WorldWideScience

Sample records for extracellular compounds including

  1. Catabolism of host-derived compounds during extracellular bacterial infections.

    Science.gov (United States)

    Meadows, Jamie A; Wargo, Matthew J

    2014-02-01

    Efficient catabolism of host-derived compounds is essential for bacterial survival and virulence. While these links in intracellular bacteria are well studied, such studies in extracellular bacteria lag behind, mostly for technical reasons. The field has identified important metabolic pathways, but the mechanisms by which they impact infection and in particular, establishing the importance of a compound's catabolism versus alternate metabolic roles has been difficult. In this review we will examine evidence for catabolism during extracellular bacterial infections in animals and known or potential roles in virulence. In the process, we point out key gaps in the field that will require new or newly adapted techniques.

  2. Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Slaveykova, Vera I., E-mail: vera.slaveykova@epfl.c [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland); Parthasarathy, Nalini [Department of Inorganic, Analytic and Applied Chemistry, University of Geneva, Sciences II, 30 Quai Ernest Ansermet, 1211 Geneva 4 (Switzerland); Dedieu, Karine; Toescher, Denis [Environmental Biophysical Chemistry, IIE-ENAC, Ecole Polytechnique Federale de Lausanne (EPFL), Station 2, CH-1015 Lausanne (Switzerland)

    2010-08-15

    The role of bacterially derived compounds in Cd(II) complexation and uptake by bacterium Sinorhizobium meliloti wild type (WT) and genetically modified ExoY-mutant, deficient in exopolysaccharide production, was explored combining chemical speciation measurements and assays with living bacteria. Obtained results demonstrated that WT- and ExoY-strains excreted siderophores in comparable amounts, while WT-strain produced much higher amount of exopolysaccharides and less exoproteins. An evaluation of Cd(II) distribution in bacterial suspensions under short term exposure conditions, showed that most of the Cd is bound to bacterial surface envelope, including Cd bound to the cell wall and to the attached extracellular polymeric substances. However, the amount of Cd bound to the dissolved extracellular compounds increases at high Cd(II) concentrations. The implications of these findings to more general understanding of the Cd(II) fate and cycling in the environment is discussed. - Bacterial excreted extracellular compounds play minor role in Cd(II) sequestration relative to bacteria.

  3. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.; Harrup, Mason K.; Gering, Kevin L.

    2017-09-12

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  4. Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature.

    Science.gov (United States)

    Barkalina, Natalia; Jones, Celine; Wood, Matthew J A; Coward, Kevin

    2015-01-01

    Currently, even the most sophisticated methods of assisted reproductive technology (ART) allow us to achieve live births in only approximately 30% of patients, indicating that our understanding of the fine mechanisms underlying reproduction is far from ideal. One of the main challenges associated with studies of gamete structure and function is that these cells are remarkably resistant towards the uptake of exogenous substances, including 'molecular research tools' such as drugs, biomolecules and intracellular markers. This phenomenon can affect not only the performance of reproductive biology research techniques, but also the outcomes of the in vitro handling of gametes, which forms the cornerstone of ART. Improvement of intra-gamete delivery in a non-aggressive fashion is vital for the investigation of gamete physiology, and the advancement of infertility treatment. In this review, we outline the current state of nanomaterial-mediated delivery into gametes and embryos in vitro, and discuss the potential of a novel exciting drug delivery technology, based upon the use of targeted 'natural' nanoparticles known as extracellular vesicles (EVs), for reproductive science and ART, given the promising emerging data from other fields. A comprehensive electronic search of PubMed and Web of Science databases was performed using the following keywords: 'nanoparticles', 'nanomaterials', 'cell-penetrating peptides', 'sperm', 'oocyte', 'egg', 'embryo', 'exosomes', 'microvesicles', 'extracellular vesicles', 'delivery', 'reproduction', to identify the relevant research and review articles, published in English up to January 2015. The reference lists of identified publication were then scanned to extract additional relevant publications. Biocompatible engineered nanomaterials with high loading capacity, stability and selective affinity represent a potential versatile tool for the minimally invasive internalization of molecular cargo into gametes and embryos. However, it is

  5. Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity.

    Directory of Open Access Journals (Sweden)

    Harold J G Meijer

    Full Text Available In eukaryotes phospholipase D (PLD is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol.

  6. Potential role for extracellular glutathione-dependent ferric reductase in utilization of environmental and host ferric compounds by Histoplasma capsulatum.

    Science.gov (United States)

    Timmerman, M M; Woods, J P

    2001-12-01

    The mammalian host specifically limits iron during Histoplasma capsulatum infection, and fungal acquisition of iron is essential for productive infection. H. capsulatum expresses several iron acquisition mechanisms under iron-limited conditions in vitro. These components include hydroxamate siderophores, extracellular glutathione-dependent ferric reductase enzyme, extracellular nonproteinaceous ferric reductant(s), and cell surface ferric reducing agent(s). We examined the relationship between these mechanisms and a potential role for the extracellular ferric reductase in utilization of environmental and host ferric compounds through the production of free, soluble Fe(II). Siderophores and ferric reducing agents were coproduced under conditions of iron limitation. The H. capsulatum siderophore dimerum acid and the structurally similar basidiomycete siderophore rhodotorulic acid acted as substrates for the ferric reductase, and rhodotorulic acid removed Fe(III) bound by transferrin. The mammalian Fe(III)-binding compounds hemin and transferrin served both as substrates for the ferric reductase and as iron sources for yeast-phase growth at neutral pH. In the case of transferrin, there was a correlation between the level of iron saturation and efficacy for both of these functions. Our data are not consistent with an entirely pH-dependent mechanism of iron acquisition from transferrin, as has been suggested to occur in the macrophage phagolysosome. The foreign siderophore ferrioxamine B also acted as a substrate for the ferric reductase, while the foreign siderophore ferrichrome did not. Both ferrioxamine and ferrichrome served as iron sources for yeast- and mold-phase growth, the latter presumably by some other acquisition mechanism(s).

  7. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    Directory of Open Access Journals (Sweden)

    Aline B. M Vaz

    2011-09-01

    Full Text Available The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia, Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.

  8. Extracellular magnesium decreases the secretory response of rat peritoneal mast cells to compound 48/80 in vitro

    DEFF Research Database (Denmark)

    Bertelsen, Niels Haldor; Johansen, Torben

    1991-01-01

    Exposure of rat peritoneal mast cells to magnesium in the absence of extracellular calcium resulted in a time- and dose-dependent decrease in the secretory response induced by compound 48/80. The decrease was prevented by a low extracellular concentration of calcium. Furthermore, the decreased...... and the secretory stimulus. A dose-dependent decrease in antigen induced histamine secretion that was reversed by calcium was also observed. Exposure of the mast cells to magnesium for 15 min resulted in a parallel decrease in histamine secretion and in the cellular content of 45Ca2+. These observations suggest...... secretory responsiveness was dose-dependently restored by the addition of calcium to the cells simultaneously with compound 48/80. Preincubation with magnesium also inhibited antigen-induced histamine secretion in a dose-dependent manner. This was reversed by the simultaneous addition of calcium...

  9. Extracellular Signal-Regulated Kinase Is a Direct Target of the Anti-Inflammatory Compound Amentoflavone Derived from Torreya nucifera

    Directory of Open Access Journals (Sweden)

    Jueun Oh

    2013-01-01

    Full Text Available Amentoflavone is a biflavonoid compound with antioxidant, anticancer, antibacterial, antiviral, anti-inflammatory, and UV-blocking activities that can be isolated from Torreya nucifera, Biophytum sensitivum, and Selaginella tamariscina. In this study, the molecular mechanism underlying amentoflavone’s anti-inflammatory activity was investigated. Amentoflavone dose dependently suppressed the production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW264.7 cells stimulated with the TLR4 ligand lipopolysaccharide (LPS; derived from Gram-negative bacteria. Amentoflavone suppressed the nuclear translocation of c-Fos, a subunit of activator protein (AP-1, at 60 min after LPS stimulation and inhibited the activity of purified and immunoprecipitated extracellular signal-regulated kinase (ERK, which mediates c-Fos translocation. In agreement with these results, amentoflavone also suppressed the formation of a molecular complex including ERK and c-Fos. Therefore, our data strongly suggest that amentoflavone’s immunopharmacological activities are due to its direct effect on ERK.

  10. Relationship between particulate and extracellular carbon compounds of phytoplankton photosynthesis in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Pant, A.

    The influence of seasonal environmental conditions on the formation and release of organic compounds by photosynthesizing phytoplankton was studied in a tropical estuary. The pattern of 14C fixation into the various intracellular compounds changed...

  11. Extracellular polysaccharides as target compounds for the immunological detection of Aspergillus and Penicillium in food.

    NARCIS (Netherlands)

    Kamphuis, H.J.

    1992-01-01

    This thesis is devoted to the immunological detection of Aspergillus and Penicillium in food products. More specifically, the immunogenicity, antigenicity, production and structure of the water-soluble extracellular polysaccharides (EPS) of these moulds have been studied, and a latex-agglutination a

  12. Extracellular polysaccharides as target compounds for the immunological detection of Aspergillus and Penicillium in food.

    OpenAIRE

    Kamphuis, H.J.

    1992-01-01

    This thesis is devoted to the immunological detection of Aspergillus and Penicillium in food products. More specifically, the immunogenicity, antigenicity, production and structure of the water-soluble extracellular polysaccharides (EPS) of these moulds have been studied, and a latex-agglutination assay, based on the detection of EPS has been developed.For the detection of moulds many methods are available, each of them with specific advantages and disadvantages, mostly related to reliability...

  13. Evaluating filterability of different types of sludge by statistical analysis: The role of key organic compounds in extracellular polymeric substances.

    Science.gov (United States)

    Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan

    2017-03-01

    An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability.

  14. Evaporation of hydrocarbon compounds, including gasoline and diesel fuel, on heated metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Fardad, D.; Ladommatos, N. [Brunel Univ., Dept. of Mechanical Engineering, Uxbridge (United Kingdom)

    1999-11-01

    An investigation was carried out on the evaporation of various hydrocarbon liquids on heated surfaces. Single and multicomponent hydrocarbon compounds were used, including hexane, heptane, octane, a hexane-octane mixture, gasoline and diesel fuel. The heated surface included aluminium, mild steel, cast iron and copper. Tests were also carried out with different surface textures and surface coatings. The motivation for this work was a desire to improve understanding of the evaporation processes taking place in the inlet port and, to a lesser extent, within the combustion chamber of internal combustion engines. The hydrocarbon compounds were released on the heated surfaces as individual small droplets, and the subsequent evaporation was recorded using a CCD (charge coupled device) camera. These observations were then used to ascertain the effects of material, surface temperature, surface textures, surface coating and liquid composition on the heat flux and other aspects of droplet behaviour. (Author)

  15. Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions

    Directory of Open Access Journals (Sweden)

    Takuro Kobayashi

    2015-07-01

    Full Text Available The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance.

  16. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff.

  17. 21 CFR 700.13 - Use of mercury compounds in cosmetics including use as skinbleaching agents in cosmetic...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Use of mercury compounds in cosmetics including...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.13 Use of mercury compounds in cosmetics..., mercury compounds have also been widely used as preservatives in cosmetics such as hand and body...

  18. Phase equilibria in ionic liquid-aromatic compound mixtures, including benzene fluorination effects.

    Science.gov (United States)

    Blesic, Marijana; Lopes, José N Canongia; Pádua, Agílio A H; Shimizu, Karina; Gomes, Margarida F Costa; Rebelo, Luís Paulo N

    2009-05-28

    This work extends the scope of previous studies on the phase behavior of mixtures of ionic liquids with benzenes or its derivatives by determining the solid-liquid and liquid-liquid phase diagrams of mixtures containing an ionic liquid and a fluorinated benzene. The systems studied include 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide plus hexafluorobenzene or 1,3,5-trifluorobenzene and 1-ethyl-3-methylimidazolium triflate or N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide plus benzene. The phase diagrams exhibit different kinds of solid-liquid behavior: the (usual) occurrence of eutectic points; the (not-so-usual) presence of congruent melting points and the corresponding formation of inclusion crystals; or the observation of different ionic liquid crystalline phases (polymorphism). These different types of behavior can be controlled by temperature annealing during crystallization or by the nature of the aromatic compound and can be interpreted, at a molecular level, taking into account the structure of the crystals or liquid mixtures, together with the unique characteristics of ionic liquids, namely the dual nature of their interactions with aromatic compounds.

  19. Structure map including off-stoichiometric and ternary sp-d-valent compounds

    Science.gov (United States)

    Hammerschmidt, T.; Bialon, A. F.; Drautz, R.

    2017-10-01

    Structure maps predict the crystal structure of a compound from the knowledge of constituent elements and chemical composition. We recently developed a highly predictive, three-dimensional structure map for stoichiometric binary sp- d-valent compounds. Here we show that the descriptors of this structure map are transferable to off-stoichiometric compounds with similar predictive power. We furthermore demonstrate that the descriptors are suitable for ternary prototypes. In particular, we construct a three-dimensional structure map for 129 prototypical crystal structures for ternary compounds. The crystal structure is predicted correctly with a probability of 78%. With a confidence of 95% the correct crystal structure is among the three most likely crystal structures predicted by the structure map.

  20. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation.

    Science.gov (United States)

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie; Journot, Laurent

    2015-03-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.

  1. [Practicability study on a group of vigilant chemical compounds including chlorheridine diacetate].

    Science.gov (United States)

    Fu, Xiao-Min; Jin, Ai-Hua; Zou, Jian; Li, Qian-Li

    2002-01-01

    To test in vitro the spermatozocidine drug which can also prevent sex transmitting diseases (STD) pathogens. Chlorheridine diacetate and other three chemical compounds were applied in vitro spermatozocidine and sperm inhibitting tests. The lowest concentrations of chlorheridine diacetate and p-nitrophenol which can inhibit human sperm in 20 seconds were 1.25 mg/ml. The minimal inhibitory concentration and minimal bactericidal concentration of chlorheridine diacetate and p-nitrophenol on Streptococcus albus Stemberg were 0.125 to 0.50 mg/ml and 0.25 to 1.00 mg/ml. Chlorheridine diacetate and p-uitrophenol have strong spermatozocidine and antibacteria effects.

  2. Odd-Z Transactinide Compound Nucleus Reactions Including the Discovery of 260Bh

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Sarah L. [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Several reactions producing odd-Z transactinide compound nuclei were studiedwith the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator at the Lawrence Berkeley National Laboratory. The goal was to produce the same compound nucleus ator near the same excitation energy with similar values of angular momentum via differentnuclear reactions. In doing so, it can be determined if there is a preference in entrancechannel, because under these experimental conditions the survival portion of Swiatecki, Siwek-Wilcznska, and Wilczynski's"Fusion By Diffusion" model is nearly identical forthe two reactions. Additionally, because the same compound nucleus is produced, theexit channel is the same. Four compound nuclei were examined in this study: 258Db, 262Bh, 266Mt, and 272Rg. These nuclei were produced by using very similar heavy-ion induced-fusion reactions which differ only by one proton in the projectile or target nucleus (e.g.: 50Ti + 209Bi vs. 51V + 208Pb). Peak 1n exit channel cross sections were determined for each reaction in each pair, and three of the four pairs' cross sections were identical within statistical uncertainties. This indicates there is not an obvious preference of entrancechannel in these paired reactions. Charge equilibration immediately prior to fusionleading to a decreased fusion barrier is the likely cause of this phenomenon. In addition to this systematic study, the lightest isotope of element 107, bohrium, was discovered in the 209Bi(52Cr,n) reaction. 260Bh was found to decay by emission of a 10.16 MeV alpha particle with a half-life of 35$+19\\atop{-9}$ ms. The cross section is 59 pb at an excitation energy of 15.0 MeV. The effect of the N = 152 shell is also seen in this isotope's alpha particle energy, the first evidence of such an effect in Bh. All reactions studied are also compared to model predictions by Swiatecki

  3. New 1,3,4-thiadiazole compounds including pyrazine moiety: Synthesis, structural properties and antimicrobial features

    Science.gov (United States)

    Gür, Mahmut; Şener, Nesrin; Muğlu, Halit; Çavuş, M. Serdar; Özkan, Osman Emre; Kandemirli, Fatma; Şener, İzzet

    2017-07-01

    In the study, some new 1,3,4-thiadiazole compounds were synthesized and we have reported identification of the structures by using UV-Vis, FT-IR, 1H NMR, 13C NMR and Mass spectroscopic methods. Antimicrobial activities of the compounds against three microorganisms, namely, Candida albicans ATCC 26555, Staphylococcus aureus ATCC 9144, and Escherichia coli ATCC 25922 were investigated by using disk diffusion method. These thiadiazoles exhibited an antimicrobial activity against Staphylococcus aureus and Candida albicans. The experimental data was supported by the quantum chemical calculations. Density functional theory (DFT) calculations were carried out to obtain the ground state optimized geometries of the molecules using the B3LYP, M06 and PBE1PBE methods with 3-21 g, 4-31 g, 6-311++g(2d,2p), cc-pvtz and cc-pvqz basis sets in the different combinations. Frontier molecular orbitals (FMOs) energies, band gap energies and some chemical reactivity parameters were calculated by using the aforementioned methods and basis sets, and the results were also compared with the experimental UV-Vis data.

  4. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation

    Science.gov (United States)

    Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui

    2016-11-01

    Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h‑1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90.

  5. Phosphocreatine, an Intracellular High-Energy Compound, is Found in the Extracellular Fluid of the Seminal Vesicles in Mice and Rats

    Science.gov (United States)

    Lee, H. J.; Fillers, W. S.; Iyengar, M. R.

    1988-10-01

    High levels of phosphocreatine, a compound known to serve as an intracellular energy reserve, were found in the fluid contained in seminal vesicle glands. The concentrations of phosphocreatine in the extracellular fluid in the mouse and rat were found to be 5.6 ± 1.6 and 2.2 ± 0.8 μ mol/g, respectively, which are higher than the intracellular levels reported for smooth muscles. The creatine concentrations in the seminal vesicular fluid from these two species were 22.8 ± 3.1 and 13.0 ± 5.3 μ mol/g, respectively. These creatine levels are approximately 100 and 65 times higher than the creatine levels in mammalian blood. Smaller amounts of ATP (phosphocreatine/ATP ratio of 20-40) and traces of ADP were also found. Comparison of the pattern of distribution of macromolecules (proteins and DNA) with the distribution of phosphocreatine between the cells and the fluid of the seminal vesicle indicates that cell lysis did not account for the phosphocreatine in the seminal vesicle fluid. Rather, the available evidence strongly suggests that this high-energy compound is actively secreted. We found that in the testes, the sperm are exposed to the highest known creatine concentration in any mammalian tissue studied. Based on these results and other recent reports, we propose that the extracellular phosphocreatine, ATP, and creatine are involved in sperm metabolism.

  6. Ouabain enhancement of compound 48/80 induced histamine secretion from rat peritoneal mast cells: dependence on extracellular sodium

    DEFF Research Database (Denmark)

    Knudsen, T; Bertelsen, Niels Haldor; Johansen, Torben

    1992-01-01

    a measure of the Na(+)-K+ pump activity of the cells. Ouabain caused an immediate inhibition of the pump activity and a time-dependent increase in histamine secretion in the absence of extracellular calcium. No effect on the secretion was observed in the presence of calcium. The effect of ouabain......-free medium, the pump activity was inhibited and the enhancement by ouabain of the secretion of histamine was blocked. A less marked inhibition of the pump was found in a calcium-free medium containing magnesium. The inhibition exerted by magnesium was concentration-dependent (0-5 mM) as was the counteraction...... of sodium-calcium exchange caused by a decreased inward directed sodium gradient, the mechanism by which ouabain enhances the secretory response is likely to involve an increased binding of calcium to membrane binding sites....

  7. Molecular and vibrational structure of the extracellular bacterial signal compound N-butyryl-homoserine lactone (C4-HSL)

    DEFF Research Database (Denmark)

    Bak, Jimmy; Spanget-Larsen, Jens

    2009-01-01

    The molecular and vibrational structure of the title compound (C4-HSL) was studied by experimental and theoretical methods. The infrared (IR) absorption spectrum was measured in the solid state and in CCl4 suspension. The observed absorption bands were compared with transitions obtained with B3LYP....../cc-pVTZ density functional theory (DFT) calculations. Two stable molecular conformations were predicted, corresponding to an endo- and an exo-conformer with similar energies. Intermolecular amide-amide hydrogen bonding in the crystal state was approximated by a simple cluster model, leading to excellent agreement...

  8. Update on medical and regulatory issues pertaining to compounded and FDA-approved drugs, including hormone therapy

    OpenAIRE

    Pinkerton, JoAnn V; Pickar, James H.

    2016-01-01

    Abstract Objective: We review the historical regulation of drug compounding, concerns about widespread use of non-Food and Drug Admiistration (FDA)-approved compounded bioidentical hormone therapies (CBHTs), which do not have proper labeling and warnings, and anticipated impact of the 2013 Drug Quality and Security Act (DQSA) on compounding. Methods: US government websites were searched for documents concerning drug compounding regulation and oversight from 1938 (passage of Federal Food, Drug...

  9. Compound K, a Ginsenoside Metabolite, Inhibits Colon Cancer Growth via Multiple Pathways Including p53-p21 Interactions

    Directory of Open Access Journals (Sweden)

    Eugene B. Chang

    2013-01-01

    Full Text Available Compound K (20-O-beta-D-glucopyranosyl-20(S-protopanaxadiol, CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponins, has been shown to inhibit cell growth in a variety of cancers. However, the mechanisms are not completely understood, especially in colorectal cancer (CRC. A xenograft tumor model was used first to examine the anti-CRC effect of CK in vivo. Then, multiple in vitro assays were applied to investigate the anticancer effects of CK including antiproliferation, apoptosis and cell cycle distribution. In addition, a qPCR array and western blot analysis were executed to screen and validate the molecules and pathways involved. We observed that CK significantly inhibited the growth of HCT-116 tumors in an athymic nude mouse xenograft model. CK significantly inhibited the proliferation of human CRC cell lines HCT-116, SW-480, and HT-29 in a dose- and time-dependent manner. We also observed that CK induced cell apoptosis and arrested the cell cycle in the G1 phase in HCT-116 cells. The processes were related to the upregulation of p53/p21, FoxO3a-p27/p15 and Smad3, and downregulation of cdc25A, CDK4/6 and cyclin D1/3. The major regulated targets of CK were cyclin dependent inhibitors, including p21, p27, and p15. These results indicate that CK inhibits transcriptional activation of multiple tumor-promoting pathways in CRC, suggesting that CK could be an active compound in the prevention or treatment of CRC.

  10. Detailed NMR, Including 1,1-ADEQUATE, and Anticancer Studies of Compounds from the Echinoderm Colobometra perspinosa

    Directory of Open Access Journals (Sweden)

    Catherine H. Liptrot

    2009-11-01

    Full Text Available From the dichloromethane/methanol extract of the crinoid Colobometra perspinosa, collected south east of Richards Island (Bedara, Family Islands, Central Great Barrier Reef, Australia, 3-(1'-hydroxypropyl-1,6,8-trihydroxy-9,10-anthraquinone [one of the two stereoisomers of rhodoptilometrin, (1], 3-propyl-1,6,8-trihydroxy-9,10-anthraquinone (3, 2-[(phenylacetylamino]ethanesulfonic acid (4, and 4-hydroxybutanoic acid (5 were isolated. Comparison of 1H- and 13C-NMR data for rhodoptilometrin (1 with those reported in the literature showed significant differences for some resonances associated with rings A and C. In an attempt to provide accurately assigned 1H- and 13C-NMR data, as well as to confirm the structure of 1, a thorough NMR investigation of this compound was undertaken. Measurements included: concentration dependent 13C, 1D selective NOE, HSQC, HMBC and 1,1-ADEQUATE. The NMR data for 4 and 5 are reported here for the first time, as is their occurrence from the marine environment. The in vitro anticancer activity of the original extract was found to be associated with 1, 3 and 5.

  11. β-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer's disease-related sites.

    Directory of Open Access Journals (Sweden)

    Danielle Frost

    Full Text Available Harmine, a β-carboline alkaloid, is a high affinity inhibitor of the dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A protein. The DYRK1A gene is located within the Down Syndrome Critical Region (DSCR on chromosome 21. We and others have implicated DYRK1A in the phosphorylation of tau protein on multiple sites associated with tau pathology in Down Syndrome and in Alzheimer's disease (AD. Pharmacological inhibition of this kinase may provide an opportunity to intervene therapeutically to alter the onset or progression of tau pathology in AD. Here we test the ability of harmine, and numerous additional β-carboline compounds, to inhibit the DYRK1A dependent phosphorylation of tau protein on serine 396, serine 262/serine 356 (12E8 epitope, and threonine 231 in cell culture assays and in vitro phosphorylation assays. Results demonstrate that the β-carboline compounds (1 potently reduce the expression of all three phosphorylated forms of tau protein, and (2 inhibit the DYRK1A catalyzed direct phosphorylation of tau protein on serine 396. By assaying several β-carboline compounds, we define certain chemical groups that modulate the affinity of this class of compounds for inhibition of tau phosphorylation.

  12. A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides.

    Science.gov (United States)

    Stohs, Sidney J; Miller, Mark J S

    2014-01-01

    A case study is reported whereby an individual with known sulfite and sulfonamide allergies develops hypersensitivity to taurine above a threshold level as well as to the non-nutritive sweetener acesulfame potassium, compounds that are not normally associated with allergic reactions. Sulfites, sulfonamides, taurine and acesulfame potassium all contain a SO3 moiety. Challenge tests provide evidence for the hypersensitivities to taurine and acesulfame potassium. The subject is also allergic to thiuram mix and thimerosal, sulfur containing compounds, as well as to various food products. This may be the first case where hypersensitivities to taurine and acesulfame potassium have been documented and reported. Several mechanistic explanations are provided for the untoward reactions to taurine and acesulfame potassium. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds.

    Science.gov (United States)

    Lassen, Lærke Münter; Nielsen, Agnieszka Zygadlo; Ziersen, Bibi; Gnanasekaran, Thiyagarajan; Møller, Birger Lindberg; Jensen, Poul Erik

    2014-01-17

    Photosynthesis in plants, green algae, and cyanobacteria converts solar energy into chemical energy in the form of ATP and NADPH, both of which are used in primary metabolism. However, often more reducing power is generated by the photosystems than what is needed for primary metabolism. In this review, we discuss the development in the research field, focusing on how the photosystems can be used as synthetic biology building blocks to channel excess reducing power into light-driven production of alternative products. Plants synthesize a large number of high-value bioactive natural compounds. Some of the key enzymes catalyzing their biosynthesis are the cytochrome P450s situated in the endoplasmic reticulum. However, bioactive compounds are often synthesized in low quantities in the plants and are difficult to produce by chemical synthesis due to their often complex structures. Through a synthetic biology approach, enzymes with a requirement for reducing equivalents as cofactors, such as the cytochrome P450s, can be coupled directly to the photosynthetic energy output to obtain environmentally friendly production of complex chemical compounds. By relocating cytochrome P450s to the chloroplasts, reducing power can be diverted toward the reactions catalyzed by the cytochrome P450s. This provides a sustainable production method for high-value compounds that potentially can solve the problem of NADPH regeneration, which currently limits the biotechnological uses of cytochrome P450s. We describe the approaches that have been taken to couple enzymes to photosynthesis in vivo and to photosystem I in vitro and the challenges associated with this approach to develop new green production platforms.

  14. Theoretical Study of Pd11 Si6 Nanosheet Compounds Including Seven-Coordinated Si Species and Its Ge Analogues.

    Science.gov (United States)

    Chen, Yue; Sunada, Yusuke; Nagashima, Hideo; Sakaki, Shigeyoshi

    2016-01-18

    Nanosheet compounds Pd11 (SiiPr)2 (SiiPr2 )4 (CNtBu)10 (1) and Pd11 (SiiPr)2 (SiiPr2 )4 (CNMes)10 (2), containing two Pd7 (SiiPr)(SiiPr2 )2 (CNR)4 plates (R=tBu or Mes) connected with three common Pd atoms, were investigated with DFT method. All Pd atoms are somewhat positively charged and the electron density is accumulated between the Pd and Si atoms, indicating that a charge transfer (CT) occurs from the Pd to the Si atoms of the SiMe2 and SiMe groups. Negative regions of the Laplacian of the electron density were found between the Pd and Si atoms. A model of a seven-coordinated Si species, that is, Pd5 (Pd-SiMe), is predicted to be a stable pentagonal bipyramidal molecule. Five Pd atoms in the equatorial plane form bonding overlaps with two 3p orbitals of the Si atom. This is a new type of hypervalency. The Ge analogues have geometry and an electronic structure similar to those of the Si compounds. But their formation energies are smaller than those of the Si analogues. The use of the element Si is crucial to synthesize these nanoplate compounds.

  15. Exposure to perfluorinated compounds in Catalonia, Spain, through consumption of various raw and cooked foodstuffs, including packaged food.

    Science.gov (United States)

    Jogsten, Ingrid Ericson; Perelló, Gemma; Llebaria, Xavier; Bigas, Esther; Martí-Cid, Roser; Kärrman, Anna; Domingo, José L

    2009-07-01

    In this study, the role that some food processing and packaging might play as a source of perfluorinated compounds (PFCs) through the diet was assessed. The levels of PFCs were determined in composite samples of veal steak (raw, grilled, and fried), pork loin (raw, grilled, and fried), chicken breast (raw, grilled, and fried), black pudding (uncooked), liver lamb (raw), marinated salmon (home-made and packaged), lettuce (fresh and packaged), pate of pork liver, foie gras of duck, frankfurt, sausages, chicken nuggets (fried), and common salt. Among the 11 PFCs analyzed, only PFHxS, PFOS, PFHxA, and PFOA were detected in at least one composite sample, while the levels of the remaining PFCs (PFBuS, PFHpA, PFNA, PFDA, PFUnDA, and PFDoDA) were under their respective detection limits. PFOS was the compound most frequently detected, being found in 8 of the 20 food items analyzed, while PFHxA was detected in samples of raw veal, chicken nuggets, frankfurt, sausages, and packaged lettuce. According to the results of the present study, it is not sufficiently clear if cooking with non-stick cookware, or packaging some foods, could contribute to a higher human exposure to PFCs.

  16. Antimicrobial (including antimollicutes, antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – evaluation of extracts and pure compounds

    Directory of Open Access Journals (Sweden)

    Éverson Miguel Bianco

    2015-12-01

    Full Text Available Abstract This work describes the antimicrobial, antioxidant and anticholinesterase activities in vitro of organic extracts from fourteen seaweeds, eleven sponges, two ascidians, one bryozoan, and one sea anemone species collected along the Brazilian and Spanish coast, as well as the isolation of the diterpene (4R, 9S, 14S-4α-acetoxy-9β,14α-dihydroxydolast-1(15,7-diene (1 and halogenated sesquiterpene elatol (2. The most promising antimicrobial results for cell wall bacteria were obtained by extracts from seaweeds Laurencia dendroidea and Sargassum vulgare var. nanun (MIC 250 μg/ml, and by the bryozoan Bugula neritina (MIC 62.5 μg/ml, both against Staphylococcus aureus. As for antimollicutes, extracts from seaweeds showed results better than the extracts from invertebrates. Almost all seaweeds assayed (92% exhibited some antimicrobial activity against mollicutes strains (Mycoplasma hominis,Mycoplasma genitalium,Mycoplasma capricolum and Mycoplasma pneumoniae strain FH. From these seaweeds, A1 (Canistrocarpus cervicornis, A11 (Gracilaria sp. and A4 (Lobophora variegata showed the best results for M. pneumoniae strain FH (MIC 250 μg/ml. Furthermore, compounds 1 and 2 were also assayed against mollicutes strains M. hominis,M. genitalium,M. capricolum,M. pneumoniae strain 129 and M. pneumoniae strain FH, which showed MIC > 100 μg/ml. Antioxidant activities of extracts from these marine organisms were inactive, except for E7 (from sponge Ircinia sp., which exhibited moderated antioxidant activities for two methods assayed (IC50 83.0 ± 0.1 μg/ml, and 52.0 ± 0.8 mg AA/g, respectively. Finally, for the anticholinesterase activity, all the 29 samples evaluated (100% exhibited some level of activity, with IC50 < 1000 μg/ml. From these, seaweeds extracts were considered more promising than marine invertebrate extracts [A10 (IC50 14.4 ± 0.1 μg/ml, A16 (IC50 16.4 ± 0.4 μg/ml and A8 (IC50 14.9 ± 0.5 μg/ml]. The findings of this work are useful

  17. Coordination Compounds of Niobium(IV) Oxide Dihalides Including the Synthesis and the Crystallographic Characterization of NHC Complexes.

    Science.gov (United States)

    Bortoluzzi, Marco; Ferretti, Eleonora; Marchetti, Fabio; Pampaloni, Guido; Pinzino, Calogero; Zacchini, Stefano

    2016-05-01

    The 1:1 molar reactions of NbOX3 with SnBu3H, in toluene at 0 °C in the presence of oxygen/nitrogen donors, resulted in the formation of NbOX2L2 (X = Cl, L2 = dme, 2a; X = Br, L2 = dme, 2b; X = Cl, L = thf, 2c; X = Cl, L = NCMe, 2d; dme = 1,2-dimethoxyethane, thf = tetrahydrofuran), in good yields. The 1:2 reactions of freshly prepared 2d and 2b with the bulky NHC ligands 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, Imes, and 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene, Ixyl, respectively, afforded the complexes NbOCl2(Imes)2, 3, and NbOBr2(Ixyl)2, 4, in 50-60% yields. The reactions of 2b with NaOR, in tetrahydrofuran, gave NbOCl(OR) (R = Ph, 5; R = Me, 6) in about 60% yields. All the products were characterized by analytical and spectroscopic techniques; moreover DFT calculations were carried out in order to shed light on synthetic and structural features. Compounds 3 and 4, whose molecular structures have been ascertained by X-ray diffraction, represent very rare examples of crystallographically characterized niobium-NHC systems.

  18. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives.

    Science.gov (United States)

    Zachhuber, Bernhard; Ramer, Georg; Hobro, Alison; Chrysostom, Engelene T H; Lendl, Bernhard

    2011-06-01

    A pulsed stand-off Raman system has been built and optimised for the qualitative and quantitative analysis of inorganic and organic samples including explosives. The system consists of a frequency doubled Q-switched Nd:YAG laser (532 nm, 10 Hz, 4.4 ns pulse length), aligned coaxially with a 6″ Schmidt-Cassegrain telescope for the collection of Raman scattered light. The telescope was coupled via a fibre optic bundle to an Acton standard series SP-2750 spectrograph with a PI-MAX 1024RB intensified CCD camera equipped with a 500-ps gating option for detection. Gating proved to be essential for achieving high signal-to-noise ratios in the recorded stand-off Raman spectra. In some cases, gating also allowed suppression of disturbing fluorescence signals. For the first time, quantitative analysis of stand-off Raman spectra was performed using both univariate and multivariate methods of data analysis. To correct for possible variation in instrumental parameters, the nitrogen band of ambient air was used as an internal standard. For the univariate method, stand-off Raman spectra obtained at a distance of 9 m on sodium chloride pellets containing varying amounts of ammonium nitrate (0-100%) were used. For the multivariate quantification of ternary xylene mixtures (0-100%), stand-off spectra at a distance of 5 m were used. The univariate calibration of ammonium nitrate yielded R (2) values of 0.992, and the multivariate quantitative analysis yielded root mean square errors of prediction of 2.26%, 1.97% and 1.07% for o-, m- and p-xylene, respectively. Stand-off Raman spectra obtained at a distance of 10 m yielded a detection limit of 174 μg for NaClO(3). Furthermore, to assess the applicability of stand-off Raman spectroscopy for explosives detection in "real-world" scenarios, their detection on different background materials (nylon, polyethylene and part of a car body) and in the presence of interferents (motor oil, fuel oil and soap) at a distance of 20 m was also

  19. Biotechnological Aspects of Microbial Extracellular Electron Transfer

    Science.gov (United States)

    Kato, Souichiro

    2015-01-01

    Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795

  20. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model.

    Science.gov (United States)

    Bhuvaneswari, T; Thiyagarajan, M; Geetha, N; Venkatachalam, P

    2014-07-01

    An efficient and eco-friendly protocol for the synthesis of bioactive silver nanoparticles was developed using Naringi crenulata leaf extracts via microwave irradiation method. Silver nanoparticles were synthesized by treating N. crenulata leaf extracts with 1mM of aqueous silver nitrate solution. An effective bioactive compound such as alkaloids, phenols, saponins and quinines present in the N. crenulata reduces the Ag(+) into Ag(0). The synthesized silver nanoparticles were monitored by UV-vis spectrophotometer and further characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). UV-vis spectroscopy showed maximum absorbance at 390nm due to surface plasmon resonance of AgNPs. From FESEM results, an average crystal size of the synthesized nanoparticle was 72-98nm. FT-IR results showed sharp absorption peaks and they were assigned to phosphine, alkyl halides and sulfonate groups. Silver nanoparticles synthesized were generally found to be spherical and cubic shape. Topical application of ointment prepared from silver nanoparticles of N. crenulata were formulated and evaluated in vivo using the excision wound healing model on Wistar albino rats. The measurement of the wound areas was performed on 3rd, 6th, 9th, 12th and 15th days and the percentage of wound closures was calculated accordingly. By the 15th day, the ointment base containing 5% (w/w) of silver nanoparticles showed 100% wound healing activity compared with that of the reference as well as control bases. The results strongly suggested that the batch C ointment containing silver nanaoparticles synthesized from the leaf extracts of N. crenulata was found to be very effective in wound repair and encourages harnessing the potentials of the plant biomolecules loaded silver nanoparticle in the treatment of tropical diseases including wound healing.

  1. Increased responsiveness of rat mast cells to compound 48/80 due to removal of extracellular magnesium. Effects of ouabain and EGTA

    DEFF Research Database (Denmark)

    Bertelsen, Niels Haldor; Johansen, Torben

    1991-01-01

    A decreased secretory response of mast cells to compound 48/80 (12% of control value) after preincubation of the cells with magnesium but without calcium was partially restored by removal of magnesium. EGTA (10 microM) blocked the restoration and decreased the restored secretory activity again...

  2. Extracellular calcium sensing and extracellular calcium signaling

    Science.gov (United States)

    Brown, E. M.; MacLeod, R. J.; O'Malley, B. W. (Principal Investigator)

    2001-01-01

    , localized changes in Ca(o)(2+) within the ECF can originate from several mechanisms, including fluxes of calcium ions into or out of cellular or extracellular stores or across epithelium that absorb or secrete Ca(2+). In any event, the CaR and other receptors/sensors for Ca(o)(2+) and probably for other extracellular ions represent versatile regulators of numerous cellular functions and may serve as important therapeutic targets.

  3. Non-Stoichiometric Polymer-Cyclodextrin Inclusion Compounds: Constraints Placed on Un-Included Chain Portions Tethered at Both Ends and Their Relation to Polymer Brushes

    Directory of Open Access Journals (Sweden)

    Alan E. Tonelli

    2014-08-01

    Full Text Available When non-covalently bonded crystalline inclusion compounds (ICs are formed by threading the host cyclic starches, cyclodextrins (CDs, onto guest polymer chains, and excess polymer is employed, non-stoichiometric (n-s-polymer-CD-ICs, with partially uncovered and “dangling” chains result. The crystalline host CD lattice is stable to ~300 °C, and the uncovered, yet constrained, portions of the guest chains emanating from the CD-IC crystal surfaces behave very distinctly from their neat bulk samples. In CD-IC crystals formed with α- and γ-CD hosts, each containing, respectively, six and eight 1,4-α-linked glucose units, the channels constraining the threaded portions of the guest polymer chains are ~0.5 and 1.0 nm in diameter and are separated by ~1.4 and 1.7 nm. This results in dense brushes with ~0.6 and 0.4 chains/nm2 (or 0.8 if two guest chains are included in each γ-CD channel of the un-included portions of guest polymers emanating from the host CD-IC crystal surfaces. In addition, at least some of the guest chains leaving from a crystalline CD-IC surface re-enter another CD-IC crystal creating a network structure that leads to shape-memory behavior for (n-s-polymer-CD-ICs. To some extent, (n-s-polymer-CD-ICs can be considered as dense polymer brushes with chains that are tethered on both ends. Not surprisingly, the behavior of the un-included portions of the guest polymer chains in (n-s-polymer-CD-ICs are quite different from those of their neat bulk samples, with higher glass-transition and melt crystallization temperatures and crystallinities. Here we additionally compare their behaviors to samples coalesced from their stoichiometric ICs, and more importantly to dense polymer brushes formed by polymer chains chemically bonded to surfaces at only one end. Judging on the basis of their glass-transition, crystallization and melting temperatures, and crystallinities, we generally find the un-included portions of chains in (n

  4. Expression of cathepsin D in urothelial carcinoma of the urinary bladder: an immunohistochemical study including correlations with extracellular matrix components, CD44, p53, Rb, c-erbB-2 and the proliferation indices.

    Science.gov (United States)

    Ioachim, Elli; Charchanti, Antonia; Stavropoulos, Nikolaos; Athanassiou, Evangelia; Bafa, Maria; Agnantis, Niki J

    2002-01-01

    The immunohistochemical Cathepsin D (CD) expression of tumor and stromal cells was investigated in a series of 77 urothelial carcinomas of the urinary bladder with the intention to evaluate its prognostic significance and its contribution to the metastatic potential of bladder cancer. CD expression (clone D13A) was correlated with the expression of extracellular matrix components (collagen type IV, laminin, fibronectin), CD44, p53, pRb, proliferation indices (PCNA and MIB1) as well as with other conventional clininopathological features. CD expression (> 10% of positive tumor cells) was observed in 77.9% of the carcinomas. Stromal CD expression was detected in all cases. Linear collagen type IV and laminin deposit at the tumor-stroma border (in > 25% of the BM) was found in 26% and 57.6% of the cases, respectively. The CD of cancer cells (CCCD) was inversely-correlated with the CD of the stromal cells (p = 0.039), tumor grade (p = 0.0028), tumor stage (p = 0.0046), p53 protein (p = 0.05) and positively-correlated with CD44 (p = 0.002) and pRb (p = 0.05). The stromal cells CD (SCCD) showed a statistically significant positive correlation with tumor grade (p < 0.0001) and stage (p = 0.0001), and the proliferation indices PCNA and MIB1 (p = 0.0001 and p = 0.0002, respectively). These data suggest that both CD of tumor and stromal cells could play important roles in the expansion of urothelial carcinoma of the urinary bladder.

  5. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors.

    Science.gov (United States)

    Hasenbrink, Guido; Sievernich, André; Wildt, Ludwig; Ludwig, Jost; Lichtenberg-Fraté, Hella

    2006-07-01

    The human estrogen receptors (hER)alpha and hERbeta, differentially expressed and localized in various tissues and cell types, mediate transcriptional activation of target genes. These encode a variety of physiological reproductive and nonreproductive functions involved in energy metabolism, salt balance, immune system, development, and differentiation. As a step toward developing a screening assay for the use in applications where significant numbers of compounds or complex matrices need to be tested for (anti) estrogenic bioactivity, hERalpha and hERbeta were expressed in a genetically modified Saccharomyces cerevisiae strain, devoid of three endogenous xenobiotic transporters (PDR5, SNQ2, and YOR1). By using receptor-mediated transcriptional activation of the green fluorescent protein optimized for expression in yeast (yEGFP) as reporter 17 natural, comprising estrogens and phytoestrogens or synthetic compounds among which tibolone with its metabolites, gestagens, and antiestrogens were investigated. The reporter assay deployed a simple and robust protocol for the rapid detection of estrogenic effects within a 96-well microplate format. Results were expressed as effective concentrations (EC50) and correlated to other yeast based and cell line assays. Tibolone and its metabolites exerted clear estrogenic effects, though considerably less potent than all other natural and synthetic compounds. For the blood serum of two volunteers, considerable higher total estrogenic bioactivity than single estradiol concentrations as determined by immunoassay was found. Visualization of a hERalpha/GFP fusion protein in yeast revealed a sub cellular cytosolic localization. This study demonstrates the versatility of (anti) estrogenic bioactivity determination using sensitized S. cerevisiae cells to assess estrogenic exposure and effects.

  6. Extracellular Molecules Involved in Cancer Cell Invasion

    Energy Technology Data Exchange (ETDEWEB)

    Stivarou, Theodora; Patsavoudi, Evangelia, E-mail: epatsavoudi@pasteur.gr [Department of Biochemistry, Hellenic Pasteur Institute, Athens 11521 (Greece); Technological Educational Institute of Athens, Egaleo, Athens 12210 (Greece)

    2015-01-26

    Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  7. Extracellular Molecules Involved in Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Theodora Stivarou

    2015-01-01

    Full Text Available Nowadays it is perfectly clear that understanding and eradicating cancer cell invasion and metastasis represent the crucial, definitive points in cancer therapeutics. During the last two decades there has been a great interest in the understanding of the extracellular molecular mechanisms involved in cancer cell invasion. In this review, we highlight the findings concerning these processes, focusing in particular on extracellular molecules, including extracellular matrix proteins and their receptors, growth factors and their receptors, matrix metalloproteinases and extracellular chaperones. We report the molecular mechanisms underlying the important contribution of this pool of molecules to the complex, multi-step phenomenon of cancer cell invasion.

  8. Pollinia-borne chemicals that induce early postpollination effects in Dendrobium flowers move rapidly into agar blocks and include ACC and compounds with auxin activity.

    Science.gov (United States)

    Promyou, Surassawadee; Ketsa, Saichol; van Doorn, Wouter G

    2014-11-15

    The early visible effects of pollination in orchids are likely due to pollinia-borne chemicals. In Dendrobium we tested whether such compounds were water soluble and would diffuse in solid-aqueous phase, and determined both 1-aminocyclopropane-1-carboxylic acid (ACC) concentrations and auxin activity. Following pollination, the flower peduncle showed epinastic movement, followed by yellowing of the flower lip, flower senescence and ovary growth. Placing pollinia on agar blocks for 3, 6, 9 or 12h, prior to transferring them to the stigma, increased the time to these early postpollination effects or prevented them. Placing agar blocks that had been used for contact with the pollinia on the stigma also induced the early postpollination effects. The concentrations of ACC, the direct precursor of ethylene, in pollinia was lower the longer the pollinia had been in contact with the agar blocks, whilst the ACC content in the agar blocks increased with the period of contact. The auxin activity of the agar blocks also increased with the time of contact with pollinia. It is concluded that chemicals in the pollinia are responsible for the early visible postpollination effects, and that these (a) rapidly diffuse in aqueous media, and (b) comprise at least ACC and compounds with auxin activity. The idea is discussed that ACC plus auxin is adequate for the production of the early postpollination effects.

  9. Ambient levels and temporal trends of VOCs, including carbonyl compounds, and ozone at Cabañeros National Park border, Spain

    Science.gov (United States)

    Villanueva, Florentina; Tapia, Araceli; Notario, Alberto; Albaladejo, José; Martínez, Ernesto

    2014-03-01

    Concentration levels of 15 carbonyls, 17 VOCs and ozone were studied at Cabañeros National Park border, Spain, in an area mainly constituted by holm oaks (Quercus ilex) and cork oaks (Quercus suber), along with scrubland formations such as rock-rose and heather. The compounds were collected by means of diffusive samplers from August-November 2010 and February-August 2011. Carbonyl compounds, VOCs and O3 were analysed by HPLC with diode array UV-Vis detector, GC-FID and by UV-visible spectrophotometry, respectively. The most abundant carbonyls were hexanal, acetone-acrolein, formaldehyde and acetaldehyde. Seasonal variation was apparent with maximum values observed in summer months. Total carbonyl concentrations ranged from 2.8 to 19.7 μg m-3. Most VOCs studied (using chemically desorbable cartridges) were either not detected or were below their detection limits, however, a parallel sampling using thermally desorbable cartridges, from May 22 to June 19, revealed the presence of much more VOCs, identified using GC-MS. O3 concentration ranged from 27.2 to 90.5 μg m-3, reaching the maximum monthly mean concentration in March (84.4 μg m-3). The analysis of back trajectories indicates the transport of polluted air masses from remote areas, mainly from the Mediterranean basin that should contribute to the high levels of ozone observed.

  10. The latissimus dorsi-groin-lymph node compound flap: A comprehensive technique with three features including skin coverage, restoration of motor function, and prevention of upper limb lymphedema.

    Science.gov (United States)

    Nicoli, Fabio; Orfaniotis, Georgios; Lazzeri, Davide; Lim, Seong Yoon; Kiranantawat, Kidakorn; Chen, Pei-Yu; Ciudad, Pedro; Chilgar, Ram M; Sapountzis, Stamatis; Sacak, Bulent; Chen, Hung-Chi

    2016-11-01

    Reconstruction of complex upper extremity defects requires a need for multiple tissue components. The supercharged latissimus dorsi (LD)-groin compound flap is an option that can provide a large skin paddle with simultaneous functional muscle transfer. It is necessary to supercharge the flap with the superficial circumflex iliac pedicle to ensure the viability of its groin extension. In this report, we present a case of a supercharged LD-groin flap in combination with vascularized inguinal lymph nodes, which was used for upper limb reconstruction in a young male patient, following excision of high-grade liposarcoma. Resection resulted in a 28 cm × 15 cm skin defect extending from the upper arm to the proximal forearm, also involving the triceps muscle, a segment of the ulnar nerve and the axillary lymph nodes. Restoration of triceps function was achieved with transfer of the innervated LD muscle. Part of the ulnar nerve was resected and repaired with sural nerve grafts. Post-operatively, the flap survived fully with no partial necrosis, and no complications at both the recipient and donor sites. At 1-year follow up, the patient had a well-healed wound with good elbow extension (against resistance), no tumor recurrence, and no signs of lymphedema. We believe this comprehensive approach may represent a valuable technique, for not only the oncological reconstruction of upper extremity, but also for the prevention of lymphedema. © 2015 Wiley Periodicals, Inc. Microsurgery 36:689-694, 2016.

  11. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds

    Science.gov (United States)

    Schantz, Michele M.; Benner, Bruce A.; Heckert, N. Alan; Sander, Lane C.; Sharpless, Katherine E.; Vander Pol, Stacy S.; Vasquez, Y.; Villegas, M.; Wise, Stephen A.; Alwis, K. Udeni; Blount, Benjamin C.; Calafat, Antonia M.; Li, Zheng; Silva, Manori J.; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G.; Sjödin, Andreas

    2016-01-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers’ Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers’ Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899

  12. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds.

    Science.gov (United States)

    Schantz, Michele M; Benner, Bruce A; Heckert, N Alan; Sander, Lane C; Sharpless, Katherine E; Vander Pol, Stacy S; Vasquez, Y; Villegas, M; Wise, Stephen A; Alwis, K Udeni; Blount, Benjamin C; Calafat, Antonia M; Li, Zheng; Silva, Manori J; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G; Sjödin, Andreas

    2015-04-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers' Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers' Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants.

  13. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  14. Ethanolic Echinacea purpurea Extracts Contain a Mixture of Cytokine-Suppressive and Cytokine-Inducing Compounds, Including Some That Originate from Endophytic Bacteria.

    Directory of Open Access Journals (Sweden)

    Daniel A Todd

    Full Text Available Echinacea preparations, which are used for the prevention and treatment of upper respiratory infections, account for 10% of the dietary supplement market in the U.S., with sales totaling more than $100 million annually. In an attempt to shed light on Echinacea's mechanism of action, we evaluated the effects of a 75% ethanolic root extract of Echinacea purpurea, prepared in accord with industry methods, on cytokine and chemokine production from RAW 264.7 macrophage-like cells. We found that the extract displayed dual activities; the extract could itself stimulate production of the cytokine TNF-α, and also suppress production of TNF-α in response to stimulation with exogenous LPS. Liquid:liquid partitioning followed by normal-phase flash chromatography resulted in separation of the stimulatory and inhibitory activities into different fractions, confirming the complex nature of this extract. We also studied the role of alkylamides in the suppressive activity of this E. purpurea extract. Our fractionation method concentrated the alkylamides into a single fraction, which suppressed production of TNF-α, CCL3, and CCL5; however fractions that did not contain detectable alkylamides also displayed similar suppressive effects. Alkylamides, therefore, likely contribute to the suppressive activity of the extract but are not solely responsible for that activity. From the fractions without detectable alkylamides, we purified xanthienopyran, a compound not previously known to be a constituent of the Echinacea genus. Xanthienopyran suppressed production of TNF-α suggesting that it may contribute to the suppressive activity of the crude ethanolic extract. Finally, we show that ethanolic extracts prepared from E. purpurea plants grown under sterile conditions and from sterilized seeds, do not contain LPS and do not stimulate macrophage production of TNF-α, supporting the hypothesis that the macrophage-stimulating activity in E. purpurea extracts can

  15. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn's disease and ulcerative colitis.

    Science.gov (United States)

    Dryahina, Kseniya; Smith, David; Bortlík, Martin; Machková, Naděžda; Lukáš, Milan; Spanel, Patrik

    2017-08-07

    A study has been carried out of the volatile organic compounds (VOCs) in the exhaled breath of patients suffering from inflammatory bowel disease (IBD), comprising 136 with Crohn's disease (CD) and 51 with ulcerative colitis (UC), together with a cohort of 14 healthy persons as controls. Breath samples were collected by requesting the patients to inflate Nalophan bags which were then quantitatively analysed using selected ion flow tube mass spectrometry, SIFT-MS. Initially, the focus was on n-pentane that had previously been quantified in single exhalations by on line to SIFT-MS for smaller cohorts of IBD patients. It was seen that the median concentration of pentane was elevated in the bag breath samples of the IBD patients compared to those of the healthy controls, in accordance with the previous study. However, the absolute median pentane concentrations in the bag samples were about a factor of two lower than those in the directly analysed single exhalations, well illustrating the dilution of VOCs in samples of breath collected into bags. Accounting for this dilution effect, the concentrations of the common breath VOCs ethanol, propanol, acetone and isoprene were largely as expected for healthy controls. The concentrations of the much less frequently measured hydrogen sulphide, acetic acid, propanoic acid and butanoic acid were seen to be more widely spread in the exhaled breath of the IBD patients compared to those for the healthy controls. The relative concentrations of pentane and these other VOCs weakly correlate with simple clinical activity indices. It is speculated that, potentially, hydrogen sulphide and these carboxylic acids could be exhaled breath biomarker of intestinal bacterial overgrowth, which could assist therapeutic intervention and thus alleviate the symptoms of IBD. © 2017 IOP Publishing Ltd.

  16. Determination of volatile organic compounds including alcohols in refill fluids and cartridges of electronic cigarettes by headspace solid-phase micro extraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lim, Hyun-Hee; Shin, Ho-Sang

    2017-02-01

    An analytical method for the detection of 14 volatile organic compounds (VOCs) was developed to investigate VOCs in refill fluids and cartridges of electronic cigarettes (EC) using headspace solid-phase micro extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). In total, 14 VOCs were identified and quantified in 283 flavored liquids, 21 nicotine liquids, and 12 disposable cartridges. The detected concentration ranges of the VOCs are as follows: benzene (0.008-2.28 mg L(-1)), toluene (0.006-0.687 mg L(-1)), ethylbenzene (0.01-1.21 mg L(-1)), m-xylene (0.002-1.13 mg L(-1)), p-xylene (0.007-2.8 mg L(-1)), o-xylene (0.004-2.27 mg L(-1)), styrene (0.011-0.339 mg L(-1)), ethyl acetate (0.3-669.9 mg L(-1)), ethanol (16-38,742 mg L(-1)), methanol (66-3375 mg L(-1)), pyridine (0.077-99.7 mg L(-1)), acetylpyrazine (0.077-147 mg L(-1)), 2,3,5-trimethylpyrazine (0.008-96.8 mg L(-1)), and octamethylcyclotetrasiloxane (0.1-57.2 mg L(-1)). Benzene, toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene coexisted in samples, which may have originated from the use of petrogenic hydrocarbons as an extraction solvent for flavor and nicotine from natural plants. The maximum detected concentrations of benzene, methanol, and ethanol in liquid samples were found in quantities higher than their authorized maximum limits as residual solvents in pharmaceutical products.

  17. Ethanolic Echinacea purpurea Extracts Contain a Mixture of Cytokine-Suppressive and Cytokine-Inducing Compounds, Including Some That Originate from Endophytic Bacteria.

    Science.gov (United States)

    Todd, Daniel A; Gulledge, Travis V; Britton, Emily R; Oberhofer, Martina; Leyte-Lugo, Martha; Moody, Ashley N; Shymanovich, Tatsiana; Grubbs, Laura F; Juzumaite, Monika; Graf, Tyler N; Oberlies, Nicholas H; Faeth, Stanley H; Laster, Scott M; Cech, Nadja B

    2015-01-01

    Echinacea preparations, which are used for the prevention and treatment of upper respiratory infections, account for 10% of the dietary supplement market in the U.S., with sales totaling more than $100 million annually. In an attempt to shed light on Echinacea's mechanism of action, we evaluated the effects of a 75% ethanolic root extract of Echinacea purpurea, prepared in accord with industry methods, on cytokine and chemokine production from RAW 264.7 macrophage-like cells. We found that the extract displayed dual activities; the extract could itself stimulate production of the cytokine TNF-α, and also suppress production of TNF-α in response to stimulation with exogenous LPS. Liquid:liquid partitioning followed by normal-phase flash chromatography resulted in separation of the stimulatory and inhibitory activities into different fractions, confirming the complex nature of this extract. We also studied the role of alkylamides in the suppressive activity of this E. purpurea extract. Our fractionation method concentrated the alkylamides into a single fraction, which suppressed production of TNF-α, CCL3, and CCL5; however fractions that did not contain detectable alkylamides also displayed similar suppressive effects. Alkylamides, therefore, likely contribute to the suppressive activity of the extract but are not solely responsible for that activity. From the fractions without detectable alkylamides, we purified xanthienopyran, a compound not previously known to be a constituent of the Echinacea genus. Xanthienopyran suppressed production of TNF-α suggesting that it may contribute to the suppressive activity of the crude ethanolic extract. Finally, we show that ethanolic extracts prepared from E. purpurea plants grown under sterile conditions and from sterilized seeds, do not contain LPS and do not stimulate macrophage production of TNF-α, supporting the hypothesis that the macrophage-stimulating activity in E. purpurea extracts can originate from endophytic

  18. Oxidative and other posttranslational modifications in extracellular vesicle biology.

    Science.gov (United States)

    Szabó-Taylor, Katalin; Ryan, Brent; Osteikoetxea, Xabier; Szabó, Tamás G; Sódar, Barbara; Holub, Marcsilla; Németh, Andrea; Pálóczi, Krisztina; Pállinger, Éva; Winyard, Paul; Buzás, Edit I

    2015-04-01

    Extracellular vesicles including exosomes, microvesicles and apoptotic vesicles, are phospholipid bilayer surrounded structures secreted by cells universally, in an evolutionarily conserved fashion. Posttranslational modifications such as oxidation, citrullination, phosphorylation and glycosylation play diverse roles in extracellular vesicle biology. Posttranslational modifications orchestrate the biogenesis of extracellular vesicles. The signals extracellular vesicles transmit between cells also often function via modulating posttranslational modifications of target molecules, given that extracellular vesicles are carriers of several active enzymes catalysing posttranslational modifications. Posttranslational modifications of extracellular vesicles can also contribute to disease pathology by e.g. amplifying inflammation, generating neoepitopes or carrying neoepitopes themselves.

  19. Rhinacanthus nasutus Extracts Prevent Glutamate and Amyloid-β Neurotoxicity in HT-22 Mouse Hippocampal Cells: Possible Active Compounds Include Lupeol, Stigmasterol and β-Sitosterol

    Directory of Open Access Journals (Sweden)

    Tewin Tencomnao

    2012-04-01

    Full Text Available The Herb Rhinacanthus nasutus (L. Kurz, which is native to Thailand and Southeast Asia, has become known for its antioxidant properties. Neuronal loss in a number of diseases including Alzheimer’s disease is thought to result, in part, from oxidative stress. Glutamate causes cell death in the mouse hippocampal cell line, HT-22, by unbalancing redox homeostasis, brought about by a reduction in glutathione levels, and amyloid-β has been shown to induce reactive oxygen species (ROS production. Here in, we show that ethanol extracts of R. nasutus leaf and root are capable of dose dependently attenuating the neuron cell death caused by both glutamate and amyloid-β treatment. We used free radical scavenging assays to measure the extracts antioxidant activities and as well as quantifying phenolic, flavonoid and sterol content. Molecules found in R. nasutus, lupeol, stigmasterol and β-sitosterol are protective against glutamate toxicity.

  20. Rhinacanthus nasutus extracts prevent glutamate and amyloid-β neurotoxicity in HT-22 mouse hippocampal cells: possible active compounds include lupeol, stigmasterol and β-sitosterol.

    Science.gov (United States)

    Brimson, James M; Brimson, Sirikalaya J; Brimson, Christopher A; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2012-01-01

    The Herb Rhinacanthus nasutus (L.) Kurz, which is native to Thailand and Southeast Asia, has become known for its antioxidant properties. Neuronal loss in a number of diseases including Alzheimer's disease is thought to result, in part, from oxidative stress. Glutamate causes cell death in the mouse hippocampal cell line, HT-22, by unbalancing redox homeostasis, brought about by a reduction in glutathione levels, and amyloid-β has been shown to induce reactive oxygen species (ROS) production. Here in, we show that ethanol extracts of R. nasutus leaf and root are capable of dose dependently attenuating the neuron cell death caused by both glutamate and amyloid-β treatment. We used free radical scavenging assays to measure the extracts antioxidant activities and as well as quantifying phenolic, flavonoid and sterol content. Molecules found in R. nasutus, lupeol, stigmasterol and β-sitosterol are protective against glutamate toxicity.

  1. Amine-templated one-dimensional metal sulfates including a mixed-valent Fe compound with a half-kagome structure.

    Science.gov (United States)

    Behera, J N; Rao, C N R

    2006-11-20

    Organically templated metal sulfates are relatively new. Six amine-templated transition-metal sulfates with different types of chain structures, including a novel iron sulfate with a chain structure corresponding to one half of the kagome structure, were synthesized by hydro/solvothermal methods. Amongst the one-dimensional metal sulfates, [C10N2H10][Zn(SO4)Cl2] (1) is the simplest, being formed by corner-linked ZnO2Cl2 and SO4 tetrahedra. [C6N2H18][Mn(SO4)2(H2O)2] (2) and [C2N2H10][Ni(SO4)2(H2O)2] (3) have ladder structures comprising four-membered rings formed by SO4 tetrahedra and metal-oxygen octahedra, just as in the mineral kröhnkite. [C4N2H12][V(III)(OH)(SO4)2]H2O (4) and [C4N2H12][VF3(SO4)] (5) exhibit chain topologies of the minerals tancoite and butlerite, respectively. The structure of [C4N2H12][H3O][Fe(III)Fe(II) F6(SO4)] (6) is noteworthy in that it corresponds to half of the hexagonal kagome structure. It exhibits ferrimagnetic properties at low temperatures and the absence of frustration, unlike the mixed-valent iron sulfate with the full kagome structure.

  2. Dual roles of extracellular signal-regulated kinase (ERK) in quinoline compound BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer cells.

    Science.gov (United States)

    Fong, Yao; Wu, Chang-Yi; Chang, Kuo-Feng; Chen, Bing-Hung; Chou, Wan-Ju; Tseng, Chih-Hua; Chen, Yen-Chun; Wang, Hui-Min David; Chen, Yeh-Long; Chiu, Chien-Chih

    2017-01-01

    2,9-Bis[2-(pyrrolidin-1-yl)ethoxy]-6-{4-[2-(pyrrolidin-1-yl)ethoxy] phenyl}-11H-indeno[1,2-c]quinoline-11-one (BPIQ), is a synthetic quinoline analog. A previous study showed the anti-cancer potential of BPIQ through modulating mitochondrial-mediated apoptosis. However, the effect of BPIQ on cell migration, an index of cancer metastasis, has not yet been examined. Furthermore, among signal pathways involved in stresses, the members of the mitogen-activated protein kinase (MAPK) family are crucial for regulating the survival and migration of cells. In this study, the aim was to explore further the role of MAPK members, including JNK, p38 and extracellular signal-regulated kinase (ERK) in BPIQ-induced apoptosis and anti-migration of human non-small cell lung cancer (NSCLC) cells. Western Blot assay was performed for detecting the activation of MAPK members in NSCLC H1299 cells following BPIQ administration. Cellular proliferation was determined using a trypan blue exclusion assay. Cellular apoptosis was detected using flow cytometer-based Annexin V/propidium iodide dual staining. Cellular migration was determined using wound-healing assay and Boyden's chamber assay. Zymography assay was performed for examining MMP-2 and -9 activities. The assessment of MAPK inhibition was performed for further validating the role of JNK, p38, and ERK in BPIQ-induced growth inhibition, apoptosis, and migration of NSCLC cells. Western Blot assay showed that BPIQ treatment upregulates the phosphorylated levels of both MAPK proteins JNK and ERK. However, only ERK inhibitor rescues BPIQ-induced growth inhibition of NSCLC H1299 cells. The results of Annexin V assay further confirmed the pro-apoptotic role of ERK in BPIQ-induced cell death of H1299 cells. The results of wound healing and Boyden chamber assays showed that sub-IC50 (sub-lethal) concentrations of BPIQ cause a significant inhibition of migration in H1299 cells accompanied with downregulating the activity of MMP-2 and -9, the

  3. Neutrophil Extracellular Traps and Microcrystals

    Science.gov (United States)

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed. PMID:28373994

  4. Neutrophil Extracellular Traps and Microcrystals.

    Science.gov (United States)

    Rada, Balázs

    2017-01-01

    Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1-100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  5. Neutrophil Extracellular Traps and Microcrystals

    Directory of Open Access Journals (Sweden)

    Balázs Rada

    2017-01-01

    Full Text Available Neutrophil extracellular traps represent a fascinating mechanism by which PMNs entrap extracellular microbes. The primary purpose of this innate immune mechanism is thought to localize the infection at an early stage. Interestingly, the ability of different microcrystals to induce NET formation has been recently described. Microcrystals are insoluble crystals with a size of 1–100 micrometers that have different composition and shape. Microcrystals have it in common that they irritate phagocytes including PMNs and typically trigger an inflammatory response. This review is the first to summarize observations with regard to PMN activation and NET release induced by microcrystals. Gout-causing monosodium urate crystals, pseudogout-causing calcium pyrophosphate dehydrate crystals, cholesterol crystals associated with atherosclerosis, silicosis-causing silica crystals, and adjuvant alum crystals are discussed.

  6. Alternative methods for characterization of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Fatemeh eMomen-Heravi

    2012-09-01

    Full Text Available Extracellular vesicles are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize Extracellular vesicles. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some Extracellular vesicles -specific evidence. Characterization of Extracellular vesicles has also recently seen many advances with the use of Nanoparticle Tracking Analysis (NTA, flow cytometry, cryo-EM instruments and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face.

  7. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space

    CERN Document Server

    Bedard, C; Destexhe, A; Bédard, Claude; Kroeger, Helmut; Destexhe, Alain

    2003-01-01

    Extracellular local field potentials (LFP) are usually modeled as arising from a set of current sources embedded in a homogeneous extracellular medium. Although this formalism can successfully model several properties of LFPs, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent attenuation. We first show that, if the extracellular conductivity is non-homogeneous, there is induction of non-homogeneous charge densities which may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical) current source with spherically-symmetric conductivity/permittivity gradients around the source. We analyze the effect of different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple model generally displays low-pass filtering behav...

  8. Extracellular Gd-CA

    DEFF Research Database (Denmark)

    Thomsen, Henrik S; Marckmann, Peter

    2008-01-01

    Until recently it was believed that extracellular gadolinium-based contrast agents were safe for both the kidneys and all other organs within the dose range up to 0.3 mmol/kg body weight. However, in 2006, it was demonstrated that some gadolinium-based contrast agents may trig the development of ...

  9. The extracellular RNA complement of Escherichia coli.

    Science.gov (United States)

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  10. Extracellular RNAs: development as biomarkers of human disease

    Directory of Open Access Journals (Sweden)

    Joseph F. Quinn

    2015-08-01

    Full Text Available Ten ongoing studies designed to test the possibility that extracellular RNAs may serve as biomarkers in human disease are described. These studies, funded by the NIH Common Fund Extracellular RNA Communication Program, examine diverse extracellular body fluids, including plasma, serum, urine and cerebrospinal fluid. The disorders studied include hepatic and gastric cancer, cardiovascular disease, chronic kidney disease, neurodegenerative disease, brain tumours, intracranial haemorrhage, multiple sclerosis and placental disorders. Progress to date and the plans for future studies are outlined.

  11. Overview of Extracellular Microvesicles in Drug Metabolism

    Science.gov (United States)

    Conde-Vancells, Javier; Gonzalez, Esperanza; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.

    2010-01-01

    Importance of the field Liver is the major body reservoir for enzymes involved in the metabolism of endogenous and xenobiotic compounds. Recently, it has been shown that hepatocytes release exosome-like vesicles to the extracellular medium, and the proteomic characterization of these hepatocyte-secreted exosomes has revealed the presence of several of these enzymes on them. Areas covered in this review A systematic bibliographic search focus on two related aspects: 1) xenobiotic-metabolizing enzymes that have been detected in microvesicles, and 2) microvesicles which are in the blood stream or secreted by cell-types with clear interactions with this fluid. What the reader will gain A discussion of these hepatocyte-secreted vesicles along with others microvesicles as enzymatic carriers in the context of extrahepatic drug-metabolizing systems. Take home message The contribution of many tissues including the liver to the microvesicles plasma population is supported by several reports. On the other hand, many enzymes involved in the metabolism of drugs have been detected in microvesicles. Together, these observations argue positively through a role of hepatic-microvesicles in spreading the liver metabolizing activities through the body contributing in this manner to extrahepatic drug metabolism systems what could be relevant for body homeostasis and pharmaceutical interests. PMID:20192903

  12. Polybenzimidazole compounds

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Wertsching, Alan K.; Orme, Christopher J.; Luther, Thomas A.; Jones, Michael G.

    2010-08-10

    A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me.sub.2SiCH.sub.2--, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.

  13. Extracellular Matrix Proteins

    Directory of Open Access Journals (Sweden)

    Linda Christian Carrijo-Carvalho

    2012-01-01

    Full Text Available Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.

  14. Biotensegrity of the extracellular matrix: physiology, dynamic mechanical balance and implications in oncology and mechanotherapy.

    Directory of Open Access Journals (Sweden)

    Irene eTadeo

    2014-03-01

    Full Text Available Cells have the capacity to convert mechanical stimuli into chemical changes. This process is based on the tensegrity principle, a mechanism of tensional integrity. To date, this principle has been demonstrated to act in physiological processes such as mechanotransduction and mechanosensing at different scales (from cell sensing through integrins to molecular mechanical interventions or even localized massage. The process involves intra- and extracellular components, including the participation of extracellular matrix and microtubules that act as compression structures, and actin filaments, which act as tension structures. The nucleus itself has its own tensegrity system which is implicated in cell proliferation, differentiation and apoptosis. Despite present advances, only the tip of the iceberg has so far been uncovered regarding the role of extracellular matrix compounds in influencing biotensegrity in pathological processes. Groups of cells, together with the surrounding ground substance, are subject to different and specific forces which certainly influence biological processes. In this paper we review the current knowledge on the role of extracellular matrix elements in determining biotensegrity in malignant processes, and describe their implication in therapeutic response, resistance to chemo- and radiotherapy, and subsequent tumor progression. Original data based on the study of neuroblastic tumors will be provided.

  15. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.

  16. TAE226, a Bis-Anilino Pyrimidine Compound, Inhibits the EGFR-Mutant Kinase Including T790M Mutant to Show Anti-Tumor Effect on EGFR-Mutant Non-Small Cell Lung Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hiroki Otani

    Full Text Available TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK and insulin-like growth factor-I receptor (IGF-IR. In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC, especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750 mutant, and the reduced affinity of ATP to the L858R (or delE746_A750 mutant resulted in good responsiveness of the L858R (or delE746_A750 mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.

  17. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    孙大业; 唐文强; 马力耕

    2001-01-01

    Traditionally, calmodulin (CaM) was thought to be a multi-functional receptor for intracellular Ca2+ signals. But in the last ten years, it was found that CaM also exists and acts extracellularly in animal and plant cells to regulate many important physiological functions. Laboratory studies by the authors showed that extracellular CaM in plant cells can stimulate the proliferation of suspension cultured cell and protoplast; regulate pollen germination and pollen tube elongation,and stimulate the light-independent gene expression of Rubisco small subunit (rbcS). Furthermore,we defined the trans-membrane and intracellular signal transduction pathways for extracellular CaM by using a pollen system. The components in this pathway include heterotrimeric G-protein,phospholipase C, IP3, calcium signal and protein phosphorylation etc. Based on our findings, we suggest that extracellular CaM is a polypeptide signal in plants. This idea strongly argues against the traditional concept that there is no intercellular polypeptide signal in plants.

  18. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound

    OpenAIRE

    Tracy, Lauren E.; Minasian, Raquel A.; Caterson, E.J.

    2016-01-01

    Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism.

  19. Extracellular polymeric substances play roles in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, En-Hua; Christensen, Hans Erik Mølager

    It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells...... the extraction (Figure 1.a and 1.b). Comparing to cells in control group, MR-1 treated at 38 °C for EPS extraction showed different electrochemical characterizations as revealed by differential pulse voltammetry (Figure 1.c). EPS extracted from MR-1 also was proved to be electrochemically active. The present...

  20. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    OpenAIRE

    Haqqani Arsalan S; Delaney Christie E; Tremblay Tammy-Lynn; Sodja Caroline; Sandhu Jagdeep K; Stanimirovic Danica B

    2013-01-01

    Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain ...

  1. Engineering hydrogels as extracellular matrix mimics

    OpenAIRE

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable....

  2. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  3. Extracellular quality control in the epididymis

    Institute of Scientific and Technical Information of China (English)

    Gail A. Cornwall; H. Henning von Horsten; Douglas Swartz; Seethal Johnson; Kim Chau; Sandra Whelly

    2007-01-01

    The epididymal lumen represents a unique extracellular environment because of the active sperm maturation process that takes place within its confines. Although much focus has been placed on the interaction of epididymal secretory proteins with spermatozoa in the lumen, very little is known regarding how the complex epididymal milieu as a whole is maintained, including mechanisms to prevent or control proteins that may not stay in their native folded state following secretion. Because some misfolded proteins can form cytotoxic aggregate structures known as amyloid, it is likely that control/surveillance mechanisms exist within the epididymis to protect against this process and allow sperm maturation to occur. To study protein aggregation and to identify extracellular quality control mechanisms in the epididymis, we used the cystatin family of cysteine protease inhibitors, including cystatin-related epididymal spermatogenic and cystatin C as molecular models because both proteins have inherent properties to aggregate and form amyloid. In this chapter, we present a brief summary of protein aggregation by the amyloid pathway based on what is known from other organ systems and describe quality control mechanisms that exist intracellularly to control protein misfolding and aggregation. We then present a summary of our studies of cystatinrelated epididymal spermatogenic (CRES) oligomerization within the epididymal lumen, including studies suggesting that transglutaminase cross-linking may be one mechanism of extracellular quality control within the epididymis.

  4. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    Directory of Open Access Journals (Sweden)

    Bartijn C H Pieters

    Full Text Available Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells.Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation.Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  5. Molecular properties determining unbound intracellular and extracellular brain exposure of CNS drug candidates.

    Science.gov (United States)

    Loryan, Irena; Sinha, Vikash; Mackie, Claire; Van Peer, Achiel; Drinkenburg, Wilhelmus H; Vermeulen, An; Heald, Donald; Hammarlund-Udenaes, Margareta; Wassvik, Carola M

    2015-02-01

    In the present work we sought to gain a mechanistic understanding of the physicochemical properties that influence the transport of unbound drug across the blood-brain barrier (BBB) as well as the intra- and extracellular drug exposure in the brain. Interpretable molecular descriptors that significantly contribute to the three key neuropharmacokinetic properties related to BBB drug transport (Kp,uu,brain), intracellular accumulation (Kp,uu,cell), and binding and distribution in the brain (Vu,brain) for a set of 40 compounds were identified using partial least-squares (PLS) analysis. The tailoring of drug properties for improved brain exposure includes decreasing the polarity and/or hydrogen bonding capacity. The design of CNS drug candidates with intracellular targets may benefit from an increase in basicity and/or the number of hydrogen bond donors. Applying this knowledge in drug discovery chemistry programs will allow designing compounds with more desirable CNS pharmacokinetic properties.

  6. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  7. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  8. Antimicrobial activity of mast cells: Role and relevance of extracellular DNA traps

    Directory of Open Access Journals (Sweden)

    Helene Möllerherm

    2016-07-01

    Full Text Available Mast cells (MCs have been shown to release their nuclear DNA and subsequently form mast cell extracellular traps (MCETs comparable to neutrophil extracellular traps, which are able to entrap and kill various microbes. The formation of extracellular traps is associated with the disruption of the nuclear membrane, leads to mixing of nuclear compounds with granule components and causes the death of the cell, a process called ETosis. The question arises why do MCs release MCETs although they are very well known as multifunctional long-living sentinel cells? In the first place, MCs are known to play a role during allergic reactions and certain parasitic infections. Nonetheless, they are also critical components of the early host innate immune response to bacterial and fungal pathogens: MCs contribute to the initiation of the early immune response by recruiting effector cells including neutrophils and macrophages by locally releasing inflammatory mediators such as TNF-α. Moreover, various studies exhibit that MCs are able to eliminate microbes through intracellular as well as extracellular antimicrobial mechanisms including MCET-formation similar to that of professional phagocytes. The actual literature leads to the suggestion that MCET-formation is not the result of passive release of DNA and granule proteins during cellular disintegration, but rather an active and controlled process in response to specific stimulation which contributes to the innate host defense. This review will discuss the different known aspects of the antimicrobial activities of MCs with special focus on MCETs and their role and relevance during infection and inflammation.

  9. Overview of microalgal extracellular polymeric substances (EPS) and their applications.

    Science.gov (United States)

    Xiao, Rui; Zheng, Yi

    2016-11-15

    Microalgae have been studied as natural resources for a number of applications, most particularly food, animal feed, biofuels, pharmaceuticals, and nutraceuticals. In addition to the intracellular compounds of interest, microalgae can also excrete various extracellular polymeric substances (EPS) into their immediate living environment during their life cycle to form a hydrated biofilm matrix. These microalgal EPS mainly consist of polysaccharides, proteins, nucleic acids and lipids. Most notably, EPS retain their stable matrix structure and form a 3-D polymer network for cells to interact with each other, and mediate their adhesion to surfaces. EPS also play a role as extracellular energy and carbon sinks. They are also abundant source of structurally and compositionally diverse biopolymers which possess unique bioactivities for special high-value applications, specifically as antivirals, antitumor agents, antioxidants, anticoagulants and anti-inflammatories. Their superior rheological properties also make microalgal EPS particularly useful in mechanical engineering (e.g., biolubricants and drag reducers) and food science/engineering (e.g., thickener and preservatives) applications. The chemical composition and structure of EPS appear to correlate with their applications, but the fundamentals of such relationship are not well understood. This article summarizes previous research on microalgal EPS derived from green algae, diatoms and red algae, including compositions/functions/structure, production, and potential applications. The importance of exopolysaccharides and EPS proteins, with their particular metabolic characteristics, are also described because of their potential high-value applications. This review concludes with potential future research areas of microalgal EPS. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Extracellular DNA: the tip of root defenses?

    Science.gov (United States)

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  11. Extracellular matrix proteins involved in pseudoislets formation.

    Science.gov (United States)

    Maillard, Elisa; Sencier, Marie-Christine; Langlois, A; Bietiger, William; Krafft, Mp; Pinget, Michel; Sigrist, Séverine

    2009-01-01

    Extracellular matrix proteins are known to mediate, through integrins, cell adhesion and are involved in a number of cellular processes, including insulin expression and secretion in pancreatic islets. We investigated whether expression of some extracellular matrix proteins were implied in islets-like structure formation, named pseudoislets. For this purpose, we cultured the β-cell line, RINm5F, during 1, 3, 5 and 7 days of culture on treated or untreated culture plate to form adherent cells or pseudoislets and analysed insulin, collagen IV, fibronectin, laminin 5 and β1-integrin expression. We observed that insulin expression and secretion were increased during pseudoislets formation. Moreover, we showed by immunohistochemistry an aggregation of insulin secreting cells in the centre of the pseudoislets. Peripheral β-cells of pseudoislets did not express insulin after 7 days of culture. RT-PCR and immunohistochemistry studies showed a transient expression of type IV collagen in pseudoislets for the first 3 days of culture. Study of fibronectin expression indicated that adherent cells expressed more fibronectin than pseudoislets. In contrast, laminin 5 was more expressed in pseudoislets than in adherent cells. Finally, expression of β1-integrin was increased in pseudoislets as compared to adherent cells. In conclusion, laminin 5 and collagen IV might be implicated in pseudoislets formation whereas fibronectin might be involved in cell adhesion. These data suggested that extracellular matrix proteins may enhance the function of pseudoislets.

  12. Placental extracellular vesicles and feto-maternal communication.

    Science.gov (United States)

    Tong, M; Chamley, L W

    2015-01-29

    The human placenta is an anatomically unique structure that extrudes a variety of extracellular vesicles into the maternal blood (including syncytial nuclear aggregates, microvesicles, and nanovesicles). Large quantities of extracellular vesicles are produced by the placenta in both healthy and diseased pregnancies. Since their first description more than 120 years ago, placental extracellular vesicles are only now being recognized as important carriers for proteins, lipids, and nucleic acids, which may play a crucial role in feto-maternal communication. Here, we summarize the current literature on the cargos of placental extracellular vesicles and the known effects of such vesicles on maternal cells/systems, especially those of the maternal immune and vascular systems. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained consider

  14. The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment

    Directory of Open Access Journals (Sweden)

    Zhongrun Qian

    2015-01-01

    Full Text Available Exosomes, microvesicles, and other extracellular vesicles are released by many cell types, including cancer cells and cancer-related immune cells. Extracellular vesicles can directly or indirectly facilitate the transfer of bioinformation to recipient cells or to the extracellular environment. In cancer, exosomes have been implicated in tumor initiation, proliferation, and metastasis. Extracellular vesicles can transmit proteins and nucleic acids that participate in DNA methylation, histone modification, and posttranscriptional regulation of RNA. Factors transmitted by extracellular vesicles reflect the donor cell status, and extracellular vesicles derived from tumor cells may be also responsible for altering expression of tumor promoting and tumor suppressing genes in recipient cells. Thus, circulating extracellular vesicles may act as biomarkers of cancer, and detection of these biomarkers may be applied to diagnosis or assessment of prognosis in patients with cancer.

  15. Efficient production and enhanced tumor delivery of engineered extracellular vesicles.

    Science.gov (United States)

    Watson, Dionysios C; Bayik, Defne; Srivatsan, Avinash; Bergamaschi, Cristina; Valentin, Antonio; Niu, Gang; Bear, Jenifer; Monninger, Mitchell; Sun, Mei; Morales-Kastresana, Aizea; Jones, Jennifer C; Felber, Barbara K; Chen, Xiaoyuan; Gursel, Ihsan; Pavlakis, George N

    2016-10-01

    Extracellular vesicles (EV), including exosomes and microvesicles, are nano-sized intercellular communication vehicles that participate in a multitude of physiological processes. Due to their biological properties, they are also promising candidates for the systemic delivery of therapeutic compounds, such as cytokines, chemotherapeutic drugs, siRNAs and viral vectors. However, low EV production yield and rapid clearance of administered EV by liver macrophages limit their potential use as therapeutic vehicles. We have used a hollow-fiber bioreactor for the efficient production of bioactive EV bearing the heterodimeric cytokine complex Interleukin-15:Interleukin-15 receptor alpha. Bioreactor culture yielded ∼40-fold more EV per mL conditioned medium, as compared to conventional cell culture. Biophysical analysis and comparative proteomics suggested a more diverse population of EV in the bioreactor preparations, while serum protein contaminants were detectable only in conventional culture EV preparations. We also identified the Scavenger Receptor Class A family (SR-A) as a novel monocyte/macrophage uptake receptor for EV. In vivo blockade of SR-A with dextran sulfate dramatically decreased EV liver clearance in mice, while enhancing tumor accumulation. These findings facilitate development of EV therapeutic methods.

  16. Economical evolution: microbes reduce the synthetic cost of extracellular proteins.

    Science.gov (United States)

    Smith, Daniel R; Chapman, Matthew R

    2010-08-24

    Protein evolution is not simply a race toward improved function. Because organisms compete for limited resources, fitness is also affected by the relative economy of an organism's proteome. Indeed, many abundant proteins contain relatively high percentages of amino acids that are metabolically less taxing for the cell to make, thus reducing cellular cost. However, not all abundant proteins are economical, and many economical proteins are not particularly abundant. Here we examined protein composition and found that the relative synthetic cost of amino acids constrains the composition of microbial extracellular proteins. In Escherichia coli, extracellular proteins contain, on average, fewer energetically expensive amino acids independent of their abundance, length, function, or structure. Economic pressures have strategically shaped the amino acid composition of multicomponent surface appendages, such as flagella, curli, and type I pili, and extracellular enzymes, including type III effector proteins and secreted serine proteases. Furthermore, in silico analysis of Pseudomonas syringae, Mycobacterium tuberculosis, Saccharomyces cerevisiae, and over 25 other microbes spanning a wide range of GC content revealed a broad bias toward more economical amino acids in extracellular proteins. The synthesis of any protein, especially those rich in expensive aromatic amino acids, represents a significant investment. Because extracellular proteins are lost to the environment and not recycled like other cellular proteins, they present a greater burden on the cell, as their amino acids cannot be reutilized during translation. We hypothesize that evolution has optimized extracellular proteins to reduce their synthetic burden on the cell.

  17. Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis.

    Science.gov (United States)

    Cheng, Chih-Jen; Kuo, Elizabeth; Huang, Chou-Long

    2013-05-01

    Extracellular potassium makes up only about 2% of the total body's potassium store. The majority of the body potassium is distributed in the intracellular space, of which about 80% is in skeletal muscle. Movement of potassium in and out of skeletal muscle thus plays a pivotal role in extracellular potassium homeostasis. The exchange of potassium between the extracellular space and skeletal muscle is mediated by specific membrane transporters. These include potassium uptake by Na(+), K(+)-adenosine triphosphatase and release by inward-rectifier K(+) channels. These processes are regulated by circulating hormones, peptides, ions, and by physical activity of muscle as well as dietary potassium intake. Pharmaceutical agents, poisons, and disease conditions also affect the exchange and alter extracellular potassium concentration. Here, we review extracellular potassium homeostasis, focusing on factors and conditions that influence the balance of potassium movement in skeletal muscle. Recent findings that mutations of a skeletal muscle-specific inward-rectifier K(+) channel cause hypokalemic periodic paralysis provide interesting insights into the role of skeletal muscle in extracellular potassium homeostasis. These recent findings are reviewed. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  19. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  20. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    Science.gov (United States)

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  1. A common molecular motif characterizes extracellular allosteric enhancers of GPCR aminergic receptors and suggests enhancer mechanism of action.

    Science.gov (United States)

    Root-Bernstein, Robert; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, corticosteroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers.

  2. Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: a review.

    Science.gov (United States)

    Kunacheva, Chinagarn; Stuckey, David C

    2014-09-15

    Effluents from biological processes contain a wide range of complex organic compounds, including soluble microbial products (SMP) and extracellular polymers (ECP), released during bacteria metabolism in mixed culture in bioreactors. It is important to clearly identify the primary components of SMPs and ECPs in order to understand the fundamental mechanisms of biological activity that create these compounds, and how to reduce these compounds in the effluent. In addition, these compounds constitute the main foulants in membrane bioreactors which are being used more widely around the world. A review on the extraction of ECP, characterization, and identification of SMPs and ECPs is presented, and we summarize up-to-date pretreatments and analytical methods for SMPs. Most researchers have focused more on the overall properties of SMPs and ECPs such as their concentrations, molecular weight distribution, aromaticity, hydrophobic and hydrophilic properties, biodegradability, and toxicity characteristics. Many studies on the identification of effluent SMPs show that most of these compounds were not present in the influent, such as humic acids, polysaccharides, proteins, nucleic acids, organic acids, amino acids, exocellular enzymes, structural components of cells and products of energy metabolism. A few groups of researchers have been working on the identification of compounds in SMPs using advanced analytical techniques such as GC-MS, LC-IT-TOF-MS and MALDI-TOF-MS. However, there is still considerably more work needed to be done analytically to fully understand the chemical characteristics of SMPs and ECPs.

  3. Extracellular polymeric substances act as transient media in extracellular electron transfer of Shewanella oneidensis MR-1

    DEFF Research Database (Denmark)

    Xiao, Yong; Zhang, Jingdong; Ulstrup, Jens

    without extracting EPS or cells collected from log stage or early-steady stage cultures with little EPS. Therefore, microbial cells are believed in contact directly with each other or electrode. Such attempt apparently ignored the role of EPS in microbial EET, even though many components of EPS......It is well known that microorganism is surrounded by extracellular polymeric substances (EPS) which include polysaccharides, proteins, glycoproteins, nucleic acids, phospholipids, and humic acids. However, previous studies on microbial extracellular electron transfer (EET) are conducted on cells......, such as DNA, humic acids and some proteins, are electrochemically active or semiconductive. Herein, we report experimental evidences of EPS role on EET for Shewanella oneidensis MR-1. Atomic force microscopy clearly showed that the cell surface was cleaned and few EPS could be observed on MR-1 after...

  4. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    Science.gov (United States)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  5. Resorbable extracellular matrix grafts in urologic reconstruction

    Directory of Open Access Journals (Sweden)

    Richard A. Santucci

    2005-06-01

    Full Text Available PURPOSE: There is an increasingly large body of literature concerning tissue-engineering products that may be used in urology. Some of these are quite complex (such as multilayer patient-specific cell-seeded implants yet the most simple and successful products to date are also the most uncomplicated: resorbable acellular extra-cellular matrices (ECMs harvested from animals. ECMs have been used in a variety of difficult urologic reconstruction problems, and this review is intended to summarize this complex literature for the practicing urologist. METHODS: Medline search of related terms such as "SIS, small intestinal submucosa, ECM, extracellular matrix, acellular matrix and urologic reconstruction". Manuscripts missed in the initial search were taken from the bibliographies of the primary references. RESULTS: Full review of potential clinical uses of resorbable extra-cellular matrices in urologic reconstruction. CONCLUSIONS: Currently, the "state of the art" in tissue engineering solutions for urologic reconstruction means resorbable acellular xenograft matrices. They show promise when used as a pubovaginal sling or extra bolstering layers in ureteral or urethral repairs, although recent problems with inflammation following 8-ply pubovaginal sling use and failures after 1- and 4-ply SIS repair of Peyronie's disease underscore the need for research before wide adoption. Preliminary data is mixed concerning the potential for ECM urethral patch graft, and more data is needed before extended uses such as bladder augmentation and ureteral replacement are contemplated. The distant future of ECMs in urology likely will include cell-seeded grafts with the eventual hope of producing "off the shelf" replacement materials. Until that day arrives, ECMs only fulfill some of the requirements for the reconstructive urologist.

  6. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids

    OpenAIRE

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2013-01-01

    We have previously demonstrated that tumor cells release membranous structures into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. These cell-derived vesicles can exhibit an array of proteins, lipids and nucleic acids derived from the originating tumor. This review focuses of the transcriptome (RNA) of these extracellular vesicles. Based on current da...

  7. Rhinacanthus nasutus Extracts Prevent Glutamate and Amyloid-β Neurotoxicity in HT-22 Mouse Hippocampal Cells: Possible Active Compounds Include Lupeol, Stigmasterol and β-Sitosterol

    Directory of Open Access Journals (Sweden)

    James M. Brimson

    2012-04-01

    Full Text Available The Herb Rhinacanthus nasutus (L. Kurz, which is native to Thailand and Southeast Asia, has become known for its antioxidant properties. Neuronal loss in a number of diseases including Alzheimer’s disease is thought to result, in part, from oxidative stress. Glutamate causes cell death in the mouse hippocampal cell line, HT-22, by unbalancing redox homeostasis, brought about by a reduction in glutathione levels, and amyloid-β has been shown to induce reactive oxygen species (ROS production. Here in, we show that ethanol extracts of R. nasutus leaf and root are capable of dose dependently attenuating the neuron cell death caused by both glutamate and amyloid-β treatment. We used free radical scavenging assays to measure the extracts antioxidant activities and as well as quantifying phenolic, flavonoid and sterol content. Molecules found in R. nasutus, lupeol, stigmasterol and β-sitosterol are protective against glutamate toxicity.

  8. Thermoreversible copolymer gels for extracellular matrix.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    2000-07-01

    To improve the properties of a reversible synthetic extracellular matrix based on a thermally reversible polymer, copolymers of N-isopropylacrylamide and acrylic acid were prepared in benzene with varying contents of acrylic acid (0 to 3%) and the thermal properties were evaluated. The poly(N-isopropylacrylamide) and copolymers made with acrylic acid had molecular weights from 0.8 to 1.7 x10(6) D. Differential scanning calorimetry (DSC) showed the high-molecular-weight acrylic acid copolymers had similar onset temperatures to the homopolymers, but the peak width was considerably increased with increasing acrylic acid content. DSC and cloud point measurements showed that polymers with 0 to 3% acrylic acid exhibit a lower critical solution temperature (LCST) transition between 30 degrees and 37 degrees C. In swelling studies, the homopolymer showed significant syneresis at temperatures above 31 degrees C. Copolymers with 1 and 1.5% showed syneresis beginning at 32 degrees and 37 degrees C, respectively. At 37 degrees C the copolymers with 1.5-3% acrylic acid showed little or no syneresis. Due to the high water content and a transition near physiologic conditions (below 37 degrees C), the polymers with 1.5-2.0% acrylic acid exhibited properties that would be useful in the development of a refillable synthetic extracellular matrix. Such a matrix could be applied to several cell types, including islets of Langerhans, for a biohybrid artificial pancreas.

  9. Basic Components of Connective Tissues and Extracellular Matrix

    DEFF Research Database (Denmark)

    Halper, Jaroslava; Kjær, Michael

    2014-01-01

    of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its...... network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin...... and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially...

  10. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  11. Prenatal diagnosis of craniosynostosis (compound Saethre-Chotzen syndrome phenotype) caused by a de novo complex chromosomal rearrangement (1; 4; 7) with a microdeletion of 7p21.3-7p15.3, including TWIST1 gene--a case report.

    Science.gov (United States)

    Massalska, Diana; Bijok, Julia; Kucińska-Chahwan, Anna; Jamsheer, Aleksander; Bogdanowicz, Joanna; Jakiel, Grzegorz; Roszkowski, Tomasz

    2014-07-01

    Craniosynostosis (a premature fusion of the cranial sutures) occurs with a frequency of 1 in 2100-2500 births and in over 40% cases is caused by known genetic factors--either single gene mutations or chromosomal rearrangements. Cases caused by complex chromosomal abnormalities are uncommon and likely associated with compound phenotype. Saethre-Chotzen syndrome (SCS) [#101400] is caused by TWIST1 gene haploinsufficiency. Its phenotype includes uni- or bicoronal synostosis, short stature, facial dysmorphism and variable anomalies of the hands and feet. Due to its poor sonographic manifestation a prenatal diagnosis of SCS is challenging. We report a case of a prenatally detected craniosynostosis (compound Saethre-Chotzen syndrome phenotype) caused by a de novo complex chromosomal rearrangement (1; 4; 7) with a microdeletion of 7p21.3-7p15.3, including TWIST1 gene.

  12. In vitro Determination of Extracellular Proteins from Xylella fastidiosa

    Science.gov (United States)

    Mendes, Juliano S.; Santiago, André S.; Toledo, Marcelo A. S.; Horta, Maria A. C.; de Souza, Alessandra A.; Tasic, Ljubica; de Souza, Anete P.

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3–30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components. PMID:28082960

  13. Vesicular mechanisms of traffic of fungal molecules to the extracellular space.

    Science.gov (United States)

    Rodrigues, Marcio L; Franzen, Anderson J; Nimrichter, Leonardo; Miranda, Kildare

    2013-08-01

    Fungal cells are efficient in releasing to the extracellular space molecules that lack typical secretion signals, including cytoplasmic components. Studies developed during the last five years indicate that extracellular vesicle formation is involved in the traffic of these intracellular components to the extracellular space. The cellular origin of these vesicles, however, is still unknown. Here we review the potential mechanisms involved in formation of fungal extracellular vesicles and consequent release of fungal molecules to the outer cellular space. We also propose that these compartments can originate from cytoplasmic subtractions whose formation is dependent on plasma membrane reshaping.

  14. Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Javier Perez-Hernandez

    2015-01-01

    Full Text Available Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs, including microvesicles (also known as microparticles, apoptotic bodies, and exosomes, are recognized vehicles of intercellular communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus erythematosus.

  15. Matricryptins and matrikines: biologically active fragments of the extracellular matrix.

    Science.gov (United States)

    Ricard-Blum, Sylvie; Salza, Romain

    2014-07-01

    Numerous extracellular proteins and glycosaminoglycans (GAGs) undergo limited enzymatic cleavage resulting in the release of fragments exerting biological activities, which are usually different from those of the full-length molecules. In this review, we define matrikines and matricryptins, which are bioactive fragments released from the extracellular matrix proteins, proteoglycans and GAGs and report their major biological activities. These fragments regulate a number of physiopathological processes including angiogenesis, cancer, fibrosis, inflammation, neurodegenerative diseases and wound healing. The challenges to translate these fragments from molecules biologically active in vitro and in experimental models to potential drugs are discussed in the last part of the review.

  16. Oncogenic extracellular vesicles in brain tumour progression

    Directory of Open Access Journals (Sweden)

    Esterina eD'Asti

    2012-07-01

    Full Text Available The brain is a frequent site of neoplastic growth, including both primary and metastatic tumours. The clinical intractability of many brain tumours and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs. Their biogenesis (vesiculation and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumour cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumour-derived EVs (oncosomes also contain oncogenic proteins, transcripts, DNA and microRNA (miR. Uptake of this material may change properties of the recipient cells and impact the tumour microenvironment. Examples of transformation-related molecules found in the cargo of tumour-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII, tumour suppressors (PTEN and oncomirs (miR-520g. It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF of brain tumour patients may be used to decipher molecular features (mutations of the underlying malignancy, reflect responses to therapy or molecular subtypes of primary brain tumours (e.g. glioma or medulloblastoma. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies.

  17. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    Science.gov (United States)

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world.

  18. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  19. Salvage of Failed Local and Regional Flaps with Porcine Urinary Bladder Extracellular Matrix Aided Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Gregory J. Kruper

    2013-01-01

    Full Text Available Local and regional flap failure can be a major complication in head and neck surgery, which continue to be prevalent for a number of reasons including poor flap design, improper surgical technique, and poor tissue vascularity. Dealing with these failures can be quite difficult. Surgical debridement, flap revisions, and complex wound regimens are necessitated to reestablish appropriate tissue coverage. Traditional use of wet to dry dressing to enable proper wound granulation and possible closure with additional flaps or skin grafts is a laborious process. Such treatments place great time burdens on the patient, physicians, and nurses. Because the face and neck possess a complex three-dimensional topography, wound dressings are inherently complex to design and change. Many patients also require postoperative treatments such as radiation and chemotherapy to treat aggressive malignancies, and delay in wound healing leads to a delay in adjuvant treatment. Recently, advances in regenerative medicine, specifically xenogeneic extracellular matrix compounds, have been shown to promote tissue growth while limiting scar tissue formation (Badylak 2004. To our knowledge, this paper is the first case series using the porcine extracellular matrix bioscaffold (MatriStem ACell, Columbia, MD, USA to salvage flaps with extensive wound breakdown on the face and neck.

  20. The NIH Extracellular RNA Communication Consortium.

    Science.gov (United States)

    Ainsztein, Alexandra M; Brooks, Philip J; Dugan, Vivien G; Ganguly, Aniruddha; Guo, Max; Howcroft, T Kevin; Kelley, Christine A; Kuo, Lillian S; Labosky, Patricia A; Lenzi, Rebecca; McKie, George A; Mohla, Suresh; Procaccini, Dena; Reilly, Matthew; Satterlee, John S; Srinivas, Pothur R; Church, Elizabeth Stansell; Sutherland, Margaret; Tagle, Danilo A; Tucker, Jessica M; Venkatachalam, Sundar

    2015-01-01

    The Extracellular RNA (exRNA) Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a) generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b) defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies,

  1. Physiology and pathology of extracellular vesicules

    Directory of Open Access Journals (Sweden)

    M. A. Panteleev

    2017-01-01

    Full Text Available This year marks the 50th anniversary of the first publication about blood plasma microparticles. Initially considered as cell fragments or “platelet dust”, extracellular vesicles currently attracted the attention of biochemists, biophysicists, physicians, pharmacists around the world. They are heterogeneous in structure and derived from many cell types, express different antigen and contain variety of biomolecules that determines wide range of biological activity, including procoagulant, regenerative, immunomodulating, and others. They play an important role in the pathophysiology of different diseases and conditions – from infarction, injuries and pregnancies to the “graft versus host” disease. The vesicles as medicaments and their carriers, as well as the drugs that affect them, are a rapidly developing field of research.

  2. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine

    Science.gov (United States)

    Grolla, Ambra A; Travelli, Cristina

    2016-01-01

    Abstract In this review, we focus on the secreted form of nicotinamide phosphoribosyltransferase (NAMPT); extracellular NAMPT (eNAMPT), also known as pre‐B cell colony‐enhancing factor or visfatin. Although intracellular NAMPT is a key enzyme in controlling NAD metabolism, eNAMPT has been reported to function as a cytokine, with many roles in physiology and pathology. Circulating eNAMPT has been associated with several metabolic and inflammatory disorders, including cancer. Because cytokines produced in the tumour micro‐environment play an important role in cancer pathogenesis, in part by reprogramming cellular metabolism, future improvements in cancer immunotherapy will require a better understanding of the crosstalk between cytokine action and tumour biology. In this review, the knowledge of eNAMPT in cancer will be discussed, focusing on its immunometabolic function as a metabokine, its secretion, its mechanism of action and possible roles in the cancer micro‐environment. PMID:27128025

  3. Extracellular Vesicles in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Tsukasa Kadota

    2016-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by the progression of irreversible airflow limitation and is a leading cause of morbidity and mortality worldwide. Although several crucial mechanisms of COPD pathogenesis have been studied, the precise mechanism remains unknown. Extracellular vesicles (EVs, including exosomes, microvesicles, and apoptotic bodies, are released from almost all cell types and are recognized as novel cell–cell communication tools. They have been shown to carry and transfer a wide variety of molecules, such as microRNAs, messenger RNAs, and proteins, which are involved in physiological functions and the pathology of various diseases. Recently, EVs have attracted considerable attention in pulmonary research. In this review, we summarize the recent findings of EV-mediated COPD pathogenesis. We also discuss the potential clinical usefulness of EVs as biomarkers and therapeutic agents for the treatment of COPD.

  4. Extracellular Matrix Molecules Facilitating Vascular Biointegration

    Directory of Open Access Journals (Sweden)

    Martin K.C. Ng

    2012-08-01

    Full Text Available All vascular implants, including stents, heart valves and graft materials exhibit suboptimal biocompatibility that significantly reduces their clinical efficacy. A range of biomolecules in the subendothelial space have been shown to play critical roles in local regulation of thrombosis, endothelial growth and smooth muscle cell proliferation, making these attractive candidates for modulation of vascular device biointegration. However, classically used biomaterial coatings, such as fibronectin and laminin, modulate only one of these components; enhancing endothelial cell attachment, but also activating platelets and triggering thrombosis. This review examines a subset of extracellular matrix molecules that have demonstrated multi-faceted vascular compatibility and accordingly are promising candidates to improve the biointegration of vascular biomaterials.

  5. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism

    NARCIS (Netherlands)

    Johnson, Peter R A; Burgess, Janette K; Underwood, P Anne; Au, Wendy; Poniris, Maree H; Tamm, Michael; Ge, Qi; Roth, Michael; Black, Judith L

    2004-01-01

    BACKGROUND: Airway remodeling is a key feature of persistent asthma and includes alterations in the extracellular matrix protein profile around the airway smooth muscle (ASM) and hyperplasia of the ASM. We have previously shown that nonasthmatic ASM cells in culture produce a range of extracellular

  6. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus

    NARCIS (Netherlands)

    Balaji, D. S.; Basavaraja, S.; Deshpande, R.; Mahesh, D. Bedre; Prabhakar, B. K.; Venkataraman, A.

    2009-01-01

    In the present investigation, we report the extracellular biosynthesis of silver nanoparticles (AgNP) employing the fungus Cladosporium cladosporioides. The extracellular solution of C. cladosporioides was used for the reduction of AgNO(3) solution to AgNP. The present study includes time dependent

  7. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus

    NARCIS (Netherlands)

    Balaji, D. S.; Basavaraja, S.; Deshpande, R.; Mahesh, D. Bedre; Prabhakar, B. K.; Venkataraman, A.

    2009-01-01

    In the present investigation, we report the extracellular biosynthesis of silver nanoparticles (AgNP) employing the fungus Cladosporium cladosporioides. The extracellular solution of C. cladosporioides was used for the reduction of AgNO(3) solution to AgNP. The present study includes time dependent

  8. Minimal experimental requirements for definition of extracellular vesicles and their functions : a position statement from the International Society for Extracellular Vesicles

    NARCIS (Netherlands)

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H|info:eu-repo/dai/nl/112675735; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently

  9. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  10. Ecotoxicology of organofluorous compounds.

    Science.gov (United States)

    Murphy, Margaret B; Loi, Eva I H; Kwok, Karen Y; Lam, Paul K S

    2012-01-01

    Organofluorous compounds have been developed for myriad purposes in a variety of fields, including manufacturing, industry, agriculture, and medicine. The widespread use and application of these compounds has led to increasing concern about their potential ecological toxicity, particularly because of the stability of the C-F bond, which can result in chemical persistence in the environment. This chapter reviews the chemical properties and ecotoxicology of four groups of organofluorous compounds: fluorinated refrigerants and propellants, per- and polyfluorinated compounds (PFCs), fluorinated pesticides, and fluoroquinolone antibiotics. These groups vary in their environmental fate and partitioning, but each raises concern in terms of ecological risk on both the regional and global scale, particularly those compounds with long environmental half-lives. Further research on the occurrence and toxicities of many of these compounds is needed for a more comprehensive understanding of their ecological effects.

  11. Extracellular heat shock proteins: a new location, a new function.

    Science.gov (United States)

    De Maio, Antonio; Vazquez, Daniel

    2013-10-01

    The expression of heat shock proteins (HSPs) is a basic and well-conserved cellular response to an array of stresses. These proteins are involved in the repair of cellular damage induced by the stress, which is necessary for the salutary resolution from the insult. Moreover, they confer protection from subsequent insults, which has been coined stress tolerance. Because these proteins are expressed in subcellular compartments, it was thought that their function during stress conditions was circumscribed to the intracellular environment. However, it is now well established that HSPs can also be present outside cells where they appear to display a function different than the well-understood chaperone role. Extracellular HSPs act as alert stress signals priming other cells, particularly of the immune system, to avoid the propagation of the insult and favor resolution. Because the majority of HSPs do not possess a secretory peptide signal, they are likely to be exported by a nonclassic secretory pathway. Different mechanisms have been proposed to explain the export of HSPs, including translocation across the plasma membrane and release associated with lipid vesicles, as well as the passive release after cell death by necrosis. Extracellular HSPs appear in various flavors, including membrane-bound and membrane-free forms. All of these variants of extracellular HSPs suggest that their interactions with cells may be quite diverse, both in target cell types and the activation signaling pathways. This review addresses some of our current knowledge about the release and relevance of extracellular HSPs.

  12. Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

    DEFF Research Database (Denmark)

    Iversen, Marie B; Gottfredsen, Randi H; Larsen, Ulrike G

    2016-01-01

    Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymor......Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages......), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide...

  13. Extracellular DNA in oral microbial biofilms.

    Science.gov (United States)

    Jakubovics, Nicholas S; Burgess, J Grant

    2015-07-01

    The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.

  14. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.

    Science.gov (United States)

    Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I

    2014-01-01

    The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.

  15. Regulation of Osteoblast Survival by the Extracellular Matrix and Gravity

    Science.gov (United States)

    Globus. Ruth K.; Almeida, Eduardo A. C.; Searby, Nancy D.; Bowley, Susan M. (Technical Monitor)

    2000-01-01

    Spaceflight adversely affects the skeleton, posing a substantial risk to astronaut's health during long duration missions. The reduced bone mass observed in growing animals following spaceflight is due at least in part to inadequate bone formation by osteoblasts. Thus, it is of central importance to identify basic cellular mechanisms underlying normal bone formation. The fundamental ideas underlying our research are that interactions between extracellular matrix proteins, integrin adhesion receptors, cytoplasmic signaling and cytoskeletal proteins are key ingredients for the proper functioning of osteoblasts, and that gravity impacts these interactions. As an in vitro model system we used primary fetal rat calvarial cells which faithfully recapitulate osteoblast differentiation characteristically observed in vivo. We showed that specific integrin receptors ((alpha)3(beta)1), ((alpha)5(beta)1), ((alpha)8(betal)1) and extracellular matrix proteins (fibronectin, laminin) were needed for the differentiation of immature osteoblasts. In the course of maturation, cultured osteoblasts switched from depending on fibronectin and laminin for differentiation to depending on these proteins for their very survival. Furthermore, we found that manipulating the gravity vector using ground-based models resulted in activation of key intracellular survival signals generated by integrin/extracellular matrix interactions. We are currently testing the in vivo relevance of some of these observations using targeted transgenic technology. In conclusion, mechanical factors including gravity may participate in regulating survival via cellular interactions with the extracellular matrix. This leads us to speculate that microgravity adversely affects the survival of osteoblasts and contributes to spaceflight-induced osteoporosis.

  16. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  17. Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity

    NARCIS (Netherlands)

    Meijer, H.J.G.; Hassen, H.H.; Govers, F.

    2011-01-01

    In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, an

  18. Extracellular matrices, artiifcial neural scaffolds and the promise of neural regeneration

    Institute of Scientific and Technical Information of China (English)

    Christian B.Ricks; Samuel S.Shin; Christopher Becker; Ramesh Grandhi

    2014-01-01

    Over last 20 years, extracellular matrices have been shown to be useful in promoting tissue re-generation. Recently, they have been used and have had success in achieving neurogenesis. Recent developments in extracellular matrix design have allowed their successful in vivo incorporation to engender an environment favorable for neural regeneration in animal models. Promising treatments under investigation include manipulation of the intrinsic extracellular matrix and incorporation of engineered naometer-sized scaffolds through which inhibition of molecules serving as barriers to neuroregeneration and delivery of neurotrophic factors and/or cells for successful tissue regeneration can be achieved. Further understanding of the changes incurred within the extracellular matrix following central nervous system injury will undoubtedly help design a clinically efifcacious extracellular matrix scaffold that can mitigate or reverse neural de-generation in the clinical setting.

  19. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Dae-Kyum Kim

    2013-03-01

    Full Text Available Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.

  20. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation

    NARCIS (Netherlands)

    Rezeli, Melinda; Gidlöf, Olof; Evander, Mikael; Bryl-Górecka, Paulina; Sathanoori, Ramasri; Gilje, Patrik; Pawlowski, Krzysztof; Horvatovich, Péter; Erlinge, David; Marko-Varga, György; Laurell, Thomas

    2016-01-01

    Extracellular vesicles (ECVs), including microparticles (MPs) and exosomes, are submicron membrane vesicles released by diverse cell types upon activation or stress. Circulating ECVs are potential reservoirs of disease biomarkers, and the complexity of these vesicles is significantly lower compared

  1. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells

    NARCIS (Netherlands)

    Soares, Ana Rosa; Martins-Marques, Tania; Ribeiro-Rodrigues, Teresa; Ferreira, Joao Vasco; Catarino, Steve; Pinho, Maria Joao; Zuzarte, Monica; Anjo, Sandra Isabel; Manadas, Bruno; Sluijter, Joost P. G.; Pereira, Paulo; Girao, Henrique

    2015-01-01

    Intercellular communication is vital to ensure tissue and organism homeostasis and can occur directly, between neighbour cells via gap junctions (GJ), or indirectly, at longer distances, through extracellular vesicles, including exosomes. Exosomes, as intercellular carriers of messenger molecules, m

  2. Extracellular polymeric substances of bacteria and their potential environmental applications.

    Science.gov (United States)

    More, T T; Yadav, J S S; Yan, S; Tyagi, R D; Surampalli, R Y

    2014-11-01

    Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly

  3. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  4. Detection of Extracellular Enzyme Activities in Ganoderma neo-japonicum

    OpenAIRE

    Jo, Woo-Sik; Park, Ha-Na; Cho, Doo-Hyun; Yoo, Young-Bok; Park, Seung-Chun

    2011-01-01

    The ability of Ganoderma to produce extracellular enzymes, including β-glucosidase, cellulase, avicelase, pectinase, xylanase, protease, amylase, and ligninase was tested in chromogenic media. β-glucosidase showed the highest activity, among the eight tested enzymes. In particular, Ganoderma neo-japonicum showed significantly stronger activity for β-glucosidase than that of the other enzymes. Two Ganoderma lucidum isolates showed moderate activity for avicelase; however, Ganoderma neo-japonic...

  5. and extracellular laccase isoenzymes from Pleurotus ostreatus ...

    African Journals Online (AJOL)

    ZMG

    Colonia Vicentina, Delegación Iztapalapa, 09340 México D.F., México. ... In this study, extracellular laccase enzymes produced by Pleurotus ostreatus was identified in .... the intracellular forms), through the modified zymography method of.

  6. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  7. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  8. The extracellular matrix in breast cancer.

    Science.gov (United States)

    Insua-Rodríguez, Jacob; Oskarsson, Thordur

    2016-02-01

    The extracellular matrix (ECM) is increasingly recognized as an important regulator in breast cancer. ECM in breast cancer development features numerous changes in composition and organization when compared to the mammary gland under homeostasis. Matrix proteins that are induced in breast cancer include fibrillar collagens, fibronectin, specific laminins and proteoglycans as well as matricellular proteins. Growing evidence suggests that many of these induced ECM proteins play a major functional role in breast cancer progression and metastasis. A number of the induced ECM proteins have moreover been shown to be essential components of metastatic niches, promoting stem/progenitor signaling pathways and metastatic growth. ECM remodeling enzymes are also markedly increased, leading to major changes in the matrix structure and biomechanical properties. Importantly, several ECM components and ECM remodeling enzymes are specifically induced in breast cancer or during tissue regeneration while healthy tissues under homeostasis express exceedingly low levels. This may indicate that ECM and ECM-associated functions may represent promising drug targets against breast cancer, providing important specificity that could be utilized when developing therapies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  10. Extracellular Vesicles: potential roles in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Olivier G de Jong

    2014-12-01

    Full Text Available Extracellular vesicles (EV consist of exosomes, which are released upon fusion of the multivesicular body with the cell membrane, and microvesicles, which are released directly from the cell membrane. EV can mediate cell-cell communication and are involved in many processes, including immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. The vast amount of processes that EV are involved in and the versatility of manner in which they can influence the behavior of recipient cells make EV an interesting source for both therapeutic and diagnostic applications. Successes in the fields of tumor biology and immunology sparked the exploration of the potential of EV in the field of regenerative medicine. Indeed, EV are involved in restoring tissue and organ damage, and may partially explain the paracrine effects observed in stem cell based therapeutic approaches. The function and content of EV may also harbor information that can be used in tissue engineering, in which paracrine signaling is employed to modulate cell recruitment, differentiation, and proliferation. In this review, we discuss the function and role of EV in regenerative medicine and elaborate on potential applications in tissue engineering.

  11. EXTRACELLULAR POLYSACCHARIDES OF POTATO RING ROT PATHOGEN

    Directory of Open Access Journals (Sweden)

    Shafikova Т.N.

    2006-03-01

    Full Text Available Many bacteria, including phytopathogenic ones produce extracellular polysaccharides or exopolysaccharides which are universal molecules. Causal agent of potato ring rot, Clavibacter michiganensis subspecies sepedonicus, secretes exopolysaccharides which role in pathogenesis is poorly investigated. The aim of our research is to ascertain the composition and structure of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides. Exopolysaccharides of Clavibacter michiganensis subspecies sepedonicus are determined to consist of 4-6 anionic and neutral components which have molecular weights from 700 kDa. Glucose is a major monomer of polysaccharides and arabinose, rhamnose and mannose are minor monomers. Glucose is present in α-Dglucopyranose and β-D-glucopyranose configurations. Calcium is determined to be a component of exopolysaccharides. Components of exopolysaccharides of potato ring rot pathogen are probably capableto associate via calcium ions and other ionic interactions that may result in a change of their physiological activity. Further studies of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides composition and structure can serve a base for the synthesis of their chemical analogues with elicitor action.

  12. Engineering hydrogels as extracellular matrix mimics.

    Science.gov (United States)

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun; Demirci, Utkan

    2010-04-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell-cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine.

  13. Protein Dynamics in the Plant Extracellular Space

    Science.gov (United States)

    Guerra-Guimarães, Leonor; Pinheiro, Carla; Chaves, Inês; Barros, Danielle R.; Ricardo, Cândido P.

    2016-01-01

    The extracellular space (ECS or apoplast) is the plant cell compartment external to the plasma membrane, which includes the cell walls, the intercellular space and the apoplastic fluid (APF). The present review is focused on APF proteomics papers and intends to draw information on the metabolic processes occurring in the ECS under abiotic and biotic stresses, as well as under non-challenged conditions. The large majority of the proteins detected are involved in “cell wall organization and biogenesis”, “response to stimulus” and “protein metabolism”. It becomes apparent that some proteins are always detected, irrespective of the experimental conditions, although with different relative contribution. This fact suggests that non-challenged plants have intrinsic constitutive metabolic processes of stress/defense in the ECS. In addition to the multiple functions ascribed to the ECS proteins, should be considered the interactions established between themselves and with the plasma membrane and its components. These interactions are crucial in connecting exterior and interior of the cell, and even simple protein actions in the ECS can have profound effects on plant performance. The proteins of the ECS are permanently contributing to the high dynamic nature of this plant compartment, which seems fundamental to plant development and adaptation to the environmental conditions. PMID:28248232

  14. Characterization and biological role of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Aneta Wójtowicz

    2014-12-01

    Full Text Available Extracellular vesicles (EV form a heterogeneous population of mostly spherical membrane structures released by almost all cells, including tumour cells, both in vivo and in vitro. Their size varies from 30 nm to 1 μm, and size is one of the main criteria of the selection of two categories of EV: small (30-100 nm, more homogeneous exosomes and larger fragments (0.1-1 μm called membrane microvesicles or ectosomes. The presence of EV has already been detected in many human body fluids: blood, urine, saliva, semen and amniotic fluid. Formation of EV is tightly controlled, and their function and biochemical composition depend on the cell type they originate from. EV are the “vehicles” of bioactive molecules, such as proteins, mRNA and microRNA, and may play an important role in intercellular communication and modulation of e.g. immune system cell activity. In addition, on the surface of tumour-derived microvesicles (TMV, called oncosomes, several markers specific for cancer cells were identified, which indicates a role of TMV in tumour growth and cancer development. On the other hand, TMV may be an important source of tumour-associated antigens (TAA which can be potentially useful as biomarkers with prognostic value, as well as in development of new forms of targeted immunotherapy of cancer.

  15. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  16. The NIH Extracellular RNA Communication Consortium

    Directory of Open Access Journals (Sweden)

    Alexandra M. Ainsztein

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium, funded as an initiative of the NIH Common Fund, represents a consortium of investigators assembled to address the critical issues in the exRNA research arena. The overarching goal is to generate a multi-component community resource for sharing fundamental scientific discoveries, protocols, and innovative tools and technologies. The key initiatives include (a generating a reference catalogue of exRNAs present in body fluids of normal healthy individuals that would facilitate disease diagnosis and therapies, (b defining the fundamental principles of exRNA biogenesis, distribution, uptake, and function, as well as development of molecular tools, technologies, and imaging modalities to enable these studies, (c identifying exRNA biomarkers of disease, (d demonstrating clinical utility of exRNAs as therapeutic agents and developing scalable technologies required for these studies, and (e developing a community resource, the exRNA Atlas, to provide the scientific community access to exRNA data, standardized exRNA protocols, and other useful tools and technologies generated by funded investigators.

  17. Response of Nodularia spumigena to pCO2 – Part 2: Exudation and extracellular enzyme activities

    Directory of Open Access Journals (Sweden)

    M. Nausch

    2012-04-01

    Full Text Available The filamentous and diazotrophic cyanobacterium Nodularia spumigena plays a major role in the productivity of the Baltic Sea as it forms extensive blooms regularly. Under phosphorus limiting conditions Nodularia spumigena has a high enzyme affinity for dissolved organic phosphorus (DOP by production and release of alkaline phosphatase. Additionally, it is able to degrade proteinaceous compounds by expressing the extracellular enzyme leucine aminopeptidase. As atmospheric CO2 concentrations are increasing, we expect marine phytoplankton to experience changes in several environmental parameters including pH, temperature, and nutrient availability. The aim of this study was to investigate the combined effect of CO2-induced changes in seawater carbonate chemistry and of phosphate deficiency on the exudation of organic matter, and its subsequent recycling by extracellular enzymes in a Nodularia spumigena culture. Batch cultures of Nodularia spumigena were grown for 15 days aerated with three different pCO2 levels corresponding to values from glacial periods to future values projected for the year 2100. Extracellular enzyme activities as well as changes in organic and inorganic compound concentrations were monitored. CO2 treatment–related effects were identified for cyanobacterial growth, which in turn was influencing exudation and recycling of organic matter by extracellular enzymes. Biomass production was increased by 56.5% and 90.7% in the medium and high pCO2 treatment, respectively, compared to the low pCO2 treatment and simultaneously increasing exudation. During the growth phase significantly more mucinous substances accumulated in the high pCO2 treatment reaching 363 μg Gum Xanthan eq l−1 compared to 269 μg Gum Xanthan eq l−1 in the low pCO2 treatment. However, cell-specific rates did not change. After phosphate depletion, the acquisition of P from DOP by alkaline phosphatase was significantly enhanced. Alkaline phosphatase activities

  18. Extracellular Vesicles in Heart Disease: Excitement for the Future?

    Directory of Open Access Journals (Sweden)

    Kirsty M. Danielson

    2014-01-01

    Full Text Available Extracellular vesicles (EV, including exosomes, microvesicles and apoptotic bodies, are released from numerous cell types and are involved in intercellular communication, physiological functions and the pathology of disease. They have been shown to carry and transfer a wide range of cargo including proteins, lipids and nucleic acids. The role of EVs in cardiac physiology and heart disease is an emerging field that has produced intriguing findings in recent years. This review will outline what is currently known about EVs in the cardiovascular system, including cellular origins, functional roles and utility as biomarkers and potential therapeutics.

  19. Optical modulator including grapene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. Extracellular Acidification Acts as a Key Modulator of Neutrophil Apoptosis and Functions.

    Directory of Open Access Journals (Sweden)

    Shannan Cao

    Full Text Available In human pathological conditions, the acidification of local environment is a frequent feature, such as tumor and inflammation. As the pH of microenvironment alters, the functions of immune cells are about to change. It makes the extracellular acidification a key modulator of innate immunity. Here we detected the impact of extracellular acidification on neutrophil apoptosis and functions, including cell death, respiratory burst, migration and phagocytosis. As a result, we found that under the acid environment, neutrophil apoptosis delayed, respiratory burst inhibited, polarization augmented, chemotaxis differed, endocytosis enhanced and bacteria killing suppressed. These findings suggested that extracellular acidification acts as a key regulator of neutrophil apoptosis and functions.

  1. Novel aspects of extracellular adenosine dynamics revealed by adenosine sensor cells

    Directory of Open Access Journals (Sweden)

    Kunihiko Yamashiro

    2017-01-01

    Full Text Available Adenosine modulates diverse physiological and pathological processes in the brain, including neuronal activities, blood flow, and inflammation. However, the mechanisms underlying the dynamics of extracellular adenosine are not fully understood. We have recently developed a novel biosensor, called an adenosine sensor cell, and we have characterized the neuronal and astrocytic pathways for elevating extracellular adenosine. In this review, the physiological implications and therapeutic potential of the pathways revealed by the adenosine sensor cells are discussed. We propose that the multiple pathways regulating extracellular adenosine allow for the diverse functions of this neuromodulator, and their malfunctions cause various neurological and psychiatric disorders.

  2. Visual Impairment, Including Blindness

    Science.gov (United States)

    ... Who Knows What? Survey Item Bank Search for: Visual Impairment, Including Blindness Links updated, April 2017 En ... doesn’t wear his glasses. Back to top Visual Impairments in Children Vision is one of our ...

  3. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang

    2017-06-13

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  4. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  5. Intermetallic Compounds

    Science.gov (United States)

    Takagiwa, Y.; Matsuura, Y.; Kimura, K.

    2014-06-01

    We have focused on the binary narrow-bandgap intermetallic compounds FeGa3 and RuGa3 as thermoelectric materials. Their crystal structure is FeGa3-type (tetragonal, P42/ mnm) with 16 atoms per unit cell. Despite their simple crystal structure, their room temperature thermal conductivity is in the range 4-5-W-m-1-K-1. Both compounds have narrow-bandgaps of approximately 0.3-eV near the Fermi level. Because their Seebeck coefficients are quite large negative values in the range 350-FeGa3 and RuGa3 as n and p-type materials. The dimensionless figure of merit, ZT, was significantly improved by substitution of Sn for Ga in FeGa3 (electron-doping) and by substitution of Zn for Ga in RuGa3 (hole-doping), mainly as a result of optimization of the electronic part, S 2 σ.

  6. Organic Compounds

    Science.gov (United States)

    Shankland, Kenneth

    For many years, powder X-ray diffraction was used primarily as a fingerprinting method for phase identification in the context of molecular organic materials. In the early 1990s, with only a few notable exceptions, structures of even moderate complexity were not solvable from PXRD data alone. Global optimisation methods and highly-modified direct methods have transformed this situation by specifically exploiting some well-known properties of molecular compounds. This chapter will consider some of these properties.

  7. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  8. The role of extracellular vesicles in Plasmodium and other protozoan parasites.

    Science.gov (United States)

    Mantel, Pierre-Yves; Marti, Matthias

    2014-03-01

    Protozoan parasites and other microorganisms use various pathways to communicate within their own populations and to manipulate their outside environments, with the ultimate goal of balancing the rate of growth and transmission. In higher eukaryotes, including humans, circulating extracellular vesicles are increasingly recognized as key mediators of physiological and pathological processes. Recent evidence suggests that protozoan parasites, including those responsible for major human diseases such as malaria and Chagas disease, use similar machinery. Indeed, intracellular and extracellular protozoan parasites secrete extracellular vesicles to promote growth and induce transmission, to evade the host immune system, and to manipulate the microenvironment. In this review we will discuss the general pathways of extracellular vesicle biogenesis and their functions in protozoan infections.

  9. Vertebrate extracellular preovulatory and postovulatory egg coats.

    Science.gov (United States)

    Menkhorst, Ellen; Selwood, Lynne

    2008-11-01

    Extracellular egg coats deposited by maternal or embryonic tissues surround all vertebrate conceptuses during early development. In oviparous species, the time of hatching from extracellular coats can be considered equivalent to the time of birth in viviparous species. Extracellular coats must be lost during gestation for implantation and placentation to occur in some viviparous species. In the most recent classification of vertebrate extracellular coats, Boyd and Hamilton (Cleavage, early development and implantation of the egg. In: Parkes AS (ed.), Marshall's Physiology of Reproduction, vol. 2, 3rd ed. London: Longmans, Green & Co; 1961:1-126) defined the coat synthesized by the oocyte during oogenesis as primary and the coat deposited by follicle cells surrounding the oocyte as secondary. Tertiary egg coats are those synthesized and deposited around the primary or secondary coat by the maternal reproductive tract. This classification is difficult to reconcile with recent data collected using modern molecular biological techniques that can accurately establish the site of coat precursor synthesis and secretion. We propose that a modification to the classification by Boyd and Hamilton is required. Vertebrate egg coats should be classed as belonging to the following two broad groups: the preovulatory coat, which is deposited during oogenesis by the oocyte or follicle cells, and the postovulatory coats, which are deposited after fertilization by the reproductive tract or conceptus. This review discusses the origin and classification of vertebrate extracellular preovulatory and postovulatory coats and illustrates what is known about coat homology between the vertebrate groups.

  10. Lysyl Oxidase, A Critical Intra- and Extra-Cellular Target in the Lung for Cigarette Smoke Pathogenesis

    Directory of Open Access Journals (Sweden)

    Lijun Chen

    2011-01-01

    Full Text Available Cigarette smoke (CS, a complex chemical mixture, contains more than 4,800 different compounds, including oxidants, heavy metals, and carcinogens, that individually or in combination initiate or promote pathogenesis in the lung accounting for 82% of chronic obstructive pulmonary disease (COPD deaths and 87% of lung cancer deaths. Lysyl oxidase (LO, a Cu-dependent enzyme, oxidizes peptidyl lysine residues in collagen, elastin and histone H1, essential for stabilization of the extracellular matrix and cell nucleus. Considerable evidences have shown that LO is a tumor suppressor as exemplified by inhibiting transforming activity of ras, a proto oncogene. CS condensate (CSC, 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and cadmium (Cd, major components of CS, down-regulate LO expression at such multiple levels as mRNA, protein and catalytic activity in lung cells in vitro and in vivo indicating LO as a critical intra- and extracellular target for CS pathogenesis in the lung. In view of multiple biological functions and regulation characteristics of the LO gene, molecular mechanisms for CS damage to lung LO and its role in emphysema and cancer pathogenesis are discussed in this review.

  11. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing.

    Science.gov (United States)

    Kalra, Hina; Drummen, Gregor P C; Mathivanan, Suresh

    2016-02-06

    Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These "extracellular vesicles" (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The "Focus on extracellular vesicles" series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.

  12. Ascorbic acid: Nonradioactive extracellular space marker in canine heart

    Energy Technology Data Exchange (ETDEWEB)

    Reil, G.H.; Frombach, R.; Kownatzki, R.; Quante, W.; Lichtlen, P.R. (Medizinische Hochschule Hannover (West Germany))

    1987-11-01

    The distribution pattern of ascorbic acid and L-({sup 14}C)ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers ({sup 3}H)-inulin, ({sup 3}H)sucrose, and Na{sup 82}Br. A new polarographic techniques was developed for analogue registration of ascorbic acid concentration in coronary venous blood. The kinetic data of the markers were studied in an open-chest canine heart preparation during a constant tracer infusion of up to 9 min. Distribution volumes were calculated based on the mean transit time method of Zierler. The distribution volume of ascorbic acid as well as of L-({sup 14}C)ascorbic acid in myocardial tissue agreed closely with those of ({sup 3}H)inulin and ({sup 3}H)sucrose as well as {sup 82}Br. The obtained kinetic data confirmed that ascorbic acid exhibits the physicochemical properties of an extracellular space marker, though this compound was shown to leak slowly into myocardial cells. Favorable attributes of this indicator are its low molecular weight, high diffusibility in interstitial fluid, low binding affinity to macromolecules, and high transcapillary as well as low transplasmalemmal penetration rate. Therefore, this nonradioactive marker can be applied in a safe and simple fashion, and without untoward side effects in experimental animals as well as in patients.

  13. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    Science.gov (United States)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  14. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing

    Directory of Open Access Journals (Sweden)

    Hina Kalra

    2016-02-01

    Full Text Available Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These “extracellular vesicles” (EV were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The “Focus on extracellular vesicles” series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition.

  15. Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature.

    Science.gov (United States)

    Fernandez-Calero, Tamara; Garcia-Silva, Rosa; Pena, Alvaro; Robello, Carlos; Persson, Helena; Rovira, Carlos; Naya, Hugo; Cayota, Alfonso

    2015-01-01

    Over the last years, an expanding family of small regulatory RNAs (e.g. microRNAs, siRNAs and piRNAs) was recognized as key players in novel forms of post-transcriptional gene regulation in most eukaryotes. However, the machinery associated with Ago/Dicer-dependent small RNA biogenesis was thought to be either entirely lost or extensively simplified in some unicellular organisms including Trypanosoma cruzi, Saccharomyces cerevisiae, Leishmania major and Plasmodium falciparum. Although the biogenesis of small RNAs from non-coding RNAs represent a minor fraction of the normal small RNA transcriptome in eukaryotic cells, they represent the unique small RNA pathways in Trypanosoma cruzi which produce different populations of small RNAs derived from tRNAs, rRNAs, sn/snoRNAs and mRNAs. These small RNAs are secreted included in extracellular vesicles and transferred to other parasites and susceptible mammalian cells. This process represents a novel form of cross-kingdom transfer of genetic material suggesting that secreted vesicles could represent new relevant pieces in life cycle transitions, infectivity and cell-to-cell communication. Here, we provide for the first time a detailed analysis of the small RNA cargo of extracellular vesicles from T. cruzi epimastigotes under nutritional stress conditions compared to the respective intracellular compartment using deep sequencing. Compared with the intracellular compartment, shed extracellular vesicles showed a specific extracellular signature conformed by distinctive patterns of small RNAs derived from rRNA, tRNA, sno/snRNAs and protein coding sequences which evidenced specific secretory small RNA processing pathways.

  16. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  17. Analytic device including nanostructures

    KAUST Repository

    Di Fabrizio, Enzo M.

    2015-07-02

    A device for detecting an analyte in a sample comprising: an array including a plurality of pixels, each pixel including a nanochain comprising: a first nanostructure, a second nanostructure, and a third nanostructure, wherein size of the first nanostructure is larger than that of the second nanostructure, and size of the second nanostructure is larger than that of the third nanostructure, and wherein the first nanostructure, the second nanostructure, and the third nanostructure are positioned on a substrate such that when the nanochain is excited by an energy, an optical field between the second nanostructure and the third nanostructure is stronger than an optical field between the first nanostructure and the second nanostructure, wherein the array is configured to receive a sample; and a detector arranged to collect spectral data from a plurality of pixels of the array.

  18. Extracellular proteolysis in the adult murine brain.

    Science.gov (United States)

    Sappino, A P; Madani, R; Huarte, J; Belin, D; Kiss, J Z; Wohlwend, A; Vassalli, J D

    1993-08-01

    Plasminogen activators are important mediators of extracellular metabolism. In the nervous system, plasminogen activators are thought to be involved in the remodeling events required for cell migration during development and regeneration. We have now explored the expression of the plasminogen activator/plasmin system in the adult murine central nervous system. Tissue-type plasminogen activator is synthesized by neurons of most brain regions, while prominent tissue-type plasminogen activator-catalyzed proteolysis is restricted to discrete areas, in particular within the hippocampus and hypothalamus. Our observations indicate that tissue-type plasminogen activator-catalyzed proteolysis in neural tissues is not limited to ontogeny, but may also contribute to adult central nervous system physiology, for instance by influencing neuronal plasticity and synaptic reorganization. The identification of an extracellular proteolytic system active in the adult central nervous system may also help gain insights into the pathogeny of neurodegenerative disorders associated with extracellular protein deposition.

  19. Extracellular MicroRNAs in Urologic Malignancies: Chances and Challenges

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2013-07-01

    Full Text Available Small noncoding RNAs that are 19-23 nucleotides long, known as microRNAs (miRNAs, are involved in almost all biological mechanisms during carcinogenesis. Recent studies show that miRNAs released from live cells are detectable in body fluids and may be taken up by other cells to confer cell-cell communication. These released miRNAs (here referred to as extracellular miRNAs are often protected by RNA-binding proteins or embedded inside circulating microvesicles. Due to their relative stability, extracellular miRNAs are believed to be promising candidates as biomarkers for diagnosis and prognosis of disease, or even as therapeutic agents for targeted treatment. In this review, we first describe biogenesis and characteristics of these miRNAs. We then summarize recent publications involving extracellular miRNA profiling studies in three representative urologic cancers, including: prostate cancer, bladder cancer, and renal cell carcinoma. We focus on the diagnostic, prognostic, and therapeutic potential of these miRNAs in biological fluids, such as serum, plasma, and urine. Finally, we discuss advantages and challenges of these miRNAs in clinical applications.

  20. Extracellular gluco-oligosaccharide degradation by Caulobacter crescentus.

    Science.gov (United States)

    Presley, Gerald N; Payea, Matthew J; Hurst, Logan R; Egan, Annie E; Martin, Brandon S; Periyannan, Gopal R

    2014-03-01

    The oligotrophic bacterium Caulobacter crescentus has the ability to metabolize various organic molecules, including plant structural carbohydrates, as a carbon source. The nature of β-glucosidase (BGL)-mediated gluco-oligosaccharide degradation and nutrient transport across the outer membrane in C. crescentus was investigated. All gluco-oligosaccharides tested (up to celloheptose) supported growth in M2 minimal media but not cellulose or CM-cellulose. The periplasmic and outer membrane fractions showed highest BGL activity, but no significant BGL activity was observed in the cytosol or extracellular medium. Cells grown in cellobiose showed expression of specific BGLs and TonB-dependent receptors (TBDRs). Carbonyl cyanide 3-chlorophenylhydrazone lowered the rate of cell growth in cellobiose but not in glucose, indicating potential cellobiose transport into the cell by a proton motive force-dependent process, such as TBDR-dependent transport, and facilitated diffusion of glucose across the outer membrane via specific porins. These results suggest that C. crescentus acquires carbon from cellulose-derived gluco-oligosaccharides found in the environment by extracellular and periplasmic BGL activity and TBDR-mediated transport. This report on extracellular degradation of gluco-oligosaccharides and methods of nutrient acquisition by C. crescentus supports a broader suite of carbohydrate metabolic capabilities suggested by the C. crescentus genome sequence that until now have not been reported.

  1. Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?

    Science.gov (United States)

    Giner-Lamia, Joaquín; Pereira, Sara B; Bovea-Marco, Miquel; Futschik, Matthias E; Tamagnini, Paula; Oliveira, Paulo

    2016-01-01

    Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  2. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms.

    Science.gov (United States)

    Klein, Marlise I; Hwang, Geelsu; Santos, Paulo H S; Campanella, Osvaldo H; Koo, Hyun

    2015-01-01

    Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS), eDNA, and lipoteichoic acid (LTA). EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan) synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  3. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  4. Ratiometric Imaging of Extracellular pH in Dental Biofilms.

    Science.gov (United States)

    Schlafer, Sebastian; Dige, Irene

    2016-03-09

    The pH in bacterial biofilms on teeth is of central importance for dental caries, a disease with a high worldwide prevalence. Nutrients and metabolites are not distributed evenly in dental biofilms. A complex interplay of sorption to and reaction with organic matter in the biofilm reduces the diffusion paths of solutes and creates steep gradients of reactive molecules, including organic acids, across the biofilm. Quantitative fluorescent microscopic methods, such as fluorescence life time imaging or pH ratiometry, can be employed to visualize pH in different microenvironments of dental biofilms. pH ratiometry exploits a pH-dependent shift in the fluorescent emission of pH-sensitive dyes. Calculation of the emission ratio at two different wavelengths allows determining local pH in microscopic images, irrespective of the concentration of the dye. Contrary to microelectrodes the technique allows monitoring both vertical and horizontal pH gradients in real-time without mechanically disturbing the biofilm. However, care must be taken to differentiate accurately between extra- and intracellular compartments of the biofilm. Here, the ratiometric dye, seminaphthorhodafluor-4F 5-(and-6) carboxylic acid (C-SNARF-4) is employed to monitor extracellular pH in in vivo grown dental biofilms of unknown species composition. Upon exposure to glucose the dye is up-concentrated inside all bacterial cells in the biofilms; it is thus used both as a universal bacterial stain and as a marker of extracellular pH. After confocal microscopic image acquisition, the bacterial biomass is removed from all pictures using digital image analysis software, which permits to exclusively calculate extracellular pH. pH ratiometry with the ratiometric dye is well-suited to study extracellular pH in thin biofilms of up to 75 µm thickness, but is limited to the pH range between 4.5 and 7.0.

  5. Connecting extracellular metabolomic measurements to intracellular flux states in yeast

    Directory of Open Access Journals (Sweden)

    Herrgård Markus J

    2009-03-01

    Full Text Available Abstract Background Metabolomics has emerged as a powerful tool in the quantitative identification of physiological and disease-induced biological states. Extracellular metabolome or metabolic profiling data, in particular, can provide an insightful view of intracellular physiological states in a noninvasive manner. Results We used an updated genome-scale metabolic network model of Saccharomyces cerevisiae, iMM904, to investigate how changes in the extracellular metabolome can be used to study systemic changes in intracellular metabolic states. The iMM904 metabolic network was reconstructed based on an existing genome-scale network, iND750, and includes 904 genes and 1,412 reactions. The network model was first validated by comparing 2,888 in silico single-gene deletion strain growth phenotype predictions to published experimental data. Extracellular metabolome data measured in response to environmental and genetic perturbations of ammonium assimilation pathways was then integrated with the iMM904 network in the form of relative overflow secretion constraints and a flux sampling approach was used to characterize candidate flux distributions allowed by these constraints. Predicted intracellular flux changes were consistent with published measurements on intracellular metabolite levels and fluxes. Patterns of predicted intracellular flux changes could also be used to correctly identify the regions of the metabolic network that were perturbed. Conclusion Our results indicate that integrating quantitative extracellular metabolomic profiles in a constraint-based framework enables inferring changes in intracellular metabolic flux states. Similar methods could potentially be applied towards analyzing biofluid metabolome variations related to human physiological and disease states.

  6. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten;

    2011-01-01

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also...... modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based...... on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting...

  7. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    Science.gov (United States)

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research.

  8. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes

    Science.gov (United States)

    Buzsáki, György; Anastassiou, Costas A.; Koch, Christof

    2016-01-01

    Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal. PMID:22595786

  9. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes.

    Science.gov (United States)

    Buzsáki, György; Anastassiou, Costas A; Koch, Christof

    2012-05-18

    Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources--including Na(+) and Ca(2+) spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations--can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

  10. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  11. A receptor that is highly specific for extracellular ATP in developing chick skeletal muscle in vitro.

    OpenAIRE

    Thomas, S A; Zawisa, M. J.; X. Lin; Hume, R. I.

    1991-01-01

    1. Extracellular adenosine 5'-triphosphate (ATP) activated an early excitatory conductance followed by a late potassium conductance in developing chick skeletal muscle. A series of ATP analogues were tested for their ability to activate these two conductances. All compounds tested were either agonists for both responses or for neither. Furthermore, the potency of agonists was similar for the two responses. 2. The order of potency for agonists was ATP approximately adenosine 5'-O-(3-thiotripho...

  12. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    Science.gov (United States)

    1986-01-01

    ATP may mediate contraction in the urinary bladder of the rat and guinea-pig (53,63,99,238), relaxation in taenia coli (17,63,87,173,380,381) and...receptors. This uncertainty has been generated because of findings in rabbit anococcygeus muscle (405) and guinea-pig taenia coli (457), in which, as...and Holmberg, B. The effects of extracellularly -~ applied ATP and related compounds on electrical and mechanical activity of the smooth muscle taenia

  13. Extracellular matrix and tissue engineering applications

    NARCIS (Netherlands)

    Fernandes, Hugo; Moroni, Lorenzo; Blitterswijk, van Clemens; Boer, de Jan

    2009-01-01

    The extracellular matrix is a key component during regeneration and maintenance of tissues and organs, and it therefore plays a critical role in successful tissue engineering as well. Tissue engineers should recognise that engineering technology can be deduced from natural repair processes. Due to a

  14. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  15. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan

    2003-01-01

    The interaction of extracellular matrix with cells regulates their adhesion, migration and proliferation, and it is believed that damage to vascular matrix components is a factor in the development of atherosclerosis. Evidence has been provided for a role for the haem enzyme MPO (myeloperoxidase)...

  16. Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium.

    Science.gov (United States)

    Joshi, Janak Raj; Burdman, Saul; Lipsky, Alexander; Yedidia, Iris

    2015-01-01

    Pectobacterium spp. are among the most devastating necrotrophs, attacking more than 50% of angiosperm plant orders. Their virulence strategy is based mainly on the secretion of exoenzymes that degrade the cell walls of their hosts, providing nutrients to the bacteria, but conversely, exposing the bacteria to plant defense compounds. In the present study, we screened plant-derived antimicrobial compounds, mainly phenolic acids and polyphenols, for their ability to affect virulence determinants including motility, biofilm formation and extracellular enzyme activities of different Pectobacteria: Pectobacterium carotovorum, P. brasiliensis, P. atrosepticum and P. aroidearum. In addition, virulence assays were performed on three different plant hosts following exposure of the bacteria to selected phenolic compounds. These experiments showed that cinnamic, coumaric, syringic and salicylic acids and catechol can considerably reduce disease severity, ranging from 20 to 100%. The reduced disease severity was not only the result of reduced bacterial growth, but also of a direct effect of the compounds on important bacterial virulence determinants, including pectolytic and proteolytic exoenzyme activities, that were reduced by 50-100%. This is the first report revealing a direct effect of phenolic compounds on virulence factors in a wide range of Pectobacterium strains.

  17. 自体骨髓间充质干细胞藻酸钙载体复合物对兔膝关节软骨缺损修复影响的实验研究%The experimental study of repairing effect after embedding compound including auto-bone marrow mesenchymal stem cells and calcium-algitate in rabbits articular genu defect

    Institute of Scientific and Technical Information of China (English)

    于灏; 辛畅泰

    2014-01-01

    connecting with subcartilage-bone is visible. There are many collagen fibre presented emission-like in the extracellular matrix. On the surface of defects in group B, however, there are still plenty of fibre tissue and the boundary remains distinctive. 3-5 chondrocytes possessing obvious lacunes stand in line in the filling tissue of group A, and much more than that in group B. The phenomenon above can be scarcely observed in group C. The number of vigorous chondrocytes-collagen typeⅡ (+), rough endoplasmic reticulum in cytoplasm dialating etc. In group A is more than that of group B. It is the lest in group C. Considerable fibra tissue can be seen in the defect of group D after 90 days. The integration between filling tissue and subcartilage-bone or normal circum-articular cartilage is un-ideal. Conclusion Adding bFGF and VitC has positive function in improving the repairing effect of the defect location when embedding the compound composed of auto-MSCs and calcium alginate to the defect of knee joint.%目的:软骨组织多处于人体骨骼的重要部位,其缺损修复一直为临床急待解决的难题,用组织工程方法修复关节软骨缺损是近年来正在研究的新途径。其中绝大多数研究几乎均着重体外培养条件的研究[1,2],而忽略了对于改善局部微环境的探讨,为此,本实验试图在载体复合物植入软骨缺损微环境内时,增加能促进MSCs分裂、增殖、分化及血管新生的bFGF及参与和活跃成软骨细胞合成软骨基质及纤维的维生素C等,从而达到提高软骨缺损修复疗效的目的。方法从24只3月龄新西兰大耳白兔髂骨处抽取骨髓,以密度梯度离心法分离出骨髓间充质干细胞(MSCs)作为种子细胞进行扩增培养至第三代,制成细胞悬液,而后在自制模具中与藻酸钙制备成与兔膝关节软骨全层缺损(直径4mm、深度4mm)相一致的载体复合物同时加入bFGF和维生素C,将该载体复

  18. Extracellular calmodulin: A polypeptide signal in plants?

    Institute of Scientific and Technical Information of China (English)

    SUN; Daye(

    2001-01-01

    [1]Cheng. W. Y., Cyclic 3', 5'-nucleotide phosphodiestrase: demonstration of an activator, Biochm. Biophys. Res. Commun.,1970, 38: 533-538.[2]Boynton, A. L., Whitfield, J. F., MacManus, J. P., Calmodulin stimulates DNA synthesis by rat liver cells, BBRC.1980,95(2): 745-749.[3]Gorbacherskaya, L. V., Borovkova, T. V., Rybin, U. O. et al., Effect of exogenous calmodulin on lymphocyte proliferation in normal subjects, Bull Exp. Med. Biol., 1983, 95: 361-363.[4]Wong, P. Y.-K., Lee, W. H., Chao, PH.-W., The role of calmodulin in prostaglandin metabolism, Ann. NY Acad. Sci.,1980, 356: 179-189.[5]Mac Neil, S., Dawson, R. A., Crocker, G. et al., Effects of extracellular calmodulin and calmodulin antagonists on B16 melanoma cell growth, J. Invest. Dermatol., 1984, 83: 15-19.[6]Crocker, D. G., Dawson, R. A., Mac Neil, S. et al., An extracellular role for calmodulin-like activity in cell proliferation,Biochem. J., 1988, 253: 877-884.[7]Polito. V. S., Calmodulin and calmodulin inhibitors: effect on pollen germination and tube growth, in Pollen: Biology and Implications for Plant Breeding (eds. Mulvshy, D. L., Ottaviaro, E.), New York: Elsevier, 1983.53-60.[8]Biro, R. L., Sun, D. Y., Roux, S. J.et al., Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution, Plant Physiol., 1984,75: 382-386.[9]Terry, M. E., Bonner, B. A., An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of IAA-induced growth, Plant Physiol., 1980, 66: 321-325.[10]Josefina, H. N., Aldasars, J. J., Rodriguez, D., Localization of calmodulin on embryonic Cice aricium L, in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.), New York, London: Plenum Press, 1985, 313.[11]Dauwalder, M., Roux, S. J., Hardison, L., Distribution of calmodulin in pea seedling: immunocytochemical localization in plumules and root apices, Planta, 1986, 168: 461

  19. Circulating Extracellular microRNA in Systemic Autoimmunity

    DEFF Research Database (Denmark)

    Heegaard, Niels H. H.; Carlsen, Anting Liu; Skovgaard, Kerstin

    2015-01-01

    killer cells, neutrophil granulocytes, and monocyte-macrophages. Exploratory studies (only validated in a few cases) also show that specific profiles of circulating miRNAs are associated with different systemic autoimmune diseases including systemic lupus erythematosus (SLE), systemic sclerosis......, and rheumatoid arthritis. Even though the link between cellular alterations and extracellular profiles is still unpredictable, the data suggest that circulating miRNAs in autoimmunity may become diagnostically useful. Here, we review important circulating miRNAs in animal models of inflammation and in systemic...

  20. Protein Complexes in Urine Interfere with Extracellular Vesicle Biomarker Studies

    OpenAIRE

    Magda Wachalska; Danijela Koppers-Lalic; Monique van Eijndhoven; Michiel Pegtel; Geldof, Albert A.; Lipinska, Andrea D.; R. Jeroen van Moorselaar; Irene V. Bijnsdorp

    2016-01-01

    Urine exosomes (extracellular vesicles; EVs) contain (micro)RNA (miRNA) and protein biomarkers that are useful for the non-invasive diagnosis of various urological diseases. However, the urinary Tamm-Horsfall protein (THP) complex, which forms at reduced temperatures, may affect EV isolation and may also lead to contamination by other molecules including microRNAs (miRNAs). There‐ fore, we compared the levels of three miRNAs within the purified EV fraction and THP- protein-network. Urine was ...

  1. Sending a message: extracellular vesicles of pathogenic protozoan parasites.

    Science.gov (United States)

    Szempruch, Anthony J; Dennison, Lauren; Kieft, Rudo; Harrington, John M; Hajduk, Stephen L

    2016-11-01

    Parasitic unicellular eukaryotes use extracellular vesicles (EVs) as vehicles for intercellular communication and host manipulation. By using various mechanisms to generate EVs and by transferring a wide range of molecules through EVs, pathogenic protozoans are able to establish infective niches, modulate the immune system of the host and cause disease. In addition to effects on the host, EVs are able to transfer virulence factors, drug-resistance genes and differentiation factors between parasites. In this Progress article, we explore recent insights into the biology of EVs from human infectious protozoan parasites, including Trichomonas vaginalis, Plasmodium spp. and kinetoplastids, such as Trypanosoma spp. and Leishmania spp.

  2. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  3. Electrochemical reactions of organosilicon compounds

    Science.gov (United States)

    Jouikov, Vyacheslav V.

    1997-06-01

    Data on the processes of electrochemical reduction and oxidation of organosilicon compounds of various classes as well as on the interaction of these compounds with electrically generated reagents are generalised and surveyed systematically. The electrochemical reactivity of organic derivatives of silicon is considered taking into account their structures and reaction conditions. The bibliography includes 245 references.

  4. Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Huang, W.-J. [Department of Environmental Engineering, Hung Kuang University, 34 Chung Chie Road, Sha-Lu, Taichung, Taiwan (China)]. E-mail: huangwj@sunrise.hk.edu.tw; Lai, C.-H. [Department of Environmental Engineering, Hung Kuang University, 34 Chung Chie Road, Sha-Lu, Taichung, Taiwan (China); Cheng, Y.-L. [Environmental Toxin and Analysis Laboratory, Hung Kuang University, 34 Chung Chie Road, Sha-Lu, Taichung, Taiwan (China)]. E-mail: octling@yahoo.com.tw

    2007-05-15

    The algal extracellular products (ECPs) in three cultures of cyanobacteria species (Anabaena, Microcystis, and Oscillatoria) dominating the eutrophic reservoir populations and their toxins have been investigated in the present work. Using gas chromatography coupled with high-resolution electron-impact mass spectrometry (GC/EI-MS) and high performance anion-exchange chromatography (HPAEC) techniques, more than 20 compounds were found in the algal culture (including cells and filtrates) extracts. The main identified ECPs were classified to polysaccharides, hydrocarbons, and aldehydes. Odor causing substances such as trans-1,10-dimethyl-trans-9-decalol (geosmin) and 2-methylisoborneol (2-MIB)were also found in the algal cultures. The potential mutagenicity of the algal suspensions was also studied with the Ames test. The organic extracts of the algal suspension from the axenic cultures were mutagenicity in TA98 without S9 mix and in TA100 with and without S9 mix. The results indicate that the ECPs of three algae species dominating the eutrophic reservoir were mutagenic clearly in the bacterial test.

  5. A conformationally constrained peptidomimetic binds to the extracellular region of HER2 protein.

    Science.gov (United States)

    Banappagari, Sashikanth; Ronald, Sharon; Satyanarayanajois, Seetharama D

    2010-12-01

    Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.

  6. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases

    Directory of Open Access Journals (Sweden)

    F.T. Borges

    2013-10-01

    Full Text Available Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.

  7. Xenogenic extracellular matrices as potential biomaterials for interposition grafting in urological surgery.

    LENUS (Irish Health Repository)

    Davis, N F

    2012-01-31

    PURPOSE: The field of tissue engineering focuses on developing strategies for reconstructing injured, diseased, and congenitally absent tissues and organs. During the last decade urologists have benefited from remodeling and regenerative properties of bioscaffolds derived from xenogenic extracellular matrices. We comprehensively reviewed the current literature on structural and functional characteristics of xenogenic extracellular matrix grafting since it was first described in urological surgery. We also reviewed the clinical limitations, and assessed the potential for safe and effective urological application of extracellular matrix grafting in place of autogenous tissue. MATERIALS AND METHODS: We performed literature searches for English language publications using the PubMed(R) and MEDLINE(R) databases. Keywords included "xenogenic," "extracellular matrix" and "genitourinary tract applications." A total of 112 articles were scrutinized, of which 50 were suitable for review based on clinical relevance and importance of content. RESULTS: Since the mid 1990s xenogenic extracellular matrices have been used to successfully treat a number of pathological conditions that affect the upper and lower genitourinary tract. They are typically prepared from porcine organs such as small intestine and bladder. These organs are harvested and subjected to decellularization and sterilization techniques before surgical implantation. Bioinductive growth factors that are retained during the preparation process induce constructive tissue remodeling as the extracellular matrix is simultaneously degraded and excreted. However, recent documented concerns over durability, decreased mechanical strength and residual porcine DNA after preparation techniques have temporarily hampered the potential of extracellular matrices as a reliable replacement for genitourinary tract structures. CONCLUSIONS: Extracellular matrices are a useful alternative for successfully treating a number of urological

  8. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Science.gov (United States)

    Hill, Andrew F.; Hochberg, Fred; Buzás, Edit I.; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V.; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H.; Witwer, Kenneth W.; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs. PMID:25536934

  9. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules

    NARCIS (Netherlands)

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including

  10. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules

    NARCIS (Netherlands)

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-01-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including

  11. Involvement of extracellular matrix constituents in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Bissell, Mina J

    1995-06-01

    It has recently been established that the extracellular matrix is required for normal functional differentiation of mammary epithelia not only in culture, but also in vivo. The mechanisms by which extracellular matrix affects differentiation, as well as the nature of extracellular matrix constituents which have major impacts on mammary gland function, have only now begun to be dissected. The intricate variety of extracellular matrix-mediated events and the remarkable degree of plasticity of extracellular matrix structure and composition at virtually all times during ontogeny, make such studies difficult. Similarly, during carcinogenesis, the extracellular matrix undergoes gross alterations, the consequences of which are not yet precisely understood. Nevertheless, an increasing amount of data suggests that the extracellular matrix and extracellular matrix-receptors might participate in the control of most, if not all, of the successive stages of breast tumors, from appearance to progression and metastasis.

  12. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motil...... as well as matrix constitution and protein crosslinking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. [on SciFinder(R)]......Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...... and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromols. are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin...

  13. Tetraspanins in Extracellular Vesicle Formation and Function

    OpenAIRE

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different phy...

  14. Tetraspanins in Extracellular Vesicle formation and function

    OpenAIRE

    Zoraida Andreu Martínez; María eYáñez-Mó

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physi...

  15. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport

    OpenAIRE

    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J

    2008-01-01

    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  16. At the Bench: Neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases.

    Science.gov (United States)

    Grayson, Peter C; Kaplan, Mariana J

    2016-02-01

    The putative role of neutrophils in host defense against pathogens is a well-recognized aspect of neutrophil function. The discovery of neutrophil extracellular traps has expanded the known range of neutrophil defense mechanisms and catalyzed a discipline of research focused upon ways in which neutrophils can shape the immunologic landscape of certain autoimmune diseases, including systemic lupus erythematosus. Enhanced neutrophil extracellular trap formation and impaired neutrophil extracellular trap clearance may contribute to immunogenicity in systemic lupus erythematosus and other autoimmune diseases by promoting the externalization of modified autoantigens, inducing synthesis of type I IFNs, stimulating the inflammasome, and activating both the classic and alternative pathways of the complement system. Vasculopathy is a central feature of many autoimmune diseases, and neutrophil extracellular traps may contribute directly to endothelial cell dysfunction, atherosclerotic plaque burden, and thrombosis. The elucidation of the subcellular events of neutrophil extracellular trap formation may generate novel, therapeutic strategies that target the innate immune system in autoimmune and vascular diseases.

  17. Bordetella parapertussis Circumvents Neutrophil Extracellular Bactericidal Mechanisms

    Science.gov (United States)

    Gorgojo, Juan; Scharrig, Emilia; Gómez, Ricardo M.; Harvill, Eric T.; Rodríguez, Maria Eugenia

    2017-01-01

    B. parapertussis is a whooping cough etiological agent with the ability to evade the immune response induced by pertussis vaccines. We previously demonstrated that in the absence of opsonic antibodies B. parapertussis hampers phagocytosis by neutrophils and macrophages and, when phagocytosed, blocks intracellular killing by interfering with phagolysosomal fusion. But neutrophils can kill and/or immobilize extracellular bacteria through non-phagocytic mechanisms such as degranulation and neutrophil extracellular traps (NETs). In this study we demonstrated that B. parapertussis also has the ability to circumvent these two neutrophil extracellular bactericidal activities. The lack of neutrophil degranulation was found dependent on the O antigen that targets the bacteria to cell lipid rafts, eventually avoiding the fusion of nascent phagosomes with specific and azurophilic granules. IgG opsonization overcame this inhibition of neutrophil degranulation. We further observed that B. parapertussis did not induce NETs release in resting neutrophils and inhibited NETs formation in response to phorbol myristate acetate (PMA) stimulation by a mechanism dependent on adenylate cyclase toxin (CyaA)-mediated inhibition of reactive oxygen species (ROS) generation. Thus, B. parapertussis modulates neutrophil bactericidal activity through two different mechanisms, one related to the lack of proper NETs-inducer stimuli and the other one related to an active inhibitory mechanism. Together with previous results these data suggest that B. parapertussis has the ability to subvert the main neutrophil bactericidal functions, inhibiting efficient clearance in non-immune hosts. PMID:28095485

  18. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  19. Extracellular conversion of adiponectin hexamers into trimers

    Science.gov (United States)

    Kim, Jeong-a; Nuñez, Martha; Briggs, David B.; Laskowski, Bethany L.; Chhun, Jimmy J.; Eleid, Joseph K.; Quon, Michael J.; Tsao, Tsu-Shuen

    2012-01-01

    Adiponectin is an adipocyte-secreted hormone that exists as trimers, hexamers and larger species collectively referred to as HMW (high-molecular-weight) adiponectin. Whether hexamers or HMW adiponectin serve as precursors for trimers outside the circulation is currently unknown. Here, we demonstrate that adiponectin trimers can be generated from larger oligomers secreted from primary rat adipose cells or differentiated 3T3-L1 adipocytes. Purified hexameric, but not HMW, adiponectin converted into trimers in conditioned media separated from 3T3-L1 adipocytes or, more efficiently, when enclosed in the dialysis membrane in the presence of adipocytes. Several lines of evidence indicate that the conversion is mediated by an extracellular redox system. First, N-terminal epitope-tagged hexamers converted into trimers without proteolytic removal of the tag. Secondly, appearance of trimers was associated with conversion of disulfide-bonded dimers into monomers. Thirdly, thiol-reactive agents inhibited conversion into trimers. Consistent with a redox-based mechanism, purified hexamers reductively converted into trimers in defined glutathione redox buffer with reduction potential typically found in the extracellular environment while the HMW adiponectin remained stable. In addition, conversion of hexamers into trimers was enhanced by NADPH, but not by NADP+. Collectively, these data strongly suggest the presence of an extracellular redox system capable of converting adiponectin oligomers. PMID:22973892

  20. Intracellular Biopotentials During Static Extracellular Stimulation

    Science.gov (United States)

    Klee, Maurice

    1973-01-01

    Two properties of the intracellular potentials and electric fields resulting from static extracellular stimulation are obtained for arbitrarily shaped cells. First, the values of intracellular potential are shown to be bounded by the maximum and minimum values of extracellular potential on the surface of the cell. Second, the volume average of the magnitude of intracellular electric field is shown to have an upper bound given by the ratio of the magnitude of the largest extracellular potential difference on the surface of the cell to a generalized length constant λ = [σintraVcell/(σmemb Acell)]1/2, where Vcell and Acell are the volume and surface area of the cell, σintra is the intracellular conductivity (reciprocal ohms per centimeter), and σmemb is the membrane conductivity (reciprocal ohms per square centimeter). The use of the upper bound on the volume average of the magnitude of intracellular electric field as an estimate for intracellular isopotentiality is discussed and the use of the generalized length constant for electrically describing arbitrary cells is illustrated for cylindrical- and spheroidal-shaped cells. PMID:4726882

  1. The role of extracellular vesicles in Plasmodium and other protozoan parasites

    OpenAIRE

    Mantel, Pierre-Yves; MARTI, Matthias

    2014-01-01

    Protozoan parasites and other microorganisms use various pathways to communicate within their own populations and to manipulate their outside environments, with the ultimate goal of balancing the rate of growth and transmission. In higher eukaryotes, including humans, circulating extracellular vesicles are increasingly recognized as key mediators of physiological and pathological processes. Recent evidence suggests that protozoan parasites, including those responsible for major human diseases...

  2. Extracellular Vesicles from Ovarian Carcinoma Cells Display Specific Glycosignatures

    Directory of Open Access Journals (Sweden)

    Joana Gomes

    2015-08-01

    Full Text Available Cells release vesicles to the extracellular environment with characteristic nucleic acid, protein, lipid, and glycan composition. Here we have isolated and characterized extracellular vesicles (EVs and total cell membranes (MBs from ovarian carcinoma OVMz cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. Furthermore, the presence of glycoproteins bearing complex N-glycans with α2,3-linked sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen were detected. The inhibition of N-glycosylation processing from high mannose to complex glycans using kifunensine caused changes in the composition of EVs and induced a decrease of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were specific and altered glycosylation within the cell affected the composition and/or dynamics of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel biomarkers for ovarian cancer.

  3. Microbial extracellular electron transfer and its relevance to iron corrosion.

    Science.gov (United States)

    Kato, Souichiro

    2016-03-01

    Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that microbial EET potentially induces corrosion of iron structures. It has been well known that corrosion of iron occurring under anoxic conditions is mostly caused by microbial activities, which is termed as microbiologically influenced corrosion (MIC). Among diverse MIC mechanisms, microbial EET activity that enhances corrosion via direct uptake of electrons from metallic iron, specifically termed as electrical MIC (EMIC), has been regarded as one of the major causative factors. The EMIC-inducing microorganisms initially identified were certain sulfate-reducing bacteria and methanogenic archaea isolated from marine environments. Subsequently, abilities to induce EMIC were also demonstrated in diverse anaerobic microorganisms in freshwater environments and oil fields, including acetogenic bacteria and nitrate-reducing bacteria. Abilities of EET and EMIC are now regarded as microbial traits more widespread among diverse microbial clades than was thought previously. In this review, basic understandings of microbial EET and recent progresses in the EMIC research are introduced.

  4. Therapeutic applications of extracellular vesicles: clinical promise and open questions.

    Science.gov (United States)

    György, Bence; Hung, Michelle E; Breakefield, Xandra O; Leonard, Joshua N

    2015-01-01

    This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury.

  5. Toxicology of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Thorsten [Hessian State Laboratory, Wiesbaden (Germany); Mattern, Daniela; Brunn, Hubertus [Hessian State Laboratory, Giessen (Germany)

    2011-12-15

    Perfluorinated compounds [PFCs] have found a wide use in industrial products and processes and in a vast array of consumer products. PFCs are molecules made up of carbon chains to which fluorine atoms are bound. Due to the strength of the carbon/fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation; therefore, they belong to a class of compounds that tend to persist in the environment. These compounds can bioaccumulate and also undergo biomagnification. Within the class of PFC chemicals, perfluorooctanoic acid and perfluorosulphonic acid are generally considered reference substances. Meanwhile, PFCs can be detected almost ubiquitously, e.g., in water, plants, different kinds of foodstuffs, in animals such as fish, birds, in mammals, as well as in human breast milk and blood. PFCs are proposed as a new class of 'persistent organic pollutants'. Numerous publications allude to the negative effects of PFCs on human health. The following review describes both external and internal exposures to PFCs, the toxicokinetics (uptake, distribution, metabolism, excretion), and the toxicodynamics (acute toxicity, subacute and subchronic toxicities, chronic toxicity including carcinogenesis, genotoxicity and epigenetic effects, reproductive and developmental toxicities, neurotoxicity, effects on the endocrine system, immunotoxicity and potential modes of action, combinational effects, and epidemiological studies on perfluorinated compounds). (orig.)

  6. Extracellular O-linked β-N-acetylglucosamine: Its biology and relationship to human disease

    Institute of Scientific and Technical Information of China (English)

    Mitsutaka; Ogawa; Koichi; Furukawa; Tetsuya; Okajima

    2014-01-01

    The O-linked β-N-acetylglucosamine(O-GlcNAc)ylation of cytoplasmic and nuclear proteins regulates basic cellular functions and is involved in the etiology of neurodegeneration and diabetes. Intracellular O-GlcNAcylation is catalyzed by a single O-GlcNAc transferase, O-GlcNAc transferase(OGT). Recently, an atypical O-GlcNAc transferase, extracellular O-linked β-N-acetylglucosamine(EOGT), which is responsible for the modification of extracellular O-GlcNAc, was identified. Although both OGT and EOGT are regulated through the common hexosamine biosynthesis pathway, EOGT localizes to the lumen of the endoplasmic reticulum and transfers GlcNAc to epidermal growth factor-like domains in an OGT-independent manner. In Drosophila, loss of Eogt gives phenotypes similar to those caused by defects in the apical extracellular matrix. Dumpy, a membrane-anchored apical extracellular matrix protein, was identified as a major O-GlcNAcylated protein, and EOGT mediates Dumpy-dependent cell adhesion. In mammals, extracellular O-GlcNAc was detected on extracellular proteins including heparan sulfate proteoglycan 2, Nell1, laminin subunit alpha-5, Pamr1, and transmembrane proteins, including Notch receptors. Although the physiological function of O-GlcNAc in mammals has not yet been elucidated, exome sequencing identified homozygous EOGT mutations in patients with Adams-Oliver syndrome, a rare congenital disorder characterized by aplasia cutis congenita and terminal transverse limb defects. This review summarizes the current knowledge of extracellular O-GlcNAc and its implications in the pathological processes in Adams-Oliver syndrome.

  7. Extracellular proteins: Novel key components of metal resistance in cyanobacteria?

    Directory of Open Access Journals (Sweden)

    Joaquin eGiner-Lamia

    2016-06-01

    Full Text Available Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias towards the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria.

  8. Neutrophil Extracellular Traps in Periodontitis: A Web of Intrigue.

    Science.gov (United States)

    White, P C; Chicca, I J; Cooper, P R; Milward, M R; Chapple, I L C

    2016-01-01

    Neutrophil extracellular traps (NETs) represent a novel paradigm in neutrophil-mediated immunity. NETs are believed to constitute a highly conserved antimicrobial strategy comprising decondensed nuclear DNA and associated histones that are extruded into the extracellular space. Associated with the web-like strands of DNA is an array of antimicrobial peptides (AMPs), which facilitate the extracellular destruction of microorganisms that become entrapped within the NETs. NETs can be released by cells that remain viable or following a unique form of programmed cell death known as NETosis, which is dependent on the production of reactive oxygen species (ROS) and the decondensing of the nuclear DNA catalyzed by peptidyl arginine deiminase-4. NETs are produced in response to a range of pathogens, including bacteria, viruses, fungi, and protozoa, as well as host-derived mediators. NET release is, however, not without cost, as the concomitant release of cytotoxic molecules can also cause host tissue damage. This is evidenced by a number of immune-mediated diseases, in which excess or dysfunctional NET production, bacterial NET evasion, and decreased NET removal are associated with disease pathogenesis. Periodontitis is the most prevalent infectious-inflammatory disease of humans, characterized by a dysregulated neutrophilic response to specific bacterial species within the subgingival plaque biofilm. Neutrophils are the predominant inflammatory cell involved in periodontitis and have previously been found to exhibit hyperactivity and hyperreactivity in terms of ROS production in chronic periodontitis patients. However, the contribution of ROS-dependent NET formation to periodontal health or disease remains unclear. In this focused review, we discuss the mechanisms, stimuli, and requirements for NET production; the ability of NET-DNA and NET-associated AMPs to entrap and kill pathogens; and the potential immunogenicity of NETs in disease. We also speculate on the potential

  9. Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis

    Directory of Open Access Journals (Sweden)

    Olivieri Jacopo

    2010-12-01

    Full Text Available Abstract The extracellular matrix (ECM plays a key role in tissue formation, homeostasis and repair, mutations in ECM components have catastrophic consequences for organ function and therefore, for the fitness and survival of the organism. Collagen, fibrillin and elastin polymers represent the architectural scaffolds that impart specific mechanic properties to tissues and organs. Fibrillin assemblies (microfibrils have the additional function of distributing, concentrating and modulating local transforming growth factor (TGF-β and bone morphogenetic protein (BMP signals that regulate a plethora of cellular activities, including ECM formation and remodeling. Fibrillins also contain binding sites for integrin receptors, which induce adaptive responses to changes in the extracellular microenvironment by reorganizing the cytoskeleton, controlling gene expression, and releasing and activating matrix-bound latent TGF-β complexes. Genetic evidence has indicated that fibrillin-1 and fibrillin-2 contribute differently to the organization and structural properties of non-collagenous architectural scaffolds, which in turn translate into discrete regulatory outcomes of locally released TGF-β and BMP signals. Additionally, the study of congenital dysfunctions of fibrillin-1 has yielded insights into the pathogenesis of acquired connective tissue disorders of the connective tissue, such as scleroderma. On the one hand, mutations that affect the structure or expression of fibrillin-1 perturb microfibril biogenesis, stimulate improper latent TGF-β activation, and give rise to the pleiotropic manifestations in Marfan syndrome (MFS. On the other hand, mutations located around the integrin-binding site of fibrillin-1 perturb cell matrix interactions, architectural matrix assembly and extracellular distribution of latent TGF-β complexes, and lead to the highly restricted fibrotic phenotype of Stiff Skin syndrome. Understanding the molecular similarities and

  10. Current approaches to model extracellular electrical neural microstimulation

    Directory of Open Access Journals (Sweden)

    Sébastien eJoucla

    2014-02-01

    Full Text Available Nowadays, high-density microelectrode arrays provide unprecedented possibilities to precisely activate spatially well-controlled central nervous system (CNS areas. However, this requires optimizing stimulating devices, which in turn requires a good understanding of the effects of microstimulation on cells and tissues. In this context, modeling approaches provide flexible ways to predict the outcome of electrical stimulation in terms of CNS activation. In this paper, we present state-of-the-art modeling methods with sufficient details to allow the reader to rapidly build numerical models of neuronal extracellular microstimulation. These include 1 the computation of the electrical potential field created by the stimulation in the tissue, and 2 the response of a target neuron to this field. Two main approaches are described: First we describe the classical hybrid approach that combines the finite element modeling of the potential field with the calculation of the neuron’s response in a cable equation framework (compartmentalized neuron models. Then, we present a whole finite element approach allows the simultaneous calculation of the extracellular and intracellular potentials, by representing the neuronal membrane with a thin-film approximation. This approach was previously introduced in the frame of neural recording, but has never been implemented to determine the effect of extracellular stimulation on the neural response at a sub-compartment level. Here, we show on an example that the latter modeling scheme can reveal important sub-compartment behavior of the neural membrane that cannot be resolved using the hybrid approach. The goal of this paper is also to describe in detail the practical implementation of these methods to allow the reader to easily build new models using standard software packages. These modeling paradigms, depending on the situation, should help build more efficient high-density neural prostheses for CNS rehabilitation.

  11. The Pathophysiology of Extracellular Hemoglobin Associated with Enhanced Oxidative Reactions

    Directory of Open Access Journals (Sweden)

    Joseph M Rifkind

    2015-01-01

    Full Text Available Hemoglobin (Hb continuously undergoes autoxidation producing superoxide which dismutates into hydrogen peroxide (H2O2 and is a potential source for subsequent oxidative reactions. Autoxidation is most pronounced under hypoxic conditions in the microcirculation and for unstable dimers formed at reduced Hb concentrations. In the red blood cell (RBC, oxidative reactions are inhibited by an extensive antioxidant system. For extracellular Hb, whether from hemolysis of RBCs and/or the infusion of Hb-based blood substitutes, the oxidative reactions are not completely neutralized by the available antioxidant system. Un-neutralized H2O2 oxidizes ferrous and ferric Hbs to Fe(IV-ferrylHb and oxyferrylHb, respectively. FerrylHb further reacts with H2O2 producing heme degradation products and free iron. OxyferrylHb, in addition to Fe(IV contains a free radical that can undergo additional oxidative reactions. Fe(IIIHb produced during Hb autoxidation also readily releases heme, an additional source for oxidative stress. These oxidation products are a potential source for oxidative reactions in the plasma, but to a greater extent when the lower molecular weight Hb dimers enter cells and tissues. Heme and oxyferryl have been shown to have a proinflammatory effect further increasing their potential for oxidative stress. These oxidative reactions contribute to a number of pathological situations including atherosclerosis, kidney malfunction, sickle cell disease and malaria. The toxic effects of extracellular Hb are of particular concern for increased hemolysis due to hemolytic anemia. Hemolysis is further exacerbated in various diseases and their treatments. Blood transfusions are required whenever there is an appreciable decrease in RBCs due to hemolysis or blood loss. It is, therefore, essential that transfused blood, whether stored RBCs or blood obtained by an Autologous Blood Recovery System from the patient, does not further increase extracellular Hb.

  12. The effect of clindamycin and amoxicillin on neutrophil extracellular trap (NET) release.

    Science.gov (United States)

    Bystrzycka, Weronika; Moskalik, Aneta; Sieczkowska, Sandra; Manda-Handzlik, Aneta; Demkow, Urszula; Ciepiela, Olga

    2016-01-01

    Neutrophil extracellular traps (NETs) are threads of nuclear DNA complexed with antimicrobial proteins released by neutrophils to extracellular matrix to bind, immobilise, and kill different pathogens. NET formation is triggered by different physiological and non-physiological stimulants. It is also suggested that antibiotics could be non-physiological compounds that influence NET release. The aim of the study was to investigate the effect of clindamycin and amoxicillin on NET release and the phagocyte function of neutrophils. Neutrophils isolated from healthy donors by density centrifugation method were incubated with amoxicillin or clindamycin for two hours, and then NET release was stimulated with phorbol 12-myristate 13-acetate (PMA). After three hours of incubation with PMA NETs were quantified as amount of extracellular DNA by fluorometry and visualised by immunofluorescent microscopy. The percent of phagocyting cells was measured by flow cytometry. We showed that amoxicillin induces NET formation (increase of extracellular DNA fluorescence, p = 0.03), while clindamycin had no influence on NET release (p > 0.05), as confirmed by quantitative measurement and fluorescent microscopy. Regarding phagocyte function, both antibiotics increased bacterial uptake (43.3% and 61.6% median increase for amoxicillin and clindamycin, respectively). We concluded that the ability of antibiotics to modulate NET release depends on the antibiotic used and is not associated with their ability to influence phagocytosis.

  13. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region

    Directory of Open Access Journals (Sweden)

    Carrasco Mario

    2012-11-01

    Full Text Available Abstract Background Antarctica has been successfully colonized by microorganisms despite presenting adverse conditions for life such as low temperatures, high solar radiation, low nutrient availability and dryness. Although these “cold-loving” microorganisms are recognized as primarily responsible for nutrient and organic matter recycling/mineralization, the yeasts, in particular, remain poorly characterized and understood. The aim of this work was to study the yeast microbiota in soil and water samples collected on King George Island. Results A high number of yeast isolates was obtained from 34 soil and 14 water samples. Molecular analyses based on rDNA sequences revealed 22 yeast species belonging to 12 genera, with Mrakia and Cryptococcus genera containing the highest species diversity. The species Sporidiobolus salmonicolor was by far the most ubiquitous, being identified in 24 isolates from 13 different samples. Most of the yeasts were psychrotolerant and ranged widely in their ability to assimilate carbon sources (consuming from 1 to 27 of the 29 carbon sources tested. All species displayed at least 1 of the 8 extracellular enzyme activities tested. Lipase, amylase and esterase activity dominated, while chitinase and xylanase were less common. Two yeasts identified as Leuconeurospora sp. and Dioszegia fristingensis displayed 6 enzyme activities. Conclusions A high diversity of yeasts was isolated in this work including undescribed species and species not previously isolated from the Antarctic region, including Wickerhamomyces anomalus, which has not been isolated from cold regions in general. The diversity of extracellular enzyme activities, and hence the variety of compounds that the yeasts may degrade or transform, suggests an important nutrient recycling role of microorganisms in this region. These yeasts are of potential use in industrial applications requiring high enzyme activities at low temperatures.

  14. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    2008-11-01

    Full Text Available Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS and the outer membrane (OM. DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552-PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on beta-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation.

  15. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy

    Directory of Open Access Journals (Sweden)

    Johanna L. Höög

    2015-11-01

    Full Text Available Human ejaculates contain extracellular vesicles (EVs, that to a large extent are considered to originate from the prostate gland, and are often denominated “prostasomes.” These EVs are important for human fertility, for example by promoting sperm motility and by inducing immune tolerance of the female immune system to the spermatozoa. So far, the EVs present in human ejaculate have not been studied in their native state, inside the seminal fluid without prior purification and isolation procedures. Using cryo-electron microscopy and tomography, we performed a comprehensive inventory of human ejaculate EVs. The sample was neither centrifuged, fixed, filtered or sectioned, nor were heavy metals added. Approximately 1,500 extracellular structures were imaged and categorized. The extracellular environment of human ejaculate was found to be diverse, with 5 major subcategories of EVs and 6 subcategories of extracellular membrane compartments, including lamellar bodies. Furthermore, 3 morphological features, including electron density, double membrane bilayers and coated surface, are described in all subcategories. This study reveals that the extracellular environment in human ejaculate is multifaceted. Several novel morphological EV subcategories are identified and clues to their cellular origin may be found in their morphology. This inventory is therefore important for developing future experimental approaches, and to interpret previously published data to understand the role of EVs for human male fertility.

  16. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.

    Directory of Open Access Journals (Sweden)

    Andrea Seper

    Full Text Available The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation.

  17. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-02-01

    Full Text Available The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials.

  18. Erupted compound odontome

    Directory of Open Access Journals (Sweden)

    Shekar S

    2009-01-01

    Full Text Available Odontomas are considered to be hamartomas rather than a true neoplasm. They consist chiefly of enamel and dentin, with variable amount of pulp and cementum when fully developed. They are generally asymptomatic and are included under the benign calcified odontogenic tumors. They are usually discovered on routine radiographic examination. Eruption of an odontoma in the oral cavity is rare. Peripheral compound odontomas arise extraosseously and have a tendency to exfoliate. In this article we are reporting a case of a 15-year-old girl with peripheral compound odontoma, with a single rudimentary tooth-like structure in the mandibular right second molar region, which is about to be exfoliated. Its eruption in the oral cavity and location in the mandibular posterior region is associated with aplasia of the mandibular right second molar, making it an interesting case for reporting.

  19. Extracellular vesicles in multiple sclerosis: what are they telling us?

    Directory of Open Access Journals (Sweden)

    Matías eSáenz-Cuesta

    2014-03-01

    Full Text Available Extracellular vesicles (EVs are membrane-bound particles secreted by almost all cell types. They are classified depending on their biogenesis and size into exosomes and microvesicles or according to their cell origin. EVs play a role in cell-to-cell communication, including contact-free cell synapsis, carrying active membrane proteins, lipids, and genetic material both inside the particle and on their surface. They have been related to several physiological and pathological conditions. In particular, increasing concentrations of EVs have been found in many autoimmune diseases including multiple sclerosis (MS. MS is a central nervous system demyelinating disease characterized by relapsing of symptoms followed by periods of remission. Close interaction between endothelial cells, leukocytes, monocytes and cells from central nervous system is crucial for the development of MS. This review summarizes the pathological role of EVs in MS and the relationship of EVs with clinical characteristics, therapy and biomarkers of the disease.

  20. Extracellular matrix structure governs invasion resistance in bacterial biofilms.

    Science.gov (United States)

    Nadell, Carey D; Drescher, Knut; Wingreen, Ned S; Bassler, Bonnie L

    2015-08-01

    Many bacteria are highly adapted for life in communities, or biofilms. A defining feature of biofilms is the production of extracellular matrix that binds cells together. The biofilm matrix provides numerous fitness benefits, including protection from environmental stresses and enhanced nutrient availability. Here we investigate defense against biofilm invasion using the model bacterium Vibrio cholerae. We demonstrate that immotile cells, including those identical to the biofilm resident strain, are completely excluded from entry into resident biofilms. Motile cells can colonize and grow on the biofilm exterior, but are readily removed by shear forces. Protection from invasion into the biofilm interior is mediated by the secreted protein RbmA, which binds mother-daughter cell pairs to each other and to polysaccharide components of the matrix. RbmA, and the invasion protection it confers, strongly localize to the cell lineages that produce it.

  1. Assimilation of Unusual Carbon Compounds

    Science.gov (United States)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  2. Neutrophil extracellular traps (NETs) and infection-related vascular dysfunction.

    Science.gov (United States)

    Gardiner, Elizabeth E; Andrews, Robert K

    2012-11-01

    The innate immune system orchestrated by leukocytes primarily neutrophils, serves to remove dead and dying host cells and to provide protection against invasion by pathogens. Failure of this system results in the onset of sepsis leading to grave consequences for the host. Together with mechanical methods to physically isolate and remove the pathogen, neutrophils also release an important set of proinflammatory biological modulators that mediate recruitment of additional cells to a site of infection and amplify the innate protective response. Additionally, neutrophils release highly charged mixtures of DNA and nuclear proteins named neutrophil extracellular traps (NETs). These electrostatically-charged adhesive networks trigger intrinsic coagulation, limit dispersion and entrap the pathogens. NETs also contain the neutrophil secretary granule-derived serine proteases, neutrophil elastase and cathepsin G, known to regulate the reactivity of both neutrophils and platelets. Since the characterization of NETs in 2004, new studies of their functional effect in vivo continue to expand upon unexpected extracellular roles for DNA, and in doing so renew attention to the haemostatic role of the leukocyte. This review will provide a basic description of NETs and examine current knowledge of this important system of defense, including recent work illustrating a role for NETs in activation of thrombosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Extracellular matrix hydrogels from decellularized tissues: Structure and function.

    Science.gov (United States)

    Saldin, Lindsey T; Cramer, Madeline C; Velankar, Sachin S; White, Lisa J; Badylak, Stephen F

    2017-02-01

    Extracellular matrix (ECM) bioscaffolds prepared from decellularized tissues have been used to facilitate constructive and functional tissue remodeling in a variety of clinical applications. The discovery that these ECM materials could be solubilized and subsequently manipulated to form hydrogels expanded their potential in vitro and in vivo utility; i.e. as culture substrates comparable to collagen or Matrigel, and as injectable materials that fill irregularly-shaped defects. The mechanisms by which ECM hydrogels direct cell behavior and influence remodeling outcomes are only partially understood, but likely include structural and biological signals retained from the native source tissue. The present review describes the utility, formation, and physical and biological characterization of ECM hydrogels. Two examples of clinical application are presented to demonstrate in vivo utility of ECM hydrogels in different organ systems. Finally, new research directions and clinical translation of ECM hydrogels are discussed. More than 70 papers have been published on extracellular matrix (ECM) hydrogels created from source tissue in almost every organ system. The present manuscript represents a review of ECM hydrogels and attempts to identify structure-function relationships that influence the tissue remodeling outcomes and gaps in the understanding thereof. There is a Phase 1 clinical trial now in progress for an ECM hydrogel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Microfluidic partitioning of the extracellular space around single cardiac myocytes.

    Science.gov (United States)

    Klauke, Norbert; Smith, Godfrey L; Cooper, Jonathan M

    2007-02-01

    This paper describes the partitioning of the extracellular space around an electrically activated single cardiac myocyte, constrained within a microfluidic device. Central to this new method is the production of a hydrophobic gap-structure, which divides the extracellular space into two distinct microfluidic pools. The content of these pools was controlled using a pair of concentric automated pipets (subsequently called "dual superfusion pipet"), each providing the ability to dispense (i.e., the source, inner pipet) and aspirate (the sink, outer pipet) a buffer solution (perfusate) into each of the two pools. For rapid solution switching around the cell, additional dual superfusion pipets were inserted into the microchannel for defined time periods using a piezostepper, enabling us to add a test solution, such as a drug. Three distinct areas of the cell were manipulated, namely, the microfluidic environment, the cellular membrane, and the intracellular space. Planar integrated microelectrodes enabled the electrical stimulation of the cardiomyocyte and the recording of the evoked action potential. The device was mounted on an inverted microscope to allow simultaneous sarcomere length and epifluorescence measurements during evoked electrical activity, including, for example, the response of the stimulated end of the cardiac myocyte in comparison with the untreated cell end.

  5. Immunometabolism of human autoimmune diseases: from metabolites to extracellular vesicles.

    Science.gov (United States)

    de Candia, Paola; De Rosa, Veronica; Gigantino, Vincenzo; Botti, Gerardo; Ceriello, Antonio; Matarese, Giuseppe

    2017-06-26

    Immunometabolism focuses on the mechanisms regulating the impact of metabolism on lymphocyte activity and autoimmunity outbreak. The adipose tissue is long known to release adipokines, either pro- or anti-inflammatory factors bridging nutrition and immune function. More recently, adipocytes were discovered to also release extracellular vesicles (EVs) containing a plethora of biological molecules, including metabolites and microRNAs, which can regulate cell function/metabolism in distant tissues, suggesting that immune regulatory function by the adipose tissue may be far more complex than originally thought. Moreover, EVs were also identified as important mediators of immune cell-to-cell communication, adding a further microenvironmental mechanism of plasticity to fine-tune specific lymphocyte responses. This Review will first focus on the known mechanisms by which metabolism impacts immune function, presenting a systemic (nutrition and long-ranged adipokines) and a cellular point of view (metabolic pathway derangement in autoimmunity). It will then discuss the new discoveries concerning how EVs may act as nanometric vehicles integrating immune/metabolic responses at the level of the extracellular environment and affecting pathological processes. © 2017 Federation of European Biochemical Societies.

  6. Myeloid extracellular vesicles: messengers from the demented brain

    Directory of Open Access Journals (Sweden)

    Annamaria eNigro

    2016-01-01

    Full Text Available Blood-borne monocyte derived cells play a pivotal, initially unrecognized, role in most central nervous system disorders, including diseases initially classified as purely neurodegenerative (i.e. AD, PD, and ALS. Their trafficking to the brain and spinal cord has been extensively studied in classical neuroinflammatory disorders such as multiple sclerosis. Central nervous system resident myeloid cells, namely microglia and perivascular macrophages, also are in the spotlight of investigations on neurological disorders. Myeloid cells, such as infiltrating macrophages and microglia, have been described as having both protective and destructive features in neurological disorders, thus identification of their functional phenotype during disease evolution would be of paramount importance. Extracellular vesicles, namely exosomes and shed vesicles, are released by virtually any cell type and can be detected and identified in terms of cell origin in biological fluids. They therefore constitute an ideal tool to access information on cells residing in an inaccessible site such as the brain. We will review here available information on extracellular vesicles detection in neurological disorders with special emphasis on neurodegenerative diseases.

  7. Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation.

    Science.gov (United States)

    Nair, Rekha; Santos, Lívia; Awasthi, Siddhant; von Erlach, Thomas; Chow, Lesley W; Bertazzo, Sergio; Stevens, Molly M

    2014-07-15

    Embryonic stem cells (ESCs) can differentiate into all cell types of the body and, therefore, hold tremendous promise for cell-based regenerative medicine therapies. One significant challenge that should be addressed before using ESCs in the clinic is to improve methods of efficiently and effectively directing the differentiation of this heterogeneous cell population. The work presented here examines the potential of harnessing naturally derived extracellular vesicles to deliver genetic material from mature cells to undifferentiated ESCs for the purpose of manipulating stem cell fate. Vesicles were isolated from preosteoblast cells and were found to be ∼170 nm in diameter and to express the CD40 surface marker. Multiple interactions were visualized between vesicles and ESCs using confocal microscopy, and no significant difference in cell viability was noted. Incubation with vesicles caused significant changes in ESC gene expression, including persistence of pluripotent gene levels as well as increased neurectoderm differentiation. Genetic cargo of the vesicles as well as the cells from which they were derived were examined using a small microRNA (miRNA) gene array. Interestingly, ∼20% of the examined miRNAs were increased more than twofold in the vesicles compared with preosteoblast cells. Together, these results suggest that extracellular vesicles may be utilized as a novel method of directing stem cell differentiation. Future work examining methods for controlled delivery of vesicles may improve the clinical potential of these physiological liposomes for therapeutic applications.

  8. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  9. Mechanical model for a collagen fibril pair in extracellular matrix.

    Science.gov (United States)

    Chan, Yue; Cox, Grant M; Haverkamp, Richard G; Hill, James M

    2009-04-01

    In this paper, we model the mechanics of a collagen pair in the connective tissue extracellular matrix that exists in abundance throughout animals, including the human body. This connective tissue comprises repeated units of two main structures, namely collagens as well as axial, parallel and regular anionic glycosaminoglycan between collagens. The collagen fibril can be modeled by Hooke's law whereas anionic glycosaminoglycan behaves more like a rubber-band rod and as such can be better modeled by the worm-like chain model. While both computer simulations and continuum mechanics models have been investigated for the behavior of this connective tissue typically, authors either assume a simple form of the molecular potential energy or entirely ignore the microscopic structure of the connective tissue. Here, we apply basic physical methodologies and simple applied mathematical modeling techniques to describe the collagen pair quantitatively. We found that the growth of fibrils was intimately related to the maximum length of the anionic glycosaminoglycan and the relative displacement of two adjacent fibrils, which in return was closely related to the effectiveness of anionic glycosaminoglycan in transmitting forces between fibrils. These reveal the importance of the anionic glycosaminoglycan in maintaining the structural shape of the connective tissue extracellular matrix and eventually the shape modulus of human tissues. We also found that some macroscopic properties, like the maximum molecular energy and the breaking fraction of the collagen, were also related to the microscopic characteristics of the anionic glycosaminoglycan.

  10. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    reveal insights into pathological conditions such as epilepsy, migraine, and spreading depolarization following cerebral ischemia. In addition, particular neurological diseases occur as a result of mutations in the α2- (familial hemiplegic migraine type 2) and α3 isoforms (rapid-onset dystonia...... parkinsonism/alternating hemiplegia of childhood). This review addresses aspects of the Na(+)/K(+)-ATPase in the regulation of extracellular K(+) in the central nervous system as well as the related pathophysiology. Understanding the physiological setting in non-pathological tissue would provide a better...

  11. Biogenesis, delivery, and function of extracellular RNA

    Directory of Open Access Journals (Sweden)

    James G. Patton

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.

  12. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  13. Bidirectional extracellular matrix signaling during tissue morphogenesis

    Science.gov (United States)

    Gjorevski, Nikolce; Nelson, Celeste M.

    2009-01-01

    Normal tissue development and function are regulated by the interplay between cells and their surrounding extracellular matrix (ECM). The ECM provides biochemical and mechanical contextual information that is conveyed from the cell membrane through the cytoskeleton to the nucleus to direct cell phenotype. Cells, in turn, remodel the ECM and thereby sculpt their local microenvironment. Here we review the mechanisms by which cells interact with, respond to, and influence the ECM, with particular emphasis placed on the role of this bidirectional communication during tissue morphogenesis. We also discuss the implications for successful engineering of functional tissues ex vivo. PMID:19896886

  14. Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species

    Directory of Open Access Journals (Sweden)

    Souichiro Kato

    2017-01-01

    Full Text Available Geobacter species are capable of utilizing solid-state compounds, including anodic electrodes, as electron acceptors of respiration via extracellular electron transfer (EET and have attracted considerable attention for their crucial role as biocatalysts of bioelectrochemical systems (BES’s. Recent studies disclosed that anode potentials affect power output and anodic microbial communities, including selection of dominant Geobacter species, in various BES’s. However, the details in current-generating properties and responses to anode potentials have been investigated only for a model species, namely Geobacter sulfurreducens. In this study, the effects of anode potentials on the current generation and the EET paths were investigated by cultivating six Geobacter species with different anode potentials, followed by electrochemical analyses. The electrochemical cultivation demonstrated that the G. metallireducens clade species (G. sulfurreducens and G. metallireducens constantly generate high current densities at a wide range of anode potentials (≥−0.3 or −0.2 V vs. Ag/AgCl, while the subsurface clades species (G. daltonii, G. bemidjensis, G. chapellei, and G. pelophilus generate a relatively large current only at limited potential regions (−0.1 to −0.3 V vs. Ag/AgCl. The linear sweep voltammetry analyses indicated that the G. metallireducens clade species utilize only one EET path irrespective of the anode potentials, while the subsurface clades species utilize multiple EET paths, which can be optimized depending on the anode potentials. These results clearly demonstrate that the response features to anode potentials are divergent among species (or clades of Geobacter.

  15. Semiconducting compounds and devices incorporating same

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  16. Semiconducting compounds and devices incorporating same

    Energy Technology Data Exchange (ETDEWEB)

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  17. Defining the extracellular matrix using proteomics

    Science.gov (United States)

    Byron, Adam; Humphries, Jonathan D; Humphries, Martin J

    2013-01-01

    The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology. PMID:23419153

  18. [Glutamic acid as a universal extracellular signal].

    Science.gov (United States)

    Yoneda, Yukio

    2015-08-01

    The prevailing view is that both glutamic (Glu) and gamma-aminobutyric (GABA) acids play a role as an amino acid neurotransmitter released from neurons. However, little attention has been paid to the possible expression and functionality of signaling machineries required for amino acidergic neurotransmission in cells other than central neurons. In line with our first demonstration of the presence of Glu receptors outside the brain, in this review I will outline our recent findings accumulated since then on the physiological and pathological significance of neuronal amino acids as an extracellular signal essential for homeostasis in a variety of phenotypic cells. In undifferentiated neural progenitor cells, for instance, functional expression is seen with different signaling machineries used for glutamatergic and GABAergic neurotransmission in neurons. Moreover, Glu plays a role in mechanisms underlying suppression of proliferation for self-replication in undifferentiated mesenchymal stem cells. There is more accumulating evidence for neuronal amino acids playing a role as an extracellular autocrine or paracrine signal commonly used in different phenotypic cells. Evaluation of drugs currently used could be thus beneficial for the efficient prophylaxis and/or the therapy of a variety of diseases relevant to disturbance of amino acid signaling in diverse organs.

  19. Extracellular superoxide dismutase of boar seminal plasma.

    Science.gov (United States)

    Kowalowka, M; Wysocki, P; Fraser, L; Strzezek, J

    2008-08-01

    Superoxide dismutase (SOD) is an enzymatic component of the antioxidant defense system that protects spermatozoa by catalysing the dismutation of superoxide anions to hydrogen peroxide and oxygen. Age and season effects on SOD activity in the seminal plasma were measured in boars at the onset of 8 months through a 35-month period. It was found that age-related changes in SOD activity in the seminal plasma were markedly higher in boars less than 2 years of age. However, it appeared that SOD activity was established at the early sexual maturity age (8-12 months). There were variations in SOD activity throughout the season, being significantly higher in spring and autumn than in summer. A secretory extracellular form of SOD (EC-SOD) was purified to homogeneity (350-fold) from boar seminal plasma, using a three-step purification protocol (affinity chromatography followed by ion exchange and ceramic hydroxyapatite chromatography). The molecular properties and specificity of SOD (molecular mass, isoelectric point, optimum pH, thermostability and susceptibility to inhibitors) confirmed that the purified enzyme is an extracellular form of Cu/Zn-superoxide dismutase occurring in boar seminal plasma. The results of this study indicate that EC-SOD is an important antioxidant enzyme of boar seminal plasma, which plays an important physiological role in counteracting oxidative stress in spermatozoa.

  20. Extracellular polymers of ozonized waste activated sludge.

    Science.gov (United States)

    Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V

    2001-01-01

    Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.

  1. A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells.

    Science.gov (United States)

    Richard, Mélisande; Muschalik, Nadine; Grawe, Ferdi; Ozüyaman, Susann; Knust, Elisabeth

    2009-12-01

    Morphogenesis of Drosophila photoreceptor cells includes the subdivision of the apical membrane into the photosensitive rhabdomere and the associated stalk membrane, as well as a considerable elongation of the cell. Drosophila Crumbs (Crb), an evolutionarily conserved transmembrane protein, organizes an apical protein scaffold, which is required for elongation of the photoreceptor cell and extension of the stalk membrane. To further elucidate the role played by different Crb domains during eye morphogenesis, we performed a structure-function analysis in the eye. The analysis showed that the three variants tested, namely full-length Crb, the membrane-bound intracellular domain and the extracellular domain were able to rescue the elongation defects of crb mutant rhabdomeres. However, only full-length Crb and the membrane-bound intracellular domain could partially restore the length of the stalk membrane, while the extracellular domain failed to do so. This failure was associated with the inability of the extracellular domain to recruit beta(Heavy)-spectrin to the stalk membrane. These results highlight the functional importance of the extracellular domain of Crb in the Drosophila eye. They are in line with previous observations, which showed that mutations in the extracellular domain of human CRB1 are associated with retinitis pigmentosa 12 and Leber congenital amaurosis, two severe forms of retinal dystrophy.

  2. Extracellular vesicles and a novel form of communication in the brain

    Directory of Open Access Journals (Sweden)

    Manuela eBasso

    2016-03-01

    Full Text Available In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.

  3. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  4. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an overvie

  5. Polishing compound for plastic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.S.

    1991-01-01

    This invention is comprised of a polishing compound for plastic materials. The compound includes approximately by approximately by weight 25 to 80 parts at least one petroleum distillate lubricant, 1 to 12 parts mineral spirits, 50 to 155 parts abrasive paste, and 15 to 60 parts water. Preferably, the compound includes approximately 37 to 42 parts at least one petroleum distillate lubricant, up to 8 parts mineral spirits, 95 to 110 parts abrasive paste, and 50 to 55 parts water. The proportions of the ingredients are varied in accordance with the particular application. The compound is used on PLEXIGLAS{trademark}, LEXAN{trademark}, LUCITE{trademark}, polyvinyl chloride (PVC), and similar plastic materials whenever a smooth, clear polished surface is desired.

  6. l-Amino acid sensing by the extracellular Ca2+-sensing receptor

    OpenAIRE

    Conigrave, Arthur D; Quinn, Stephen J.; Brown, Edward M.

    2000-01-01

    The extracellular calcium (Ca2+o)-sensing receptor (CaR) recognizes and responds to (i.e., “senses”) Ca2+o as its principal physiological ligand. In the present studies, we document that the CaR is activated not only by extracellular calcium ions but also by amino acids, establishing its capacity to sense nutrients of two totally different classes. l-Amino acids, especially aromatic amino acids, including l-phenylalanine and l-tryptophan, stereoselectively mobilized Ca2+ ions in the presence ...

  7. [Extracellular slime production and adhesion of Morganella morganii strains to polystyrene].

    Science.gov (United States)

    Michalska, Anna; Zalas-Wiecek, Patrycja; Sielska, Barbara; Gospodarek, Eugenia

    2011-01-01

    The aim of this study was the evaluation of the ability of extracellular slime production and adhesive properties of M. morganii strains. This study included 50 of M. morganii strains isolated from clinical samples. All of these strains were isolated in the Clinical Microbiology Department of dr. A. Jurasz University Hospital in 2008-2009. Five (10.0%) out of 50. M. morganii strains demonstrated extracellular slime production. Adherence to polystyrene revealed 36 (72.0%) of M. morganii strains in it 6 strains (12.0%) adhered strongly, medium - 12 (24.0%) and weakly - 18 (36.0%).

  8. The Electrochemical Society, Inc. Meeting Program (181st), Held in St. Louis, Missouri on May 17-22, 1992. Including: State-of-the-Art Program on Compound Semiconductors XVI, Fullerenes: Chemistry, Physics, and New Directions, Quantum Confinement, Micromachining and Microstructures, Electronics/Dielectric Science and Technology Joint Recent News Papers

    Science.gov (United States)

    1991-04-28

    developed for depositing thin films of hafnium nitride/ ior of Noble Metal Electrodes: L. D. Burke, and J. K. Casey, hafnium oxynitride (HfN/HfON,), based... perovskite -type oxide electrode exhibited theoret- Studies on ionic conductivity varying the partial pressure of am- ical electromotive force at lower...the normal state and com- drogen Rensea, nte A&MUiversle ty.Coll Stsaion y- pared to their Li insertion compounds, regular perovskites , and SR h sC e

  9. Engineering 3D bio-artificial heart muscle: the acellular ventricular extracellular matrix model.

    Science.gov (United States)

    Patel, Nikita M; Tao, Ze-Wei; Mohamed, Mohamed A; Hogan, Matt K; Gutierrez, Laura; Birla, Ravi K

    2015-01-01

    Current therapies in left ventricular systolic dysfunction and end-stage heart failure include mechanical assist devices or transplant. The development of a tissue-engineered integrative platform would present a therapeutic option that overcomes the limitations associated with current treatment modalities. This study provides a foundation for the fabrication and preliminary viability of the acellular ventricular extracellular matrix (AVEM) model. Acellular ventricular extracellular matrix was fabricated by culturing 4 million rat neonatal cardiac cells around an excised acellular ventricular segment. Acellular ventricular extracellular matrix generated a maximum spontaneous contractile force of 388.3 μN and demonstrated a Frank-Starling relationship at varying pretensions. Histologic assessment displayed cell cohesion and adhesion within the AVEM as a result of passive cell seeding.

  10. Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mammalian development.

    Science.gov (United States)

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2013-08-01

    Fibroblast Growth Factor (FGF) signaling plays crucial roles in multiple cellular processes including cell proliferation, differentiation, survival, and migration during mammalian embryogenesis. In the extracellular matrix, as well as at the cell surface, the movement of FGF ligands to target cells and the subsequent complex formations with their receptors are positively and negatively controlled extracellularly by heparan sulfate proteoglycans (HSPGs) such as syndecans, glypicans, and perlecan. Additionally, spreading of HSPGs by cleavage with sheddases such as proteinases and heparanases, and the overall length and sulfation level of specific heparan sulfate structures further generate a great diversity of FGF signaling outcomes. This review presents our current understanding of the regulatory mechanisms of FGF signaling in extracellular spaces through HSPGs in mammalian development.

  11. Toxic compounds in honey.

    Science.gov (United States)

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food.

  12. atmospheric volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2016-07-01

    organic compounds (VOCs that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument. Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1 NO+ is useful for isomerically resolved measurements of carbonyl species; (2 NO+ can achieve sensitive detection of small (C4–C8 branched alkanes but is not unambiguous for most; and (3 compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15 n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  13. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    Science.gov (United States)

    Al-Rashid, Amani; Nikolau, Basil J.; Lauter, Nick

    2017-01-01

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily of saturated and unsaturated linear hydrocarbons, as well as fatty acids, and aldehydes. To efficiently extract lipids of differing polarities from maize silks, five solvent systems (hexanes; hexanes:diethyl ether (95:5); hexanes:diethyl ether (90:10); chloroform:hexanes (1:1) and chloroform) were tested by immersing fresh silks in solvent for different extraction times. Surface lipid recovery and the relative composition of individual constituents were impacted to varying degrees depending on solvent choice and duration of extraction. Analyses were performed using both silks and leaves to demonstrate the utility of the solvent- and time-optimized protocol in comparison to extraction with the commonly used chloroform solvent. Overall, the preferred solvent system was identified as hexanes:diethyl ether (90:10), based on its effectiveness in extracting surface hydrocarbons and fatty acids as well as its reduced propensity to extract presumed internal fatty acids. Metabolite profiling of wildtype and glossy1 seedlings, which are impaired in surface lipid biosynthesis, demonstrated the ability of the preferred solvent to extract extracellular surface lipids rich in amphipathic compounds (aldehydes and alcohols). In addition to the expected deficiencies in dotriacontanal and dotriacontan-1-ol for gl1 seedlings, an unexpected increase in fatty acid recovery was observed in gl1 seedlings extracted in chloroform, suggesting that chloroform extracts lipids from internal tissues of gl1 seedlings. This highlights the importance of extraction method when evaluating mutants that have altered cuticular lipid compositions. Finally, metabolite profiling of silks from maize inbreds B73

  14. RELATIONSHIP BETWEEN ANALGESIA AND EXTRACELLULAR MORPHINE IN BRAIN AND SPINAL-CORD IN AWAKE RATS

    NARCIS (Netherlands)

    MATES, FF; ROLLEMA, H; TAIWO, YO; LEVINE, JD; BASBAUM, AI

    1995-01-01

    Extracellular concentrations of morphine from the dorsal spinal cord, the periaqueductal gray (FAG) including the dorsal raphe, and the lateral hypothalamus were measured by microdialysis in awake rats after intraperitoneal (i.p.) administration of 2.5, 5.0 and 10 mg/kg morphine. Morphine concentrat

  15. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9

    NARCIS (Netherlands)

    Ahmed, M.; Moerdijk-Poortvliet, T.C.W.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  16. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  17. Rhinovirus infection induces extracellular matrix protein deposition in asthmatic and nonasthmatic airway smooth muscle cells

    NARCIS (Netherlands)

    Kuo, Curtis; Lim, Sam; King, Nicholas J C; Johnston, Sebastian L; Burgess, Janette K; Black, Judith L; Oliver, Brian G

    2011-01-01

    Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma ex

  18. Interactions of human tenascin-X domains with dermal extracellular matrix molecules.

    NARCIS (Netherlands)

    Egging, D.; Berkmortel, F. van den; Taylor, G.; Bristow, J.; Schalkwijk, J.

    2007-01-01

    Tenascin-X (TNX) is a large 450 kDa extracellular matrix protein expressed in a variety of tissues including skin, joints and blood vessels. Deficiency of TNX causes a recessive form of Ehlers-Danlos syndrome characterized by joint hypermobility, skin fragility and hyperextensible skin. Skin of TNX

  19. Cytotoxic Compounds from Brucea mollis

    OpenAIRE

    Tung, Mai Hung Thanh; Đuc, Ho Viet; Huong, Tran Thu; Nguyen Thanh DUONG; Do Thi PHUONG; Thao, Do Thi; Tai, Bui Huu; Kim, Young Ho; Bach, Tran The; Cuong, Nguyen Manh

    2012-01-01

    Ten compounds, including soulameanone (1), isobruceine B (2), 9-methoxy-canthin-6-one (3), bruceolline F (4), niloticine (5), octatriacontan-1-ol (6), bombiprenone (7), α-tocopherol (8), inosine (9), and apigenin 7-O-β-D-glucopyranoside (10), were isolated from the leaves, stems, and roots of Brucea mollis Wall. ex Kurz. Their structures were determined using one- and two-dimensional NMR spectroscopy and mass spectrometry. All compounds were evaluated for their cytotoxic activity against KB (...

  20. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells

    Directory of Open Access Journals (Sweden)

    Haqqani Arsalan S

    2013-01-01

    Full Text Available Abstract Background In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes and ectosomes (originating from direct budding/shedding of plasma membranes. Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood–brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in ‘externalizing’ brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. Methods To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. Results A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially

  1. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells.

    Science.gov (United States)

    Haqqani, Arsalan S; Delaney, Christie E; Tremblay, Tammy-Lynn; Sodja, Caroline; Sandhu, Jagdeep K; Stanimirovic, Danica B

    2013-01-10

    In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood-brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in 'externalizing' brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons

  2. Optimization of extracellular fungal peroxidase production by 2 Coprinus species.

    Science.gov (United States)

    Ikehata, Keisuke; Pickard, Michael A; Buchanan, Ian D; Smith, Daniel W

    2004-12-01

    Optimum culture conditions for the batch production of extracellular peroxidase by Coprinus cinereus UAMH 4103 and Coprinus sp. UAMH 10067 were explored using 2 statistical experimental designs, including 2-level, 7-factor fractional factorial design and 2-factor central composite design. Of the 7 factors examined in the screening study, the concentrations of carbon (glucose) and nitrogen (peptone or casitone) sources showed significant effects on the peroxidase production by Coprinus sp. UAMH 10067. The optimum glucose and peptone concentrations were determined as 2.7% and 0.8% for Coprinus sp. UAMH 10067, and 2.9% and 1.4% for C. cinereus UAMH 4103, respectively. Under the optimized culture condition the maximum peroxidase activity achieved in this study was 34.5 U x mL(-1) for Coprinus sp. UAMH 10067 and 68.0 U x mL(-1) for C. cinereus UAMH 4103, more than 2-fold higher than the results of previous studies.

  3. Recent advances in the study of zebrafish extracellular matrix proteins.

    Science.gov (United States)

    Jessen, Jason R

    2015-05-01

    The zebrafish extracellular matrix (ECM) is a dynamic and pleomorphic structure consisting of numerous proteins that together regulate a variety of cellular and morphogenetic events beginning as early as gastrulation. The zebrafish genome encodes a similar complement of ECM proteins as found in other vertebrate organisms including glycoproteins, fibrous proteins, proteoglycans, glycosaminoglycans, and interacting or modifying proteins such as integrins and matrix metalloproteinases. As a genetic model system combined with its amenability to high-resolution microscopic imaging, the zebrafish allows interrogation of ECM protein structure and function in both the embryo and adult. Accumulating data have identified important roles for zebrafish ECM proteins in processes as diverse as cell polarity, migration, tissue mechanics, organ laterality, muscle contraction, and regeneration. In this review, I highlight recently published data on these topics that demonstrate how the ECM proteins fibronectin, laminin, and collagen contribute to zebrafish development and adult homeostasis.

  4. Secretion and extracellular space travel of Wnt proteins.

    Science.gov (United States)

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.

  5. Decoding the Secret of Cancer by Means of Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Nobuyoshi Kosaka

    2016-02-01

    Full Text Available One of the recent outstanding developments in cancer biology is the emergence of extracellular vesicles (EVs. EVs, which are small membrane vesicles that contain proteins, mRNAs, long non-coding RNAs, and microRNAs (miRNAs, are secreted by a variety of cells and have been revealed to play an important role in intercellular communications. These molecules function in the recipient cells; this has brought new insight into cell-cell communication. Recent reports have shown that EVs contribute to cancer cell development, including tumor initiation, angiogenesis, immune surveillance, drug resistance, invasion, metastasis, maintenance of cancer stem cells, and EMT phenotype. In this review, I will summarize recent studies on EV-mediated miRNA transfer in cancer biology. Furthermore, I will also highlight the possibility of novel diagnostics and therapy using miRNAs in EVs against cancer.

  6. Neutrophils cast extracellular traps in response to protozoan parasites.

    Science.gov (United States)

    Abi Abdallah, Delbert S; Denkers, Eric Y

    2012-01-01

    Release of extracellular traps by neutrophils is a now well-established phenomenon that contributes to the innate response to extracellular bacterial and fungal pathogens. The importance of NETs during protozoan infection has been less explored, but recent findings suggest an emerging role for release of neutrophil-derived extracellular DNA in response to this class of microbial pathogens. The present review summarizes findings to date regarding elicitation of NETs by Toxoplasma gondii, Plasmodium falciparum, Eimeria bovis, and Leishmania spp.

  7. The cellular distribution of extracellular superoxide dismutase in macrophages is altered by cellular activation but unaffected by the natural occurring R213G substitution

    DEFF Research Database (Denmark)

    Gottfredsen, Randi Heidemann; Goldstrohm, David; Hartney, John

    2014-01-01

    Extracellular superoxide dismutase (EC-SOD) is responsible for the dismutation of the superoxide radical produced in the extracellular space and known to be expressed by inflammatory cells, including macrophages and neutrophils. Here we show that EC-SOD is produced by resting macrophages...

  8. A robust and efficient method for the extraction of plant extracellular surface lipids as applied to the analysis of silks and seedling leaves of maize

    Science.gov (United States)

    Aerial plant organs possess a diverse array of extracellular surface lipids, including both non-polar and amphipathic constituents that collectively provide a primary line of defense against environmental stressors. Extracellular surface lipids on the stigmatic silks of maize are composed primarily ...

  9. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  10. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Laura M Epple

    Full Text Available Medulloblastomas are the most prevalent malignant pediatric brain tumors. Survival for these patients has remained largely the same for approximately 20 years, and our therapies for these cancers cause significant health, cognitive, behavioral and developmental sequelae for those who survive the tumor and their treatments. We obviously need a better understanding of the biology of these tumors, particularly with regard to their migratory/invasive behaviors, their proliferative propensity, and their abilities to deflect immune responses. Exosomes, virus-sized membrane vesicles released extracellularly from cells after formation in, and transit thru, the endosomal pathway, may play roles in medulloblastoma pathogenesis but are as yet unstudied in this disease. Here we characterized exosomes from a medulloblastoma cell line with biochemical and proteomic analyses, and included characterization of patient serum exosomes. Further scrutiny of the proteomic data suggested functional properties of the exosomes that are relevant to medulloblastoma tumor biology, including their roles as proliferation stimulants, their activities as attractants for tumor cell migration, and their immune modulatory impacts on lymphocytes. Aspects of this held true for exosomes from other medulloblastoma cell lines as well. Additionally, pathway analyses suggested a possible role for the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A; however, inhibition of the protein's activity actually increased D283MED cell proliferation/clonogenecity, suggesting that HNF4A may act as a tumor suppressor in this cell line. Our work demonstrates that relevant functional properties of exosomes may be derived from appropriate proteomic analyses, which translate into mechanisms of tumor pathophysiology harbored in these extracellular vesicles.

  11. Extracellular Matrices (ECM) for Tissue Repair.

    Science.gov (United States)

    Polanco, Thais O; Xylas, Joanna; Lantis, John C

    2016-04-01

    Persistence of skin wounds due to underlying disease, bacterial contamination, and/or repeated trauma, causes a chronic condition where a functional extracellular matrix (ECM) cannot be established and the normal wound-healing cascade is unable to progress. These open chronic wounds leave the body susceptible to infection and present a major healthcare problem. To this end, a broad range of biologic ECM scaffolds have been developed that can provide other therapeutic options aside from traditional wound care approaches. These tissue engineered ECM scaffolds aim to facilitate the restoration of functional skin-like tissue by altering the chronic wound environment and facilitating cellular attachment, proliferation, and differentiation. This discussion will center on reviewing current ECM scaffolds and highlighting their properties and mechanism of action with respect to the clinical application in chronic, non-healing wounds.

  12. Neutrophil extracellular traps in tissue pathology.

    Science.gov (United States)

    Nakazawa, Daigo; Kumar, Santosh; Desai, Jyaysi; Anders, Hans-Joachim

    2017-03-01

    Neutrophil extracellular traps (NETs) are innate immune systems against invading pathogens. NETs are characterized as released DNA mixed with cytoplasmic antimicrobial proteins such as myeloperoxidase, proteinase3 and neutrophil elastase. While NETs are thought to have an important role in host defense, recent work has suggested that NETs contribute to tissue injury in non-infectious disease states. Uncontrolled NET formation in autoimmune diseases, metabolic disorders, cancers and thrombotic diseases can exacerbate a disease or even be a major initiator of tissue injury. But spotting NETs in tissues is not easy. Here we review the available histopathological evidence on the presence of NETs in a variety of diseases. We discuss technical difficulties and potential sources of misinterpretation while trying to detect NETs in tissue samples.

  13. Active endocannabinoids are secreted on extracellular membrane vesicles.

    Science.gov (United States)

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids.

  14. CHSE-214: A model for studying extracellular dsRNA sensing in vitro.

    Science.gov (United States)

    Monjo, A L; Poynter, S J; DeWitte-Orr, S J

    2017-09-01

    Double-stranded RNA (dsRNA) is produced by almost all viruses during their replicative cycle and is a potent inducer of the innate antiviral immune response including inducing expression of type I interferons (IFNs) and interferon-stimulated genes (ISGs). During lytic virus infections intracellular dsRNA can escape into the extracellular space, where surface pattern recognition receptors, such as class A scavenger receptors (SR-As) facilitate its binding and entry into neighbouring cells. Studying extracellular dsRNA entry is difficult due to the ubiquitous expression profile and compensatory dsRNA binding characteristics of SR-As; a SR-A deficient cell line has yet to be identified. The present study suggests the Chinook salmon embryonic cell line, CHSE-214, as a model for studying extracellular dsRNA sensing in vitro. CHSE-214 is unable to bind and respond to extracellular dsRNA, can only respond to dsRNA when it is transfected into the cells, and is able to bind dsRNA when overexpressing human SR-AI. The applications for this model could include elucidating: dsRNA binding and entry mechanisms, including sequence and length effects, as well as SR-A and other putative surface dsRNA receptor ligand binding studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bioengineering Human Myocardium on Native Extracellular Matrix

    Science.gov (United States)

    Guyette, Jacques P.; Charest, Jonathan M; Mills, Robert W; Jank, Bernhard J.; Moser, Philipp T.; Gilpin, Sarah E.; Gershlak, Joshua R.; Okamoto, Tatsuya; Gonzalez, Gabriel; Milan, David J.; Gaudette, Glenn R.; Ott, Harald C.

    2015-01-01

    Rationale More than 25 million individuals suffer from heart failure worldwide, with nearly 4,000 patients currently awaiting heart transplantation in the United States. Donor organ shortage and allograft rejection remain major limitations with only about 2,500 hearts transplanted each year. As a theoretical alternative to allotransplantation, patient-derived bioartificial myocardium could provide functional support and ultimately impact the treatment of heart failure. Objective The objective of this study is to translate previous work to human scale and clinically relevant cells, for the bioengineering of functional myocardial tissue based on the combination of human cardiac matrix and human iPS-derived cardiac myocytes. Methods and Results To provide a clinically relevant tissue scaffold, we translated perfusion-decellularization to human scale and obtained biocompatible human acellular cardiac scaffolds with preserved extracellular matrix composition, architecture, and perfusable coronary vasculature. We then repopulated this native human cardiac matrix with cardiac myocytes derived from non-transgenic human induced pluripotent stem cells (iPSCs) and generated tissues of increasing three-dimensional complexity. We maintained such cardiac tissue constructs in culture for 120 days to demonstrate definitive sarcomeric structure, cell and matrix deformation, contractile force, and electrical conduction. To show that functional myocardial tissue of human scale can be built on this platform, we then partially recellularized human whole heart scaffolds with human iPSC-derived cardiac myocytes. Under biomimetic culture, the seeded constructs developed force-generating human myocardial tissue, showed electrical conductivity, left ventricular pressure development, and metabolic function. Conclusions Native cardiac extracellular matrix scaffolds maintain matrix components and structure to support the seeding and engraftment of human iPS-derived cardiac myocytes, and enable

  16. Filter based phase distortions in extracellular spikes.

    Science.gov (United States)

    Yael, Dorin; Bar-Gad, Izhar

    2017-01-01

    Extracellular recordings are the primary tool for extracting neuronal spike trains in-vivo. One of the crucial pre-processing stages of this signal is the high-pass filtration used to isolate neuronal spiking activity. Filters are characterized by changes in the magnitude and phase of different frequencies. While filters are typically chosen for their effect on magnitudes, little attention has been paid to the impact of these filters on the phase of each frequency. In this study we show that in the case of nonlinear phase shifts generated by most online and offline filters, the signal is severely distorted, resulting in an alteration of the spike waveform. This distortion leads to a shape that deviates from the original waveform as a function of its constituent frequencies, and a dramatic reduction in the SNR of the waveform that disrupts spike detectability. Currently, the vast majority of articles utilizing extracellular data are subject to these distortions since most commercial and academic hardware and software utilize nonlinear phase filters. We show that this severe problem can be avoided by recording wide-band signals followed by zero phase filtering, or alternatively corrected by reversed filtering of a narrow-band filtered, and in some cases even segmented signals. Implementation of either zero phase filtering or phase correction of the nonlinear phase filtering reproduces the original spike waveforms and increases the spike detection rates while reducing the number of false negative and positive errors. This process, in turn, helps eliminate subsequent errors in downstream analyses and misinterpretations of the results.

  17. Filter based phase distortions in extracellular spikes

    Science.gov (United States)

    Yael, Dorin

    2017-01-01

    Extracellular recordings are the primary tool for extracting neuronal spike trains in-vivo. One of the crucial pre-processing stages of this signal is the high-pass filtration used to isolate neuronal spiking activity. Filters are characterized by changes in the magnitude and phase of different frequencies. While filters are typically chosen for their effect on magnitudes, little attention has been paid to the impact of these filters on the phase of each frequency. In this study we show that in the case of nonlinear phase shifts generated by most online and offline filters, the signal is severely distorted, resulting in an alteration of the spike waveform. This distortion leads to a shape that deviates from the original waveform as a function of its constituent frequencies, and a dramatic reduction in the SNR of the waveform that disrupts spike detectability. Currently, the vast majority of articles utilizing extracellular data are subject to these distortions since most commercial and academic hardware and software utilize nonlinear phase filters. We show that this severe problem can be avoided by recording wide-band signals followed by zero phase filtering, or alternatively corrected by reversed filtering of a narrow-band filtered, and in some cases even segmented signals. Implementation of either zero phase filtering or phase correction of the nonlinear phase filtering reproduces the original spike waveforms and increases the spike detection rates while reducing the number of false negative and positive errors. This process, in turn, helps eliminate subsequent errors in downstream analyses and misinterpretations of the results. PMID:28358895

  18. Ciliary extracellular vesicles: Txt msg orgnlls

    Science.gov (United States)

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  19. Role of extracellular superoxide dismutase in hypertension.

    Science.gov (United States)

    Gongora, Maria Carolina; Qin, Zhenyu; Laude, Karine; Kim, Ha Won; McCann, Louise; Folz, J Rodney; Dikalov, Sergey; Fukai, Tohru; Harrison, David G

    2006-09-01

    We previously found that angiotensin II-induced hypertension increases vascular extracellular superoxide dismutase (ecSOD), and proposed that this is a compensatory mechanism that blunts the hypertensive response and preserves endothelium-dependent vasodilatation. To test this hypothesis, we studied ecSOD-deficient mice. ecSOD(-/-) and C57Blk/6 mice had similar blood pressure at baseline; however, the hypertension caused by angiotensin II was greater in ecSOD(-/-) compared with wild-type mice (168 versus 147 mm Hg, respectively; P<0.01). In keeping with this, angiotensin II increased superoxide and reduced endothelium-dependent vasodilatation in small mesenteric arterioles to a greater extent in ecSOD(-/-) than in wild-type mice. In contrast to these findings in resistance vessels, angiotensin II paradoxically improved endothelium-dependent vasodilatation, reduced intracellular and extracellular superoxide, and increased NO production in aortas of ecSOD(-/-) mice. Whereas aortic expression of endothelial NO synthase, Cu/ZnSOD, and MnSOD were not altered in ecSOD(-/-) mice, the activity of Cu/ZnSOD was increased by 80% after angiotensin II infusion. This was associated with a concomitant increase in expression of the copper chaperone for Cu/ZnSOD in the aorta but not in the mesenteric arteries. Moreover, the angiotensin II-induced increase in aortic reduced nicotinamide-adenine dinucleotide phosphate oxidase activity was diminished in ecSOD(-/-) mice as compared with controls. Thus, during angiotensin II infusion, ecSOD reduces hypertension, minimizes vascular superoxide production, and preserves endothelial function in resistance arterioles. We also identified novel compensatory mechanisms involving upregulation of copper chaperone for Cu/ZnSOD, increased Cu/ZnSOD activity, and decreased reduced nicotinamide-adenine dinucleotide phosphate oxidase activity in larger vessels. These compensatory mechanisms preserve large vessel function when ecSOD is absent in

  20. Identification of a receptor for extracellular renalase.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available An increased risk for developing essential hypertension, stroke and diabetes is associated with single nucleotide gene polymorphisms in renalase, a newly described secreted flavoprotein with oxidoreductase activity. Gene deletion causes hypertension, and aggravates acute ischemic kidney (AKI and cardiac injury. Independent of its intrinsic enzymatic activities, extracellular renalase activates MAPK signaling and prevents acute kidney injury (AKI in wild type (WT mice. Therefore, we sought to identity the receptor for extracellular renalase.RP-220 is a previously identified, 20 amino acids long renalase peptide that is devoid of any intrinsic enzymatic activity, but it is equally effective as full-length recombinant renalase at protecting against toxic and ischemic injury. Using biotin transfer studies with RP-220 in the human proximal tubular cell line HK-2 and protein identification by mass spectrometry, we identified PMCA4b as a renalase binding protein. This previously characterized plasma membrane ATPase is involved in cell signaling and cardiac hypertrophy. Co-immunoprecipitation and co-immunolocalization confirmed protein-protein interaction between endogenous renalase and PMCA4b. Down-regulation of endogenous PMCA4b expression by siRNA transfection, or inhibition of its enzymatic activity by the specific peptide inhibitor caloxin1b each abrogated RP-220 dependent MAPK signaling and cytoprotection. In control studies, these maneuvers had no effect on epidermal growth factor mediated signaling, confirming specificity of the interaction between PMCA4b and renalase.PMCA4b functions as a renalase receptor, and a key mediator of renalase dependent MAPK signaling.

  1. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Zhang, Yu; Wang, Tao; He, Jianyu; He, Huaizhen; He, Langchong, E-mail: helc@mail.xjtu.edu.cn

    2015-04-15

    Chronic hypertension induces vascular remodeling. The most important factor for hypertension treatment is reducing the risk of cardiovascular disease. OW1 is a novel imperatorin derivative that exhibits vasodilative activity and antihypertensive effects in two-kidney one-clip (2K1C) renovascular hypertensive rats. It also inhibited vascular remodeling of the thoracic aorta in a previous study. Here, the inhibitory effects and mechanisms of OW1 on arterial vascular remodeling were investigated in vitro and in 2K1C hypertensive rats in vivo. OW1 (20 μM, 10 μM, 5 μM) inhibited Ang II-induced vascular smooth muscle cells (VSMCs) proliferation and ROS generation in vitro. OW1 also reversed the Ang II-mediated inhibition of α-SMA levels and stimulation of OPN levels. Histology results showed that treatment of 2K1C hypertensive rats with OW1 (20, 40, and 80 mg/kg per day, respectively for 5 weeks) in vivo significantly decreased the number of VSMCs, the aortic cross-sectional area (CSA), the media to lumen (M/L) ratio, and the content of collagen I and III in the mesenteric artery. Western blot results also revealed that OW1 stimulated the expression of α-SMA and inhibited the expression of collagen I and III on the thoracic aorta of 2K1C hypertensive rats. In mechanistic studies, OW1 acted as an ACE inhibitor and affected calcium channels. The suppression of MMP expression and the MAPK pathway may account for the effects of OW1 on vascular remodeling. OW1 attenuated vascular remodeling in vitro and in vivo. It could be a novel candidate for hypertension intervention. - Highlights: • OW1, an imperatorin derivative, attenuates vascular remodeling caused by hypertension. • OW1 inhibits VSMC proliferation and media layer hypertrophy. • OW1 acts as an ACE inhibitor and affects calcium channels. • Suppression of MMPs expression and MAPK pathway may account for the effects of OW1 on vascular remodeling.

  2. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia

    Directory of Open Access Journals (Sweden)

    Natalia Nocelli

    2016-05-01

    Full Text Available Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs, and exopolysaccharides (EPSs, in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti produces two symbiosis-promoting EPSs: succinoglycan (or EPS I and galactoglucan (or EPS II. Studies of the S. meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II and arsenic (As III concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II or As (III stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon

  3. Crystallographic properties of fertilizer compounds

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  4. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.

    Science.gov (United States)

    Peeters, M C; van Westen, G J P; Li, Q; IJzerman, A P

    2011-01-01

    G protein-coupled receptors (GPCRs) are the major drug target of medicines on the market today. Therefore, much research is and has been devoted to the elucidation of the function and three-dimensional structure of this large family of membrane proteins, which includes multiple conserved transmembrane domains connected by intra- and extracellular loops. In the last few years, the less conserved extracellular loops have garnered increasing interest, particularly after the publication of several GPCR crystal structures that clearly show the extracellular loops to be involved in ligand binding. This review will summarize the recent progress made in the clarification of the ligand binding and activation mechanism of class-A GPCRs and the role of extracellular loops in this process.

  5. Incorporation of Tenascin-C into the Extracellular Matrix by Periostin Underlies an Extracellular Meshwork Architecture*

    OpenAIRE

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2009-01-01

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C...

  6. Volatile flavor compounds in yogurt: a review.

    Science.gov (United States)

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  7. Carbenoxolone inhibits Pannexin1 channels through interactions in the first extracellular loop.

    Science.gov (United States)

    Michalski, Kevin; Kawate, Toshimitsu

    2016-02-01

    Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.

  8. Extracellular ATP and other nucleotides-ubiquitous triggers of intercellular messenger release.

    Science.gov (United States)

    Zimmermann, Herbert

    2016-03-01

    Extracellular nucleotides, and ATP in particular, are cellular signal substances involved in the control of numerous (patho)physiological mechanisms. They provoke nucleotide receptor-mediated mechanisms in select target cells. But nucleotides can considerably expand their range of action. They function as primary messengers in intercellular communication by stimulating the release of other extracellular messenger substances. These in turn activate additional cellular mechanisms through their own receptors. While this applies also to other extracellular messengers, its omnipresence in the vertebrate organism is an outstanding feature of nucleotide signaling. Intercellular messenger substances released by nucleotides include neurotransmitters, hormones, growth factors, a considerable variety of other proteins including enzymes, numerous cytokines, lipid mediators, nitric oxide, and reactive oxygen species. Moreover, nucleotides activate or co-activate growth factor receptors. In the case of hormone release, the initially paracrine or autocrine nucleotide-mediated signal spreads through to the entire organism. The examples highlighted in this commentary suggest that acting as ubiquitous triggers of intercellular messenger release is one of the major functional roles of extracellular nucleotides. While initiation of messenger release by nucleotides has been unraveled in many contexts, it may have been overlooked in others. It can be anticipated that additional nucleotide-driven messenger functions will be uncovered with relevance for both understanding physiology and development of therapy.

  9. A model of extracellular enzymes in free-living microbes: which strategy pays off?

    Science.gov (United States)

    Traving, Sachia J; Thygesen, Uffe H; Riemann, Lasse; Stedmon, Colin A

    2015-11-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration.

  10. UV mutagenesis of Cupriavidus necator for extracellular production of (R)-3-hydroxybutyric acid.

    Science.gov (United States)

    Ugwu, C U; Tokiwa, Y; Aoyagi, H; Uchiyama, H; Tanaka, H

    2008-07-01

    Ultraviolet (UV) mutagenesis was carried out to obtain mutant strains of Cupriavidus necator that could produce (R)-3-hydroxybutyric acid [(R)-3-HB] in the culture supernatant. C. necator (formerly known as Ralstonia eutropha) was subjected to UV radiation to generate mutants that are capable of producing (R)-3-HB in the culture supernatant. Results indicated that UV mutagen disrupted the phbB (phbB knock-out) and thus, promoted production of (R)-3-HB in mutant strains. Inclusion of acetoacetate esters (carbonyl compounds) in the culture broth led to increased production of (R)-3-HB. Thus, acetoacetyl-CoA (an intermediate of the PHB synthetic pathway) might have been converted to acetoacetate, which in the presence of (R)-3-HB dehydrogenase and NADPH/NADP(+), resulted in extracellular production of (R)-3-HB. UV mutagenesis proved to be a satisfactory method in generating interesting mutants for extracellular production of (R)-3-HB. Extracellular production of (R)-3-HB upon addition of acetoacetate esters would suggest a likely (R)-3-HB biosynthetic pathway in C. necator. Mutants obtained in this study are very useful for production of (R)-3-HB. For the first time, the production of (R)-3-HB by C. necator via acetoacetate is reported.

  11. A Model of Extracellular Enzymes in Free-Living Microbes: Which Strategy Pays Off?

    Science.gov (United States)

    Thygesen, Uffe H.; Riemann, Lasse; Stedmon, Colin A.

    2015-01-01

    An initial modeling approach was applied to analyze how a single, nonmotile, free-living, heterotrophic bacterial cell may optimize the deployment of its extracellular enzymes. Free-living cells live in a dilute and complex substrate field, and to gain enough substrate, their extracellular enzymes must be utilized efficiently. The model revealed that surface-attached and free enzymes generate unique enzyme and substrate fields, and each deployment strategy has distinctive advantages. For a solitary cell, surface-attached enzymes are suggested to be the most cost-efficient strategy. This strategy entails potential substrates being reduced to very low concentrations. Free enzymes, on the other hand, generate a radically different substrate field, which suggests significant benefits for the strategy if free cells engage in social foraging or experience high substrate concentrations. Swimming has a slight positive effect for the attached-enzyme strategy, while the effect is negative for the free-enzyme strategy. The results of this study suggest that specific dissolved organic compounds in the ocean likely persist below a threshold concentration impervious to biological utilization. This could help explain the persistence and apparent refractory state of oceanic dissolved organic matter (DOM). Microbial extracellular enzyme strategies, therefore, have important implications for larger-scale processes, such as shaping the role of DOM in ocean carbon sequestration. PMID:26253668

  12. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure.

  13. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  14. The Extracellular Matrix in Photosynthetic Mats: A Cyanobacterial Gingerbread House

    Science.gov (United States)

    Stuart, R.; Stannard, W.; Bebout, B.; Pett-Ridge, J.; Mayali, X.; Weber, P. K.; Lipton, M. S.; Lee, J.; Everroad, R. C.; Thelen, M.

    2014-12-01

    Hypersaline laminated cyanobacterial mats are excellent model systems for investigating photoautotrophic contributions to biogeochemical cycling on a millimeter scale. These self-sustaining ecosystems are characterized by steep physiochemical gradients that fluctuate dramatically on hour timescales, providing a dynamic environment to study microbial response. However, elucidating the distribution of energy from light absorption into biomass requires a complete understanding of the various constituents of the mat. Extracellular polymeric substances (EPS), which can be composed of proteins, polysaccharides, lipids and DNA are a major component of these mats and may function in the redistribution of nutrients and metabolites within the community. To test this notion, we established a model mat-building culture for comparison with the phylogenetically diverse natural mat communities. In these two systems we determined how proteins and glycans in the matrix changed as a function of light and tracked nutrient flow from the matrix. Using mass spectrometry metaproteomics analysis, we found homologous proteins in both field and culture extracellular matrix that point to cyanobacterial turnover of amino acids, inorganic nutrients, carbohydrates and nucleic acids from the EPS. Other abundant functions identified included oxidative stress response from both the cyanobacteria and heterotrophs and cyanobacterial structural proteins that may play a role in mat cohesion. Several degradative enzymes also varied in abundance in the EPS in response to light availability, suggesting active secretion. To further test cyanobacterial EPS turnover, we generated isotopically-labeled EPS and used NanoSIMS to trace uptake of this labeled EPS. Our findings suggest Cyanobacteria may facilitate nutrient transfer to other groups, as well as uptake of their own products through degradation of EPS components. This work provides evidence for the essential roles of EPS for storage, structural

  15. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    Science.gov (United States)

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  16. Recent developments in superconducting materials including ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji

    1987-06-01

    This report describes the history of superconduction starting in 1911, when the superconducting phenomenon was first observed in murcury, until the recent discovery of superconducting materials with high critical temperatures. After outlining the BCS theory, basic characteristics are discussed including the critical temperature, magnetic field and current density to be reached for realizing the superconducting state. Various techniques for practical superconducting materials are discussed, including methods for producing extra fine multiconductor wires from such superconducting alloys as Nb-Ti, intermetallic Nb/sub 3/Sn compound and V/sub 3/Ga, as well as methods for producing wires of Nb/sub 3/Al, Nb/sub 3/(Al, Ge) and Nb/sub 3/Ge such as continuous melt quenching, electron beam irradiation, laser beam irradiation and chemical evaporation. Characteristics of superconducting ceramics are described, along with their applications including superconducting magnets and superconducting elements. (15 figs, 1 tab, 19 refs)

  17. Antibacterial Activity of Extracellular Protease Isolated From an Algicolous Fungus Xylaria psidii KT30 Against Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Taufik Indarmawan

    2016-04-01

    Full Text Available Infectious diseases became more serious problem for public health in recent years. Although existing antibacterial drugs have been relatively effective, they do not rule out the emergence of resistance to the drug. Therefore, the intensive exploration of new bioactive compounds from natural, especially peptide compounds began in recent decades in order-handling infection. This study aimed to isolate, purify and test the potential application of Xylaria psidii KT30 extracellular protease as antibacterial agent against Gram-positive bacteria. X. psidii KT30, a marine fungus isolated from red seaweed Kappaphycus alvarezii showed antibacterial activity against Bacillus subtilis and Staphylococcus aureus. Antibacterial compounds of this fungus were predicted as a group of proteases. Extracellular protease exhibited an optimum activity when potato dextrose broth was used as cultivation medium. Furthermore, the highest activity of these proteases was found on fungal extract after day 15 of cultivation with value of 2.33 ± 0.19 U/mL. The partial purification of proteases using G-75 column chromatography resulted in 2 groups of fractions and showed protease activity based on zymogram assay. The extracellular proteases obtained from those fractions have 3 patterns of molecular mass based on sodium dodecyl sulfate–polyacrylamide gel electrophoresis which are 56.62, 89.12, 162.18 kDa.

  18. Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells

    OpenAIRE

    Gho, Yong Song; Choi, Dong-Sic; Choi, Do-Young; Hong, Bok Sil; Jang, Su Chul; Kim, Dae-Kyum; Lee, Jaewook; Kim, Yoon-Keun; Kim, Kwang Pyo

    2012-01-01

    Cancer cells actively release extracellular vesicles (EVs), including exosomes and microvesicles, into surrounding tissues. These EVs play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteomic differences between primary and metastatic cancer cell-derived EVs remain unclear. Here, we conducted comparative proteomic analysis between EVs derived from human primary colorectal cancer cells (SW480) and their metastat...

  19. Amino acid modifiers in guayule rubber compounds

    Science.gov (United States)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  20. Characterization of total retinoid-like activity of compounds produced by three common phytoplankton species.

    Science.gov (United States)

    Sychrová, Eliška; Priebojová, Jana; Smutná, Marie; Nováková, Kateřina; Kohoutek, Jiří; Hilscherová, Klára

    2016-12-01

    Phytoplankton can produce various bioactive metabolites, which may affect other organisms in the aquatic environment. This study provides the first information on the total retinoid-like activity associated with both intracellular and extracellular metabolites produced by selected phytoplankton species that could play a role in teratogenic effects and developmental disruption in exposed organisms. The studied species included a coccoid cyanobacteria (Microcystis aeruginosa), a filamentous cyanobacteria (Aphanizomenon gracile) and a green alga (Desmodesmus quadricauda), all of which commonly occur in freshwater bodies in Europe. Methanolic extracts from cellular material and extracellular exudates were prepared from cultures cultivated in two light-intensity variants with five replicates for each species. The retinoid-like activity was evaluated by in vitro assays along with chemical analyses of two potent retinoic acids (all-trans retinoic acid (ATRA) and 9cis-RA). The mean total retinoid-like activity of metabolites produced by the three studied species representing different phytoplankton taxonomic groups ranged from 705 to 5572ng ATRA equivalent/g dry matter corresponding to 0.064-0.234ng ATRA/10(6) cells. Retinoid-like activity was found in the cellular extracts of all species, while only the extracellular exudates of cyanobacteria exhibited detectable activity (41-1081ng ATRA/L). The greatest extracellular as well as total (extra- and intra- cellular together) retinoid-like activity was detected for Microcystis aeruginosa. The two potent retinoic acids studied were more frequently detected in cellular extracts than in extracellular exudates of all species. Their contribution to observed in vitro effects was relatively low for all tested samples (<10%), indicating a substantial contribution of other retinoid-like compounds to the overall activity. The results indicate possible influence of light intensity and cell density on the production of metabolites with

  1. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A.

    Directory of Open Access Journals (Sweden)

    Anurag Kumar Gupta

    Full Text Available Excessive or aberrant generation of neutrophil extracellular traps (NETs has recently become implicated in the underlying aetiology of a number of human pathologies including preeclampsia, systemic lupus erythromatosus, rheumatoid arthritis, auto-antibody induced small vessel vasculitis, coagulopathies such as deep vein thrombosis or pulmonary complications. These results imply that effective pharmacological therapeutic strategies will need to be developed to counter overt NETosis in these and other inflammatory disorders. As calcium flux is implicated in the generation of reactive oxygen species and histone citrullination, two key events in NETosis, we analysed the roles of both extra- and intracellular calcium pools and their modulation by pharmacological agents in the NETotic process in detail. Interleukin-8 (IL-8 was used as a physiological stimulus of NETosis. Our data demonstrate that efficient induction of NETosis requires mobilisation of both extracellular and intracellular calcium pools. Since modulation of the calcineurin pathway by cyclosporine A has been described in neutrophils, we investigated its influence on NETosis. Our data indicate that IL-8 induced NETosis is reduced by ascomycin and cyclosporine A, antagonists of the calcineurin pathway, but not following treatment with rapamycin, which utilizes the mTOR pathway. The action of the G protein coupled receptor phospholipase C pathway appears to be essential for the induction of NETs by IL-8, as NETosis was diminished by treatment with either pertussis toxin, a G-protein inhibitor, the phospholipase C inhibitor, U73122, or staurosporine, an inhibitor of protein kinase C. The data regarding the calcineurin antagonists, ascomycin and cyclosporine A, open the possibility to therapeutically suppress or modulate NETosis. They also provide new insight into the mechanism whereby such immune suppressive drugs render transplant patients susceptible to opportunistic fungal infections.

  2. [Triterpene compounds from Cirsium setosum].

    Science.gov (United States)

    Li, Lingling; Sun, Zheng; Shang, Xiaoya; Li, Jinjie; Wang, Rong; Zhu, Jie

    2012-04-01

    To investigate chemical constituents contained in cytotoxic petroleum ether extractive fractions from ethanol extracts of Cirsium setosum. The constituents were separated and purified by a combination of various chromatographic methods including silica gel, Sephadex LH-20, and preparative HPLC. Structures of the isolates were elucidated by spectroscopic methods including 1D, 2D NMR and MS methods. The compound structures were also determined by reference to literature. Twelve compounds were separated from the petroleum ether fraction of ethanolic extract and elucidated as lupenyl acetate (1), lupeol (2), lupenone (3), beta-amyrin (4), psi-taraxasterol (5), psi-taraxasteryl acetate (6), taraxasteryl acetate (7), marsformoxide B (8), alpha-amyrenone (9), beta-amyrenone (10), taraxasterone (11) and psi-taraxasterone (12). Of them, compounds 3, 5, 7-12 were separated from this genus for the first time.

  3. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension, formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows: pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  4. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Binbin; XIONG Jinshui; YAN Jingchun

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension,formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100 ℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows:pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  5. Getting to know the extracellular vesicle glycome.

    Science.gov (United States)

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-01

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences.

  6. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  7. Analysis of extracellular RNA in cerebrospinal fluid

    Science.gov (United States)

    Saugstad, Julie A.; Lusardi, Theresa A.; Van Keuren-Jensen, Kendall R.; Phillips, Jay I.; Lind, Babett; Harrington, Christina A.; McFarland, Trevor J.; Courtright, Amanda L.; Reiman, Rebecca A.; Yeri, Ashish S.; Kalani, M. Yashar S.; Adelson, P. David; Arango, Jorge; Nolan, John P.; Duggan, Erika; Messer, Karen; Akers, Johnny C.; Galasko, Douglas R.; Quinn, Joseph F.; Carter, Bob S.; Hochberg, Fred H.

    2017-01-01

    ABSTRACT We examined the extracellular vesicle (EV) and RNA composition of pooled normal cerebrospinal fluid (CSF) samples and CSF from five major neurological disorders: Alzheimer’s disease (AD), Parkinson’s disease (PD), low-grade glioma (LGG), glioblastoma multiforme (GBM), and subarachnoid haemorrhage (SAH), representing neurodegenerative disease, cancer, and severe acute brain injury. We evaluated: (I) size and quantity of EVs by nanoparticle tracking analysis (NTA) and vesicle flow cytometry (VFC), (II) RNA yield and purity using four RNA isolation kits, (III) replication of RNA yields within and between laboratories, and (IV) composition of total and EV RNAs by reverse transcription–quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing (RNASeq). The CSF contained ~106 EVs/μL by NTA and VFC. Brain tumour and SAH CSF contained more EVs and RNA relative to normal, AD, and PD. RT-qPCR and RNASeq identified disease-related populations of microRNAs and messenger RNAs (mRNAs) relative to normal CSF, in both total and EV fractions. This work presents relevant measures selected to inform the design of subsequent replicative CSF studies. The range of neurological diseases highlights variations in total and EV RNA content due to disease or collection site, revealing critical considerations guiding the selection of appropriate approaches and controls for CSF studies. PMID:28717417

  8. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  9. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  10. Relevance of extracellular DNA in rhizosphere

    Science.gov (United States)

    Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha

    2013-04-01

    One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.

  11. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  12. Micro- and macrorheology of jellyfish extracellular matrix.

    Science.gov (United States)

    Gambini, Camille; Abou, Bérengère; Ponton, Alain; Cornelissen, Annemiek J M

    2012-01-04

    Mechanical properties of the extracellular matrix (ECM) play a key role in tissue organization and morphogenesis. Rheological properties of jellyfish ECM (mesoglea) were measured in vivo at the cellular scale by passive microrheology techniques: microbeads were injected in jellyfish ECM and their Brownian motion was recorded to determine the mechanical properties of the surrounding medium. Microrheology results were compared with macrorheological measurements performed with a shear rheometer on slices of jellyfish mesoglea. We found that the ECM behaved as a viscoelastic gel at the macroscopic scale and as a much softer and heterogeneous viscoelastic structure at the microscopic scale. The fibrous architecture of the mesoglea, as observed by differential interference contrast and scanning electron microscopy, was in accord with these scale-dependent mechanical properties. Furthermore, the evolution of the mechanical properties of the ECM during aging was investigated by measuring microrheological properties at different jellyfish sizes. We measured that the ECM in adult jellyfish was locally stiffer than in juvenile ones. We argue that this stiffening is a consequence of local aggregations of fibers occurring gradually during aging of the jellyfish mesoglea and is enhanced by repetitive muscular contractions of the jellyfish.

  13. Force spectroscopy of hepatocytic extracellular matrix components

    Energy Technology Data Exchange (ETDEWEB)

    Yongsunthon, R., E-mail: YongsuntR@Corning.com [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States); Baker, W.A.; Bryhan, M.D.; Baker, D.E.; Chang, T.; Petzold, O.N.; Walczak, W.J.; Liu, J.; Faris, R.A.; Senaratne, W.; Seeley, L.A.; Youngman, R.E. [Corning Incorporated, SP-FR-01, R1S32D, Corning, NY 14831 (United States)

    2009-07-15

    We present atomic force microscopy and force spectroscopy data of live hepatocytes (HEPG2/C3A liver cell line) grown in Eagle's Minimum Essential Medium, a complex solution of salts and amino acids commonly used for cell culture. Contact-mode imaging and force spectroscopy of this system allowed correlation of cell morphology and extracellular matrix (ECM) properties with substrate properties. Force spectroscopy analysis of cellular 'footprints' indicated that the cells secrete large polymers (e.g., 3.5 {mu}m contour length and estimated MW 1000 kDa) onto their substrate surface. Although definitive identification of the polymers has not yet been achieved, fluorescent-labeled antibody staining has specified the presence of ECM proteins such as collagen and laminin in the cellular footprints. The stretched polymers appear to be much larger than single molecules of known ECM components, such as collagen and heparan sulfate proteoglycan, thus suggesting that the cells create larger entangled, macromolecular structures from smaller components. There is strong evidence which suggests that the composition of the ECM is greatly influenced by the hydrophobicity of the substrate surface, with preferential production and/or adsorption of larger macromolecules on hydrophobic surfaces.

  14. Mechanics of composite cytoskeletal and extracellular networks

    Science.gov (United States)

    Das, Moumita

    2014-03-01

    Living cells sense and respond to mechanical forces in their surroundings. This mechanical response is mainly due to the cell cytoskeleton, and its interaction with the extracellular matrix (ECM). The cell cytoskeleton is a composite polymeric scaffold made of many different types of protein filaments and crosslinking proteins. Two major filament systems in the cytoskeleton are actin filaments (F-actin) and microtubules (MTs). Actin filaments are semiflexible, while the much stiffer MTs behave as rigid rods. I shall discuss theories that help understand how the direct coupling to the surrounding F-actin matrix allows intracellular MTs to bear large compressive forces and controls the range of force transmission along the MTs, and how the MTs not only enhance the stiffness of the cell cytoskeleton, but can also dramatically endow an initially nearly incompressible F-actin matrix with enhanced compressibility relative to its shear compliance. A second source of compositeness in the cytoskeleton is the presences of different types of crosslinkers that can interact cooperatively leading to enhanced mechanical rigidity and tunable response. Like the cytoskeleton, the ECM is also a polymeric composite. It is primarily composed of a mesh of fibrous proteins, mainly stiff collagen filaments, and a comparatively flexible gel of proteoglycans and hyaluronan. I shall discuss a model that shows how the interplay between the collagen network and the background elastic gel leads to a mechanically robust ECM.

  15. Extracellular matrix components in peripheral nerve regeneration.

    Science.gov (United States)

    Gonzalez-Perez, Francisco; Udina, Esther; Navarro, Xavier

    2013-01-01

    Injured axons of the peripheral nerve are able to regenerate and, eventually, reinnervate target organs. However, functional recovery is usually poor after severe nerve injuries. The switch of Schwann cells to a proliferative state, secretion of trophic factors, and the presence of extracellular matrix (ECM) molecules (such as collagen, laminin, or fibronectin) in the distal stump are key elements to create a permissive environment for axons to grow. In this review, we focus attention on the ECM components and their tropic role in axonal regeneration. These components can also be used as molecular cues to guide the axons through artificial nerve guides in attempts to better mimic the natural environment found in a degenerating nerve. Most used scaffolds tested are based on natural molecules that form the ECM, but use of synthetic polymers and functionalization of hydrogels are bringing new options. Progress in tissue engineering will eventually lead to the design of composite artificial nerve grafts that may replace the use of autologous nerve grafts to sustain regeneration over long gaps.

  16. Role of Extracellular Vesicles in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Stefania Raimondo

    2015-01-01

    Full Text Available In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules, a key role has been attributed to extracellular vesicles (EV, released from different cell types. EV (microvesicles and exosomes may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies.

  17. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  18. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa.

    Science.gov (United States)

    Eroglu, Ela; Melis, Anastasios

    2010-04-01

    Mechanical fractionation and aqueous or aqueous/organic two-phase partition approaches were applied for extraction and separation of extracellular terpenoid hydrocarbons from Botryococcus braunii var. Showa. A direct spectrophotometric method was devised for the quantitation of botryococcene and associated carotenoid hydrocarbons extracted by this method. Separation of extracellular botryococcene hydrocarbons from the Botryococcus was achieved upon vortexing of the micro-colonies with glass beads, either in water followed by buoyant density equilibrium to separate hydrocarbons from biomass, or in the presence of heptane as a solvent, followed by aqueous/organic two-phase separation of the heptane-solubilized hydrocarbons (upper phase) from the biomass (lower aqueous phase). Spectral analysis of the upper heptane phase revealed the presence of two distinct compounds, one absorbing in the UV-C, attributed to botryococcene(s), the other in the blue region of the spectrum, attributed to a carotenoid. Specific extinction coefficients were developed for the absorbance of triterpenes at 190nm (epsilon = 90 +/- 5 mM(-1) cm(-1)) and carotenoids at 450 nm (epsilon=165+/-5mM(-1) cm(-1)) in heptane. This enabled application of a direct spectrophotometric method for the quantitation of water- or heptane-extractable botryococcenes and carotenoids. B. braunii var. Showa constitutively accumulates approximately 30% of the dry biomass as extractable (extracellular) botryococcenes, and approximately 0.2% of the dry biomass in the form of a carotenoid. It was further demonstrated that heat-treatment of the Botryococcus biomass substantially accelerates the rate and yield of the extraction process. Advances in this work serve as foundation for a cyclic Botryococcus growth, non-toxic extraction of extracellular hydrocarbons, and return of the hydrocarbon-depleted biomass to growth conditions for further product generation.

  19. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles

    Directory of Open Access Journals (Sweden)

    Jan Lötvall

    2014-12-01

    Full Text Available Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs, which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  20. Application of HBOCs electrophoretic method to detect a new blood substitute derived from the giant extracellular haemoglobin of lugworm.

    Science.gov (United States)

    Marchand, A; Crepin, N; Roulland, I; Semence, F; Domergue, V; Zal, F; Polard, V; Coquerel, A

    2016-10-27

    Manipulation of blood and blood components is prohibited in sports by the World Anti-Doping Agency (WADA). This includes the use of blood substitutes to increase oxygen transport, like haemoglobin-based oxygen carriers (HBOCs), which are compounds derived from haemoglobin. Despite their medical interest, the first generation of HBOCs had serious adverse effects and was abandoned. However, new studies are now exploiting the properties of marine worm haemoglobins, which circulate as giant extracellular complexes with high oxygen-binding capacities. HEMOXYCarrier® (HC), developed by Hemarina, is one of the most advanced and promising HBOCs, and HC may become a tempting doping tool for athletes in the future. Here, HC detection in plasma/serum was evaluated with the method used to detect the first HBOCs, based on electrophoresis and heme peroxidase properties. An HC-derived product was identified in human plasma up to 72 h after in vitro incubation at 37 °C. HC degradation also induced methemalbumin formation. After injecting HC at the effective dose of 200 mg/kg into mice, the HC-derived product was detected only for a few hours and no accumulation of methemalbumin was observed. Due to this limited detection window in vivo, measuring specific worm globin degradation products by mass spectrometry might be an alternative for future anti-doping analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... Contact Us Share Volatile Organic Compounds' Impact on Indoor Air Quality On this page: Introduction Sources Health Effects Levels in Homes Steps to Reduce Exposure Standards or Guidelines Additional Resources Introduction Volatile organic compounds ( ...

  2. Reissert compound of bisbenzimidazole

    OpenAIRE

    1989-01-01

    A Reissert compound of bisbenzimidazole can be formed by first reacting benzimidazole with an aliphatic diacid chloride to form bisbenzimidazole and then reacting the bisbenzimidazole with an aliphatic acid chloride and cyanide to form the Reissert compound thereof.

  3. Thioredoxin is involved in endothelial cell extracellular transglutaminase 2 activation mediated by celiac disease patient IgA.

    Directory of Open Access Journals (Sweden)

    Cristina Antonella Nadalutti

    Full Text Available PURPOSE: To investigate the role of thioredoxin (TRX, a novel regulator of extracellular transglutaminase 2 (TG2, in celiac patients IgA (CD IgA mediated TG2 enzymatic activation. METHODS: TG2 enzymatic activity was evaluated in endothelial cells (HUVECs under different experimental conditions by ELISA and Western blotting. Extracellular TG2 expression was studied by ELISA and immunofluorescence. TRX was analysed by Western blotting and ELISA. Serum immunoglobulins class A from healthy subjects (H IgA were used as controls. Extracellular TG2 enzymatic activity was inhibited by R281. PX12, a TRX inhibitor, was also employed in the present study. RESULTS: We have found that in HUVECs CD IgA is able to induce the activation of extracellular TG2 in a dose-dependent manner. Particularly, we noted that the extracellular modulation of TG2 activity mediated by CD IgA occurred only under reducing conditions, also needed to maintain antibody binding. Furthermore, CD IgA-treated HUVECs were characterized by a slightly augmented TG2 surface expression which was independent from extracellular TG2 activation. We also observed that HUVECs cultured in the presence of CD IgA evinced decreased TRX surface expression, coupled with increased secretion of the protein into the culture medium. Intriguingly, inhibition of TRX after CD IgA treatment was able to overcome most of the CD IgA-mediated effects including the TG2 extracellular transamidase activity. CONCLUSIONS: Altogether our findings suggest that in endothelial cells CD IgA mediate the constitutive activation of extracellular TG2 by a mechanism involving the redox sensor protein TRX.

  4. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong, E-mail: weigehong@nwsuaf.edu.cn

    2013-10-15

    Highlights: • EPS produced by Sinorhizobium meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. • We focused on the EPS, which is divided into three main parts. • LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. • Proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding. -- Abstract: The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4 mM Cu{sup 2+}. Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu{sup 2+}. EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu{sup 2+}. The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu{sup 2+} immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (-COOH), hydroxyl (-OH), and amide (N-H), primarily involved in metal ion binding.

  5. Effects of extracellular modulation through hypoxia on the glucose metabolism of human breast cancer stem cells

    Science.gov (United States)

    Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.

    2017-08-01

    Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.

  6. Mammary epithelial cell: Influence of extracellular matrix composition and organization during development and tumorigenesis

    Science.gov (United States)

    Kass, Laura; Erler, Janine T.; Dembo, Micah; Weaver, Valerie M.

    2009-01-01

    Stromal–epithelial interactions regulate mammary gland development and are critical for the maintenance of tissue homeostasis. The extracellular matrix, which is a proteinaceous component of the stroma, regulates mammary epithelial growth, survival, migration and differentiation through a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue organization, and promote cell invasion and survival. In this review, we discuss the role of stromal–epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit a dialogue with the mammary epithelium through transmembrane integrin receptors to influence tissue morphogenesis, homeostasis and malignant transformation. PMID:17719831

  7. Extracellular membrane vesicles in blood products-biology and clinical relevance

    Directory of Open Access Journals (Sweden)

    Emilija Krstova Krajnc

    2016-01-01

    Full Text Available Extracellular membrane vesicles are fragments shed from plasma membranes off all cell types that are undergoing apoptosis or are being subjected to various types of stimulation or stress.  Even in the process of programmed cell death (apoptosis, cell fall apart of varying size vesicles. They expose phosphatidylserine (PS on the outer leaflet of their membrane, and bear surface membrane antigens reflecting their cellular origin. Extracellular membrane vesicles have been isolated from many types of biological fluids, including serum, cerebrospinal fluid, urine, saliva, tears and conditioned culture medium. Flow cytometry is one of the many different methodological approaches that have been used to analyze EMVs. The method attempts to characterize the EMVs cellular origin, size, population, number, and structure. EMVs are present and accumulate in blood products (erythrocytes, platelets as well as in fresh frozen plasma during storage. The aim of this review is to highlight the importance of extracellular vesicles as a cell-to-cell communication system and the role in the pathogenesis of different diseases. Special emphasis will be given to the implication of extracellular membrane vesicles in blood products and their clinical relevance. Although our understanding of the role of  EMVs in disease is far from comprehensive, they display promise as biomarkers for different diseases in the future and also as a marker of quality and safety in the quality control of blood products.

  8. Extracellular ATP acts as a damage associated molecular pattern (DAMP signal in plants

    Directory of Open Access Journals (Sweden)

    Kiwamu eTanaka

    2014-09-01

    Full Text Available As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs. ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling role in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor Kinase, which is plant-specific. P2K1 (DORN1 is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression. Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of the future research of extracellular ATP as a DAMP signal.

  9. Changes of β3 Integrins and Extracellular Matrix Proteins in the Endometrium of Unexplained Infertility

    Institute of Scientific and Technical Information of China (English)

    王化丽; 曲陆荣; 何丽霞; 张颐

    1999-01-01

    The purpose of this study was to investigate changes of β3 integrins and extracellular matrix proteins including fibronectin (FN) , laminin (LN) and collagen type Ⅳ (CL type Ⅳ) on the endometrium of secretory phase from 31 fertile women (fertility group)and 34 women with unexplained infertility (infertility group) by a histochemical method. The results were as follows : In glandular epithelium, β3 integrin appeared in the mid secretory phase and continued to late secretory phase in the fertility group, but was not expressed during the secretory phase in the infertility group.Extracellular matrix proteins from the fertility group were expressed more strongly in mid secretory phase than that in the early secretory phase, and were weakest in the late secretory phase. Compared with the fertility group, the levels of extracellular matrix proteins in the infertility group were elevated in the secretory phase. In conclusion: our current study demonstrate that fie integrin and extracellular matrix proteins are expressed at different levels in the endometrium during the menstrual cycle. They are involved in endometrial changes during the menstrual cycle and during the implantation of the blastocyst. Their unusual expression result in the failure of implantation.

  10. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Shawn eLewenza

    2013-02-01

    Full Text Available Extracellular DNA (eDNA is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. Extracellular DNA can function as a nutrient source, a universal biofilm matrix component and an innate immune effector in extracellular DNA traps. In biofilms, eDNA is required for attachment, aggregation and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. Extracellular DNA binds metal cations and thus activates the Mg2+-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides, including the pmr genes (PA3552-PA3559 that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from antimicrobial peptide treatment. Both modifications mask the negative surface charges and limit membrane damage by antimicrobial peptides. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to antimicrobial peptides and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival.

  11. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis.

    Science.gov (United States)

    Wozniak, Katherine L; Mayfield, Brianna L; Duray, Alexis M; Tembo, Maiwase; Beleny, David O; Napolitano, Marc A; Sauer, Monica L; Wisner, Bennett W; Carlson, Anne E

    2017-01-01

    The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu.

  12. Compound Cuing in Free Recall

    Science.gov (United States)

    Lohnas, Lynn J.; Kahana, Michael J.

    2014-01-01

    According to the retrieved context theory of episodic memory, the cue for recall of an item is a weighted sum of recently activated cognitive states, including previously recalled and studied items as well as their associations. We show that this theory predicts there should be compound cuing in free recall. Specifically, the temporal contiguity…

  13. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Ohno

    2016-02-01

    Full Text Available Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs carry various proteins, messenger RNAs (mRNAs, and microRNAs (miRNAs, like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  14. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems.

    Science.gov (United States)

    Ohno, Shin-Ichiro; Drummen, Gregor P C; Kuroda, Masahiko

    2016-02-06

    Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a "message in a bottle" to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems.

  15. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  16. Extracellular Matrix Assembly in Diatoms (Bacillariophyceae)1

    Science.gov (United States)

    Wustman, Brandon A.; Lind, Jan; Wetherbee, Richard; Gretz, Michael R.

    1998-01-01

    Achnanthes longipes is a marine, biofouling diatom that adheres to surfaces via adhesive polymers extruded during motility or organized into structures called stalks that contain three distinct regions: the pad, shaft, and collar. Four monoclonal antibodies (AL.C1–AL.C4) and antibodies from two uncloned hybridomas (AL.E1 and AL.E2) were raised against the extracellular adhesives of A. longipes. Antibodies were screened against a hot-water-insoluble/hot-bicarbonate-soluble-fraction. The hot-water-insoluble/hot-bicarbonate-soluble fraction was fractionated to yield polymers in three size ranges: F1, ≥ 20,000,000 Mr; F2, ≅100,000 Mr; and F3, <10,000 Mr relative to dextran standards. The ≅100,000-Mr fraction consisted of highly sulfated (approximately 11%) fucoglucuronogalactans (FGGs) and low-sulfate (approximately 2%) FGGs, whereas F1 was composed of O-linked FGG (F2)-polypeptide (F3) complexes. AL.C1, AL.C2, AL.C4, AL.E1, and AL.E2 recognized carbohydrate complementary regions on FGGs, with antigenicity dependent on fucosyl-containing side chains. AL.C3 was unique in that it had a lower affinity for FGGs and did not label any portion of the shaft. Enzyme-linked immunosorbent assay and immunocytochemistry indicated that low-sulfate FGGs are expelled from pores surrounding the raphe terminus, creating the cylindrical outer layers of the shaft, and that highly sulfated FGGs are extruded from the raphe, forming the central core. Antibody-labeling patterns and other evidence indicated that the shaft central-core region is related to material exuded from the raphe during cell motility. PMID:9536061

  17. Lung extracellular matrix and redox regulation.

    Science.gov (United States)

    Watson, Walter H; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-08-01

    Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to

  18. Metabolic requirements for neutrophil extracellular traps formation

    Science.gov (United States)

    Rodríguez-Espinosa, Oscar; Rojas-Espinosa, Oscar; Moreno-Altamirano, María Maximina Bertha; López-Villegas, Edgar Oliver; Sánchez-García, Francisco Javier

    2015-01-01

    As part of the innate immune response, neutrophils are at the forefront of defence against infection, resolution of inflammation and wound healing. They are the most abundant leucocytes in the peripheral blood, have a short lifespan and an estimated turnover of 1010 to 1011 cells per day. Neutrophils efficiently clear microbial infections by phagocytosis and by oxygen-dependent and oxygen-independent mechanisms. In 2004, a new neutrophil anti-microbial mechanism was described, the release of neutrophil extracellular traps (NETs) composed of DNA, histones and anti-microbial peptides. Several microorganisms, bacterial products, as well as pharmacological stimuli such as PMA, were shown to induce NETs. Neutrophils contain relatively few mitochondria, and derive most of their energy from glycolysis. In this scenario we aimed to analyse some of the metabolic requirements for NET formation. Here it is shown that NETs formation is strictly dependent on glucose and to a lesser extent on glutamine, that Glut-1, glucose uptake, and glycolysis rate increase upon PMA stimulation, and that NET formation is inhibited by the glycolysis inhibitor, 2-deoxy-glucose, and to a lesser extent by the ATP synthase inhibitor oligomycin. Moreover, when neutrophils were exposed to PMA in glucose-free medium for 3 hr, they lost their characteristic polymorphic nuclei but did not release NETs. However, if glucose (but not pyruvate) was added at this time, NET release took place within minutes, suggesting that NET formation could be metabolically divided into two phases; the first, independent from exogenous glucose (chromatin decondensation) and, the second (NET release), strictly dependent on exogenous glucose and glycolysis. PMID:25545227

  19. Lung extracellular matrix and redox regulation

    Directory of Open Access Journals (Sweden)

    Walter H. Watson

    2016-08-01

    Full Text Available Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM proteins resulting in erosion of the tissue structure. Initially considered an ‘end-stage’ process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation–reduction (redox reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This

  20. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  1. Synthesis and characterization of the dimercury(I)-linked compound [PPn]4[(Re7C(CO)21Hg)2]. Oxidative cleavage of the mercury-mercury bond leading to carbidoheptarhenate complexes of mercury(II), including [PPN][Re7C(CO)21Hg(S=C(NME2)2)].

    Science.gov (United States)

    Wright, C A; Brand, U; Shapley, J R

    2001-09-10

    The reaction of [PPN](3)[Re(7)C(CO)(21)] with Hg(2)(NO(3))(2).2H(2)O in dichloromethane formed the complex [PPN](4)[(Re(7)C(CO)(21)Hg)(2)] ([PPN](4)[1]), isolated in 60% yield. Analogous salts of [1](4-) with [PPh(4)](+) and [NEt(4)](+) were also prepared. The crystal structure of [PPN](4)[1] showed that two carbidoheptarhenate cores are linked by a dimercury(I) unit (d(Hg-Hg) = 2.610(4) A), with each individual mercury atom face-bridging. Oxidative cleavage of the Hg-Hg bond in [1](4-) was effected by 4-bromophenyl disulfide to form [Re(7)C(CO)(21)HgSC(6)H(4)Br](2-) ([4](2-)), by I(2) to form [Re(7)C(CO)(21)HgI](2-) ([5](2-)), and by Br(2) to form [Re(7)C(CO)(21)HgBr](2-) ([6](2-)). Oxidation of [1](4-) by ferrocenium ion (2 equiv) in the presence of tetramethylthiourea resulted in the derivative [Re(7)C(CO)(21)HgSC(NMe(2))(2)](-) ([7](-)). The molecular structure of [PPN][7] was determined by X-ray crystallography. This is the first example of a carbidoheptarhenate-mercury complex with a neutral ligand on mercury, and ligand exchange was demonstrated by displacement with triethylphosphine. Complex [7](-) can also be prepared by protonating [Re(7)C(CO)(21)HgO(2)CCH(3)](2-) in the presence of tetramethylthiourea. Cyclic voltammetry data to calibrate and compare the redox properties of compounds [1](4-) and [7](-) have been measured.

  2. The role of extracellular vesicles in parasite-host interaction

    Directory of Open Access Journals (Sweden)

    Justyna Gatkowska

    2016-09-01

    Full Text Available Extracellular vesicles (EVs, initially considered cell debris, were soon proved to be an essential tool of intercellular communication enabling the exchange of information without direct contact of the cells. At present EVs are the subject of extensive research due to their universal presence in single- and multi-cell organisms, regardless of their systematic position, and their substantial role in cell-to-cell communication. EVs seem to be released by both prokaryotic and eukaryotic cells under natural (in vivo and laboratory (in vitro conditions. Even purified fractions of isolated EVs comprise various membrane-derived structures. However, EVs can be classified into general groups based primarily on their size and origin. EVs may carry various materials, and ongoing research investigations give new insight into their potenti participation in critical biological processes, e.g. carcinogenesis. This paper presents current knowledge on the EVs’ involvement in host–parasite interactions including the invasion process, the maintenance of the parasite infection and modulation of the host immune response to parasite antigenic stimulation, as well as perspectives of the potential use of EVs as immunoprophylactic and diagnostic tools for controlling parasite infections. The most numerous literature data concern protozoan parasites, especially those of the greatest medical and social importance worldwide. However, available information about the EVs’ contribution to helminth invasion has also been included.

  3. Neutrophil extracellular traps involvement in corneal fungal infection

    Science.gov (United States)

    Zhao, Yingying; Zhang, Fan; Wan, Ting; Fan, Fangli; Xie, Xin; Lin, Zhenyun

    2016-01-01

    Purpose Neutrophils release neutrophil extracellular traps (NETs) when defending against invading microorganisms. We investigated the existence of NETs in fungal keratitis. Methods Fourteen patients with unilateral fungal keratitis were included. Detailed information about each patient was recorded, including (1) patient history (onset of symptoms and previous therapy), (2) ocular examination findings by slit-lamp biomicroscopy, (3) laboratory findings from direct smear examination and culture of corneal scrapings, (4) NET formation, and (5) treatment strategy and prognosis. Immunofluorescence staining was used to evaluate the existence of NETs on corneal scrapings. The relationship between the quantification of NETs and the clinical character of the fungal keratitis was identified. Results NETs were identified in all 14 patients. Patients with a higher grade of NET formation and fewer fungal hyphae always showed a good treatment response and a short course of infection. NETs were consistently found mixed with fungal hyphae in the corneal scrapings from infected patients. No statistical significance was found between the grade of NETs formed and the course of infection before presentation, and no relationship between the quantification of NETs and the size of the ulcer was found. Conclusions The results suggest that NETs are involved in fungal keratitis. The number of NETs in infected corneas may provide a tool for evaluating the prognosis for fungal keratitis. PMID:27559290

  4. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-02

    The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

  5. Copper-taurine (CT): a potential organic compound to facilitate infected wound healing.

    Science.gov (United States)

    Tian, Xiliang; Zhang, Zhen; Wang, Shouyu; Diao, Yunpeng; Zhao, Zexu; Lv, Decheng

    2009-12-01

    Taurine plays various important roles in a large number of physiological and pathological conditions in human body, such as the cytoprotective functions, antioxidant, anti-inflammatory and anti-apoptosis effects. Copper demonstrates a critical effect in the processes of wound healing, including induction of endothelial growth factor, angiogenesis, antimicrobial potency and expression and stabilization of extracellular matrix. Both copper and taurine are effective in accelerating wound healing, but it was rarely reported about the formation of copper complexes of taurine and the effect of the compound in wound healing. Generally speaking, to human body, organic compound could provide a better bioavailability than the inorganic ones. We thus hypothesize that taurine combined with copper would be a new therapeutic candidate for infected wound healing. We name the new compound copper-taurine (CT). Copper-taurine (CT) added into the wound dressings would not only reduce the risk of wound infection, but, more importantly, would stimulate wound repair directly. The sustained release of copper and taurine from the wound dressings into the wound site would together facilitate the wound healing more potently.

  6. Veterinary Compounding: Regulation, Challenges, and Resources.

    Science.gov (United States)

    Davidson, Gigi

    2017-01-10

    The spectrum of therapeutic need in veterinary medicine is large, and the availability of approved drug products for all veterinary species and indications is relatively small. For this reason, extemporaneous preparation, or compounding, of drugs is commonly employed to provide veterinary medical therapies. The scope of veterinary compounding is broad and focused primarily on meeting the therapeutic needs of companion animals and not food-producing animals in order to avoid human exposure to drug residues. As beneficial as compounded medical therapies may be to animal patients, these therapies are not without risks, and serious adverse events may occur from poor quality compounds or excipients that are uniquely toxic when administered to a given species. Other challenges in extemporaneous compounding for animals include significant regulatory variation across the global veterinary community, a relative lack of validated compounding formulas for use in animals, and poor adherence by compounders to established compounding standards. The information presented in this article is intended to provide an overview of the current landscape of compounding for animals; a discussion on associated benefits, risks, and challenges; and resources to aid compounders in preparing animal compounds of the highest possible quality.

  7. Promiscuity progression of bioactive compounds over time.

    Science.gov (United States)

    Hu, Ye; Jasial, Swarit; Bajorath, Jürgen

    2015-01-01

    In the context of polypharmacology, compound promiscuity is rationalized as the ability of small molecules to specifically interact with multiple targets. To study promiscuity progression of bioactive compounds in detail, nearly 1 million compounds and more than 5.2 million activity records were analyzed. Compound sets were assembled by applying different data confidence criteria and selecting compounds with activity histories over many years. On the basis of release dates, compounds and activity records were organized on a time course, which ultimately enabled monitoring data growth and promiscuity progression over nearly 40 years, beginning in 1976. Surprisingly low degrees of promiscuity were consistently detected for all compound sets and there were only small increases in promiscuity over time. In fact, most compounds had a constant degree of promiscuity, including compounds with an activity history of 10 or 20 years. Moreover, during periods of massive data growth, beginning in 2007, promiscuity degrees also remained constant or displayed only minor increases, depending on the activity data confidence levels. Considering high-confidence data, bioactive compounds currently interact with 1.5 targets on average, regardless of their origins, and display essentially constant degrees of promiscuity over time. Taken together, our findings provide expectation values for promiscuity progression and magnitudes among bioactive compounds as activity data further grow.

  8. Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture.

    Science.gov (United States)

    Kii, Isao; Nishiyama, Takashi; Li, Minqi; Matsumoto, Ken-Ichi; Saito, Mitsuru; Amizuka, Norio; Kudo, Akira

    2010-01-15

    Extracellular matrix (ECM) underlies a complicated multicellular architecture that is subjected to significant forces from mechanical environment. Although various components of the ECM have been enumerated, mechanisms that evolve the sophisticated ECM architecture remain to be addressed. Here we show that periostin, a matricellular protein, promotes incorporation of tenascin-C into the ECM and organizes a meshwork architecture of the ECM. We found that both periostin null mice and tenascin-C null mice exhibited a similar phenotype, confined tibial periostitis, which possibly corresponds to medial tibial stress syndrome in human sports injuries. Periostin possessed adjacent domains that bind to tenascin-C and the other ECM protein: fibronectin and type I collagen, respectively. These adjacent domains functioned as a bridge between tenascin-C and the ECM, which increased deposition of tenascin-C on the ECM. The deposition of hexabrachions of tenascin-C may stabilize bifurcations of the ECM fibrils, which is integrated into the extracellular meshwork architecture. This study suggests a role for periostin in adaptation of the ECM architecture in the mechanical environment.

  9. Recognition of extracellular bacteria by NLRs and its role in the development of adaptive immunity

    Directory of Open Access Journals (Sweden)

    Jonathan eFerrand

    2013-10-01

    Full Text Available Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs, whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.

  10. Extracellular cytochrome c as an intercellular signaling molecule regulating microglial functions.

    Science.gov (United States)

    Gouveia, Ayden; Bajwa, Ekta; Klegeris, Andis

    2017-09-01

    Cytochrome c is well known to be released from mitochondria into the cytosol where it can initiate apoptosis. Recent studies indicate that cytochrome c is also released into the extracellular space by both healthy and damaged cells, where its function is not well understood. We hypothesized that extracellular cytochrome c could function as an intercellular signaling molecule of the brain, which is recognized by brain microglia. These cells belong to the mononuclear phagocyte system and can be activated by endogenous substances associated with diverse pathologies including trauma, ischemic damage and neurodegenerative diseases. Three different cell types were used to model microglia. Respiratory burst activity, nitric oxide production and cytotoxic secretions were measured following exposure of microglial cells to cytochrome c. We showed that extracellular cytochrome c primed the respiratory burst response of differentiated HL-60 cells, enhanced nitric oxide secretion by BV-2 cells, and augmented cytotoxicity of differentiated THP-1 cells. We demonstrated that the effects of cytochrome c on microglia-like cells were at least partially mediated by the toll-like receptor 4 (TLR4) and c-Jun N-terminal kinases (JNK) signaling pathway. Extracellular cytochrome c can interact with microglia TLR4 and modulate select functions of these brain immune cells. Our data identifies extracellular cytochrome c as a potential intercellular signaling molecule, which may be recognized by microglia causing or enhancing their immune activation. The data obtained support targeting TLR4 and JNK signaling as potential treatment strategies for brain diseases characterized by excessive cellular death and activation of microglia. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  12. Antitumor Compounds from Marine Actinomycetes

    Directory of Open Access Journals (Sweden)

    José A. Salas

    2009-06-01

    Full Text Available Chemotherapy is one of the main treatments used to combat cancer. A great number of antitumor compounds are natural products or their derivatives, mainly produced by microorganisms. In particular, actinomycetes are the producers of a large number of natural products with different biological activities, including antitumor properties. These antitumor compounds belong to several structural classes such as anthracyclines, enediynes, indolocarbazoles, isoprenoides, macrolides, non-ribosomal peptides and others, and they exert antitumor activity by inducing apoptosis through DNA cleavage mediated by topoisomerase I or II inhibition, mitochondria permeabilization, inhibition of key enzymes involved in signal transduction like proteases, or cellular metabolism and in some cases by inhibiting tumor-induced angiogenesis. Marine organisms have attracted special attention in the last years for their ability to produce interesting pharmacological lead compounds.

  13. Inhibitory effects of antibiofilm compound 1 against Staphylococcus aureus biofilms.

    Science.gov (United States)

    Shrestha, Looniva; Kayama, Shizuo; Sasaki, Michiko; Kato, Fuminori; Hisatsune, Junzo; Tsuruda, Keiko; Koizumi, Kazuhisa; Tatsukawa, Nobuyuki; Yu, Liansheng; Takeda, Kei; Sugai, Motoyuki

    2016-03-01

    A novel benzimidazole molecule that was identified in a small-molecule screen and is known as antibiofilm compound 1 (ABC-1) has been found to prevent bacterial biofilm formation by multiple bacterial pathogens, including Staphylococcus aureus, without affecting bacterial growth. Here, the biofilm inhibiting ability of 156 μM ABC-1 was tested in various biofilm-forming strains of S. aureus. It was demonstrated that ABC-1 inhibits biofilm formation by these strains at micromolar concentrations regardless of the strains' dependence on Polysaccharide Intercellular Adhesin (PIA), cell wall-associated protein dependent or cell wall- associated extracellular DNA (eDNA). Of note, ABC-1 treatment primarily inhibited Protein A (SpA) expression in all strains tested. spa gene disruption showed decreased biofilm formation; however, the mutants still produced more biofilm than ABC-1 treated strains, implying that ABC-1 affects not only SpA but also other factors. Indeed, ABC-1 also attenuated the accumulation of PIA and eDNA on cell surface. Our results suggest that ABC-1 has pleotropic effects on several biofilm components and thus inhibits biofilm formation by S. aureus.

  14. Cytotoxic Compounds from Brucea mollis

    Directory of Open Access Journals (Sweden)

    Mai Hung Thanh TUNG

    2016-09-01

    Full Text Available Ten compounds, including soulameanone (1, isobruceine B (2, 9-methoxy-canthin-6-one (3, bruceolline F (4, niloticine (5, octatriacontan-1-ol (6, bombiprenone (7, α-tocopherol (8, inosine (9, and apigenin 7-O-β-D-glucopyranoside (10, were isolated from the leaves, stems, and roots of Brucea mollis Wall. ex Kurz. Their structures were determined using one- and two-dimensional NMR spectroscopy and mass spectrometry. All compounds were evaluated for their cytotoxic activity against KB (human carcinoma of the mouth, LU-1 (human lung adenocarcinoma, LNCaP (human prostate adeno-carcinoma, and HL-60 (human promyelocytic leukemia cancer cell lines. Compound 2 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values of 0.39, 0.40, 0.34, and 0.23 μg/mL, respectively. In addition, compounds 3 and 5 showed significant cytotoxic activity against KB, LU-1, LNCaP, and HL-60 cancer cells with IC50 values around 1–4 μg/mL. Compounds 9-methoxycanthin-6-one (3 and niloticine (5 have been discovered for the first time from the Brucea genus.

  15. Structure of an Extracellular Polysaccharide from a Strain of Lactic Acid Bacteria

    Institute of Scientific and Technical Information of China (English)

    顾笑梅; 马桂荣; 吴厚铭

    2003-01-01

    A new extracellular polysaccharide (EPS-I) isolated and purified from Z222, a strain of Lactic acid bacteria has been investigated. Sugar composition analysis, methylation analysis and 1H NMR and 13C NMR spectroscopy reveal that the EPS-I is composed of a pentasaccharide repeating unit. The sequence of sugar residue was determined by using two-dlmensional NMR spectroscopy, including heteronudear multiple-bond correlation(HMBC) and nuclear overhauser effect spectroscopy (NOESY).

  16. Repair of a penetrating ascending aortic ulcer with localized resection and extracellular matrix patch aortoplasty.

    Science.gov (United States)

    Smith, Craig R; Stamou, Sotiris C; Boeve, Theodore J; Hooker, Robert C

    2012-09-01

    Penetrating ascending aortic ulcers are rarely encountered, yet they present significant risk of hemorrhage and aortic dissection. Expedient recognition and repair is of vital importance. The current management of penetrating ulcer of the ascending aorta includes replacement of the ascending aorta with a prosthetic graft. We describe our technique of repairing a penetrating ulcer of the ascending aorta with localized ulcer resection and extracellular matrix patch aortoplasty.

  17. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    OpenAIRE

    Claudia Schinke; José Carlos Germani

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100  μ m), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters....

  18. Regulation of Non-Infectious Lung Injury, Inflammation, and Repair by the Extracellular Matrix Glycosaminoglycan Hyaluronan

    OpenAIRE

    Jiang, Dianhua; Liang, Jiurong; Noble, Paul W

    2010-01-01

    An important hallmark of tissue remodeling is the dynamic turnover of extracellular matrix (ECM). ECM performs a variety of functions in tissue repair including scaffold formation, modulation of fluid dynamics, and regulating cell behavior. During non-infectious tissue injury ECM degradation products are generated that acquire signaling functions not attributable to the native precursor molecules. Hyaluronan (HA) is a non-sulfated glycosaminoglycan which is produced in great abundance followi...

  19. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  20. Effects of ionizing radiation on extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, F. [School of Physics, University of Exeter, Exeter EX44QL (United Kingdom)], E-mail: f.mohamed@ex.ac.uk; Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU72XH (United Kingdom); Winlove, C.P. [School of Physics, University of Exeter, Exeter EX44QL (United Kingdom)

    2007-09-21

    The extracellular matrix is a ubiquitous and important component of tissues. We investigated the effects of ionizing radiation on the physical properties of its principal macromolecular components, pericardial collagen, ligament elastin and hyaluronan, a representative glycosaminoglycan. Samples were exposed to X-rays from an electron linear accelerator in the range of 10-100 Gy to cover the range of irradiation exposure during radiotherapy. A uniaxial mechanical testing protocol was used to characterize the fibrous proteins. For pericardial tissue the major change was an increase in the elastic modulus in the toe region of the curve ({<=}20% strain), from 23{+-}18 kPa for controls to 57{+-}22 kPa at a dose of 10 Gy (p=0.01, {alpha}=0.05). At larger strain ({>=}20% strain), the elastic modulus in the linear region decreased from 1.92{+-}0.70 MPa for control pericardium tissue to 1.31{+-}0.56 MPa (p=0.01, {alpha}=0.05) for 10 Gy X-irradiated sample. Similar observations have been made previously on tendon collagen at larger strains. For elastin, the stress-strain relationship was linear up to 30% strain, but the elastic modulus decreased significantly with irradiation (controls 626{+-}65 kPa, irradiated 474{+-}121 kPa (p=0.02, {alpha}=0.05), at 10 Gy X-irradiation). The results suggest that for collagen the primary effect of irradiation is generation of additional cross-links, while for elastin chain scissions are important. The viscosity of HA (at 1.25% w/v and 0.125% w/v) was measured by both cone and plate and capillary viscometry, the former providing measurement at uniform shear rate and the latter providing a more sensitive indication of changes at low viscosity. Both techniques revealed a dose-dependent reduction in viscosity (from 3400{+-}194 cP for controls to 1500{+-}88 cP at a shear rate of 2 s{sup -1} and dose of 75 Gy), again suggesting depolymerization.

  1. Ascorbic acid: a nonradioactive extracellular space marker in canine heart

    National Research Council Canada - National Science Library

    Reil, G H; Frombach, R; Kownatzki, R; Quante, W; Lichtlen, P R

    1987-01-01

    The distribution pattern of ascorbic acid and L-[14C]ascorbic acid in myocardial tissue was compared with those of the classical radioactive extracellular space markers [3H]-inulin, [3H]sucrose, and Na82Br...

  2. Production of extracellular amylase from agricultural residues by a ...

    African Journals Online (AJOL)

    ONOS

    2010-08-09

    Aug 9, 2010 ... The production of extracellular amylases by solid state fermentation (SSF) was ... production of amylase have been studied and accordingly, optimum conditions have .... lactose and sucrose were tested along with control to.

  3. Extracellular Neurotransmitter Receptor Clustering: Think Outside the Box

    Institute of Scientific and Technical Information of China (English)

    Matthias Kneussel

    2010-01-01

    @@ Postsynaptic submembrane scaffolds cluster neurotransmitter receptors through intracellular protein-protein interactions. Growing evidence supports the view that extracellular factors can be almost as important to trigger synaptic receptor aggregation.

  4. A secreted tyrosine kinase acts in the extracellular environment.

    Science.gov (United States)

    Bordoli, Mattia R; Yum, Jina; Breitkopf, Susanne B; Thon, Jonathan N; Italiano, Joseph E; Xiao, Junyu; Worby, Carolyn; Wong, Swee-Kee; Lin, Grace; Edenius, Maja; Keller, Tracy L; Asara, John M; Dixon, Jack E; Yeo, Chang-Yeol; Whitman, Malcolm

    2014-08-28

    Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.

  5. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We prese

  6. EVpedia : A community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si Hyun; Park, Kyong Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; Van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Christina Gross, Julia; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'T Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; Van Leeuwen, Johannes; Lener, Thomas; Liu, Ming Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, Francois; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stepień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yánez-Mó, Maria; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We prese

  7. Production of Extracellular Anti-leukaemic Enzyme Lasparaginase ...

    African Journals Online (AJOL)

    Production of Extracellular Anti-leukaemic Enzyme Lasparaginase from Marine Actinomycetes by ... actinomycetes, screen them for Lasparaginase activity and characterise the enzyme. ... The apparent Km value for the substrate was 25 μM.

  8. Extracellular siderophores of rapidly growing Aspergillus nidulans and Penicillium chrysogenum

    OpenAIRE

    Charlang, G; Horowitz, R M; Lowy, P H; Ng, B.; Poling, S M; Horowitz, N. H.

    1982-01-01

    The highly active extracellular siderophores previously detected in young cultures of Aspergillus nidulans and Penicillium chrysogenum have been identified as the cyclic ester fusigen (fusarinine C), and its open-chain form, fusigen B (fusarinine B).

  9. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  10. Method for the detection of aquaretic compounds

    DEFF Research Database (Denmark)

    2003-01-01

    Disclosed is a method for detecting an aquaretic compound. In one embodiment, the method includes administering to a mammal a candidate compound that modulates a nociceptin receptor. Biological material is isolated from the mammal and expression of aquaporin-2 is measured. Modulation of the aquap......Disclosed is a method for detecting an aquaretic compound. In one embodiment, the method includes administering to a mammal a candidate compound that modulates a nociceptin receptor. Biological material is isolated from the mammal and expression of aquaporin-2 is measured. Modulation...... of the aquaporin-2 is taken to be indicative of a candidate compound having aquaretic activity. The invention has a wide spectrum of uses including helping to identify new diuretics that spare unwanted loss of sodium and potassium ions....

  11. Extracellular Alkalinization as a Defense Response in Potato Cells

    OpenAIRE

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-de...

  12. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  13. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate

    OpenAIRE

    Featherstone, David E.; Scott A. Shippy

    2007-01-01

    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μ...

  14. Extracellular Matrix Stiffness and Architecture Govern Intracellular Rheology in Cancer

    OpenAIRE

    Baker, Erin L.; Bonnecaze, Roger T.; Zaman, Muhammad H.

    2009-01-01

    Little is known about the complex interplay between the extracellular mechanical environment and the mechanical properties that characterize the dynamic intracellular environment. To elucidate this relationship in cancer, we probe the intracellular environment using particle-tracking microrheology. In three-dimensional (3D) matrices, intracellular effective creep compliance of prostate cancer cells is shown to increase with increasing extracellular matrix (ECM) stiffness, whereas modulating E...

  15. Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine.

    Science.gov (United States)

    Yi, Sheng; Ding, Fei; Gong, Leiiei; Gu, Xiaosong

    2017-01-01

    The extracellular matrix is produced by the resident cells in tissues and organs, and secreted into the surrounding medium to provide biophysical and biochemical support to the surrounding cells due to its content of diverse bioactive molecules. Recently, the extracellular matrix has been used as a promising approach for tissue engineering. Emerging studies demonstrate that extracellular matrix scaffolds are able to create a favorable regenerative microenvironment, promote tissue-specific remodeling, and act as an inductive template for the repair and functional reconstruction of skin, bone, nerve, heart, lung, liver, kidney, small intestine, and other organs. In the current review, we will provide a critical overview of the structure and function of various types of extracellular matrix, the construction of three-dimensional extracellular matrix scaffolds, and their tissue engineering applications, with a focus on translation of these novel tissue engineered products to the clinic. We will also present an outlook on future perspectives of the extracellular matrix in tissue engineering and regenerative medicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Independent Community Pharmacists' Perspectives on Compounding in Contemporary Pharmacy Education

    Science.gov (United States)

    McPherson, Timothy B.; Fontane, Patrick E.; Berry, Tricia; Chereson, Rasma; Bilger, Rhonda

    2009-01-01

    Objectives To identify compounding practices of independent community pharmacy practitioners in order to make recommendations for the development of curricular objectives for doctor of pharmacy (PharmD) programs. Methods Independent community practitioners were asked about compounding regarding their motivations, common activities, educational exposures, and recommendations for PharmD education. Results Most respondents (69%) accepted compounding as a component of pharmaceutical care and compounded dermatological preparations for local effects, oral solutions, and suspensions at least once a week. Ninety-five percent were exposed to compounding in required pharmacy school courses and most (98%) who identified compounding as a professional service offered in their pharmacy sought additional postgraduate compounding education. Regardless of the extent of compounding emphasis in the practices surveyed, 84% stated that PharmD curricula should include compounding. Conclusions Pharmacy schools should define compounding curricular objectives and develop compounding abilities in a required laboratory course to prepare graduates for pharmaceutical care practice. PMID:19564997

  17. Chalcones: compounds possessing a diversity in applications

    OpenAIRE

    2012-01-01

    Chalcones are a class of α, β- unsaturated carbonyl compounds that form the central core for a variety of naturally occurring biologically active compounds. They exhibit tremendous potential to act as a pharmacological agent. Besides their various pharmacological activities, chalcones have been explored for different optical applications including second harmonic generation materials in non- linear optics, fluorescent probe for sensing different molecules.

  18. Tissue-Specific Effects of Esophageal Extracellular Matrix.

    Science.gov (United States)

    Keane, Timothy J; DeWard, Aaron; Londono, Ricardo; Saldin, Lindsey T; Castleton, Arthur A; Carey, Lisa; Nieponice, Alejandro; Lagasse, Eric; Badylak, Stephen F

    2015-09-01

    Biologic scaffolds composed of extracellular matrix (ECM) have been used to facilitate repair or remodeling of numerous tissues, including the esophagus. The theoretically ideal scaffold for tissue repair is the ECM derived from the particular tissue to be treated, that is, site-specific or homologous ECM. The preference or potential advantage for the use of site-specific ECM remains unknown in the esophageal location. The objective of the present study was to characterize the in vitro cellular response and in vivo host response to a homologous esophageal ECM (eECM) versus nonhomologous ECMs derived from small intestinal submucosa and urinary bladder. The in vitro response of esophageal stem cells was characterized by migration, proliferation, and three-dimensional (3D) organoid formation assays. The in vivo remodeling response was evaluated in a rat model of esophageal mucosal resection. Results of the study showed that the eECM retains favorable tissue-specific characteristics that enhance the migration of esophageal stem cells and supports the formation of 3D organoids to a greater extent than heterologous ECMs. Implantation of eECM facilitates the remodeling of esophageal mucosa following mucosal resection, but no distinct advantage versus heterologous ECM could be identified.

  19. Origin of life: LUCA and extracellular membrane vesicles (EMVs)

    Science.gov (United States)

    Gill, S.; Forterre, P.

    2016-01-01

    Cells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

  20. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Science.gov (United States)

    Eisenberg, Jessica L; Safi, Asmahan; Wei, Xiaoding; Espinosa, Horacio D; Budinger, GR Scott; Takawira, Desire; Hopkinson, Susan B; Jones, Jonathan CR

    2012-01-01

    Aim The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. Methods Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. Results We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. Conclusions An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung. PMID:23204878

  1. Extracellular vesicles in diagnosis and therapy of kidney diseases.

    Science.gov (United States)

    Zhang, Wei; Zhou, Xiangjun; Zhang, Hao; Yao, Qisheng; Liu, Yutao; Dong, Zheng

    2016-11-01

    Extracellular vesicles (EV) are endogenously produced, membrane-bound vesicles that contain various molecules. Depending on their size and origins, EVs are classified into apoptotic bodies, microvesicles, and exosomes. A fundamental function of EVs is to mediate intercellular communication. In kidneys, recent research has begun to suggest a role of EVs, especially exosomes, in cell-cell communication by transferring proteins, mRNAs, and microRNAs to recipient cells as nanovectors. EVs may mediate the cross talk between various cell types within kidneys for the maintenance of tissue homeostasis. They may also mediate the cross talk between kidneys and other organs under physiological and pathological conditions. EVs have been implicated in the pathogenesis of both acute kidney injury and chronic kidney diseases, including renal fibrosis, end-stage renal disease, glomerular diseases, and diabetic nephropathy. The release of EVs with specific molecular contents into urine and plasma may be useful biomarkers for kidney disease. In addition, EVs produced by cultured cells may have therapeutic effects for these diseases. However, the role of EVs in kidney diseases is largely unclear, and the mechanism underlying EV production and secretion remains elusive. In this review, we introduce the basics of EVs and then analyze the present information about the involvement, diagnostic value, and therapeutic potential of EVs in major kidney diseases.

  2. Proteomic characterization of murid herpesvirus 4 extracellular virions.

    Directory of Open Access Journals (Sweden)

    Sarah Vidick

    Full Text Available Gammaherpesvirinae, such as the human Epstein-Barr virus (EBV and the Kaposi's sarcoma associated herpesvirus (KSHV are highly prevalent pathogens that have been associated with several neoplastic diseases. As EBV and KSHV are host-range specific and replicate poorly in vitro, animal counterparts such as Murid herpesvirus-4 (MuHV-4 have been widely used as models. In this study, we used MuHV-4 in order to improve the knowledge about proteins that compose gammaherpesviruses virions. To this end, MuHV-4 extracellular virions were isolated and structural proteins were identified using liquid chromatography tandem mass spectrometry-based proteomic approaches. These analyses allowed the identification of 31 structural proteins encoded by the MuHV-4 genome which were classified as capsid (8, envelope (9, tegument (13 and unclassified (1 structural proteins. In addition, we estimated the relative abundance of the identified proteins in MuHV-4 virions by using exponentially modified protein abundance index analyses. In parallel, several host proteins were found in purified MuHV-4 virions including Annexin A2. Although Annexin A2 has previously been detected in different virions from various families, its role in the virion remains controversial. Interestingly, despite its relatively high abundance in virions, Annexin A2 was not essential for the growth of MuHV-4 in vitro. Altogether, these results extend previous work aimed at determining the composition of gammaherpesvirus virions and provide novel insights for understanding MuHV-4 biology.

  3. Extracellular Vesicles and Their Convergence with Viral Pathways

    Directory of Open Access Journals (Sweden)

    Thomas Wurdinger

    2012-01-01

    Full Text Available Extracellular vesicles (microvesicles, such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies.

  4. Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat.

    Science.gov (United States)

    Rusnati, M; Urbinati, C; Caputo, A; Possati, L; Lortat-Jacob, H; Giacca, M; Ribatti, D; Presta, M

    2001-06-22

    HIV-1 Tat protein, released from HIV-infected cells, may act as a pleiotropic heparin-binding growth factor. From this observation, extracellular Tat has been implicated in the pathogenesis of AIDS and of AIDS-associated pathologies. Here we demonstrate that the heparin analog pentosan polysulfate (PPS) inhibits the interaction of glutathione S-transferase (GST)-Tat protein with heparin immobilized to a BIAcore sensor chip. Competition experiments showed that Tat-PPS interaction occurs with high affinity (K(d) = 9.0 nm). Also, GST.Tat prevents the binding of [(3)H]heparin to GST.Tat immobilized to glutathione-agarose beads. In vitro, PPS inhibits GST.Tat internalization and, consequently, HIV-1 long terminal repeat transactivation in HL3T1 cells. Also, PPS inhibits cell surface interaction and mitogenic activity of GST.Tat in murine adenocarcinoma T53 Tat-less cells. In all assays, PPS exerts its Tat antagonist activity with an ID(50) equal to approximately 1.0 nm. In vivo, PPS inhibits the neovascularization induced by GST.Tat or by Tat-overexpressing T53 cells in the chick embryo chorioallantoic membrane. In conclusion, PPS binds Tat protein and inhibits its cell surface interaction, internalization, and biological activity in vitro and in vivo. PPS may represent a prototypic molecule for the development of novel Tat antagonists with therapeutic implications in AIDS and AIDS-associated pathologies, including Kaposi's sarcoma.

  5. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps.

    Science.gov (United States)

    Ávila, Eva E; Salaiza, Norma; Pulido, Julieta; Rodríguez, Mayra C; Díaz-Godínez, César; Laclette, Juan P; Becker, Ingeborg; Carrero, Julio C

    2016-01-01

    Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica.

  6. Extracellular Vesicles and Their Convergence with Viral Pathways

    Science.gov (United States)

    Wurdinger, Thomas; Gatson, NaTosha N.; Balaj, Leonora; Kaur, Balveen; Breakefield, Xandra O.; Pegtel, D. Michiel

    2012-01-01

    Extracellular vesicles (microvesicles), such as exosomes and shed microvesicles, contain a variety of molecules including proteins, lipids, and nucleic acids. Microvesicles appear mostly to originate from multivesicular bodies or to bud from the plasma membrane. Here, we review the convergence of microvesicle biogenesis and aspects of viral assembly and release pathways. Herpesviruses and retroviruses, amongst others, recruit several elements from the microvesicle biogenesis pathways for functional virus release. In addition, noninfectious pleiotropic virus-like vesicles can be released, containing viral and cellular components. We highlight the heterogeneity of microvesicle function during viral infection, addressing microvesicles that can either block or enhance infection, or cause immune dysregulation through bystander action in the immune system. Finally, endogenous retrovirus and retrotransposon elements deposited in our genomes millions of years ago can be released from cells within microvesicles, suggestive of a viral origin of the microvesicle system or perhaps of an evolutionary conserved system of virus-vesicle codependence. More research is needed to further elucidate the complex function of the various microvesicles produced during viral infection, possibly revealing new therapeutic intervention strategies. PMID:22888349

  7. Human neutrophils produce extracellular traps against Paracoccidioides brasiliensis.

    Science.gov (United States)

    Mejía, Susana P; Cano, Luz E; López, Juan A; Hernandez, Orville; González, Ángel

    2015-05-01

    Neutrophils play an important role as effector cells and contribute to the resistance of the host against microbial pathogens. Neutrophils are able to produce extracellular traps (NETs) in response to medically important fungi, including Aspergillus spp., Candida albicans and Cryptococcus gattii. However, NET production in response to Paracoccidioides brasiliensis has yet to be studied. We have demonstrated that human neutrophils produce NETs against both conidia and yeasts of P. brasiliensis. Although the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) did not alter NET production against conidia, it partially suppressed NET formation against P. brasiliensis yeasts. Cytochalasin D or IFN-γ did not affect the production of NETs against the fungus. Additionally, a mutant strain of P. brasiliensis with reduced expression of an alternative oxidase induced significantly higher levels of NETs in comparison with the WT strain. Finally, c.f.u. quantification of P. brasiliensis showed no significant differences when neutrophils were treated with DPI, DNase I or cytochalasin D as compared with untreated cells. These data establish that NET formation by human neutrophils appears to be either dependent or independent of reactive oxygen species production, correlating with the fungal morphotype used for stimulation. However, this mechanism was ineffective in killing the fungus.

  8. Chemical Decellularization Methods and Its Effects on Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Amir Hossein Akbari Zahmati

    2017-08-01

    Full Text Available Background:  Extracellular matrix (ECM produced by tissue decellularization processes as a biological scaffold due to its unique properties compared to other scaffolds for migration and implantation of stem cells have been used successfully in the field of tissue engineering and regenerative medicine in the last years. The objective of this manuscript was to provide an overview of the chemical decellularization methods, evaluation of decellularized ECM and the potential effect of the chemical decellularization agents on the biochemical composition. Methods: We searched in Google Scholar, PubMed, Scopus, and Science Direct. The literature search was done by using the following keywords: “ECM, biologic scaffold, decellularization, chemical methods, tissue engineering.” We selected articles have been published from 2000 to 2016, and 15 full texts and 97 abstracts were reviewed. Results:Employing an optimization method to minimize damage to the ECM ultrastructure as for a result of the lack of reduction in mechanical properties and also the preservation of essential proteins such as laminin, fibronectin, Glycosaminoglycans (GAGs, growth factor is required. Various methods include chemical, physical and enzymatic technics were studied. However, on each of these methods can have undesirable effects on ECM. Conclusion: It is suggested that instead of the Sodium dodecyl sulfate (SDS which have high strength degradation, we can use zwitterionic separately or in combination with SDS. Tributyl phosphate (TBP due to its unique properties can be used in decellularization process.

  9. Oxidized Extracellular DNA as a Stress Signal in Human Cells

    Directory of Open Access Journals (Sweden)

    Aleksei V. Ermakov

    2013-01-01

    Full Text Available The term “cell-free DNA” (cfDNA was recently coined for DNA fragments from plasma/serum, while DNA present in in vitro cell culture media is known as extracellular DNA (ecDNA. Under oxidative stress conditions, the levels of oxidative modification of cellular DNA and the rate of cell death increase. Dying cells release their damaged DNA, thus, contributing oxidized DNA fragments to the pool of cfDNA/ecDNA. Oxidized cell-free DNA could serve as a stress signal that promotes irradiation-induced bystander effect. Evidence points to TLR9 as a possible candidate for oxidized DNA sensor. An exposure to oxidized ecDNA stimulates a synthesis of reactive oxygen species (ROS that evokes an adaptive response that includes transposition of the homologous loci within the nucleus, polymerization and the formation of the stress fibers of the actin, as well as activation of the ribosomal gene expression, and nuclear translocation of NF-E2 related factor-2 (NRF2 that, in turn, mediates induction of phase II detoxifying and antioxidant enzymes. In conclusion, the oxidized DNA is a stress signal released in response to oxidative stress in the cultured cells and, possibly, in the human body; in particular, it might contribute to systemic abscopal effects of localized irradiation treatments.

  10. TOLERANCE IN ORGAN TRANSPLANTATION: FROM CONVENTIONAL IMMUNOSUPPRESSION TO EXTRACELLULAR VESICLES

    Directory of Open Access Journals (Sweden)

    Marta eMonguió-Tortajada

    2014-09-01

    Full Text Available Organ transplantation is often the unique solution for organ failure. However, rejection is still an unsolved problem. Although acute rejection is well controlled, the chronic use of immunosuppressive drugs for allograft acceptance causes numerous side effects in the recipient and do not prevent chronic allograft dysfunction. Different alternative therapies have been proposed to replace the classical treatment for allograft rejection. The alternative therapies are mainly based in pre-infusions of different types of regulatory cells, including DCs, MSCs and Tregs. Nevertheless, these approaches lack full efficiency and have many problems related to availability and applicability. In this context, the use of extracellular vesicles, and in particular exosomes, may represent a cell-free alternative approach in inducing transplant tolerance and survival. Preliminary approaches in vitro and in vivo have demonstrated the efficient alloantigen presentation and immunomodulation abilities of exosomes, leading to alloantigen-specific tolerance and allograft acceptance in rodent models. Donor exosomes have been used alone, processed by recipient antigen-presenting cells (APCs or administered together with suboptimal doses of immunesuppressive drugs, achieving specific allograft tolerance and infinite transplant survival. In this review we gathered the latest exosome-based strategies for graft acceptance and discuss the tolerance mechanisms involved in organ tolerance mediated by the administration of exosomes. We will also deal with the feasibility and difficulties that arise from the application of this strategy into the clinic.

  11. Entamoeba histolytica Trophozoites and Lipopeptidophosphoglycan Trigger Human Neutrophil Extracellular Traps

    Science.gov (United States)

    Ávila, Eva E.; Rodríguez, Mayra C.; Díaz-Godínez, César; Laclette, Juan P.; Becker, Ingeborg; Carrero, Julio C.

    2016-01-01

    Neutrophil defense mechanisms include phagocytosis, degranulation and the formation of extracellular traps (NET). These networks of DNA are triggered by several immune and microbial factors, representing a defense strategy to prevent microbial spread by trapping/killing pathogens. This may be important against Entamoeba histolytica, since its large size hinders its phagocytosis. The aim of this study was to determine whether E. histolytica and their lipopeptidophosphoglycan (EhLPPG) induce the formation of NETs and the outcome of their interaction with the parasite. Our data show that live amoebae and EhLPPG, but not fixed trophozoites, induced NET formation in a time and dose dependent manner, starting at 5 min of co-incubation. Although immunofluorescence studies showed that the NETs contain cathelicidin LL-37 in close proximity to amoebae, the trophozoite growth was only affected when ethylene glycol tetra-acetic acid (EGTA) was present during contact with NETs, suggesting that the activity of enzymes requiring calcium, such as DNases, may be important for amoeba survival. In conclusion, E. histolytica trophozoites and EhLPPG induce in vitro formation of human NETs, which did not affect the parasite growth unless a chelating agent was present. These results suggest that NETs may be an important factor of the innate immune response during infection with E. histolytica. PMID:27415627

  12. Inflammatory Alterations of the Extracellular Matrix in the Tumor Microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Junko [Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555 (Japan)

    2011-08-09

    Complex interactions between cancer cells and host stromal cells result in the formation of the “tumor microenvironment”, where inflammatory alterations involve the infiltration of tumor-associated fibroblasts and inflammatory leukocytes that contribute to the acquisition of malignant characteristics, such as increased cancer cell proliferation, invasiveness, metastasis, angiogenesis, and avoidance of adaptive immunity. The microenvironment of a solid tumor is comprised not only of cellular compartments, but also of bioactive substances, including cytokines, growth factors, and extracellular matrix (ECM). ECM can act as a scaffold for cell migration, a reservoir for cytokines and growth factors, and a signal through receptor binding. During inflammation, ECM components and their degraded fragments act directly and indirectly as inflammatory stimuli in certain cases and regulate the functions of inflammatory and immune cells. One such ECM component, hyaluronan, has recently been implicated to modulate innate immune cell function through pattern recognition toll-like receptors and accelerate the recruitment and activation of tumor-associated macrophages in inflamed cancers. Here, we will summarize the molecular mechanism linking inflammation with ECM remodeling in the tumor microenvironment, with a particular emphasis on the role of hyaluronan in controlling the inflammatory response.

  13. Extracellular measurement of anisotropic bidomain myocardial conductivities. I. Theoretical analysis.

    Science.gov (United States)

    Le Guyader, P; Trelles, F; Savard, P

    2001-10-01

    The passive electrical properties of cardiac tissue, such as the intracellular and interstitial conductivities along the longitudinal and transverse axes, have not been often measured because intracellular electrodes are usually needed for these measurements. In this paper, we present a theoretical analysis of two myocardial models developed to estimate these properties by analyzing potentials recorded with a pair of extracellular electrodes while injecting alternating current between another pair of electrodes. First, the cardiac tissue is represented by a standard bidomain model which includes a membrane capacitance; second, this model is modified by adding an intracellular capacitance representing the intercalated disks. Numerical solutions are computed with a fast Fourier transform algorithm without constraining the anisotropy ratios of the interstitial and intracellular domains. We systematically investigate the effects of changes in the bidomain parameters on the voltage-to-current ratio curves. We also demonstrate how the bidomain parameters can be theoretically estimated by fitting, with a modified Shor's r algorithm, the simulated potentials along the longitudinal and transverse axes for different frequencies between 10 and 10,000 Hz. An important finding is that the interelectrode distance must be similar to the myocardial space constant so as to obtain frequency dependent measurements.

  14. Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus).

    Science.gov (United States)

    Nybakken, Line; Helmersen, Anne-Marit; Gauslaa, Yngvar; Selås, Vidar

    2010-03-01

    Some lichen compounds are known to deter feeding by invertebrate herbivores. We attempted to quantify the deterring efficiency of lichen compounds against a generalist vertebrate, the bank vole (Myodes glareolus). In two separate experiments, caged bank voles had the choice to feed on lichens with natural or reduced concentrations of secondary compounds. We rinsed air-dry intact lichens in 100% acetone to remove extracellular compounds non-destructively. In the first experiment, pairs of control and rinsed lichen thalli were hydrated and offered to the bank voles. Because the lichens desiccated fast, we ran a second experiment with pairs of ground control and compound-deficient thalli, each mixed with water to porridge. Eight and six lichen species were tested in the first and second experiment, respectively. In the first, bank voles preferred compound-deficient thalli of Cladonia stellaris and Lobaria pulmonaria, but did not discriminate between the other thallus pairs. This was likely a result of deterring levels of usnic and stictic acid in the control thalli. When lichens were served as porridge, significant preference was found for acetone-rinsed pieces of Cladonia arbuscula, C. rangiferina, Platismatia glauca, and Evernia prunastri. The increased preference was caused mainly by lower consumption of control thalli. Grinding and mixing of thallus structures prevented bank voles from selecting thallus parts with lower concentration of secondary compounds and/or strengthened their deterring capacity. We conclude that some lichen secondary compounds deter feeding by bank voles.

  15. Insecticidal Activity of Cyanohydrin and Monoterpenoid Compounds

    Directory of Open Access Journals (Sweden)

    Joel R. Coats

    2000-04-01

    Full Text Available The insecticidal activities of several cyanohydrins, cyanohydrin esters and monoterpenoid esters (including three monoterpenoid esters of a cyanohydrin were evaluated. Topical toxicity to Musca domestica L. adults was examined, and testing of many compounds at 100 mg/fly resulted in 100% mortality. Topical LD50 values of four compounds for M. domestica were calculated. Testing of many of the reported compounds to brine shrimp (Artemia franciscana Kellog resulted in 100% mortality at 10 ppm, and two compounds caused 100% mortality at 1 ppm. Aquatic LC50 values were calculated for five compounds for larvae of the yellow fever mosquito (Aedes aegypti (L.. Monoterpenoid esters were among the most toxic compounds tested in topical and aquatic bioassays.

  16. Theory including future not excluded

    DEFF Research Database (Denmark)

    Nagao, K.; Nielsen, H.B.

    2013-01-01

    We study a complex action theory (CAT) whose path runs over not only past but also future. We show that, if we regard a matrix element defined in terms of the future state at time T and the past state at time TA as an expectation value in the CAT, then we are allowed to have the Heisenberg equation......, Ehrenfest's theorem, and the conserved probability current density. In addition,we showthat the expectation value at the present time t of a future-included theory for large T - t and large t - T corresponds to that of a future-not-included theory with a proper inner product for large t - T. Hence, the CAT...

  17. The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology.

    Science.gov (United States)

    Jami, Mohammad-Saeid; García-Estrada, Carlos; Barreiro, Carlos; Cuadrado, Abel-Alberto; Salehi-Najafabadi, Zahra; Martín, Juan-Francisco

    2010-12-01

    The filamentous fungus Penicillium chrysogenum is well-known by its ability to synthesize β-lactam antibiotics as well as other secondary metabolites. Like other filamentous fungi, this microorganism is an excellent host for secretion of extracellular proteins because of the high capacity of its protein secretion machinery. In this work, we have characterized the extracellular proteome reference map of P. chrysogenum Wisconsin 54-1255 by two-dimensional gel electrophoresis. This method allowed the correct identification of 279 spots by peptide mass fingerprinting and tandem MS. These 279 spots included 328 correctly identified proteins, which corresponded to 131 different proteins and their isoforms. One hundred and two proteins out of 131 were predicted to contain either classical or nonclassical secretion signal peptide sequences, providing evidence of the authentic extracellular location of these proteins. Proteins with higher representation in the extracellular proteome were those involved in plant cell wall degradation (polygalacturonase, pectate lyase, and glucan 1,3-β-glucosidase), utilization of nutrients (extracellular acid phosphatases and 6-hydroxy-d-nicotine oxidase), and stress response (catalase R). This filamentous fungus also secretes enzymes specially relevant for food industry, such as sulfydryl oxidase, dihydroxy-acid dehydratase, or glucoamylase. The identification of several antigens in the extracellular proteome also highlights the importance of this microorganism as one of the main indoor allergens. Comparison of the extracellular proteome among three strains of P. chrysogenum, the wild-type NRRL 1951, the Wis 54-1255 (an improved, moderate penicillin producer), and the AS-P-78 (a penicillin high-producer), provided important insights to consider improved strains of this filamentous fungus as versatile cell-factories of interest, beyond antibiotic production, for other aspects of white biotechnology.

  18. Prioritizing pesticide compounds for analytical methods development

    Science.gov (United States)

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1

  19. Biodiversity conservation including uncharismatic species

    DEFF Research Database (Denmark)

    Muñoz, Joaquin

    2007-01-01

    Recent papers mention ideas on the topics of biodiversity conservation strategies and priorities (Redford et al. 2003; Lamoreux et al. 2006; Rodrı´guez et al. 2006), the current status of biodiversity (Loreau et al. 2006), the obligations of conservation biologists regarding management policies...... (Chapron 2006; Schwartz 2006), and the main threats to biodiversity (including invasive species) (Bawa 2006). I suggest, however, that these articles do not really deal with biodiversity. Rather, they all focus on a few obviously charismatic groups (mammals, birds, some plants, fishes, human culture...

  20. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink

    Science.gov (United States)

    Pati, Falguni; Jang, Jinah; Ha, Dong-Heon; Won Kim, Sung; Rhie, Jong-Won; Shim, Jin-Hyung; Kim, Deok-Ho; Cho, Dong-Woo

    2014-06-01

    The ability to print and pattern all the components that make up a tissue (cells and matrix materials) in three dimensions to generate structures similar to tissues is an exciting prospect of bioprinting. However, the majority of the matrix materials used so far for bioprinting cannot represent the complexity of natural extracellular matrix (ECM) and thus are unable to reconstitute the intrinsic cellular morphologies and functions. Here, we develop a method for the bioprinting of cell-laden constructs with novel decellularized extracellular matrix (dECM) bioink capable of providing an optimized microenvironment conducive to the growth of three-dimensional structured tissue. We show the versatility and flexibility of the developed bioprinting process using tissue-specific dECM bioinks, including adipose, cartilage and heart tissues, capable of providing crucial cues for cells engraftment, survival and long-term function. We achieve high cell viability and functionality of the printed dECM structures using our bioprinting method.

  1. Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2009-08-01

    Full Text Available Abstract Background Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia, a highly contagious respiratory infection in pigs, and all the 15 serotypes are able to cause disease. Current vaccines including subunit vaccines could not provide satisfactory protection against A. pleuropneumoniae. In this study, the immunoproteomic approach was applied to the analysis of extracellular and outer membrane proteins of A. pleuropneumoniae JL03 serotype 3 for the identification of novel immunogenic proteins for A. pleuropneumoniae. Results A total of 30 immunogenic proteins were identified from outer membrane and extracellular proteins of JL03 serotype 3, of which 6 were known antigens and 24 were novel immunogenic proteins for A. pleuropneumoniae. Conclusion These data provide information about novel immunogenic proteins for A. pleuropneumoniae serotype 3, and are expected to aid in development of novel vaccines against A. pleuropneumoniae.

  2. Lrp4 modulates extracellular integration of cell signaling pathways in development.

    Directory of Open Access Journals (Sweden)

    Atsushi Ohazama

    Full Text Available The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.

  3. Therapeutic application of extracellular vesicles in acute and chronic renal injury.

    Science.gov (United States)

    Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José

    2016-07-23

    A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation.

  4. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    Science.gov (United States)

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. © 2011 Séror et al.

  5. The role of extracellular proteolysis in synaptic plasticity of the central nervous system 

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    2012-11-01

    Full Text Available The extracellular matrix (ECM of the central nervous system has a specific structure and protein composition that are different from those in other organs. Today we know that the ECM not only provides physical scaffolding for the neurons and glia, but also actively modifies their functions. Over the last two decades, a growing body of research evidence has been collected, suggesting an important role of ECM proteolysis in synaptic plasticity of the brain. So far the majority of data concern two large families of proteases: the serine proteases and the matrix metalloproteinases. The members of these families are localized at the synapses, and are secreted into the extracellular space in an activity-dependent manner. The proteases remodel the local environment as well as influencing synapse structure and function. The structural modifications induced by proteases include shape and size changes, as well as synapse elimination, and synaptogenesis. The functional changes include modifications of receptor function in the postsynaptic part of the synapse, as well as the potentiation or depression of neurotransmitter secretion by the presynaptic site. The present review summarizes the current view on the role of extracellular proteolysis in the physiological synaptic plasticity underlying the phenomena of learning and memory, as well as in the pathological plasticity occurring during epileptogenesis or development of drug addiction. 

  6. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    Science.gov (United States)

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  7. NATURAL POLYACETYLENE COMPOUNDS

    Directory of Open Access Journals (Sweden)

    D. A. Konovalov

    2014-01-01

    Full Text Available Polyacetylenes (polyynes are compounds which contain two or more triple bonds in its structure. About 2 000 different polyacetylenes and biogenetically related substances were identified in 24 families of higher plants. However, most of these compounds were found in seven families of flowering plants: Apiaceae (Umbelliferae, Araliaceae, Asteraceae (Compositae, Campanulaceae, Olacaceae, Pittosporaceae and Santalaceae. Polyacetylenes are relatively unstable, chemically and biologically active compounds, and present in fungi, microorganisms, marine invertebrates and other organisms except for plants. Acetylenes form distinct specialized group of chemically active natural compounds, which are biosynthesized in plants of unsaturated fatty acids. In addition to widespread aliphatic polyacetylenes thiophenes dithiacyclohexadienes (thiarubrines, thioethers, sulphoxides, sulphones, alkamides, chlorohydrins, lactones, spiroacetal enol ethers, furans, pyrans, tetrahydropyrans, isocoumarins, aromatic acetylenes were also found in plant species. Polyacetylenes are localized in different plant organs, and can be found both individually and as a compound with carbohydrates, terpene, phenolic and other compounds. Many polyacetylenes are found in the composition of the essential oils of plants and it confirms their strongly marked ecological functions. From biological point of view these compounds are often synthesized by plants as toxic or bitter antifeedants, allelopathic compounds, phytoalexins or broadly antibiotic components. Polyynes are strong photosensitizers. They exhibit anti-inflammatory, anti-coagulant, anti-bacterial, antituberculosis, anti-fungal, anti-viral, neuroprotective and neurotoxic activity. Immunostimulatory influence associated with certain allergenicity of some of these substances was established. Therefore, without a doubt polyacetylenes are of interest for the modern pharmacy and medicine.

  8. Determination of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chao, G.K.J.; Suatoni, J.C.

    1982-01-01

    Details are given of a procedure for separation and identification of phenolic compounds in aqueous solution by high-performance liquid chromatography. It can also be applied to non-aqueous samples after preliminary isolation of a polar fraction containing the phenolic compounds.

  9. FLUXNET2015 Dataset: Batteries included

    Science.gov (United States)

    Pastorello, G.; Papale, D.; Agarwal, D.; Trotta, C.; Chu, H.; Canfora, E.; Torn, M. S.; Baldocchi, D. D.

    2016-12-01

    The synthesis datasets have become one of the signature products of the FLUXNET global network. They are composed from contributions of individual site teams to regional networks, being then compiled into uniform data products - now used in a wide variety of research efforts: from plant-scale microbiology to global-scale climate change. The FLUXNET Marconi Dataset in 2000 was the first in the series, followed by the FLUXNET LaThuile Dataset in 2007, with significant additions of data products and coverage, solidifying the adoption of the datasets as a research tool. The FLUXNET2015 Dataset counts with another round of substantial improvements, including extended quality control processes and checks, use of downscaled reanalysis data for filling long gaps in micrometeorological variables, multiple methods for USTAR threshold estimation and flux partitioning, and uncertainty estimates - all of which accompanied by auxiliary flags. This "batteries included" approach provides a lot of information for someone who wants to explore the data (and the processing methods) in detail. This inevitably leads to a large number of data variables. Although dealing with all these variables might seem overwhelming at first, especially to someone looking at eddy covariance data for the first time, there is method to our madness. In this work we describe the data products and variables that are part of the FLUXNET2015 Dataset, and the rationale behind the organization of the dataset, covering the simplified version (labeled SUBSET), the complete version (labeled FULLSET), and the auxiliary products in the dataset.

  10. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants.

    Science.gov (United States)

    Zempleni, Janos; Aguilar-Lozano, Ana; Sadri, Mahrou; Sukreet, Sonal; Manca, Sonia; Wu, Di; Zhou, Fang; Mutai, Ezra

    2017-01-01

    Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are

  11. DNA is an antimicrobial component of neutrophil extracellular traps.

    Directory of Open Access Journals (Sweden)

    Tyler W R Halverson

    2015-01-01

    Full Text Available Neutrophil extracellular traps (NETs comprise an ejected lattice of chromatin enmeshed with granular and nuclear proteins that are capable of capturing and killing microbial invaders. Although widely employed to combat infection, the antimicrobial mechanism of NETs remains enigmatic. Efforts to elucidate the bactericidal component of NETs have focused on the role of NET-bound proteins including histones, calprotectin and cathepsin G protease; however, exogenous and microbial derived deoxyribonuclease (DNase remains the most potent inhibitor of NET function. DNA possesses a rapid bactericidal activity due to its ability to sequester surface bound cations, disrupt membrane integrity and lyse bacterial cells. Here we demonstrate that direct contact and the phosphodiester backbone are required for the cation chelating, antimicrobial property of DNA. By treating NETs with excess cations or phosphatase enzyme, the antimicrobial activity of NETs is neutralized, but NET structure, including the localization and function of NET-bound proteins, is maintained. Using intravital microscopy, we visualized NET-like structures in the skin of a mouse during infection with Pseudomonas aeruginosa. Relative to other bacteria, P. aeruginosa is a weak inducer of NETosis and is more resistant to NETs. During NET exposure, we demonstrate that P. aeruginosa responds by inducing the expression of surface modifications to defend against DNA-induced membrane destabilization and NET-mediated killing. Further, we show induction of this bacterial response to NETs is largely due to the bacterial detection of DNA. Therefore, we conclude that the DNA backbone contributes both to the antibacterial nature of NETs and as a signal perceived by microbes to elicit host-resistance strategies.

  12. Combined blood pool and extracellular contrast agents for pediatric and young adult cardiovascular magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Joyce T. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Robinson, Joshua D. [Ann and Robert Lurie Children' s Hospital of Chicago, Division of Pediatric Cardiology, 225 E. Chicago Ave., Box 21, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Deng, Jie [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Rigsby, Cynthia K. [Ann and Robert Lurie Children' s Hospital of Chicago, Department of Pediatrics, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Ann and Robert Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2016-12-15

    A comprehensive cardiac magnetic resonance (cardiac MR) study including both late gadolinium enhancement (LGE) and MR angiography may be indicated for patients with a history of acquired or congenital heart disease. To study the novel use of an extracellular agent for assessment of LGE combined with a blood pool contrast agent for detailed MR angiography evaluation to yield a comprehensive cardiac MR study in these patients. We reviewed clinical cardiac MR studies utilizing extracellular and blood pool contrast agents and noted demographics, clinical data and adverse events. We rated LGE image quality and MR angiography image quality for each vascular segment and calculated inter-rater variability. We also quantified contrast-to-noise ratio (CNR). Thirty-three patients (mean age 13.9 ± 3 years) received an extracellular contrast agent (10 gadobenate dimeglumine, 23 gadopentetate dimeglumine) and blood pool contrast agent (33 gadofosveset trisodium). No adverse events were reported. MRI indications included Kawasaki disease (8), cardiomyopathy and coronary anatomy (15), repaired congenital heart disease (8), and other (2). Mean LGE quality was 2.6 ± 0.6 with 97% diagnostic imaging. LGE quality did not vary by type of contrast agent given (P = 0.07). Mean MR angiography quality score was 4.7 ± 0.6, with high inter-rater agreement (k = 0.6-0.8, P < 0.002). MR angiography quality did not vary by type of contrast agent used (P = 0.6). Cardiac MR studies utilizing both extracellular and blood pool contrast agents are feasible and safe and provide excellent-quality LGE and MR angiography images. The use of two contrast agents allows for a comprehensive assessment of both myocardial viability and vascular anatomy during the same exam. (orig.)

  13. Perfluorinated Compounds In The Ohio River Basin

    Science.gov (United States)

    Contaminants of emerging concern (CECs) in waterways include pharmaceuticals and personal care products (PPCPs), alkylphenols, endocrine disrupting chemicals (EDCs) and perfluorinated alkyl compounds (PFCs). Their distributions and persistence in the aquatic environment remain p...

  14. Morinda citrifolia Linn. Reduces Parasite Load and Modulates Cytokines and Extracellular Matrix Proteins in C57BL/6 Mice Infected with Leishmania (Leishmania) amazonensis.

    Science.gov (United States)

    Almeida-Souza, Fernando; Cardoso, Flávia de Oliveira; Souza, Bruno Vinicius da Conceição; do Valle, Tânia Zaverucha; de Sá, Joicy Cortez; Oliveira, Iara Dos Santos da Silva; de Souza, Celeste da Silva Freitas; Moragas Tellis, Carla Junqueira; Chagas, Maria do Socorro Dos Santos; Behrens, Maria Dutra; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva

    2016-08-01

    The absence of an effective vaccine and the debilitating chemotherapy for Leishmaniasis demonstrate the need for developing alternative treatments. Several studies conducted with Morinda citrifolia have shown various biological activities, including antileishmanial activity, however its mechanisms of action are unknown. This study aimed to analyze the in vivo activity of M. citrifolia fruit juice (Noni) against Leishmania (Leishmania) amazonensis in C57BL/6 mice. M. citrifolia fruit juice from the Brazilian Amazon has shown the same constitution of other juices produced around the world and liquid chromatography-mass spectrometry analysis identified five compounds: deacetylasperulosidic acid, asperulosidic acid, rutin, nonioside B and nonioside C. Daily intragastric treatment with Noni was carried out after 55 days of L. (L.) amazonensis infection in C57BL/6 mice. Parasitic loads, cytokine and extracellular protein matrix expressions of the lesion site were analyzed by qPCR. Histopathology of the lesion site, lymph nodes and liver were performed to evaluate the inflammatory processes. Cytokines and biochemical parameters of toxicity from sera were also evaluated. The Noni treatment at 500 mg.kg-1.day-1 for 60 days decreased the lesion size and parasitic load in the footpad infected with L. (L.) amazonensis. The site of infection also showed decreased inflammatory infiltrates and decreased cytokine expressions for IL-12, TNF-α, TGF-β and IL-10. On the other hand, Noni treatment enhanced the extracellular matrix protein expressions of collagen IV, fibronectin and laminin in the infected footpad as well collagen I and II, fibronectin and laminin in the mock-infected footpads. No toxicity was observed at the end of treatment. These data show the efficacy of Noni treatment.

  15. Morinda citrifolia Linn. Reduces Parasite Load and Modulates Cytokines and Extracellular Matrix Proteins in C57BL/6 Mice Infected with Leishmania (Leishmania) amazonensis

    Science.gov (United States)

    Almeida-Souza, Fernando; Cardoso, Flávia de Oliveira; Souza, Bruno Vinicius da Conceição; do Valle, Tânia Zaverucha; de Sá, Joicy Cortez; Oliveira, Iara dos Santos da Silva; de Souza, Celeste da Silva Freitas; Moragas Tellis, Carla Junqueira; Chagas, Maria do Socorro dos Santos; Behrens, Maria Dutra

    2016-01-01

    The absence of an effective vaccine and the debilitating chemotherapy for Leishmaniasis demonstrate the need for developing alternative treatments. Several studies conducted with Morinda citrifolia have shown various biological activities, including antileishmanial activity, however its mechanisms of action are unknown. This study aimed to analyze the in vivo activity of M. citrifolia fruit juice (Noni) against Leishmania (Leishmania) amazonensis in C57BL/6 mice. M. citrifolia fruit juice from the Brazilian Amazon has shown the same constitution of other juices produced around the world and liquid chromatography–mass spectrometry analysis identified five compounds: deacetylasperulosidic acid, asperulosidic acid, rutin, nonioside B and nonioside C. Daily intragastric treatment with Noni was carried out after 55 days of L. (L.) amazonensis infection in C57BL/6 mice. Parasitic loads, cytokine and extracellular protein matrix expressions of the lesion site were analyzed by qPCR. Histopathology of the lesion site, lymph nodes and liver were performed to evaluate the inflammatory processes. Cytokines and biochemical parameters of toxicity from sera were also evaluated. The Noni treatment at 500 mg.kg-1.day-1 for 60 days decreased the lesion size and parasitic load in the footpad infected with L. (L.) amazonensis. The site of infection also showed decreased inflammatory infiltrates and decreased cytokine expressions for IL-12, TNF-α, TGF-β and IL-10. On the other hand, Noni treatment enhanced the extracellular matrix protein expressions of collagen IV, fibronectin and laminin in the infected footpad as well collagen I and II, fibronectin and laminin in the mock-infected footpads. No toxicity was observed at the end of treatment. These data show the efficacy of Noni treatment. PMID:27579922

  16. Gas chromatography/tandem mass spectrometry detection of extracellular kynurenine and related metabolites in normal and lesioned rat brain.

    Science.gov (United States)

    Notarangelo, Francesca M; Wu, Hui-Qiu; Macherone, Anthony; Graham, David R; Schwarcz, Robert

    2012-02-15

    We describe here a gas chromatography-tandem mass spectrometry (GC/MS/MS) method for the sensitive and concurrent determination of extracellular tryptophan and the kynurenine pathway metabolites kynurenine, 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN) in rat brain. This metabolic cascade is increasingly linked to the pathophysiology of several neurological and psychiatric diseases. Methodological refinements, including optimization of MS conditions and the addition of deuterated standards, resulted in assay linearity to the low nanomolar range. Measured in samples obtained by striatal microdialysis in vivo, basal levels of tryptophan, kynurenine, and QUIN were 415, 89, and 8 nM, respectively, but 3-HK levels were below the limit of detection (<2 nM). Systemic injection of kynurenine (100 mg/kg, i.p.) did not affect extracellular tryptophan but produced detectable levels of extracellular 3-HK (peak after 2-3 h: ~50 nM) and raised extracellular QUIN levels (peak after 2h: ~105 nM). The effect of this treatment on QUIN, but not on 3-HK, was potentiated in the N-methyl-D-aspartate (NMDA)-lesioned striatum. Our results indicate that the novel methodology, which allowed the measurement of extracellular kynurenine and 3-HK in the brain in vivo, will facilitate studies of brain kynurenines and of the interplay between peripheral and central kynurenine pathway functions under physiological and pathological conditions.

  17. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  18. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer.

    Science.gov (United States)

    Estevez-Canales, Marta; Kuzume, Akiyoshi; Borjas, Zulema; Füeg, Michael; Lovley, Derek; Wandlowski, Thomas; Esteve-Núñez, Abraham

    2015-04-01

    The ability of Geobacter species to transfer electrons outside the cell enables them to play an important role in a number of biogeochemical and bioenergy processes. Gene deletion studies have implicated periplasmic and outer-surface c-type cytochromes in this extracellular electron transfer. However, even when as many as five c-type cytochrome genes have been deleted, some capacity for extracellular electron transfer remains. In order to evaluate the role of c-type cytochromes in extracellular electron transfer, Geobacter sulfurreducens was grown in a low-iron medium that included the iron chelator (2,2'-bipyridine) to further sequester iron. Haem-staining revealed that the cytochrome content of cells grown in this manner was 15-fold lower than in cells exposed to a standard iron-containing medium. The low cytochrome abundance was confirmed by in situ nanoparticle-enhanced Raman spectroscopy (NERS). The cytochrome-depleted cells reduced fumarate to succinate as well as the cytochrome-replete cells do, but were unable to reduce Fe(III) citrate or to exchange electrons with a graphite electrode. These results demonstrate that c-type cytochromes are essential for extracellular electron transfer by G. sulfurreducens. The strategy for growing cytochrome-depleted G. sulfurreducens will also greatly aid future physiological studies of Geobacter species and other microorganisms capable of extracellular electron transfer.

  19. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    Science.gov (United States)

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  20. Mesenchymal Stem Cell Derived Secretome and Extracellular Vesicles for Acute Lung Injury and Other Inflammatory Lung Diseases

    Science.gov (United States)

    Monsel, Antoine; Zhu, Ying-gang; Gudapati, Varun; Lim, Hyungsun; Lee, Jae W.

    2017-01-01

    Introduction Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. Areas covered The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. Expert opinion While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification. PMID:27011289

  1. Families classification including multiopposition asteroids

    Science.gov (United States)

    Milani, Andrea; Spoto, Federica; Knežević, Zoran; Novaković, Bojan; Tsirvoulis, Georgios

    2016-01-01

    In this paper we present the results of our new classification of asteroid families, upgraded by using catalog with > 500,000 asteroids. We discuss the outcome of the most recent update of the family list and of their membership. We found enough evidence to perform 9 mergers of the previously independent families. By introducing an improved method of estimation of the expected family growth in the less populous regions (e.g. at high inclination) we were able to reliably decide on rejection of one tiny group as a probable statistical fluke. Thus we reduced our current list to 115 families. We also present newly determined ages for 6 families, including complex 135 and 221, improving also our understanding of the dynamical vs. collisional families relationship. We conclude with some recommendations for the future work and for the family name problem.

  2. Halogenated compounds from marine algae.

    Science.gov (United States)

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  3. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693

    DEFF Research Database (Denmark)

    Martinez, Virginia; de Santos, Patricia Gómez; García-Hidalgo, Javier

    2015-01-01

    Cloning and biochemical characterization of a novel extracellular medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase from Streptomyces exfoliatus K10 DSMZ 41693 are described. The primary structure of the depolymerase (PhaZSex2) includes the lipase consensus sequence (serine-histidin...

  4. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential.

    Science.gov (United States)

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-10-20

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  5. From mechanotransduction to extracellular matrix gene expression in fibroblasts.

    Science.gov (United States)

    Chiquet, Matthias; Gelman, Laurent; Lutz, Roman; Maier, Silke

    2009-05-01

    Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.

  6. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Science.gov (United States)

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-01-01

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology. PMID:27775594

  7. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  8. Vitamin A Deficiency and Alterations in the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Teresa Barber

    2014-11-01

    Full Text Available Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.

  9. Antimicrobial activity of extracellular metabolites from antagonistic bacteria isolated from potato (Solanum phureja crops

    Directory of Open Access Journals (Sweden)

    Sinar David Granada García

    2014-09-01

    Full Text Available Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.. Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.

  10. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu²⁺.

    Science.gov (United States)

    Hou, Wenjie; Ma, Zhanqiang; Sun, Liangliang; Han, Mengsha; Lu, Jianjun; Li, Zhenxiu; Mohamad, Osama Abdalla; Wei, Gehong

    2013-10-15

    The copper tolerance gene of wild-type heavy metal-tolerance Sinorhizobium meliloti CCNWSX0020 was mutated by transposon Tn5-a. The mutant was sensitive up to 1.4mM Cu(2+). Production, components, surface morphology, and functional groups of extracellular polymeric substances (EPS) of the wild-type strains were compared with sensitive mutant in immobilization of Cu(2+). EPS produced by S. meliloti CCNWSX0020 restricts uptake of Cu(2+). The cell wall EPS were categorized based on the compactness and fastness: soluble EPS (S-EPS), loosely bound EPS (LB-EPS), and tightly bound EPS (TB-EPS). LB-EPS played a more important role than S-EPS and TB-EPS in Cu(2+) immobilization. Scanning electron microscopy (SEM) analysis LB-EPS had rough surface and many honeycomb pores, making them conducive to copper entry; therefore, they may play a role as a microbial protective barrier. Fourier transform-infrared (FT-IR) analysis further confirm that proteins and carbohydrates were the main extracellular compounds which had functional groups such as carboxyl (COOH), hydroxyl (OH), and amide (NH), primarily involved in metal ion binding.

  11. Participation of dectin-1 receptor on NETs release against Paracoccidioides brasiliensis: Role on extracellular killing.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; Dias-Melicio, Luciane Alarcão; Fernandes, Reginaldo Keller; de Almeida Balderramas, Helanderson; Rodrigues, Daniela Ramos; Ximenes, Valdecir Farias; de Campos Soares, Ângela Maria Victoriano

    2016-02-01

    Paracoccidioides brasiliensis is a dimorphic fungus from the Paracoccidioides genus, which is the causative agent of paracoccidioidomycosis, a chronic, subacute or acute mycosis, with visceral and cutaneous involvement. This disease that is acquired through inhalation primarily attacks the lungs but, can spread to other organs. Phagocytic cells as neutrophils play an important role during innate immune response against this fungus, but studies on antifungal activities of these cells are scarce. In addition to their ability to eliminate pathogens by phagocytosis and antimicrobial secretions, neutrophils can trap and kill microorganisms by release of extracellular structures composed by DNA and antimicrobial proteins, called neutrophil extracellular traps (NETs). Here, we provide evidence that P. brasiliensis virulent strain (P. brasiliensis 18) induces NETs release. These structures were well evidenced by scanning electron microscopy, and specific NETs compounds such as histone, elastase and DNA were shown by confocal microscopy. In addition, we have shown that dectin-1 receptor is the main PRR to which fungus binds to induce NETS release. Fungi were ensnared by NETs, denoting the role of these structures in confining the fungus, avoiding dissemination. NETs were also shown to be involved in fungus killing, since fungicidal activity detected before and mainly after neutrophils activation with TNF-α, IFN-γ and GM-CSF was significantly inhibited by cocultures treatment with DNAse.

  12. Aerobic granules with inhibitory strains and role of extracellular polymeric substances

    Energy Technology Data Exchange (ETDEWEB)

    Adav, Sunil S., E-mail: adavs@rediffmail.com [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Duu-Jong, E-mail: djlee@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lai, Juin-Yih, E-mail: jylai@cycu.edu.tw [Center of Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan (China)

    2010-02-15

    Microorganisms compete with other species by secreting antimicrobial compounds. The compact structure of aerobic granules was generally assumed to provide spatial isolation, resulting in the co-occurrence of diverse strains that have similar or dissimilar functions. No studies have investigated whether stable, mature aerobic granules can be formed with two mutually inhibitory strains. The strain Acinetobacter sp. I8 competes with Bacillus sphaericus I5 in a well-mixed environment, but can form stable and mature granules at 400 mg L{sup -1} phenol by repeatedly replenishing fresh medium in a sequencing batch reactor. The supernatants collected from the I8 medium in its exponential-growth phase or from the I5 + I8 medium cultivated for 12 or 24 h significantly inhibited I5 growth. Addition of tightly bound extracellular polymeric substances (TBEPS) or loosely bound extracellular polymeric substances (LBEPS) extracted from I5 + I8 granules effectively suppressed the inhibitory effects of I8 on I5. The TBEPS or LBEPS physically separate strain I5 from I8 in the granule, and effectively adsorb the inhibitory substance(s) in the suspension.

  13. Excess genistein suppresses the synthesis of extracellular matrix in female rat mandibular condylar cartilage

    Institute of Scientific and Technical Information of China (English)

    Shi-bin YU; Xiang-hui XING; Guang-ying DONG; Xi-li WENG; Mei-qing WANG

    2012-01-01

    Aim:To investigate the effect of excess genistein on the extracellular matrix in mandibular condylar cartilage of female rats in vivo.Methods:Female SD rats were administered through oral gavage with genistein (50 mg/kg) or placebo daily for 6 weeks.The morphological changes of temporomandibular joints were studied with HE staining.The expression of cartilage matrix compounds (aggrecan and collagen type Ⅱ),estrogen-related molecules (aromatase,estradiol,ERα and ERβ) and proliferating cell nuclear antigen (PCNA) in mandibular condylar cartilage was detected using immunohistochemistry,ELISA and real-time PCR.Results:The genistein treatment significantly reduced the thickness of the posterior and middle regions of mandibular condylar cartilage,and decreased the expression of collagen type Ⅱ,aggrecan and PCNA.Compared with the control group,the estradiol content and expression levels of the key estradiol-synthesizing enzyme aromatase in the genistein-treatment group were significantly decreased.The genistein treatment significantly increased the expression of ERβ,but decreased the expression of ERα.Conclusion:Excess genistein suppresses extracellular matrix synthesis and chondrocytes proliferation,resulting in thinner mandibular condylar cartilage.These effects may be detrimental to the ability of mandibular condylar cartilage to adapt to mechanical loads.

  14. Including Magnetostriction in Micromagnetic Models

    Science.gov (United States)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis

    2016-04-01

    The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.

  15. Targeting Extracellular Cyclophilin A Reduces Neuroinflammation and Extends Survival in a Mouse Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Pasetto, Laura; Pozzi, Silvia; Castelnovo, Mariachiara; Basso, Manuela; Estevez, Alvaro G; Fumagalli, Stefano; De Simoni, Maria Grazia; Castellaneta, Valeria; Bigini, Paolo; Restelli, Elena; Chiesa, Roberto; Trojsi, Francesca; Monsurrò, Maria Rosaria; Callea, Leonardo; Malešević, Miroslav; Fischer, Gunter; Freschi, Mattia; Tortarolo, Massimo; Bendotti, Caterina; Bonetto, Valentina

    2017-02-08

    Neuroinflammation is a major hallmark of amyotrophic lateral sclerosis (ALS), which is currently untreatable. Several anti-inflammatory compounds have been evaluated in patients and in animal models of ALS, but have been proven disappointing in part because effective targets have not yet been identified. Cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), as a foldase is beneficial intracellularly, but extracellularly has detrimental functions. We found that extracellular PPIA is a mediator of neuroinflammation in ALS. It is a major inducer of matrix metalloproteinase 9 and is selectively toxic for motor neurons. High levels of PPIA were found in the CSF of SOD1(G93A) mice and rats and sporadic ALS patients, suggesting that our findings may be relevant for familial and sporadic cases. A specific inhibitor of extracellular PPIA, MM218, given at symptom onset, rescued motor neurons and extended survival in the SOD1(G93A) mouse model of familial ALS by 11 d. The treatment resulted in the polarization of glia toward a prohealing phenotype associated with reduced NF-κB activation, proinflammatory markers, endoplasmic reticulum stress, and insoluble phosphorylated TDP-43. Our results indicates that extracellular PPIA is a promising druggable target for ALS and support further studies to develop a therapy to arrest or slow the progression of the disease in patients.SIGNIFICANCE STATEMENT We provide evidence that extracellular cyclophilin A, also known as peptidylprolyl cis-/trans-isomerase A (PPIA), is a mediator of the neuroinflammatory reaction in amyotrophic lateral sclerosis (ALS) and is toxic for motor neurons. Supporting this, a specific extracellular PPIA inhibitor reduced neuroinflammation, rescued motor neurons, and extended survival in the SOD1(G93A) mouse model of familial ALS. Our findings suggest selective pharmacological inhibition of extracellular PPIA as a novel therapeutic strategy, not only for SOD1-linked ALS, but possibly also

  16. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach

    Science.gov (United States)

    Podgórska, B.; Mudryk, Z. J.

    2003-03-01

    The potential capability to decompose macromolecular compounds, and the level of extracellular enzyme activities were determined in heterotrophic bacteria isolated from a sandy beach in Sopot on the Southern Baltic Sea coast. Individual isolates were capable of hydrolysing a wide spectrum of organic macromolecular compounds. Lipids, gelatine, and DNA were hydrolyzed most efficiently. Only a very small percentage of strains were able to decompose cellulose, and no pectinolytic bacteria were found. Except for starch-hydrolysis, no significant differences in the intensity of organic compound decomposition were recorded between horizontal and vertical profiles of the studied beach. Of all the studied extracellular enzymes, alkaline phosphatase, esterase lipase, and leucine acrylaminidase were most active; in contrast, the activity α-fucosidase, α-galactosidase and β-glucouronidase was the weakest. The level of extracellular enzyme activity was similar in both sand layers.

  17. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    BACKGROUND: The etiology of the inflammatory bowel diseases, including ulcerative colitis (UC), remains incompletely explained. We hypothesized that an analysis of the UC colon proteome could reveal novel insights into the disease etiology. METHODS: Mucosal colon biopsies were taken by endoscopy...

  18. The extracellular biology of the lactobacilli

    NARCIS (Netherlands)

    Kleerebezem, M.; Hols, P.; Bernard, E.; Rolain, T.; Zhou, M.; Siezen, R.J.; Bron, P.A.

    2010-01-01

    Lactobacilli belong to the lactic acid bacteria, which play a key role in industrial and artisan food raw-material fermentation, including a large variety of fermented dairy products. Next to their role in fermentation processes, specific strains of Lactobacillus are currently marketed as health-pro

  19. The prognostic value of brain extracellular fluid nitric oxide metabolites after traumatic brain injury.

    Science.gov (United States)

    Tisdall, Martin M; Rejdak, Konrad; Kitchen, Neil D; Smith, Martin; Petzold, Axel

    2013-08-01

    Nitric oxide (NO) is a compound with both protective and damaging effects on neurons. Quantification of NO metabolites in humans is limited by sample contamination with blood. In vivo cerebral microdialysis may offer an alternative approach as sampling of extracellular fluid (ECF) adjacent to neurons becomes possible. We investigate the prognostic value of brain ECF NO metabolites in patients with traumatic brain injury (TBI). A prospective case cohort of 195 ECF samples collected from 11 cases over 4 days following TBI was collected. Nitrate and nitrite concentrations ([NO x ]) were quantified using a vanadium-based colorimetric assay. Early ECF [NO x ] (survival (sensitivity 100%, specificity 75%). Early ECF NO x concentrations are of prognostic value after TBI. ECF NO x may be a useful biomarker for treatment trials targeted at nitric oxide metabolism.

  20. Antimycobacterial action of a new glycolipid-peptide complex obtained from extracellular metabolites of Raoultella ornithinolytica.

    Science.gov (United States)

    Fiołka, Marta J; Grzywnowicz, Krzysztof; Mendyk, Ewaryst; Zagaja, Mirosław; Szewczyk, Rafał; Rawski, Michał; Keller, Radosław; Rzymowska, Jolanta; Wydrych, Jerzy

    2015-12-01

    In this paper, an antimycobacterial component of extracellular metabolites of a gut bacterium Raoultella ornithinolytica from D. veneta earthworms was isolated and its antimycobacterial action was tested using Mycobacterium smegmatis. After incubation with the complex obtained, formation of pores and furrows in cell walls was observed using microscopic techniques. The cells lost their shape, stuck together and formed clusters. Surface-enhanced Raman spectroscopy analysis showed that, after incubation, the complex was attached to the cell walls of the Mycobacterium. Analyses of the component performed with Fourier transform infrared spectroscopy demonstrated high similarity to a bacteriocin nisin, but energy dispersive X-ray spectroscopy analysis revealed differences in the elemental composition of this antimicrobial peptide. The component with antimycobacterial activity was identified using mass spectrometry techniques as a glycolipid-peptide complex. As it exhibits no cytotoxicity on normal human fibroblasts, the glycolipid-peptide complex appears to be a promising compound for investigations of its activity against pathogenic mycobacteria.

  1. Approach to improve the productivity of bioactive compounds of the cyanobacterium Anabaena oryzae using factorial design

    Directory of Open Access Journals (Sweden)

    Ragaa A. Hamouda

    2017-09-01

    Full Text Available Cyanobacteria are one of the richest sources of biomedical relevant compounds with extensive therapeutic pharmaceutical applications and are also known as producer of intracellular and extracellular metabolites with diverse biological activities. The genus Anabaena sp. is known to produce antimicrobial compounds, like phycocyanin and others. The goal of this study was to optimize the production of these bioactive compounds. The Plackett–Burman experimental design was used to screen and evaluate the important medium components that influence the production of bioactive compounds. In this present study, eight independent factors including NaNO3, K2HPO4, MgSO4·7H2O, CaCl2, citric acid, ammonium ferric citrate, ethylene diamine tetraacetic acid disodium magnesium salt (EDTA-Na2Mg and Na2CO3 were surveyed and the effective variables for algal components production of Anabaena oryzae were determined using two-levels Plackett–Burman design. Results analysis showed that the best medium components were NaNO3 (2.25 g l−1; K2HPO4 (0.02 g l−1; MgSO4 (0.0375 g l−1; CaCl2 (0.018 g l−1; citric acid (0.009 g l−1; ammonium ferric citrate (0.009 g l−1 and EDTA-Na2 (0.0015 g l−1 respectively. The total chlorophyll-a, carotenoids, phenol, tannic acid and flavonoid contents in crude extract of Anabaena oryzae were determined. They were 47.7, 4.11, 0.256, 1.046 and 1.83 μg/ml, respectively. The antioxidant capacity was 62.81%.

  2. The impact of extracellular acidosis on dendritic cell function.

    Science.gov (United States)

    Vermeulen, Mónica Elba; Gamberale, Romina; Trevani, Analía Silvina; Martínez, Diego; Ceballos, Ana; Sabatte, Juan; Giordano, Mirta; Geffner, Jorge Raúl

    2004-01-01

    Dendritic cells (DCs) are the most efficient antigen-presenting cells. They are activated in the periphery by conserved pathogen molecules and by inflammatory mediators produced by a variety of cell types in response to danger signals. It is widely appreciated that inflammatory responses in peripheral tissues are usually associated with the development of acidic microenvironments. Surprisingly, there are relatively few studies directed to analyze the effect of extracellular acidosis on the immune response. We focus on the influence of extracellular acidosis on the function of immature DCs. The results presented here show that acidosis activates DCs. It increases the acquisition of extracellular antigens for MHC class I-restricted presentation and the ability of antigen-pulsed DCs to induce both specific CD8+ CTL and B-cell responses. These findings may have important implications to our understanding of the mechanisms through which DCs sense the presence of infection or inflammation in nonlymphoid tissues.

  3. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Angelo Colagiorgi

    2016-07-01

    Full Text Available Listeria monocytogenes is a foodborne pathogen able to persist in food industry and is responsible for a severe illness called listeriosis. The ability of L. monocytogenes to persist in environments is due to its capacity to form biofilms that are a sessile community of microorganisms embedded in a self-produced matrix of extracellular polymeric substances (EPS’s. In this review, we summarized recent efforts performed in order to better characterize the polymeric substances that compose the extracellular matrix (ECM of L. monocytogenes biofilms. EPS extraction and analysis led to the identification of polysaccharides, proteins, extracellular DNA, and other molecules within the listerial ECM. All this knowledge will be useful for increasing food protection, suggesting effective strategies for the minimization of persistence of L. monocytogenes in food industry environments.

  4. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes......, which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate...

  5. Unidirectional cell crawling model guided by extracellular cues.

    Science.gov (United States)

    Wang, Zhanjiang; Geng, Yuxu

    2015-03-01

    Cell migration is a highly regulated and complex cellular process to maintain proper homeostasis for various biological processes. Extracellular environment was identified as the main affecting factors determining the direction of cell crawling. It was observed experimentally that the cell prefers migrating to the area with denser or stiffer array of microposts. In this article, an integrated unidirectional cell crawling model was developed to investigate the spatiotemporal dynamics of unidirectional cell migration, which incorporates the dominating intracellular biochemical processes, biomechanical processes and the properties of extracellular micropost arrays. The interpost spacing and the stiffness of microposts are taken into account, respectively, to study the mechanism of unidirectional cell locomotion and the guidance of extracellular influence cues on the direction of unidirectional cell crawling. The model can explain adequately the unidirectional crawling phenomena observed in experiments such as "spatiotaxis" and "durotaxis," which allows us to obtain further insights into cell migration.

  6. Extracellular Protease Activity of Enteropathogenic Escherechia coli on Mucin Substrate

    Directory of Open Access Journals (Sweden)

    SRI BUDIARTI

    2007-03-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC causes gastrointestinal infections in human. EPEC invasion was initiated by attachment and aggressive colonization on intestinal surface. Attachment of EPEC alter the intestine mucosal cells. Despite this, the pathogenic mechanism of EPEC infectior has not been fully understood. This research hypothesizes that extracellular proteolytic enzymes is necessary for EPEC colonization. The enzyme is secreted into gastrointestinal milieu and presumably destroy mucus layer cover the gastrointestinal tract. The objective of this study was to assay EPEC extracellular protease enzyme by using mucin substrate. The activity of EPEC extracellular proteolytic enzyme on 1% mucin substrate was investigated. Non-pathogenic E. coli was used as a negative control. Positive and tentative controls were Yersinia enterocolitica and Salmonella. Ten EPEC strains were assayed, seven of them were able to degrade mucin, and the highest activity was produced by K1.1 strain. Both positive and tentative controls also showed the ability to digest 0.20% mucin.

  7. Gap junction modulation by extracellular signaling molecules: the thymus model

    Directory of Open Access Journals (Sweden)

    Alves L.A.

    2000-01-01

    Full Text Available Gap junctions are intercellular channels which connect adjacent cells and allow direct exchange of molecules of low molecular weight between them. Such a communication has been described as fundamental in many systems due to its importance in coordination, proliferation and differentiation. Recently, it has been shown that gap junctional intercellular communication (GJIC can be modulated by several extracellular soluble factors such as classical hormones, neurotransmitters, interleukins, growth factors and some paracrine substances. Herein, we discuss some aspects of the general modulation of GJIC by extracellular messenger molecules and more particularly the regulation of such communication in the thymus gland. Additionally, we discuss recent data concerning the study of different neuropeptides and hormones in the modulation of GJIC in thymic epithelial cells. We also suggest that the thymus may be viewed as a model to study the modulation of gap junction communication by different extracellular messengers involved in non-classical circuits, since this organ is under bidirectional neuroimmunoendocrine control.

  8. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  9. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng-gui; ZHANG Rui-yong; XIA Jin-lan; ZHANG Qian; NIE Zhen-yuan

    2008-01-01

    The fractions of the extracellular proteins of Acidithiobacillus ferrooxidans grown on two different energy substrates,elemental sulfur and ferrous sulfate,were selectively prepared with hot water treatment and distinctly shown by two-dimensional gel electrophoresis.Some protein spots with apparently higher abundance in sulfur energy substrate than in ferrous sulfate energy substrate were identified by using MALDI-TOF/TOF.Based on peptide mass fingerprints and bioinformatical analysis,the extracellular proteins were classified according to their functions as conjugal transfer protein,pilin,vacJ lipoprotein,polysaccharide deacetylase family protein,Ser/Thr protein phosphatase family protein and hypothetical proteins.Several extracellular proteins were found abundant in thiol groups and with CXXC functional motif,these proteins may be directly involved in the sulfur activation by use of their thiol group (Pr-SH) to bond the elemental sulfur.

  10. Extracellular matrix as a driver for lung regeneration.

    Science.gov (United States)

    Balestrini, Jenna L; Niklason, Laura E

    2015-03-01

    Extracellular matrix has manifold roles in tissue mechanics, guidance of cellular behavior, developmental biology, and regenerative medicine. Over the past several decades, various pre-clinical and clinical studies have shown that many connective tissues may be replaced and/or regenerated using suitable extracellular matrix scaffolds. More recently, decellularization of lung tissue has shown that gentle removal of cells can leave behind a "footprint" within the matrix that may guide cellular adhesion, differentiation and homing following cellular repopulation. Fundamental issues like understanding matrix composition and micro-mechanics remain difficult to tackle, largely because of a lack of available assays and tools for systematically characterizing intact matrix from tissues and organs. This review will critically examine the role of engineered and native extracellular matrix in tissue and lung regeneration, and provide insights into directions for future research and translation.

  11. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  12. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    Science.gov (United States)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  13. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus.

    Science.gov (United States)

    Wiera, Grzegorz; Mozrzymas, Jerzy W

    2015-01-01

    Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  14. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function.

    Science.gov (United States)

    Fujiwara, Toshihiro; Duscher, Dominik; Rustad, Kristine C; Kosaraju, Revanth; Rodrigues, Melanie; Whittam, Alexander J; Januszyk, Michael; Maan, Zeshaan N; Gurtner, Geoffrey C

    2016-03-01

    Advanced age is characterized by impairments in wound healing, and evidence is accumulating that this may be due in part to a concomitant increase in oxidative stress. Extended exposure to reactive oxygen species (ROS) is thought to lead to cellular dysfunction and organismal death via the destructive oxidation of intra-cellular proteins, lipids and nucleic acids. Extracellular superoxide dismutase (ecSOD/SOD3) is a prime antioxidant enzyme in the extracellular space that eliminates ROS. Here, we demonstrate that reduced SOD3 levels contribute to healing impairments in aged mice. These impairments include delayed wound closure, reduced neovascularization, impaired fibroblast proliferation and increased neutrophil recruitment. We further establish that SOD3 KO and aged fibroblasts both display reduced production of TGF-β1, leading to decreased differentiation of fibroblasts into myofibroblasts. Taken together, these results suggest that wound healing impairments in ageing are associated with increased levels of ROS, decreased SOD3 expression and impaired extracellular oxidative stress regulation. Our results identify SOD3 as a possible target to correct age-related cellular dysfunction in wound healing.

  15. The autofluorescence characteristics of bacterial intracellular and extracellular substances during the operation of anammox reactor

    Science.gov (United States)

    Hou, Xiaolin; Liu, Sitong; Feng, Ying

    2017-01-01

    Anammox is a cost-effective process to treat nitrogenous wastewater. In this work, excitation–emission matrix (EEM) fluorescence spectroscopy was used to characterize the intracellular and extracellular substances of anammox sludge during reactor operation of 276 days. Four main fluorophores were identified from the intracellular substances. Two main protein-like fluorophores were identified from the extracellular substances. Correlation analysis revealed that intracellular 420 peak and humic-like peak had strong correlation with nitrogen removal rate. The two intracellular protein-like peaks had high correlation with MLVSS and MLVSS growth rate. Correlation analysis between different fluorophores discovered that the two peaks in each of these three groups—two intracellular protein-like peaks, two humic acid-like peaks and the two extracellular protein-like peaks had strong intercorrelation, which gave evidence of their homology. A specific method for fluorescence monitoring of anammox reactor were put forward, which included typical fluorescence indexes and their possible values for different operation phases. PMID:28091530

  16. Superoxide Induces Neutrophil Extracellular Trap Formation in a TLR-4 and NOX-Dependent Mechanism

    Science.gov (United States)

    Al-Khafaji, Ahmed B; Tohme, Samer; Yazdani, Hamza Obaid; Miller, David; Huang, Hai; Tsung, Allan

    2016-01-01

    Neutrophils constitute the early innate immune response to perceived infectious and sterile threats. Neutrophil extracellular traps (NETs) are a novel mechanism to counter pathogenic invasion and sequelae of ischemia, including cell death and oxidative stress. Superoxide is a radical intermediate of oxygen metabolism produced by parenchymal and nonparenchymal hepatic cells, and is a hallmark of oxidative stress after liver ischemia-reperfusion (I/R). While extracellular superoxide recruits neutrophils to the liver and initiates sterile inflammatory injury, it is unknown whether superoxide induces the formation of NETs. We hypothesize that superoxide induces NET formation through a signaling cascade involving Toll-like receptor 4 (TLR-4) and neutrophil NADPH oxidase (NOX). We treated neutrophils with extracellular superoxide and observed NET DNA release, histone H3 citrullination and increased levels of MPO-DNA complexes occurring in a TLR-4–dependent manner. Inhibition of superoxide generation by allopurinol and inhibition of NOX by diphenyleneiodonium prevented NET formation. When mice were subjected to warm liver I/R, we found significant NET formation associated with liver necrosis and increased serum ALT in TLR-4 WT but not TLR-4 KO mice. To reduce circulating superoxide, we pretreated mice undergoing I/R with allopurinol and N-acetylcysteine, which resulted in decreased NETs and ameliorated liver injury. Our study demonstrates a requirement for TLR-4 and NOX in superoxide-induced NETs, and suggests involvement of superoxide-induced NETs in pathophysiologic settings. PMID:27453505

  17. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells.

    Science.gov (United States)

    Gautier, Violette; Cayrol, Corinne; Farache, Dorian; Roga, Stéphane; Monsarrat, Bernard; Burlet-Schiltz, Odile; Gonzalez de Peredo, Anne; Girard, Jean-Philippe

    2016-10-03

    IL-33 is a nuclear cytokine from the IL-1 family that plays important roles in health and disease. Extracellular IL-33 activates a growing number of target cells, including group 2 innate lymphoid cells, mast cells and regulatory T cells, but it remains unclear whether intracellular nuclear IL-33 has additional functions in the nucleus. Here, we used a global proteomic approach based on high-resolution mass spectrometry to compare the extracellular and intracellular roles of IL-33 in primary human endothelial cells, a major source of IL-33 protein in human tissues. We found that exogenous extracellular IL-33 cytokine induced expression of a distinct set of proteins associated with inflammatory responses in endothelial cells. In contrast, knockdown of endogenous nuclear IL-33 expression using two independent RNA silencing strategies had no reproducible effect on the endothelial cell proteome. These results suggest that IL-33 acts as a cytokine but not as a nuclear factor regulating gene expression in endothelial cells.

  18. Characterization and biological activities of extracellular melanin produced by Schizophyllum commune (Fries).

    Science.gov (United States)

    Arun, G; Eyini, M; Gunasekaran, P

    2015-06-01

    Melanins are enigmatic pigments produced by a wide variety of microorganisms including bacteria and fungi. Here, we have isolated and characterized extracellular melanin from mushroom fungus, Schizophyllum commune. The extracellular dark pigment produced by the broth culture of S. commune, after 21 days of incubation was recovered by hot acid-alkali treatment. The melanin nature of the pigment was characterized by biochemical tests and further, confirmed by UV, IR, EPR, NMR and MALDI-TOF Mass Spectra. Extracellular melanin, at 100 μg/ml, showed significant antibacterial activity against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas fluorescens and antifungal activity against Trichophyton simii and T. rubrum. At a concentration of 50 μg/ml, melanin showed high free radical scavenging activity of DPPH (2,2-diphenyl-1-picrylhydrazyl) indicating its antioxidant potential. It showed concentration dependent inhibition of cell proliferation of Human Epidermoid Larynx Carcinoma Cell Line (HEP-2). This study has demonstrated characterization of melanin from basidiomycetes mushroom fungus, Schizophyllum commune and its applications.

  19. The Role of Reactive Oxygen Species (ROS in the Formation of Extracellular Traps (ETs in Humans

    Directory of Open Access Journals (Sweden)

    Walter Stoiber

    2015-05-01

    Full Text Available Extracellular traps (ETs are reticulate structures of extracellular DNA associated with antimicrobial molecules. Their formation by phagocytes (mainly by neutrophils: NETs has been identified as an essential element of vertebrate innate immune defense. However, as ETs are also toxic to host cells and potent triggers of autoimmunity, their role between pathogen defense and human pathogenesis is ambiguous, and they contribute to a variety of acute and chronic inflammatory diseases. Since the discovery of ET formation (ETosis a decade ago, evidence has accumulated that most reaction cascades leading to ET release involve ROS. An important new facet was added when it became apparent that ETosis might be directly linked to, or be a variant of, the autophagy cell death pathway. The present review analyzes the evidence to date on the interplay between ROS, autophagy and ETosis, and highlights and discusses several further aspects of the ROS-ET relationship that are incompletely understood. These aspects include the role of NADPH oxidase-derived ROS, the molecular requirements of NADPH oxidase-dependent ETosis, the roles of NADPH oxidase subtypes, extracellular ROS and of ROS from sources other than NADPH oxidase, and the present evidence for ROS-independent ETosis. We conclude that ROS interact with ETosis in a multidimensional manner, with influence on whether ETosis shows beneficial or detrimental effects.

  20. Monitoring intra- and extracellular redox capacity of intact barley aleurone layers responding to phytohormones.

    Science.gov (United States)

    Mark, Christina; Zór, Kinga; Heiskanen, Arto; Dufva, Martin; Emnéus, Jenny; Finnie, Christine

    2016-12-15

    Redox regulation is important for numerous processes in plant cells including abiotic stress, pathogen defence, tissue development, seed germination and programmed cell death. However, there are few methods allowing redox homeostasis to be addressed in whole plant cells, providing insight into the intact in vivo environment. An electrochemical redox assay that applies the menadione-ferricyanide double mediator is used to assess changes in the intracellular and extracellular redox environment in living aleurone layers of barley (Hordeum vulgare cv. Himalaya) grains, which respond to the phytohormones gibberellic acid and abscisic acid. Gibberellic acid is shown to elicit a mobilisation of electrons as detected by an increase in the reducing capacity of the aleurone layers. By taking advantage of the membrane-permeable menadione/menadiol redox pair to probe the membrane-impermeable ferricyanide/ferrocyanide redox pair, the mobilisation of electrons was dissected into an intracellular and an extracellular, plasma membrane-associated component. The intracellular and extracellular increases in reducing capacity were both suppressed when the aleurone layers were incubated with abscisic acid. By probing redox levels in intact plant tissue, the method provides a complementary approach to assays of reactive oxygen species and redox-related enzyme activities in tissue extracts.

  1. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  2. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  3. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    Science.gov (United States)

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.

  4. MEA 86 Compound data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data file contains the full raw parameter data for the 86 compounds tested in the developmental MEA assay, as well as Area Under the Curve (AUC) calculations...

  5. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  6. Heart testing compound

    Science.gov (United States)

    Knapp, F.F. Jr.; Goodman, M.M.

    1983-06-29

    The compound 15-(p-(/sup 125/I)-iodophenyl)-6-tellurapentadecanoic acid is disclosed as a myocardial imaging agent having rapid and pronounced uptake, prolonged myocardial retention, and low in vivo deiodination.

  7. Polynitramino compounds outperform PETN.

    Science.gov (United States)

    Joo, Young-Hyuk; Shreeve, Jean'ne M

    2010-01-07

    New polynitramino compounds were synthesized and fully characterized using IR and multinuclear ((1)H, (13)C, (15)N) NMR spectroscopy, and elemental analysis as well as single-crystal X-ray diffraction.

  8. Extracellular matrix assembly and organization during zebrafish gastrulation.

    Science.gov (United States)

    Latimer, Andrew; Jessen, Jason R

    2010-03-01

    Zebrafish gastrulation entails morphogenetic cell movements that shape the body plan and give rise to an embryo with defined anterior-posterior and dorsal-ventral axes. Regulating these cell movements are diverse signaling pathways and proteins including Wnts, Src-family tyrosine kinases, cadherins, and matrix metalloproteinases. While our knowledge of how these proteins impact cell polarity and migration has advanced considerably in the last decade, almost no data exist regarding the organization of extracellular matrix (ECM) during zebrafish gastrulation. Here, we describe for the first time the assembly of a fibronectin (FN) and laminin containing ECM in the early zebrafish embryo. This matrix was first detected at early gastrulation (65% epiboly) in the form of punctae that localize to tissue boundaries separating germ layers from each other and the underlying yolk cell. Fibrillogenesis increased after mid-gastrulation (80% epiboly) coinciding with the period of planar cell polarity pathway-dependent convergence and extension cell movements. We demonstrate that FN fibrils present beneath deep mesodermal cells are aligned in the direction of membrane protrusion formation. Utilizing antisense morpholino oligonucleotides, we further show that knockdown of FN expression causes a convergence and extension defect. Taken together, our data show that similar to amphibian embryos, the formation of ECM in the zebrafish gastrula is a dynamic process that occurs in parallel to at least a portion of the polarized cell behaviors shaping the embryonic body plan. These results provide a framework for uncovering the interrelationship between ECM structure and cellular processes regulating convergence and extension such as directed migration and mediolateral/radial intercalation. 2009 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  9. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview

    Science.gov (United States)

    Delgado-Rizo, Vidal; Martínez-Guzmán, Marco A.; Iñiguez-Gutierrez, Liliana; García-Orozco, Alejandra; Alvarado-Navarro, Anabell; Fafutis-Morris, Mary

    2017-01-01

    In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of

  10. Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.

    Directory of Open Access Journals (Sweden)

    Geir Halnes

    2016-11-01

    Full Text Available Recorded potentials in the extracellular space (ECS of the brain is a standard measure of population activity in neural tissue. Computational models that simulate the relationship between the ECS potential and its underlying neurophysiological processes are commonly used in the interpretation of such measurements. Standard methods, such as volume-conductor theory and current-source density theory, assume that diffusion has a negligible effect on the ECS potential, at least in the range of frequencies picked up by most recording systems. This assumption remains to be verified. We here present a hybrid simulation framework that accounts for diffusive effects on the ECS potential. The framework uses (1 the NEURON simulator to compute the activity and ionic output currents from multicompartmental neuron models, and (2 the electrodiffusive Kirchhoff-Nernst-Planck framework to simulate the resulting dynamics of the potential and ion concentrations in the ECS, accounting for the effect of electrical migration as well as diffusion. Using this framework, we explore the effect that ECS diffusion has on the electrical potential surrounding a small population of 10 pyramidal neurons. The neural model was tuned so that simulations over ∼100 seconds of biological time led to shifts in ECS concentrations by a few millimolars, similar to what has been seen in experiments. By comparing simulations where ECS diffusion was absent with simulations where ECS diffusion was included, we made the following key findings: (i ECS diffusion shifted the local potential by up to ∼0.2 mV. (ii The power spectral density (PSD of the diffusion-evoked potential shifts followed a 1/f2 power law. (iii Diffusion effects dominated the PSD of the ECS potential for frequencies up to several hertz. In scenarios with large, but physiologically realistic ECS concentration gradients, diffusion was thus found to affect the ECS potential well within the frequency range picked up in

  11. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  12. Extracellular Ca2+ Is Required for Fertilization in the African Clawed Frog, Xenopus laevis

    Science.gov (United States)

    Duray, Alexis M.; Tembo, Maiwase; Beleny, David O.; Napolitano, Marc A.; Sauer, Monica L.; Wisner, Bennett W.

    2017-01-01

    Background The necessity of extracellular Ca2+ for fertilization and early embryonic development in the African clawed frog, Xenopus laevis, is controversial. Ca2+ entry into X. laevis sperm is reportedly required for the acrosome reaction, yet fertilization and embryonic development have been documented to occur in high concentrations of the Ca2+ chelator BAPTA. Here we sought to resolve this controversy. Methodology/principal finding Using the appearance of cleavage furrows as an indicator of embryonic development, we found that X. laevis eggs inseminated in a solution lacking added divalent cations developed normally. By contrast, eggs inseminated in millimolar concentrations of BAPTA or EGTA failed to develop. Transferring embryos to varying solutions after sperm addition, we found that extracellular Ca2+ is specifically required for events occurring within the first 30 minutes after sperm addition, but not after. We found that the fluorescently stained sperm were not able to penetrate the envelope of eggs inseminated in high BAPTA, whereas several had penetrated the vitelline envelope of eggs inseminated without a Ca2+ chelator, or with BAPTA and saturating CaCl2. Together these results indicate that fertilization does not occur in high concentrations of Ca2+ chelators. Finally, we found that the jelly coat includes >5 mM of readily diffusible Ca2+. Conclusions/Significance Taken together, these data are consistent with requirement of extracellular Ca2+ for fertilization. Based on our findings, we hypothesize that the jelly coat surrounding the egg acts as a reserve of readily available Ca2+ ions to foster fertilization in changing extracellular milieu. PMID:28114360

  13. Suspension-cultured plant cells as a tool to analyze the extracellular proteome.

    Science.gov (United States)

    Sabater-Jara, Ana B; Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Esteso, María J; Youssef, Sabry M; Casado-Vela, Juan; Vera-Urbina, Juan C; Sellés-Marchart, Susana; Bru-Martínez, Roque; Pedreño, María A

    2014-01-01

    Suspension-cultured cells (SCC) are generally considered the most suitable cell systems to carry out scientific studies, including the extracellular proteome (secretome). SCC are initiated by transferring friable callus fragments into flasks containing liquid culture medium for cell biomass growth, and they are maintained in an orbital shaker to supply the sufficient oxygen that allows cell growth. SCC increase rapidly during the exponential phase and after 10-20 days (depending on the cell culture nature), the growth rate starts to decrease due to limitation of nutrients, and to maintain for decades these kinds of cell cultures is needed to transfer a portion of these SCC into a fresh culture medium. Despite the central role played by extracellular proteins in most processes that control growth and development, the secretome has been less well characterized than other subcellular compartments, meaning that our understanding of the cell wall physiology is still very limited. Useful proteomic tools have emerged in recent years to unravel metabolic network that occurs in cell walls. With the recent progress made in mass spectrometry technology, it has become feasible to identify proteins from a given organ, tissue, cells, or even a subcellular compartment. Compared with other methods used to isolate cell wall proteins, the spent medium of SCC provides a convenient, continuous, and reliable and unique source of extracellular proteins. Therefore, this biological system could be used as a large-scale cell culture from which these proteins can be secreted, easily separated from cells without cell disruption, and so, without any cytosolic contamination, easily recovered from the extracellular medium. This nondestructive cell wall proteome approach discloses a set of proteins that are specifically expressed in the remodelling of the cell wall architecture and stress defense.

  14. Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia.

    Science.gov (United States)

    Langfelder, Antonia; Okonji, Emeka; Deca, Diana; Wei, Wei-Chun; Glitsch, Maike D

    2015-04-01

    Microglia are the resident macrophage and immune cell of the brain and are critically involved in combating disease and assaults on the brain. Virtually all brain pathologies are accompanied by acidosis of the interstitial fluid, meaning that microglia are exposed to an acidic environment. However, little is known about how extracellular acidosis impacts on microglial function. The activity of microglia is tightly controlled by 'on' and 'off' signals, the presence or absence of which results in generation of distinct phenotypes in microglia. Activation of G protein coupled purinergic (P2Y) receptors triggers a number of distinct behaviours in microglia, including activation, migration, and phagocytosis. Using pharmacological tools and fluorescence imaging of the murine cerebellar microglia cell line C8B4, we show that extracellular acidosis interferes with P2Y receptor-mediated Ca(2+) signalling in these cells. Distinct P2Y receptors give rise to signature intracellular Ca(2+) signals, and Ca(2+) release from stores and Ca(2+) influx are differentially affected by acidotic conditions: Ca(2+) release is virtually unaffected, whereas Ca(2+) influx, mediated at least in part by store-operated Ca(2+) channels, is profoundly inhibited. Furthermore, P2Y1 and P2Y6-mediated stimulation of migration is inhibited under conditions of extracellular acidosis, whereas basal migration independent of P2Y receptor activation is not. Taken together, our results demonstrate that an acidic microenvironment impacts on P2Y receptor-mediated Ca(2+) signalling, thereby influencing microglial responses and responsiveness to extracellular signals. This may result in altered behaviour of microglia under pathological conditions compared with microglial responses in healthy tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Angenent, Largus T.; Zhang, Tian

    2017-01-01

    Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron-transfer mechan......Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO2. Extracellular electron...

  16. Syndecans as receptors and organizers of the extracellular matrix

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Gopal, Sandeep; Couchman, John

    2009-01-01

    and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles......, the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as "co-receptors". However, just as with integrins, syndecans can interact with actin-associated proteins...

  17. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those...... originally described in vitro. Citrullination of histones by peptidyl arginine deiminase 4 (PAD4) is central for NET formation in vivo. NETs may spur formation of autoantibodies and may also serve as scaffolds for thrombosis, thereby providing a link among infection, autoimmunity, and thrombosis...

  18. Extracellular proteins limit the dispersal of biogenic nanoparticles

    Science.gov (United States)

    Moreau, J.W.; Weber, P.K.; Martin, M.C.; Gilbert, B.; Hutcheon, I.D.; Banfield, J.F.

    2007-01-01

    High-spatial-resolution secondary ion microprobe spectrometry, synchrotron radiation-based Fourier-transform infrared spectroscopy, and polyacrylamide gel analysis demonstrated the intimate association of proteins with spheroidal aggregates of biogenic zinc sulfide nanocrystals, an example of extracellular biomineralization. Experiments involving synthetic zinc sulfide nanoparticles and representative amino acids indicated a driving role for cysteine in rapid nanoparticle aggregation. These findings suggest that microbially derived extracellular proteins can limit the dispersal of nanoparticulate metal-bearing phases, such as the mineral products of bioremediation, that may otherwise be transported away from their source by subsurface fluid flow.

  19. Thermodynamics of Organic Compounds

    Science.gov (United States)

    1979-01-01

    General Techniques for Combustion of Liquid/Soli. Organic Compounds by Oxygen Bomb Calorimetry by Arthur J. Head, William D. Good, and Ccrnelius...Mosselman, Chap. 8; Combustion of Liquid/Solid Organic Compounds with Non-Metallic Hetero-Atoms by Arthur J. Head and William D. Good, Chap. 9; in...0 Box 95085 Washington, DC 20234 Los Angeles, CA 90045 National Bureau of Standards CINDAS Chemical Thermodynamics Division Purdue University

  20. Compound composite odontoma.

    Science.gov (United States)

    Girish, G; Bavle, Radhika M; Singh, Manish Kumar; Prasad, Sahana N

    2016-01-01

    The term odontoma has been used as a descriptor for any tumor of odontogenic origin. It is a growth in which both epithelial and mesenchymal cells exhibits complete differentiation. Odontomas are considered as hamartomas rather than true neoplasm. They are usually discovered on routine radiographic examination. Odontomas, according to the World Health Organization, are classified into complex odontoma and compound odontomas. The present paper reports a case of compound composite odontomas.