN) and total phosphorous (TP) concentrations in the solution all increased significantly after potassium ferrate pretreatment. The sludge particles reduced from 116 to 87 μm. The settleability of the sludge (SVI) was enhanced by 17%, which was due to the re-flocculation by the by-product, Fe(III), during potassium ferrate oxidation and the decrease of the viscosity. From the result of the present investigations, it can be concluded that potassium ferrate oxidation is a feasible method for disintegration of excess activated sludge. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Potassium Permanganate Poisoning: A Nonfatal Outcome

    Directory of Open Access Journals (Sweden)

    Suzan M. Eteiwi

    2015-07-01

    Full Text Available Acute poisoning by potassium permanganate is a rare condition with high morbidity and mortality. Diagnosis of the condition relies on a history of exposure or ingestion and a high degree of clinical suspicion. Oxygen desaturation and the presence of methemoglobin are also helpful indicators. Since no specific antidote is available, treatment is mainly supportive. Few cases have been reported in the literature following potassium permanganate ingestion, whether intentional or accidental, and most of the patients in these cases had unfavorable outcomes, which was not the case in our patient. Our patient, a 73-year-old male, purchased potassium permanganate over the counter mistaking it for magnesium salt, which he frequently used as a laxative. Several hours after he ingested it, he was admitted to the endocrine department at King Hussein Medical Center, Jordan, with acute rapidly evolving shortness of breath. During hospitalization, his liver function tests deteriorated. Since he was diagnosed early and managed promptly he had a favorable outcome.

  5. Lactulose efficacy in reduction of nitrogen products, blood potassium and fluid overload in patients with end-stage renal failure

    Directory of Open Access Journals (Sweden)

    Negin Aleagha

    2017-06-01

    Full Text Available Introduction: Chronic kidney disease (CKD is a major public health problem that often goes unrecognized until its late-stage. Patients with chronic kidney disease face uremic toxins and hyperkalemia. Also, fluid overload in CKD patients is associated with rapid decline in kidney function. Lactulose is a hyperosmotic agent and as a prebiotic, it plays an important role in regulating serum urea and potassium levels and has some effects on fluid overload. The aim of this study was to evaluate the effect of lactulose on serum levels of biochemical products in patients with CKD. Materials and Methods: In this interventional study, 17 patients with end stage of CKD ( 76.47 % men; mean age 65.88 ± 13.4 were evaluated.All patients received lactulose, 10 ml, 3 times per day for 3 months. Blood samples from all participants were collected before and at the end of intervention to examine changes in biochemical parameters, including potassium, urea, creatinine and uric acid. Results: Lactulose significantly decreased urea levels (p=0.001, blood potassium (0.001 and fluid overload(considering the patient’s weight p=0.001 in patients with end-stage renal failure. The decrease in serum creatinine and uric acid were not significant. Conclusion: Lactulose administration in CKD patients could decrease levels of various deleterious elements, especially urea and blood potassium and its daily use can be recommended in these patients.

  6. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    OpenAIRE

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ?5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose ...

  7. Potassium ferrate treatment of RFETS' contaminated groundwater

    International Nuclear Information System (INIS)

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe +6 ) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern

  8. Modulation of intracellular Ca2+ via L-type calcium channels in heart cells by the autoantibody directed against the second extracellular loop of the alpha1-adrenoceptors.

    Science.gov (United States)

    Bkaily, Ghassan; El-Bizri, Nesrine; Bui, Michel; Sukarieh, Rami; Jacques, Danielle; Fu, Michael L X

    2003-03-01

    The effects of methoxamine, a selective alpha1-adrenergic receptor agonist, and the autoantibody directed against the second extracellular loop of alpha1-adrenoceptors were studied on intracellular free Ca2+ levels using confocal microscopy and ionic currents using the whole-cell patch clamp technique in single cells of 10-day-old embryonic chick and 20-week-old fetal human hearts. We observed that like methoxamine, the autoantibody directed against the second extracellular loop of alpha1-adrenoreceptors significantly increased the L-type calcium current (I(Ca(L))) but had no effect on the T-type calcium current (I(Ca(T))), the delayed outward potassium current, or the fast sodium current. This effect of the autoantibody was prevented by a prestimulation of the receptors with methoxamine and vice versa. Moreover, treating the cells with prazosin, a selective alpha1-adrenergic receptor antagonist blocked the methoxamine and the autoantibody-induced increase in I(Ca(L)), respectively. In absence of prazosin, both methoxamine and the autoantibody showed a substantial enhancement in the frequency of cell contraction and that of the concomitant cytosolic and nuclear free Ca2+ variations. The subsequent addition of nifedipine, a specific L-type Ca2+ channel blocker, reversed not only the methoxamine or the autoantibody-induced effect but also completely abolished cell contraction. These results demonstrated that functional alpha1-adrenoceptors exist in both 10-day-old embryonic chick and 20-week-old human fetal hearts and that the autoantibody directed against the second extracellular loop of this type of receptors plays an important role in stimulating their activity via activation of L-type calcium channels. This loop seems to have a functional significance by being the target of alpha1-receptor agonists like methoxamine.

  9. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  10. 75 FR 63856 - Potassium Permanganate From China Determination

    Science.gov (United States)

    2010-10-18

    ... Permanganate From China Determination On the basis of the record \\1\\ developed in the subject five-year review... potassium permanganate from China would be likely to lead to continuation or recurrence of material injury... Commission are contained in USITC Publication 4183 (September 2010), entitled Potassium Permanganate from...

  11. Foliar Application of Potassium Fertilizer to Reduce the Effects of Salinity in Potato

    Directory of Open Access Journals (Sweden)

    H Molahoseini

    2017-06-01

    Full Text Available Introduction The potato of commerce (Solanum tuberosum L. is an annual dicot species. It is an autotetraploid with 4x=48 chromosomes. In Iran the consumption per capita of potato is over the 35 kg. Potato production is usually done without reducing yield in the irrigation water salinity 1-2 dS m-1, but 4.2 dS m-1 salinity reduces yield by 26 percent. 10, 25 and 50 percent yield reduction have been reported in soil electrical conductivity 2.5, 3.8 and 5.9 dS m-1, respectively . Between the ability of plant species to maintain potassium levels and their tolerance to salinity is positive correlation and on this basis nutritional irregularity due to increased salinity can be compensated by increasing of potassium fertilizer. In tolerant plant species, during times of increased salinity, selective absorption of potassium increased. The ability of plants to maintain a certain level of K/Na within the cell is essential for salt tolerance and sometimes of these ratios is used as indicators of salinity tolerance. Potato yield in response to salt stress, according to a variety of uses, can be reduced from 20 to 85 percent. Harmful effects of salinity in the beginning stages of tubers and tuber growth stage are important, therefore, tuber number and tuber size are two important components of yield which may reduce in the effect of salinity. Accelerate the aging process of the shoot, unwanted earliness, are of the reasons for the reduction in tuber size. Materials and Methods A field experiment was conducted in the agricultural and natural resources research center (31° 32´ N, 51° 51´ E, Isfahan, Islamic Republic of Iran. According to twenty years statistics, rainfall and temperature means for experiment location were 110 mm and 25 °C, respectively. The experiment was conducted as a factorial in a completely randomized block design with four replications. The treatments were three levels of foliar K application (control, K sulphate 10 ppm, and 2.5 ppm

  12. Extracellular Alkalinization as a Defense Response in Potato Cells.

    Science.gov (United States)

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists ( Phytophthora infestans and Spongospora subterranea ) and fungi ( Verticillium dahliae and Colletotrichum coccodes ). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  13. Determination of potassium in several plants and study of potassium transfer to different beverages, including tequila, by measurement of 40K

    International Nuclear Information System (INIS)

    Navarrete, J.M.; Muller, G.; Cabrera, L.; Martinez, T.

    2006-01-01

    Measurement of 40 K was used for determination of potassium concentrations in leaves of agave and maguey cactus leaves, and coffee beans of various origins. The procedure was also used to study potassium transfer to tequila (alcoholic drink made of agave cactus), and the cactus and coffee infusions using 40 K as a natural radioactive tracer. Counting of 40 K in Marinelli containers with the aid of a low background NaI(Tl) scintillation detection system for 12-24 hours was employed. The method appeared to be simple and suitable for determination of potassium concentrations in large samples, which eliminates homogeneity problems. (author)

  14. Electrical properties of the potassium polytitanate compacts

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Gorokhovsky, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Kompan, M.M. [Physico-Technical Institute of the Russian Academy of Science, St. Petersburg (Russian Federation); Tretyachenko, E.V.; Telegina, O.S.; Kovnev, A.V. [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation); Fedorov, F.S., E-mail: fedorov_fs@daad-alumni.de [NanoTechProm Ltd., Saratov (Russian Federation); Saratov State Technical University, Saratov (Russian Federation)

    2014-12-05

    Highlights: • Quasi-static permittivity of potassium polytitanates compacts achieves 10{sup 4}–10{sup 5}. • Observed Maxwell–Wagner polarization attributes to layered structure of polytitanates. • The conductivity varies from 5 × 10{sup −2} to 10{sup −6}–10{sup −7} Sm/m in a wide range of temperatures. - Abstract: Titanates of alkali metals are widely applied materials as they are relatively low in cost and might be easily synthesized. They are utilized as adsorbents, catalysts, solid state electrolytes, superconductors. Here we report our results on electrical properties of the compacted amorphous potassium polytitanates powders. The electrical properties of the compacts were studied by means of complex impedance spectroscopy in a wide range of frequencies at different temperatures using two-electrode configuration. The frequency dependences of conductivity for the investigated potassium polytitanates compacts varies in the range from 5 × 10{sup −2} Sm/m (high frequencies, ion conductivity) up to 10{sup −6}–10{sup −7} Sm/m (low frequencies, electron conductivity) for a wide range of temperatures (19–150 °C). According to the results, at low frequencies quasi-static permittivity of the stabilized PPT compacts achieves high values of 10{sup 4}–10{sup 5}. This might be explained by Maxwell–Wagner polarization attributed to the layered structure of the potassium polytitanates particles containing potassium and hydronium ions together with crystallization water in the interlayer and is very promising for solid state electrolyte applications for moderate temperatures.

  15. Inhibition of PKC-dependent extracellular Ca2+ entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    International Nuclear Information System (INIS)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F.

    2014-01-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT 2 R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT 2 R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca 2+ -free medium or the subsequent tonic constrictions induced by the addition of Ca 2+ in the absence of agonists. Thus, the contractions induced by Ca 2+ release from intracellular stores and Ca 2+ influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca 2+ channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca 2+ . Neither levels of angiotensins nor of AT 2 R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca 2+ entry

  16. Crystal structure of the potassium-importing KdpFABC membrane complex

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ching-Shin; Pedersen, Bjørn Panyella; Stokes, David L.

    2017-06-21

    Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.

  17. Effect of extracellular calcium chloride on sporangiospore-yeast ...

    African Journals Online (AJOL)

    To examine this model further, this study evaluated the ability of sporangiospores of Rhizopus stolonifer to undergo morphogenetic transformation in the presence of different levels of extracellular calcium (0.0, 0.20, 0.25, 0.50, 1.0, 1.5 and 1.8 mM). It was found that calcium supported yeast induction and proliferation to ...

  18. Determination of Potassium in Feldspars by Beta Counting Using a GM Multicounter System

    DEFF Research Database (Denmark)

    Bøtter-Jensen, Lars; Mejdahl, V.

    1985-01-01

    A gas flow multicounter system developed at Riso National Laboratory for low-level beta counting applications was adopted for measuring potassium in feldspars extracted from archaeological and geological materials, in connection with TL dating work. A guard counter reduces the background by using...

  19. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  20. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  1. Empiric potassium supplementation and increased survival in users of loop diuretics.

    Directory of Open Access Journals (Sweden)

    Charles E Leonard

    Full Text Available The effectiveness of the clinical strategy of empiric potassium supplementation in reducing the frequency of adverse clinical outcomes in patients receiving loop diuretics is unknown. We sought to examine the association between empiric potassium supplementation and 1 all-cause death and 2 outpatient-originating sudden cardiac death (SD and ventricular arrhythmia (VA among new starters of loop diuretics, stratified on initial loop diuretic dose.We conducted a one-to-one propensity score-matched cohort study using 1999-2007 US Medicaid claims from five states. Empiric potassium supplementation was defined as a potassium prescription on the day of or the day after the initial loop diuretic prescription. Death, the primary outcome, was ascertained from the Social Security Administration Death Master File; SD/VA, the secondary outcome, from incident, first-listed emergency department or principal inpatient SD/VA discharge diagnoses (positive predictive value = 85%.We identified 654,060 persons who met eligibility criteria and initiated therapy with a loop diuretic, 27% of whom received empiric potassium supplementation (N = 179,436 and 73% of whom did not (N = 474,624. The matched hazard ratio for empiric potassium supplementation was 0.93 (95% confidence interval, 0.89-0.98, p = 0.003 for all-cause death. Stratifying on initial furosemide dose, hazard ratios for empiric potassium supplementation with furosemide < 40 and ≥ 40 milligrams/day were 0.93 (0.86-1.00, p = 0.050 and 0.84 (0.79-0.89, p < 0.0001. The matched hazard ratio for empiric potassium supplementation was 1.02 (0.83-1.24, p = 0.879 for SD/VA.Empiric potassium supplementation upon initiation of a loop diuretic appears to be associated with improved survival, with a greater apparent benefit seen with higher diuretic dose. If confirmed, these findings support the use of empiric potassium supplementation upon initiation of a loop diuretic.

  2. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji.

    Science.gov (United States)

    Liang, Yanchang; Pan, Li; Lin, Ying

    2009-01-01

    Aspergillus oryzae AS 3.951 is widely used in Chinese soy sauce manufacture, but little is known about the profiles of the extracellular proteins from the culture of soybean koji. In this study, we carried out MALDI-TOF/TOF MS analysis of extracellular proteins during koji culture. Besides well-known proteins (TAA and Oryzin), a variety of aminopeptidase and proteases were identical at the proteome level. This suggests that A. oryzae AS 3.951 has a powerful capacity to digest soybean protein.

  3. [The study on the change of extracellular histones in human plasma during the pathogenesis of silicosis].

    Science.gov (United States)

    Zhang, Yanglin; Cong, Cuicui; Guan, Li; Yu, Jie; Mao, Lijun; Li, Shuqiang; Wen, Tao; Zhao, Jinyuan

    2016-01-01

    To investigate the plasma level of extracellular histones in patients with silicosis, and to explore the role of extracellular histones in the pathogenesis of pulmonary fibrosis in silicosis. Sixty-two patients with silicosis were enrolled as the silicosis group, consisting of 23 patients with stage I silicosis, 25 with stage II silicosis, and 14 with stage III silicosis; sixty workers who had a history of occupational exposure to silica dust for more than 2 years and had not been diagnosed with silicosis were enrolled as the silica dust exposure group; sixty-five healthy workers without a history of occupational exposure to dust were enrolled as healthy controls. Enzyme-linked immunosorbent assay was applied to measure the plasma levels of plasma extracellular histone (H4) and transforming growth factor-β(TGF-β). Compared with healthy controls [(0.82±0.67) μg/ml], the silica dust exposure group[(4.14±2.85) μg/ml] and silicosis group[(9.50±5.04) μg/ml] had significant increases in plasma level of H4 (Phistones increases significantly in the pathogenesis of silicosis, and extracellular histones may play an important role in the progression of fibrosis in silicosis.

  4. Impact of reduced atmospheric CO2 and varied potassium supply on carbohydrate and potassium distribution in grapevine and grape berries (Vitis vinifera L.).

    Science.gov (United States)

    Coetzee, Zelmari A; Walker, Rob R; Deloire, Alain J; Barril, Célia; Clarke, Simon J; Rogiers, Suzy Y

    2017-11-01

    To assess the robustness of the apparent sugar-potassium relationship during ripening of grape berries, a controlled-environment study was conducted on Shiraz vines involving ambient and reduced (by 34%) atmospheric CO 2 concentrations, and standard and increased (by 67%) soil potassium applications from prior to the onset of ripening. The leaf net photoassimilation rate was decreased by 35% in the reduced CO 2 treatment. The reduction in CO 2 delayed the onset of ripening, but at harvest the sugar content of the berry pericarp was similar to that of plants grown in ambient conditions. The potassium content of the berry pericarp in the reduced CO 2 treatment was however higher than for the ambient CO 2 . Berry potassium, sugar and water content were strongly correlated, regardless of treatments, alluding to a ternary link during ripening. Root starch content was lower under reduced CO 2 conditions, and therefore likely acted as a source of carbohydrates during berry ripening. Root carbohydrate reserve replenishment could also have been moderated under reduced CO 2 at the expense of berry ripening. Given that root potassium concentration was less in the vines grown in the low CO 2 atmosphere, these results point toward whole-plant fine-tuning of carbohydrate and potassium partitioning aimed at optimising fruit ripening. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Reduction of potassium content of green bean pods and chard by culinary processing. Tools for chronic kidney disease.

    Science.gov (United States)

    Martínez-Pineda, Montserrat; Yagüe-Ruiz, Cristina; Caverni-Muñoz, Alberto; Vercet-Tormo, Antonio

    2016-01-01

    In order to prevent a possible hyperkalemia, chronic renal patients, especially in advanced stages, must follow a low potassium diet. So dietary guidelines for chronic kidney disease recommend limiting the consumption of many vegetables, as well as to apply laborious culinary techniques to maximize the reduction of potassium. The aim of this work is to analyze potassium content from several vegetable, fresh products, frozen and preserved, as well as check and compare the effectiveness in potassium reduction of different culinary processes, some of them recommended in dietary guidelines such as soaking or double cooking. Sample potassium content was analyzed by triplicate using flamephotometry. The results showed significant reductions in potassium content in all culinary processes studied. The degree of loss varied depending on the type of vegetable and processing applied. Frozen products achieved greater reductions than the fresh ones, obtaining in some cases losses greater than 90%. In addition, it was observed how in many cases the single application of a normal cooking reached potassium reductions to acceptable levels for its inclusion in renal patient diet. The results shown in this study are very positive because they provide tools for professionals who deal with this kind of patients. They allow them to adapt more easily to the needs and preferences of their patients and increase dietary variety. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  7. The Ketogenic Diet and Potassium Channel Function

    Science.gov (United States)

    2015-11-01

    1 AWARD NUMBER: W81XWH-13-1-0463 TITLE: The Ketogenic Diet and Potassium Channel Function PRINCIPAL INVESTIGATOR: Dr. Geoffrey Murphy...NUMBER The Ketogenic Diet and Potassium Channel Function 5b. GRANT NUMBER W81XWH-13-1-0463 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Geoffrey Murphy...The overall objective of this Discovery Award was to explore the hypothesis the ketogenic diet (KD) regulates neuronal excitability by influencing

  8. Potassium Capture by Kaolin, Part 1: KOH

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2018-01-01

    -capture level. The effect of reaction temperature,K-concentration in the flue gas, and, thereby, molar ratio of K/(Al+Si) in reactants, gas residence time, and solid particle size on K-capture reaction was systematically investigated. Corresponding equilibrium calculations were conducted with FactSage 7.......0. The experimental results showed that kaolin reached almost full conversion to K-aluminosilicates under suspension-fired conditions at 1100–1450 °C for a residence time of 1.2 s and a particle size of D50 = 5.47 μm. The amount of potassium captured by kaolin generally followed the equilibrium at temperatures above...

  9. Relationship between potassium intake and radiocesium retention in the reindeer

    International Nuclear Information System (INIS)

    Holleman, D.F.; Luick, J.R.

    1975-01-01

    The effect of dietary potassium on radiocesium retention was studied in reindeer fed winter diets of lichens. Potassium added to the diet markedly decreased radiocesium retention; this suggests that seasonal changes in cesium retention observed earlier in reindeer might be caused largely by nutritional factors. Data indicate that a 20-fold increase in dietary potassium results in a 2-fold decrease in radiocesium retention

  10. Dielectric properties of a potassium nitrate–ammonium nitrate system

    OpenAIRE

    Alexey Yu. Milinskiy; Anton A. Antonov

    2015-01-01

    Potassium nitrate has a rectangular hysteresis loop and is thought to be a promising material for non-volatile ferroelectric memory. However, its polar phase is observed in a narrow temperature range. This paper deals with an effect of ammonium nitrate NH4NO3 on the dielectric properties of potassium nitrate. Thermal dependencies of the linear dielectric permittivity ε and the third-harmonic coefficient g3 for potassium nitrate and polycrystalline binary (KNO3)1–x(NH4NO3)x system (x = 0.025, ...

  11. Potassium-phosphorus relationships in cotton (gossypium hirsutum L.) as affected by potassium nutrition

    International Nuclear Information System (INIS)

    Makhdum, M.I.; Ashraf, M.

    2007-01-01

    Field studies were undertaken to determine the interrelationship between potassium (K+) concentration in various organs of plant and phosphorus (P) content as influenced by K-nutrition in cotton. The experiment was conducted on Miani soil series silt loam and classified as Calcaric Cambisols, fine silty, mixed Hyperthermic Fluventic Haplocambids. The treatments consisted .of (a) four cotton (Gossypium hirsutum L.) cultivars (CI.M-448, CIM-IIOO, Karishma, S-12); and (b) four potassium fertilizer doses (0, 62.5, 125.0, 250.0 kg K ha-l). The design of experiment was split plot (main: cultivars, sub-plot: K-doses). The plant samples were collected at five stages of growth, i.e., first flower bud., first flower, peak flowering, first boll split and maturity. The various parts of plants were analyzed for phosphorus and potassium concentration at various stages of growth. Phosphorus concentration in leaves, stems, burs, seed and lint decreased with concurrent increase in K-doses. Crop maintained 0.22% phosphorus concentration in leaf tissues at first flower bud and dropped to 0.11% at maturity. Cultivars differed greatly amongst themselves in terms of maintaining P content in their different parts. Averaged across K-doses, cv. CIM-448 maintained the highest P content in all parts than other cultivars. There was a negative and significant correlation co-efficient between K and P concentration in various parts of the plant. The study demonstrated antagonistic interaction between K+ and P in cotton plant under irrigated conditions. (author)

  12. Increased Obesity-Associated Circulating Levels of the Extracellular Matrix Proteins Osteopontin, Chitinase-3 Like-1 and Tenascin C Are Associated with Colon Cancer.

    Directory of Open Access Journals (Sweden)

    Victoria Catalán

    Full Text Available Excess adipose tissue represents a major risk factor for the development of colon cancer with inflammation and extracellular matrix (ECM remodeling being proposed as plausible mechanisms. The aim of this study was to investigate whether obesity can influence circulating levels of inflammation-related extracellular matrix proteins in patients with colon cancer (CC, promoting a microenvironment favorable for tumor growth.Serum samples obtained from 79 subjects [26 lean (LN and 53 obese (OB] were used in the study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (44 without CC and 35 with CC. Anthropometric measurements as well as circulating metabolites and hormones were determined. Circulating concentrations of the ECM proteins osteopontin (OPN, chitinase-3-like protein 1 (YKL-40, tenascin C (TNC and lipocalin-2 (LCN-2 were determined by ELISA.Significant differences in circulating OPN, YKL-40 and TNC concentrations between the experimental groups were observed, being significantly increased due to obesity (P<0.01 and colon cancer (P<0.05. LCN-2 levels were affected by obesity (P<0.05, but no differences were detected regarding the presence or not of CC. A positive association (P<0.05 with different inflammatory markers was also detected.To our knowledge, we herein show for the first time that obese patients with CC exhibit increased circulating levels of OPN, YKL-40 and TNC providing further evidence for the influence of obesity on CC development via ECM proteins, representing promising diagnostic biomarkers or target molecules for therapeutics.

  13. miR-200–containing extracellular vesicles promote breast cancer cell metastasis

    Science.gov (United States)

    Le, Minh T.N.; Hamar, Peter; Guo, Changying; Basar, Emre; Perdigão-Henriques, Ricardo; Balaj, Leonora; Lieberman, Judy

    2014-01-01

    Metastasis is associated with poor prognosis in breast cancer patients. Not all cancer cells within a tumor are capable of metastasizing. The microRNA-200 (miR-200) family, which regulates the mesenchymal-to-epithelial transition, is enriched in the serum of patients with metastatic cancers. Ectopic expression of miR-200 can confer metastatic ability to poorly metastatic tumor cells in some settings. Here, we investigated whether metastatic capability could be transferred between metastatic and nonmetastatic cancer cells via extracellular vesicles. miR-200 was secreted in extracellular vesicles from metastatic murine and human breast cancer cell lines, and miR-200 levels were increased in sera of mice bearing metastatic tumors. In culture, murine and human metastatic breast cancer cell extracellular vesicles transferred miR-200 microRNAs to nonmetastatic cells, altering gene expression and promoting mesenchymal-to-epithelial transition. In murine cancer and human xenograft models, miR-200–expressing tumors and extracellular vesicles from these tumors promoted metastasis of otherwise weakly metastatic cells either nearby or at distant sites and conferred to these cells the ability to colonize distant tissues in a miR-200–dependent manner. Together, our results demonstrate that metastatic capability can be transferred by the uptake of extracellular vesicles. PMID:25401471

  14. Extracellular Molecules Involved in Cancer Cell Invasion

    International Nuclear Information System (INIS)

    Stivarou, Theodora; Patsavoudi, Evangelia

    2015-01-01

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion

  15. Potassium cardioplegia: early assessment by radionuclide ventriculography

    International Nuclear Information System (INIS)

    Ellis, R.J.; Born, M.; Feit, T.; Ebert, P.A.

    1978-01-01

    Left ventricular function was evaluated by single pass /sup 99m/Tc radionuclide ventriculography when potassium cardioplegia was combined with hypothermia. In 35 patients undergoing myocardial revascularization (3 CABG/patient) in which potassium cardioplegia at 4 0 C was used, no patient developed a myocardial infarction either by electrocardiogram or /sup 99m/Tc pyrophosphate imaging in the postoperative period. In 22 patients, aortic cross-clamp time was greater than 60 min, and the ejection fraction by the single pass radionuclide technique was 50% preoperatively and 53% postoperatively (NS). Wall motion in the single RAO view was not worse postoperatively. No patient required any inotropic agents in the immediate postoperative period. It appears that no significant ventricular impairment occurred in the immediate postoperative period (48 to 72 hours) when potassium cardioplegia combined with hypothermia was used for a 60-minute period

  16. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    Science.gov (United States)

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

  17. Doses and application seasons of potassium on soybean crop in succession the cover crops

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira Silva

    2014-02-01

    Full Text Available Potassium (K is the second nutrient that is required in larger amounts by soybean crop. With the use of high doses of that nutrient and increase of no-tillage areas in last years, some changes occurred in ways of this nutrient application, as well as the introduction of cover crops in the system for straw formation. Due those facts, the aim with this work was to study doses and times of potassium application for soybean sowed as succession for cover crops in no-tillage system, in a clayey Distrofic Red Latosol, in cerrado region. The experimental design was a randomized block with treatments arranged in 3x3x5 factorial scheme, with the following factors, cover crops: Pearl millet (Pennisetum glaucum and Proso millet (Panicum miliaceum and a control (fallow area, rates of K2O (0, 50 e 100 kg ha-1 and K2O application forms (100% in the cover crops; 100% at sowing of soybean; 100% in topdressing in soybean; 50% at sowing cover crops + 50% at soybean sowing; 50% at soybean sowing + 50% in topdressing in the soybean with four replicates. The Pennisetum glaucum as soybean predecessor crop yields higher dry matter content than the Panicum miliaceum in a short period of time. In clay soil with high content of potassium there was no response to the applied potassium levels. Full doses of potassium maintenance fertilization can be applied in the predecessor cover crop, at sowing or topdressing in soybean crop.

  18. Sodium, potassium and chloride status in Australian foods and diets using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fardy, J J; McOrist, G D; Farrar, Y J; Bowles, C J [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    A study of the status of essential, toxic and trace elements in the foods and diets of Australian has been in progress for six years. Results for sodium, potassium and chloride levels are reported here. The average daily dietary intake of sodium and chloride exceeded the range of values recommended by the National Health and Medical Research Council for most population groups with grain and dairy products the main contributor to these high intakes. In contrast, the average daily intakes of potassium fell well within the recommended values for all age groups with intakes for adult females close to the recommended minimum figure. 9 refs., 1 tab., 2 figs.

  19. Sodium, potassium and chloride status in Australian foods and diets using neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fardy, J.J.; McOrist, G.D.; Farrar, Y.J.; Bowles, C.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    A study of the status of essential, toxic and trace elements in the foods and diets of Australian has been in progress for six years. Results for sodium, potassium and chloride levels are reported here. The average daily dietary intake of sodium and chloride exceeded the range of values recommended by the National Health and Medical Research Council for most population groups with grain and dairy products the main contributor to these high intakes. In contrast, the average daily intakes of potassium fell well within the recommended values for all age groups with intakes for adult females close to the recommended minimum figure. 9 refs., 1 tab., 2 figs.

  20. Potential for the development of tolerance by Aspergillus amstelodami, A. repens and A. ruber after repeated exposure to potassium sorbate.

    Science.gov (United States)

    Viñas, I; Morlans, I; Sanchis, V

    1990-01-01

    Three strains of A. amstelodami, A. repens and A. ruber were exposed to various levels of potassium sorbate, and the MICs were determined. Selected strains of the molds were then repeatedly exposed to subinhibitory levels of the compound to determine whether increased tolerance might develop. The MIC of sorbate (pH 5.5 or 6.5) for 3 species of Aspergillus was 0.07%. Increasing levels of sorbate resulted in increasing growth suppression of the molds. The 3 Aspergillus species were tested for increased tolerance to potassium sorbate, and none was found. They developed a slight increase in tolerance dependent upon pH and the mold strain by subculturing at low levels of sorbate.

  1. Functional diversity of potassium channel voltage-sensing domains.

    Science.gov (United States)

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  2. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  3. Extracellular matrix components direct porcine muscle stem cell behavior

    International Nuclear Information System (INIS)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J.

    2010-01-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  4. Extracellular matrix components direct porcine muscle stem cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wilschut, Karlijn J. [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands); Haagsman, Henk P. [Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht (Netherlands); Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl [Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht (Netherlands)

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatin and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.

  5. Real-time monitoring of extracellular l-glutamate levels released by high-frequency stimulation at region CA1 of hippocampal slices with a glass capillary-based l-glutamate sensor

    Directory of Open Access Journals (Sweden)

    Yuki Ikegami

    2014-12-01

    Full Text Available Real-time monitoring of l-glutamate released by high-frequency stimulation in region CA1 of mouse hippocampal slices was performed with a glass capillary-based sensor, in combination with the recoding of excitatory postsynaptic potentials (fEPSPs. A method for extracting l-glutamate currents from the recorded ones was described and applied for determining the level of extracellular l-glutamate released by 100 Hz stimulation. Recording of an l-glutamate current with a current sampling interval of 1 Hz was found to be useful for acquiring a Faradaic current that reflects l-glutamate level released by the high-frequency stimulation of 7 trains, each 20 stimuli at 100 Hz and inter-train interval of 3 s. The l-glutamate level was obtained as 15 ± 6 μM (n = 8 for the persistent enhancement of fEPSPs, i.e., the induction of long-term potentiation (LTP, and 3 ± 1 μM (n = 5 for the case of no LTP induction. Based on these observations, the level of the extracellular l-glutamate was shown to play a crucial role in the induction of LTP.

  6. Radiolysis of titanium potassium oxalate in aqueous solution. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Bundo, Y; Ono, I [Industrial Research Inst. of Kanagawa Prefecture, Yokohama (Japan); Ogawa, T

    1975-01-01

    The dissolution state of titanium potassium oxalate in aqueous solution is different according to the pH. The yellowish brown titanium complex produced by the reaction of titanium potassium oxalate and hydrogen peroxide seems to be different in its structure according to the pH. Considering these points, gamma-ray irradiation was carried out on the sample by dissolving titanium potassium oxalate in purified water under the conditions of oxygen saturation and nitrogen saturation, and the relation between irradiation dose and the production of titanium complex was determined. On the basis of the experimental result, the mechanism of forming hydrogen peroxide was presumed. The radiation source used was 2,000 Ci of /sup 60/Co. For photometric analysis, a 139 type photoelectric spectrophotometer of Hitachi Ltd. was used. From the experimental results, in neutral water, titanium potassium oxalate exists in the state that two oxalic acid ions are coordinated to titanyl ion, while in case of the pH lowered by the addition of sulfuric acid, it can exist in the state that one oxalic acid ion is coordinated to titanyl ion. The yield of hydrogen peroxide produced by irradiating titanium potassium oxalate aqueous solution with gamma-ray is the sum of the molecular product from water and the radiolysis product from titanium potassium oxalate.

  7. Effects of different phosphorus and potassium fertilization on contents and uptake of macronutrients (N, P, K, Ca, Mg in winter wheat I. Content of macronutrients

    Directory of Open Access Journals (Sweden)

    Renata GAJ

    2014-12-01

    Full Text Available The aim of the study carried out under field conditions was to evaluate the effect of differentiated phosphorus and potassium fertilization level on nutritional status of winter wheat at stem elongation (BBCH 31 and flowering (BBCH 65 development stages as well as on macronutrient contents in yield obtained (grain and straw. The research was conducted in 2007-2010, within an individual agricultural holding, on lessive soil with medium and high richness in potassium and phosphorus, respectively. The contents of nitrogen, phosphorus, potassium, magnesium and calcium in wheat changed depending on the organ assessed and plant development stage. At BBCH 31, regardless fertilization level, the plants observed were malnourished with potassium, phosphorus and calcium and at the control site also with nitrogen. Furthermore, there were found significant correlation relationships among the contents of nutrient pairs: nitrogen-potassium, nitrogen-phosphorus, nitrogen-magnesium and nitrogen-calcium. The content of nitrogen in wheat grain and straw differed mainly due to weather conditions during the study. Irrespective of the years of observation, differentiated rates of P and K applied had no significant effect on N accumulation in wheat at full ripening stage. In contrast to nitrogen, the level of P and K fertilization significantly differentiated the contents of phosphorus, potassium and magnesium in wheat grain and straw. In case of calcium, the effect of fertilization factor was indicated only as regards the content of this nutrient in grain.

  8. Vanadium, rubidium and potassium in Octopus vulgaris (Mollusca: Cephalopoda

    Directory of Open Access Journals (Sweden)

    Sónia Seixas

    2005-06-01

    Full Text Available The levels of vanadium, rubidium and potassium were determined in Octopus vulgaris caught during commercial fishing activities at three locations (Cascais, Santa Luzia and Viana do Castelo in Portugal in autumn and spring. We determined the concentration of these elements in digestive gland, branchial heart, gills, mantle and arms in males and females. At least five males and five females were assessed for each season/location combination. Elemental concentrations were determined by Particle Induced X-ray Emission (PIXE. Vanadium was detectable only in digestive gland and branchial heart samples. Its concentration was not correlated with total weight, total length or mantle length. There were no differences in concentrations of V, Rb and K between sexes. There were significant differences in vanadium concentrations in branchial hearts in autumn between samples from Viana do Castelo and those from the other two sites. We found a significant positive relationship between the concentration of vanadium and those of potassium and rubidium in branchial hearts. Branchial hearts appear to play an important role in decontamination of V.

  9. Sources of extracellular tau and its signaling.

    Science.gov (United States)

    Avila, Jesús; Simón, Diana; Díaz-Hernández, Miguel; Pintor, Jesús; Hernández, Félix

    2014-01-01

    The pathology associated with tau protein, tauopathy, has been recently analyzed in different disorders, leading to the suggestion that intracellular and extracellular tau may itself be the principal agent in the transmission and spreading of tauopathies. Tau pathology is based on an increase in the amount of tau, an increase in phosphorylated tau, and/or an increase in aggregated tau. Indeed, phosphorylated tau protein is the main component of tau aggregates, such as the neurofibrillary tangles present in the brain of Alzheimer's disease patients. It has been suggested that intracellular tau could be toxic to neurons in its phosphorylated and/or aggregated form. However, extracellular tau could also damage neurons and since neuronal death is widespread in Alzheimer's disease, mainly among cholinergic neurons, these cells may represent a possible source of extracellular tau. However, other sources of extracellular tau have been proposed that are independent of cell death. In addition, several ways have been proposed for cells to interact with, transmit, and spread extracellular tau, and to transduce signals mediated by this tau. In this work, we will discuss the role of extracellular tau in the spreading of the tau pathology.

  10. 21 CFR 520.1696b - Penicillin G potassium in drinking water.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin G potassium in drinking water. 520....1696b Penicillin G potassium in drinking water. (a) Specifications. When reconstituted, each milliliter contains penicillin G potassium equivalent to 20,000, 25,000, 40,000, 50,000, 80,000, or 100,000 units of...

  11. Effect of potassium-salt muds on gamma ray, and spontaneous potential measurements

    International Nuclear Information System (INIS)

    Cox, J.W.; Raymer, L.L.

    1976-01-01

    Interpretations of the gamma ray and Spontaneous Potential curves generally assume the presence of sodium chloride as the dominant salt in both the formation water and the mud filtrate. However, potassium-salt muds are increasingly being used by the oil industry. The potassium cation is significantly different from the sodium cation in its radioactive and electrochemical properties. Natural potassium contains a radioactive isotope which emits gamma rays. Thus, the presence of potassium salts in the mud system may contribute to Gamma-Ray tool response. Since the Gamma Ray is used quantitatively in many geological sequences as an indicator of clay content, a way to correct for the effect of potassium in the mud column is desirable. Correction methods and charts based on laboratory measurements and field observations are presented. The effect of temperature on the resistivity of potassium muds is also briefly discussed. From data available, it appears to be similar to that for NaCl muds. On the bases of field observations and laboratory work, the electrochemical properties of potassium-chloride and potassium-carbonate muds and mud filtrates are discussed. Activity relationships are proposed, and the influence of these salts on the SP component potentials--namely, the liquid-junction, membrane, and bi-ionic potentials--is described. Several field examples are presented

  12. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  13. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  14. Estimation of Total Body Fat from Potassium-40 Content

    International Nuclear Information System (INIS)

    Taha Mohamed Taha Ahmed, T.M.T.

    2010-01-01

    This paper concerns on estimation of total body fat from potassium 40 content using total body counting technique. The work performed using fast scan whole body counter. Calibration of that system for K-40 was carried out under assumption that uniformity distribution of radioactivity of potassium was distributed in 10 polyethylene bottles phantom. Different body sizes were represented by 2, 4, 6, 8 and 10 polyethylene bottles; each bottle has a volume of 0.04 m3. The counting efficiency for each body size was determined. Lean body weight (LBW) was calculated for ten males and ten females using appropriate mathematical equation. Total Body Potassium, TBK for the same selected group was measured using whole body counter. A mathematical relationship between lean body weight and potassium content was deduced .Fat contents for some individuals were calculated and weight/height ratio was indicated for fatness.

  15. 40 CFR 415.110 - Applicability; description of the potassium metal production subcategory.

    Science.gov (United States)

    2010-07-01

    ... potassium metal production subcategory. 415.110 Section 415.110 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Metal Production Subcategory § 415.110 Applicability; description of the potassium metal production subcategory. The provisions of this subpart are applicable to discharges...

  16. Crystal structure of the sodium-potassium pump

    DEFF Research Database (Denmark)

    Morth, J Preben; Pedersen, Bjørn Panyella; Toustrup-Jensen, Mads S

    2007-01-01

    The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution......-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential. Udgivelsesdato: 2007-Dec-13...

  17. Potassium permanganate ingestion as a suicide attempt

    Directory of Open Access Journals (Sweden)

    Sebnem Eren Cevik

    2012-02-01

    Full Text Available Potassium permanganate is a highly corrosive, water-soluble oxidizing antiseptic. A 68- year-old female patient was admitted to our Emergency Department after ingestion of 3 tablets of 250 mg potassium permanganate as a suicide attempt. The physical exam revealed brown stained lesions in the oropharynx. Emergency endoscopy was performed by the gastroenterologist after the third hour of ingestion. Emergency endoscopy revealed multiple superficial (Grade I-II lesions on the esophagus and cardia, which were considered secondary to the caustic substance. The mainstay in the treatment of potassium permanganate is supportive and the immediate priority is to secure the airway. Emergency endoscopy is an important tool used to evaluate the location and severity of injury to the esophagus, stomach and duodenum after caustic ingestion. Patients with signs and symptoms of intentional ingestion should undergo endoscopy within 12 to 24 h to define the extent of the disease.

  18. Potassium permanganate ingestion as a suicide attempt

    Directory of Open Access Journals (Sweden)

    Tuba Cimilli Ozturk

    2012-01-01

    Full Text Available Potassium permanganate is a highly corrosive, water-soluble oxidizing antiseptic. A 68- year-old female patient was admitted to our Emergency Department after ingestion of 3 tablets of 250 mg potassium permanganate as a suicide attempt. The physical exam revealed brown stained lesions in the oropharynx. Emergency endoscopy was performed by the gastroenterologist after the third hour of ingestion. Emergency endoscopy revealed multiple superficial (Grade I-II lesions on the esophagus and cardia, which were considered secondary to the caustic substance. The mainstay in the treatment of potassium permanganate is supportive and the immediate priority is to secure the airway. Emergency endoscopy is an important tool used to evaluate the location and severity of injury to the esophagus, stomach and duodenum after caustic ingestion. Patients with signs and symptoms of intentional ingestion should undergo endoscopy within 12 to 24 h to define the extent of the disease.

  19. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  20. Ketone deprotonation mediated by mono- and heterobimetallic alkali and alkaline earth metal amide bases: structural characterization of potassium, calcium, and mixed potassium-calcium enolates.

    Science.gov (United States)

    He, Xuyang; Noll, Bruce C; Beatty, Alicia; Mulvey, Robert E; Henderson, Kenneth W

    2004-06-23

    Potassium, calcium, and mixed potassium-calcium amide combinations have been shown to be efficient reagents in enolization reactions, and a set of representative intermediate mono- and heterobimetallic enolates have been successfully isolated and crystallographically characterized.

  1. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  2. GABA-mediated synchronization in the human neocortex: elevations in extracellular potassium and presynaptic mechanisms.

    Science.gov (United States)

    Louvel, J; Papatheodoropoulos, C; Siniscalchi, A; Kurcewicz, I; Pumain, R; Devaux, B; Turak, B; Esposito, V; Villemeure, J G; Avoli, M

    2001-01-01

    Field potential and extracellular [K(+)] ([K(+)](o)) recordings were made in the human neocortex in an in vitro slice preparation to study the synchronous activity that occurs in the presence of 4-aminopyridine (50 microM) and ionotropic excitatory amino acid receptor antagonists. Under these experimental conditions, negative or negative-positive field potentials accompanied by rises in [K(+)](o) (up to 4.1 mM from a baseline of 3.25 mM) occurred spontaneously at intervals of 3-27 s. Both field potentials and [K(+)](o) elevations were largest at approximately 1000 microm from the pia. Similar events were induced by neocortical electrical stimuli. Application of medium containing low [Ca(2+)]/high [Mg(2+)] (n=3 slices), antagonism of the GABA(A) receptor (n=7) or mu-opioid receptor activation (n=4) abolished these events. Hence, they represented network, GABA-mediated potentials mainly reflecting the activation of type A receptors following GABA release from interneurons. The GABA(B) receptor agonist baclofen (10-100 microM, n=11) reduced and abolished the GABA-mediated potentials (ID(50)=18 microM). Baclofen effects were antagonized by the GABA(B) receptor antagonist CGP 35348 (0.1-1 mM, n=6; ID(50)=0.19 mM). CGP 38345 application to control medium increased the amplitude of the GABA-mediated potentials and the concomitant [K(+)](o) rises without modifying their rate of occurrence. The GABA-mediated potentials were not influenced by the broad-spectrum metabotropic glutamate agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (100 microM, n=10), but decreased in rate with the group I receptor agonist (S)-3,5-dihydroxyphenylglycine (10-100 microM, n=9). Our data indicate that human neocortical networks challenged with 4-aminopyridine generate glutamatergic-independent, GABA-mediated potentials that are modulated by mu-opioid and GABA(B) receptors presumably located on interneuron terminals. These events are associated with [K(+)](o) elevations that may

  3. Data on electrical properties of nickel modified potassium polytitanates compacted powders.

    Science.gov (United States)

    Goffman, V G; Gorokhovsky, A V; Gorshkov, N V; Fedorov, F S; Tretychenko, E V; Sevrugin, A V

    2015-09-01

    Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni(2+) ions and/or decorated by nickel oxides NiO x . This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  4. Data on electrical properties of nickel modified potassium polytitanates compacted powders

    Directory of Open Access Journals (Sweden)

    V.G. Goffman

    2015-09-01

    Full Text Available Potassium polytitanates are new promising type of ferroelectric ceramic materials with high ionic conductivity, highly polarizable structure and extremely high permittivity. Its structure is formed by [TiO6] octahedral units to layers with mobile potassium and hydroxonium ions in-between. The treatment in solutions containing nickel ions allows forming heterostructured materials which consist of potassium polytitanate particles intercalated by Ni2+ ions and/or decorated by nickel oxides NiOx. This modification route is fully dependant on solution pH, i.e. in acidic solutions the intercalation process prevails, in alkaline solutions potassium polytitanate is mostly decorated by the oxides. Therefore, electronic structure and electrical properties can be regulated depending on modification conditions, pH and ions concentration. Here we report the data on electric properties of potassium titanate modified in nickel sulfate solutions at different pH.

  5. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  6. Potassium channels as drugs targets in therapy of cardiovascular diseases: 25 years later

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-03-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  7. POTASSIUM CHANNELS AS DRUGS TARGETS IN THERAPY OF CARDIOVASCULAR DESEASES: 25 YEARS LATER

    Directory of Open Access Journals (Sweden)

    Protić Dragana

    2013-01-01

    Full Text Available Potassium channels are the most variable ion channel group. They participate in numerous cardiovascular functions, for example regulation of vascular tone, maintenance of resting cardiac membrane potential and excitability of cardiac conduction tissue. Both drugs and endogenous ligands could modulate potassium channel function, belonging to the potassium channel blockers or openers. Modulation of potassium channels could be a therapeutic or adverse drug action. Class III antiarrhythmic agents block the potassium channels, thereby prolonging repolarization phase of action potential with resulting prolongation of effective refractory period. Their effectiveness against supraventricular and ventricular arrhythmias should be weighted against their proarrhythmogenic potential. In addition, numerous other antiarrhythmic agents could modulate potassium channels as well. Diazoxide, minoxidil and nicorandil (well known arterial vasodilators, as well as numerous newly synthesized substances with still unknown therapeutic potential, belong to the potassium channel activators/ openers. Therapeutic use of such vasodilators may involve treatment of hypertension (diazoxide, minoxidil and stable angina (nicorandil. Their use might be accompanied with side effects, such as vasodilation, edema, hypotension and reflex tachycardia. Potassium channel openers have also an important role in the treatment of peripheral vascular disease and pulmonary hypertension. In the future, drugs with selective effects on the vascular or cardiac potassium channels could be useful therapeutic agents.

  8. Effects of potassium on kesterite solar cells: Similarities, differences and synergies with sodium

    Directory of Open Access Journals (Sweden)

    S. G. Haass

    2018-01-01

    Full Text Available Addition of alkali dopants is essential for achieving high-efficiency conversion efficiency of thin film solar cells based on chalcogenide semiconductors like Cu(In,GaSe2 (CIGS and Cu2ZnSn(S,Se4 (CZTSSe also called kesterite. Whereas the treatment with potassium allows boosting the performance of CIGS solar cells as compared to the conventional sodium doping, it is debated if similar effects can be expected for kesterite solar cells. Here the influence of potassium is investigated by introducing the dopant during the solution processing of kesterite absorbers. It is confirmed that the presence of potassium leads to an enhanced grain growth and a ten-fold lower potassium concentration is sufficient for obtaining grain size similar to sodium-containing absorbers. Potassium is located predominantly at grain boundaries and it suppresses incorporation of sodium into the absorber layer. The potassium doping increases the apparent carrier concentration to ∼2×1016 cm-3 for a potassium concentration of 0.2 at%. The potassium-doped solar cells yield conversion efficiency close to 10%, on par with only sodium-doped samples. Co-doping with potassium and sodium has not revealed any beneficial synergetic effects and it is concluded that both dopants exhibit similar effects on the kesterite solar cell performance.

  9. Modeling removal of accumulated potassium from T-tubules by inward rectifier potassium channels

    NARCIS (Netherlands)

    Wallinga, W.; Vliek, M.; Wienk, E.D.; Alberink, M.J.; Ypey, D.L.; Ypey, D.L.

    1996-01-01

    The membrane models of Cannon et al. (1993) and Alberink et al. (1995) for mammalian skeletal muscle fibers are based upon Hodgkin-Huxley descriptions of sodium, potassium delayed rectifier and leak conductances and the capacitive current taking into account fast inactivation of sodium channels. Now

  10. Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial.

    Science.gov (United States)

    Kosiborod, Mikhail; Rasmussen, Henrik S; Lavin, Philip; Qunibi, Wajeh Y; Spinowitz, Bruce; Packham, David; Roger, Simon D; Yang, Alex; Lerma, Edgar; Singh, Bhupinder

    2014-12-03

    Hyperkalemia is a common electrolyte abnormality that may be difficult to manage because of a lack of effective therapies. Sodium zirconium cyclosilicate is a nonabsorbed cation exchanger that selectively binds potassium in the intestine. To evaluate the efficacy and safety of zirconium cyclosilicate for 28 days in patients with hyperkalemia. HARMONIZE was a phase 3, multicenter, randomized, double-blind, placebo-controlled trial evaluating zirconium cyclosilicate in outpatients with hyperkalemia (serum potassium ≥5.1 mEq/L) recruited from 44 sites in the United States, Australia, and South Africa (March-August 2014). Patients (n = 258) received 10 g of zirconium cyclosilicate 3 times daily in the initial 48-hour open-label phase. Patients (n = 237) achieving normokalemia (3.5-5.0 mEq/L) were then randomized to receive zirconium cyclosilicate, 5 g (n = 45 patients), 10 g (n = 51), or 15 g (n = 56), or placebo (n = 85) daily for 28 days. The primary end point was mean serum potassium level in each zirconium cyclosilicate group vs placebo during days 8-29 of the randomized phase. In the open-label phase, serum potassium levels declined from 5.6 mEq/L at baseline to 4.5 mEq/L at 48 hours. Median time to normalization was 2.2 hours, with 84% of patients (95% CI, 79%-88%) achieving normokalemia by 24 hours and 98% (95% CI, 96%-99%) by 48 hours. In the randomized phase, serum potassium was significantly lower during days 8-29 with all 3 zirconium cyclosilicate doses vs placebo (4.8 mEq/L [95% CI, 4.6-4.9], 4.5 mEq/L [95% CI, 4.4-4.6], and 4.4 mEq/L [95% CI, 4.3-4.5] for 5 g, 10 g, and 15 g; 5.1 mEq/L [95% CI, 5.0-5.2] for placebo; P zirconium cyclosilicate groups vs placebo (36/45 [80%], 45/50 [90%], and 51/54 [94%] for the 5-g, 10-g, and 15-g groups, vs 38/82 [46%] with placebo; P zirconium cyclosilicate and placebo, although edema was more common in the 15-g group (edema incidence: 2/85 [2%], 1/45 [2%], 3/51 [6%], and 8/56 [14%] patients

  11. Deactivation of SCR catalysts by potassium: A study of potential alkali barrier materials

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Castellino, Francesco

    2017-01-01

    The use of coatings in order to protect vanadia based SCR catalysts against potassium poisoning has been studied by lab- and pilot-scale experiments. Three-layer pellets, consisting of a layer ofa potential coating material situated between layers of fresh and potassium poisoned SCR catalyst, were...... the coating process. Potassium had to some extent penetrated the MgO coat, and SEM analysis revealed it to be rather thick and fragile. Despite these observations, the coating did protect the SCR catalyst against potassium poisoning to some degree, leaving promise of further optimization....... used to test the ability of the barrier layer to block the diffusion of potassium across the pellet. Of MgO, sepiolite and Hollandite manganese oxide, MgO was the most effective potassium barrier, and no potassium was detected in the MgO layer upon exposure to SCR conditions for 7 days. Two monoliths...

  12. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Directory of Open Access Journals (Sweden)

    Adam S Zeiger

    Full Text Available Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs via immunocytochemistry, atomic force microscopy (AFM, and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  13. Macromolecular crowding directs extracellular matrix organization and mesenchymal stem cell behavior.

    Science.gov (United States)

    Zeiger, Adam S; Loe, Felicia C; Li, Ran; Raghunath, Michael; Van Vliet, Krystyn J

    2012-01-01

    Microenvironments of biological cells are dominated in vivo by macromolecular crowding and resultant excluded volume effects. This feature is absent in dilute in vitro cell culture. Here, we induced macromolecular crowding in vitro by using synthetic macromolecular globules of nm-scale radius at physiological levels of fractional volume occupancy. We quantified the impact of induced crowding on the extracellular and intracellular protein organization of human mesenchymal stem cells (MSCs) via immunocytochemistry, atomic force microscopy (AFM), and AFM-enabled nanoindentation. Macromolecular crowding in extracellular culture media directly induced supramolecular assembly and alignment of extracellular matrix proteins deposited by cells, which in turn increased alignment of the intracellular actin cytoskeleton. The resulting cell-matrix reciprocity further affected adhesion, proliferation, and migration behavior of MSCs. Macromolecular crowding can thus aid the design of more physiologically relevant in vitro studies and devices for MSCs and other cells, by increasing the fidelity between materials synthesized by cells in vivo and in vitro.

  14. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  15. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  16. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    International Nuclear Information System (INIS)

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  17. Composition effect of potassium-borate glasses on their relaxation properties

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1995-01-01

    Relaxation processes in potassium-borate glasses have been investigated in detail for the first time. It is shown that low-temperature β-process of relaxation relating to rotational mobility of the B-O bond is the same for all potassium-borate glasses and B 2 O 3 . The process of β k -relaxation related to diffusion mobility of potassium ions depends on the composition of the glasses in the same way as α-relaxation (glass formation).12 refs., 10 figs., 2 tabs

  18. Digoxin affects potassium homeostasis during exercise in patients with heart failure.

    Science.gov (United States)

    Schmidt, T A; Bundgaard, H; Olesen, H L; Secher, N H; Kjeldsen, K

    1995-04-01

    The aim was to evaluate whether digitalisation of heart failure patients affects extrarenal potassium handling during and following exercise, and to assess digoxin receptor occupancy in human skeletal muscle in vivo. In a paired study of before versus after digitalisation, 10 patients with congestive heart failure underwent identical exercise sessions consisting of three bouts of increasing work rates, 41-93 W, on a cycle ergometer. The final bouts were followed by exercise to exhaustion. The femoral vessels and brachial artery were catheterised. Arterial blood pressure, heart rate, leg blood flow, cardiac output, plasma potassium, haemoglobin, pH, and skeletal muscle receptor occupancy with digoxin in biopsies were determined. Occupancy of skeletal muscle Na/K-ATPase with digoxin was 9% (P digitalisation femoral venous plasma potassium increased by 0.2-0.3 mmol.litre-1 (P digitalisation the femoral venoarterial difference in plasma potassium increased by 50-100% (P digitalisation on plasma potassium were not the outcome of changes in haemodynamics, because cardiac output and leg blood flow increased by up to 13% and 19% (P < 0.05), nor was it the outcome of changes in haemoconcentration or pH. Extrarenal potassium handling is altered as a result of digoxin treatment. This is likely to reflect a reduced capacity of skeletal muscle Na/K-ATPase for active potassium uptake because of inhibition by digoxin, adding to the reduction of skeletal muscle Na/K-ATPase concentration induced by heart failure per se. In heart failure patients, improved haemodynamics induced by digoxin may, however, increase the capacity for physical conditioning. Thus the impairment of extrarenal potassium homeostasis by heart failure and digoxin treatment may be counterbalanced by training.

  19. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    International Nuclear Information System (INIS)

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-01-01

    In the present work, K 2 Ti 2 O 5 , K 2 Ti 4 O 9 and K 2 Ti 6 O 13 are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO 2 . Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO 3 ) 2 precursor. It is found that the binding energy of K in K 2 Ti 2 O 5 is much higher than those in K 2 Ti 4 O 9 and K 2 Ti 6 O 13 , and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K 2 Ti 2 O 5 is much easier to be exchanged out.

  20. Suicide Attempt by Intravenous Potassium Self-Poisoning: A Case Report

    Directory of Open Access Journals (Sweden)

    Florent Battefort

    2012-01-01

    Full Text Available Introduction. Overdose of potassium is not as frequently encountered in clinical practice as hyperkalaemia due to acute or chronic renal disease. However, potassium overdoses leading to serious consequences do occur. Case Presentation. A 20-year-old nurse student presented with a cardiac arrest with asystole rhythm. Beside the patient were found four 50-mL syringes and empty vials of potassium chloride (20 mL, 10%. After initial resuscitation with epinephrine, 125 mL of a 4.2% intravenous solution of sodium bicarbonate were injected which resulted in the recovery of an effective cardiac activity. The patient recovered without sequelae. Conclusion. The difficulty in this case was to recognize the potassium poisoning. The advanced resuscitation with the use of a specific treatment helped to resuscitate the patient.

  1. Structural basis for KCNE3 modulation of potassium recycling in epithelia.

    Science.gov (United States)

    Kroncke, Brett M; Van Horn, Wade D; Smith, Jarrod; Kang, CongBao; Welch, Richard C; Song, Yuanli; Nannemann, David P; Taylor, Keenan C; Sisco, Nicholas J; George, Alfred L; Meiler, Jens; Vanoye, Carlos G; Sanders, Charles R

    2016-09-01

    The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."

  2. LFPy: A tool for biophysical simulation of extracellular potentials generated by detailed model neurons

    Directory of Open Access Journals (Sweden)

    Henrik eLindén

    2014-01-01

    Full Text Available Electrical extracellular recordings, i.e., recordings of the electrical potentials in the extracellular medium between cells, have been a main work-horse in electrophysiology for almost a century. The high-frequency part of the signal (>=500 Hz, i.e., themulti-unit activity (MUA, contains information about the firing of action potentials in surrounding neurons, while the low-frequency part, the local field potential (LFP, contains information about how these neurons integrate synaptic inputs. As the recorded extracellular signals arise from multiple neural processes, their interpretation is typically ambiguous and difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular level and the recorded signal has been established: the extracellular potential can be calculated as a weighted sum of all transmembrane currents in all cells located in the vicinity of the electrode. This computational scheme can considerably aid the modeling and analysis of MUA and LFP signals.Here, we describe LFPy, an open source Python package for numerical simulations of extracellular potentials. LFPy consists of a set of easy-to-use classes for defining cells, synapses and recording electrodes as Python objects, implementing this biophysical modeling scheme. It runs on top of the widely used NEURON simulation environment, which allows for flexible usage of both new and existing cell models.Further, calculation of extracellular potentials using the line-source-method is efficiently implemented.We describe the theoretical framework underlying the extracellular potential calculations and illustrate by examples how LFPy can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well a populations of cells, and MUAs, i.e., extracellular signatures of action potentials.

  3. LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons.

    Science.gov (United States)

    Lindén, Henrik; Hagen, Espen; Lęski, Szymon; Norheim, Eivind S; Pettersen, Klas H; Einevoll, Gaute T

    2013-01-01

    Electrical extracellular recordings, i.e., recordings of the electrical potentials in the extracellular medium between cells, have been a main work-horse in electrophysiology for almost a century. The high-frequency part of the signal (≳500 Hz), i.e., the multi-unit activity (MUA), contains information about the firing of action potentials in surrounding neurons, while the low-frequency part, the local field potential (LFP), contains information about how these neurons integrate synaptic inputs. As the recorded extracellular signals arise from multiple neural processes, their interpretation is typically ambiguous and difficult. Fortunately, a precise biophysical modeling scheme linking activity at the cellular level and the recorded signal has been established: the extracellular potential can be calculated as a weighted sum of all transmembrane currents in all cells located in the vicinity of the electrode. This computational scheme can considerably aid the modeling and analysis of MUA and LFP signals. Here, we describe LFPy, an open source Python package for numerical simulations of extracellular potentials. LFPy consists of a set of easy-to-use classes for defining cells, synapses and recording electrodes as Python objects, implementing this biophysical modeling scheme. It runs on top of the widely used NEURON simulation environment, which allows for flexible usage of both new and existing cell models. Further, calculation of extracellular potentials using the line-source-method is efficiently implemented. We describe the theoretical framework underlying the extracellular potential calculations and illustrate by examples how LFPy can be used both for simulating LFPs, i.e., synaptic contributions from single cells as well a populations of cells, and MUAs, i.e., extracellular signatures of action potentials.

  4. Effect of Nitrogen, Potassium, Magnesium and Zinc Sulfates on Yield and Some Characteristics of Biodiesel Produced from Safflower

    Directory of Open Access Journals (Sweden)

    M. Ranjbar

    2012-08-01

    Full Text Available In order to evaluate the effect of different amounts of nitrogen fertilizer, potassium sulfate, magnesium sulfate and zinc sulfate on biodiesel produced from safflower, a field experiment was carried out as completely randomized blocks design with three replications, at Research Farm of Shahrekord University in 2010. Treatments included nitrogen fertilizer at three levels (150, 200 and 300 kg/ha, potassium, magnesium and zinc sulfates at 150, 100 and 50 kg/ha, respectively, and control (no fertilizer application. By nourishing the safflower plants, the seed yield and biodiesel traits such as density, iodine value and saponification value were measured. The results showed that the seed yield under treatment of 300 kg/ha nitrogen (913 kg/ha was greater than other treatments. Magnesium sulfate and potassium sulfate produced the highest oil percentage (32.84 and 32.5, respectively. The biodiesel production under utilization of potassium sulfate had greater density, iodine value and saponification value (867.25 kg/m3, 139.7 mg iodine per 100 g oil, and 190.6 mg sodium hydroxide per g oil, respectively compared to other treatments. In general, it was concluded that application of micronutrient fertilizers (especially potassium sulfate improves seed-oil and biodiesel characteristics of safflower.

  5. Gamma-spectrometric correction in radiometric determination of potassium

    International Nuclear Information System (INIS)

    Gejsler, M.

    1979-01-01

    The method is described of determination of potassium in mixed fertilizers in production conditions on a chemical enterprise in the GDR. Potassium content was determined according to the value of measured radiation from potassium-40. For measurement probes were used with radiation counters. While changing raw material, coming to the enterprise has been established that in raw phosphate, supplied from Morocco, there is low enough concentration of the natural radioactive isotopes of the uranium-radium series. In this connection, the two-cannel gamma-spectroscopy method has been developed taking into account influence of the background from these isotopes. Principles are explained of the method used and descriptions are given of the instruments used and sources of errors are listed. Relative standard deviation of the potassiun determination by this method equals nearly to 5% [ru

  6. Dietary Intake and Sources of Potassium and the Relationship to Dietary Sodium in a Sample of Australian Pre-School Children

    Directory of Open Access Journals (Sweden)

    Siobhan A. O’Halloran

    2016-08-01

    Full Text Available The aim of this study was to determine the intake and food sources of potassium and the molar sodium:potassium (Na:K ratio in a sample of Australian pre-school children. Mothers provided dietary recalls of their 3.5 years old children (previous participants of Melbourne Infant Feeding Activity and Nutrition Trial. The average daily potassium intake, the contribution of food groups to daily potassium intake, the Na:K ratio, and daily serves of fruit, dairy, and vegetables, were assessed via three unscheduled 24 h dietary recalls. The sample included 251 Australian children (125 male, mean age 3.5 (0.19 (SD years. Mean potassium intake was 1618 (267 mg/day, the Na:K ratio was 1.47 (0.5 and 54% of children did not meet the Australian recommended adequate intake (AI of 2000 mg/day for potassium. Main food sources of potassium were milk (27%, fruit (19%, and vegetable (14% products/dishes. Food groups with the highest Na:K ratio were processed meats (7.8, white bread/rolls (6.0, and savoury sauces and condiments (5.4. Children had a mean intake of 1.4 (0.75 serves of fruit, 1.4 (0.72 dairy, and 0.52 (0.32 serves of vegetables per day. The majority of children had potassium intakes below the recommended AI. The Na:K ratio exceeded the recommended level of 1 and the average intake of vegetables was 2 serves/day below the recommended 2.5 serves/day and only 20% of recommended intake. An increase in vegetable consumption in pre-school children is recommended to increase dietary potassium and has the potential to decrease the Na:K ratio which is likely to have long-term health benefits.

  7. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  8. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    Science.gov (United States)

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  9. The effect of low-dose neutron irradiation on extracellular matrix

    International Nuclear Information System (INIS)

    Chen Tiehe; Lu Yongjie; Chai Mingsheng; Peng Wulin; Yang Yifang; Pan Yan; Chen Jinguo

    2003-01-01

    Projective: To study the effect of neutron irradiation on extracellular matrix. Methods: 120 male wistar rats were divided into four groups at random, and then exposed to neutron of 252 Cf-source at the doses of 0, 0.29, 0.62 and 1.20 Gy, respectively. After the exposure of 3 days, 1 month and 2 months, the rats were sacrificed and lung tissue specimens stored at -30 degree C. Hyaluronan, laminin, type III procollagen and type IV collagen in the lung tissue were detected by the method of radioimmunoassay. Results: The differences of the levels of hyaluronan in lung tissue among the groups were unsignificant. The levels of laminin in 0.29, 0.62 and 1.20 Gy groups after the 3-day exposure were remarkably different to those of the control group, and unable to recover completely even 2 months after the exposure. The levels of type IV collagen in higher three irradiated groups were all higher, but not significantly. The levels of type III procollagen in the early stage after exposure were higher, and later they lowered. Conclusion: The levels of some components of extracellular matrix in the lung tissue of rat can be changed by low-dose of neutron irradiation, but their variational modes and degrees depend on the dose of neutron irradiation and the length of period after exposure

  10. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    Science.gov (United States)

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Na+ -K+ pump activity in rat peritoneal mast cells: inhibition by extracellular calcium

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben

    1989-01-01

    1. Pure populations of rat peritoneal mast cells were used to study cellular potassium uptake. The radioactive potassium analogue, 86rubidium, was used as a tracer for potassium for measurements of the activity of the cellular potassium uptake process. 2. The ouabain-sensitive and the ouabain......-resistant potassium (86rubidium) uptake of mast cells incubated in the presence of calcium, 1 mmol l-1, were very low, 52 and 147 pmol per 10(6) cells min-1. 3. Calcium-deprivation of the cells uncovered a large capacity ouabain-sensitive potassium (86rubidium) uptake mechanism. The activity of the uptake mechanism...... was decreased by reintroduction of calcium into the cell suspension, and it was dependent on cellular energy metabolism, temperature and pH. 4. The potassium (86rubidium) uptake of mast cells incubated in a calcium-free medium occurs through an active and ouabain-sensitive mechanism that has the nature...

  12. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)

    2007-02-14

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  13. [Study of relationship between consumption of potassium permanganate and total organic carbon on plastic kitchen utensils, food packages and toys].

    Science.gov (United States)

    Ohno, Hiroyuki; Suzuki, Masako; Mutsuga, Motoh; Kawamura, Yoko

    2009-10-01

    Consumption of potassium permanganate and total organic carbon (TOC) were investigated as indices of total organic matter migrated into water from plastic kitchen utensils, food packages and toys for children. The samples were soaked in water at 60 or 95 degrees C for 30 min for kitchen utensils and food packages, and at 40 degrees C for 30 min for toys and the eluates were examined, using the two indices. The quantitation limits were both 0.5 microg/mL. Among 97 kitchen utensils and food packages tested, consumption of potassium permanganate and TOC were 0.5-10.9 microg/mL and ND-18.9 microg/mL for polyvinyl chloride (PVC) tea-pot spouts and nylon kitchen utensils, respectively. Among 32 toys tested, the levels were 0.8-45.5 microg/mL and 0.5-8.9 microg/mL from PVC toys and block toys made by ethylene vinyl acetate resin. The levels for other samples were very low. There were large discrepancies between consumption of potassium permanganate and TOC for some PVC products and nylon kitchen utensils. The cause may be a marked difference of the oxidation decomposition rate by potassium permanganate, depending on the kind of organic matter that migrated from the plastics.

  14. Corrosion mechanism of carbon brick in the blast furnace hearth by potassium

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Zhuang-zhuang; Deng, Yong; Fan, Xiaoyue

    2017-11-01

    Alkali plays a significant role in the formation of brittle layer of carbon brick in the blast furnace hearth. The brittle layer in a commercial blast furnace hearth was investigated. Large amounts of potassium compounds were found in the brittle layer. Subsequently, the carbon bricks which reacted with potassium in the simulation of blast furnace hearth under different contents of potassium in the brick (0.25, 0.5, 1.0 and 2.0 wt.%) during various reaction times (0.5, 1, 2 and 4 h) were experimentally studied. Finally, the formation mechanism of the brittle layer in carbon brick was clarified. The investigation results show that a large number of cracks are present in the brittle layer. The average potassium content in the brittle layer is 1 wt.%. According to the experimental results, cracks in the carbon brick can be formed by the attack of potassium. The reason for the formation of the brittle layer in the carbon brick is that the liquid potassium permeates into the carbon brick through the pores and cracks, and then reacts with SiO2 and Al2O3 in CO atmosphere. The generated potassium compounds nepheline and leucite lead to the volume expansion and the damage of the carbon brick.

  15. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1.

    Science.gov (United States)

    Mikami, Risako; Mizutani, Koji; Aoki, Akira; Tamura, Yukihiko; Aoki, Kazuhiro; Izumi, Yuichi

    2018-04-01

    Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm 2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm 2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm 2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell

  16. Impact of potash fertilization on uptake of potassium by rice saplings

    International Nuclear Information System (INIS)

    Singh, V.N.; Sood, B.S.; Allawadhi, K.L.; Mittal, Raj

    1995-01-01

    Potash fertilization of plants that affects the potassium content of soils and its uptake by plants has been studied. For this rice saplings in pots were grown by planting Basmati seeds. Their growth was monitored by applying different amounts of potash fertilizers and keeping all other environment factors; soil, temperature, light and humidity etc. constant. Total potassium contents in rice saplings were determined using the method based upon XRF technique. The monitoring of growth of saplings of different pots shows that time duration of their freshness and greenishness and average length after fertilization were in increasing order with the amount of potassium fertilizer applied to the saplings. More over, the results of potassium content in different samples reveals that lower value of potash fertilizer has suppressed the potassium content in rice saplings as compared to those of saplings and soil of untreated pot. Potassium content of other saplings treated with 100, 150 and 200 mg of KCl per 200 ml of water were found to be enhanced from about 0.2 to 0.8 mg/g of dried amount with fertilizer contents. This shows that presently applied maximum amount of fertilizer is favourable for plants and visually induces no adverse effects in the saplings. (author). 5 refs., 2 tabs., 1 fig

  17. Potassium availability in soils - forms and spatial distribution

    International Nuclear Information System (INIS)

    Afari-Sefa, Victor; Kwakye, Peter K.; Nyamiah, Mercy; Okae-Anti, Daniel; Imoro, A. Ziblim

    2004-10-01

    Potassium forms the third most important plant nutrient limiting plant growth and consequently reducing crop yields. This study was conducted on soil potassium availability, distribution and relationship with other soil properties. Seventeen top soil samples (0-15 cm) were collected from four agro-ecological zones of the Central and Western Regions of Ghana. Water soluble, exchangeable and non-exchangeable forms of K were determined. The exchangeable K was extracted with 1 N-bar NH 4 OAc, 0.1 N-bar HNO 3 , 0.01 M-bar CaCl 2 , Bray No. 1 and 1 N-bar boiling HNO 3 . The non-exchangeable K was extracted with 1 N-bar boiling HNO 3 . Potassium was determined using flame photometer. The results showed that potassium is available in the soil in different forms and amounts. Soils from the forest-savanna transition and coastal savanna zones had relatively higher soil solution K concentration than soils from the moist rainforest and semi-deciduous forest zones. Also, soils of the semi-deciduous forest and forest savanna transition as well as the coastal savanna zones contained 2-3 times exchangeable K of the soils of the moist rainforest. The results also showed that the pH, texture as well as the land use affected K availability in the soils. (author)

  18. Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries

    Science.gov (United States)

    Liu, Cailing; Luo, Shaohua; Huang, Hongbo; Wang, Zhiyuan; Wang, Qing; Zhang, Yahui; Liu, Yanguo; Zhai, Yuchun; Wang, Zhaowen

    2018-06-01

    A layered potassium vanadate K0.23V2O5 has been successfully prepared by the hydrothermal method and evaluated as an anode material for lithium-ion and potassium-ion batteries. High structural stability is demonstrated by the ex situ X-ray diffraction (XRD) and ex situ scanning electron microscopy (SEM). When used as an anode material for lithium-ion batteries, the K0.23V2O5 exhibits a reversible capacity of 480.4 mAh g-1 at 20 mA g-1 after 100 cycles and 439.7 mAh g-1 at 200 mA g-1 after 300 cycles as well as good cycling stability. Even at a high current density of 800 mA g-1, a high reversible capacity of 202.5 mAh g-1 can be retained, indicating excellent rate performance. Whereas in potassium-ion batteries, it retains a capacity of 121.6 mAh g-1 after 150 cycles at 20 mA g-1 and 97.6 mAh g-1 at 100 mA g-1 after 100 cycles. Such superior electrochemical performance of K0.23V2O5 can be ascribed to the special flower-like morphology and structure. Overall, the results highlight the great potential of K0.23V2O5 as an anode material for both lithium-ion and potassium-ion batteries.

  19. Formulation and evaluation of sublingual tablets of losartan potassium

    Directory of Open Access Journals (Sweden)

    Nikunj J. Aghera

    2012-05-01

    Full Text Available Objective: Sublingual tablets of Losartan Potassium were prepared to improve its bioavailability, to avoid pre-systemic metabolism in the gastrointestinal tract and hepatic first pass elimination. Methods: The Sublingual tablets were prepared by direct compression procedure using different concentration of Starch 1500 and microcrystalline cellulose. Compatibility studies of drug and polymer were performed by FTIR spectroscopy and DSC. Preformulation property of API was evaluated. Postcompressional parameters such disintegration time, wetting time, water absorption ratio, in vitro drug release and in vivo bioavailability study of optimized formulation were determined. Results: FTIR spectroscopy and DSC study revealed that there was no possible interaction between drug and polymers. The precompression parameters were in acceptable range of pharmacopoeial specification. The disintegration time of optimized formulation (F3 was upto 48 sec. The in vitro release of Losartan Potassium was upto 15 min. The percentage relative bioavailability of Losartan Potassium from optimized sublingual tablets was found to be 144.7 %. Conclusions: Sublingual tablets of Losartan Potassium were successfully prepared with improved bioavailability.

  20. Study of the permeability of the various parts of the tubules to sodium and potassium ions

    International Nuclear Information System (INIS)

    Morel, F.; Falbriard, A.

    1959-01-01

    The method of stop flow analysis has been used in rabbits together with radioactive sodium and potassium injected in the middle of a six minutes period of arrest of urine flow during an osmotic diuresis. Urine was subsequently collected in 60 ta 80 mg samples. The specific activities of sodium and potassium suggest that both ions pass directly from the renal interstitial tissue into the urine at different and distinct areas in the tubules. The whole distal segment, including the area of active reabsorption of this ion, is impermeable to sodium in the direction interstitial tissue to lumen. The adjacent, more proximal tubule is, however, extremely permeable. The distal tubular impermeability to potassium is more limited. The specific activity already having reached a maximum at the level of active sodium reabsorption. Reprint of a paper published in 'Revue Francaise d'Etudes Cliniques et Biologiques', n. 5, vol IV, p. 471-474 [fr

  1. Comparison of bioavailability and pharmacokinetics of diclofenac sodium and diclofenac potassium in normal and dehydrated rabbits.

    Science.gov (United States)

    Ahmad, Mahmood; Iqbal, Muhammad; Murtaza, Ghulam

    2009-01-01

    Two different salts of diclofenac, diclofenac sodium and diclofenac potassium, in tablet dosage form were tested for their bioavailability and disposition kinetics in a group of eighteen rabbits in normal and experimentally induced dehydrated conditions with a wash out period of 7 days between both stages of study. Biochemical and physiological parameters were also measured in both normal and dehydrated states. Diclofenac levels in plasma were determined using a validated reversed phase HPLC method. Primary kinetic parameters i.e. AUC(0-infinity), Cmax, Tmax and other disposition kinetics were obtained with non-compartmental procedure. Biochemical parameters i.e. packed cell volume, plasma glucose and total lipid concentration in dehydrated rabbits increased significantly. Plasma concentration of diclofenac sodium and diclofenac potassium decreased significantly in water deprived rabbits. In comparison, diclofenac potassium in normal and dehydrated state of the same group of rabbits showed a significantly increased plasma concentration when compared with diclofenac sodium.

  2. Expression, purification and functional reconstitution of slack sodium-activated potassium channels.

    Science.gov (United States)

    Yan, Yangyang; Yang, Youshan; Bian, Shumin; Sigworth, Fred J

    2012-11-01

    The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.

  3. The use of microelectrode array (MEA) to study the protective effects of potassium channel openers on metabolically compromised HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Law, J K Y; Chan, M; Yeung, C K; Rudd, J A; Hofmann, B; Ingebrandt, S; Offenhäusser, A

    2009-01-01

    The microelectrode array (MEA) was used to evaluate the cardioprotective effects of adenosine triphosphate sensitive potassium (K ATP ) channel activation using potassium channel openers (KCOs) on HL-1 cardiomyocytes subjected to acute chemically induced metabolic inhibition. Beat frequency and extracellular action potential (exAP) amplitude were measured in the presence of metabolic inhibitors (sodium azide (NaN 3 ) or 2-deoxyglucose (2-DG)) or KCOs (pinacidil (PIN, a cyanoguanidine derivative, activates sarcolemmal K ATP channels) or SDZ PCO400 (SDZ, a benzopyran derivative, activates mitochondrial K ATP channels)). The protective effects of these KCOs on metabolically inhibited HL-1 cells were subsequently investigated. Signal shapes indicated that NaN 3 and 2-DG reduced the rate of the sodium (Na + ) influx signal as reflected by a reduction in beat frequency. PIN and SDZ appeared to reduce both rate of depolarization and extent of the Na + influx signals. Pre-treating cardiomyocytes with PIN (0.1 mM), but not SDZ, prevented the reduction of beat frequency associated with NaN 3 - or 2-DG-induced metabolic inhibition. The exAP amplitude was not affected by either KCO. The cardioprotective effect of PIN relative to SDZ may be due to the opening of different K ATP channels. This metabolic inhibition model on the MEA may provide a stable platform for the study of cardiac pathophysiology in the future

  4. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  5. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  6. Sodium-to-Potassium Ratio and Blood Pressure, Hypertension, and Related Factors12

    Science.gov (United States)

    Perez, Vanessa; Chang, Ellen T.

    2014-01-01

    The potential cost-effectiveness and feasibility of dietary interventions aimed at reducing hypertension risk are of considerable interest and significance in public health. In particular, the effectiveness of restricted sodium or increased potassium intake on mitigating hypertension risk has been demonstrated in clinical and observational research. The role that modified sodium or potassium intake plays in influencing the renin-angiotensin system, arterial stiffness, and endothelial dysfunction remains of interest in current research. Up to the present date, no known systematic review has examined whether the sodium-to-potassium ratio or either sodium or potassium alone is more strongly associated with blood pressure and related factors, including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction, in humans. This article presents a systematic review and synthesis of the randomized controlled trials and observational research related to this issue. The main findings show that, among the randomized controlled trials reviewed, the sodium-to-potassium ratio appears to be more strongly associated with blood pressure outcomes than either sodium or potassium alone in hypertensive adult populations. Recent data from the observational studies reviewed provide additional support for the sodium-to-potassium ratio as a superior metric to either sodium or potassium alone in the evaluation of blood pressure outcomes and incident hypertension. It remains unclear whether this is true in normotensive populations and in children and for related outcomes including the renin-angiotensin system, arterial stiffness, the augmentation index, and endothelial dysfunction. Future study in these populations is warranted. PMID:25398734

  7. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    Science.gov (United States)

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  9. Influence d'un apport fractionné en potassium et en azote sur la ...

    African Journals Online (AJOL)

    SARAH

    31 oct. 2015 ... Influence of a fractional contribution in potassium and nitrogen on the ... dependence for this fruit-vegetable in view of its high demand by consumers. ... Journal of Applied Biosciences 94:8789 – 8800 ... fertilité des sols et de minimiser les impacts sur .... une répétition. ...... Effects of different levels of urea on.

  10. Cadmium, zinc, copper, sodium and potassium concentrations in rooster and turkey semen and their correlation.

    Science.gov (United States)

    Massanyi, Peter; Weis, Jan; Lukac, Norbert; Trandzik, Jozef; Bystricka, Judita

    2008-04-01

    The purpose of this study was to assess concentration of selected elements (cadmium, zinc, copper, sodium and potassium) in rooster and turkey semen and to find possible correlations between these elements. Samples were analyzed on the atomic absorption spectrophotometer. The analysis of cadmium showed that the concentration in rooster is 9.06 +/- 7.70 and in turkey 4.10 +/- 3.59 microg/mL. In zinc 5.25 +/- 1.96 microg/mL in rooster and 3.70 +/- 1.26 microg/mL in turkey were detected. Higher concentration of copper was found in rooster semen (6.79 +/- 6.42 microg/mL) in comparison with turkey semen (4.29 +/- 5.43 microg/mL). The level of sodium (3.96 +/- 1.02 microg/mL; 3.14 +/- 0.85 microg/mL) and potassium (2.88 +/- 0.65 microg/mL; 3.42 +/- 1.41 microg/mL) was very similar in both species. Correlation analysis detected high positive correlation between cadmium and zinc (r = 0.701) in rooster and between sodium and potassium (r = 0.899) in turkey semen.

  11. Dietary Impact of Adding Potassium Chloride to Foods as a Sodium Reduction Technique

    Directory of Open Access Journals (Sweden)

    Leo van Buren

    2016-04-01

    Full Text Available Potassium chloride is a leading reformulation technology for reducing sodium in food products. As, globally, sodium intake exceeds guidelines, this technology is beneficial; however, its potential impact on potassium intake is unknown. Therefore, a modeling study was conducted using Dutch National Food Survey data to examine the dietary impact of reformulation (n = 2106. Product-specific sodium criteria, to enable a maximum daily sodium chloride intake of 5 grams/day, were applied to all foods consumed in the survey. The impact of replacing 20%, 50% and 100% of sodium chloride from each product with potassium chloride was modeled. At baseline median, potassium intake was 3334 mg/day. An increase in the median intake of potassium of 453 mg/day was seen when a 20% replacement was applied, 674 mg/day with a 50% replacement scenario and 733 mg/day with a 100% replacement scenario. Reformulation had the largest impact on: bread, processed fruit and vegetables, snacks and processed meat. Replacement of sodium chloride by potassium chloride, particularly in key contributing product groups, would result in better compliance to potassium intake guidelines (3510 mg/day. Moreover, it could be considered safe for the general adult population, as intake remains compliant with EFSA guidelines. Based on current modeling potassium chloride presents as a valuable, safe replacer for sodium chloride in food products.

  12. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Directory of Open Access Journals (Sweden)

    Yasuhiko Imashuku

    2017-01-01

    Full Text Available We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available.

  13. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Science.gov (United States)

    Imashuku, Yasuhiko; Kitagawa, Hirotoshi; Mizuno, Takayoshi; Fukushima, Yutaka

    2017-01-01

    We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available. PMID:28217070

  14. Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress.

    Science.gov (United States)

    Elzobair, Khalid A; Stromberger, Mary E; Ippolito, James A

    2016-01-01

    Stabilizing extracellular enzymes may maintain enzymatic activity while protecting enzymes from proteolysis and denaturation. A study determined whether a fast pyrolysis hardwood biochar (CQuest™) would reduce evaporative losses, subsequently stabilizing soil extracellular enzymes and prohibiting potential enzymatic activity loss following a denaturing stress (microwaving). Soil was incubated in the presence of biochar (0%, 1%, 2%, 5%, or 10% by wt.) for 36 days and then exposed to microwave energies (0, 400, 800, 1600, or 3200 J g(-1) soil). Soil enzymes (β-glucosidase, β-d-cellobiosidase, N-acetyl-β-glucosaminidase, phosphatase, leucine aminopeptidase, β-xylosidase) were analyzed by fluorescence-based assays. Biochar amendment reduced leucine aminopeptidase and β-xylosidase potential activity after the incubation period and prior to stress exposure. The 10% biochar rate reduced soil water loss at the lowest stress level (400 J microwave energy g(-1) soil). Enzyme stabilization was demonstrated for β-xylosidase; intermediate biochar application rates prevented a complete loss of this enzyme's potential activity after soil was exposed to 400 (1% biochar treatment) or 1600 (5% biochar treatment) J microwave energy g(-1) soil. Remaining enzyme potential activities were not affected by biochar, and activities decreased with increasing stress levels. We concluded that biochar has the potential to reduce evaporative soil water losses and stabilize certain extracellular enzymes where activity is maintained after a denaturing stress; this effect was biochar rate and enzyme dependent. While biochar may reduce the potential activity of certain soil extracellular enzymes, this phenomenon was not universal as the majority of enzymes assayed in this study were unaffected by exposure to biochar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Association Between Urinary Sodium and Potassium Excretion and Blood Pressure Among Adults in the United States: National Health and Nutrition Examination Survey, 2014.

    Science.gov (United States)

    Jackson, Sandra L; Cogswell, Mary E; Zhao, Lixia; Terry, Ana L; Wang, Chia-Yih; Wright, Jacqueline; Coleman King, Sallyann M; Bowman, Barbara; Chen, Te-Ching; Merritt, Robert; Loria, Catherine M

    2018-01-16

    Higher levels of sodium and lower levels of potassium intake are associated with higher blood pressure. However, the shape and magnitude of these associations can vary by study participant characteristics or intake assessment method. Twenty-four-hour urinary excretion of sodium and potassium are unaffected by recall errors and represent all sources of intake, and were collected for the first time in a nationally representative US survey. Our objective was to assess the associations of blood pressure and hypertension with 24-hour urinary excretion of sodium and potassium among US adults. Cross-sectional data were obtained from 766 participants age 20 to 69 years with complete blood pressure and 24-hour urine collections in the 2014 National Health and Nutrition Examination Survey, a nationally representative survey of the US noninstitutionalized population. Usual 24-hour urinary electrolyte excretion (sodium, potassium, and their ratio) was estimated from ≤2 collections on nonconsecutive days, adjusting for day-to-day variability in excretion. Outcomes included systolic and diastolic blood pressure from the average of 3 measures and hypertension status, based on average blood pressure ≥140/90 and antihypertensive medication use. After multivariable adjustment, each 1000-mg difference in usual 24-hour sodium excretion was directly associated with systolic (4.58 mm Hg; 95% confidence interval [CI], 2.64-6.51) and diastolic (2.25 mm Hg; 95% CI, 0.83-3.67) blood pressures. Each 1000-mg difference in potassium excretion was inversely associated with systolic blood pressure (-3.72 mm Hg; 95% CI, -6.01 to -1.42). Each 0.5 U difference in sodium-to-potassium ratio was directly associated with systolic blood pressure (1.72 mm Hg; 95% CI, 0.76-2.68). Hypertension was linearly associated with progressively higher sodium and lower potassium excretion; in comparison with the lowest quartile of excretion, the adjusted odds of hypertension for the highest quartile was

  16. Development Of Silica Potassium Fertilizers From Trass Rock With Calcination Process

    Science.gov (United States)

    Wahyusi, KN; Siswanto

    2018-01-01

    Rocks and sand mines have important benefits for life. With the many benefits of rocks, it is a pity if Indonesia has a lot of raw material reserves waste it. Examples of the benefits of rocks that can be converted into silica potassium fertilizer by reacting with potassium hydroxide. Examples of rocks that can be taken trass rock. The procedure for making silica potassium is by reacting 100 mesh trass rock with KOH and K2CO3 reagents whose composition is arranged by weight ratio, where the base of the trass rock is 100 gr. The process is carried out at a temperature of 1.250 °C with a reaction time of 1 hour. The results obtained are the best silica potassium fertilizer for K2CO3 reagent which is 500gr: 74gr with SiO2 content: 26.8% and K2O content: 27.3%, with water solubility 24.02%, while for silica potassium fertilizer product from The best trass rock for KOH reagent is with a mol ratio of 400 gr : 60 gr with SiO2 content : 23.6% and K2O content: 22.2%, with 25.65% water solubility. The pore size of silica potassium fertilizer product of this trass rock, the range 350 - 1000 nm.

  17. Estimation of potassium concentration in coconut water by beta radioactivity measurement

    International Nuclear Information System (INIS)

    Reddy, P.J.; Narayani, K.; Bhade, S.P.D.; Anilkumar, S.; Kolekar, R.V.; Singh, Rajvir; Pradeepkumar, K.S.

    2014-01-01

    Potassium is widely distributed in soil, in all vegetable, fruits and animal tissues. Approximately half the radioactivity found in humans comes from 40 K. Potassium is an essential element in our diet since it is required for proper nerve and muscle function, as well as for maintaining the fluid balance of cells and heart rhythm. Potassium can enter the body mainly consuming fruits, vegetables and food. Tender coconut water is consumed widely as natural refreshing drink which is rich in potassium. The simple way to determine 40 K activity is by gamma ray spectrometry. However, the low abundance of this gamma photon makes the technique less sensitive compared to gross beta measurement. Many analytical methods are reported for potassium estimation which is time consuming and destructive in nature. A unique way to estimate 40 K by beta activity is by Cerenkov Counting technique using Liquid Scintillation Analyzer. Also much lower detection limit is achieved, allowing for greater precision. In this work, we have compared two methods to arrive at the potassium concentration in tender and matured coconut water by measuring 40 K. One is non-scintillator method based on measurement of the Cerenkov radiation generated from the high-energy β of 40 K. The second method is based on beta activity measurement using low background Gas flow counter

  18. Effect of potassium supply on drought resistance in sorghum: plant growth and macronutrient content

    International Nuclear Information System (INIS)

    Asgharipour, M.R.; Heidari, M.

    2011-01-01

    Nowadays, the main limiting natural resource is widely considered to be water. Therefore, research into crop management practices that enhance drought resistance and plant growth when water supply is limited has become increasingly essential. This study was conducted to evaluate the effect of potassium (K) nutritional status on the drought resistance of grain sorghum during 2009. Drought stress by reducing the yield components, especially the number of panicle per plant and one-hundred grain weight reduced grain yield and greatest yield (3499 kg ha/sup -1/) obtained at full irrigation. Potassium sulfate increased grain and biological yield by 28% and 22%, respectively compared to control through improving growth conditions. Drought stress increased the N content, while reduced water availability decreased the K and Na in plant. No K fertilized plants had the lowest leaf K and N and highest Na concentrations. Chlorophyll content increased significantly with increase in K supply and increased frequency of irrigation. Interaction effect of drought stress and potassium sulfate on all studied traits except chlorophyll content was significant and optimum soil K levels protects plants from drought. These observations indicate that adequate K nutrition can improve drought resistance of sorghum. (author)

  19. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods.

    Science.gov (United States)

    Picq, Christian; Asplanato, Marion; Bernillon, Noémie; Fabre, Claudie; Roubeix, Mathilde; Ricort, Jean-Marc

    2014-09-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food" and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate®) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate and potato, 26% for apple, 37% for tomato and 41% for banana) or boiling in a large amount of water (73% for potato). Although Kayexalate® efficiently dose-dependently removed potassium from drinks (by 48% to 73%), resin addition during soaking or boiling did not eliminate more potassium from solid foods. Our results therefore provide useful information for dietitians who elaborate menus for people on potassium-restricted diets and would give an interesting alternative to the systematic elimination of all potassium-rich foods from their diet.

  20. Contribution to the liquid-vapour equilibrium of potassium and sodium mixtures

    International Nuclear Information System (INIS)

    Schreinlechner, I.; Schwarz, N.

    1975-10-01

    In this paper the phase diagram of the binary system potassium-sodium in the liquid-vapour range was calculated for different pressures and temperatures, assuming the two metals acting as ideal solution. The assumption was verified by experimental results. It is thus possible to calculate the separation factor for the rectification of potassium and to estimate the content of sodium in the vapour phase during experiments with vapourized potassium from the data of the vapour pressures of the pure metals. (author)

  1. Determination of potassium concentration in salt water for residual beta radioactivity measurements

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, Ll.

    2004-01-01

    High interferences may arise in the determination of potassium concentration in salt water. Several analytical methods were studied to determine which method provided the most accurate measurements of potassium concentration. This study is relevant for radiation protection because the exact amount of potassium in water samples must be known for determinations of residual beta activity concentration. The fitting algorithm of the calibration curve and estimation of uncertainty in potassium determinations were also studied. The reproducibility of the proposed analytical method was tested by internal and external validation. Furthermore, the residual beta activity concentration of several Spanish seawater and brackish river water samples was determined using the proposed method

  2. High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris.

    Science.gov (United States)

    Eom, Gyeong Tae; Lee, Seung Hwan; Song, Bong Keun; Chung, Keun-Wo; Kim, Young-Wun; Song, Jae Kwang

    2013-08-01

    The gene encoding lipase B from Candida antarctica (CalB) was expressed in Pichia pastoris after it was synthesized by the recursive PCR and cloned into the Pichia expression plasmid, pPICZαA. The CalB was successfully secreted in the recombinant P. pastoris strain X-33 with an apparent molecular weight of 34 kDa. For 140 h flask culture, the dry cell weight and the extracellular lipase activity reached at 5.4 g/l and 57.9 U/l toward p-nitrophenyl palmitate, respectively. When we performed the fed-batch fermentation using a methanol feeding strategy for 110 h, the dry cell weight and the extracellular lipase activity were increased to 135.7 g/l and 11,900 U/l; the CalB protein concentration was 1.18 g/l of culture supernatant. The characteristics of CalB recovered from the P. pastoris culture were compared with the commercial form of CalB produced in Aspergillus oryzae. The kinetic constants and specific activity, the effects of activity and stability on temperature and pH, the glycosylation extent, the degree of immobilization on macroporous resin and the yield of esterification reaction between oleic acid and n-butanol were almost identical to each other. Therefore, we successfully proved that the Pichia-based expression system for CalB in this study was industrially promising compared with one of the most efficient production systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Effect of Potassium Sulphate and Humic acid on Growth, Yield and Essential Oil Content in Hypericum perforatum L.

    Directory of Open Access Journals (Sweden)

    H. Kaboli Farshchi

    2016-07-01

    Full Text Available Introduction: Medicinal and aromatic plants can play an important role in commercial crops, which also represent a safe alternative for chemical pharmaceutical industries. St. John’s Wort (Hypericum perforatum L. due to its therapeutic efficacy has been used for decades in folk medicine and is considered as a promising medicinal plant with valuable potential as a source of hypericin, essential oils and antioxidants. Studies on agronomic factors such as application of potassium and humic acid as well as nitrogen fertilization on yield, essential oil and antioxidant activity of Hypericum perforatum have not been investigated thoroughly until now. This study was designed to study the effect of using humic acid and potassium sulphate on morphological and phytochemical characteristics of Hypericum perforatum. Materials and Methods: The plant material was prepared from Science and Technology Park in Khorasan-e Razzavi–Mashhad. In spring, the plants were transplanted into the field of Horticulture department, Ferdowsi University of Mashhad, for fertilizing treatments. The experimental layout was factorial in a complete randomized design (CRD, with three replications. Potassium Sulphate (K2SO4 was applied at the rates of 0.0 (K0, 60 (K60 and 100 (K100 kg ha-1. The other treatment were humic acid, which was applied at three rates 0 (H0, 20 (H20 and 40 (H40 L ha-1. Plants were treated at two stages, before flowering by potassium fertilizer and fertigated four times in 15-day intervals with humic acid. Besides the fresh and dry weight, number of flowers, stem height and number of flowering stems were determined at the end of the growing stage. Results and Discussion: The ANOVA indicated that most of measured attributes of Hypericum perforatum plant were significantly affected by both treatments. Data presented revealed that the highest stem (91.6 cm was recorded at the highest level of potassium sulphate (K100 treatment, while the shortest height (60

  4. Studies in photo chromic behavior of some potassium hexacyanoferrate (2)-dye systems

    International Nuclear Information System (INIS)

    Taneja, Hanshu; Paliwala, Mukesh; Kumara Anil; Singh Sadhana; Ameta, Suresh C.; Ameta, Rameshwar

    2009-01-01

    The photo chromic behavior of potassium hexacyanoferrate (2)-fuchsin basic and potassium hexacyanoferrate (2)-malachite green systems was investigated in detail. The effect of variation of various parameters, like ph, light intensity, concentration of dyes, and concentration of potassium hexacyanoferrate(2), on the rates of forward and backward reactions of these systems has been observed. Based on experimental data, a tentative mechanism has also been proposed. (author)

  5. Study on the Effect of Calcium and Potassium Spray on Date Bunch Fading Disorder

    Directory of Open Access Journals (Sweden)

    Hosein Shekofteh

    2017-09-01

    weight, fruit length, fruit diameter, stone weight, stone diameter, and bunch fading percentage at 1℅ level. The highest wet fruit weight, fruit length, fruit diameter, stone weight, and stone diameter were attained in the treatment containing combined application of calcium nitrate and potassium sulfate. Furthermore, the lowest amounts of these traits were obtained in control. The lowest and highest percentage of date bunch fading belonged to the combined treatment of calcium nitrate and potassium sulfate, and control, respectively. In general, application of calcium nitrate and potassium sulfate with each other improved fruit traits and reduced bunch fading percentage. Calcium mobility in the plant takes place mainly in the xylem, together with water. Therefore, calcium uptake is directly related to plant transpiration rate. Conditions of high humidity, cold and low transpiration rates may result in calcium deficiency. Salinity might also cause calcium deficiency because it decreases water uptake by the plant. Since calcium mobility in plants is limited, calcium deficiency appears in younger leaves and in fruits, because they have a very low transpiration rate. Therefore, it is necessary to have a constant supply of calcium for continued growth. Calcium deficiency is usually caused by low calcium availability or water stress which results in low transpiration rates. Calcium is an essential plant nutrient with many roles including participation in metabolic processes of other nutrients uptake, promotion of proper plant cell elongation, and improvement of cell wall structure – calcium is an essential part of plant cell wall. It forms calcium pectate compounds which give stability to cell walls and bind cells together. It also helps protecting the plant against heat stress - calcium improves stomata function and participates in induction of heat shock proteins. In addition, it helps protecting the plant against diseases - numerous fungi and bacteria secret enzymes

  6. Aqueous two-phase systems of polyoxyethylene lauryl ether and potassium gluconate/potassium oxalate/potassium citrate at different temperature-experimental results and modeling of (liquid + liquid) equilibrium data

    International Nuclear Information System (INIS)

    Lu, Yang; Hao, Tongfan; Zhou, Yan; Han, Juan; Tan, Zhenjiang; Yan, Yongsheng

    2014-01-01

    Highlights: • The phase diagrams of POELE10-organic salts ATPSs were determined experimentally. • The experiential equations were used to correlate the binodal data. • The effect of salt on the binodal curve for the studied systems has been discussed. • The LLE data were correlated using the thermodynamic model. -- Abstract: The binodal data for the systems containing the POELE10 and KC 6 H 11 O 7 /K 2 C 2 O 4 /K 3 C 6 H 5 O 7 were determined at the T = (288.15, 298.15, 308.15) K. The three experiential equations were used to fit the binodal data and they achieved the satisfactory fitting effect. The effect of salt type on the phase-seperation ability of salt was studied. It was found that the phase-seperation ability of the salt with the higher valence anion is stronger than that with lower valence anion, namely, the order of the phase-seperation ability for the investigated salts is potassium citrate > potassium oxalate > potassium gluconate, which is also validated by the effective excluded volume (EEV). The (liquid + liquid) equilibrium data for the studied systems were determined and correlated by using the Pitzer–Debye–Hückel equation and Chen-NRTL model along with the Flory–Huggins equation, and good agreement was obtained with using these thermodynamic models

  7. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  8. POTASSIUM FERTILIZATION AND SOIL MANAGEMENT SYSTEMS FOR COTTON CROPS

    Directory of Open Access Journals (Sweden)

    VITOR MARQUES VIDAL

    2017-01-01

    Full Text Available Cotton has great socio-economic importance due to its use in textile industry, edible oil and biodiesel production and animal feed. Thus, the objective of this work was to identify the best potassium rate and soil management for cotton crops and select among cultivars, the one that better develops in the climatic conditions of the Cerrado biome in the State of Goiás, Brazil. Thus, the effect of five potassium rates (100, 150, 200, 250 and 300 kg ha-1 of K2O and two soil management systems (no-till and conventional tillage on the growth, development and reproduction of four cotton cultivars (BRS-371, BRS-372, BRS-286 and BRS-201 was evaluated. The data on cotton growth and development were subjected to analysis of variance; the data on potassium rates were subjected to regression analysis; and the data on cultivars and soil management to mean test. The correlation between the vegetative and reproductive variables was also assessed. The conventional tillage system provides the best results for the herbaceous cotton, regardless of the others factors evaluated. The cultivar BRS-286 has the best results in the conditions evaluated. The cultivar BRS-371 under no-till system present the highest number of fruiting branches at a potassium rate of 105.5% and highest number of floral buds at a potassium rate of 96.16%. The specific leaf area was positively correlated with the number of bolls per plant at 120 days after emergence of the herbaceous cotton.

  9. Assessment of extracellular dehydration using saliva osmolality.

    Science.gov (United States)

    Ely, Brett R; Cheuvront, Samuel N; Kenefick, Robert W; Spitz, Marissa G; Heavens, Kristen R; Walsh, Neil P; Sawka, Michael N

    2014-01-01

    When substantial solute losses accompany body water an isotonic hypovolemia (extracellular dehydration) results. The potential for using blood or urine to assess extracellular dehydration is generally poor, but saliva is not a simple ultra-filtrate of plasma and the autonomic regulation of salivary gland function suggests the possibility that saliva osmolality (Sosm) may afford detection of extracellular dehydration via the influence of volume-mediated factors. This study aimed to evaluate the assessment of extracellular dehydration using Sosm. In addition, two common saliva collection methods and their effects on Sosm were compared. Blood, urine, and saliva samples were collected in 24 healthy volunteers during paired euhydration and dehydration trials. Furosemide administration and 12 h fluid restriction were used to produce extracellular dehydration. Expectoration and salivette collection methods were compared in a separate group of eight euhydrated volunteers. All comparisons were made using paired t-tests. The diagnostic potential of body fluids was additionally evaluated. Dehydration (3.1 ± 0.5% loss of body mass) decreased PV (-0.49 ± 0.12 L; -15.12 ± 3.94% change), but Sosm changes were marginal ( 0.05). Extracelluar dehydration was not detectable using plasma, urine, or saliva measures. Salivette and expectoration sampling methods produced similar, consistent results for Sosm, suggesting no methodological influence on Sosm.

  10. Combined effect of organic manure and potassium on growth and yield of onion cv. BARI piaz-I

    Directory of Open Access Journals (Sweden)

    H.K. Barman

    2013-06-01

    Full Text Available An experiment was conducted to find out the combined effect of cowdung and potassium on the growth and yield of onion cv. BARI piaz-I at Horticulture Farm, Bangladesh Agricultural University, Mymensingh during the period from December 2010 to March 2011. The experiment was laid out in a randomized complete block design with three replications. The two factors experiment had four levels of cowdung, viz., 0, 5, 10 and 20 tons ha-1 and four levels of potassium, viz. 0, 50, 150 and 250 kg K ha-1. Doses of cowdung and potassium showed significant variation in respect of all the parameters studied. The combination of 10 tons cowdung and 250 kg K ha-1 gave the tallest plant (46.60 cm, the highest number of leaves plant-1 (6.40, the highest length of bulb (3.27 cm, the highest diameter of bulb (4.83 cm, individual weight of bulb (51.23 g, dry matter content (12.66% and yield of bulb ha-1 (12.83 tons; whereas the control treatment gave the shortest plant (38.15 cm, lowest number of leaves plant-1 (5.68, diameter of bulb (3.41, individual weight of bulb (35.65g and gave lowest bulb yield ha-1 (9.16 tons.

  11. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    International Nuclear Information System (INIS)

    Swanson, R.

    1984-01-01

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range

  12. Radiation Doses to Hanford Workers from Natural Potassium-40

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lynch, Timothy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weier, Dennis R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-01

    The chemical element potassium is an essential mineral in people and is subject to homeostatic regulation. Natural potassium comprises three isotopes, 39K, 40K, and 41K. Potassium-40 is radioactive, with a half life of 1.248 billion years. In most transitions, it emits a β particle with a maximum energy of 0.560 MeV, and sometimes a gamma photon of 1.461 MeV. Because it is ubiquitous, 40K produces radiation dose to all human beings. This report contains the results of new measurements of 40K in 248 adult females and 2,037 adult males performed at the Department of Energy Hanford Site in 2006 and 2007. Potassium concentrations diminish with age, are generally lower in women than in men, and decrease with body mass index (BMI). The average annual effective dose from 40K in the body is 0.149 mSv y-1 for men and 0.123 mSv y-1 women respectively. Averaged over both men and women, the average effective dose per year is 0.136 mSv y-1. Calculated effective doses range from 0.069 to 0.243 mSv y-1 for adult males, and 0.067 to 0.203 mSv y-1 for adult females, a roughly three-fold variation for each gender. The need for dosimetric phantoms with a greater variety of BMI values should be investigated. From our data, it cannot be determined whether the potassium concentration in muscle in people with large BMI values differs from that in people with small BMI values. Similarly, it would be important to know the potassium concentration in other soft tissues, since much of the radiation dose is due to beta radiation, in which the source and target tissues are the same. These uncertainties should be evaluated to determine their consequences for dosimetry.

  13. Increased Interleukin-32 Levels in Obesity Promote Adipose Tissue Inflammation and Extracellular Matrix Remodeling: Effect of Weight Loss.

    Science.gov (United States)

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Valentí, Víctor; Moncada, Rafael; Landecho, Manuel F; Silva, Camilo; Salvador, Javier; Frühbeck, Gema

    2016-12-01

    Interleukin (IL)-32 is a recently described cytokine involved in the regulation of inflammation. We aimed to explore whether IL-32 could function as an inflammatory and angiogenic factor in human obesity and obesity-associated type 2 diabetes. Samples obtained from 90 subjects were used in the study. Obese patients exhibited higher expression levels of IL-32 in visceral adipose tissue (AT) as well as in subcutaneous AT and peripheral blood mononuclear cells. IL32 was mainly expressed by stromovascular fraction cells, and its expression was significantly enhanced by inflammatory stimuli and hypoxia, whereas no changes were found after the incubation with anti-inflammatory cytokines. The addition of exogenous IL-32 induced the expression of inflammation and extracellular matrix-related genes in human adipocyte cultures, and IL32-silenced adipocytes showed a downregulation of inflammatory genes. Furthermore, adipocyte-conditioned media obtained from obese patients increased IL32 gene expression in human monocyte cultures, whereas the adipocyte-conditioned media from lean volunteers had no effect on IL32 mRNA levels. These findings provide evidence, for the first time, about the inflammatory and remodeling properties of IL-32 in AT, implicating this cytokine in obesity-associated comorbidities. © 2016 by the American Diabetes Association.

  14. Effects of extracellular modulation through hypoxia on the glucose metabolism of human breast cancer stem cells

    Science.gov (United States)

    Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.

    2017-08-01

    Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.

  15. Serum HER 2 extracellular domain level is correlated with tissue HER 2 status in metastatic gastric or gastro-oesophageal junction adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Shu-Qin Dai

    Full Text Available BACKGROUND: To explore the association between serum human epidermal growth factor receptor 2 (HER 2 extracellular domain (ECD levels and tissue HER 2 status in metastatic gastric cancer. PATIENTS AND METHODS: HER 2 status was retrospectively analyzed in 219 advanced gastric or gastroesophageal junction (GEJ patients. Serum HER 2 ECD was measured by chemiluminescent assay and tissue HER 2 was assessed by fluorescent in situ hybridisation (FISH and immunohistochemistry (IHC assay. RESULTS: Significant associations were found between serum HER 2 ECD levels and tissue HER 2 status. Twenty-four patients had HER 2 ECD levels >16.35 ng/mL, which has a sensitivity of 51.4% and a specificity of 97.3% to predict tissue HER 2 status. When the cut-off value was increased to 22 ng/mL, then all 12 patients with serum HER 2 ECD levels>22 ng/mL were tissue HER 2 positive, corresponding to a specificity of 100% and a sensitivity of 32.4%. High serum HER 2 ECD levels were strongly associated with the intestinal histological type (Lauren's classification, liver metastasis, multiple metastasis (>2 and increased LDH levels, but not with overall survival. CONCLUSIONS: The high specificity of the serum HER 2 ECD assay in predicting tissue HER 2 status suggests its potential as a surrogate marker of the HER 2 status in gastric cancer.

  16. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    International Nuclear Information System (INIS)

    Asakai, Toshiaki; Hioki, Akiharu

    2011-01-01

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  17. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Asakai, Toshiaki, E-mail: t-asakai@aist.go.jp [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan); Hioki, Akiharu [National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3-9, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2011-03-09

    Potassium iodate is often used as a reference material to standardize a sodium thiosulfate solution which is a familiar titrant for redox titrations. In the standardization, iodine (triiodide) liberated by potassium iodate in an acidic potassium iodide solution is titrated with a sodium thiosulfate solution. The iodine liberation process is significantly affected by the amount of acid, that of potassium iodide added, the waiting time for the liberation, and light; therefore, the process plays a key role for the accuracy of the titration results. Constant-voltage biamperometry with a modified dual platinum-chip electrode was utilized to monitor the amount of liberated iodine under several liberation conditions. Coulometric titration was utilized to determine the concentration of a sodium thiosulfate solution on an absolute basis. Potassium iodate was assayed by gravimetric titration with the sodium thiosulfate solution under several iodine liberation conditions. The liberation process was discussed from the changes in the apparent assay of potassium iodate. The information of the appropriate titration procedure obtained in the present study is useful for any analysts utilizing potassium iodate to standardize a thiosulfate solution.

  18. Investigation of plant hormone level changes in shoot tips of longan (Dimocarpus longan Lour.) treated with potassium chlorate by liquid chromatography-electrospray ionization mass spectrometry.

    Science.gov (United States)

    Susawaengsup, Chanthana; Rayanakorn, Mongkon; Wongpornchai, Sugunya; Wangkarn, Sunanta

    2011-08-15

    The endogenous levels of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA) and cytokinins (CKs) and their changes were investigated in shoot tips of ten longan (Dimocarpus longan Lour.) trees for off-season flowering until 60 days after potassium chlorate treatment in comparison with those of ten control (untreated) longan trees. These analytes were extracted and interfering matrices removed with a single mixed-mode solid phase extraction under optimum conditions. The recoveries at three levels of concentration were in the range of 72-112%. The endogenous plant hormones were separated and quantified by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). Detection limits based on the signal-to-noise ratio ranged from 10 ng mL(-1) for gibberellin A4 (GA4) to 200 ng mL(-1) for IAA. Within the first week after potassium chlorate treatment, dry weight (DW) amounts in the treated longan shoot tips of four gibberellins, namely: gibberellin A1(GA1), gibberellic acid (GA3), gibberellin A19 (GA19) and gibberellin A20 (GA20), were found to increase to approximately 25, 50, 20 and 60 ng g(-1) respectively, all of which were significantly higher than those of the controls. In contrast, gibberellin A8 (GA8) obtained from the treated longan was found to decrease to approximately 20 ng g(-1)DW while that of the control increased to around 80 ng g(-1)DW. Certain CKs which play a role in leaf bud induction, particularly isopentenyl adenine (iP), isopentenyl adenosine (iPR) and dihydrozeatin riboside (DHZR), were found to be present in amounts of approximately 20, 50 and 60 ng g(-1)DW in the shoot tips of the control longan. The analytical results obtained from the two-month off-season longan flowering period indicate that high GA1, GA3, GA19 and GA20 levels in the longan shoot tips contribute to flower bud induction while high levels of CKs, IAA and ABA in the control longan contribute more to the vegetative development. Copyright © 2011

  19. Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses

    Directory of Open Access Journals (Sweden)

    Livia Stavolone

    2017-09-01

    Full Text Available The extracellular matrix (ECM of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed.

  20. Evaluation of calcium, phosphorus and potassium in saliva and their relationship to blood biochemical factors in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Javad Hashemi

    2017-04-01

    Full Text Available Background: Nowadays, chronic kidney disease (CKD is known as an epidemic disease all around the world. Chronic kidney disease considered as a serious health problem with numerous side effects, including complications progressive in reducing glomerular filtration rate (GFR, imbalances in the homeostasis of the body and decreased quality of life and finally an increase in mortality due to cardiovascular problems. End-stage renal disease leads to hypocalcemia and hyperphosphatemia, that as a result of, parathyroid hormone (PTH will increased that secondary hyperparathyroidism will occurred eventually. So it is essential to routine examination of electrolytes in these patients. The current study have been done to determine the electrolytes in saliva as a non-invasive sample in hemodialysis patients in order to the saliva to be presented as an appropriate samples for clinical laboratories. Methods: In the present case-control study that has been performed at Imam Ali Hospital, Bojnord, North Khorasan Province, Iran, in the summer of 2016, 44 hemodialysis patients and 44 aged, gender and body mass index (BMI matched healthy controls were selected and then their cell count, Hb, HCT, iron, ferritin, total iron binding capacity (TIBC, glucose, CRP, triglycerides, cholesterol, urea, creatinine, calcium, phosphorus, potassium and PTH were measured. Results: Calcium and phosphorus were higher in hemodialysis patients in comparison to the control group. Furthermore, there are not any significant relationship between levels of calcium, phosphorus and potassium in both serum and saliva samples. In addition, we observed the positive relationship between PTH in serum as well as phosphorus and potassium in the saliva. Conclusion: The findings of current study have been shown that salivary levels of calcium and phosphorus in hemodialysis patients is higher than healthy people, therefor could be a non- invasive suitable marker for diagnosis. In addition, blood PTH

  1. Effect of nitrogen and potassium fertilization on radiocesium absorption in soybean

    International Nuclear Information System (INIS)

    Nihei, Naoto; Hirose, Atsushi; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    Radioactive materials that were released during the nuclear accident contaminated the soil and agricultural products. It has become clear that potassium fertilization is effective for the reduction of radiocesium concentrations in agricultural crops. However, apart from reports about potassium, few reports have examined how nitrogen, which has a large effect on crop growth, contributes to the radiocesium absorption. Focusing on this point, we studied the effect of nitrogen and potassium fertilizer on the radiocesium absorption in soybean seedlings. The concentration of radiocesium in the seed of soybean was higher in nitrogen-fertilized plants than in plants grown without fertilizer. The radiocesium concentration in the aboveground biomass increased as the amount of nitrogen fertilization increased. But the concentrations of radiocesium were higher in potassium-fertilized plants at high-N than in plants without added nitrogen and potassium. Further study is required to clarify the factors that incur an increase in radiocesium concentration in response to nitrogen fertilization. Special care is required to start farming soybean on fallow fields evacuated after the accident or on fields where rice has been grown before, which tend to have higher available nitrogen than the regularly cultivated fields. (author)

  2. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    Science.gov (United States)

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  3. Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices.

    Science.gov (United States)

    Nowak, Kristen L; Fried, Linda; Jovanovich, Anna; Ix, Joachim; Yaffe, Kristine; You, Zhiying; Chonchol, Michel

    2018-01-01

    Dietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow. The aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included. The age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 ± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≥1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ. In community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging. © 2018 S. Karger AG, Basel.

  4. Potassium and soot interaction in fast biomass pyrolysis at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Hofmann Larsen, Flemming; Shchukarev, Andrey

    2018-01-01

    2 reactivity was studied by thermogravimetric analysis. The XPS results showed that potassium incorporation with oxygen-containing surface groups in the soot matrix did not occur during high temperature pyrolysis. The potassium was mostly found as water-soluble salts such as KCl, KOH, KHCO3 and K2CO...... potassium amount was incorporated in the soot matrix during pyrolysis. Raman spectroscopy results showed that the carbon chemistry of biomass soot also affected the CO2 reactivity. The less reactive pinewood soot was more graphitic than herbaceous biomass soot samples with the disordered carbon structure...

  5. Stimulatory effects of neuronally released norepinephrine on renin release in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yasuo; Kawazoe, Shinka; Ichihara, Toshio; Shinyama, Hiroshi; Kageyama, Masaaki; Morimoto, Shiro (Osaka Univ. of Pharmaceutical Sciences (Japan))

    1988-10-01

    Extracellular high potassium inhibits renin release in vitro by increasing calcium concentrations in the juxtaglomerular cells. The authors found that the decreased response of renin release from rat kidney cortical slices in high potassium solution changed to a strikingly increased one in the presence of nifedipine at doses over 10{sup {minus}6} M. They then examined the stimulatory effect of extracellular high potassium in the presence of nifedipine on renin release. The enhancement of release was significantly suppressed either by propranolol or by metoprolol but not by prazosin. High potassium plus nifedipine-induced increase in renin release was markedly attenuated by renal denervation. The enhancing effect was not observed when the slices were incubated in calcium-free medium. Divalent cations such as Cd{sup 2+}, Co{sup 2+}, and Mn{sup 2+} blocked this enhancement in a concentration-dependent manner. High potassium elicited an increase in {sup 3}H efflux from the slices preloaded with ({sup 3}H)-norepinephrine. The increasing effect was not influenced by nifedipine but was abolished by the removal of extracellular calcium or by the addition of divalent cations. These observations suggest to us that the high potassium plus nifedipine-induced increase in renin release from the slices is mediated by norepinephrine derived from renal sympathetic nerves and that this neuronally released norepinephrine stimulates renin release via activation of {beta}-adrenoceptors.

  6. Skin decontamination efficacy of potassium ketoxime on rabbits exposed to sulfur mustard.

    Science.gov (United States)

    Sun, Jing-Hai; Sun, Pei-Pei; Zheng, Wei; Han, Song; Ying, Ying; Liu, Hong-Yan; Zhang, Cheng; Zhao, Bao-Quan; Zuo, Guo-Min; Lu, Hong; Zhong, Yu-Xu

    2015-03-01

    The chemical weapon sulfur mustard (SM) is a blister agent, and currently, there is no effective antidote. To evaluate the decontamination efficacy of potassium ketoxime against SM and preliminarily elucidate its decontamination mechanism. Potassium ketoxime reacted with SM, and SM residues were tested at different time intervals by T-135 colorimetry after the reaction. Rabbit skin was topically exposed to 2 mg/cm(2) SM, treated with potassium ketoxime 1 min later, and observed after 6, 12, and 24 h. Gas chromatography-mass spectroscopy was employed to screen and identify the main products of potassium ketoxime decontamination of SM. Potassium ketoxime had a great effect against SM contamination. With a mass ratio of decontaminant: SM of 50:1, decontamination rates against SM were 87.5% after 30 s, 95.9% after 1 min, and 99.0% after 5 min. Fifteen minutes after exposure to SM, the untreated group showed clear erythema lesions, whereas the experimental group showed no clear erythema lesions within 6 h. After 12 and 24 h, the areas of damaged skin in the experimental group were 0.038 and 0.125 cm(2), respectively, compared with 2.21 and 2.65 cm(2) in the control group. Histopathological analysis revealed that treatment with potassium ketoxime also reduced inflammation-induced damage. The results of this study indicate that potassium ketoxime reacted rapidly and completely with SM, and thus, it was found to be a suitable and effective skin decontaminant against SM. The decontamination reaction mechanism is mainly related to nucleophilic substitution.

  7. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    Science.gov (United States)

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  8. The effect of potassium nutrition on sup 137 Cs uptake in two upland species

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Harrison, A F; Poskitt, J M; Roberts, J D; Clint, G [Institute for Terrestrial Ecology, Grange-over-Sands (UK)

    1991-01-01

    Agrostis capillaris (Agrostis) and Calluna vulgaris (Calluna), two species with differing phenologies and widespread presence in upland areas of Britain where high Chernobyl fallout occurred, were grown in pot culture with varying concentrations of potassium in the rooting medium. Tissue content of potassium increased with increasing supply in both species. Roots, excised from these plants, were placed in a solution of {sup 137}Cs-labelled caesium chloride for 15 min to determine uptake potential. There were clear negative relationships between the rate of uptake of {sup 137}Cs by both species and (a) the concentration of potassium supplied and (b) plant issue potassium concentrations. With Agrotis, there was an approximately ten-fold difference in {sup 137}Cs uptake between potassium-deficient and optimum plants; with Calluna, it was approximately eight-fold. These results demonstrate the suppression of {sup 137}Cs uptake into plants by potassium supply. (author).

  9. Potassium bromate content of some baked breads sold in Kano ...

    African Journals Online (AJOL)

    Background: Potassium bromate is an additive used by some bakers to make the bread rise rapidly, create a good texture in the finished product and to give bulkiness to the dough. Objective: The main objective of this work was to assess the potassium bromate residues of some baked breads sold in some selected local ...

  10. Status of potassium permanganate - 2008

    Science.gov (United States)

    This is a brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Initial Label Claim (Columnaris on catfish/HSB): 1) Human Food Safety - Complete for all fin fish (June 1999). A hazard charac...

  11. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells.

    Science.gov (United States)

    Cai, Kaiyong; Lai, Min; Yang, Weihu; Hu, Ran; Xin, Renlong; Liu, Qing; Sung, K L Paul

    2010-06-01

    To improve the corrosion resistance and biological performance of commercially pure titanium (cp-Ti) substrates, potassium hydroxide was employed to modify the surfaces of titanium substrates, followed by biomimetic deposition of apatite on the substrates in a simulated body fluid. The morphologies of native and treated titanium substrates were characterized by field emission scanning electron microscopy (FE-SEM). Treatment with potassium hydroxide led to the formation of intermediate layers of potassium titanate on the surfaces of titanium substrates, while apatite was subsequently deposited onto the intermediate layer. The formation of potassium titanate and apatite was confirmed by thin-film X-ray diffraction and FE-SEM equipped with energy dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy showed that the formed potassium titanate layer improved the corrosion-resistance properties of titanium substrates. The influence of modified titanium substrates on the biological behavior of mesenchymal stem cells (MSCs), including osteogenic differentiation, was investigated in vitro. Compared with cp-Ti substrates, MSCs cultured onto alkali- and heat-treated titanium substrates and apatite-deposited titanium substrates displayed significantly higher (P<0.05 or P<0.01) proliferation and differentiation levels of alkaline phosphatase and osteocalcin in 7 and 14day cultures, respectively. More importantly, our results suggest that the modified titanium substrates have great potential for inducing MSCs to differentiate into osteoblasts. The approach presented here may be exploited to fabricate titanium-based implants. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Performance analysis of a potassium-base AMTEC cell

    International Nuclear Information System (INIS)

    Huang, C.; Hendricks, T.J.; Hunt, T.K.

    1998-01-01

    Sodium-BASE Alkali-Metal-Thermal-to-Electric-Conversion (AMTEC) cells have been receiving increased attention and funding from the Department of Energy, NASA and the United States Air Force. Recently, sodium-BASE (Na-BASE) AMTEC cells were selected for the Advanced Radioisotope Power System (ARPS) program for the next generation of deep-space missions and spacecraft. Potassium-BASE (K-BASE) AMTEC cells have not received as much attention to date, even though the vapor pressure of potassium is higher than that of sodium at the same temperature. So that, K-BASE AMTEC cells with potentially higher open circuit voltage and higher power output than Na-BASE AMTEC cells are possible. Because the surface tension of potassium is about half of the surface tension of sodium at the same temperature, the artery and evaporator design in a potassium AMTEC cell has much more challenging pore size requirements than designs using sodium. This paper uses a flexible thermal/fluid/electrical model to predict the performance of a K-BASE AMTEC cell. Pore sizes in the artery of K-BASE AMTEC cells must be smaller by an order of magnitude than in Na-BASE AMTEC cells. The performance of a K-BASE AMTEC cell was higher than a Na-BASE AMTEC cell at low voltages/high currents. K-BASE AMTEC cells also have the potential of much better electrode performance, thereby creating another avenue for potentially better performance in K-BASE AMTEC cells

  13. Effect of Nitrogen, Phosphorus and Potassium on the Dynamics of Synthesis of Nucleic Acids and Proteins in the Different Phases of Wheat Development

    Energy Technology Data Exchange (ETDEWEB)

    Martinovic, B.; Grujic-Injac, B.; Jelenic, Dj. [Institute for the Application of Nuclear Energy in Agriculture, Veterinary Medicine and Forestry, Belgrade (Yugoslavia)

    1968-07-01

    The influence of different nitrogen, phosphorus and potassium levels on the dynamics of RNA synthesis and raw proteins, as well as the uptake of phosphorus in the different phases of wheat development, were studied by applying radioactive phosphorus {sup 32}P . The rate of the uptake of phosphorus is proportional to its concentration in the nutrient supply in all phases of wheat development, in spite of the fact that the uptake of phosphorus during vegetation decreases with the plant's maturity. The influence of nitrogen on the uptake of phosphorus is inversely proportional to the concentration of nitrogen in the nutrient, while the influence of potassium depends on the relation of the amounts of nitrogen and phosphorus. The increased levels of nitrogen and phosphorus are directly proportional to the increase of RNA synthesis, and conversely the decrease of these levels decreases the RNA synthesis. The RNA synthesis decreases with the wheat's maturity during vegetation and is considerably greater in the first phase than in the later phases of the plant's development. Nitrogen and phosphorus have the greatest influence on protein synthesis; potassium has far less influence. These investigations show that the synthesis of nucleic acids and the building up of phosphorus in the RNA-fraction is directly proportional to the concentration of nitrogen in the nutrient supply, even though the uptake of phosphorus by wheat is not proportional to the increased nitrogen levels. Investigations now being carried out provide further explanations concerning the mutual relationship of some forms of RNA of the cells and the amino acids in the synthesis of certain protein fractions of wheat under the influence of different levels of nitrogen, phosphorus and potassium. (author)

  14. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  15. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  16. Effect of potassium and hypomagnesemia on insulin in the bovine

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, D.E.; Madsen, F.C.; Miller, J.K.; Hansard, S.L.

    1976-01-01

    Grass tetany in cattle has been associated with the consumption of early spring forages high in potassium (K) and low in magnesium (Mg). Alterations in serum Mg and K may affect intermediary carbohydrate metabolism, resulting in hypoglycemia and ketosis that often accompany grass tetany. We investigated these interrelationships by infusing potassium chloride (KCl) intravenously in normal (plasma Mg greater than 2.1 mg/100 ml) and Mg-deficient (plasma Mg less than .7 mg/100 ml) 9-month-old Holstein bull calves and intraruminally into nonpregnant, nonlactating Holstein cows. Plasma levels of both K and immunoreactive insulin (IRI) were elevated (P less than .01) by 1.14, 2, and 3 percent KCl (51, 64, and 135 mg K/kg) in calves and by 550 g KCl (440 mg K/kg body weight) in cows. Plasma K was lower (P less than .01) and IRI higher (P less than .01) in Mg-deficient calves than in normal calves during 2 percent KCl infusion. These results suggest that prolonged elevation of K and insulin in ruminants could lead to a series of metabolic disturbances that may play an important role in the etiology of grass tetany.

  17. Inhibition of PKC-dependent extracellular Ca{sup 2+} entry contributes to the depression of contractile activity in long-term pressure-overloaded endothelium-denuded rat aortas

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J.; López, R.M.; López, P.; Castillo, M.C.; Querejeta, E.; Ruiz, A.; Castillo, E.F. [Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF (Mexico)

    2014-08-01

    We examined the contractile responsiveness of rat thoracic aortas under pressure overload after long-term suprarenal abdominal aortic coarctation (lt-Srac). Endothelium-dependent angiotensin II (ANG II) type 2 receptor (AT{sub 2}R)-mediated depression of contractions to ANG II has been reported in short-term (1 week) pressure-overloaded rat aortas. Contractility was evaluated in the aortic rings of rats subjected to lt-Srac or sham surgery (Sham) for 8 weeks. ANG I and II levels and AT{sub 2}R protein expression in the aortas of lt-Srac and Sham rats were also evaluated. lt-Srac attenuated the contractions of ANG II and phenylephrine in the aortas in an endothelium-independent manner. However, lt-Srac did not influence the transient contractions induced in endothelium-denuded aortic rings by ANG II, phenylephrine, or caffeine in Ca{sup 2+}-free medium or the subsequent tonic constrictions induced by the addition of Ca{sup 2+} in the absence of agonists. Thus, the contractions induced by Ca{sup 2+} release from intracellular stores and Ca{sup 2+} influx through stored-operated channels were not inhibited in the aortas of lt-Srac rats. Potassium-elicited contractions in endothelium-denuded aortic rings of lt-Srac rats remained unaltered compared with control tissues. Consequently, the contractile depression observed in aortic tissues of lt-Srac rats cannot be explained by direct inhibition of voltage-operated Ca{sup 2+} channels. Interestingly, 12-O-tetradecanoylphorbol-13-acetate-induced contractions in endothelium-denuded aortic rings of lt-Srac rats were depressed in the presence but not in the absence of extracellular Ca{sup 2+}. Neither levels of angiotensins nor of AT{sub 2}R were modified in the aortas after lt-Srac. The results suggest that, in rat thoracic aortas, lt-Srac selectively inhibited protein kinase C-mediated activation of contraction that is dependent on extracellular Ca{sup 2+} entry.

  18. Potassium urinary excretion and dietary intake: a cross-sectional analysis in 8-10 year-old children.

    Science.gov (United States)

    Oliveira, Ana Catarina; Padrão, Patrícia; Moreira, André; Pinto, Mariana; Neto, Mafalda; Santos, Tânia; Madureira, Joana; Fernandes, Eduardo de Oliveira; Graça, Pedro; Breda, João; Moreira, Pedro

    2015-05-17

    Data from studies assessing the intake of potassium, and the concomitant sodium-to-potassium ratio are limited. The aim of this study was to evaluate potassium and sodium-to-potassium ratio intake in 8-10 year-old children. A cross-sectional survey was carried out from January to June 2014 and data from 163 children (81 boys) were included. Potassium intake was estimated by 24-h urine collection and coefficient of creatinine was used to validate completeness of urine collections. Urinary sodium and sodium-to-potassium ratio were also analysed. A 24-h dietary recall was used to provide information on dietary sources of potassium. Height and weight were measured according to international standards. The mean urinary potassium excretion was 1701 ± 594 mg/day in boys, and 1682 ± 541 mg/day in girls (p = 0.835); 8.0% of children met the WHO recommendations for potassium intake. The mean sodium excretion was 2935 ± 1075 mg/day in boys and 2381 ± 1045 mg/day in girls (p <0.001) and urinary sodium-to-potassium ratio was 3.2 ± 1.4 in boys, and 2.5 ± 1.1 in girls (p = 0.002). The mean fruit and vegetable intake was 353.1 ± 232.5 g/day in boys, and 290.8 ± 213.1 g/day in girls (p = 0.101). This study reported a low compliance of potassium intake recommendations in 8-10 year-old children. Health promotion interventions are needed in order to broaden public awareness of potassium inadequacy and to increase potassium intake.

  19. Development and manufacturing cycle for potassium nitrate and phosphate producing by conversion method

    Directory of Open Access Journals (Sweden)

    А. И. Алексеев

    2016-11-01

    Full Text Available Analysis of the Russian market of potash mineral fertilizers in 2014 and forecast for 2015-2019 show [http://businesstat.ru/images/demo/potash_fertilizers_russia.pdf] that today the most widespread potash fertilizer is  the potassium chloride. But chloride-free potassium-containing products are in the highest demand at the fertilizer market. One of possible solutions to this problem is recrystallization of the potassium chloride or potassium-containing mineral ores using nitrate-containing or phosphorus-containing salt products. The basis for justifying processing conditions for polymineral potassium-containing salt raw materials and salt mineral ores is the data on phase equilibria in multicomponent water-salt systems. Knowledge of the regularities of phase equilibria in multicomponent salt systems helps to develop optimal conditions for complex processing of polymineral natural and technical raw materials. Below it is present the results of technological calculations for processing potash mineral raw materials with account of the complex nature of its utilization. Based on the analysis of the solubility diagrams of mutual salt systems different cyclic processes for production of potassium dihydrogen phosphate and nitrate and sodium chloride from dihydrogen phosphate and sodium nitrate and potassium chloride by conversion method have been designed, and ways of these processes optimization have been proposed for reducing the cost of certain technical  operations.

  20. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista

    2017-07-01

    Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2  = 0.966 ∗∗∗ ), phenolic (R 2  = 0.741 ∗ ) and chlorophyll (R 2  = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2  = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Extracellular Histones Induce Chemokine Production in Whole Blood Ex Vivo and Leukocyte Recruitment In Vivo.

    Science.gov (United States)

    Westman, Johannes; Papareddy, Praveen; Dahlgren, Madelene W; Chakrakodi, Bhavya; Norrby-Teglund, Anna; Smeds, Emanuel; Linder, Adam; Mörgelin, Matthias; Johansson-Lindbom, Bengt; Egesten, Arne; Herwald, Heiko

    2015-12-01

    The innate immune system relies to a great deal on the interaction of pattern recognition receptors with pathogen- or damage-associated molecular pattern molecules. Extracellular histones belong to the latter group and their release has been described to contribute to the induction of systemic inflammatory reactions. However, little is known about their functions in the early immune response to an invading pathogen. Here we show that extracellular histones specifically target monocytes in human blood and this evokes the mobilization of the chemotactic chemokines CXCL9 and CXCL10 from these cells. The chemokine induction involves the toll-like receptor 4/myeloid differentiation factor 2 complex on monocytes, and is under the control of interferon-γ. Consequently, subcutaneous challenge with extracellular histones results in elevated levels of CXCL10 in a murine air pouch model and an influx of leukocytes to the site of injection in a TLR4 dependent manner. When analyzing tissue biopsies from patients with necrotizing fasciitis caused by Streptococcus pyogenes, extracellular histone H4 and CXCL10 are immunostained in necrotic, but not healthy tissue. Collectively, these results show for the first time that extracellular histones have an important function as chemoattractants as their local release triggers the recruitment of immune cells to the site of infection.

  2. Preparation of potassium tantalum fluoride from tantalum hydroxide

    International Nuclear Information System (INIS)

    Silva, F.T. da; Espinola, A.; Dutra, A.J.B.

    1987-01-01

    Potassium tantalum fluoride (K 2 TaF 7 ) is an intermediary product in the processing of tantaliferous materials; it is the basic raw material for both reduction processes in use presently: reduction by metallic sodium and electrolysis in molten halides. It is normally obtained from a fluorotantalic acid solution to which potassium ions are added the precipitation of white acicular crystals of K 2 TaF 7 . The conditions for precipitation and recrystallization were studied, and crystal characterization were done by scanning electron microscopy, X-ray diffraction and thermogravimetric and thermodifferential analyses. (Author) [pt

  3. Extracellular cell stress (heat shock) proteins-immune responses and disease: an overview.

    Science.gov (United States)

    Pockley, A Graham; Henderson, Brian

    2018-01-19

    Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory 'danger signals' for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'. © 2017 The Author(s).

  4. Sodium and potassium concentrations in floral nectars in relation to ...

    African Journals Online (AJOL)

    Sodium and potassium concentrations have been measured in nectar from a variety of flowering plants visited by honey bees (Apis mellifera capensis). In 18 plant species the mean sodium concentration was 9,8 ± 1,4 mmol (± S.E.), and the mean potassium concentration was 18,7 ± 4,3 mmol. These results are compared ...

  5. Degradation behaviour of potassium K-phosphite in apple trees

    OpenAIRE

    Kelderer, Markus; Matteazzi, Aldo; Casera, Claudio

    2008-01-01

    Although potassium phosphite is not registered for organic fruit production in Europe, it has long been regarded as a potential alternative to sulphur- and copper-containing fungicides. In 2005/2006 a field trial was carried out to verify the presence of residues of phosphoric acid over time in apples after applications of potassium phosphite at different time-points. No residues were present on fruits if treatments were applied before flowering, whereas treatments after flower...

  6. GENETIC DIVERSITY IN ARABICA COFFEE GROWN IN POTASSIUM-CONSTRAINED ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Waldênia de Melo Moura

    2015-02-01

    Full Text Available Potassium is a source of non-renewable natural resource, and is used in large quantities in coffee fertilization through basically imported formulations in the form of potassium chloride. An alternative to make production systems more sustainable would be obtaining cultivars more efficient in the use of this nutrient. This study aimed to evaluate the genetic diversity among 20 cultivars of coffee, in conditions of low availability of potassium to identify the best combinations for composing future populations to be used in breeding programs. The experiment was arranged in a randomized block design with three replications of nutrient solution. Agronomic characteristics and efficiencies of rooting, absorption, translocation, biomass production and potassium utilization were evaluated. The clustering analysis was based on the unweighted pair group method with arithmetic mean clustering algorithm (UPGMA and canonical variables. Variability was observed for most treatments. The multivariate procedures produced similar discrimination of genotypes, with the formation of five groups. Hybridizations between the cultivar Icatu Precoce IAC 3283 with cultivars Catuaí Amarelo IAC 62, Araponga MG1, Caturra Vermelho IAC 477, Catuaí Vermelho IAC 15, Rubi MG 1192 and Catucaí 785/15, and between the cultivar Tupi IAC 1669-33 with cultivars Icatu Vermelho IAC 4045, Acaiá Cerrado MG 1474 and Oeiras MG 6851 are the most promising for obtaining segregating populations or heterotic hybrids in breeding programs aiming more efficiency in potassium utilization.

  7. Soil salinity and yield of mango fertigated with potassium sources

    Directory of Open Access Journals (Sweden)

    Marcio A. Carneiro

    Full Text Available ABSTRACT Irrigated fruit crops have an important role in the economic and social aspects in the region of the Sub-middle São Francisco River Valley. Thus, the aim of this study was to evaluate soil salinity and the productive aspects of the mango crop, cv. Tommy Atkins, fertigated with doses of potassium chloride (KCl and potassium sulfate (K2SO4 during two crop cycles (from January to March 2014 and from January to March 2015. The experiment was carried out in a strip-split-plot design and five potassium doses (50, 75, 100, 125 and 150% of the recommended dose as plots and two potassium sources (KCl and K2SO4 as subplots, with four replicates. Soil electrical conductivity (EC, exchangeable sodium (Na+ and potassium (K+ contents and pH were evaluated. In addition, the number of commercial fruits and yield were determined. The fertilization with KCl resulted in higher soil EC compared with K2SO4 fertigation. Soil Na+ and K+ contents increased with increasing doses of fertilizers. K2SO4 was more efficient for the production per plant and yield than KCl. Thus, under the conditions of this study, the K2SO4 dose of 174.24 g plant-1 (24.89 kg ha-1 or 96.8% of recommendation, spacing of 10 x 7 m was recommended for a yield of 23.1 t ha-1 of mango fruits, cv. Tommy Atkins.

  8. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  9. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  10. Crystal structure transformation in potassium acrylate

    Science.gov (United States)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  11. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  12. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.

    Science.gov (United States)

    López, Daniel; Fischbach, Michael A; Chu, Frances; Losick, Richard; Kolter, Roberto

    2009-01-06

    We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria--including the B. subtilis nonribosomal peptide surfactin--that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

  13. Dietary sodium and potassium intake were associated with hypertension, kidney damage and adverse perinatal outcome in pregnant women with preeclampsia.

    Science.gov (United States)

    Yılmaz, Zehra Vural; Akkaş, Elif; Türkmen, Gülenay Gençosmanoğlu; Kara, Özgür; Yücel, Aykan; Uygur, Dilek

    2017-02-01

    In this study, we hypothesized that dietary salt and potassium intake may be related with blood pressure, kidney damage and perinatal outcome in pregnants with preeclampsia (PE). In total, 200 women (50 control women with healthy pregnancy, 150 women with PE) were recruited for the study. Daily salt and potassium intake was estimated based on calculation of 24-hour urinary sodium U[Na+] and potassium U[K+] excretion. U[Na+]/[K+] was calculated by dividing U[Na+] by U[K+]. At the end of the measurements, the pregnant women with PE (n=150) were divided into tertiles according to U[Na+]/[K+]: low Na/K group (n=50, mean U[Na+]/[K+]: 1,04±0,32), medium Na/K group (n=50, mean U[Na+]/[K+]: 2,49± 0,54), high Na/K group (n=50, mean U[Na+]/[K+]: 6,62±3,41). The mean SBP and DBP levels were significantly lower in low Na/K group compared with medium or high Na/K groups (p=0.024, p=0.0002; respectively). Serum creatinine was significantly lower in low Na/K group than high Na/K group (p=0.025). Frequency of severe preeclampsia is lower in low Na/K group than medium or high Na/K groups (p=0.002, p=0.0001; respectively). Birth weight and gestational age at birth were higher in low Na/K group compared with high Na/K group (p=0.045, p=0.0002; respectively). After adjusting for covariates, SBP and DBP and creatinine levels were independently associated with 24 hours urinary [Na+]/[K+] Conclusion: These findings suggest that pregnant with PE with high dietary salt and low potassium intake may have greater maternal and neonatal morbidity risk than pregnant with PE under low dietary salt and high potassium intake.

  14. Thanatochemistry: Study of vitreous humor potassium

    African Journals Online (AJOL)

    Nilesh Keshav Tumram

    2014-02-18

    Feb 18, 2014 ... particularly vitreous potassium has received most attention. It is known that ... respect to different age and sex at different death intervals. The details regarding the ... Analyser by the Ion selective method. The reagents used ...

  15. Scanning Tunneling Spectroscopy of Potassium on Graphene

    Science.gov (United States)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  16. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  17. Extracellular nucleotide derivatives protect cardiomyctes against hypoxic stress

    DEFF Research Database (Denmark)

    Golan, O; Issan, Y; Isak, A

    2011-01-01

    assures cardioprotection. Treatment with extracellular nucleotides, or with tri/di-phosphate, administered under normoxic conditions or during hypoxic conditions, led to a decrease in reactive oxygen species production. CONCLUSIONS: Extracellular tri/di-phosphates are apparently the molecule responsible...

  18. Efficacy and safety of topical application of 15% and 10% potassium hydroxide for the treatment of Molluscum contagiosum.

    Science.gov (United States)

    Teixidó, Concepció; Díez, Olga; Marsal, Josep R; Giner-Soriano, Maria; Pera, Helena; Martinez, Mireia; Galindo-Ortego, Gisela; Schoenenberger, Joan A; Real, Jordi; Cruz, Ines; Morros, Rosa

    2018-02-26

    Molluscum contagiosum is the most common skin infection in children. One topical treatment used for Molluscum contagiosum is potassium hydroxide. The objective of this study was to compare the efficacy of potassium hydroxide topical treatment at different concentrations with that of placebo in terms of complete clearing of Molluscum contagiosum lesions and to assess the safety and tolerance of potassium hydroxide topical treatment. This was a double-blind randomized clinical trial of three treatments (potassium hydroxide 10%, potassium hydroxide 15%, placebo) applied once daily up to complete clearing of lesions (maximum duration 60 days) in 53 children aged 2-6 years in primary health care pediatric offices in Catalonia, Spain. In the intention-to-treat analysis, potassium hydroxide 10% (58.8%, P = .03) and potassium hydroxide 15% (64.3%, P = .02) had efficacy superior to that of placebo (18.8%). The number of Molluscum contagiosum lesions was significantly reduced with potassium hydroxide 10% and 15%. The main efficacy outcome was achieved in 58.8% of children in the potassium hydroxide 10% group (P = .03 vs placebo) and in 64.3% of children in the potassium hydroxide 15% group (P = .02 vs placebo). Potassium hydroxide 10% and 15% were not significantly different in efficacy from each other. Potassium hydroxide 10% and placebo were better tolerated than potassium hydroxide 15%. No adverse events were reported during the study period. Potassium hydroxide 10% and 15% demonstrated high rates of efficacy in clearing Molluscum contagiosum lesions, with potassium hydroxide 10% being better tolerated. © 2018 Wiley Periodicals, Inc.

  19. Potassium tetracyanidoaurate(III monohydrate: a redetermination

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsushita

    2017-03-01

    Full Text Available The structure of the title metal complex salt, K[Au(CN4]·H2O, has been redetermined using X-ray diffraction data at 173 K in order to improve the precision. The previous determination was based on neutron diffraction data [Bertinotti & Bertinotti (1970. Acta Cryst. B26, 422–428]. The title compound crystallizes in the space group P212121 with one potassium cation, one [Au(CN4]− anion and one water molecule in the asymmetric unit. The AuIII atom lies on a general position and has an almost square-planar coordination sphere defined by four cyanide ligands. Interactions between the potassium cation and N atoms of the complex anion, as well as O—H...N hydrogen bonds, lead to the formation of a three-dimensional framework structure.

  20. Nutritional and taste characteristics of low-potassium lettuce developed for patients with chronic kidney diseases

    OpenAIRE

    Yoshida, Takuya; Sakuma, Kozue; Kumagai, Hiromichi

    2014-01-01

    Dietary potassium restriction is recommended for chronic kidney disease (CKD) patients with hyperkalemia. Boiling or soaking vegetables in water is known to decrease their potassium content. However, these methods can also reduce the quantity of other nutrients. Recently, low-potassium (LK) lettuce has been developed for CKD patients with hyperkalemia. This study compared the potassium content, other nutritional values, and taste characteristics of LK lettuce with those of normal lettuce. The...

  1. Regulation of the Na(+)-K+ pump activity and estimation of the reserve capacity in intact rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben

    1990-01-01

    Evidence is provided that regulation of the Na(+)-K+ pump activity in rat peritoneal mast cells occurs mainly through stimulation of the pump from inside the plasma membrane by sodium. It is demonstrated that there is a large reserve capacity for the exchange of intracellular sodium...... with extracellular potassium in these cells. The maximal pump activity was estimated to be 3230 pmol/10(6) cells per min and Km for extracellular potassium was 1.5 mM....

  2. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  3. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    Science.gov (United States)

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  4. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis.

    Science.gov (United States)

    Rex, A; Bert, B; Fink, H; Voigt, J-P

    2009-10-19

    Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.

  5. Coulomb interaction rules timescales in potassium ion channel tunneling

    Science.gov (United States)

    De March, N.; Prado, S. D.; Brunnet, L. G.

    2018-06-01

    Assuming the selectivity filter of KcsA potassium ion channel may exhibit quantum coherence, we extend a previous model by Vaziri and Plenio (2010 New J. Phys. 12 085001) to take into account Coulomb repulsion between potassium ions. We show that typical ion transit timescales are determined by this interaction, which imposes optimal input/output parameter ranges. Also, as observed in other examples of quantum tunneling in biological systems, the addition of moderate noise helps coherent ion transport.

  6. Inward-rectifying potassium (Kir) channels regulate pacemaker activity in spinal nociceptive circuits during early life

    Science.gov (United States)

    Li, Jie; Blankenship, Meredith L.; Baccei, Mark L.

    2013-01-01

    Pacemaker neurons in neonatal spinal nociceptive circuits generate intrinsic burst-firing and are distinguished by a lower “leak” membrane conductance compared to adjacent, non-bursting neurons. However, little is known about which subtypes of leak channels regulate the level of pacemaker activity within the developing rat superficial dorsal horn (SDH). Here we demonstrate that a hallmark feature of lamina I pacemaker neurons is a reduced conductance through inward-rectifying potassium (Kir) channels at physiological membrane potentials. Differences in the strength of inward rectification between pacemakers and non-pacemakers indicate the presence of functionally distinct Kir currents in these two populations at room temperature. However, Kir currents in both groups showed high sensitivity to block by extracellular Ba2+ (IC50 ~ 10 µM), which suggests the presence of ‘classical’ Kir (Kir2.x) channels in the neonatal SDH. The reduced Kir conductance within pacemakers is unlikely to be explained by an absence of particular Kir2.x isoforms, as immunohistochemical analysis revealed the expression of Kir2.1, Kir2.2 and Kir2.3 within spontaneously bursting neurons. Importantly, Ba2+ application unmasked rhythmic burst-firing in ~42% of non-bursting lamina I neurons, suggesting that pacemaker activity is a latent property of a sizeable population of SDH cells during early life. In addition, the prevalence of spontaneous burst-firing within lamina I was enhanced in the presence of high internal concentrations of free Mg2+, consistent with its documented ability to block Kir channels from the intracellular side. Collectively, the results indicate that Kir channels are key modulators of pacemaker activity in newborn central pain networks. PMID:23426663

  7. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    Science.gov (United States)

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization

    DEFF Research Database (Denmark)

    Liang, Bo; Nissen, Jakob D; Laursen, Morten

    2014-01-01

    The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle.......The purpose of this study was to investigate the functional role of G-protein-coupled inward rectifier potassium (GIRK) channels in the cardiac ventricle....

  9. Pancreatitis associated with potassium bromide/phenobarbital combination therapy in epileptic dogs.

    OpenAIRE

    Gaskill, C L; Cribb, A E

    2000-01-01

    In a retrospective study, at least 10% of dogs receiving potassium bromide/phenobarbital combination therapy, compared with 0.3% of dogs receiving phenobarbital monotherapy, had probable pancreatitis. Pancreatitis may be a more frequent and more serious adverse effect of potassium bromide/phenobarbital combination therapy than has been reported previously.

  10. Respiratory symptoms and bronchial responsiveness are related to dietary salt intake and urinary potassium excretion in male children.

    Science.gov (United States)

    Pistelli, R; Forastiere, F; Corbo, G M; Dell'Orco, V; Brancato, G; Agabiti, N; Pizzabiocca, A; Perucci, C A

    1993-04-01

    To investigate whether dietary salt intake and urinary sodium and potassium levels are related to respiratory symptoms and bronchial responsiveness, a cross-sectional study among 2593 subjects aged 9 to 16 was conducted in four communities of the Latium region (Italy). Questionnaires were administered to the parents, urine samples were collected, lung function, methacholine challenge tests and prick tests were performed. Information about familial and personal dietary salt use and respiratory health was collected from the parents of 2439 (94%) subjects. A total of 2020 methacholine challenge tests and 916 urinary sodium and potassium levels were available for analysis. Personal table salt use was strongly related to cough and phlegm apart from colds (adjusted odds ratios, OR, 1.87, 95% confidence intervals, CI, 1.20-2.90), wheezing apart from colds (OR, 2.19, 95% CI, 1.27-3.77), wheezing with dyspnoea (OR, 1.45, 95% CI, 0.98-2.12) and wheezing after exercise (OR, 2.16, 95% CI, 1.35-3.44). These associations were mainly found in boys. Use of familial table salt and canned food showed no relation to respiratory symptoms. Increased bronchial responsiveness was associated with a higher urinary potassium excretion in boys, but not with urinary sodium. In conclusion, personal table salt use is related to an increased prevalence of bronchial symptoms; an increase in bronchial responsiveness among those with higher potassium excretion also seems to be implied. Although it is difficult to interpret the results of this study in causal terms, the findings might be relevant to the distribution of bronchial symptoms and diseases in the population.

  11. Determination of lithium and potassium in uranium oxide powders and pellets by Flame Atomic Emission Spectrometric method

    International Nuclear Information System (INIS)

    Jat, J.R.; Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.

    2012-01-01

    The present paper describes a method developed at Control Laboratory, NFC which includes prior separation of lithium and potassium from uranium matrix before their measurements. Solvent extraction, using Tri-n-Butyl Phosphate (TBP) in CCI 4 followed by Tri-n-Octyl Phosphine Oxide (TOPO) in CCI 4 , is employed for prior separation of Li and K. The resultant aqueous solution was analyzed by Flame-Atomic Emission Spectrometric (AES) method. Solvent extraction conditions are optimized for measurement of Li and K in the same aliquot. Experimental conditions such as instrument calibration, flame condition, fuel flow, sample flow rate through nebulizer, burner height etc. are also optimized. Under the optimal condition the detection limits achieved for lithium is 0.02 ppm and 0.2 ppm for potassium. A RSD of ± 3 % for Li at 0.05 ppm and ± 4% for K at 1 ppm level has been achieved in this method. The results of lithium in the sample are compared with the values obtained by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Similarly, values of potassium are compared with Flame-Atomic Absorption Spectrometry (Flame-AAS) technique. The comparisons are in good agreement. The above method is simple, sensitive, reproducible and can be used for measurement of lithium and potassium in UO 2 powder and pellets on regular basis

  12. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  13. Effects of water soaking and/or sodium polystyrene sulfonate addition on potassium content of foods

    OpenAIRE

    Picq, Christian; Asplanato, M.; Bernillon, N.; Fabre, C.; Roubeix, M.; Ricort, J. M.

    2014-01-01

    In this study, we determined, by atomic absorption spectrophotometry, the potassium amount leached by soaking or boiling foods identified by children suffering from chronic renal failure as "pleasure food'' and that they cannot eat because of their low-potassium diet, and evaluated whether addition of sodium polystyrene sulfonate resin (i.e. Kayexalate (R)) during soaking or boiling modulated potassium loss. A significant amount of potassium content was removed by soaking (16% for chocolate a...

  14. Performance Evaluation of Refractory Composite Coatings in Potassium Rich Environment

    Directory of Open Access Journals (Sweden)

    Kristina BRINKIENĖ

    2016-09-01

    Full Text Available A laboratory scale method was used to study the performance of reinforced cement composites in potassium rich environment of biomass combustion. Buckwheat husk (BH was used as potential source of unexploited biomass product applicable as biomass derived fuel. In order to enhance the alkali effect on the properties of the investigated materials, the solution of potassium carbonate (K2CO3 was selected as potassium rich aggressive environment. Two reinforced cement composites as potential repair coatings for restoration of damaged refractory surfaces with different composition of aggregate were used in corrosion tests. Performance of refractory coatings was evaluated by analysing the microstructure of the treated composites as well as mechanical properties. Energy-dispersive X-ray spectroscopy (SEM/EDS and optical microscopy were used to study the microstructure in the corroded region of the refractory coatings. Long term studies in the solution of 1M K2CO3 for 56 months have demonstrated that composite with the additive of fluid cracking catalyst of oil refinery and petrochemical industries is more durable in the potassium rich environment.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.8348

  15. Effect of osmolarity on potassium transport in isolated cerebral microvessels

    International Nuclear Information System (INIS)

    Lin, J.D.

    1988-01-01

    Potassium transport in microvessels isolated from rat brain by a technique involving density gradient centrifugation was studied in HEPES buffer solutions of varying osmolarity from 200 to 420 mosmols, containing different concentration of sodium chloride, choline chloride, or sodium nitrate. The flux of 86 Rb into and out of the endothelial cells was estimated. Potassium influx was very sensitive to the osmolarity of the medium. Ouabain-insensitive K-component was reduced in hypotonic medium and was increased in medium made hypertonic with sodium chloride or mannitol. Choline chloride replacement caused a large reduction in K influx. Potassium influx was significant decrease when nitrate is substituted for chloride ion in isotonic and hypertonic media, whereas a slight decrease was found in hypotonic medium. The decrease of K influx in the ion-replacement medium is due to a decrement of the ouabain-insensitive component. Potassium efflux was unchanged in hypotonic medium but was somewhat reduced in hypertonic medium. The marked effect of medium osmolarity of K fluxes suggests that these fluxes may be responsible for the volume regulatory K movements. The possible mechanism of changes of K flux under anisotonic media is also discussed

  16. Increased tenascin C and Toll-like receptor 4 levels in visceral adipose tissue as a link between inflammation and extracellular matrix remodeling in obesity.

    Science.gov (United States)

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Ramírez, Beatriz; Rotellar, Fernando; Valentí, Victor; Silva, Camilo; Gil, María J; Salvador, Javier; Frühbeck, Gema

    2012-10-01

    Obesity is associated with an altered inflammatory and extracellular matrix (ECM) profile. Tenascin C (TNC) is an ECM glycoprotein with proinflammatory effects. We aimed to explore the expression levels of TNC in adipose tissue analyzing the contribution of adipocytes and stromovascular fraction cells (SVFC) as well as its impact on inflammation and ECM regulation. We also analyzed the effect of the stimulation with TNF-α and lipopolysaccharide (LPS) on both SVFC and adipocytes. Samples obtained from 75 subjects were used in the study. Expression levels of TNC, TLR4, MMP2, and MMP9 were analyzed in visceral adipose tissue (VAT) as well as in both adipocytes and SVFC. In addition, Tnc expression was measured in two mice models of obesity. We show, for the first time, that VAT expression levels of TNC are increased in normoglycemic and type 2 diabetic obese patients (Pobese patients with nonalcoholic steatohepatitis (Pobesity were significantly increased (Pexogenous TNC induced (Pobesity via visceral adipose tissue inflammation representing a link with ECM remodeling.

  17. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    using sodium tetraphenyl boron at 5 percent level and ammonium acetate at 1 percent level, both before wheat heading. Soil potassium content did not differ significantly in this stage when potassium excess method was used. With all methods of soil potassium determination, soil potassium did not differ significantly at harvest. Soil potassium with moldboard-ploughing was less than all other tillage methods at before plant heading. Thomas et al. (55 and Martin Rhoda et al.(40 also stated that soil potassium was greater with no-tillage method. Lopez Phando & Pardo. (34 similarly stated that soil potassium with no-tillage method was greater than moldboard ploughing. According to results of the current experiment, soil mechanical resistance was further reduced as tillage intensity was increased. Soil mechanical resistance with moldboard ploughing was less than other tillage methods between early heading stage and harvest. Lower mechanical resistance with increased tillage intensity increased root growth and soil potassium uptake by wheat grain and straw, leading to greater yield production in accordance with results by Fakori (16. Conclusions Soil tillage with moldboard ploughing reduced mechanical resistance, increased root density (and possibly soil-root contact surface area and soil potassium uptake which results a greater wheat head density and yield and also a lower soil potassium with different methods (potassium excess determination and bulk soil solution potassium concentration methods and also using soidium tetraphenyl boron, ammonium acetate extractants at before heading which is the stage for maximal growth and nutrient accumulation rate. Soil extractants maybe used for plant nutrient uptake and yield predictions in a plant canopy, when plant nutrient uptake has a positive significant correlation with soil potassium and treatments do not affect root growth and the mentioned correlation.

  18. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  19. Inhibition of large conductance calcium-dependent potassium ...

    African Journals Online (AJOL)

    conductance, calcium and voltage- dependent potassium (BKCa) channels thereby promoting vasoconstriction. Our results show that the Rho-kinase inhibitor, Y-27632, induced concentration-dependent relaxation in rat mesenteric artery.

  20. Microgreens Production with Low Potassium Content for Patients with Impaired Kidney Function

    Directory of Open Access Journals (Sweden)

    Massimiliano Renna

    2018-05-01

    Full Text Available Chronic kidney disease represents a global problem together with other so-called ‘lifestyle-related diseases’. Unlike the healthy population, for the patients with impaired kidney function, it is of course prudent to recommend a restriction of high-potassium foods. Thus, it is suggested to limit the consumption of vegetables, because they generally contain high concentrations of potassium. At the same time, a lower consumption of vegetables reduces the intake of healthy compounds such as vitamins, fibers, and antioxidants, which also reduces the vegetables’ potential benefit in chronic kidney disease patients. Microgreens are an emerging class of specialty crop that represent a nutritious and refined food. In this study, for the first time, some chicory (local variety ‘Molfetta’ and cultivar ‘Italico a costa rossa’ and lettuce (cultivar ‘Bionda da taglio’ genotypes were grown using a hydroponic system with different potassium (K levels (0, 29.1, 58.4, and 117 mg L−1 in order to produce microgreens with a low potassium content. The crop performances, cations content, proximate composition, and antioxidant activity were analyzed. Independent of the genotype, the K content in the microgreens was successfully reduced using a nutrient solution (NS, without K or with 29.1 mg K L−1, which supplied between 103 and 129 mg of K 100 g−1 FW (about 7.7–8.6% of the K daily intake that was recommended for the patients that were affected by chronic kidney disease. Whereas, 100 g of microgreens that were grown by using an NS with 58.4 or 117 mg K L−1 supply between 225 and 250 mg of K (about 15.8–16.5% of the K daily intake recommended for patients affected by chronic kidney disease. No differences were observed in terms of the shoot height, dry matter, proximate composition, and visual quality. A slightly lower yield was observed using an NS with a K concentration <58.4 mg L−1. These results suggest that by using an NS without K