WorldWideScience

Sample records for extracellular atp synthesis

  1. Extracellular ATP induces albuminuria in pregnant rats

    NARCIS (Netherlands)

    Faas, M.M.; van der Schaaf, G.; Borghuis, T.; Jongman, R.M.; van Pampus, Maria; de Vos, P.; van Goor, Harry; Bakker, W.W.

    BACKGROUND: As circulating plasma ATP concentrations are increased in pre-eclampsia, we tested whether increased plasma ATP is able to induce albuminuria during pregnancy. METHODS: Pregnant (day 14) and non-pregnant rats were infused with ATP (3000 microg/kg bw) via a permanent jugular vein cannula.

  2. Extracellular ATP Acts on Jasmonate Signaling to Reinforce Plant Defense.

    Science.gov (United States)

    Tripathi, Diwaker; Zhang, Tong; Koo, Abraham J; Stacey, Gary; Tanaka, Kiwamu

    2018-01-01

    Damaged cells send various signals to stimulate defense responses. Recent identification and genetic studies of the plant purinoceptor, P2K1 (also known as DORN1), have demonstrated that extracellular ATP is a signal involved in plant stress responses, including wounding, perhaps to evoke plant defense. However, it remains largely unknown how extracellular ATP induces plant defense responses. Here, we demonstrate that extracellular ATP induces plant defense mediated through activation of the intracellular signaling of jasmonate (JA), a well-characterized defense hormone. In Arabidopsis ( Arabidopsis thaliana ) leaves, ATP pretreatment induced resistance against the necrotrophic fungus, Botrytis cinerea The induced resistance was enhanced in the P2K1 receptor overexpression line, but reduced in the receptor mutant, dorn1 - 3 Mining the transcriptome data revealed that ATP induces a set of JA-induced genes. In addition, the P2K1-associated coexpression network contains defense-related genes, including those encoding jasmonate ZIM-domain (JAZ) proteins, which play key roles as repressors of JA signaling. We examined whether extracellular ATP impacts the stability of JAZ1 in Arabidopsis. The results showed that the JAZ1 stability decreased in response to ATP addition in a proteasome-dependent manner. This reduction required intracellular signaling via second messengers-cytosolic calcium, reactive oxygen species, and nitric oxide. Interestingly, the ATP-induced JAZ1 degradation was attenuated in the JA receptor mutant, coi1 , but not in the JA biosynthesis mutant, aos , or upon addition of JA biosynthesis inhibitors. Immunoprecipitation analysis demonstrated that ATP increases the interaction between COI1 and JAZ1, suggesting direct cross talk between extracellular ATP and JA in intracellular signaling events. Taken together, these results suggest that extracellular ATP signaling directly impacts the JA signaling pathway to maximize plant defense responses. © 2018

  3. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells.

    Science.gov (United States)

    Qian, Yanrong; Wang, Xuan; Liu, Yi; Li, Yunsheng; Colvin, Robert A; Tong, Lingying; Wu, Shiyong; Chen, Xiaozhuo

    2014-09-01

    ATP plays central roles in cancer metabolism and the Warburg effect. Intratumoral ATP concentrations are up to 10(4) times higher than those of interstitial ATP in normal tissues. However, extracellular ATP is not known to enter cancer cells. Here we report that human A549 lung cancer cells internalized extracellular ATP by macropinocytosis as demonstrated by colocalization of a nonhydrolyzable fluorescent ATP and a macropinocytosis tracer high-molecular-weight dextran, as well as by a macropinocytosis inhibitor study. Extracellular ATP also induced increase of intracellular ATP levels, without involving transcription and translation at significant levels, and cancer cells' resistance to ATP-competitor anticancer drugs, likely through the mechanism of ATP internalization. These findings, described for the first time, have profound implications in ATP-sharing among cancer cells in tumors and highlight a novel anticancer target. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU. Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs, T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  5. Thermodynamics of proton transport coupled ATP synthesis.

    Science.gov (United States)

    Turina, Paola; Petersen, Jan; Gräber, Peter

    2016-06-01

    The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°(ref)=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pH(in) or pH(out)) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F(0) to the catalytic nucleotide binding sites on the β-subunits in F(1), is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Extracellular ATP, as an energy and phosphorylating molecule, induces different types of drug resistances in cancer cells through ATP internalization and intracellular ATP level increase.

    Science.gov (United States)

    Wang, Xuan; Li, Yunsheng; Qian, Yanrong; Cao, Yanyang; Shriwas, Pratik; Zhang, Haiyun; Chen, Xiaozhuo

    2017-10-20

    Cancer cells are able to uptake extracellular ATP (eATP) via macropinocytosis to elevate intracellular ATP (iATP) levels, enhancing their survival in drug treatment. However, the involved drug resistance mechanisms are unknown. Here we investigated the roles of eATP as either an energy or a phosphorylating molecule in general drug resistance mediated by ATP internalization and iATP elevation. We report that eATP increased iATP levels and promoted drug resistance to various tyrosine kinase inhibitors (TKIs) and chemo-drugs in human cancer cell lines of five cancer types. In A549 lung cancer cells, the resistance was downregulated by macropinocytosis inhibition or siRNA knockdown of PAK1, an essential macropinocytosis enzyme. The elevated iATP upregulated the efflux activity of ABC transporters in A549 and SK-Hep-1 cells as well as phosphorylation of PDGFRα and proteins in the PDGFR-mediated Akt-mTOR and Raf-MEK signaling pathways in A549 cells. Similar phosphorylation upregulations were found in A549 tumors. These results demonstrate that eATP induces different types of drug resistance by eATP internalization and iATP elevation, implicating the ATP-rich tumor microenvironment in cancer drug resistance, expanding our understanding of the roles of eATP in the Warburg effect and offering new anticancer drug resistance targets.

  7. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    Science.gov (United States)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  8. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    Science.gov (United States)

    Haagsma, Anna C; Driessen, Nicole N; Hahn, Marc-Manuel; Lill, Holger; Bald, Dirk

    2010-12-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme in the energy metabolism of Mycobacterium tuberculosis; however, no biochemical data are available to characterize the role of ATP synthase in slow-growing mycobacterial strains. Here, we show that inverted membrane vesicles from the slow-growing model strain Mycobacterium bovis BCG are active in ATP synthesis, but ATP synthase displays no detectable ATP hydrolysis activity and does not set up a proton-motive force (PMF) using ATP as a substrate. Treatment with methanol as well as PMF activation unmasked the ATP hydrolysis activity, indicating that the intrinsic subunit ɛ and inhibitory ADP are responsible for the suppression of hydrolytic activity. These results suggest that the enzyme is needed for the synthesis of ATP, not for the maintenance of the PMF. For the development of new antimycobacterial drugs acting on ATP synthase, screening for ATP synthesis inhibitors, but not for ATP hydrolysis blockers, can be regarded as a promising strategy. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes.

    Science.gov (United States)

    Burkeen, Jeff F; Womac, Alisa D; Earnest, David J; Zoran, Mark J

    2011-06-08

    The master circadian pacemaker located within the suprachiasmatic nuclei (SCN) controls neural and neuroendocrine rhythms in the mammalian brain. Astrocytes are abundant in the SCN, and this cell type displays circadian rhythms in clock gene expression and extracellular accumulation of ATP. Still, the intracellular signaling pathways that link the SCN clockworks to circadian rhythms in extracellular ATP accumulation remain unclear. Because ATP release from astrocytes is a calcium-dependent process, we investigated the relationship between intracellular Ca(2+) and ATP accumulation and have demonstrated that intracellular Ca(2+) levels fluctuate in an antiphase relationship with rhythmic ATP accumulation in rat SCN2.2 cell cultures. Furthermore, mitochondrial Ca(2+) levels were rhythmic and maximal in precise antiphase with the peak in cytosolic Ca(2+). In contrast, our finding that peak mitochondrial Ca(2+) occurred during maximal extracellular ATP accumulation suggests a link between these cellular rhythms. Inhibition of the mitochondrial Ca(2+) uniporter disrupted the rhythmic production and extracellular accumulation of ATP. ATP, calcium, and the biological clock affect cell division and have been implicated in cell death processes. Nonetheless, rhythmic extracellular ATP accumulation was not disrupted by cell cycle arrest and was not correlated with caspase activity in SCN2.2 cell cultures. Together, these results demonstrate that mitochondrial Ca(2+) mediates SCN2.2 rhythms in extracellular ATP accumulation and suggest a role for circadian gliotransmission in SCN clock function.

  10. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes

    Directory of Open Access Journals (Sweden)

    Francesco Drago

    2017-12-01

    Full Text Available Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs, which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012. However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.

  11. Activation of retinal glial (Müller cells by extracellular ATP induces pronounced increases in extracellular H+ flux.

    Directory of Open Access Journals (Sweden)

    Boriana K Tchernookova

    Full Text Available Small alterations in extracellular acidity are potentially important modulators of neuronal signaling within the vertebrate retina. Here we report a novel extracellular acidification mechanism mediated by glial cells in the retina. Using self-referencing H+-selective microelectrodes to measure extracellular H+ fluxes, we show that activation of retinal Müller (glial cells of the tiger salamander by micromolar concentrations of extracellular ATP induces a pronounced extracellular H+ flux independent of bicarbonate transport. ADP, UTP and the non-hydrolyzable analog ATPγs at micromolar concentrations were also potent stimulators of extracellular H+ fluxes, but adenosine was not. The extracellular H+ fluxes induced by ATP were mimicked by the P2Y1 agonist MRS 2365 and were significantly reduced by the P2 receptor blockers suramin and PPADS, suggesting activation of P2Y receptors. Bath-applied ATP induced an intracellular rise in calcium in Müller cells; both the calcium rise and the extracellular H+ fluxes were significantly attenuated when calcium re-loading into the endoplasmic reticulum was inhibited by thapsigargin and when the PLC-IP3 signaling pathway was disrupted with 2-APB and U73122. The anion transport inhibitor DIDS also markedly reduced the ATP-induced increase in H+ flux while SITS had no effect. ATP-induced H+ fluxes were also observed from Müller cells isolated from human, rat, monkey, skate and lamprey retinae, suggesting a highly evolutionarily conserved mechanism of potential general importance. Extracellular ATP also induced significant increases in extracellular H+ flux at the level of both the outer and inner plexiform layers in retinal slices of tiger salamander which was significantly reduced by suramin and PPADS. We suggest that the novel H+ flux mediated by ATP-activation of Müller cells and of other glia as well may be a key mechanism modulating neuronal signaling in the vertebrate retina and throughout the brain.

  12. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    Directory of Open Access Journals (Sweden)

    Rozan Vroman

    2014-05-01

    Full Text Available Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms, highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form

  13. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants.

    Science.gov (United States)

    Tanaka, Kiwamu; Choi, Jeongmin; Cao, Yangrong; Stacey, Gary

    2014-01-01

    As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.

  14. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants

    OpenAIRE

    Tanaka, Kiwamu; Choi, Jeongmin; Cao, Yangrong; Stacey, Gary

    2014-01-01

    As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling role in animals, includ...

  15. Extracellular ATP4- promotes cation fluxes in the J774 mouse macrophage cell line

    International Nuclear Information System (INIS)

    Steinberg, T.H.; Silverstein, S.C.

    1987-01-01

    Extracellular ATP stimulates transmembrane ion fluxes in the mouse macrophage cell line J774. In the presence of Mg2+, nonhydrolyzable ATP analogs and other purine and pyrimidine nucleotides do not elicit this response, suggesting the presence of a specific receptor for ATP on the macrophage plasma membrane. One candidate for such a receptor is the ecto-ATPase expressed on these cells. We, therefore, investigated the role of this enzyme in ATP-induced 86 Rb+ efflux in J774 cells. The ecto-ATPase had a broad nucleotide specificity and did not hydrolyze extracellular ATP in the absence of divalent cations. 86 Rb+ efflux was not blocked by inhibition of the ecto-ATPase and did not require Ca2+ or Mg2+. In fact, ATP-stimulated 86 Rb+ efflux was inhibited by Mg2+ and correlated with the availability of ATP4- in the medium. In the absence of divalent cations, the slowly hydrolyzable ATP analogs adenosine 5'-(beta, gamma-imido)triphosphate (AMP-PNP) and adenosine 5'-O-(3-thio)triphosphate (ATP-gamma-S) also stimulated 86 Rb+ efflux, albeit at higher concentrations than that required for ATP4-. Exposure of J774 cells to 10 mM ATP for 45 min caused death of 95% of cells. By this means we selected variant J774 cells that did not exhibit 86 Rb+ efflux in the presence of extracellular ATP but retained ecto-ATPase activity. These results show that the ecto-ATPase of J774 cells does not mediate the effects of ATP on these cells; that ATP4- and not MgATP2- promotes 86 Rb+ efflux from these cells; and that hydrolysis of ATP is not required to effect this change in membrane permeability. These findings suggest that J774 cells possess a plasma membrane receptor which binds ATP4-, AMP-PNP, and ATP-gamma-S, and that the ecto-ATPase limits the effects of ATP on these cells by hydrolyzing Mg-ATP2-

  16. Extracellular ATP: a modulator of cell death and pathogen defense in plants.

    Science.gov (United States)

    Chivasa, Stephen; Tomé, Daniel F A; Murphy, Alex M; Hamilton, John M; Lindsey, Keith; Carr, John P

    2009-11-01

    Living organisms acquire or synthesize high energy molecules, which they frugally conserve and use to meet their cellular metabolic demands. Therefore, it is surprising that ATP, the most accessible and commonly utilized chemical energy carrier, is actively secreted to the extracellular matrix of cells. It is now becoming clear that in plants this extracellular ATP (eATP) is not wasted, but harnessed at the cell surface to signal across the plasma membrane of the secreting cell and neighboring cells to control gene expression and influence plant development. Identification of the gene/protein networks regulated by eATP-mediated signaling should provide insight into the physiological roles of eATP in plants. By disrupting eATP-mediated signaling, we have identified pathogen defense genes as part of the eATP-regulated gene circuitry, leading us to the discovery that eATP is a negative regulator of pathogen defense in plants.(1) Previously, we reported that eATP is a key signal molecule that modulates programmed cell death in plants.(2) A complex picture is now emerging, in which eATP-mediated signaling cross-talks with signaling mediated by the major plant defense hormone, salicylic acid, in the regulation of pathogen defense and cell death.

  17. Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction

    Science.gov (United States)

    Giniatullin, AR; Grishin, SN; Sharifullina, ER; Petrov, AM; Zefirov, AL; Giniatullin, RA

    2005-01-01

    During normal cell metabolism the production of intracellular ATP is associated with the generation of reactive oxygen species (ROS), which appear to be important signalling molecules. Both ATP and ROS can be released extracellularly by skeletal muscle during intense activity. Using voltage clamp recording combined with imaging and biochemical assay of ROS, we tested the hypothesis that at the neuromuscular junction extracellular ATP generates ROS to inhibit transmitter release from motor nerve endings. We found that ATP produced the presynaptic inhibitory action on multiquantal end-plate currents. The inhibitory action of ATP (but not that of adenosine) was significantly reduced by several antioxidants or extracellular catalase, which breaks down H2O2. Consistent with these data, the depressant effect of ATP was dramatically potentiated by the pro-oxidant Fe2+. Exogenous H2O2 reproduced the depressant effects of ATP and showed similar sensitivity to anti- and pro-oxidants. While NO also inhibited synaptic transmission, inhibitors of the NO-producing cascade did not prevent the depressant action of ATP. The ferrous oxidation in xylenol orange assay showed the increase of ROS production by ATP and 2-MeSADP but not by adenosine. Suramin, a non-selective antagonist of P2 receptors, and pertussis toxin prevented the action of ATP on ROS production. Likewise, imaging with the ROS-sensitive dye carboxy-2′,7′-dichlorodihydrofluorescein revealed increased production of ROS in the muscle treated with ATP or ADP while UTP or adenosine had no effect. Thus, generation of ROS contributed to the ATP-mediated negative feedback mechanism controlling quantal secretion of ACh from the motor nerve endings. PMID:15774519

  18. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    M Florencia Leal Denis

    Full Text Available The peptide mastoparan 7 (MST7 triggered in human erythrocytes (rbcs the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe, interacting with P (purinergic receptors, can affect cell volume (Vr, we explored the dynamic regulation between Vr and ATPe.We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors.In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40-50% and swelling by 40-60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%.Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs.

  19. Hypophosphatemia promotes lower rates of muscle ATP synthesis

    OpenAIRE

    Pesta, Dominik H.; Tsirigotis, Dimitrios N.; Befroy, Douglas E.; Caballero, Daniel; Jurczak, Michael J.; Rahimi, Yasmeen; Cline, Gary W.; Dufour, Sylvie; Birkenfeld, Andreas L.; Rothman, Douglas L.; Carpenter, Thomas O.; Insogna, Karl; Petersen, Kitt Falk; Bergwitz, Clemens; Shulman, Gerald I.

    2016-01-01

    Hypophosphatemia can lead to muscle weakness and respiratory and heart failure, but the mechanism is unknown. To address this question, we noninvasively assessed rates of muscle ATP synthesis in hypophosphatemic mice by using in vivo saturation transfer [31P]-magnetic resonance spectroscopy. By using this approach, we found that basal and insulin-stimulated rates of muscle ATP synthetic flux (V ATP) and plasma inorganic phosphate (Pi) were reduced by 50% in mice with diet-induced hypophosphat...

  20. The danger signal extracellular ATP is an inducer of Fusobacterium nucleatum biofilm dispersal

    Directory of Open Access Journals (Sweden)

    Qinfeng Ding

    2016-11-01

    Full Text Available Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP is an example of a danger associated molecular pattern (DAMP employed by mammalian cells to elicit inflammatory and damage healing responses. Although the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were significantly more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also exhibited significantly higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a

  1. The Danger Signal Extracellular ATP Is an Inducer ofFusobacterium nucleatumBiofilm Dispersal.

    Science.gov (United States)

    Ding, Qinfeng; Tan, Kai Soo

    2016-01-01

    Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum , an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA , a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to

  2. The Danger Signal Extracellular ATP Is an Inducer of Fusobacterium nucleatum Biofilm Dispersal

    Science.gov (United States)

    Ding, Qinfeng; Tan, Kai Soo

    2016-01-01

    Plaque biofilm is the primary etiological agent of periodontal disease. Biofilm formation progresses through multiple developmental stages beginning with bacterial attachment to a surface, followed by development of microcolonies and finally detachment and dispersal from a mature biofilm as free planktonic bacteria. Tissue damage arising from inflammatory response to biofilm is one of the hallmark features of periodontal disease. A consequence of tissue damage is the release of ATP from within the cell into the extracellular space. Extracellular ATP (eATP) is an example of a danger associated molecular pattern (DAMP) employed by mammalian cells to elicit inflammatory and damage healing responses. Although, the roles of eATP as a signaling molecule in multi-cellular organisms have been relatively well studied, exogenous ATP also influences bacteria biofilm formation. Since plaque biofilms are continuously exposed to various stresses including exposure to the host damage factors such as eATP, we hypothesized that eATP, in addition to eliciting inflammation could potentially influence the biofilm lifecycle of periodontal associated bacteria. We found that eATP rather than nutritional factors or oxidative stress induced dispersal of Fusobacterium nucleatum, an organism associated with periodontal disease. eATP induced biofilm dispersal through chelating metal ions present in biofilm. Dispersed F. nucleatum biofilm, regardless of natural or induced dispersal by exogenous ATP, were more adhesive and invasive compared to planktonic or biofilm counterparts, and correspondingly activated significantly more pro-inflammatory cytokine production in infected periodontal fibroblasts. Dispersed F. nucleatum also showed higher expression of fadA, a virulence factor implicated in adhesion and invasion, compared to planktonic or biofilm bacteria. This study revealed for the first time that periodontal bacterium is capable of co-opting eATP, a host danger signaling molecule to detach

  3. Extracellular ATP modulates synaptic plasticity induced by activation of metabotropic glutamate receptors in the hippocampus.

    Science.gov (United States)

    Yamazaki, Yoshihiko; Fujii, Satoshi

    2015-01-01

    Synaptic plasticity is believed to be a cellular mechanism for memory formation in the brain. It has been known that the metabotropic glutamate receptor (mGluR) is required for persistent forms of memory and induction of synaptic plasticity. Application of mGluR agonists induces synaptic plasticity in the absence of electrical conditioning stimulation, such as high or low frequency stimulation. The direction of the mGluR-induced synaptic plasticity, i.e., either long-term potentiation (LTP) or long-term-depression (LTD), is dependent on whether N-methyl-D-aspartate receptors (NMDARs) are co-activated with mGluRs. ATP has modulatory effects on neuronal functions and, in particular, there is increasing evidence that it plays a crucial role in synaptic plasticity. LTP can be induced by application of ATP, and this effect is inhibited by NMDAR antagonist. Although cooperative effects of NMDARs and mGluRs and of NMDARs and extracellular ATP in synaptic plasticity have been revealed, the effect of extracellular ATP on mGluR-induced synaptic plasticity is unknown. In this article, we summarize published data on mGluR- and ATP-induced synaptic plasticity, and present new data showing that extracellular ATP facilitates both the LTP and LTD induced by mGluR activation.

  4. Excessive Extracellular ATP Desensitizes P2Y2 and P2X4 ATP Receptors Provoking Surfactant Impairment Ending in Ventilation-Induced Lung Injury

    Directory of Open Access Journals (Sweden)

    Djo Hasan

    2018-04-01

    Full Text Available Stretching the alveolar epithelial type I (AT I cells controls the intercellular signaling for the exocytosis of surfactant by the AT II cells through the extracellular release of adenosine triphosphate (ATP (purinergic signaling. Extracellular ATP is cleared by extracellular ATPases, maintaining its homeostasis and enabling the lung to adapt the exocytosis of surfactant to the demand. Vigorous deformation of the AT I cells by high mechanical power ventilation causes a massive release of extracellular ATP beyond the clearance capacity of the extracellular ATPases. When extracellular ATP reaches levels >100 μM, the ATP receptors of the AT II cells become desensitized and surfactant impairment is initiated. The resulting alteration in viscoelastic properties and in alveolar opening and collapse time-constants leads to alveolar collapse and the redistribution of inspired air from the alveoli to the alveolar ducts, which become pathologically dilated. The collapsed alveoli connected to these dilated alveolar ducts are subject to a massive strain, exacerbating the ATP release. After reaching concentrations >300 μM extracellular ATP acts as a danger-associated molecular pattern, causing capillary leakage, alveolar space edema, and further deactivation of surfactant by serum proteins. Decreasing the tidal volume to 6 mL/kg or less at this stage cannot prevent further lung injury.

  5. Extracellular ATP induces graded reactive response of astrocytes and strengthens their antioxidative defense in vitro.

    Science.gov (United States)

    Adzic, Marija; Stevanovic, Ivana; Josipovic, Natasa; Laketa, Danijela; Lavrnja, Irena; Bjelobaba, Ivana M; Bozic, Iva; Jovanovic, Marija; Milosevic, Milena; Nedeljkovic, Nadezda

    2017-04-01

    It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1β release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Structure of extracellular signal-regulated kinase 2 in complex with ATP and ADP.

    Science.gov (United States)

    Zhang, Jun; Shapiro, Paul; Pozharski, Edwin

    2012-12-01

    Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are members of the mitogen-activated protein (MAP) kinase family. Constitutive activation of the ERK proteins contributes to the development and progression of numerous human tumors. Thus, ERK1 and ERK2 are promising targets for the design and the development of anticancer drugs. The detailed structural analysis of ERK complexed with ATP can provide valuable information for the design of new ligands that can bind in the ATP-binding pocket and inhibit ERK activity. In this study, the structures of apo-form ERK2 and of its complexes with the substrate ATP and the product ADP were determined. Comparison with the structural homolog cyclin-dependent kinase 2 reveals differences in the way that the ATP binding to the protein is mediated by magnesium. Only minor conformational changes are identified that occur upon substrate binding, and these are limited to the active-site residues.

  7. Evidence for the Synthesis of ATP by an F0F1 ATP Synthase in Membrane Vesicles from Halorubrum Saccharovorum

    Science.gov (United States)

    Faguy, David; Lawson, Darion; Hochstein, Lawrence I.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Vesicles prepared in a buffer containing ADP, Mg(2+) and Pi synthesized ATP at an initial rate of 2 nmols/min/mg protein after acidification of the bulk medium (pH 8 (right arrow) 4). The intravesicular ATP concentration reached a steady state after about 30 seconds and slowly declined thereafter. ATP synthesis was inhibited by low concentrations of dicyclohexylcarbodiimide and m-chlorophenylhydrazone indicating that synthesis took place in response to the proton gradient. NEM and PCMS, which inhibit vacuolar ATPases and the vacuolar-like ATPases of extreme halophiles, did not affect ATP synthesis, and, in fact, produced higher steady state levels of ATP. This suggested that two ATPase activities were present, one which catalyzed ATP synthesis and one that caused its hydrolysis. Azide, a specific inhibitor of F0F1 ATP Synthases, inhibited halobacterial ATP synthesis. The distribution of acridine orange as imposed by a delta pH demonstrated that azide inhibition was not due to the collapse of the proton gradient due to azide acting as a protonophore. Such an effect was observed, but only at azide concentrations higher than those that inhibited ATP synthesis. These results confirm the earler observations with cells of H. saccharovorum and other extreme halophiles that ATP synthesis is inconsistent with the operation of a vacuolar-like ATPase. Therefore, the observation that a vacuolar-like enzyme is responsible for ATP synthesis (and which serves as the basis for imputing ATP synthesis to the vacuolar-like ATPases of the extreme halophiles, and the Archaea in general) should be taken with some degree of caution.

  8. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R.

    Science.gov (United States)

    Wilhelm, Konrad; Ganesan, Jayanthi; Müller, Tobias; Dürr, Christoph; Grimm, Melanie; Beilhack, Andreas; Krempl, Christine D; Sorichter, Stephan; Gerlach, Ulrike V; Jüttner, Eva; Zerweck, Alf; Gärtner, Frank; Pellegatti, Patrizia; Di Virgilio, Francesco; Ferrari, Davide; Kambham, Neeraja; Fisch, Paul; Finke, Jürgen; Idzko, Marco; Zeiser, Robert

    2010-12-01

    Danger signals released upon cell damage can cause excessive immune-mediated tissue destruction such as that found in acute graft-versus-host disease (GVHD), allograft rejection and systemic inflammatory response syndrome. Given that ATP is found in small concentrations in the extracellular space under physiological conditions, and its receptor P2X(7)R is expressed on several immune cell types, ATP could function as a danger signal when released from dying cells. We observed increased ATP concentrations in the peritoneal fluid after total body irradiation, and during the development of GVHD in mice and in humans. Stimulation of antigen-presenting cells (APCs) with ATP led to increased expression of CD80 and CD86 in vitro and in vivo and actuated a cascade of proinflammatory events, including signal transducer and activator of transcription-1 (STAT1) phosphorylation, interferon-γ (IFN-γ) production and donor T cell expansion, whereas regulatory T cell numbers were reduced. P2X(7)R expression increased when GVHD evolved, rendering APCs more responsive to the detrimental effects of ATP, thereby providing positive feedback signals. ATP neutralization, early P2X(7)R blockade or genetic deficiency of P2X(7)R during GVHD development improved survival without immune paralysis. These data have major implications for transplantation medicine, as pharmacological interference with danger signals that act via P2X(7)R could lead to the development of tolerance without the need for intensive immunosuppression.

  9. Haploinsufficient TNAP Mice Display Decreased Extracellular ATP Levels and Expression of Pannexin-1 Channels

    Directory of Open Access Journals (Sweden)

    Álvaro Sebastián-Serrano

    2018-03-01

    Full Text Available Hypophosphatasia (HPP is a rare heritable metabolic bone disease caused by hypomorphic mutations in the ALPL (in human or Akp2 (in mouse gene, encoding the tissue-nonspecific alkaline phosphatase (TNAP enzyme. In addition to skeletal and dental malformations, severe forms of HPP are also characterized by the presence of spontaneous seizures. Initially, these seizures were attributed to an impairment of GABAergic neurotransmission caused by altered vitamin B6 metabolism. However, recent work by our group using knockout mice null for TNAP (TNAP-/-, a well-described model of infantile HPP, has revealed a deregulation of purinergic signaling contributing to the seizure phenotype. In the present study, we report that adult heterozygous (TNAP+/- transgenic mice with decreased TNAP activity in the brain are more susceptible to adenosine 5′-triphosphate (ATP-induced seizures. Interestingly, when we analyzed the extracellular levels of ATP in the cerebrospinal fluid, we found that TNAP+/- mice present lower levels than control mice. To elucidate the underlying mechanism, we evaluated the expression levels of other ectonucleotidases, as well as different proteins involved in ATP release, such as pannexin, connexins, and vesicular nucleotide transporter. Among these, Pannexin-1 (Panx1 was the only one showing diminished levels in the brains of TNAP+/- mice. Altogether, these findings suggest that a physiological regulation of extracellular ATP levels and Panx1 changes may compensate for the reduced TNAP activity in this model of HPP.

  10. Extracellular ATP in the lymphohematopoietic system: P2Z purinoceptors and membrane permeabilization

    Directory of Open Access Journals (Sweden)

    Persechini P.M.

    1998-01-01

    Full Text Available The effects of extracellular nucleosides and nucleotides on many organs and systems have been recognized for almost 50 years. The effects of extracellular ATP (ATPo, UTPo, ADPo, and other agonists are mediated by P2 purinoceptors. One of the most dramatic effects of ATPo is the permeabilization of plasma membranes to low molecular mass solutes of up to 900 Da. This effect is evident in several cells of the lymphohematopoietic system and is supposed to be mediated by P2Z, an ATP4--activated purinoceptor. Here, we review some basic information concerning P2 purinoceptors and focus our attention on P2Z-associated phenomena displayed by macrophages. Using fluorescent dye uptake, measurement of free intracellular Ca2+ concentration and electrophysiological recordings, we elucidate some of the events that follow the application of ATP to the extracellular surface of macrophages. We propose a regulatory mechanism for the P2Z-associated permeabilization pore. The presence of P2 purinoceptors in cells of the lymphohematopoietic system makes them potential candidates to mediate immunoregulatory events

  11. Clipboard: New paradigm for ATP synthesis and consumption

    Indian Academy of Sciences (India)

    2011-03-14

    Mar 14, 2011 ... Home; Journals; Journal of Biosciences; Volume 36; Issue 1. Clipboard: New paradigm for ATP synthesis and consumption. C Channakeshava. Volume 36 Issue 1 March 2011 pp 3-4. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jbsc/036/01/0003-0004 ...

  12. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages

    Science.gov (United States)

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-01-01

    HIV type 1 (HIV-1) infects CD4+ T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as “Trojan horses” carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages. PMID:26056317

  13. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.

    Science.gov (United States)

    Graziano, Francesca; Desdouits, Marion; Garzetti, Livia; Podini, Paola; Alfano, Massimo; Rubartelli, Anna; Furlan, Roberto; Benaroch, Philippe; Poli, Guido

    2015-06-23

    HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.

  14. Role of ATP sensitive potassium channel in extracellular potassium accumulation and cardiac arrhythmias during myocardial ischaemia.

    Science.gov (United States)

    Billman, G E

    1994-06-01

    Extracellular potassium rises rapidly during myocardial ischaemia, correlating with the onset of ventricular arrhythmias. The extracellular accumulation of potassium can induce abnormalities in both impulse conduction and impulse generation. Inhomogeneities of potassium conductance will elicit regional differences in action potential duration and repolarisation. The resulting spatial dispersion of refractory period will allow for fragmentation of impulse conduction on ensuing beats, the formation of irregular reentrant pathways and ventricular fibrillation. In a similar manner, the spread of injury current from the ischaemic tissue to surrounding normal tissue can trigger extrasystoles (depolarisation induced automaticity). It has been hypothesised that the activation of the ATP sensitive potassium channel contributes significantly to reductions in action potential duration and increases in extracellular potassium accumulation during myocardial ischaemia. ATP sensitive potassium channel antagonists prevent ischaemically induced reductions in action potential duration and the dispersion of refractory period but may induce oscillatory afterpotentials under some conditions (for example, calcium overload). In contrast, potassium channel agonists enhance the dispersion of refractory period ischaemia, which promotes the formation of re-entrant arrhythmias. The pharmacological modulation of the ATP sensitive potassium channels could therefore offer a novel approach for the management of cardiac arrhythmias in patients with ischaemic heart disease. In general, channel antagonists prevent ventricular fibrillation, while high (hypotensive) doses of channel agonists can induce malignant arrhythmias during ischaemia in animal models. However, recent evidence also suggests that potassium channel agonists may promote a better preservation of myocardial mechanical performance during reperfusion while ATP sensitive potassium channel antagonists exacerbate mechanical depression

  15. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease

    Directory of Open Access Journals (Sweden)

    Leigh A. Swayne

    2017-08-01

    Full Text Available Pannexin 1 (Panx1 channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs. Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.

  16. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    Science.gov (United States)

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. L-carnitine enhances extracellular matrix synthesis in human primary chondrocytes.

    Science.gov (United States)

    Stoppoloni, Daniela; Politi, Laura; Dalla Vedova, Pietro; Messano, Masa; Koverech, Aleardo; Scandurra, Roberto; Scotto d'Abusco, Anna

    2013-09-01

    Osteoarthritis (OA) is one of the most common degenerative joint disease for which there is no cure. It is treated mainly with non-steroidal anti-inflammatory drugs to control the symptoms and some supplements, such as glucosamine and chondroitin sulphate in order to obtain structure-modifying effects. Aim of this study is to investigate the effects of L-carnitine, a molecule with a role in cellular energy metabolism, on extracellular matrix synthesis in human primary chondrocytes (HPCs). Dose-dependent effect of L-carnitine on cartilage matrix production, cell proliferation and ATP synthesis was examined by incubating HPCs with various amounts of molecule in monolayer (2D) and in hydromatrix scaffold (3D). L-Carnitine affected extracellular matrix synthesis in 3D in a dose-dependent manner; moreover, L-carnitine was very effective to stimulate cell proliferation and to induce ATP synthesis, mainly in 3D culture condition. In conclusion, L-carnitine enhances cartilage matrix glycosaminoglycan component production and cell proliferation, suggesting that this molecule could be useful in the treatment of pathologies where extracellular matrix is degraded, such as OA. To our knowledge, this is the first study where the effects of L-carnitine are evaluated in HPCs.

  18. ATP synthase from slow and fast growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  19. ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction.

    NARCIS (Netherlands)

    Haagsma, A.C.; Driessen, N.N.; Hahn, M.M.; Lill, H.; Bald, D.

    2010-01-01

    ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme

  20. ATP-independent DNA synthesis in Vaccinia-infected L cells

    International Nuclear Information System (INIS)

    Berger, N.A.; Kauff, R.A.; Sikorski, G.W.

    1978-01-01

    Mouse L cells can be made permeable to exogenous nucleotides by a cold shock in 0.01 M Tris . HCl pH 7.8, 0.25 M sucrose, 1 mM EDTA, 30 mM 2-mercaptoethanol and 4 mM MgCl 2 . DNA synthesis in permeabilized L cells requires ATP whereas DNA synthesis in permeabilized L cells that are infected with Vaccinia virus is ATP-independent. Permeabilized L cells that are infected with ultraviolet-irradiated virus show a marked suppression of DNA synthesis which is not corrected by an excess of deoxynucleoside triphosphates and ATP. The ATP-dependent and ATP-independent processes of DNA synthesis are inhibited to the same extent by Mal-Net, pHMB, ara CTP and phosphonoacetate. Concentrations of daunorubicin and cytembena, which cause marked inhibition of the ATP-dependent enzymes, only cause partial inhibition of the ATP-independent enzymes. (Auth.)

  1. ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    obese and eight subjects with type 2 diabetes precultured under normophysiological conditions. Furthermore, mitochondria were isolated and ATP production was measured by luminescence at baseline and during acute insulin stimulation with or without concomitant ATP utilization by hexokinase. Mitochondrial...... mass and the ATP synthesis rate, neither at baseline nor during acute insulin stimulation, were not different between groups. The ratio of ATP synthesis rate at hexokinase versus ATP synthesis rate at baseline was lower in diabetic mitochondria compared to lean mitochondria. Thus the lower content...... of muscle mitochondria in type 2 diabetes in vivo is an adaptive trait and mitochondrial dysfunction in type 2 diabetes in vivo is based both on primarily impaired ATP synthesis and an adaptive loss of mitochondrial mass....

  2. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP

    OpenAIRE

    Perruzza, Lisa; Gargari, Giorgio; Proietti, Michele; Fosso, Bruno; D’Erchia, Anna Maria; Faliti, Caterina Elisa; Rezzonico-Jost, Tanja; Scribano, Daniela; Mauri, Laura; Colombo, Diego; Pellegrini, Giovanni; Moregola, Annalisa; Mooser, Catherine; Pesole, Graziano; Nicoletti, Mauro

    2017-01-01

    Summary The ATP-gated ionotropic P2X7 receptor regulates T?follicular helper (Tfh) cell abundance in the Peyer?s patches (PPs) of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem ...

  3. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  4. Inhibition of ATP synthesis by fenbufen and its conjugated metabolites in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    in inhibiting ATP synthesis. Fenbufen showed time and concentration dependent inhibition of ATP synthesis with Kinact of 4.4 min(-1) and KI of 0.88 μM and Kinact/KI ratio of 5.01 min(-1) μM(-1). Data show that fenbufen did not act through opening MPT pore, nor did incubation of mitochondria with reduced GSH...

  5. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout

    DEFF Research Database (Denmark)

    Jensen, Frank B; Agnisola, Claudio; Novak, Ivana

    2009-01-01

    The present study tested the hypothesis that rainbow trout erythrocytes release ATP upon deoxygenation, a mechanism that enables mammalian erythrocytes to produce local vasodilation. We also investigated ATP release and ectonucleotidase activity in the coronary circulation of the isolated trout h...

  6. The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2011-01-01

    Although, most studies of human skeletal muscle in vivo have reported the co-existence of impaired insulin sensitivity and reduced expression of oxidative phosphorylation genes, there is so far no clear evidence for whether the intrinsic ATP synthesis is primarily decreased or not in the mitochon...... compared to lean control. The ATP synthesis rate without ATP consumption was not different between groups and there were no significant gender differences. The mitochondrial dysfunction in type 2 diabetes in vivo is partly based on a primarily impaired ATP synthesis....... or not in the mitochondria of diabetic skeletal muscle from subjects with type 2 diabetes. ATP synthesis was measured on mitochondria isolated from cultured myotubes established from lean (11/9), obese (9/11) and subjects with type 2 diabetes (9/11) (female/male, n=20 in each group), precultured under normophysiological...

  7. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP.

    Science.gov (United States)

    Perruzza, Lisa; Gargari, Giorgio; Proietti, Michele; Fosso, Bruno; D'Erchia, Anna Maria; Faliti, Caterina Elisa; Rezzonico-Jost, Tanja; Scribano, Daniela; Mauri, Laura; Colombo, Diego; Pellegrini, Giovanni; Moregola, Annalisa; Mooser, Catherine; Pesole, Graziano; Nicoletti, Mauro; Norata, Giuseppe Danilo; Geuking, Markus B; McCoy, Kathy D; Guglielmetti, Simone; Grassi, Fabio

    2017-03-14

    The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh) cell abundance in the Peyer's patches (PPs) of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. T Follicular Helper Cells Promote a Beneficial Gut Ecosystem for Host Metabolic Homeostasis by Sensing Microbiota-Derived Extracellular ATP

    Directory of Open Access Journals (Sweden)

    Lisa Perruzza

    2017-03-01

    Full Text Available The ATP-gated ionotropic P2X7 receptor regulates T follicular helper (Tfh cell abundance in the Peyer’s patches (PPs of the small intestine; deletion of P2rx7, encoding for P2X7, in Tfh cells results in enhanced IgA secretion and binding to commensal bacteria. Here, we show that Tfh cell activity is important for generating a diverse bacterial community in the gut and that sensing of microbiota-derived extracellular ATP via P2X7 promotes the generation of a proficient gut ecosystem for metabolic homeostasis. The results of this study indicate that Tfh cells play a role in host-microbiota mutualism beyond protecting the intestinal mucosa by induction of affinity-matured IgA and suggest that extracellular ATP constitutes an inter-kingdom signaling molecule important for selecting a beneficial microbial community for the host via P2X7-mediated regulation of B cell help.

  9. Astrocyte calcium waves propagate proximally by gap junction and distally by extracellular diffusion of ATP released from volume-regulated anion channels.

    Science.gov (United States)

    Fujii, Yuki; Maekawa, Shohei; Morita, Mitsuhiro

    2017-10-13

    Wave-like propagation of [Ca 2+ ] i increases is a remarkable intercellular communication characteristic in astrocyte networks, intercalating neural circuits and vasculature. Mechanically-induced [Ca 2+ ] i increases and their subsequent propagation to neighboring astrocytes in culture is a classical model of astrocyte calcium wave and is known to be mediated by gap junction and extracellular ATP, but the role of each pathway remains unclear. Pharmacologic analysis of time-dependent distribution of [Ca 2+ ] i revealed three distinct [Ca 2+ ] i increases, the largest being in stimulated cells independent of extracellular Ca 2+ and inositol 1,4,5-trisphosphate-induced Ca 2+ release. In addition, persistent [Ca 2+ ] i increases were found to propagate rapidly via gap junctions in the proximal region, and transient [Ca 2+ ] i increases were found to propagate slowly via extracellular ATP in the distal region. Simultaneous imaging of astrocyte [Ca 2+ ] i and extracellular ATP, the latter of which was measured by an ATP sniffing cell, revealed that ATP was released within the proximal region by volume-regulated anion channel in a [Ca 2+ ] i independent manner. This detailed analysis of a classical model is the first to address the different contributions of two major pathways of calcium waves, gap junctions and extracellular ATP.

  10. Nucleotide receptors stimulation by extracellular ATP controls Hsp90 expression through APE1/Ref-1 in thyroid cancer cells: a novel tumorigenic pathway.

    Science.gov (United States)

    Pines, Alex; Bivi, Nicoletta; Vascotto, Carlo; Romanello, Milena; D'Ambrosio, Chiara; Scaloni, Andrea; Damante, Giuseppe; Morisi, Roberta; Filetti, Sebastiano; Ferretti, Elisabetta; Quadrifoglio, Franco; Tell, Gianluca

    2006-10-01

    Nucleotide receptors signaling affects cell proliferation, with possible implications on tumorigenic processes. However, molecular targets and action mechanisms of the extracellular nucleotides are still poorly elucidated. We have previously shown in ARO cells that APE1/Ref-1, a transcriptional coactivator responsible for the maintenance of the cellular proliferative rate, is functionally controlled by P2-mediated signaling. Here, we demonstrate that extracellular ATP has a mitogenic effect on ARO cells, increasing ERK phosphorylation, AP1 activation, and cyclin D1 expression. Using the ATP/ADPase apyrase and the P2 receptor antagonist suramin, we show that the extracellular ATP, physiologically released by ARO cells, exerts mitogenic effects. A differential proteomic approach was used to identify molecular events associated with the ATP-induced cell proliferation. Among other proteins, Hsp90 was found upregulated upon ATP stimulation. Pretreatment with suramin completely blocked the ATP-induced Hsp90 activation, confirming the involvement of cell-surface P2 nucleotide receptors in the ATP-mediated activation of ARO cells. Treatment of proliferating ARO cells with suramin and apyrase significantly reduced the intracellular levels of Hsp90, suggesting an autocrine/paracrine mechanism of control on Hsp90 expression by extracellular ATP. The influence of Hsp90 on ATP-induced cell proliferation was also demonstrated by its specific inhibition with 17-AAG. The molecular pathway by which ATP stimulates cell proliferation was further investigated by siRNA strategies showing that Hsp90 is a target of APE1/Ref-1 functional activation. Stimulation of ARO cells with specific nucleotide receptors agonists evidenced a major involvement of P2Y1 and P2Y2 receptors in controlling the Hsp90 activation. Accordingly, these two receptors resulted significantly upregulated in sample biopsies from different thyroid tumors. Copyright 2006 Wiley-Liss, Inc.

  11. Optimization time synthesis of nucleotide labelled [γ-32P]-ATP

    International Nuclear Information System (INIS)

    Rahman, Wira Y; Sarmini, Endang; Herlina; Lubis, Hotman; Triyanto; Hambali

    2013-01-01

    Adenosine triphosphate-labelled with γ- 32 P([γ- 32 p]-ATP) has been widely used in the biotechnology research, usually as a tracer to study aspects of physiological and pathological processes. In order to support biotechnology research in Indonesia, a process for production of [γ- 32 P]-ATP with enzymatic reaction was used as precursors DL-glyceraldehydde 3-phosphate, Adenosine Diphosphate (ADP) and H 3 32 PO 4 , and enzyme glyceraldehid 3-phosphate dehydrogenase, 3-phosphoglyceryc phosphokinase and lactate dehydrogenase. Optimization of incubation time labeled nucleotide synthesis process is performed to find the optimum conditions, in terms of the most advantageous time in the synthesis process. With the success of the synthesis and optimization is done incubation time of synthesis labeled nucleotide, the result suggested can be used for producing [γ- 32 P] -ATP to support the provision of radiolabeled nucleotide for biotechnology research in Indonesia. (author)

  12. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles.

    Science.gov (United States)

    Jo, Jae H; Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Jin, Chi-Gyu; Yang, Deok C

    2016-09-01

    The biological synthesis of metal nanoparticles is of great interest in the field of nanotechnology. The present work highlights the extracellular biological synthesis of silver nanoparticles using Pseudomonas deceptionensis DC5. The particles were synthesized in the culture supernatant within 48 h of incubation. Extracellular synthesis of silver nanoparticles in the culture supernatant was confirmed by ultraviolet-visible spectroscopy, which showed the absorption peak at 428 nm, and also under field emission transmission electron microscopy which displayed the spherical shape. In addition, the particles were characterized by X-ray diffraction spectroscopy, which corresponds to the crystalline nature of nanoparticles, and energy-dispersive X-ray analysis which exhibited the intense peak at 3 keV, resembling the silver nanoparticles. Further, the synthesized nanoparticles were examined by elemental mapping which displayed the dominance of the silver element in the synthesized product, and dynamic light scattering which showed the distribution of silver nanoparticles with respect to intensity, volume, and number of particles. Moreover, the silver nanoparticles have been found to be quite active in antimicrobial activity and biofilm inhibition activity against pathogenic microorganisms. Thus, the present work emphasized the prospect of using the P. deceptionensis DC5 to achieve the extracellular synthesis of silver nanoparticles in a facile and environmental manner.

  13. Regulation of cyclic AMP by extracellular ATP in cultured brain capillary endothelial cells

    Science.gov (United States)

    Anwar, Zubeya; Albert, Jennifer L; Gubby, Sharon E; Boyle, John P; Roberts, Jonathon A; Webb, Tania E; Boarder, Michael R

    1999-01-01

    In primary unpassaged rat brain capillary endothelial cell cultures (RBECs), using reverse-transcriptase PCR with primers specific for P2Y receptor subtypes, we detected mRNA for P2Y2, P2Y4 and P2Y6, but not P2Y1 receptors.None of the various nucleotides tested reduced forskolin elevated cyclic AMP levels in RBECs. ATP and ATPγS, as well as adenosine, enhanced cyclic AMP accumulation in the presence of forskolin.Comparison of the concentration response curves to ATPγS with those for ATP and adenosine, at different incubation times, indicated that the response to purine nucleotides was not wholly dependent on conversion to adenosine. Adenosine deaminase abolished the response to adenosine but only reduced the response to ATP by about 50%. These results suggest the participation of a receptor responsive to nucleotides.Isobutylmethylxanthine and 8-sulphophenyltheophylline prevented the cyclic AMP response, while neither 8-cyclopentyl-1,3-dipropylxanthine nor SCH58261 were effective antagonists. 2-chloradenosine gave a robust response, but neither 2-chloro-N6-cyclopentyladenosine nor CGS 21680 were agonists.These results show that adenosine and ATP can elevate the cyclic AMP levels of brain endothelial cells by acting on receptors which have a pharmacology apparently distinct from known P2Y and adenosine receptors. PMID:10510459

  14. Potentiation of Inhibitory Synaptic Transmission by Extracellular ATP in Rat Suprachiasmatic Nuclei

    Czech Academy of Sciences Publication Activity Database

    Bhattacharya, Anirban; Vávra, Vojtěch; Svobodová, Irena; Bendová, Z.; Vereb, G.; Zemková, Hana

    2013-01-01

    Roč. 33, č. 18 (2013), s. 8035-8044 ISSN 0270-6474 R&D Projects: GA AV ČR(CZ) IAA500110910; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : suprachiasmatic nucleus * P2X receptors * P2Y receptors * ATP * GABA * spontaneous inhibitory synaptic currents Subject RIV: ED - Physiology Impact factor: 6.747, year: 2013

  15. Analysis of molecular mechanisms of ATP synthesis from the standpoint of the principle of electrical neutrality.

    Science.gov (United States)

    Nath, Sunil

    2017-05-01

    Theories of biological energy coupling in oxidative phosphorylation (OX PHOS) and photophosphorylation (PHOTO PHOS) are reviewed and applied to ATP synthesis by an experimental system containing purified ATP synthase reconstituted into liposomes. The theories are critically evaluated from the standpoint of the principle of electrical neutrality. It is shown that the obligatory requirement to maintain overall electroneutrality of bulk aqueous phases imposes strong constraints on possible theories of energy coupling and molecular mechanisms of ATP synthesis. Mitchell's chemiosmotic theory is found to violate the electroneutrality of bulk aqueous phases and is shown to be untenable on these grounds. Purely electroneutral mechanisms or mechanisms where the anion/countercation gradient is dissipated or simply flows through the lipid bilayer are also shown to be inadequate. A dynamically electrogenic but overall electroneutral mode of ion transport postulated by Nath's torsional mechanism of energy transduction and ATP synthesis is shown to be consistent both with the experimental findings and the principle of electrical neutrality. It is concluded that the ATP synthase functions as a proton-dicarboxylic acid anion cotransporter in OX PHOS or PHOTO PHOS. A logical chemical explanation for the selection of dicarboxylic acids as intermediates in OX PHOS and PHOTO PHOS is suggested based on the pioneering classical thermodynamic work of Christensen, Izatt, and Hansen. The nonequilibrium thermodynamic consequences for theories in which the protons originate from water vis-a-vis weak organic acids are compared and contrasted, and several new mechanistic and thermodynamic insights into biological energy transduction by ATP synthase are offered. These considerations make the new theory of energy coupling more complete, and lead to a deeper understanding of the molecular mechanism of ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis and hydrolysis of ATP and the phosphate-ATP exchange reaction in soluble mitochondrial F1 in the presence of dimethylsulfoxide.

    Science.gov (United States)

    Tuena de Gómez-Puyou, M; Pérez-Hernández, G; Gómez-Puyou, A

    1999-12-01

    In medium containing 40% dimethylsulfoxide, soluble F1 catalyzes the hydrolysis of ATP introduced at concentrations lower than that of the enzyme [Al-Shawi, M.K. & Senior, A.E. (1992), Biochemistry 31, 886-891]. At this concentration of dimethylsulfoxide, soluble F1 also catalyzes the spontaneous synthesis of a tightly bound ATP to a level of approximately 0.15 mol per mol F1 [Gómez-Puyou, A., Tuena de Gómez-Puyou, M. & de Meis, L. (1986) Eur. J. Biochem. 159, 133-140]. The mechanisms that allow soluble F1 to carry out these apparently opposing reactions were studied. The rate of hydrolysis of ATP bound to F1 under uni-site conditions and that of synthesis of ATP were markedly similar, indicating that the two ATP molecules lie in equivalent high affinity catalytic sites. The number of enzyme molecules that have ATP at the high affinity catalytic site under conditions of synthesis or uni-site hydrolysis is less than the total number of enzyme molecules. Therefore, it was hypothesized that when the enzyme was treated with dimethylsulfoxide, a fraction of the F1 population carried out synthesis and another hydrolysis. Indeed, measurements of the two reactions under identical conditions showed that different fractions of the F1 population carried out simultaneously synthesis and hydrolysis of ATP. The reactions continued until an equilibrium level between F1.ADP + Pi F1.ATP was established. At equilibrium, about 15% of the enzyme population was in the form F1.ATP. The DeltaG degrees of the reaction with 0.54 microM F1, 2 mM Pi and 10 mM Mg2+ at pH 6.8 was -2.7 kcal.mol-1 in favor of F1.ATP. The DeltaG degrees of the reaction did not exhibit important variations with Pi concentration; thus, the reaction was in thermodynamic equilibrium. In contrast, DeltaG degrees became significantly less negative as the concentration of dimethylsulfoxide was decreased. In water, the reaction was far to the left. The equilibrium constant of the reaction diminished linearly with an

  17. Release of soluble and vesicular purine nucleoside phosphorylase from rat astrocytes and microglia induced by pro-inflammatory stimulation with extracellular ATP via P2X7 receptors.

    Science.gov (United States)

    Peña-Altamira, Luis Emiliano; Polazzi, Elisabetta; Giuliani, Patricia; Beraudi, Alina; Massenzio, Francesca; Mengoni, Ilaria; Poli, Alessandro; Zuccarini, Mariachiara; Ciccarelli, Renata; Di Iorio, Patrizia; Virgili, Marco; Monti, Barbara; Caciagli, Francesco

    2018-05-01

    Purine nucleoside phosphorylase (PNP), a crucial enzyme in purine metabolism which converts ribonucleosides into purine bases, has mainly been found inside glial cells. Since we recently demonstrated that PNP is released from rat C6 glioma cells, we then wondered whether this occurs in normal brain cells. Using rat primary cultures of microglia, astrocytes and cerebellar granule neurons, we found that in basal condition all these cells constitutively released a metabolically active PNP with Km values very similar to those measured in C6 glioma cells. However, the enzyme expression/release was greater in microglia or astrocytes that in neurons. Moreover, we exposed primary brain cell cultures to pro-inflammatory agents such as lipopolysaccharide (LPS) or ATP alone or in combination. LPS alone caused an increased interleukin-1β (IL-1β) secretion mainly from microglia and no modification in the PNP release, even from neurons in which it enhanced cell death. In contrast, ATP administered alone to glial cells at high micromolar concentrations significantly stimulated the release of PNP within 1 h, an effect not modified by LPS presence, whereas IL-1β secretion was stimulated by ATP only in cells primed for 2 h with LPS. In both cases ATP effect was mediated by P2X 7 receptor (P2X 7 R), since it was mimicked by cell exposure to Bz-ATP, an agonist of P2X 7 R, and blocked by cell pre-treatment with the P2X 7 R antagonist A438079. Interestingly, ATP-induced PNP release from glial cells partly occurred through the secretion of lysosomal vesicles in the extracellular medium. Thus, during inflammatory cerebral events PNP secretion promoted by extracellular ATP accumulation might concur to control extracellular purine signals. Further studies could elucidate whether, in these conditions, a consensual activity of enzymes downstream of PNP in the purine metabolic cascade avoids accumulation of extracellular purine bases that might concur to brain injury by unusual formation

  18. Stoichiometry of vectorial H+ movements coupled to electron transport and to ATP synthesis in mitochondria

    Science.gov (United States)

    Alexandre, Adolfo; Reynafarje, Baltazar; Lehninger, Albert L.

    1978-01-01

    In order to verify more directly our earlier measurements showing that, on the average, close to four vectorial H+ are rejected per pair of electrons passing each of the three energy-conserving sites of the mitochondrial electron transport chain, direct tests of the H+/2e- ratio for sites 2 and 3 were carried out in the presence of permeant charge-compensating cations. Site 2 was examined by utilizing succinate as electron donor and ferricyanide as electron acceptor from mitochondrial cytochrome c; the directly measured H+/2e- ratio was close to 4. Energy-conserving site 3 was isolated for study with ferrocyanide or ascorbate plus tetramethylphenylenediamine as electron donors to cytochrome c and with oxygen as electron acceptor. The directly measured H+/2e- ratio for site 3 was close to 4. The H+/ATP ratio (number of vectorial H+ ejected per ATP hydrolyzed) was determined with a new method in which the steady-state rates of both H+ ejection and ATP hydrolysis were measured in the presence of K+ + valinomycin. The H+/ATP ratio was found to approach 3.0. A proton cycle for oxidative phosphorylation is proposed, in which four electrochemical H+ equivalents are ejected per pair of electrons passing each energy-conserving site; three of the H+ equivalents pass inward to derive ATP synthesis from ADP and phosphate and the fourth H+ is used to bring about the energy-requiring electrogenic expulsion of ATP4- in exchange for extramitochondrial ADP3-, via the H+/H2PO4- symporter. PMID:31621

  19. Extracellular ATP-induced nuclear Ca{sup 2+} transient is mediated by inositol 1,4,5-trisphosphate receptors in mouse pancreatic {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zheng; Li, Zhengzheng; Peng, Gong; Chen, Xiaoli; Yin, Wenxuan [National Laboratory of Biomacromolecules, Institute of Biophysics of Chinese Academy of Sciences, 15 Datun Rd., Beijing 100101 (China); Kotlikoff, Michael I. [Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853 (United States); Yuan, Zeng-qiang, E-mail: zqyuan@sun5.ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics of Chinese Academy of Sciences, 15 Datun Rd., Beijing 100101 (China); Ji, Guangju, E-mail: gj28@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics of Chinese Academy of Sciences, 15 Datun Rd., Beijing 100101 (China)

    2009-05-01

    Extracellular ATP (eATP) induces an intracellular Ca{sup 2+} transient by activating phospholipase C (PLC)-associated P2X4 purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent Ca{sup 2+} release from intracellular stores in mouse pancreatic {beta}-cells. Using laser scanning confocal microscopy, Ca{sup 2+} indicator fluo-4 AM, and the cell permeable nuclear indicator Hoechst 33342, we examined the properties of eATP-induced Ca{sup 2+} release in pancreatic {beta}-cell nuclei. eATP induced a higher nuclear Ca{sup 2+} transient in pancreatic {beta}-cell nuclei than in the cytosol. After pretreatment with thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca{sup 2+}-ATPase (SERCA) pumps, the amplitude of eATP-induced Ca{sup 2+} transients in the nucleus was still much higher than those in the cytosol. This effect of eATP was not altered by inhibition of either the plasma membrane Ca{sup 2+}-ATPase (PMCA) or the plasma membrane Na{sup +}/Ca{sup 2+} exchanger (NCX) by LaCl{sub 3} or by replacement of Na{sup +} with N-Methyl-Glucosamine. eATP-induced nuclear Ca{sup 2+} transients were abolished by a cell-permeable IP3R inhibitor, 2-aminoethoxydiphenyl borate (2-APB), but were not blocked by the ryanodine receptor (RyR) antagonist ryanodine. Immunofluorescence studies showed that IP3Rs are expressed on the nuclear envelope of pancreatic {beta}-cells. These results indicate that eATP triggers nuclear Ca{sup 2+} transients by mobilizing a nuclear Ca{sup 2+} store via nuclear IP3Rs.

  20. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou (NCSU)

    2016-10-26

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses inArabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein,Camelina sativalectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space groupC222 orC2221, with unit-cell parametersa= 94.7,b= 191.5,c= 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.

  1. A Loose Coupling Mechanism of Synthesis of ATP by Proton Flux in the Molecular Machine of Living Cells

    Science.gov (United States)

    Oosawa, Fumio; Hayashi, Shigeru

    1984-04-01

    A loose coupling mechanism is proposed for the molecular machine of living cells which performs the synthesis of ATP from ADP and inorganic phosphate by a proton flux across the membrane. The basic assumption is that a torque or rotational movement is produced in protein molecules by the proton flux and the ATP synthesis is promoted by the torque or rotational movement in the molecules. The first process is carried out by a mechanism similar to the bacterial flagellar motor where the coupling between the flow of protons and the rotation of the motor is loose. A structural model for the second process is also presented. The threshold of the potential difference of proton for the ATP synthesis can be low and the number of protons to synthesize one ATP molecule is not an integer but a variable number.

  2. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    Science.gov (United States)

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

  3. Extracellular ATP does not induce P2X7 receptor-dependent responses in cultured renal- and liver-derived swine macrophages

    Directory of Open Access Journals (Sweden)

    Takato Takenouchi

    2014-01-01

    Full Text Available The P2X7 receptor (P2X7R is an ATP-gated cation channel that is abundantly expressed in monocytes/macrophages. P2X7R activation by ATP results in various cellular responses including Ca2+ influx, membrane pore formation, and cytokine secretion. Since P2X7R has low affinity for ATP, high concentrations of ATP (in the mM range are generally required to activate this receptor in vitro. Functional expression of P2X7R has been detected in monocytes/macrophages obtained from different animal species including humans, rodents, dogs, and bovines, but so far it has not been detected in swine (Sus scrofa. In this study, we investigated the expression and functions of P2X7R in swine macrophages, which were isolated from mixed primary cultures of swine kidney or liver tissue. The P2X7R mRNA and protein expression observed in the swine macrophages was comparable to that seen in a c-myc-immortalized mouse kidney-derived clonal macrophage cell line (KM-1. However, extracellular ATP did not induce P2X7R-dependent sustained Ca2+ influx, membrane pore formation, or the secretion of the bioactive cytokine interleukin-1β in the swine macrophages, whereas these responses were clearly observed in the mouse KM-1 cells after stimulation with millimolar concentrations of ATP as a positive control. These findings suggest that the ATP/P2X7R pathway is impaired in swine macrophages at least in the culture conditions used in the present study.

  4. Bioenergetics and ATP Synthesis during Exercise: Role of Group III/IV Muscle Afferents.

    Science.gov (United States)

    Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Morgan, David E; Bledsoe, Amber D; Jessop, Jacob E; Amann, Markus; Richardson, Russell S

    2017-12-01

    The purpose of this study was to investigate the role of the group III/IV muscle afferents in the bioenergetics of exercising skeletal muscle beyond constraining the magnitude of metabolic perturbation. Eight healthy men performed intermittent isometric knee-extensor exercise to task failure at ~58% maximal voluntary contraction under control conditions (CTRL) and with lumbar intrathecal fentanyl to attenuate group III/IV leg muscle afferents (FENT). Intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (Pi), diprotonated phosphate (H2PO4), adenosine triphosphate (ATP), and pH were determined using phosphorous magnetic resonance spectroscopy (P-MRS). The magnitude of metabolic perturbation was significantly greater in FENT compared with CTRL for [Pi] (37.8 ± 16.8 vs 28.6 ± 8.6 mM), [H2PO4] (24.3 ± 12.2 vs 17.9 ± 7.1 mM), and [ATP] (75.8% ± 17.5% vs 81.9% ± 15.8% of baseline), whereas there was no significant difference in [PCr] (4.5 ± 2.4 vs 4.4 ± 2.3 mM) or pH (6.51 ± 0.10 vs 6.54 ± 0.14). The rate of perturbation in [PCr], [Pi], [H2PO4], and pH was significantly faster in FENT compared with CTRL. Oxidative ATP synthesis was not significantly different between conditions. However, anaerobic ATP synthesis, through augmented creatine kinase and glycolysis reactions, was significantly greater in FENT than in CTRL, resulting in a significantly greater ATP cost of contraction (0.049 ± 0.016 vs 0.038 ± 0.010 mM·min·N). Group III/IV muscle afferents not only constrain the magnitude of perturbation in intramuscular Pi, H2PO4, and ATP during small muscle mass exercise but also seem to play a role in maintaining efficient skeletal muscle contractile function in men.

  5. Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice.

    Science.gov (United States)

    Wen, Jian-Jun; Garg, Nisha Jain

    2010-01-01

    In this study, we conducted a thorough analysis of mitochondrial bioenergetic function as well as the biochemical and molecular factors that are deregulated and contribute to compromised adenosine triphosphate (ATP) production in the myocardium during Trypanosoma cruzi infection. We show that ADP-stimulated state 3 respiration and ATP synthesis supported by pyruvate/malate (provides electrons to complex I) and succinate (provides electrons to complex II) substrates were significantly decreased in left ventricular tissue and isolated cardiac mitochondria of infected mice. The decreased mitochondrial ATP synthesis in infected murine hearts was not a result of uncoupling between the electron-transport chain and oxidative phosphorylation and decreased availability of the intermediary metabolites (e.g., NADH). The observed decline in the activities of complex-I, -IV, and -V was not physiologically relevant and did not contribute to compromised respiration and ATP synthesis in infected myocardium. Instead, complex III activity was decreased above the threshold level and contributed to respiratory-chain inefficiency and the resulting decline in mitochondrial ATP synthesis in infected myocardium. The loss in complex III activity occurred as a consequence of cytochrome b depletion. Treatment of infected mice with phenyl-alpha-tert-butyl nitrone (PBN, antioxidant) was beneficial in preserving the mtDNA-encoded cytochrome b expression, and subsequently resulted in improved complex III activity, mitochondrial respiration, and ATP production in infected myocardium. Overall, we provide novel data on the mechanism(s) involved in cardiac bioenergetic inefficiency during T. cruzi infection.

  6. Extracellular ATP elevates cytoplasmatic free Ca2+ in HeLa cells by the interaction with a 5'-nucleotide receptor

    NARCIS (Netherlands)

    Smit, M J; Leurs, R; Bloemers, S M; Tertoolen, L G; Bast, A; De Laat, S W; Timmerman, H

    1993-01-01

    In the present study we have characterized the effects of ATP and several other nucleotides on the intracellular Ca2+ levels of HeLa cells. Using fura-2 microscopy fluorescence measurements, the ATP-mediated increase in intracellular Ca2+ was shown to consist of a rapid rise which decreased after a

  7. Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP.

    Science.gov (United States)

    Martín-Estebané, María; Navascués, Julio; Sierra-Martín, Ana; Martín-Guerrero, Sandra M; Cuadros, Miguel A; Carrasco, María-Carmen; Marín-Teva, José L

    2017-01-01

    Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the

  8. Up-regulated Ectonucleotidases in Fas-Associated Death Domain Protein- and Receptor-Interacting Protein Kinase 1-Deficient Jurkat Leukemia Cells Counteract Extracellular ATP/AMP Accumulation via Pannexin-1 Channels during Chemotherapeutic Drug-Induced Apoptosis.

    Science.gov (United States)

    Boyd-Tressler, Andrea M; Lane, Graham S; Dubyak, George R

    2017-07-01

    Pannexin-1 (Panx1) channels mediate the efflux of ATP and AMP from cancer cells in response to induction of extrinsic apoptosis by death receptors or intrinsic apoptosis by chemotherapeutic agents. We previously described the accumulation of extracellular ATP /AMP during chemotherapy-induced apoptosis in Jurkat human leukemia cells. In this study, we compared how different signaling pathways determine extracellular nucleotide pools in control Jurkat cells versus Jurkat lines that lack the Fas-associated death domain (FADD) or receptor-interacting protein kinase 1 (RIP1) cell death regulatory proteins. Tumor necrosis factor- α induced extrinsic apoptosis in control Jurkat cells and necroptosis in FADD-deficient cells; treatment of both lines with chemotherapeutic drugs elicited similar intrinsic apoptosis. Robust extracellular ATP/AMP accumulation was observed in the FADD-deficient cells during necroptosis, but not during apoptotic activation of Panx1 channels. Accumulation of extracellular ATP/AMP was similarly absent in RIP1-deficient Jurkat cells during apoptotic responses to chemotherapeutic agents. Apoptotic activation triggered equivalent proteolytic gating of Panx1 channels in all three Jurkat cell lines. The differences in extracellular ATP/AMP accumulation correlated with cell-line-specific expression of ectonucleotidases that metabolized the released ATP/AMP. CD73 mRNA, and α β -methylene-ADP-inhibitable ecto-AMPase activity were elevated in the FADD-deficient cells. In contrast, the RIP1-deficient cells were defined by increased expression of tartrate-sensitive prostatic acid phosphatase as a broadly acting ectonucleotidase. Thus, extracellular nucleotide accumulation during regulated tumor cell death involves interplay between ATP/AMP efflux pathways and different cell-autonomous ectonucleotidases. Differential expression of particular ectonucleotidases in tumor cell variants will determine whether chemotherapy-induced activation of Panx1 channels

  9. ATP synthesis catalyzed by a V-ATPase: an alternative pathway for energy conservation operating in plant vacuoles?

    Science.gov (United States)

    Façanha, Arnoldo Rocha; Okorokova-Façanha, Anna Lvovna

    2008-07-01

    The electrochemical H(+) gradient generated in tonoplast vesicles isolated from maize seeds was found to be able to drive the reversal of the catalytic cycle of both vacuolar H(+)-pumps (Façanha and de Meis, 1998). Here we describe the reversibility of the vacuolar V-type H(+)-ATPase (V-ATPase) even in the absence of the H(+) gradient in a water-Me2SO co-solvent mixture, resulting in net synthesis of [γ-(32)P]ATP from [(32)P]Pi and ADP. The water-Me2SO (5 to 20 %) media promoted inhibition of both PPi hydrolysis and synthesis reactions whereas it slightly affected the ATP hydrolysis and clearly stimulated the ATP synthesis, which was unaffected by uncoupling agents (FCCP, Triton X-100 or NH4 (+)). This effect of Me2SO on the ATP⇔(32)P exchange reaction seems to be related to a decrease of the apparent K m of the V-ATPase for Pi. The results are in accordance to the concept that the energetics of ATP synthesis catalysis depends on the solvation energies interacting in the enzyme microenvironment. A possible physiological significance of this phenomenon for the metabolism of desiccation-tolerant plant cells is discussed.

  10. ATP-binding cassette B10 regulates early steps of heme synthesis.

    Science.gov (United States)

    Bayeva, Marina; Khechaduri, Arineh; Wu, Rongxue; Burke, Michael A; Wasserstrom, J Andrew; Singh, Neha; Liesa, Marc; Shirihai, Orian S; Langer, Nathaniel B; Paw, Barry H; Ardehali, Hossein

    2013-07-19

    Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.

  11. Studies towards the synthesis of ATP analogs as potential glutamine synthetase inhibitors

    CSIR Research Space (South Africa)

    Salisu, S

    2011-05-01

    Full Text Available In research directed at the development of adenine triphosphate (ATP) analogs as potential glutamine synthetase (GS) inhibitors, adenine and allopurinol derivatives have been synthesized either as novel ATP analogs or as scaffolds...

  12. Extracellular osmolarity modulates G protein-coupled receptor-dependent ATP release from 1321N1 astrocytoma cells

    OpenAIRE

    Blum, Andrew E.; Corbett Walsh, B.; Dubyak, George R.

    2009-01-01

    We previously reported that ATP release from 1321N1 human astrocytoma cells could be stimulated either by activation of G protein-coupled receptors (GPCR) or by hypotonic stress. Cheema et al. (Cheema TA, Ward CE, Fisher SK. J Pharmacol Exp Ther 315: 755–763, 2005) have demonstrated that thrombin activation of protease-activated receptor 1 (PAR1) in 1321N1 cells and primary astrocytes acts synergistically with hypotonic stress to gate the opening of volume-sensitive organic osmolyte and anion...

  13. [The effect of magnesium pool isotopy on reactivation of mitochondrial ATP synthesis suppressed by 1-methyl-nicotine amide].

    Science.gov (United States)

    Kuznetsov, D A; Aliautdin, R N; Markarian, A A; Berdieva, A G; Khasigov, P Z; Gatagonova, T M; Ktsoeva, S A; Orlova, M A

    2006-01-01

    The ATP-generating activity of both rat myocardial mitochondria and intramitochondrial creatine phosphokinase (CPK) was examined as a function of the incubation medium magnesium pool isotopy. The in vitro systems tested were prepared from the hearts of animals treated with single injection of 1-methyl-nicotine amide (MNA) suppressing the NAD(P)-dependent reactions in vivo. The presense of the 25Mg paramagnetic cations leads to essential compensation of intramitochondrial ATP deficiency caused by the MNA induced blockade of oxidative phosphorylation. This effect is merely unreachable in those systems where the magnesium pool consists of isotopes with a zero nuclear spin (24Mg, 26Mg). The reactivation of mitochondrial ATP synthesis described here involves CPK activity which does not depends on MNA. In this case, a high efficiency of this reactivation seems to be a spin selective phenomenon which requires, predominantly, 25Mg2+ cations.

  14. Effects of chemical inhibitors and apyrase enzyme further document a role for apyrases and extracellular ATP in the opening and closing of stomates in Arabidopsis.

    Science.gov (United States)

    Clark, Greg; Darwin, Cameron; Mehta, Viraj; Jackobs, Faith; Perry, Tyler; Hougaard, Katia; Roux, Stan

    2013-11-01

    In Arabidopsis leaves there is a bi-phasic dose-response to applied nucleotides; i.e., lower concentrations induce stomatal opening, while higher concentrations induce closure. Two mammalian purinoceptor antagonists, PPADS and RB2, block both nucleotide-induced stomatal opening and closing. These antagonists also partially block ABA-induced stomatal closure and light-induced stomatal opening. There are two closely related Arabidopsis apyrases, AtAPY1 and AtAPY2, which are both expressed in guard cells. Here we report that low levels of apyrase chemical inhibitors can induce stomatal opening in the dark, while apyrase enzyme blocks ABA-induced stomatal closure. We also demonstrate that high concentrations of ATP induce stomatal closure in the light. Application of ATPγS and chemical apyrase inhibitors at concentrations that have no effect on stomatal closure can lower the threshold for ABA-induced closure. The closure induced by ATPγS was not observed in gpa1-3 loss-of-function mutants. These results further confirm the role of extracellular ATP in regulating stomatal apertures.

  15. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation.

    Science.gov (United States)

    Jiang, Shuang; Zhang, Yu; Zheng, Jin-Hua; Li, Xia; Yao, You-Li; Wu, Yan-Ling; Song, Shun-Zong; Sun, Peng; Nan, Ji-Xing; Lian, Li-Hua

    2017-03-01

    Purinergic receptor P2x7 (P2x7R) is a key modulator of liver inflammation and fibrosis. The present study aimed to investigate the role of P2x7R in hepatic stellate cells activation. Lipopolysaccharide (LPS) or the conditioned medium (CM) from LPS-stimulated RAW 264.7 mouse macrophages was supplemented to human hepatic stellate cells, LX-2 for 24h and P2x7R selective antagonist A438079 (10μM) was supplemented to LX-2 cells 1h before LPS or CM stimulation. In addition LX-2 cells were primed with LPS for 4h and subsequently stimulated for 30min with 3mM of adenosine 5'-triphosphate (ATP). A438079 was supplemented to LX-2 cells 10min prior to ATP. Directly treated with LPS on LX-2 cells, mRNA expressions of interleukin (IL)-1β, IL-18 and IL-6 were increased, as well as mRNA expressions of P2x7R, caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and NOD-like receptor family, pyrin domain containing 3 (NLRP3) mRNA. LPS also increased α-smooth muscle actin (α-SMA) and type I collagen mRNA expressions, as well as collagen deposition. Interestingly treatment of LX-2 cells with LPS-activated CM exhibited the greater increase of above factors than those in LX-2 cells directly treated with LPS. Pretreatment of A438079 on LX-2 cells stimulated by LPS or LPS-activated CM both suppressed IL-1β mRNA expression. LPS combined with ATP dramatically increased protein synthesis and cleavage of IL-1β and its mRNA level than those in HSC treated with LPS or ATP alone. Additionally LX-2 cells primed with LPS and subsequently stimulated for 30min with ATP greatly increased mRNA and protein expression of caspase-1, NLRP3 and P2x7R, as well as liver fibrosis markers, α-SMA and type I collagen. These events were remarkably suppressed by A438079 pretreatment. siRNA against P2x7R reduced protein expression of NLRP3 and α-SMA, and suppressed deposition and secretion of type I collagen. The involvement of P2X7R-mediated NLRP3 inflammasome activation in IL-1

  16. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    : 238.4 ± 79.2 μM)>etoricoxib (IC50: 405.1 ± 116.3 μM). Mechanism based inhibition of ATP synthesis (Kinact 0.078 min(-1) and KI 21.46 μM and Kinact/KI ratio 0.0036 min(-1)μM(-1)) was shown by lumiracoxib and data suggest that the opening of the MPT pore may not be the mechanism of toxicity. A positive...

  17. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-01-01

    Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inh......Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation...... of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism...... based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared...

  18. Extracellular Synthesis of Silver Nanoparticles by Ralstonia sp. SM8 Isolated from the Sarcheshmeh Copper Mine

    Directory of Open Access Journals (Sweden)

    Morahem Ashengroph

    2014-04-01

    Full Text Available Introduction: The biological synthesis of nanoparticles has gained enormous importance due to the development of clean and environmentally-friendly processes. Silver is highly toxic to microbial cells, Nevertheless, it has been reported that several microorganisms are silver resistance and corroborate the microbial reduction of water soluble Ag+ to Ag0 nanoparticles. In this study, native strains of bacteria screen for use as biocatalysts for extracellular synthesis of silver nanoparticles. Materials and methods: Eight different strains of bacteria exhibiting high silver tolerance were isolated from collecting soil samples from copper and gold mines and characterized using morphological observations and preliminary biochemical tests. The bacterial strains in the presence of 1 g/l Ag+ solution at pH 7 were incubated at 28º C for 48 h in an orbital shaker. The silver nanoparticles formation was investigated by visual observations (changing the color of the reaction solution, spectroscopic techniques and microscopic observations. Results: Among the 8 strains giving high Ag+ tolerance, the strain SM8, isolated from the Sarcheshmeh Copper Mine, Kerman, showed the capability of promoting the formation extracellular Ag nanoparticles. The strain was selected and identified as Ralstonia sp. SM8 (GenBank accession number KF264453 based on morphological and biochemical characteristics and its molecular phylogenetic analysis. Results obtained by visual observations, spectral data achieved from UV–vis, XRD spectrum and SEM micrographs revealed the extracellular formation of spherical silver nanoparticles in the size range of 20-50 nm with the culture supernatants of Ralstonia sp. SM8. Discussion and conclusion: Based on the results obtained, fast and extracellular synthesis of silver nanoparticles, without the need for complicated extraction steps, can be taken by using the culture supernatants of Ralstonia sp. SM8. The current study is the first report

  19. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).

    Science.gov (United States)

    Zhang, Su; Chaput, John C

    2013-03-01

    Threose nucleic acid (TNA) is an artificial genetic polymer in which the natural ribose sugar found in RNA has been replaced with an unnatural threose sugar. TNA can be synthesized enzymatically using Therminator DNA polymerase to copy DNA templates into TNA. Here, we expand the substrate repertoire of Therminator DNA polymerase to include threofuranosyl adenine 3'-triphsophate (tATP). We chemically synthesized tATP by two different methods from the 2'-O-acetyl derivative. Enzyme-mediated polymerization reveals that tATP functions as an efficient substrate for Therminator DNA polymerase, indicating that tATP can replace the diaminopurine analogue (tDTP) in TNA transcription reactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Proteostasis and the Regulation of Intra- and Extracellular Protein Aggregation by ATP-Independent Molecular Chaperones: Lens α-Crystallins and Milk Caseins.

    Science.gov (United States)

    Carver, John A; Ecroyd, Heath; Truscott, Roger J W; Thorn, David C; Holt, Carl

    2018-03-20

    Molecular chaperone proteins perform a diversity of roles inside and outside the cell. One of the most important is the stabilization of misfolding proteins to prevent their aggregation, a process that is potentially detrimental to cell viability. Diseases such as Alzheimer's, Parkinson's, and cataract are characterized by the accumulation of protein aggregates. In vivo, many proteins are metastable and therefore under mild destabilizing conditions have an inherent tendency to misfold, aggregate, and hence lose functionality. As a result, protein levels are tightly regulated inside and outside the cell. Protein homeostasis, or proteostasis, describes the network of biological pathways that ensures the proteome remains folded and functional. Proteostasis is a major factor in maintaining cell, tissue, and organismal viability. We have extensively investigated the structure and function of intra- and extracellular molecular chaperones that operate in an ATP-independent manner to stabilize proteins and prevent their misfolding and subsequent aggregation into amorphous particles or highly ordered amyloid fibrils. These types of chaperones are therefore crucial in maintaining proteostasis under normal and stress (e.g., elevated temperature) conditions. Despite their lack of sequence similarity, they exhibit many common features, i.e., extensive structural disorder, dynamism, malleability, heterogeneity, oligomerization, and similar mechanisms of chaperone action. In this Account, we concentrate on the chaperone roles of α-crystallins and caseins, the predominant proteins in the eye lens and milk, respectively. Intracellularly, the principal ATP-independent chaperones are the small heat-shock proteins (sHsps). In vivo, sHsps are the first line of defense in preventing intracellular protein aggregation. The lens proteins αA- and αB-crystallin are sHsps. They play a crucial role in maintaining solubility of the crystallins (including themselves) with age and hence in

  1. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized inSaccharomyces cerevisiae.

    Science.gov (United States)

    Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong

    2017-01-01

    Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δ atp1 , Δ atp2 , Δ atp14 , and Δ atp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S -adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.

  2. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective.

    Science.gov (United States)

    Kasumov, Eldar A; Kasumov, Ruslan E; Kasumova, Irina V

    2015-01-01

    ATP is synthesized using ATP synthase by utilizing energy either from the oxidation of organic compounds, or from light, via redox reactions (oxidative- or photo phosphorylation), in energy-transforming membranes of mitochondria, chloroplasts, and bacteria. ATP synthase undergoes several changes during its functioning. The generally accepted model for ATP synthesis is the well-known rotatory model (see e.g., Junge et al., Nature 459:364-370, 2009; Junge and Müller, Science 333:704-705, 2011). Here, we present an alternative modified model for the coupling of electron and proton transfer to ATP synthesis, which was initially developed by Albert Lester Lehninger (1917-1986). Details of the molecular mechanism of ATP synthesis are described here that involves cyclic low-amplitude shrinkage and swelling of mitochondria. A comparison of the well-known current model and the mechano-chemiosmotic model is also presented. Based on structural, and other data, we suggest that ATP synthase is a Ca(2+)/H(+)-K(+) Cl(-)-pump-pore-enzyme complex, in which γ-subunit rotates 360° in steps of 30°, and 90° due to the binding of phosphate ions to positively charged amino acid residues in the N-terminal γ-subunit, while in the electric field. The coiled coil b 2-subunits are suggested to act as ropes that are shortened by binding of phosphate ions to positively charged lysines or arginines; this process is suggested to pull the α 3 β 3-hexamer to the membrane during the energization process. ATP is then synthesized during the reverse rotation of the γ-subunit by destabilizing the phosphated N-terminal γ-subunit and b 2-subunits under the influence of Ca(2+) ions, which are pumped over from storage-intermembrane space into the matrix, during swelling of intermembrane space. In the process of ATP synthesis, energy is first, predominantly, used in the delivery of phosphate ions and protons to the α 3 β 3-hexamer against the energy barrier with the help of C-terminal alpha

  3. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms and bioenergetics of ATP synthesis

    Directory of Open Access Journals (Sweden)

    Laura ePreiss

    2015-06-01

    Full Text Available Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12-13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.

  4. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI).

    Science.gov (United States)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared to Dic. The calculated kinetic constants of mechanism based inhibition of ATP synthesis by Dic showed maximal rate of inactivation (Kinact) of 2.64 ± 0.15 min(-1) and half maximal rate of inactivation (KI) of 7.69 ± 2.48 μM with Kinact/KI ratio of 0.343 min(-1) μM(-1). Co-incubation of mitochondria with Dic and reduced GSH exhibited a protective effect on Dic mediated inhibition of ATP synthesis. Our data from this study strongly indicate that Dic as well as its metabolites could be involved in the hepato-toxic action through inhibition of ATP synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells.

    Science.gov (United States)

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Di Virgilio, Francesco; Pezzi, Annalisa; Cavo, Michele; Lemoli, Roberto M; Curti, Antonio

    2017-01-24

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2X7R is the most consistently expressed by tumors. P2X7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2X7R. Here, we show that P2X7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2X7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo.Overall, our results demonstrate that P2X7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML.

  6. Effects of inhibition of mitochondrial ATP synthesis on phosphoinositide metabolism in rabbit aorta

    International Nuclear Information System (INIS)

    Coburn, R.F.; Baron, C.; Papadopoulos, M.T.

    1987-01-01

    The authors tested a hypothesis that the plasma membrane phosphoinositide kinase reactions are sensitive to decreases in mitochondrial energy delivery. This hypothesis followed the finding of Lundberg et al of a high Km for ATP for PI and PIP kinase. In aortic rings contracted with norepinephrine (NE), hypoxia causes a decrease in J/sub ATP/ from 2.2 to 1.6 μmole/(min)(gram wet wt), and a decrease in PCr/total Cr from 0.68 to 0.23, without a detectable change in [ATP]. Rings were incubated with [ 3 H]-myo-inositol for 30 min at 37 0 C which labelled myo-inositol with only a small 3 H incorporation into inositol phospholipids. Rings were then activated with 18 μM NE, either during normoxia or hypoxia. The authors measured specific activities of inositol phospholipids and myo-inositol. Hypoxia caused a decrease in the NE-activated inositol phospholipid flux rate from 0.052 +/- 0.006 to 0.023 +/- 0.004 nmoles/(min)(100 nmoles PL Pi), a decrease in the rate of increase in PI, PIP and PIP 2 specific activities, a decrease in the rate of increase in IP, IP 2 , IP 3 and IP 4 radioactivities, and an increase in PIP pool size (and the ratio PIP/PIP 2 ). The authors conclude: inositol phospholipid metabolism is sensitive to decreases in delivery of energy to plasma membrane PIP kinase and ATP-dependent reactions involved in PI resynthesis

  7. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Zhang R

    2017-05-01

    Full Text Available Rong Zhang,1–3 Ming Shao,1–3 Xu Han,1–3 Chuan Wang,3–4 Yong Li,3–4 Bin Hu,3–4 Daiwen Pang,3–4 Zhixiong Xie1–31Hubei Key Laboratory of Cell Homeostasis, 2College of Life Sciences, Wuhan University, 3Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, 4College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of ChinaAbstract: Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued. This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications. Keywords: ATP, biosynthesis, Saccharomyces cerevisiae, QDs, CdSe

  8. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India.

    Science.gov (United States)

    Nagarajan, Sangeetha; Arumugam Kuppusamy, Kumaraguru

    2013-12-03

    The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable "green procedures". Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM -EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm.

  9. The New Unified Theory of ATP Synthesis/Hydrolysis and Muscle Contraction, Its Manifold Fundamental Consequences and Mechanistic Implications and Its Applications in Health and Disease

    Directory of Open Access Journals (Sweden)

    Sunil Nath

    2008-09-01

    Full Text Available Complete details of the thermodynamics and molecular mechanisms of ATP synthesis/hydrolysis and muscle contraction are offered from the standpoint of the torsional mechanism of energy transduction and ATP synthesis and the rotation-uncoiling-tilt (RUT energy storage mechanism of muscle contraction. The manifold fundamental consequences and mechanistic implications of the unified theory for oxidative phosphorylation and muscle contraction are explained. The consistency of current mechanisms of ATP synthesis and muscle contraction with experiment is assessed, and the novel insights of the unified theory are shown to take us beyond the binding change mechanism, the chemiosmotic theory and the lever arm model. It is shown from first principles how previous theories of ATP synthesis and muscle contraction violate both the first and second laws of thermodynamics, necessitating their revision. It is concluded that the new paradigm, ten years after making its first appearance, is now perfectly poised to replace the older theories. Finally, applications of the unified theory in cell life and cell death are outlined and prospects for future research are explored. While it is impossible to cover each and every specific aspect of the above, an attempt has been made here to address all the pertinent details and what is presented should be sufficient to convince the reader of the novelty, originality, breakthrough nature and power of the unified theory, its manifold fundamental consequences and mechanistic implications, and its applications in health and disease.

  10. The role of PaAAC1 encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast Pseudozyma antarctica.

    Science.gov (United States)

    Morita, Tomotake; Ito, Emi; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2010-07-01

    Pseudozyma antarctica produces large amounts of the glycolipid biosurfactants known as mannosylerythritol lipids (MEL), which show not only excellent surface-active properties but also versatile biochemical actions. A gene homologous with a mitochondrial ADP/ATP carrier was dominantly expressed in P. antarctica under MEL-producing conditions on the basis of previous gene expression analysis. The gene encoding the mitochondrial ADP/ATP carrier of P. antarctica (PaAAC1) contained a putative open reading frame of 954 bp and encodes a polypeptide of 317 amino acids. The deduced translation product shared high identity of 66%, 70%, 69%, 74%, 75% and 52% with the mitochondrial ADP/ATP carrier of Saccharomyces cerevisiae (AAC1), S. cerevisiae (AAC2), S. cerevisiae (AAC3), Kluyveromyces lactis (KlAAC), Neurospora crassa (NcAAC) and human (ANT1), respectively, and conserved the consensus sequences of all ADP/ATP carrier proteins. The gene expression by introducing a plasmid pUXV1-PaAAC1 into the yeast cells increased the MEL production. In addition, the expression of PaAAC1 in which the conserved arginine and leucine required for ATP transport activity were replaced with isoleucine and serine, respectively, failed to increase MEL production. Accordingly, these results suggest that PaAAC1 encoding a mitochondrial ADP/ATP carrier should be involved in MEL biosynthesis in the yeast.

  11. Functionally diverse purinergic P2Y-receptors mediate prostanoid synthesis in cultured rat astrocytes: the role of ATP-induced phosphatidyl-inositol breakdown.

    Science.gov (United States)

    Seregi, A; Doll, S; Schobert, A; Hertting, G

    1992-01-01

    Cultured rat astrocytes possess purinergic P2Y-receptors. Stimulation of these receptors with ATP (10(-3) M) results in increased phosphatidylinositol biphosphate (PIP2)-breakdown and prostanoid formation. We have investigated the relevance of the PIP2-pathway in prostanoid synthesis. The intracellular Ca(2+)-mobilizing agent thapsigargin (TG) (10(-6) M) and the diacylglycerol (DAG)-mimetic tetradecaoylphorbol acetate (TPA) (10(-8)-10(-6) M) both stimulate prostaglandin D2 production. ATP-induced prostanoid formation can be mimicked by combined addition of TG and TPA, suggesting the importance of the second messengers IP3 and DAG, generated during P2Y-receptor mediated PIP2-breakdown. Inhibition of ATP-induced PIP2-hydrolysis by TPA (IC50 about 5 x 10(-8) M) or by 10(-4) M neomycine, however, does not affect astroglial prostanoid synthesis, showing that P2Y-receptor mediated prostanoid formation may occur also in the absence of PIP2-hydrolysis. These findings suggest that additional postreceptor mechanisms exist in the signal transduction chain of ATP-induced astroglial prostanoid synthesis. A possible involvement of phospholipase A2 and/or of Ca(2+)-channels, directly coupled to P2Y-receptors is proposed.

  12. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India

    Science.gov (United States)

    2013-01-01

    Background The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable “green procedures”. Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. Result The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM –EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Conclusion Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm. PMID:24298944

  13. Learning about Chemiosmosis and ATP Synthesis with Animations Outside of the Classroom.

    Science.gov (United States)

    Goff, Eric E; Reindl, Katie M; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G; Schroeder, Noah L; White, Alan R

    2017-04-01

    Many undergraduate biology courses have begun to implement instructional strategies aimed at increasing student interaction with course material outside of the classroom. Two examples of such practices are introducing students to concepts as preparation prior to instruction, and as conceptual reinforcement after the instructional period. Using a three-group design, we investigate the impact of an animation developed as part of the Virtual Cell Animation Collection on the topic of concentration gradients and their role in the actions of ATP synthase as a means of pre-class preparation or post-class reinforcement compared with a no-intervention control group. Results from seven sections of introductory biology ( n = 732) randomized to treatments over two semesters show that students who viewed animation as preparation ( d = 0.44, p animations on the topic of concentration gradients outside of the classroom may lead to greater learning outcomes than the control group, in the traditional lecture-based course the timing of such interactions may not be as important.

  14. Learning about Chemiosmosis and ATP Synthesis with Animations Outside of the Classroom †

    Science.gov (United States)

    Goff, Eric E.; Reindl, Katie M.; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G.; Schroeder, Noah L.; White, Alan R.

    2017-01-01

    Many undergraduate biology courses have begun to implement instructional strategies aimed at increasing student interaction with course material outside of the classroom. Two examples of such practices are introducing students to concepts as preparation prior to instruction, and as conceptual reinforcement after the instructional period. Using a three-group design, we investigate the impact of an animation developed as part of the Virtual Cell Animation Collection on the topic of concentration gradients and their role in the actions of ATP synthase as a means of pre-class preparation or post-class reinforcement compared with a no-intervention control group. Results from seven sections of introductory biology (n = 732) randomized to treatments over two semesters show that students who viewed animation as preparation (d = 0.44, p animations on the topic of concentration gradients outside of the classroom may lead to greater learning outcomes than the control group, in the traditional lecture-based course the timing of such interactions may not be as important. PMID:28512512

  15. Learning about Chemiosmosis and ATP Synthesis with Animations Outside of the Classroom

    Directory of Open Access Journals (Sweden)

    Eric E. Goff

    2017-05-01

    Full Text Available Many undergraduate biology courses have begun to implement instructional strategies aimed at increasing student interaction with course material outside of the classroom. Two examples of such practices are introducing students to concepts as preparation prior to instruction, and as conceptual reinforcement after the instructional period. Using a three-group design, we investigate the impact of an animation developed as part of the Virtual Cell Animation Collection on the topic of concentration gradients and their role in the actions of ATP synthase as a means of pre-class preparation or post-class reinforcement compared with a no-intervention control group. Results from seven sections of introductory biology (n = 732 randomized to treatments over two semesters show that students who viewed animation as preparation (d = 0.44, p < 0.001 or as reinforcement (d = 0.53, p < 0.001 both outperformed students in the control group on a follow-up assessment. Direct comparison of the preparation and reinforcement treatments shows no significant difference in student outcomes between the two treatment groups (p = 0.87. Results suggest that while student interaction with animations on the topic of concentration gradients outside of the classroom may lead to greater learning outcomes than the control group, in the traditional lecture-based course the timing of such interactions may not be as important.

  16. Modulation of nucleotide binding to the catalytic sites of thermophilic F(1)-ATPase by the epsilon subunit: implication for the role of the epsilon subunit in ATP synthesis.

    Science.gov (United States)

    Yasuno, Taichi; Muneyuki, Eiro; Yoshida, Masasuke; Kato-Yamada, Yasuyuki

    2009-12-11

    Effect of epsilon subunit on the nucleotide binding to the catalytic sites of F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) has been tested by using alpha(3)beta(3)gamma and alpha(3)beta(3)gammaepsilon complexes of TF(1) containing betaTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the epsilon subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the epsilon subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.

  17. Is the extracellular ATP a key in X-linked Charcot-Marie-Tooth disease and in inherited non-syndromic deafness?

    OpenAIRE

    Mas del Molino, Ezequiel

    2011-01-01

    [spa] El ATP es una molécula ampliamente conocida por su papel en muchas funciones como la homeostasis celular, el mantenimiento de gradientes iónicos, el mantenimiento del pH en gránulos secretores, el almacenamiento energético, regulador de la interacción actina-miosina, etc. Además, el ATP puede actuar como molécula señalizadora a través de los receptores purinérgicos P2. De receptores P2 hay de dos tipos, los P2X, que son ionotrópicos, y los P2Y que son metabotrópicos. Los primeros son un...

  18. Extracellular matrix synthesis in blastula and gastrula stages of normal and hybrid frog embryos

    International Nuclear Information System (INIS)

    Johnson, K.E.

    1978-01-01

    Pulse-chase labelling experiments and light- and electron-microscopic autoradiography were used to examine the site of synthesis, mode of transport, and sites of deposition of fucose-, glucose- and mannose-labelled materials in different developmental stages of normal developing Rana pipiens embryos and interspecific hybrid embryos formed by fertilizing the eggs of R. pipiens with the sperm of R. catesbeiana. In both normal and hybrid embryos, after a 15-30 min pulse, grains are closely associated with juxtanuclear and cytoplasmic collections of membrane-bound vescicles which resemble the Golgi apparatus. In normal embryos following a 15-30 min pulse and a 60-min chase, grains are largely cleared from the cytoplasmic vescicles and deposited in the extra-cellular spaces or along cell surfaces. In contrast, arrested hybrid embryos given a 15-30 min pulse and a 60-min chase show a marked accumulation of grains over cytoplasmic structures such as the Golgi apparatus and vescicular elements in the cell cortex. Certain interesting features of regional variation in synthetic activity in developing normal embryos are also described. (author)

  19. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    Science.gov (United States)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  20. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress.

    Science.gov (United States)

    Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2014-01-01

    Polyamines (PAs) are low molecular weight amines that occur in every living organism. The three main PAs (putrescine, spermidine, and spermine) are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (Δψ) and decreases the ΔpH component of the proton motive force. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts) and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress.

  1. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress

    Directory of Open Access Journals (Sweden)

    Nikolaos E Ioannidis

    2014-02-01

    Full Text Available Polyamines (PAs are low molecular weight amines that occur in every living organism. The three main PAs [putrescine (Put, spermidine (Spd and spermine (Spm] are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (∆ψ and decreases the ∆pH component of the proton motive force (pmf. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress.

  2. Sphingosine-1-phosphate receptors stimulate macrophage plasma-membrane actin assembly via ADP release, ATP synthesis and P2X7R activation.

    Science.gov (United States)

    Kuehnel, Mark P; Reiss, Miriam; Anand, Paras K; Treede, Irina; Holzer, Daniela; Hoffmann, Eik; Klapperstueck, Manuela; Steinberg, Thomas H; Markwardt, Fritz; Griffiths, Gareth

    2009-02-15

    Eukaryotic plasma membranes assemble actin filaments within seconds of activation of many receptors, especially during chemotaxis. Here, serum or sphingosine-1-phosphate stimulation of J774 and RAW macrophages released ADP within seconds into the extracellular medium, along with an adenylate kinase activity that converted ADP to ATP. ATP then activated the P2X7 receptor (P2X7R) that was necessary for a peak of plasma-membrane actin assembly within 5 to 10 seconds in P2X7R-expressing J774, RAW and primary macrophages. Neither actin assembly nor characteristic P2X7R channel activity was seen in response to ATP in P2X7R-knockout macrophages, as detected by patch-clamp analysis. Since P2X7R has been shown previously to form a macromolecular complex with actin we propose that it is involved in the membrane assembly of actin. Our data reveal a surprisingly rapid and complex relay of signaling and externalization events that precede and control actin assembly induced by sphingosine-1-phosphate. The overall model we present is strongly supported by the data presented in the accompanying paper that focuses on latex bead phagosomes.

  3. Extracellular synthesis of silver nanoparticles using Bacillus megaterium against malarial and dengue vector (Diptera: Culicidae).

    Science.gov (United States)

    Banu, A Najitha; Balasubramanian, C

    2015-11-01

    Biosynthesis of silver nanoparticles has provoked nowadays and alternative to physical and chemical approaches. In the present study, silver nanoparticles (AgNPs) were synthesized extracellular method using Bacillus megaterium. The AgNPs formations were confirmed initially through color change, and the aliquots were characterized through UV-visible spectrophotometer, followed by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectra. The surface plasmon resonance band was shown at 430 nm in UV-vis spectrophotometer. The bioreduction was categorized through identifying the compounds responsible for the AgNP synthesis, and the functional group present in B. megaterium cell-free culture was scrutinized using FTIR. The topography and morphology of the particles were determined using SEM. In addition, this biosynthesized AgNPs were found to show higher insecticidal efficacy against vector mosquitoes. The LC50 and LC90 were found to be 0.567, 2.260; 0.90, 4.44; 1.349, 8.269; and 1.640, 9.152 and 0.240, 0.955; 0.331, 1.593; 0.494, 2.811; and 0.700, 4.435 with respect to the first, second, third, and fourth instar larvae of Culex quinquefasciatus and Aedes aegypti. All the calculated χ (2) values are highly significant compared with the tabulated value. Therefore, B. megaterium-synthesized silver nanoparticles would be used as a potent larvicidal agent against Cx. quinquefasciatus and Ae. aegypti.

  4. Two-ion theory of energy coupling in ATP synthesis rectifies a fundamental flaw in the governing equations of the chemiosmotic theory.

    Science.gov (United States)

    Nath, Sunil

    2017-11-01

    The vital coupled processes of oxidative phosphorylation and photosynthetic phosphorylation synthesize molecules of adenosine-5'-triphosphate (ATP), the universal biological energy currency, and sustain all life on our planet. The chemiosmotic theory of energy coupling in oxidative and photophosphorylation was proposed by Mitchell >50years ago. It has had a contentious history, with part of the accumulated body of experimental evidence supporting it, and part of it in conflict with the theory. Although the theory was strongly criticized by many prominent scientists, the controversy has never been resolved. Here, the mathematical steps of Mitchell's original derivation leading to the principal equation of the chemiosmotic theory are scrutinized, and a fundamental flaw in them has been identified. Surprisingly, this flaw had not been detected earlier. Discovery of such a defect negates, or at least considerably weakens, the theoretical foundations on which the chemiosmotic theory is based. Ad hoc or simplistic ways to remedy this defect are shown to be scientifically unproductive and sterile. A novel two-ion theory of biological energy coupling salvages the situation by rectifying the fundamental flaw in the chemiosmotic theory, and the governing equations of the new theory have been shown to accurately quantify and predict extensive recent experimental data on ATP synthesis by F 1 F O -ATP synthase without using adjustable parameters. Some major biological implications arising from the new thinking are discussed. The principles of energy transduction and coupling proposed in the new paradigm are shown to be of a very general and universal nature. It is concluded that the timely availability after a 25-year research struggle of Nath's torsional mechanism of energy transduction and ATP synthesis is a rational alternative that has the power to solve the problems arising from the past, and also meet present and future challenges in this important interdisciplinary field

  5. Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

    Science.gov (United States)

    Dulermo, Thierry; Lazar, Zbigniew; Dulermo, Rémi; Rakicka, Magdalena; Haddouche, Ramedane; Nicaud, Jean-Marc

    2015-09-01

    The role of the two key enzymes of fatty acid (FA) synthesis, ATP-citrate lyase (Acl) and malic enzyme (Mae), was analyzed in the oleaginous yeast Yarrowia lipolytica. In most oleaginous yeasts, Acl and Mae are proposed to provide, respectively, acetyl-CoA and NADPH for FA synthesis. Acl was mainly studied at the biochemical level but no strain depleted for this enzyme was analyzed in oleaginous microorganisms. On the other hand the role of Mae in FA synthesis in Y. lipolytica remains unclear since it was proposed to be a mitochondrial NAD(H)-dependent enzyme and not a cytosolic NADP(H)-dependent enzyme. In this study, we analyzed for the first time strains inactivated for corresponding genes. Inactivation of ACL1 decreases FA synthesis by 60 to 80%, confirming its essential role in FA synthesis in Y. lipolytica. Conversely, inactivation of MAE1 has no effects on FA synthesis, except in a FA overaccumulating strain where it improves FA synthesis by 35%. This result definitively excludes Mae as a major key enzyme for FA synthesis in Y. lipolytica. During the analysis of both mutants, we observed a negative correlation between FA and mannitol level. As mannitol and FA pathways may compete for carbon storage, we inactivated YlSDR, encoding a mannitol dehydrogenase converting fructose and NADPH into mannitol and NADP+. The FA content of the resulting mutant was improved by 60% during growth on fructose, demonstrating that mannitol metabolism may modulate FA synthesis in Y. lipolytica. Copyright © 2015. Published by Elsevier B.V.

  6. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

    Science.gov (United States)

    Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M

    2017-06-10

    Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

  7. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP.

    Science.gov (United States)

    Zhan, Zixuan; Cai, Jiao; Wang, Qi; Su, Yingying; Zhang, Lichun; Lv, Yi

    2016-05-01

    Fluorescent carbon nanoparticles (CPs), a fascinating class of recently discovered nanocarbons, have been widely known as some of the most promising sensing probes in biological or chemical analysis. In this study, we demonstrate a green synthetic methodology for generating water-soluble CPs with a quantum yield of approximately 24% via a simple heating process using yum mucilage as a carbon source. The prepared carbon nanoparticles with an ~10 nm size possessed excellent fluorescence properties, and the fluorescence of the CPs was strongly quenched by Fe(3+), and recovered by adenosine triphosphate (ATP), thus, an 'off' and 'on' system can be easily established. This 'CPs-Fe(3+)-ATP' strategy was sensitive and selective at detecting ATP with the linear range of 0.5 µmol L(-1) to 50 µmol L(-1) and with a detection limit of 0.48 µmol L(-1). Copyright © 2015 John Wiley & Sons, Ltd.

  8. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  9. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  10. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-01-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  11. Design and synthesis of a heterocyclic compound collection for probing the spatial charactistics of ATP binding sites

    CSIR Research Space (South Africa)

    Kenyon, CP

    2006-02-28

    Full Text Available Recent years have brought about serious interest in the kinases as potential therapeutic targets in a variety of disease conditions. Much of this interest has centred around the preparation and utilisation of species which interact with the ATP...

  12. Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania

    NARCIS (Netherlands)

    Luque-Ortega, R.J.; van 't Hof, W.; Veerman, E.C.I.; Saugar, J.M.; Rivas, L.

    2008-01-01

    Histatin 5 (Hst5) is a human salivary antimicrobial peptide that targets fungal mitochondria. In the human parasitic protozoa Leishmania, the mitochondrial ATP production is essential, as it lacks the bioenergetic switch between glycolysis and oxidative phosphorylation described in some yeasts. On

  13. Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity

    Science.gov (United States)

    Baker, Syed; Mohan Kumar, K.; Santosh, P.; Rakshith, D.; Satish, S.

    2015-02-01

    In present investigation extracellular synthesis of silver nanoparticles were synthesized using cell free supernatant of Pseudomonas veronii AS41G isolated from Annona squamosa L. The bacterium significantly reduced silver nitrate to generate silver nanoparticles which was characterized with hyphenated techniques. Synthesis of silver nanoparticles preliminary confirmed by UV-Visible spectrophotometry with the intense peak at 410 nm, Further FTIR analysis revealed the possible role of biomolecules in the supernatant responsible for mediating the nanoparticles formation. The XRD spectra exhibited the characteristic Bragg peaks of 1 0 0, 1 1 1, 2 0 0, and 2 2 0 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. TEM microgram showed polydispersity of nanoparticles with size ranging from 5 to 50 nm. Synthesized silver nanoparticles showed antibacterial activity against human and environmental pathogens including MRSA. The study enlightens the role of biosynthesized silver nanoparticles as an emerging alternative for drug resistant microorganisms. The obtained results are promising enough to pave the environmentally benign nanoparticle synthesis processes without use of any toxic chemicals and also envision the emerging role of endophytes towards synthesis of nanoparticles. With scanty reports available on P.veronii species, a new role has been reported in this study which will be very valuable for future researchers working on it.

  14. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    Fox, I.H.; Bertorini, T.; Palmieri, G.M.A.; Shefner, R.

    1986-01-01

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  15. Extracellular 4 '-phosphopantetheine is a source for intracellular coenzyme A synthesis

    NARCIS (Netherlands)

    Srinivasan, Balaji; Baratashvili, Madina; van der Zwaag, Marianne; Kanon, Bart; Colombelli, Cristina; Lambrechts, Roald A.; Schaap, Onno; Nollen, Ellen A.; Podgorsek, Ajda; Kosec, Gregor; Petkovic, Hrvoje; Hayflick, Susan; Tiranti, Valeria; Reijngoud, Dirk-Jan; Grzeschik, Nicola A.; Sibon, Ody C. M.

    2015-01-01

    The metabolic cofactor coenzyme A (CoA) gained renewed attention because of its roles in neurodegeneration, protein acetylation, autophagy and signal transduction. The long-standing dogma is that eukaryotic cells obtain CoA exclusively via the uptake of extracellular precursors, especially vitamin

  16. Stillage as a Source of Growth Promoting Biofactors and a Stimulator of Levan and Extracellular Levansucrase Synthesis for Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    Mara Grube

    2002-01-01

    Full Text Available In the present work, the fermentation of simultaneous production of ethanol and levan by Zymomonas mobilis grown on different growth media has been studied. Yeast extract, rye stillage or sugar beet molasses stillage were used as additives to the basic sucrose media and the chemical composition, including vitamins, of the cultivation liquids have been determined. It has been shown that 0.5 % of yeast extract dry weight additive could be substituted by 10.0 % of native stillage additive. It was established that molasses stillage stimulates the ethanol synthesis, but rye stillage additive is more preferable for levan production. The extracellular levansucrase obtained from the culture liquid resulted in similar fructooligosaccharide-producing activities using all the above-mentioned media additives.

  17. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants.

    Science.gov (United States)

    Yu, Wencheng; Chen, Zhen; Shen, Liang; Wang, Yuanpeng; Li, Qingbiao; Yan, Shan; Zhong, Chuan-Jian; He, Ning

    2016-04-01

    Some bioflocculants composed of extracellular polymeric substances are produced under peculiar conditions. Bacillus licheniformis CGMCC2876 is a microorganism that secretes both extracellular polysaccharides (EPS) and poly-gamma-glutamic acid (γ-PGA) under stress conditions. In this work, SWATH acquisition LC-MS/MS method was adopted for differential proteomic analysis of B. licheniformis, aiming at determining the bacterial stress mechanism. Compared with LB culture, 190 differentially expressed proteins were identified in B. licheniformis CGMCC2876 cultivated in EPS culture, including 117 up-regulated and 73 down-regulated proteins. In γ-PGA culture, 151 differentially expressed proteins, 89 up-regulated and 62 down-regulated, were found in the cells. Up-regulated proteins involved in amino acid biosynthesis were found to account for 43% and 41% of the proteomes in EPS and γ-PGA cultivated cells, respectively. Additionally, a series of proteins associated with amino acid degradation were found to be repressed under EPS and γ-PGA culture conditions. Transcriptional profiling via the qPCR detection of selected genes verified the proteomic analysis. Analysis of free amino acids in the bacterial cells further suggested the presence of amino acid starvation conditions. EPS or γ-PGA was synthesized to alleviate the effect of amino acid limitation in B. licheniformis. This study identified a stress response mechanism in the synthesis of macromolecules in B. licheniformis, providing potential culture strategies to improve the production of two promising bioflocculants. © 2015 Wiley Periodicals, Inc.

  18. Low Concentrations of Vitamin C Reduce the Synthesis of Extracellular Polymers and Destabilize Bacterial Biofilms

    KAUST Repository

    Pandit, Santosh

    2017-12-26

    Extracellular polymeric substances (EPS) produced by bacteria form a matrix supporting the complex three-dimensional architecture of biofilms. This EPS matrix is primarily composed of polysaccharides, proteins and extracellular DNA. In addition to supporting the community structure, the EPS matrix protects bacterial biofilms from the environment. Specifically, it shields the bacterial cells inside the biofilm, by preventing antimicrobial agents from getting in contact with them, thereby reducing their killing effect. New strategies for disrupting the formation of the EPS matrix can therefore lead to a more efficient use of existing antimicrobials. Here we examined the mechanism of the known effect of vitamin C (sodium ascorbate) on enhancing the activity of various antibacterial agents. Our quantitative proteomics analysis shows that non-lethal concentrations of vitamin C inhibit bacterial quorum sensing and other regulatory mechanisms underpinning biofilm development. As a result, the EPS biosynthesis in reduced, and especially the polysaccharide component of the matrix is depleted. Once the EPS content is reduced beyond a critical point, bacterial cells get fully exposed to the medium. At this stage, the cells are more susceptible to killing, either by vitamin C-induced oxidative stress as reported here, or by other antimicrobials or treatments.

  19. Extracellular synthesis of Selenium nanoparticles from an Actinomycetes Streptomyces griseoruber and evaluation of its cytotoxicity on HT-29 cell line.

    Science.gov (United States)

    Ranjitha, V R; Vittal, Ravishankar Rai

    2017-11-13

    In the present study, the extracellular synthesis of Selenium nanoparticles (SeNPs) was carried out by using culture supernatant of Streptomyces griseoruber, an Actinomycetes member isolated from the soil. Bioreduction of SeNPs was confirmed by UV-Visible spectrophotometer that showed the peak at 575 nm. XRD pattern confirmed the non-crystalline or amorphous nature of the synthesised SeNPs. FTIR spectra revealed the possible functional group that is responsible for mediating the SeNPs formation. Size and distribution of the biosynthesised SeNPs were analysed by HR-TEM that showed the formation of particle size in the range of 100-250nm. The synthesised SeNPs showed good cytotoxic activity against HT-29 cell lines where apoptosis was studied by different staining procedures. The study reports for the first time, the rapid and eco-friendly synthesis of SeNPs from Streptomyces griseoruber and opens up a new possibility of commercially producing the SeNPs from biorenewable source as a natural chemotherapeutic compound. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. NS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV Nonstructural Protein 5A (NS5A via MEK/Extracellular Signal Regulated Kinase (ERK Pathway

    Directory of Open Access Journals (Sweden)

    Xuesong Gao

    2013-05-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein 5A (NS5A is a remarkable protein as it clearly plays multiple roles in mediating viral replication, host-cell interactions and viral pathogenesis. However, on the impact of cell growth, there have been different study results. NS5ATP9, also known as KIAA0101, p15PAF, L5, and OEACT-1, was first identified as a proliferating cell nuclear antigen-binding protein. Earlier studies have shown that NS5ATP9 might play an important role in HCV infection. The aim of this study is to investigate the function of NS5ATP9 on hepatocellular carcinoma (HCC cell lines proliferation under HCV NS5A expression. The results showed that overexpression of NS5ATP9 inhibited the proliferation of Bel7402 cells, whereas knockdown of NS5ATP9 by interfering RNA promoted the growth of HepG2 cells. Under HCV NS5A expression, RNA interference (RNAi targeting of NS5ATP9 could reverse the inhibition of HepG2 cell proliferation, suggesting that NS5ATP9 might be an anti-proliferation gene that plays an important role in the suppression of cell growth mediated by HCV NS5A via MEK/ERK signaling pathway. These findings might provide new insights into HCV NS5A and NS5ATP9.

  1. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206

    Czech Academy of Sciences Publication Activity Database

    Ješina, Pavel; Tesařová, M.; Fornůsková, D.; Vojtíšková, Alena; Pecina, Petr; Kaplanová, Vilma; Hansíková, H.; Zeman, J.; Houštěk, Josef

    2004-01-01

    Roč. 383, č. 3 (2004), s. 561-571 ISSN 0264-6021 R&D Projects: GA ČR(CZ) GA303/03/0749; GA MZd(CZ) NR7790; GA MZd(CZ) NR8065 Grant - others:GA UK(CZ) 14/2004 Institutional research plan: CEZ:AV0Z5011922 Keywords : ATP6 * ATP synthase * mitochondrial disease Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.278, year: 2004

  2. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Kannan Badri [Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014 (India); Sakthivel, Natarajan, E-mail: puns2005@gmail.com [Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014 (India)

    2011-10-15

    Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.

  3. Mechanisms of constitutive and ATP-evoked ATP release in neonatal mouse olfactory epithelium

    Directory of Open Access Journals (Sweden)

    Hayoz Sébastien

    2012-05-01

    Full Text Available Abstract Background ATP is an extracellular signaling molecule with many ascribed functions in sensory systems, including the olfactory epithelium. The mechanism(s by which ATP is released in the olfactory epithelium has not been investigated. Quantitative luciferin-luciferase assays were used to monitor ATP release, and confocal imaging of the fluorescent ATP marker quinacrine was used to monitor ATP release via exocytosis in Swiss Webster mouse neonatal olfactory epithelial slices. Results Under control conditions, constitutive release of ATP occurs via exocytosis, hemichannels and ABC transporters and is inhibited by vesicular fusion inhibitor Clostridium difficile toxin A and hemichannel and ABC transporter inhibitor probenecid. Constitutive ATP release is negatively regulated by the ATP breakdown product ADP through activation of P2Y receptors, likely via the cAMP/PKA pathway. In vivo studies indicate that constitutive ATP may play a role in neuronal homeostasis as inhibition of exocytosis inhibited normal proliferation in the OE. ATP-evoked ATP release is also present in mouse neonatal OE, triggered by several ionotropic P2X purinergic receptor agonists (ATP, αβMeATP and Bz-ATP and a G protein-coupled P2Y receptor agonist (UTP. Calcium imaging of P2X2-transfected HEK293 “biosensor” cells confirmed the presence of evoked ATP release. Following purinergic receptor stimulation, ATP is released via calcium-dependent exocytosis, activated P2X1,7 receptors, activated P2X7 receptors that form a complex with pannexin channels, or ABC transporters. The ATP-evoked ATP release is inhibited by the purinergic receptor inhibitor PPADS, Clostridium difficile toxin A and two inhibitors of pannexin channels: probenecid and carbenoxolone. Conclusions The constitutive release of ATP might be involved in normal cell turn-over or modulation of odorant sensitivity in physiological conditions. Given the growth-promoting effects of ATP, ATP-evoked ATP

  4. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix.

    Science.gov (United States)

    Wang, Yafei; Yu, Dongsheng; Liu, Zhiming; Zhou, Fang; Dai, Jun; Wu, Bingbing; Zhou, Jing; Heng, Boon Chin; Zou, Xiao Hui; Ouyang, Hongwei; Liu, Hua

    2017-08-14

    Mesenchymal stem cell therapy for osteoarthritis (OA) has been widely investigated, but the mechanisms are still unclear. Exosomes that serve as carriers of genetic information have been implicated in many diseases and are known to participate in many physiological processes. Here, we investigate the therapeutic potential of exosomes from human embryonic stem cell-induced mesenchymal stem cells (ESC-MSCs) in alleviating osteoarthritis (OA). Exosomes were harvested from conditioned culture media of ESC-MSCs by a sequential centrifugation process. Primary mouse chondrocytes treated with interleukin 1 beta (IL-1β) were used as an in vitro model to evaluate the effects of the conditioned medium with or without exosomes and titrated doses of isolated exosomes for 48 hours, prior to immunocytochemistry or western blot analysis. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of C57BL/6 J mice as an OA model. This was followed by intra-articular injection of either ESC-MSCs or their exosomes. Cartilage destruction and matrix degradation were evaluated with histological staining and OARSI scores at the post-surgery 8 weeks. We found that intra-articular injection of ESC-MSCs alleviated cartilage destruction and matrix degradation in the DMM model. Further in vitro studies illustrated that this effect was exerted through ESC-MSC-derived exosomes. These exosomes maintained the chondrocyte phenotype by increasing collagen type II synthesis and decreasing ADAMTS5 expression in the presence of IL-1β. Immunocytochemistry revealed colocalization of the exosomes and collagen type II-positive chondrocytes. Subsequent intra-articular injection of exosomes derived from ESC-MSCs successfully impeded cartilage destruction in the DMM model. The exosomes from ESC-MSCs exert a beneficial therapeutic effect on OA by balancing the synthesis and degradation of chondrocyte extracellular matrix (ECM), which in turn provides a new target for OA drug

  5. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain

    Directory of Open Access Journals (Sweden)

    Bernd L. Fiebich

    2014-09-01

    Full Text Available Brain inflammation is a common occurrence following responses to varied insults such as bacterial infections, stroke, traumatic brain injury and neurodegenerative disorders. A common mediator for these varied inflammatory responses is prostaglandin E2 (PGE2, produced by the enzymatic activity of cyclooxygenases (COX 1 and 2. Previous attempts to reduce neuronal inflammation through COX inhibition, by use of nonsteroidal anti-inflammatory drugs (NSAIDs, have met with limited success. We are proposing the two-hit model for neuronal injury – an initial localized inflammation mediated by PGE2 (first hit and the simultaneous release of adenosine triphosphate (ATP by injured cells (second hit, which significantly enhances the inflammatory response through increased synthesis of PGE2. Several evidences on the role of exogenous ATP in inflammation have been reported, including contrary instances where extracellular ATP reduces inflammatory events. In this review, we will examine the current literature on the role of P2 receptors, to which ATP binds, in modulating inflammatory reactions during neurodegeneration. Targeting the P2 receptors, therefore, provides a therapeutic alternative to reduce inflammation in the brain. P2 receptor-based anti-inflammatory drugs (PBAIDs will retain the activities of essential COX enzymes, yet will significantly reduce neuroinflammation by decreasing the enhanced production of PGE2 by extracellular ATP.

  6. The Effect of Electroacupuncture on the Extracellular Matrix Synthesis and Degradation in a Rabbit Model of Disc Degeneration

    Directory of Open Access Journals (Sweden)

    Guo-fu Huang

    2014-01-01

    Full Text Available The present study was aimed at determining if the electroacupuncture (EA is able to protect degenerated disc in vivo. New Zealand white rabbits (n=40 were used for the study. The rabbits were randomly assigned to four groups. EA intervention was applied to one of the four groups. Magnetic resonance imaging and Pfirrmann’s classification were obtained for each group to evaluate EA treatment on the intervertebral disc degeneration. Discs were analyzed using immunofluorescence for the labeling of collagens 1 and 2, bone morphogenetic protein-2 (BMP-2, matrix metalloproteinase-13 (MMP-13, and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1. For protein expression analysis, western blot was used for biglycan and decorin. Outcomes indicated that EA intervention decreased the grades compared with the compressed disc. Immunofluorescence analysis showed a significant increase of collagens 1 and 2, TIMP-1, and BMP-2 positive cells, in contrast to MMP-13 after EA treatment for 28 days. The protein expression showed a sign of regeneration that decorin and biglycan were upregulated. It was concluded that EA contributed to the extracellular matrix (ECM anabolic processes and increased the ECM components. MMPs and their inhibitors involved in the mechanism of EA intervention on ECM decreased disc. It kept a dynamic balance between ECM synthesis and degradation.

  7. Rad51 ATP binding but not hydrolysis is required to recruit Rad10 in synthesis-dependent strand annealing sites inS. cerevisiae.

    Science.gov (United States)

    Karlin, Justin; Fischhaber, Paula L

    2013-06-01

    Several modes of eukaryotic of DNA double strand break repair (DSBR) depend on synapsis of complementary DNA. The Rad51 ATPase, the S. cerevisiae homolog of E. coli RecA, plays a key role in this process by catalyzing homology searching and strand exchange between an invading DNA strand and a repair template (e.g. sister chromatid or homologous chromosome). Synthesis dependent strand annealing (SDSA), a mode of DSBR, requires Rad51. Another repair enzyme, the Rad1-Rad10 endonuclease, acts in the final stages of SDSA, hydrolyzing 3' overhanging single-stranded DNA. Here we show in vivo by fluorescence microscopy that the ATP binding function of yeast Rad51 is required to recruit Rad10 SDSA sites indicating that Rad51 pre-synaptic filament formation must occur prior to the recruitment of Rad1-Rad10. Our data also show that Rad51 ATPase activity, an important step in Rad51 filament disassembly, is not absolutely required in order to recruit Rad1-Rad10 to DSB sites.

  8. Application of response surface methodology to optimize the extracellular fungal mediated nanosilver green synthesis

    Directory of Open Access Journals (Sweden)

    Abdelmageed M. Othman

    2017-12-01

    Full Text Available This study aims to optimize the biosynthesis of nanosilver particles mediated by Trichoderma viride ATCC36838 using response surface methodology (RSM. Silver nanoparticles (AgNPs were biosynthesized effectively in terms of the factors impacting silver ion (Ag+ reduction to metallic nanosilver (Ag0 using culture filtrate under shaking condition. The results of statistics calculations revealed that 2 mM silver nitrate and 28% (v/v of culture filtrate at pH 7.0 for 34 h were the optimum values for AgNPs biosynthesis. The characterization of the produced AgNPs was conducted using electron microscopy, energy dispersive X-ray analysis, UV/visible spectrophotometry, and Fourier transform infrared spectroscopy. Round to oval AgNPs were detected with aspects of TEM within diameter range of 4–16 nm. The results of this study could help in developing a reliable ecofriendly, simple, and low cost process for microbial assisted AgNPs green synthesis especially with the continuous increase in its application fields.

  9. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    NARCIS (Netherlands)

    Nina, Praveen Balabaskaran; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.; Eisen, Jonathan A.

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1) sector catalyzes ATP synthesis, whereas the F(o) sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1) and F(o) sectors are

  10. Defining a turnover index for the correlation of biomaterial degradation and cell based extracellular matrix synthesis using fluorescent tagging techniques.

    Science.gov (United States)

    Bardsley, Katie; Wimpenny, Ian; Wechsler, Roni; Shachaf, Yonatan; Yang, Ying; El Haj, Alicia J

    2016-11-01

    Non-destructive protocols which can define a biomaterial's degradation and its associated ability to support proliferation and/or promote extracellular matrix deposition will be an essential in vitro tool. In this study we investigate fluorescently tagged biomaterials, with varying rates of degradation and their ability to support cell proliferation and osteogenic differentiation. Changes in fluorescence of the biomaterials and the release of fluorescent soluble by-products were confirmed as accurate methods to quantify degradation. It was demonstrated that increasing rates of the selected biomaterials' degradation led to a decrease in cell proliferation and concurrently an increase in osteogenic matrix production. A novel turnover index (TI), which directly describes the effect of degradation of a biomaterial on cell behaviour, was calculated. Lower TIs for proliferation and high TIs for osteogenic marker production were observed on faster degrading biomaterials, indicating that these biomaterials supported an upregulation of osteogenic markers. This TI was further validated using an ex vivo chick femur model, where the faster degrading biomaterial, fibrin, led to an increased TI for mineralisation within an epiphyseal defect. This in vitro tool, TI, for monitoring the effect of biomaterial degradation on extracellular matrix production may well act as predictor of the selected biomaterials' performance during in vivo studies. This paper outlines a novel metric, Turnover Index (TI), which can be utilised in tissue-engineering for the comparison of a range of biomaterials. The metric sets out to define the relationship between the rate of degradation of biomaterials with the rate of cell proliferation and ECM synthesis, ultimately allowing us to tailor material for set clinical requirements. We have discovered some novel comparative findings that cells cultured on biomaterials with increased rates of degradation have lower rates of proliferation but alternatively

  11. Cyclic Electron Flow around Photosystem I Promotes ATP Synthesis Possibly Helping the Rapid Repair of Photodamaged Photosystem II at Low Light

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2018-02-01

    Full Text Available In higher plants, moderate photoinhibition of photosystem II (PSII leads to a stimulation of cyclic electron flow (CEF at low light, which is accompanied by an increase in the P700 oxidation ratio. However, the specific role of CEF stimulation at low light is not well known. Furthermore, the mechanism underlying this increase in P700 oxidation ratio at low light is unclear. To address these questions, intact leaves of the shade-adapted plant Panax notoginseng were treated at 2258 μmol photons m-2 s-1 for 30 min to induce PSII photoinhibition. Before and after this high-light treatment, PSI and PSII activity, the energy quenching in PSII, the redox state of PSI and proton motive force (pmf at a low light of 54 μmol photons m-2 s-1 were determined at the steady state. After high-light treatment, electron flow through PSII (ETRII significantly decreased but CEF was remarkably stimulated. The P700 oxidation ratio significantly increased but non-photochemical quenching changed negligibly. Concomitantly, the total pmf decreased significantly and the proton gradient (ΔpH across the thylakoid membrane remained stable. Furthermore, the P700 oxidation ratio was negatively correlated with the value of ETRII. These results suggest that upon PSII photoinhibition, CEF is stimulated to increase the ATP synthesis, facilitating the rapid repair of photodamaged PSII. The increase in P700 oxidation ratio at low light cannot be explained by the change in pmf, but is primarily controlled by electron transfer from PSII.

  12. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  13. The Role of ATP in Sleep Regulation

    Directory of Open Access Journals (Sweden)

    Sachiko eChikahisa

    2011-12-01

    Full Text Available One of the functions of sleep is to maintain energy balance in the brain. There are a variety of hypotheses related to how metabolic pathways interact with sleep/wake regulation. A major finding that demonstrates an interaction between sleep and metabolic homeostasis is the involvement of adenosine in sleep homeostasis. An accumulation of adenosine is supplied from ATP, which can act as an energy currency in the cell. Extracellularly, ATP can act as an activity-dependent signaling molecule, especially in regard to communication between neurons and glia, including astrocytes. Furthermore, the intracellular AMP/ATP ratio controls the activity of AMP-activated protein kinase (AMPK, which is a potent energy regulator and is recently reported to play a role in the regulation of sleep homeostasis. Brain ATP may support multiple functions in the regulation of the sleep/wake cycle and sleep homeostasis.

  14. ATP release, generation and hydrolysis in exocrine pancreatic duct cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Yegutkin, G.G.; Novak, Ivana

    2015-01-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our...... dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting...

  15. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    Science.gov (United States)

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules.

  16. Cellular ATP release in the lung and airway

    Directory of Open Access Journals (Sweden)

    Satoru Ito

    2016-11-01

    Full Text Available Adenosine triphosphate (ATP is a universal energy source synthesized by mitochondrial oxidative phosphorylation and cytosolic glycolysis and transported by the vesicular nucleotide transporter for storage in secretory vesicles. Extracellular ATP regulates physiological functions and homeostasis of the respiratory system and is associated with pathogenesis of respiratory diseases. Thus, modulation of ATP and purinergic signaling may be a novel therapeutic approach to pulmonary disease. ATP is released from alveolar epithelial cells, airway epithelial cells, airway smooth muscle cells, fibroblasts and endothelial cells in response to various chemical and mechanical stimuli. In addition to conductive pathways such as connexins and pannexins, vesicular exocytosis is involved in the mechanisms of ATP release from the cells. Imaging approaches enable us to visualize ATP release from not only cultured cells but also lung tissue ex vivo. Extracellular vesicles, exosomes and membrane-derived microvesicles, containing cytoplasmic proteins, mRNA and microRNA, represent important mediators of cell-to-cell communication and the intercellular microenvironment. However, it is not known whether extracellular vesicles contain ATP as an intercellular messenger. Future studies are necessary to elucidate the mechanisms of cellular ATP release and purinergic signaling in the respiratory system.

  17. Rhodococcus erythropolis ATCC 25544 as a suitable source of cholesterol oxidase: cell-linked and extracellular enzyme synthesis, purification and concentration

    Directory of Open Access Journals (Sweden)

    García-Carmona Francisco F

    2002-03-01

    Full Text Available Abstract Background The suitability of the strain Rhodococcus erythropolis ATCC 25544 grown in a two-liter fermentor as a source of cholesterol oxidase has been investigated. The strain produces both cell-linked and extracellular cholesterol oxidase in a high amount, that can be extracted, purified and concentrated by using the detergent Triton X-114. Results A spray-dry method of preparation of the enzyme inducer cholesterol in Tween 20 was found to be superior in both convenience and enzyme synthesis yield to one of heat-mixing. Both were similar as far as biomass yield is concerned. Cell-linked cholesterol oxidase was extracted with Triton X-114, and this detergent was also used for purification and concentration, following temperature-induced detergent phase separation. Triton X-114 was utilized to purify and to concentrate the cell-linked and the extracellular enzyme. Cholesterol oxidase was found mainly in the resulting detergent-rich phase. When Triton X-114 concentration was set to 6% w/v the extracellular, but not the cell-extracted enzyme, underwent a 3.4-fold activation after the phase separation process. This result is interpreted in the light of interconvertible forms of the enzyme that do not seem to be in equilibrium. Fermentation yielded 360 U/ml (672 U/ml after activation, 36% of which was extracellular (65% after activation. The Triton X-114 phase separation step yielded 11.6-fold purification and 20.3-fold concentration. Conclusions The results of this work may make attractive and cost-effective the implementation of this bacterial strain and this detergent in a purification-based industrial production scheme of commercial cholesterol oxidase.

  18. Opportunistic Pathogen Porphyromonas gingivalis Modulates Danger Signal ATP-Mediated Antibacterial NOX2 Pathways in Primary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    JoAnn S. Roberts

    2017-07-01

    Full Text Available Porphyromonas gingivalis, a major opportunistic pathogen in the etiology of chronic periodontitis, successfully survives in human gingival epithelial cells (GECs. P. gingivalis abrogates the effects of a host danger molecule, extracellular ATP (eATP/P2X7 signaling, such as the generation of reactive oxygen species (ROS via the mitochondria and NADPH oxidases (NOX from primary GECs. However, antimicrobial functions of ROS production are thoroughly investigated in myeloid-lineage immune cells and have not been well-understood in epithelial cells. Therefore, this study characterizes antibacterial NOX2 generated ROS and host downstream effects in P. gingivalis infected human primary GECs. We examined the expression of NOX isoforms in the GECs and demonstrate eATP stimulation increased the mRNA expression of NOX2 (p < 0.05. Specific peptide inhibition of NOX2 significantly reduced eATP-mediated ROS as detected by DCFDA probe. The results also showed P. gingivalis infection can temporally modulate NOX2 pathway by reorganizing the localization and activation of cytosolic molecules (p47phox, p67phox, and Rac1 during 24 h of infection. Investigation into downstream biocidal factors of NOX2 revealed an eATP-induced increase in hypochlorous acid (HOCl in GECs detected by R19-S fluorescent probe, which is significantly reduced by a myeloperoxidase (MPO inhibitor. MPO activity of the host cells was assayed and found to be positively affected by eATP treatment and/or infection. However, P. gingivalis significantly reduced the MPO product, bactericidal HOCl, in early times of infection upon eATP stimulation. Analysis of the intracellular levels of a major host-antioxidant, glutathione during early infection revealed a substantial decrease (p < 0.05 in reduced glutathione indicative of scavenging of HOCl by P. gingivalis infection and eATP treatment. Examination of the mRNA expression of key enzymes in the glutathione synthesis pathway displayed a marked

  19. The binding of heparin to the extracellular matrix of endothelial cells up-regulates the synthesis of an antithrombotic heparan sulfate proteoglycan.

    Science.gov (United States)

    Trindade, Edvaldo S; Oliver, Constance; Jamur, Maria C; Rocha, Hugo A O; Franco, Célia R C; Bouças, Rodrigo I; Jarrouge, Thais R; Pinhal, Maria A S; Tersariol, Ivarne L S; Gouvêa, Tiago C; Dietrich, Carl P; Nader, Helena B

    2008-11-01

    Exposure of endothelial cells to heparin and other antithrombotic drugs specifically stimulates the synthesis of an antithrombotic heparan sulfate (HS). In the present work, biotinylated heparin (BiotHep) was used to characterize the binding site(s) of heparin responsible for the stimulus in HS synthesis on endothelial cells. No differences were observed between biotinylated and non-biotinylated heparin in their ability to increase the synthesis of HS. In kinetic studies the BiotHep showed fast, saturable and specific binding with an apparent K(D) of 83 nM to adherent cells and 44 nM to the extracellular matrix (ECM) in the absence of cells. By confocal and electron microscopy, BiotHep bound only to the ECM, co-localizing with fibronectin. The same pattern of binding to the ECM was observed using heparin conjugated with FITC or Alexa Fluor 488 in the presence or absence of fetal calf serum. However, after degradation of HS, heparin binds to the cell surface, indicating that endogenous HS possibly occupied the heparin binding sites. Analyses by flow cytometry and confocal microscopy of cells with non-associated ECM, showed labeling of the cell surface using syndecan-4 monoclonal antibody as well as wheat germ agglutinin, but no binding of heparin. Furthermore, the stimulation in HS synthesis is not elicited by heparin in the absence of ECM. These results indicate that the stimulus for the synthesis of HS does not require binding of the heparin to the cell surface, and the signaling may be mediated through the ECM. (c) 2008 Wiley-Liss, Inc

  20. Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum.

    Science.gov (United States)

    Melani, Alessia; Corti, Francesca; Stephan, Holger; Müller, Christa E; Donati, Chiara; Bruni, Paola; Vannucchi, Maria Giuliana; Pedata, Felicita

    2012-01-01

    In the central nervous system (CNS) ATP and adenosine act as transmitters and neuromodulators on their own receptors but it is still unknown which part of extracellular adenosine derives per se from cells and which part is formed from the hydrolysis of released ATP. In this study extracellular concentrations of adenosine and ATP from the rat striatum were estimated by the microdialysis technique under in vivo physiological conditions and after focal ischemia induced by medial cerebral artery occlusion. Under physiological conditions, adenosine and ATP concentrations were in the range of 130 nmol/L and 40 nmol/L, respectively. In the presence of the novel ecto-ATPase inhibitor, PV4 (100 nmol/L), the extracellular concentration of ATP increased 12-fold to ~360 nmol/L but the adenosine concentration was not altered. This demonstrates that, under physiological conditions, adenosine is not a product of extracellular ATP. In the first 4h after ischemia, adenosine increased to ~690 nmol/L and ATP to ~50 nmol/L. In the presence of PV4 the extracellular concentration of ATP was in the range of 450 nmol/L and a significant decrease in extracellular adenosine (to ~270 nmol/L) was measured. The contribution of extracellular ATP to extracellular adenosine was maximal in the first 20 min after ischemia onset. Furthermore we demonstrated, by immunoelectron microscopy, the presence of the concentrative nucleoside transporter CNT2 on plasma and vesicle membranes isolated from the rat striatum. These results are in favor that adenosine is transported in vesicles and is released in an excitation-secretion manner under in vivo physiological conditions. Early after ischemia, extracellular ATP is hydrolyzed by ecto-nucleotidases which significantly contribute to the increase in extracellular adenosine. To establish the contribution of extracellular ATP to adenosine might constitute the basis for devising a correct putative purinergic strategy aimed at protection from ischemic damage

  1. Characterization of the effects of 2-methylthio-ATP and 2-chloro-ATP on brain capillary endothelial cells: similarities to ADP and differences from ATP.

    OpenAIRE

    Vigne, P.; Feolde, E.; Breittmayer, J. P.; Frelin, C.

    1994-01-01

    1. Brain capillary endothelial cells responded to 2-methylthio-ATP (2MeSATP) by large increases in [Ca2+]i (EC50 = 27 nM) that were partially dependent on the presence of extracellular Ca2+ and that were not associated with a measurable production of inositol phosphates. 2. 2-chloro-ATP (2ClATP) raised [Ca2+]i in a biphasic manner. At low concentrations, intracellular Ca2+ mobilization was not associated with a measurable production of inositol phosphates. At concentrations > 30 microM, 2ClAT...

  2. ATP release and purinergic signaling in NLRP3 inflammasome activation

    Directory of Open Access Journals (Sweden)

    Isabelle eCOUILLIN

    2013-01-01

    Full Text Available The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing that senses pathogen- and danger-associated molecular patterns. One step- or two step- models have been proposed to explain the tight regulation of IL-1β production during inflammation. Moreover, cellular stimulation triggers ATP release and subsequent activation of purinergic receptors at the cell surface. Importantly some studies have reported roles for extracellular ATP (eATP, in NLRP3 inflammasome activation in response to PAMPs and DAMPs. In this mini review, we will discuss the link between active ATP release, purinergic signaling and NLRP3 inflammasome activation. We will focus on the role of autocrine or paracrine ATP export in particle-induced NLRP3 inflammasome activation and discuss how particle activators are competent to induce maturation and secretion of IL-1β through a process that involves, as a first event, extracellular release of endogenous ATP through hemichannel opening, and as a second event, signaling through purinergic receptors that trigger NLRP3 inflammasome activation. Finally, we will review the evidence for ATP as a key proinflammatory mediator released by dying cells. In particular we will discuss how cancer cells dying via autophagy trigger ATP-dependent NLRP3 inflammasome activation in the macrophages engulfing them, eliciting an immunogenic response against tumors.

  3. Synthesis of purin-2-yl and purin-6-yl-aminoglucitols as C-nucleosidic ATP mimics and biological evaluation as FGFR3 inhibitors.

    Science.gov (United States)

    Tak-Tak, Lotfi; Barbault, Florent; Maurel, François; Busca, Patricia; Le Merrer, Yves

    2011-04-01

    Two new series of C-nucleosidic ATP mimics have been synthesized using an efficient and versatile synthetic pathway. These compounds were designed as FGFR3 inhibitors using purine as a central scaffold. The two substituents, a polyhydroxylated ribose mimic and a lipophilic moiety, were linked either in position 2 or 6 of the purine ring in order to explore any possible binding mode. All the compounds were able to inhibit FGFR3 kinase activity at a concentration of 50 μM. Unexpectedly, the best inhibitor was found to be one of the synthetic intermediates 13 bearing an iodine atom in position 2. Docking studies have confirmed its location in the ATP binding site and revealed halogen bonding among key interactions. Copyright © 2011. Published by Elsevier Masson SAS.

  4. Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. Role of acetyl CoA synthetase in anaerobic ATP synthesis.

    Science.gov (United States)

    Takasaki, Kazuto; Shoun, Hirofumi; Yamaguchi, Masashi; Takeo, Kanji; Nakamura, Akira; Hoshino, Takayuki; Takaya, Naoki

    2004-03-26

    Fungal ammonia fermentation is a novel dissimilatory metabolic mechanism that supplies energy under anoxic conditions. The fungus Fusarium oxysporum reduces nitrate to ammonium and simultaneously oxidizes ethanol to acetate to generate ATP (Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., and Shoun, H. (2002) J. Biol. Chem. 277, 1892-1896). We identified the Aspergillus nidulans genes involved in ammonia fermentation by analyzing fungal mutants. The results showed that assimilatory nitrate and nitrite reductases (the gene products of niaD and niiA) were essential for reducing nitrate and for anaerobic cell growth during ammonia fermentation. We also found that ethanol oxidation is coupled with nitrate reduction and catalyzed by alcohol dehydrogenase, coenzyme A (CoA)-acylating aldehyde dehydrogenase, and acetyl-CoA synthetase (Acs). This is similar to the mechanism suggested in F. oxysporum except A. nidulans uses Acs to produce ATP instead of the ADP-dependent acetate kinase of F. oxysporum. The production of Acs requires a functional facA gene that encodes Acs and that is involved in ethanol assimilation and other metabolic processes. We purified the gene product of facA (FacA) from the fungus to show that the fungus acetylates FacA on its lysine residue(s) specifically under conditions of ammonia fermentation to regulate its substrate affinity. Acetylated FacA had higher affinity for acetyl-CoA than for acetate, whereas non-acetylated FacA had more affinity for acetate. Thus, the acetylated variant of the FacA protein is responsible for ATP synthesis during fungal ammonia fermentation. These results showed that the fungus ferments ammonium via coupled dissimilatory and assimilatory mechanisms.

  5. Di(2-ethylhexyl)phthalate Alters the Synthesis and β-Oxidation of Fatty Acids and Hinders ATP Supply in Mouse Testes via UPLC-Q-Exactive Orbitrap MS-Based Metabonomics Study.

    Science.gov (United States)

    Shen, Guolin; Zhou, Lili; Liu, Wei; Cui, Yuan; Xie, Wenping; Chen, Huiming; Yu, Wenlian; Li, Wentao; Li, Haishan

    2017-06-21

    Di(2-ethylhexyl) phthalate (DEHP) is considered to be an environmental endocrine disruptor at high levels of general exposure. Studies show that DEHP may cause testicular toxicity on human being. In this study, metabonomics techniques were used to identify differential endogenous metabolites, draw the network metabolic pathways, and conduct network analysis, to determine the underlying mechanisms of testicular toxicity induced by DEHP. The results showed that DEHP inhibited synthesis and accelerated β-oxidation of fatty acids and impaired the tricarboxylic acid cycle (TCA cycle) and gluconeogenesis, resulting in lactic acid accumulation and an insufficient ATP supply in the microenvironment of the testis. These alterations led to testicular atrophy and, thus, may be the underlying causes of testicular toxicity. DEHP also inhibited peroxisome proliferator activated receptors in the testis, which may be another potential reason for the testicular atrophy. These findings provided new insights to better understand the mechanisms of testicular toxicity induced by DEHP exposure.

  6. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth...... of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis....

  7. ATP and potassium ions: a deadly combination for astrocytes

    Science.gov (United States)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  8. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity.

    Science.gov (United States)

    Hamedi, Sepideh; Shojaosadati, Seyed Abbas; Shokrollahzadeh, Soheila; Hashemi-Najafabadi, Sameereh

    2014-02-01

    In the present study, the biosynthesis of silver nanoparticles (AgNPs) using Neurospora intermedia, as a new non-pathogenic fungus was investigated. For determination of biomass harvesting time, the effect of fungal incubation period on nanoparticle formation was investigated using UV-visible spectroscopy. Then, AgNPs were synthesized using both culture supernatant and cell-free filtrate of the fungus. Two different volume ratios (1:100 and 1:1) of the culture supernatant to the silver nitrate were employed for AgNP synthesis. In addition, cell-free filtrate and silver nitrate were mixed in presence and absence of light. Smallest average size and highest productivity were obtained when using equal volumes of the culture supernatant and silver nitrate solution as confirmed by UV-visible spectra of colloidal AgNPs. Comparing the UV-visible spectra revealed that using cell-free filtrate for AgNP synthesis resulted in the formation of particles with higher stability and monodispersity than using culture supernatant. The absence of light in cell-free filtrate mediated synthesis led to the formation of nanoparticles with the lowest rate and the highest monodispersity. The presence of elemental silver in all prepared samples was confirmed using EDX, while the crystalline nature of synthesized particles was verified by XRD. FTIR results showed the presence of functional groups which reduce Ag(+) and stabilize AgNPs. The presence of nitrate reductase was confirmed in the cell-free filtrate of the fungus suggesting the potential role of this enzyme in AgNP synthesis. Synthesized particles showed significant antibacterial activity against E. coli as confirmed by examining the growth curve of bacterial cells exposed to AgNPs.

  9. Histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to Ca2+ mobilization and cell proliferation.

    Science.gov (United States)

    Pinheiro, Ana Rita; Paramos-de-Carvalho, Diogo; Certal, Mariana; Costa, Maria Adelina; Costa, Cristina; Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Sévigny, Jean; Correia-de-Sá, Paulo

    2013-09-20

    Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca(2+) ([Ca(2+)]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca(2+)]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca(2+)]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with (10)Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca(2+)]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADP-sensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca(2+)]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors.

  10. Histamine Induces ATP Release from Human Subcutaneous Fibroblasts, via Pannexin-1 Hemichannels, Leading to Ca2+ Mobilization and Cell Proliferation*

    Science.gov (United States)

    Pinheiro, Ana Rita; Paramos-de-Carvalho, Diogo; Certal, Mariana; Costa, Maria Adelina; Costa, Cristina; Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Sévigny, Jean; Correia-de-Sá, Paulo

    2013-01-01

    Changes in the regulation of connective tissue ATP-mediated mechano-transduction and remodeling may be an important link to the pathogenesis of chronic pain. It has been demonstrated that mast cell-derived histamine plays an important role in painful fibrotic diseases. Here we analyzed the involvement of ATP in the response of human subcutaneous fibroblasts to histamine. Acute histamine application caused a rise in intracellular Ca2+ ([Ca2+]i) and ATP release from human subcutaneous fibroblasts via H1 receptor activation. Histamine-induced [Ca2+]i rise was partially attenuated by apyrase, an enzyme that inactivates extracellular ATP, and by blocking P2 purinoceptors with pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt and reactive blue 2. [Ca2+]i accumulation caused by histamine was also reduced upon blocking pannexin-1 hemichannels with 10Panx, probenecid, or carbenoxolone but not when connexin hemichannels were inhibited with mefloquine or 2-octanol. Brefeldin A, an inhibitor of vesicular exocytosis, also did not block histamine-induced [Ca2+]i mobilization. Prolonged exposure of human subcutaneous fibroblast cultures to histamine favored cell growth and type I collagen synthesis via the activation of H1 receptor. This effect was mimicked by ATP and its metabolite, ADP, whereas the selective P2Y1 receptor antagonist, MRS2179, partially attenuated histamine-induced cell growth and type I collagen production. Expression of pannexin-1 and ADP-sensitive P2Y1 receptor on human subcutaneous fibroblasts was confirmed by immunofluorescence confocal microscopy and Western blot analysis. In conclusion, histamine induces ATP release from human subcutaneous fibroblasts, via pannexin-1 hemichannels, leading to [Ca2+]i mobilization and cell growth through the cooperation of H1 and P2 (probably P2Y1) receptors. PMID:23918924

  11. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhagen, Jason Alan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K+ and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol

  12. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Directory of Open Access Journals (Sweden)

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  13. Glycolysis and ATP degradation in cod ( Gadus morhua ) at subzero temperatures in relation to thaw rigor

    DEFF Research Database (Denmark)

    Cappeln, Gertrud; Jessen, Flemming

    2001-01-01

    Glycolysis was shown to occur during freezing of cod of decrease in glycogen and an increase in lactate. In addition, the ATP content decreased during freezing. Synthesis of ATP was measured as degradation of glycogen. During storage at -9 and - 12 degreesC it was found that degradation of ATP...

  14. Metabolomic Analysis of Differential Changes in Metabolites during ATP Oscillations in Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Hyuck Joon Kwon

    2013-01-01

    Full Text Available Prechondrogenic condensation is a critical step for skeletal pattern formation. Recent studies reported that ATP oscillations play an essential role in prechondrogenic condensation. However, the molecular mechanism to underlie ATP oscillations remains poorly understood. In the present study, it was investigated how changes in metabolites are implicated in ATP oscillations during chondrogenesis by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS. CE-TOF-MS detected 93 cationic and 109 anionic compounds derived from known metabolic pathways. 15 cationic and 18 anionic compounds revealed significant change between peak and trough of ATP oscillations. These results implicate that glycolysis, mitochondrial respiration and uronic acid pathway oscillate in phase with ATP oscillations, while PPRP and nucleotides synthesis pathways oscillate in antiphase with ATP oscillations. This suggests that the ATP-producing glycolysis and mitochondrial respiration oscillate in antiphase with the ATP-consuming PPRP/nucleotide synthesis pathway during chondrogenesis.

  15. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities.

    Science.gov (United States)

    Balakumaran, M D; Ramachandran, R; Kalaichelvan, P T

    2015-09-01

    The aim of this study was to synthesize highly biocompatible and functionalized silver nanoparticles using endophytic fungi isolated from the leaves of medicinal plants. Among 13 fungi tested, the isolate, Guignardia mangiferae (Bios PTK 4) extracellularly synthesized well-dispersed and extremely stable silver nanoparticles under optimized reaction conditions within 12 h. These nanoparticles were characterized by HR-TEM, SAED, XRD and EDX analyses. G. mangiferae synthesized 5-30 nm sized, spherical shaped silver nanoparticles. Effect of pH on the antibacterial activity of silver nanoparticles was studied using well diffusion assay; on the basis of particle stability and antibacterial activity, pH 7 was found to be optimum. The leakage of intracellular components has clearly demonstrated that silver nanoparticles damage the bacterial cells by formation of pores, which affect the membrane permeability and finally leads to cell death. In addition, silver nanoparticles exhibited excellent antifungal activity against plant pathogenic fungi. Cytotoxic effects of silver nanoparticles showed IC50 values of 63.37, 27.54 and 23.84 μg/mL against normal African monkey kidney (Vero), HeLa (cervical) and MCF-7 (breast) cells, respectively, at 24 h incubation period. Thus, the obtained results convincingly suggest that silver nanoparticles synthesized from G. mangiferae are highly biocompatible and have wider applicability and they could be explored as promising candidates for a variety of biomedical/pharmaceutical and agricultural applications. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity

    Directory of Open Access Journals (Sweden)

    Kulkarni RR

    2015-01-01

    Full Text Available Rasika R Kulkarni, Nayana S Shaiwale, Dileep N Deobagkar, Deepti D Deobagkar Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, University of Pune, Pune, India Abstract: There has been rapid progress in exploring microorganisms for green synthesis of nanoparticles since microbes show extraordinary diversity in terms of species richness and niche localization. Microorganisms are easy to culture using relatively inexpensive and simple nutrients under varied conditions of temperature, pressure, pH, etc. In this work, Deinococcus radiodurans that possesses the ability to withstand extremely high radiation and desiccation stress has been employed for the synthesis of silver nanoparticles (AgNPs. D. radiodurans was able to accumulate AgNPs in medium under various conditions, and process optimization was carried out with respect to time, temperature, pH, and concentration of silver salt. AgNPs were characterized using UV/vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The microbially synthesized AgNPs exhibited good antimicrobial activity against both Gram-negative and Gram-positive organisms and anti-biofouling activity. Their ability to inhibit growth and proliferation of cancer cell line was also examined, and it could be seen that AgNPs synthesized using D. radiodurans exhibited excellent anticancer activity. Keywords: Deinococcus radiodurans, silver nanoparticles, anticancer, radiation resistance, antibacterial, anti-biofouling 

  17. Synthesis of noncollagenous extracellular matrix proteins during development of mineralized nodules by rat periodontal ligament cells in vitro.

    Science.gov (United States)

    Ramakrishnan, P R; Lin, W L; Sodek, J; Cho, M I

    1995-07-01

    To characterize the mineralized nodules produced by rat periodontal ligament (PDL) cells in vitro, we have studied the synthesis and distribution of mineralized tissue proteins at various stages of nodule formation. PDL cells were obtained from coagulum in the socket at 2 days after tooth extraction and cultured in Dulbecco's Modified Eagles Medium (DMEM) containing 10% fetal bovine serum and antibiotics. Confluent cells were grown in the presence of ascorbic acid (50 micrograms/ml), dexamethasone (5 microM), and beta-glycerophosphate (10 mM) for 3 weeks. Four stages showing distinct morphological characteristics during development of mineralized nodules were identified. Protein synthesis and deposition of proteins into the matrix were studied during these stages by metabolic labeling with [35S]methionine for 24 hours. Large quantities of SPARC (secreted protein, acidic and rich in cysteine) were synthesized by confluent cells but decreased during the progress of mineralized nodule formation. Two forms of osteopontin (OPN) (67 kDa and 61 kDa) were synthesized in comparable quantities by confluent cells; OPN and bone sialoprotein (BSP) were induced by dexamethasone and represented the major proteins in the mineralized matrix. The 67 kDa form of OPN was the predominant species in the mineralized matrix. Both OPN and BSP were localized by immunogold electron microscopy on globular as well as fused electron-dense structures at sites of tissue mineralization.

  18. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H

    2016-12-01

    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  19. Identification of an Efflux Transporter LmrB Regulating Stress Response and Extracellular Polysaccharide Synthesis in Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-06-01

    Full Text Available Efflux transporters have been implicated in regulating bacterial virulence properties such as resistance to antibiotics, biofilm formation and colonization. The pathogenicity of Streptococcus mutans, the primary etiologic agent of human dental caries, relies on the bacterium’s ability to form biofilms on tooth surface. However, the studies on efflux transporters in S. mutans are scare and the function of these transporters remained to be clarified. In this study, we identified an efflux transporter (LmrB in S. mutans through cloning the lmrB gene into Escherichia coli. Introducing lmrB into E. coli conferred a multidrug-resistant phenotype and resulted in higher EtBr efflux activity which could be suppressed by efflux inhibitor. To explore whether LmrB was involved in S. mutans virulence properties regulation, we constructed the lmrB inactivation mutant and examined the phenotypes of the mutant. It was found that LmrB deficiency resulted in increased IPS storage and prolonged acid production. Enhanced biofilm formation characterized by increased extracellular polysaccharides (EPS production and elevated resistance to hydrogen peroxide and antimicrobials were also observed in lmrB mutant. To gain a better understanding of the global role of LmrB, a transcriptome analysis was performed using lmrB mutant strain. The expression of 107 genes was up- or down-regulated in the lmrB mutant compared with the wild type. Notably, expression of genes in several genomic islands was differentially modulated, such as stress-related GroELS and scnRK, sugar metabolism associated glg operons and msmREFGK transporter. The results presented here indicate that LmrB plays a vital global role in the regulation of several important virulence properties in S. mutans.

  20. ATP Release and Effects in Pancreas

    DEFF Research Database (Denmark)

    Novak, Ivana; Amstrup, Jan; Henriksen, Katrine Lütken

    2003-01-01

    concentrations were higher, about 10µM, around acinar cells after cholinergic stimulation. Fluorescence of quinacrine and MANT-ATP indicated that some ATP is stored in secretory granules. Pancreatic acini have transcripts for P2X1, P2X4, P2Y2, and P2Y4 receptors, but measurements of Ca2+ signals in isolated...... acini using Fura-2 and CLSM revealed that only about 15% of acini respond to extracellular ATP or UTP. Hence, in acini only a few P2 receptors are functional and the distribution seems heterogenous. In contrast, pancreatic ducts have transcripts for P2Y2, P2Y4, P2X4, and P2X7 receptors that consistently...... increase intracellular Ca2+. Patch-clamp studies show that P2Y2/P2Y4 receptors inhibit K+ channels, and thus downregulate secretion. P2X4/P2X7 channels stimulate Na+/Ca2+ influx and may upregulate secretion by yet unknown mechanisms. Taken together, our studies show that pancreatic acini release ATP...

  1. The Role of ATP in the Regulation of NCAM Function

    DEFF Research Database (Denmark)

    Hübschmann, Martin; Skladchikova, Galina

    2008-01-01

    Extracellular ATP is an abundant signaling molecule that has a number of functions in the nervous system. It is released by both neurons and glial cells, activates purinergic receptors and acts as a trophic factor as well as a neurotransmitter. In this review, we summarize the evidence for a dire...

  2. Additions of Thiols to 7-Vinyl-7-deazaadenine Nucleosides and Nucleotides. Synthesis of Hydrophobic Derivatives of 2'-Deoxyadenosine, dATP and DNA

    Czech Academy of Sciences Publication Activity Database

    Slavíčková, Michaela; Pohl, Radek; Hocek, Michal

    2016-01-01

    Roč. 81, č. 22 (2016), s. 11115-11125 ISSN 0022-3263 R&D Projects: GA ČR GA14-04289S Institutional support: RVO:61388963 Keywords : terminal deoxynucleotidyl transferase * enzymatic synthesis * cross linking Subject RIV: CC - Organic Chemistry Impact factor: 4.849, year: 2016 http://pubs.acs.org/doi/abs/10.1021/acs.joc.6b02098

  3. Caspase-independent apoptosis in Friend's erythroleukemia cells: role of mitochondrial ATP synthesis impairment in relocation of apoptosis-inducing factor and endonuclease G.

    Science.gov (United States)

    Comelli, Marina; Genero, Nadia; Mavelli, Irene

    2009-02-01

    Mitochondria have emerged as the central components of both caspase-dependent and independent apoptosis signalling pathways through release of different apoptogenic proteins. We previously documented that parental and differentiated Friend's erythroleukemia cells were induced to apoptosis by oligomycin and H(2)O(2) exposure, showing that the energy impairment occurring in both cases as a consequence of a severe mitochondrial F(0)F(1)ATPsynthase inactivation was a common early feature. Here we provide evidence for AIF and Endo G mitochondrio-nuclear relocation in both cases, as a component of caspase-independent apoptosis pathways. No detectable change in mitochondrial transmembrane potential and no variation in mitochondrial levels of Bcl-2 and Bax are observed. These results point to the osmotic rupture of the mitochondrial outer membrane as occurring in response to cell exposure to the two energy-impairing treatments under conditions preserving the mitochondrial inner membrane. A critical role of the mitochondrial F(0)F(1)ATP synthase inhibition in this process is also suggested.

  4. Extracellular nucleotide signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, Gary [Univ. of Missouri, Columbia, MO (United States)

    2016-09-08

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogen fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.

  5. Atomic model for the dimeric FOregion of mitochondrial ATP synthase.

    Science.gov (United States)

    Guo, Hui; Bueler, Stephanie A; Rubinstein, John L

    2017-11-17

    Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded F O region turns the rotor that drives ATP synthesis in the soluble F 1 region. Although crystal structures of the F 1 region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the F O region. Using cryo-electron microscopy, we determined the structure of the dimeric F O complex from Saccharomyces cerevisiae at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae. Copyright © 2017, American Association for the Advancement of Science.

  6. Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ting Shen

    2017-05-01

    Full Text Available AIM: To investigate the impact of adipose-derived mesenchymal stem cells (ADSCs on cell viability and extracellular matrix (ECM synthesis of corneal stromal cells (CSCs. METHODS: ADSCs and CSCs were obtained from the corneas of New Zealand white rabbits and indirectly co-cultured in vitro. The proliferative capacity of CSCs in the different groups was assessed by CCK-8 assays. Annexin V-fluorescein isothiocyanate (FITC/proliferation indices (PI assays were used to detect the apoptosis of CSCs. The expression levels of matrix metalloproteinase (MMP, such as MMP1, MMP2, MMP9, and collagens were also evaluated by Western blot. RESULTS: ADSCs significantly promoted proliferation and invasion of CSCs in the indirect co-culture assays. The co-cultural group displayed much higher ability of proliferation, especially under the co-culture conditions of ADSCs for 3d, compared with that CSCs cultured alone. The PI of CSCs in the co-culture system were increased approximately 3-8-fold compared with the control group. A significant change was observed in the proportions of cells at apoptosis (early and late between the negative control group (6.34% and 2.06% and the ADCSs-treated group (4.69% and 1.59%. The expression levels of MMPs were down regulated in the co-culture models. Compared with the control group, the decrease intensities of MMP-1, MMP-2 and MMP-9 in CSCs/ADSCs group were observed, 3.90-fold, 1.09-fold and 3.03-fold, respectively. However, the increase intensities of collagen type (I, II, III, IV, and V in CSCs were observed in CSCs/ADSCs group, 3.47-fold, 4.30-fold, 2.35-fold, 2.55-fold and 2.43-fold, respectively, compared to that in the control group. The expressions of aldehyde dehydrogenase and fibronectin in CSCs were upregulated in the co-culture models. CONCLUSION: ADSCs play a promotive role in CSCs’ growth and invasion, which may be partially associated with MMPs decrease and collagens increase, resulting in a positive participation

  7. Isolation and characterization of a native strain of Aspergillus niger ZRS14 with capability of high resistance to zinc and its supernatant application towards extracellular synthesis of zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Morahem Ashengroph

    2013-01-01

    Full Text Available Introduction: Zinc oxide nanoparticles have quite a few applications in the fields of biology, optics, mechanics, magnetism, energy, hygiene and medicine. Due to serious problems associated with physiochemical synthesis of ZnO nanoparticles, including environmental pollution, complicated and costly processes, there is a growing need to develop a simple biological procedure for synthesis of nanoparticles to achieve the monodisperse-sized particles with a higher purity, low energy consumption and a cleaner environment. We conducted this investigation to screen and isolate native fungi strains capable of high zinc metal tolerance ability and a potential for extracellular synthesis of ZnO nanoparticles using fungal secretions as biological catalysts.Materials and methods: 15 different strains of fungi were isolated from soil samples collected from lead and zinc mines of Angoran-Zanjan using conventional enrichment process and characterized initially based on macroscopic and microscopic characteristics and colony morphology. The intrinsic tolerance of the isolated strains to zinc toxic metal was measured in the synthetic and complex media using the agar dilution method. The supernatants of isolated fungi were incubated with zinc acetate solution in a shaker incubator for 72h; then, the strain that was able to synthesis ZnO nanoparticle was identified. The ZnO nanoparticles formation was investigated by using spectroscopic techniques and microscopic observations.Results: Among the 15 isolated strains, the strain ZRS14 had highest zinc metal tolerance ability and was selected and identified as Aspergillus niger strain ZRS14 (GenBank accession number KF414527 based on morphological and molecular phylogenetic analysis. For synthesis of ZnO nanoparticles by isolated A. niger ZRS14, fungal cell-free filtrate of the strain was collected and incubated in the presence of zinc acetate solution at a final concentration of 250 mg/l zinc metal ion at 28º C for

  8. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.

    Science.gov (United States)

    Brand, M D; Lehninger, A L

    1977-01-01

    The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4 h+ are ejected per site, followed by return of 3 H+ through the ATPase and 1 H+ through the operation of the proton-coupled membrane transport systems. PMID:17116

  9. Quantal release of ATP from clusters of PC12 cells.

    Science.gov (United States)

    Fabbro, Alessandra; Skorinkin, Andrei; Grandolfo, Micaela; Nistri, Andrea; Giniatullin, Rashid

    2004-10-15

    Although ATP is important for intercellular communication, little is known about the mechanism of endogenous ATP release due to a dearth of suitable models. Using PC12 cells known to express the P2X2 subtype of ATP receptors and to store ATP with catecholamines inside dense-core vesicles, we found that clusters of PC12 cells cultured for 3-7 days generated small transient inward currents (STICs) after an inward current elicited by exogenous ATP. The amplitude of STICs in individual cells correlated with the peak amplitude of ATP-induced currents. STICs appeared as asynchronous responses (approximately 20 pA average amplitude) for 1-20 s and were investigated with a combination of patch clamping, Ca2+ imaging, biochemistry and electron microscopy. Comparable STICs were produced by focal KCl pulses and were dependent on extracellular Ca2+. STICs were abolished by the P2X antagonist PPADS and potentiated by Zn2+, suggesting they were mediated by P2X2 receptor activation. The highest probability of observing STICs was after the peak of intracellular Ca2+ increase caused by KCl. Biochemical measurements indicated that KCl application induced a significant release of ATP from PC12 cells. Electron microscopy studies showed narrow clefts without 'synaptic-like' densities between clustered cells. Our data suggest that STICs were caused by quantal release of endogenous ATP by depolarized PC12 cells in close juxtaposition to the recorded cell. Thus, STICs may be a new experimental model to characterize the physiology of vesicular release of ATP and to study the kinetics and pharmacology of P2X2 receptor-mediated quantal currents.

  10. [ATP and ACh induced CICR in outer hair cells of the guinea pig cochlea: study of confocal microscopy].

    Science.gov (United States)

    Huang, Li; Yang, Jun

    2009-04-01

    Effects of ATP and acetylcholine (ACh) on intracellular Ca2+ concentrations ([Ca2+]i) and possible mechanism of Ca2+-induced Ca2+ release (CICR) of the isolated outer hair cells (OHCs) in the guinea pig cochlea were studied with confocal microscopy. OHCs were isolated from guinea pig cochlea by enzymatic and mechanical methods. The effects of ATP, ACh, Ryanodine + ATP (or ACh) and Thapsigargin + ATP (or ACh) in the presence or absence of extracellular Ca2+ on [Ca2+]i in OHCs were examined by confocal microscopy. In the presence of ATP, Ryanodine + ATP, Thapsigargin + ATP, ACh, Ryanodine + ACh and Thapsigargin + ACh increased [Ca2+]i and evoked an evident wave, respectively, the relative magnitude of fluorescence were 1.60 +/- 0.01(ATP), 1.644 +/- 0.005 (Ryanodine + ATP), 1.491 +/- 0.005 (Thapsigargin + ATP), 1.43 +/- 0.01 (ACh), 1.58 +/- 0.02 (Ryanodine + ACh), 1.398 +/- 0.003 (Thapsigargin + ACh) in OHCs in the presence of extracellular Ca2+ respectively. In the absence of extracellular Ca2+, ATP and Ryanodine + ATP induced a gradual and small [Ca2+]i wave, the relative magnitude of fluorescence were 1.341 +/- 0.006 and 1.386 +/- 0.008, however, ACh, Ryanodine + ACh, Thapsigargin + ACh and Thapsigargin + ATP can not induce wave but a gradual [Ca2+]i elevation. ACh can not increase [Ca2+]i. In the presence of extracellular Ca2+, ATP and ACh increased [Ca2+]i in OHCs not only by Ca2+ influx through ion channel on cell membrane but also a release of Ca2+ from IP3-sensitive calcium reservoir and CICR. In the absence of extracellular Ca2+, ATP activated IP3 sensitive calcium reservoir and Ca2+ release through IP3 sensitive calcium reservoir, in turn CICR was induced. ACh can not activate IP3 sensitive calcium reservoir and CICR in the absence of extracellular Ca2+, therefore, the effect of ACh was dependent of extracellular Ca2+.

  11. Greater ATP dependence than sodium dependence of radiocalcium efflux in bullfrog ventricle

    International Nuclear Information System (INIS)

    Brommundt, G.; Kavaler, F.

    1985-01-01

    45 Ca efflux was studied in intact bullfrog ventricles following a 2-h period of loading with radiocalcium-containing Ringer solution. The cannulated ventricle was placed in a closed air-filled container to which were applied rhythmic, electronically timed, positive- and negative-pressure pulsations, which induced ventricular volume excursions. The mechanical arrangement and timing circuitry made it possible for each period to be as short in duration as 15 s. By use of this technique, penetration of the extracellular space by [ 14 C]inulin was found to be complete within 30 s, and recovery of the inulin proceeded with a time constant of 17-24 s, indicating a completeness of recovery of 98% within 90 s. Washout of added 45 Ca was quantitatively quite close to that of inulin, and in addition the estimated rate of sequestration of the isotope was slow enough to introduce only a small error into the experimental results. 45 Ca efflux was only slightly (15%) sensitive to replacement of extracellular sodium but was profoundly sensitive to the inhibitors of ATP synthesis, cyanide and 2-deoxy-glucose

  12. P2X7 receptor cross-talk regulates ATP-induced pannexin 1 internalization.

    Science.gov (United States)

    Boyce, Andrew K J; Swayne, Leigh Anne

    2017-06-13

    In the nervous system, extracellular ATP levels transiently increase in physiological and pathophysiological circumstances, effecting key signalling pathways in plasticity and inflammation through purinergic receptors. Pannexin 1 (Panx1) forms ion- and metabolite-permeable channels that mediate ATP release and are particularly enriched in the nervous system. Our recent study demonstrated that elevation of extracellular ATP triggers Panx1 internalization in a concentration- and time-dependent manner. Notably, this effect was sensitive to inhibition of ionotropic P2X7 purinergic receptors (P2X7Rs). Here, we report our novel findings from the detailed investigation of the mechanism underlying P2X7R-Panx1 cross-talk in ATP-stimulated internalization. We demonstrate that extracellular ATP triggers and is required for the clustering of P2X7Rs and Panx1 on Neuro2a cells through an extracellular physical interaction with the Panx1 first extracellular loop (EL1). Importantly, disruption of P2X7R-Panx1 clustering by mutation of tryptophan 74 within the Panx1 EL1 inhibits Panx1 internalization. Notably, P2X7R-Panx1 clustering and internalization are independent of P2X7R-associated intracellular signalling pathways (Ca 2+ influx and Src activation). Further analysis revealed that cholesterol is required for ATP-stimulated P2X7R-Panx1 clustering at the cell periphery. Taken together, our data suggest that extracellular ATP induces and is required for Panx1 EL1-mediated, cholesterol-dependent P2X7R-Panx1 clustering and endocytosis. These findings have important implications for understanding the role of Panx1 in the nervous system and provide important new insights into Panx1-P2X7R cross-talk. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    Science.gov (United States)

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity.

  14. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  15. Double-lock ratchet mechanism revealing the role of  SER-344 in FoF1 ATP synthase

    KAUST Repository

    Beke-Somfai, T.

    2011-03-07

    In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.

  16. ATP as a Multi-target Danger Signal in the Brain

    Directory of Open Access Journals (Sweden)

    Ricardo J Rodrigues

    2015-04-01

    Full Text Available ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR, which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.

  17. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Science.gov (United States)

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  18. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Directory of Open Access Journals (Sweden)

    Eric Boué-Grabot

    2017-01-01

    Full Text Available Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.

  19. Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP.

    Science.gov (United States)

    Xu, Chen; Zhang, Junhua; Mihai, Doina M; Washington, Ilyas

    2014-01-15

    Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5'-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight.

  20. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Motoyuki; Gouaux, Eric (Oregon HSU)

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  1. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.

    Science.gov (United States)

    He, Jiuya; Ford, Holly C; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-03-28

    The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1 , ATP5G2 , and ATP5G3 , encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1 , ATP5G2 , and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F 1 -catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ 0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.

  2. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Praveen Balabaskaran Nina

    2010-07-01

    Full Text Available The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1 sector catalyzes ATP synthesis, whereas the F(o sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1 and F(o sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a

  3. Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase.

    Directory of Open Access Journals (Sweden)

    Carole H Sellem

    2016-07-01

    Full Text Available Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO of the ATP synthase drive the rotation of a ring of 8-15 c-subunits, which induces conformational changes in the catalytic part (F1 of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary cells while Atp9-5 is expressed in the cells at the extremity (apex of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before.

  4. Extracellular matrix and wound healing.

    Science.gov (United States)

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis.

    Science.gov (United States)

    von Walden, Ferdinand; Gantelius, Stefan; Liu, Chang; Borgström, Hanna; Björk, Lars; Gremark, Ola; Stål, Per; Nader, Gustavo A; Pontén, Eva

    2018-03-23

    Children with cerebral palsy (CP) and acquired brain injury (ABI) commonly develop muscle contractures with advancing age. An underlying growth defect contributing to skeletal muscle contracture formation in CP/ABI has been suggested. The biceps muscles of children and adolescents with CP/ABI (n=20) and typically developing controls (n=10) were investigated. We used immunohistochemistry, qRT-PCR and western blotting to assess gene expression relevant to growth and size homeostasis. Classical pro-inflammatory cytokines and genes involved in extracellular matrix production were elevated in skeletal muscle of children with CP/ABI. Intramuscular collagen content was increased and satellite cell number decreased and this was associated with reduced levels of RNA polymerase (POL) I transcription factors, 45s pre-rRNA and 28S rRNA. The present study provides novel data suggesting a role for pro-inflammatory cytokines and reduced ribosomal production in the development/maintenance of muscle contractures; possibly underlying stunted growth and perimysial extracellular matrix expansion. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  6. Synthesis and characterization of a novel extracellular biogenic manganese oxide (bixbyite-like Mn₂O₃) nanoparticle by isolated Acinetobacter sp.

    Science.gov (United States)

    Hosseinkhani, Baharak; Emtiazi, Giti

    2011-09-01

    Recently, manganese oxides have been considered in the environmental remediation, MRI diagnosis and drug and pharmaceutical industries. Different numbers of physicochemical and biological methods have been reported for the preparation of nanoscale manganese oxides. Although manganese oxide biogenesis by bacterial species has been recognized as the major Mn-oxidizing agent in nature, in this research, for first time, we demonstrated the process which used to produce bixbyite-like Mn(2)O(3) nanoparticles by isolated aerobic bacterium from Persian Gulf water. The 16SRNA sequencing showed that this isolate belong to a gram-negative Acinetobacter which produced nano Mn-oxide crystal particle. Characterization of complement morphology, size and chemical structure of these particles were determined by TEM, SEM, EDAX, XRD and FTIR. The data showed that this bacterium could produce nanosized extracellular bixbyite-like Mn(2)O(3) which depend on enzymatic pathway.

  7. Be(2+) complexing with ATP

    International Nuclear Information System (INIS)

    Dobrynina, N.A.; Dmitrieva, S.V.; Reshetova, L.N.; Smirnova, N.S.

    1997-01-01

    The equilibria in the BeSO 4 -CON and BeSO 4 -ATP-CON water solutions are studied through the method of the pH-metric titration with application of mathematical modeling. It is shown that the BeOH, Be(OH) 2 , Be(OH) 3 , BeATP, BeHATP and BeOHATP complexes with the (lgβ) formation constants equal to 9.05±0.2, 16.4±0.4, 18.54±5.2, 8.49±0.3, 7.51±0.32 correspondingly, are formed

  8. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase

    Science.gov (United States)

    Li, Chun-Biu; Ueno, Hiroshi; Watanabe, Rikiya; Noji, Hiroyuki; Komatsuzaki, Tamiki

    2015-01-01

    F1-ATPase (F1) is a rotary motor protein that can efficiently convert chemical energy to mechanical work of rotation via fine coordination of its conformational motions and reaction sequences. Compared with reactant binding and product release, the ATP hydrolysis has relatively little contributions to the torque and chemical energy generation. To scrutinize possible roles of ATP hydrolysis, we investigate the detailed statistics of the catalytic dwells from high-speed single wild-type F1 observations. Here we report a small rotation during the catalytic dwell triggered by the ATP hydrolysis that is indiscernible in previous studies. Moreover, we find in freely rotating F1 that ATP hydrolysis is followed by the release of inorganic phosphate with low synthesis rates. Finally, we propose functional roles of the ATP hydrolysis as a key to kinetically unlock the subsequent phosphate release and promote the correct reaction ordering. PMID:26678797

  9. Actin Polymerization and ATP Hydrolysis

    Science.gov (United States)

    Korn, Edward D.; Carlier, Marie-France; Pantaloni, Dominique

    1987-10-01

    F-actin is the major component of muscle thin filaments and, more generally, of the microfilaments of the dynamic, multifunctional cytoskeletal systems of nonmuscle eukaryotic cells. Polymeric F-actin is formed by reversible noncovalent self-association of monomeric G-actin. To understand the dynamics of microfilament systems in cells, the dynamics of polymerization of pure actin must be understood. The following model has emerged from recent work. During the polymerization process, adenosine 5'-triphosphate (ATP) that is bound to G-actin is hydrolyzed to adenosine 5'-diphosphate (ADP) that is bound to F-actin. The hydrolysis reaction occurs on the F-actin subsequent to the polymerization reaction in two steps: cleavage of ATP followed by the slower release of inorganic phosphate (Pi). As a result, at high rates of filament growth a transient cap of ATP-actin subunits exists at the ends of elongating filaments, and at steady state a stabilizing cap of ADP \\cdot Pi-actin subunits exists at the barbed ends of filaments. Cleavage of ATP results in a highly stable filament with bound ADP \\cdot Pi, and release of Pi destabilizes the filament. Thus these two steps of the hydrolytic reaction provide potential mechanisms for regulating the monomer-polymer transition.

  10. Effect of extracellular adenosine triphosphate on activity of osteoblast like cells - biomed 2013.

    Science.gov (United States)

    Mehta, Siddhant K; Tucci, Michelle A; Benghuzzi, Hamed A

    2013-01-01

    Platelet dense granules contain serotonin, adenosine triphosphate (ATP), and adenosine diphosphate (ADP). These molecules are present in platelet rich plasma (PRP), and may therefore have an impact on the efficacy of PRP therapy. Additionally, nucleotides are important extracellular signaling molecules in a variety of tissue types including bone. The purpose of this investigation was to evaluate the in vitro dose-dependent effects of extracellular adenosine triphosphate (ATP) exposure on activity of human osteoblast-like cells. MG-63 cells were exposed to phosphate buffered saline (control group) or ATP solution (20 µM, 100µM, 200 µM). Osteoblast viability was evaluated at 24, 48, and 72 hours using nonspecific and osteoblast-specific markers and cellular morphology. No significant differences in total protein, malonlydialdehyde (MDA), or glutathione were observed with ATP exposure at any timepoint. High dose ATP exposure resulted in a significantly higher production of nitric oxide compared to controls and other groups. With respect to alkaline phosphatase activity and osteopontin production, no significant differences were present with ATP exposure. Overall conclusion: Extracellular ATP exposure modulated osteoblast activity with no change in cell viability in vitro.

  11. Exploring the ATP-binding site of P2X receptors

    Directory of Open Access Journals (Sweden)

    Thierry eChataigneau

    2013-12-01

    Full Text Available P2X receptors are ATP-gated non-selective cation channels involved in many different physiological processes, such as synaptic transmission, inflammation and neuropathic pain. They form homo- or heterotrimeric complexes and contain three ATP-binding sites in their extracellular domain. The recent determination of X-ray structures of a P2X receptor solved in two states, a resting closed state and an ATP-bound, open-channel state, has provided unprecedented information not only regarding the three-dimensional shape of the receptor, but also on putative conformational changes that couple ATP binding to channel opening. These data provide a structural template for interpreting the huge amount of functional, mutagenesis, and biochemical data collected during more than fifteen years. In particular, the interfacial location of the ATP binding site and ATP orientation have been successfully confirmed by these structural studies. It appears that ATP binds to inter-subunit cavities shaped like open jaws, whose tightening induces the opening of the ion channel. These structural data thus represent a firm basis for understanding the activation mechanism of P2X receptors.

  12. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation

    Directory of Open Access Journals (Sweden)

    Kimberly L. James

    2016-08-01

    Full Text Available Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1 for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4 in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase.

  13. Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation

    Science.gov (United States)

    James, Kimberly L.; Ríos-Hernández, Luis A.; Wofford, Neil Q.; Mouttaki, Housna; Sieber, Jessica R.; Sheik, Cody S.; Nguyen, Hong H.; Yang, Yanan; Xie, Yongming; Erde, Jonathan; Rohlin, Lars; Karr, Elizabeth A.; Loo, Joseph A.; Ogorzalek Loo, Rachel R.; Hurst, Gregory B.; Gunsalus, Robert P.; Szweda, Luke I.

    2016-01-01

    ABSTRACT Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus. However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. PMID:27531911

  14. RAGE and TGF-β1 Cross-Talk Regulate Extracellular Matrix Turnover and Cytokine Synthesis in AGEs Exposed Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Andreea Iren Serban

    Full Text Available AGEs accumulation in the skin affects extracellular matrix (ECM turnover and triggers diabetes associated skin conditions and accelerated skin aging. The receptor of AGEs (RAGE has an essential contribution to cellular dysfunction driven by chronic inflammatory responses while TGF-β1 is critical in both dermal homeostasis and inflammation. We investigated the contribution of RAGE and TGF-β1 to the modulation of inflammatory response and ECM turnover in AGEs milieu, using a normal fibroblast cell line. RAGE, TGF-β1, collagen I and III gene and protein expression were upregulated after exposure to AGEs-BSA, and MMP-2 was activated. AGEs-RAGE was pivotal in NF-κB dependent collagen I expression and joined with TGF-β1 to stimulate collagen III expression, probably via ERK1/2 signaling. AGEs-RAGE axis induced upregulation of TGF-β1, TNF-α and IL-8 cytokines. TNF-α and IL-8 were subjected to TGF-β1 negative regulation. RAGE's proinflammatory signaling also antagonized AGEs-TGF-β1 induced fibroblast contraction, suggesting the existence of an inhibitory cross-talk mechanism between TGF-β1 and RAGE signaling. RAGE and TGF-β1 stimulated anti-inflammatory cytokines IL-2 and IL-4 expression. GM-CSF and IL-6 expression appeared to be dependent only on TGF-β1 signaling. Our data also indicated that IFN-γ upregulated in AGEs-BSA milieu in a RAGE and TGF-β1 independent mechanism. Our findings raise the possibility that RAGE and TGF-β1 are both involved in fibrosis development in a complex cross-talk mechanism, while also acting on their own individual targets. This study contributes to the understanding of impaired wound healing associated with diabetes complications.

  15. 'Domino' systems biology and the 'A' of ATP.

    Science.gov (United States)

    Verma, Malkhey; Zakhartsev, Maksim; Reuss, Matthias; Westerhoff, Hans V

    2013-01-01

    We develop a strategic 'domino' approach that starts with one key feature of cell function and the main process providing for it, and then adds additional processes and components only as necessary to explain provoked experimental observations. The approach is here applied to the energy metabolism of yeast in a glucose limited chemostat, subjected to a sudden increase in glucose. The puzzles addressed include (i) the lack of increase in adenosine triphosphate (ATP) upon glucose addition, (ii) the lack of increase in adenosine diphosphate (ADP) when ATP is hydrolyzed, and (iii) the rapid disappearance of the 'A' (adenine) moiety of ATP. Neither the incorporation of nucleotides into new biomass, nor steady de novo synthesis of adenosine monophosphate (AMP) explains. Cycling of the 'A' moiety accelerates when the cell's energy state is endangered, another essential domino among the seven required for understanding of the experimental observations. This new domino analysis shows how strategic experimental design and observations in tandem with theory and modeling may identify and resolve important paradoxes. It also highlights the hitherto unexpected role of the 'A' component of ATP. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  16. ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione

    Science.gov (United States)

    Qiu, Wei; Liesa, Marc; Carpenter, Elizabeth P.; Shirihai, Orian S.

    2015-01-01

    ABCB10 (ATP binding cassette sub-family B10) is a mitochondrial inner-membrane ABC transporter. ABCB10 has been shown to protect the heart from the impact of ROS during ischemia-reperfusion and to allow for proper hemoglobin synthesis during erythroid development. ABC transporters are proteins that increase ATP binding and hydrolysis activity in the presence of the transported substrate. However, molecular entities transported by ABCB10 and its regulatory mechanisms are currently unknown. Here we characterized ATP binding and hydrolysis properties of ABCB10 by using the 8-azido-ATP photolabeling technique. This technique can identify potential ABCB10 regulators, transported substrates and amino-acidic residues required for ATP binding and hydrolysis. We confirmed that Gly497 and Lys498 in the Walker A motif, Glu624 in the Walker B motif and Gly602 in the C-Loop motif of ABCB10 are required for proper ATP binding and hydrolysis activity, as their mutation changed ABCB10 8-Azido-ATP photo-labeling. In addition, we show that the potential ABCB10 transported entity and heme precursor delta-aminolevulinic acid (dALA) does not alter 8-azido-ATP photo-labeling. In contrast, oxidized glutathione (GSSG) stimulates ATP hydrolysis without affecting ATP binding, whereas reduced glutathione (GSH) inhibits ATP binding and hydrolysis. Indeed, we detectABCB10 glutathionylation in Cys547 and show that it is one of the exposed cysteine residues within ABCB10 structure. In all, we characterize essential residues for ABCB10 ATPase activity and we provide evidence that supports the exclusion of dALA as a potential substrate directly transported by ABCB10. Last, we show the first molecular mechanism by which mitochondrial oxidative status, through GSH/GSSG, can regulate ABCB10. PMID:26053025

  17. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    Directory of Open Access Journals (Sweden)

    Abir U Igamberdiev

    2015-01-01

    Full Text Available The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i the supply of ADP and Mg2+, supported by adenylate kinase (AK equilibrium in the intermembrane space, (ii the supply of phosphate via membrane transporter in symport with H+, and (iii the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport and phosphate release and supply.

  18. Direct measurement of newly synthesized ATP dissociation kinetics in sarcoplasmic reticulum ATPase

    International Nuclear Information System (INIS)

    Teruel-Puche, J.; Kurzmack, M.; Inesi, G.

    1987-01-01

    Incubation of SR vesicles with Ca 2+ and ( 32 P)acetylphosphate, yields steady state levels of ( 32 P)phosphorylated enzyme (ATPase) intermediate and high concentrations of Ca 2+ in the lumen of the vesicles. At this time, addition of ADP (and EGTA to lower the Ca 2+ concentration in the medium outside the vesicles) results in single cycle formation of (γ- 32 P)ATP by transfer of ( 32 P)phosphate from the enzyme intermediate to ADP. The phosphoenzyme decay and ATP formation exhibit a fast component within the first 20 msec following addition of ADP, and a slower component reaching an asymptote in approximately 100 msec. They have now measured by a rapid filtration method the fraction of newly synthesized ATP which is bound to the enzyme, as opposed to the fraction dissociated into the medium. They find that nearly all the ATP formed during the initial burst is still bound to the enzyme within the initial 20 msec of reaction. Dissociation of newly synthesized ATP occurs then with approximately 13 sec -1 rate constant, permitting reequilibration of the system and further formation of ATP. The rate limiting effect of ATP dissociation and other partial reactions on the slow component of single cycle ATP synthesis is evaluated by appropriate kinetic simulations

  19. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium.

    Directory of Open Access Journals (Sweden)

    Emirhan Nemutlu

    Full Text Available Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK, creatine kinase (CK, and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2, third (18O3, and fourth (18O4 positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic

  20. Optimisation of ATP determination in drinking water

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    and an Advance Coupe luminometer. The investigations showed a 60 times higher response of the PCP-kit, making it more suitable for measurement of samples with low ATP content. ATP-standard dilutions prepared in tap water were stable for at least 15 months when stored frozen at -80ºC, and storage of large...... aliquots of standards increase quality control and ease daily operation. The medium (Lumin(PM) buffer, tap water or MilliQ water) for preparation of ATP-standard dilution significantly affected the rlu response of the ATP-standard dilutions (20% difference). The effect of dilution media and of sample...... characteristics can be eliminated by use of internal standard. In strongly coloured biofilm samples the measuring efficiency can be reduced with up to 85%. Extra cellular ATP made up a significant part of the total ATP (>50%) in some samples, so when only intra cellular ATP is of interest the cells need...

  1. Bioactive compound loaded stable silver nanoparticle synthesis from microwave irradiated aqueous extracellular leaf extracts of Naringi crenulata and its wound healing activity in experimental rat model.

    Science.gov (United States)

    Bhuvaneswari, T; Thiyagarajan, M; Geetha, N; Venkatachalam, P

    2014-07-01

    An efficient and eco-friendly protocol for the synthesis of bioactive silver nanoparticles was developed using Naringi crenulata leaf extracts via microwave irradiation method. Silver nanoparticles were synthesized by treating N. crenulata leaf extracts with 1mM of aqueous silver nitrate solution. An effective bioactive compound such as alkaloids, phenols, saponins and quinines present in the N. crenulata reduces the Ag(+) into Ag(0). The synthesized silver nanoparticles were monitored by UV-vis spectrophotometer and further characterized by X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Energy-dispersive X-ray spectroscopy (EDX) and field emission scanning electron microscopy (FESEM). UV-vis spectroscopy showed maximum absorbance at 390nm due to surface plasmon resonance of AgNPs. From FESEM results, an average crystal size of the synthesized nanoparticle was 72-98nm. FT-IR results showed sharp absorption peaks and they were assigned to phosphine, alkyl halides and sulfonate groups. Silver nanoparticles synthesized were generally found to be spherical and cubic shape. Topical application of ointment prepared from silver nanoparticles of N. crenulata were formulated and evaluated in vivo using the excision wound healing model on Wistar albino rats. The measurement of the wound areas was performed on 3rd, 6th, 9th, 12th and 15th days and the percentage of wound closures was calculated accordingly. By the 15th day, the ointment base containing 5% (w/w) of silver nanoparticles showed 100% wound healing activity compared with that of the reference as well as control bases. The results strongly suggested that the batch C ointment containing silver nanaoparticles synthesized from the leaf extracts of N. crenulata was found to be very effective in wound repair and encourages harnessing the potentials of the plant biomolecules loaded silver nanoparticle in the treatment of tropical diseases including wound healing. Copyright © 2014 Elsevier B.V. All rights

  2. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells

    Science.gov (United States)

    Song, Shanshan; Jacobson, Krista N.; McDermott, Kimberly M.; Reddy, Sekhar P.; Cress, Anne E.; Tang, Haiyang; Dudek, Steven M.; Black, Stephen M.; Garcia, Joe G. N.; Makino, Ayako

    2015-01-01

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca2+ signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca2+] ([Ca2+]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca2+ eliminated the plateau phase increase of [Ca2+]cyt in lung cancer cells, indicating that the plateau phase of [Ca2+]cyt increase is due to Ca2+ influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca2+ or chelating intracellular Ca2+ with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca2+]cyt through Ca2+ influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. PMID:26491047

  3. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells.

    Science.gov (United States)

    Song, Shanshan; Jacobson, Krista N; McDermott, Kimberly M; Reddy, Sekhar P; Cress, Anne E; Tang, Haiyang; Dudek, Steven M; Black, Stephen M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2016-01-15

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. Copyright

  4. Dynamic inhibition of excitatory synaptic transmission by astrocyte-derived ATP in hippocampal cultures

    Science.gov (United States)

    Koizumi, Schuichi; Fujishita, Kayoko; Tsuda, Makoto; Shigemoto-Mogami, Yukari; Inoue, Kazuhide

    2003-09-01

    Originally ascribed passive roles in the CNS, astrocytes are now known to have an active role in the regulation of synaptic transmission. Neuronal activity can evoke Ca2+ transients in astrocytes, and Ca2+ transients in astrocytes can evoke changes in neuronal activity. The excitatory neurotransmitter glutamate has been shown to mediate such bidirectional communication between astrocytes and neurons. We demonstrate here that ATP, a primary mediator of intercellular Ca2+ signaling among astrocytes, also mediates intercellular signaling between astrocytes and neurons in hippocampal cultures. Mechanical stimulation of astrocytes evoked Ca2+ waves mediated by the release of ATP and the activation of P2 receptors. Mechanically evoked Ca2+ waves led to decreased excitatory glutamatergic synaptic transmission in an ATP-dependent manner. Exogenous application of ATP does not affect postsynaptic glutamatergic responses but decreased presynaptic exocytotic events. Finally, we show that astrocytes exhibit spontaneous Ca2+ waves mediated by extracellular ATP and that inhibition of these Ca2+ responses enhanced excitatory glutamatergic transmission. We therefore conclude that ATP released from astrocytes exerts tonic and activity-dependent down-regulation of synaptic transmission via presynaptic mechanisms.

  5. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    Science.gov (United States)

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  6. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    mainly used a fluorescence method; CL detection is limited because of the difficulty to introduce enough D-luciferin molecules. Since dehydration could easily cause proper size holes in bacterial cell membranes and facilitate D-luciferin diffusion, we used this method and recorded CL from individual cells each hour after induction. The CL light intensity from each individual cell was integrated and gene expression levels of two strain types were compared. Based on our calculation, the overall sensitivity of our system is already approaching the single enzyme level. The median enzyme number inside a single bacterium from the higher expression strain after 2 hours induction was quantified to be about 550 molecules. Finally we imaged ATP release from astrocyte cells. Upon mechanical stimulation, astrocyte cells respond by increasing intracellular Ca 2+ level and releasing ATP to extracellular spaces as signaling molecules. The ATP release imaged by direct CL imaging using free firefly luciferase and D-luciferin outside cells reflects the transient release as well as rapid ATP diffusion. Therefore ATP release detection at the cell surface is critical to study the ATP release mechanism and signaling propagation pathway. We realized this cell surface localized ATP release imaging detection by immobilizing firefly luciferase to streptavidin beads that attached to the cell surface via streptavidin-biotin interactions. Both intracellular Ca2+ propagation wave and extracellular ATP propagation wave at the cell surface were recorded with fluorescence and CL respectively. The results imply that at close distances from the stimulation center (<120 μm) extracellular ATP pathway is faster, while at long distances (>120 μm) intracellular Ca2+ signaling through gap junctions seems more effective.

  7. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel

    NARCIS (Netherlands)

    Wilde, A. A.; Escande, D.; Schumacher, C. A.; Thuringer, D.; Mestre, M.; Fiolet, J. W.; Janse, M. J.

    1990-01-01

    We investigated the contribution of opening of the ATP-sensitive K+ channel to extracellular accumulation of K+ during ischemia with the use of glibenclamide, a specific blocker of this K+ channel. To characterize the electrophysiological effects of glibenclamide during metabolic inhibition (by

  8. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems.

    Science.gov (United States)

    Vanegas, Diana C; Clark, Greg; Cannon, Ashley E; Roux, Stanley; Chaturvedi, Prachee; McLamore, Eric S

    2015-12-15

    The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines.

    Science.gov (United States)

    Priyadharshini, Ramaramesh Indra; Prasannaraj, Govindaraj; Geetha, Natesan; Venkatachalam, Perumal

    2014-12-01

    A rapid and novel microwave-mediated protocol was established for extracellular synthesis of metallic silver (Ag) and zinc oxide (ZnO) nanoparticles using the extracts of macro-algae Gracilaria edulis (GE) and also examined its anticancer activity against human prostate cancer cell lines (PC3). The formation of silver nanoparticles (GEAgNPs) and zinc oxide nanoparticles (GEZnONPs) in the reaction mixture was determined by ultraviolet-visible spectroscopy. The synthesized Ag and ZnO nanoparticles were characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, energy dispersive X-ray, and field emission scanning electron microscopy. The silver and zinc oxide nanoparticles were spherical and rod-shaped, respectively. Cell viability assays were carried out to determine the cytotoxic effects of AgNPs and ZnONPs against PC3 and normal African monkey kidney (VERO) cell line. The inhibitory concentration values were found to be 39.60, 28.55, 53.99 μg/mL and 68.49, 88.05, 71.98 μg/mL against PC3 cells and Vero cells for AgNPs, ZnONPs, and aqueous G. edulis extracts, respectively, at 48 h incubation period. As evidenced by acridine orange/ethidium bromide staining, the percentage of the apoptotic bodies was found to be 62 and 70 % for AgNPs and ZnONPs, respectively. The present results strongly suggest that the synthesized ZnONPs showed an effective anticancer activity against PC3 cell lines than AgNPs.

  10. Purinergic signaling induces cyclooxygenase-1-dependent prostanoid synthesis in microglia: roles in the outcome of excitotoxic brain injury.

    Directory of Open Access Journals (Sweden)

    Josef Anrather

    Full Text Available Cyclooxygenases (COX are prostanoid synthesizing enzymes constitutively expressed in the brain that contribute to excitotoxic neuronal cell death. While the neurotoxic role of COX-2 is well established and has been linked to prostaglandin E(2 synthesis, the role of COX-1 is not clearly understood. In a model of N-Methyl-D-aspartic acid (NMDA induced excitotoxicity in the mouse cerebral cortex we found a distinctive temporal profile of COX-1 and COX-2 activation where COX-1, located in microglia, is responsible for the early phase of prostaglandin E(2 synthesis (10 minutes after NMDA, while both COX-1 and COX-2 contribute to the second phase (3-24 hours after NMDA. Microglial COX-1 is strongly activated by ATP but not excitatory neurotransmitters or the Toll-like receptor 4 ligand bacterial lipopolysaccharide. ATP induced microglial COX-1 dependent prostaglandin E(2 synthesis is dependent on P2X7 receptors, extracellular Ca(2+ and cytoplasmic phospholipase A2. NMDA receptor activation induces ATP release from cultured neurons leading to microglial P2X7 receptor activation and COX-1 dependent prostaglandin E(2 synthesis in mixed microglial-neuronal cultures. Pharmacological inhibition of COX-1 has no effect on the cortical lesion produced by NMDA, but counteracts the neuroprotection exerted by inhibition of COX-2 or observed in mice lacking the prostaglandin E(2 receptor type 1. Similarly, the neuroprotection exerted by the prostaglandin E(2 receptor type 2 agonist butaprost is not observed after COX-1 inhibition. P2X7 receptors contribute to NMDA induced prostaglandin E(2 production in vivo and blockage of P2X7 receptors reverses the neuroprotection offered by COX-2 inhibition. These findings suggest that purinergic signaling in microglia triggered by neuronal ATP modulates excitotoxic cortical lesion by regulating COX-1 dependent prostanoid production and unveil a previously unrecognized protective role of microglial COX-1 in excitotoxic brain

  11. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory & urological disorders

    Directory of Open Access Journals (Sweden)

    Anthony eFord

    2013-12-01

    Full Text Available A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates & sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X & P2Y receptors mediate ATP modulation of sensory pathways & participate in dysregulation, where ATP action directly on primary afferent neurons (PANs, linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice & knock-down in rats led to reduced nocifensive activity & visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory & visceral pain models, have emerged. Significantly, these compounds have no overt CNS action & are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral & central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral hollow organs primes them to chronic discomfort, irritation & pain (symptoms as well as exacerbated autonomic reflexes (signs, & how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary & airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional & sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs & symptoms, in the potential for benefit of P2X3 antagonists.

  12. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP

    Science.gov (United States)

    Karmakar, Mausita; Katsnelson, Michael A.; Dubyak, George R.; Pearlman, Eric

    2016-01-01

    Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X7R, which leads to ATP-induced loss of intracellular K+, NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X7R activation caused a sustained increase in intracellular [Ca2+], which is indicative of P2X7R channel opening. Although there are multiple polymorphic variants of P2X7R, we found that neutrophils from multiple donors express P2X7R, but with differential efficacies in ATP-induced increase in cytosolic [Ca2+]. Neutrophils were also the predominant P2X7R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X7R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X7R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact. PMID:26877061

  13. Bile acid effects are mediated by ATP release and purinergic signalling in exocrine pancreatic cells

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena; Haanes, Kristian Agmund; Christensen, Nynne

    2015-01-01

    ) and duct cells (Capan-1). Taurine and glycine conjugated forms of CDCA had smaller effects on ATP release in Capan-1 cells. In duct monolayers, CDCA stimulated ATP release mainly from the luminal membrane; the releasing mechanisms involved both vesicular and non-vesicular secretion pathways. Duct cells......BACKGROUND: In many cells, bile acids (BAs) have a multitude of effects, some of which may be mediated by specific receptors such the TGR5 or FXR receptors. In pancreas systemic BAs, as well as intra-ductal BAs from bile reflux, can affect pancreatic secretion. Extracellular ATP and purinergic...... increase [Ca(2+)]i. The TGR5 receptor is not involved in these processes but can play a protective role at high intracellular Ca(2+) conditions. We propose that purinergic signalling could be taken into consideration in other cells/organs, and thereby potentially explain some of the multifaceted effects...

  14. ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle.

    Science.gov (United States)

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-12-11

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca(2+) concentration, with an EC(50) value of 7.8 +/- 3.1 microm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 mum suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y(2) receptor and pannexin-1. As reported previously for electrical stimulation, 500 mum ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca(2+) homeostasis and muscle physiology.

  15. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation

    Science.gov (United States)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2012-08-01

    The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F1-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg2+ leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.

  16. The Unbinding of ATP from F1-ATPase

    Science.gov (United States)

    Antes, Iris; Chandler, David; Wang, Hongyun; Oster, George

    2003-01-01

    Using molecular dynamics, we study the unbinding of ATP in F1-ATPase from its tight binding state to its weak binding state. The calculations are made feasible through use of interpolated atomic structures from Wang and Oster [Nature 1998, 396: 279–282]. These structures are applied to atoms distant from the catalytic site. The forces from these distant atoms gradually drive a large primary region through a series of sixteen equilibrated steps that trace the hinge bending conformational change in the β-subunit that drives rotation of γ-subunit. As the rotation progresses, we find a sequential weakening and breaking of the hydrogen bonds between the ATP molecule and the α- and β-subunits of the ATPase. This finding agrees with the “binding-zipper” model [Oster and Wang, Biochim. Biophys. Acta 2000, 1458: 482–510.] In this model, the progressive formation of the hydrogen bonds is the energy source driving the rotation of the γ-shaft during hydrolysis. Conversely, the corresponding sequential breaking of these bonds is driven by rotation of the shaft during ATP synthesis. Our results for the energetics during rotation suggest that the nucleotide's coordination with Mg2+ during binding and release is necessary to account for the observed high efficiency of the motor. PMID:12885621

  17. Assembly of the membrane domain of ATP synthase in human mitochondria.

    Science.gov (United States)

    He, Jiuya; Ford, Holly C; Carroll, Joe; Douglas, Corsten; Gonzales, Evvia; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2018-03-20

    The ATP synthase in human mitochondria is a membrane-bound assembly of 29 proteins of 18 kinds. All but two membrane components are encoded in nuclear genes, synthesized on cytoplasmic ribosomes, and imported into the matrix of the organelle, where they are assembled into the complex with ATP6 and ATP8, the products of overlapping genes in mitochondrial DNA. Disruption of individual human genes for the nuclear-encoded subunits in the membrane portion of the enzyme leads to the formation of intermediate vestigial ATPase complexes that provide a description of the pathway of assembly of the membrane domain. The key intermediate complex consists of the F 1 -c 8 complex inhibited by the ATPase inhibitor protein IF 1 and attached to the peripheral stalk, with subunits e, f, and g associated with the membrane domain of the peripheral stalk. This intermediate provides the template for insertion of ATP6 and ATP8, which are synthesized on mitochondrial ribosomes. Their association with the complex is stabilized by addition of the 6.8 proteolipid, and the complex is coupled to ATP synthesis at this point. A structure of the dimeric yeast F o membrane domain is consistent with this model of assembly. The human 6.8 proteolipid (yeast j subunit) locks ATP6 and ATP8 into the membrane assembly, and the monomeric complexes then dimerize via interactions between ATP6 subunits and between 6.8 proteolipids (j subunits). The dimers are linked together back-to-face by DAPIT (diabetes-associated protein in insulin-sensitive tissue; yeast subunit k), forming long oligomers along the edges of the cristae.

  18. Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification

    DEFF Research Database (Denmark)

    Ostergaard, L; Teilum, K; Mirza, O

    2000-01-01

    Lignins are phenolic biopolymers synthesized by terrestrial, vascular plants for mechanical support and in response to pathogen attack. Peroxidases have been proposed to catalyse the dehydrogenative polymerization of monolignols into lignins, although no specific isoenzyme has been shown...... to be involved in lignin biosynthesis. Recently we isolated an extracellular anionic peroxidase, ATP A2, from rapidly lignifying Arabidopsis cell suspension culture and cloned its cDNA. Here we show that the Atp A2 promoter directs GUS reporter gene expression in lignified tissues of transgenic plants. Moreover......, an Arabidopsis mutant with increased lignin levels compared to wild type shows increased levels of ATP A2 mRNA and of a mRNA encoding an enzyme upstream in the lignin biosynthetic pathway. The substrate specificity of ATP A2 was analysed by X-ray crystallography and docking of lignin precursors. The structure...

  19. Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord.

    Science.gov (United States)

    Wu, Dongsheng; Lee, Sena; Luo, Juan; Xia, Haijian; Gushchina, Svetlana; Richardson, Peter M; Yeh, John; Krügel, Ute; Franke, Heike; Zhang, Yi; Bo, Xuenong

    2018-02-07

    Injury to the peripheral axons of sensory neurons strongly enhances the regeneration of their central axons in the spinal cord. It remains unclear on what molecules that initiate such conditioning effect. Because ATP is released extracellularly by nerve and other tissue injury, we hypothesize that injection of ATP into a peripheral nerve might mimic the stimulatory effect of nerve injury on the regenerative state of the primary sensory neurons. We found that a single injection of 6 μl of 150 μm ATP into female rat sciatic nerve quadrupled the number of axons growing into a lesion epicenter in spinal cord after a concomitant dorsal column transection. A second boost ATP injection 1 week after the first one markedly reinforced the stimulatory effect of a single injection. Single ATP injection increased expression of phospho-STAT3 and GAP43, two markers of regenerative activity, in sensory neurons. Double ATP injections sustained the activation of phospho-STAT3 and GAP43, which may account for the marked axonal growth across the lesion epicenter. Similar studies performed on P2X7 or P2Y2 receptor knock-out mice indicate P2Y2 receptors are involved in the activation of STAT3 after ATP injection or conditioning lesion, whereas P2X7 receptors are not. Injection of ATP at 150 μm caused little Wallerian degeneration and behavioral tests showed no significant long-term adverse effects on sciatic nerve functions. The results in this study reveal possible mechanisms underlying the stimulation of regenerative programs and suggest a practical strategy for stimulating axonal regeneration following spinal cord injury. SIGNIFICANCE STATEMENT Injury of peripheral axons of sensory neurons has been known to strongly enhance the regeneration of their central axons in the spinal cord. In this study, we found that injection of ATP into a peripheral nerve can mimic the effect of peripheral nerve injury and significantly increase the number of sensory axons growing across lesion

  20. Extracellular bio-synthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Abdullah Yousif Obaid

    2017-02-01

    Full Text Available The effect of cetyltrimethylammonium bromide, CTAB has been studied on the optical properties and morphology of advanced Ag-nanoparticles (AgNPs using Oriental plane leaves extract as a reducing-, stabilizing- and capping-agent for the first time. The formation of Ag-nanodisks was monitored by measuring the UV–vis spectra at different time intervals (5, 10, 20 and 30 min after adding the leaves extract (from 1 to 5 cm3 to the different AgNO3 solutions ([Ag+] = 4.0, 8.0, 12.0, 16.0 × 10−4 mol dm−3. The sigmoidal nature of the reaction-time plots suggests the involvements of an autocatalytic reaction path. In the presence of CTAB, the peak at 450 nm is shifted to shorter wavelength, i.e., 425 nm and sharpness of the surface resonance plasmon (SRP band also decreases. The results confirm a significant change in the morphology and/or agglomeration tendency with CTAB. Transmission electron microscopy (TEM results show the formation of stable AgNPs at different concentration of AgNO3 gives mostly spherical particles with diameter ranging from 10 to 30 nm.

  1. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP and NE concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and norepinephrine (NE) concentrations were measured during: 1) femoral arterial ATP infusion (0......, respectively (Pcontracting muscle (Pmuscle, whereas interstitial NE concentrations increased similarly in both active...... and inactive muscles. These results suggest that the vasodilatory and sympatholytic effects of intraluminal ATP are mainly mediated via endothelial prinergic receptors. Intraluminal ATP and muscle contractions appear to modulate sympathetic nerve activity by inhibiting the effect of NE rather than blunting its...

  2. Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors.

    Science.gov (United States)

    Stoop, R; Surprenant, A; North, R A

    1997-10-01

    The effect of changing extracellular pH was studied on the currents induced by ATP or alphabeta-methylene-ATP in HEK293 cells transfected with different P2X receptor subunits. In cells expressing P2X1, P2X3, or P2X4 receptors, the effect of ATP was decreased by acidification. In cells expressing P2X2 receptors, acidification increased the ATP-induced current; this effect was also seen in cells expressing heteromeric P2X2 and P2X3 receptors. At P2X2 receptors, acidification caused a leftward shift in the ATP concentration-response curve, without change in maximum; the pKa for this effect was 7.3. At P2X4 receptors, acidification caused a rightward shift in the ATP concentration-response curve, without change in the maximum; the pKa for this effect was 6.8. The pH dependence of the action of ATP should be taken into account in studies of synaptic transmission, and it may provide a further tool to assign molecular identity to P2X receptors expressed by brain neurons.

  3. Crystallization of the c[subscript 14]-rotor of the chloroplast ATP synthase reveals that it contains pigments

    Energy Technology Data Exchange (ETDEWEB)

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra (AZU)

    2008-08-27

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphage, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10--15 c-subunits is commonly thought to drive rotation of the rotor moiety (c{sub 10-14}{gamma}{sup {epsilon}}) relative to stator moiety ({alpha}{sub 3}{beta}{sub 3}{delta}ab{sub 2}). Here we report the isolation and crystallization of the c{sub 14}-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 {angstrom}. Though ATP synthase was not previously know to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revaled that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase.

  4. Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling.

    Science.gov (United States)

    White, Pamela J; Webb, Tania E; Boarder, Michael R

    2003-06-01

    Previous reports on heterologously-expressed human P2Y11 receptors have indicated that ATP, but not UTP, is an agonist stimulating both phosphoinositidase C and adenylyl cyclase. Consistent with these findings, we report that in 1321N1 cells expressing human P2Y11 receptors, UTP stimulation did not lead to accumulation of inositol(poly)phosphates under conditions in which ATP gave a robust, concentration-dependent effect. Unexpectedly, however, both UTP and ATP stimulated increases in cytosolic Ca2+ concentration ([Ca2+]c), with both nucleotides achieving similar EC50 and maximal responses. The responses to maximally effective concentrations of ATP and UTP were not additive. The [Ca2+]c increase in response to UTP was less dependent on extracellular Ca2+ than was the response to ATP. AR-C67085 (2-propylthio-beta,gamma-difluoromethylene-d-ATP, a P2Y11-selective agonist), adenosine 5'-O-(3-thiotriphosphate), and benzoyl ATP were all full agonists with potencies similar to those of ATP and UTP. In desensitization experiments, exposure to ATP resulted in loss of the UTP response; this response was more sensitive to desensitization than that of ATP. Pertussis toxin pretreatment attenuated the response to UTP but left the ATP response unaffected. The presence of 2-aminoethyl diphenylborate differentially affected the responses of ATP and UTP. No mRNA transcripts for P2Y2 or P2Y4 were detectable in the P2Y11-expressing cells. We conclude that UTP is a Ca2+-mobilizing agonist at P2Y11 receptors and that ATP and UTP acting at the same receptor recruit distinct signaling pathways. This example of agonist-specific signaling is discussed in terms of agonist trafficking and differential signal strength.

  5. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.

    Science.gov (United States)

    Uekawa, Atsushi; Yamanaka, Hitoki; Lieben, Liesbet; Kimira, Yoshifumi; Uehara, Mariko; Yamamoto, Yoko; Kato, Shigeaki; Ito, Kosei; Carmeliet, Geert; Masuyama, Ritsuko

    2018-01-05

    Extracellular low phosphate strongly enhances intestinal calcium absorption independently of active vitamin D [1,25(OH) 2 D 3 ] signaling, but the underlying mechanisms remain poorly characterized. To elucidate the phosphate-dependent regulation of calcium transport, we investigated part of the enteral environment that is involved in 1,25(OH) 2 D 3 -independent calcium absorption, which responds to dietary phosphate levels in mice that lack intestinal vitamin D receptor ( Vdr) activity. Impaired calcium absorption in intestinal Vdr-null mice was improved by dietary phosphate restriction. Accordingly, calcium transport in cultured intestinal epithelial cells was increased when the apical side was exposed to low phosphate levels (0.5 mM) compared with normal or high phosphate levels (1.0 or 5.0 mM, respectively). Mechanistically, low phosphate increased ATP in the apical side medium and allowed calcium entry into epithelial cells via the P2X7 purinoreceptor, which results in increased calcium transport. We found that luminal ATP was regulated by the release and degradation of ATP at the epithelium, and phosphate restriction increased ATP release from epithelial cells via connexin-43 hemichannels. Furthermore, ATP degradation by ectonucleotide pyrophosphatase-1 was reduced, which was caused by the reduction of the MAPK cascade. These findings indicate that luminal ATP metabolism regulates transcellular calcium transport in the intestine by an 1,25(OH) 2 D 3 -independent mechanism in response to dietary phosphate levels.-Uekawa, A., Yamanaka, H., Lieben, L., Kimira, Y., Uehara, M., Yamamoto, Y., Kato, S., Ito, K., Carmeliet, G., Masuyama, R. Phosphate-dependent luminal ATP metabolism regulates transcellular calcium transport in intestinal epithelial cells.

  6. Evolutionary, kinetic and thermodynamic aspects on the bioenergetics of inorganic pyrophosphate (PPi) and adenosine triphosphate (ATP)

    International Nuclear Information System (INIS)

    Baltscheffsky, H.; Baltscheffsky, M.

    1995-01-01

    Energy barriers for energy carriers are of fundamental significance for the successful operation of the bioenergetic reactions in living cells. PPi and ATP are outstanding ''energy-rich'' examples of molecular ''energy currencies'' in biological systems, with kinetic barriers preventing excessively fast thermodynamically feasible hydrolysis from occurring. The barriers may be considered to facilitate the energy coupling roles of these phosphate compounds, which are to secure growth and maintain numerous other energy requiring functions. The enzymes involved in overcoming the energies of activation of the bioenergetic reactions have evolved to be very well tuned for their roles. Three aspects will be discussed in some detail. The first is the fact that ATP at neutral pH is considerably more energy-rich than PPi, which thus has been called a ''poor man's ATP''. This is exemplified by the kinetic and thermodynamic differences observed between the requirements for the photosynthetic formation of PPi and ATP in certain photobacterial chromatophores by varying levels of energy supply. At lower pH, PPi and ATP are equally energy-rich, which may be of significance for acidophiles. The second concerns the possible evolutionary significance of the finding that, in the dark, a pH gradient suffices to drive extensive PPi synthesis, whereas ATP synthesis requires both a pH gradient and a membrane potential (Strid et al, Biochim. Biophys. Acta 892 (1987) 236-244). Thirdly, PPi as the most plausible predecessor to ATP in the origin and early evolution of life, will be discussed. (author). Abstract only

  7. Preparation of nano-tentacle polypyrrole with pseudo-molecular template for ATP incorporation.

    Science.gov (United States)

    Xiao, Yinghong; Che, Jianfei; Li, Chang Ming; Sun, Chang Q; Chua, Yek T; Lee, Vee S; Luong, John H T

    2007-03-15

    Polypyrrole was electrochemically synthesized onto a gold electrode in the presence of sodium p-toluenesulfonate (TSNa) as the key dopant. Under the optimal synthesis condition, the surface morphology of PPy/TSNa was tailored and exhibited a nano-tentacle structure. The resulting rough and fuzzy morphology greatly enhanced the apparent surface area as well as the polymer film conductivity. Adenosine triphosphate (ATP) was then incorporated in the structure by subsequent ion exchanging. This procedure could be envisaged as pseudo-molecular templating to eliminate several shortcomings associated with physical templating. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-vis) spectroscopy were conducted to investigate the incorporation of ATP. The pronounced rough surface of PPy/TSNa provided a higher density of active sites for ATP binding. The resulting PPy/ATP film exhibited a high charged capacity and lower impedance compared to the bare gold electrode. ATP remained stable in the PPy film; however, a negative bias to the electrode stimulated the conducting polymer to release ATP. This concept could serve as a mechanism for drug delivery and biosensing applications.

  8. Increased degradation of ATP is driven by memory regulatory T cells in kidney transplantation tolerance.

    Science.gov (United States)

    Durand, Maxim; Dubois, Florian; Dejou, Cécile; Durand, Eugénie; Danger, Richard; Chesneau, Mélanie; Brosseau, Carole; Guerif, Pierrick; Soulillou, Jean-Paul; Degauque, Nicolas; Eliaou, Jean-François; Giral, Magali; Bonnefoy, Nathalie; Brouard, Sophie

    2018-05-01

    Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Francis, Brian R; White, Karen H; Thorsness, Peter E

    2007-04-01

    ATP1-111, a suppressor of the slow-growth phenotype of yme1Delta lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.

  10. P2X receptor-mediated ATP purinergic signaling in health and disease

    Directory of Open Access Journals (Sweden)

    Jiang LH

    2012-09-01

    Full Text Available Lin-Hua JiangSchool of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United KingdomAbstract: Purinergic P2X receptors are plasma membrane proteins present in a wide range of mammalian cells where they act as a cellular sensor, enabling cells to detect and respond to extracellular adenosine triphosphate (ATP, an important signaling molecule. P2X receptors function as ligand-gated Ca2+-permeable cationic channels that open upon ATP binding to elevate intracellular Ca2+ concentrations and cause membrane depolarization. In response to sustained activation, P2X receptors induce formation of a pore permeable to large molecules. P2X receptors also interact with distinct functional proteins and membrane lipids to form specialized signaling complexes. Studies have provided compelling evidence to show that such P2X receptor-mediated ATP-signaling mechanisms determine and regulate a growing number and diversity of important physiological processes, including neurotransmission, muscle contraction, and cytokine release. There is accumulating evidence to support strong causative relationships of altered receptor expression and function with chronic pain, inflammatory diseases, cancers, and other pathologies or diseases. Numerous high throughput screening drug discovery programs and preclinical studies have thus far demonstrated the proof of concepts that the P2X receptors are druggable targets and selective receptor antagonism is a promising therapeutics approach. This review will discuss the recent progress in understanding the mammalian P2X receptors with respect to the ATP-signaling mechanisms, physiological and pathophysiological roles, and development and preclinical studies of receptor antagonists.Keywords: extracellular ATP, ion channel, large pore, signaling complex, chronic pain, inflammatory diseases

  11. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment.

    Science.gov (United States)

    Bianchi, G; Vuerich, M; Pellegatti, P; Marimpietri, D; Emionite, L; Marigo, I; Bronte, V; Di Virgilio, F; Pistoia, V; Raffaghello, L

    2014-03-20

    Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b(+)/Gr-1(+) cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1(+) population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-β1 (TGF-β1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-β1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment.

  12. Redox regulation of ATP sulfurylase in microalgae

    Czech Academy of Sciences Publication Activity Database

    Prioretti, L.; Lebrun, R.; Gontero, B.; Giordano, Mario

    2016-01-01

    Roč. 478, č. 4 (2016), s. 1555-1562 ISSN 0006-291X Institutional support: RVO:61388971 Keywords : ATP sulfurylase * cysteine * Sulfur metabolism Subject RIV: EE - Microbiology, Virology Impact factor: 2.466, year: 2016

  13. Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures

    DEFF Research Database (Denmark)

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz

    2016-01-01

    the expression level of the two genes at various concentrations of iron, copper, and insulin. Treating fibroblasts from controls or from individuals with MD or WD for 3 and 10 days with iron chelators revealed that iron deficiency led to increased transcript levels of both ATP7A and ATP7B. Copper deficiency...... obtained by treatment with the copper chelator led to a downregulation of ATP7A in the control fibroblasts, but surprisingly not in the WD fibroblasts. In contrast, the addition of copper led to an increased expression of ATP7A, but a decreased expression of ATP7B. Thus, whereas similar regulation patterns...... for the two genes were observed in response to iron deficiency, different responses were observed after changes in the access to copper. Mosaic fibroblast cultures from female carriers of MD treated with copper or copper chelator for 6-8 weeks led to clonal selection. Cells that express the normal ATP7A...

  14. NCEP ATP III dan Framingham score

    OpenAIRE

    Hasan, Refli; Fahila, Reny

    2016-01-01

    Laporan ini merupakan Program Pendidikan Kolesterol National yang diperbaharui yaitu pedoman klinis untuk melakukan pengujian kolesterol dan manajemen. ATP III dibuat berdasarkan bukti dan laporan ekstensif yang akan menjadi referensi dan rekomendasi ilmiah. Laporan ATP III dapat dijadikan pedoman untuk pemberian terapi penurun kolesterol yang intensif dalam praktek. Pedoman ini hanya sebagai informasi , tidak dapat mempengaruhi secara mutlak dalam penilaian klinis dokter yang akhirnya menent...

  15. Tendon functional extracellular matrix.

    Science.gov (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F

    2015-06-01

    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. The lateral distance between a proton pump and ATP synthase determines the ATP-synthesis rate

    Czech Academy of Sciences Publication Activity Database

    Sjöholm, C.; Bergstrand, J.; Nilsson, T.; Šachl, Radek; von Ballmoos, Ch.; Widengren, J.; Brzezinski, P.

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 2926. ISSN 2045-2322 Institutional support: RVO:61388955 Keywords : biological energy-conversion * cytochrome -c-oxidase * membrane-surface * rhodobacter-sphaeroides Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.259, year: 2016

  17. Sperm-surface ATP in boar spermatozoa is required for fertilization: relevance to sperm proteasomal function.

    Science.gov (United States)

    Yi, Young-Joo; Park, Chang-Sik; Kim, Eui-Sook; Song, Eun-Sook; Jeong, Ji-Hyeon; Sutovsky, Peter

    2009-01-01

    Extracellular ATP has been implicated in a number of cellular events, including mammalian sperm function. The complement of ATP-dependent sperm proteins includes six subunits of the 26S proteasome, a multi-subunit protease specific to ubiquitinated substrate-proteins. Proteolysis of ubiquitinated proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis (AE) and sperm-zona pellucida (ZP) penetration. The 26S proteasome is uniquely present on the sperm acrosomal surface during mammalian, ascidian, and invertebrate fertilization. The proteasome is a multi-subunit protease complex of approximately 2 MDa composed of the 19S regulatory complex and a 20S proteolytic core. Integrity of the 19S complex is maintained by six 19S ATPase subunits (PSMC1 through PSMC6). Consequently, we hypothesized that fertilization will be blocked by the depletion of sperm-surface associated ATP (ssATP). Depletion of ssATP by the Solanum tuberosum apyrase, a 49 kDa, non-cell permeant enzyme, significantly reduced the ATP content measured by an adapted luminescence-ATP assay from which all permeabilizing agents were excluded. Addition of active apyrase to porcine in vitro fertilization (IVF) medium caused a concentration dependent reduction in the overall fertilization rate. No such outcomes were observed in control groups using heat-inactivated apyrase. Apyrase treatment altered the band pattern of 19S ATPase subunits PSMC1 (Rpt2) and PSMC4 (Rpt3) in Western blotting, suggesting that it had an effect on the integrity of the sperm proteasomal 19S complex. Apyrase only altered the proteasomal core activities slightly, since these activities are not directly dependent on external ATP. In contrast, sperm treatment with MG132, a specific inhibitor of the proteasomal core chymotrypsin-like activity, inhibited the target proteolytic activity, but also induced a compensatory elevation in proteasomal peptidyl

  18. Rapid tissue regeneration induced by intracellular ATP delivery-A preliminary mechanistic study.

    Directory of Open Access Journals (Sweden)

    Harshini Sarojini

    Full Text Available We have reported a new phenomenon in acute wound healing following the use of intracellular ATP delivery-extremely rapid tissue regeneration, which starts less than 24 h after surgery, and is accompanied by massive macrophage trafficking, in situ proliferation, and direct collagen production. This unusual process bypasses the formation of the traditional provisional extracellular matrix and significantly shortens the wound healing process. Although macrophages/monocytes are known to play a critical role in the initiation and progression of wound healing, their in situ proliferation and direct collagen production in wound healing have never been reported previously. We have explored these two very specific pathways during wound healing, while excluding confounding factors in the in vivo environment by analyzing wound samples and performing in vitro studies. The use of immunohistochemical studies enabled the detection of in situ macrophage proliferation in ATP-vesicle treated wounds. Primary human macrophages and Raw 264.7 cells were used for an in vitro study involving treatment with ATP vesicles, free Mg-ATP alone, lipid vesicles alone, Regranex, or culture medium. Collagen type 1α 1, MCP-1, IL-6, and IL-10 levels were determined by ELISA of the culture supernatant. The intracellular collagen type 1α1 localization was determined with immunocytochemistry. ATP-vesicle treated wounds showed high immunoreactivity towards BrdU and PCNA antigens, indicating in situ proliferation. Most of the cultured macrophages treated with ATP-vesicles maintained their classic phenotype and expressed high levels of collagen type 1α1 for a longer duration than was observed with cells treated with Regranex. These studies provide the first clear evidence of in situ macrophage proliferation and direct collagen production during wound healing. These findings provide part of the explanation for the extremely rapid tissue regeneration, and this treatment may hold

  19. Modulation of ATP/ADP concentration at the endothelial surface by shear stress: effect of flow recirculation.

    Science.gov (United States)

    Choi, Hyo Won; Ferrara, Katherine W; Barakat, Abdul I

    2007-04-01

    The extracellular presence of the adenine nucleotides ATP and ADP induces calcium mobilization in vascular endothelial cells (ECs). ATP/ADP concentration at the EC surface is determined by a balance of convective-diffusive transport to and from the EC surface, hydrolysis by ectonucleotidases at the cell surface, and flow-induced ATP release from ECs. Our previous numerical simulations in a parallel plate geometry had demonstrated that flow-induced ATP release has a profound effect on nucleotide concentration at the EC surface. In the present study, we have extended the modeling to probe the impact of flow separation and recirculation downstream of a backward facing step (BFS) on ATP/ADP concentration at the EC surface. The results show that for both steady and pulsatile flow over a wide range of wall shear stresses, the ATP+ADP concentration at the EC surface is considerably lower within the flow recirculation region than in areas of undisturbed flow outside the recirculation zone. Pulsatile flow also leads to sharp temporal gradients in nucleotide concentration. If confirmed experimentally, the present findings suggest that disturbed and undisturbed flow may affect EC calcium mobilization differently. Such differences might, in turn, contribute to the observed endothelial dysfunction in regions of disturbed flow.

  20. Histamine stimulates secretion of extracellular vesicles with nucleotidase activity in rat submandibular gland.

    Science.gov (United States)

    González, Débora Alejandra; Barbieri van Haaster, Martín Matías; Quinteros Villarruel, Emmanuel; Brandt, Macarena; Benítez, María Belén; Stranieri, Graciela Mabel; Orman, Betina

    2018-01-01

    Extracellular vesicles released by different cells have been isolated from diverse fluids including saliva. We previously reported that rat submandibular glands secrete nanovesicles that catalyze hydrolysis of ATP, ADP and AMP, which are actors of the purinergic signaling system along with adenosine. Extracellular nucleotides like ATP and adenosine are involved in the regulation of inflammatory processes and apoptosis. Histamine, a widely distributed biogenic amine, is involved in inflammatory response. To test if activation of histamine receptors in rat submandibular gland promotes changes in the release of vesicles with nucleotidase activity that could modulate purinergic signaling. Rat submandibular glands were incubated in the absence or presence of histamine and JNJ7777120, an antagonist for H 4 receptors. Extracellular vesicles were isolated from incubation media by differential centrifugation. Vesicular nucleotidase activity was measured following Pi release by 3mM MgATP, MgADP or MgAMP. Histamine increased the release of vesicles with nucleotidase activity in a concentration dependent manner. JNJ7777120 significantly reduced this effect. Vesicular nucleotidases obtained in the absence or presence of histamine promoted Pi production from ATP, ADP and AMP. The results show a relationship between histamine and the regulation of purinergic signaling, which could be important in the modulation of inflammatory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.

    Science.gov (United States)

    He, Jiuya; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-08-22

    The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme's peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme's catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O , had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.

  2. A polycystin-type transient receptor potential (Trp channel that is activated by ATP

    Directory of Open Access Journals (Sweden)

    David Traynor

    2017-02-01

    Full Text Available ATP and ADP are ancient extra-cellular signalling molecules that in Dictyostelium amoebae cause rapid, transient increases in cytosolic calcium due to an influx through the plasma membrane. This response is independent of hetero-trimeric G-proteins, the putative IP3 receptor IplA and all P2X channels. We show, unexpectedly, that it is abolished in mutants of the polycystin-type transient receptor potential channel, TrpP. Responses to the chemoattractants cyclic-AMP and folic acid are unaffected in TrpP mutants. We report that the DIF morphogens, cyclic-di-GMP, GABA, glutamate and adenosine all induce strong cytoplasmic calcium responses, likewise independently of TrpP. Thus, TrpP is dedicated to purinergic signalling. ATP treatment causes cell blebbing within seconds but this does not require TrpP, implicating a separate purinergic receptor. We could detect no effect of ATP on chemotaxis and TrpP mutants grow, chemotax and develop almost normally in standard conditions. No gating ligand is known for the human homologue of TrpP, polycystin-2, which causes polycystic kidney disease. Our results now show that TrpP mediates purinergic signalling in Dictyostelium and is directly or indirectly gated by ATP.

  3. ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity.

    Science.gov (United States)

    Ulrich, Dagny L; Lynch, John; Wang, Yao; Fukuda, Yu; Nachagari, Deepa; Du, Guoqing; Sun, Daxi; Fan, Yiping; Tsurkan, Lyudmila; Potter, Philip M; Rehg, Jerold E; Schuetz, John D

    2012-04-13

    Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6(+/-)) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6(-/-) mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6(-/-) mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6(-/-) mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.

  4. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.

    Science.gov (United States)

    Abbott, Derek A; van den Brink, Joost; Minneboo, Inge M K; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Conversion of glucose to lactic acid is stoichiometrically equivalent to ethanol formation with respect to ATP formation from substrate-level phosphorylation, redox equivalents and product yield. However, anaerobic growth cannot be sustained in homolactate fermenting Saccharomyces cerevisiae. ATP-dependent export of the lactate anion and/or proton, resulting in net zero ATP formation, is suspected as the underlying cause. In an effort to understand the mechanisms behind the decreased lactic acid production rate in anaerobic homolactate cultures of S. cerevisiae, aerobic carbon-limited chemostats were performed and subjected to anaerobic perturbations in the presence of high glucose concentrations. Intracellular measurements of adenosine phosphates confirmed ATP depletion and decreased energy charge immediately upon anaerobicity. Unexpectedly, readily available sources of carbon and energy, trehalose and glycogen, were not activated in homolactate strains as they were in reference strains that produce ethanol. Finally, the anticipated increase in maximal velocity (V(max)) of glycolytic enzymes was not observed in homolactate fermentation suggesting the absence of protein synthesis that may be attributed to decreased energy availability. Essentially, anaerobic homolactate fermentation results in energy depletion, which, in turn, hinders protein synthesis, central carbon metabolism and subsequent energy generation.

  5. Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production.

    Science.gov (United States)

    Schuster, Stefan; Boley, Daniel; Möller, Philip; Stark, Heiko; Kaleta, Christoph

    2015-12-01

    For producing ATP, tumour cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, the ATP synthesis flux from glycolysis is considerably higher than in the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto H. Warburg) and also applies to striated muscle cells, activated lymphocytes, microglia, endothelial cells and several other cell types. For similar phenomena in several yeasts and many bacteria, the terms Crabtree effect and overflow metabolism respectively, are used. The Warburg effect is paradoxical at first sight because the molar ATP yield of glycolysis is much lower than that of respiration. Although a straightforward explanation is that glycolysis allows a higher ATP production rate, the question arises why cells do not re-allocate protein to the high-yield pathway of respiration. Mathematical modelling can help explain this phenomenon. Here, we review several models at various scales proposed in the literature for explaining the Warburg effect. These models support the hypothesis that glycolysis allows for a higher proliferation rate due to increased ATP production and precursor supply rates. © 2015 Authors; published by Portland Press Limited.

  6. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors

    Directory of Open Access Journals (Sweden)

    Irena Svobodova

    2018-03-01

    Full Text Available The circadian rhythms in physiological and behavioral functions are driven by a pacemaker located in the suprachiasmatic nucleus (SCN. The rhythms continue in constant darkness and depend on cell-cell communication between neurons and glia. The SCN astrocytes generate also a circadian rhythm in extracellular adenosine 5′-triphosphate (ATP accumulation, but molecular mechanisms that regulate ATP release are poorly understood. Here, we tested the hypothesis that ATP is released via the plasma membrane purinergic P2X7 receptors (P2X7Rs and P2Y receptors (P2YRs which have been previously shown to be expressed in the SCN tissue at transcriptional level. We have investigated this hypothesis using SCN organotypic cultures, primary cultures of SCN astrocytes, ATP bioluminescent assays, immunohistochemistry, patch-clamping, and calcium imaging. We found that extracellular ATP accumulation in organotypic cultures followed a circadian rhythm, with a peak between 24:00 and 04:00 h, and the trough at ~12:00 h. ATP rhythm was inhibited by application of AZ10606120, A438079, and BBG, specific blockers of P2X7R, and potentiated by GW791343, a positive allosteric modulator of this receptor. Double-immunohistochemical staining revealed high expression of the P2X7R protein in astrocytes of SCN slices. PPADS, a non-specific P2 antagonist, and MRS2179, specific P2Y1R antagonist, also abolished ATP rhythm, whereas the specific P2X4R blocker 5-BDBD was not effective. The pannexin-1 hemichannel blocker carbenoxolone displayed a partial inhibitory effect. The P2Y1R agonist MRS2365, and the P2Y2R agonist MRS2768 potentiated ATP release in organotypic cultures and increase intracellular Ca2+ level in cultured astrocytes. Thus, SCN utilizes multiple purinergic receptor systems and pannexin-1 hemichannels to release ATP.

  7. ATP-consuming and ATP-generating enzymes secreted by pancreas

    DEFF Research Database (Denmark)

    Yegutkin, Gennady G; Samburski, Sergei S; Jalkanen, Sirpa

    2006-01-01

    Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim of this st......Pancreatic acini release ATP in response to various stimuli, including cholecystokinin octapeptide (CCK-8), as we show in the present study. There were indications that pancreatic juice also contains enzymes that could hydrolyze ATP during its passage through the ductal system. The aim...... of this study was to determine which ATP-degrading and possibly ATP-generating enzymes were present in pancreatic secretion. For this purpose, pancreatic juice was collected from anesthetized rats stimulated with infusion of CCK-8. Purine-converting activities in juice samples were assayed by TLC using either...... [gamma-(32)P]ATP or (14)C/(3)H-labeled and unlabeled nucleotides as appropriate substrates. Data show that the juice contains the enzyme ecto-nucleoside triphosphate diphosphohydrolase that can hydrolyze both [(14)C]ATP and [(3)H]ADP about equally well, i.e. CD39. Reverse-phase high-performance liquid...

  8. Synthetic peptides target ATP translocase of ‘Candidatus Liberibacter asiaticus’ to block ATP uptake

    Science.gov (United States)

    As an obligate intracellular pathogen, ‘Candidatus Liberibacter asiaticus’ (Las) may act as an “energy parasite” by importing ATP from its host’s cells. We previously demonstrated that the Las translocase NttA (gb|ACX71867.1) is functional in Escherichia coli and enables the direct import of ATP/ADP...

  9. ATP: The crucial component of secretory vesicles.

    Science.gov (United States)

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission.

  10. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.

    Science.gov (United States)

    Segawa, Katsumori; Kurata, Sachiko; Nagata, Shigekazu

    2018-02-09

    Flippases are enzymes that translocate phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) from the outer to the inner leaflet in the lipid bilayer of the plasma membrane, leading to the asymmetric distribution of aminophospholipids in the membrane. One mammalian phospholipid flippase at the plasma membrane is ATP11C, a type IV P-type ATPase (P4-ATPase) that forms a heterocomplex with the transmembrane protein CDC50A. However, the structural features in CDC50A that support the function of ATP11C and other P4-ATPases have not been characterized. Here, using error-prone PCR-mediated mutagenesis of human CDC50A cDNA followed by functional screening and deep sequencing, we identified 14 amino acid residues that affect ATP11C's flippase activity. These residues were all located in CDC50A's extracellular domain and were evolutionarily well-conserved. Most of the mutations decreased CDC50A's ability to chaperone ATP11C and other P4-ATPases to their destinations. The CDC50A mutants failed to form a stable complex with ATP11C and could not induce ATP11C's PtdSer-dependent ATPase activity. Notably, one mutant variant could form a stable complex with ATP11C and transfer ATP11C to the plasma membrane, yet the ATP11C complexed with this CDC50A variant had very weak or little PtdSer- or PtdEtn-dependent ATPase activity. These results indicated that the extracellular domain of CDC50A has important roles both in CDC50A's ability to chaperone ATP11C to the plasma membrane and in inducing ATP11C's ATP hydrolysis-coupled flippase activity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Subunit rotation in a single FoF1-ATP synthase in a living bacterium monitored by FRET

    Science.gov (United States)

    Seyfert, K.; Oosaka, T.; Yaginuma, H.; Ernst, S.; Noji, H.; Iino, R.; Börsch, M.

    2011-03-01

    FoF1-ATP synthase is the ubiquitous membrane-bound enzyme in mitochondria, chloroplasts and bacteria which provides the 'chemical energy currency' adenosine triphosphate (ATP) for cellular processes. In Escherichia coli ATP synthesis is driven by a proton motive force (PMF) comprising a proton concentration difference ΔpH plus an electric potential ΔΨ across the lipid membrane. Single-molecule in vitro experiments have confirmed that proton-driven subunit rotation within FoF1-ATP synthase is associated with ATP synthesis. Based on intramolecular distance measurements by single-molecule fluorescence resonance energy transfer (FRET) the kinetics of subunit rotation and the step sizes of the different rotor parts have been unraveled. However, these experiments were accomplished in the presence of a PMF consisting of a maximum ΔpH ~ 4 and an unknown ΔΨ. In contrast, in living bacteria the maximum ΔpH across the plasma membrane is likely 0.75, and ΔΨ has been measured between -80 and -140 mV. Thus the problem of in vivo catalytic turnover rates, or the in vivo rotational speed in single FoF1-ATP synthases, respectively, has to be solved. In addition, the absolute number of functional enzymes in a single bacterium required to maintain the high ATP levels has to be determined. We report our progress of measuring subunit rotation in single FoF1-ATP synthases in vitro and in vivo, which was enabled by a new labeling approach for single-molecule FRET measurements.

  12. Red Wine Inhibits Aggregation and Increases ATP-diphosphohydrolase (CD39) Activity of Rat Platelets in Vitro.

    Science.gov (United States)

    Caiazzo, Elisabetta; Tedesco, Idolo; Spagnuolo, Carmela; Russo, Gian Luigi; Ialenti, Armando; Cicala, Carla

    2016-06-01

    Moderate consumption of red wine has been shown to exert a peculiar cardioprotective effect compared with other alcoholic beverages; inhibition of platelet aggregation seems to be one of the mechanisms underlying this beneficial effect. CD39/ATP-diphosphohydrolase is an integral membrane glycoprotein metabolizing ATP and ADP to AMP; in concert with CD73/ecto-5'-nucleotidase, it contributes to extracellular adenosine accumulation. CD39 is considered a key modulator of thrombus formation; it inhibits platelet aggregation by promoting ADP hydrolysis. There is evidence that red wine consumption increases CD39 activity in platelets from streptozotocin-induced diabetic rats. Here we show that two kinds of Aglianico red wines inhibit aggregation and increase ATP--and ADPase activity in rat platelets.

  13. Extracellular Adenosine Triphosphate Associated with Amphibian Erythrocytes: Inhibition of ATP Release by Anion Channel Blockers.

    Science.gov (United States)

    1986-01-01

    cells is diminished (406,432), a finding consistent with the decreased deformability and increased fragility of erythrocytes in Duchenne patients (170...Berne, T.W. Rall and R. Rubio, eds. The Hague: Martinus Nijhoff. pp. 179-201, 1983. - 347. Plagemann, P.G.W., Wohlhueter, R.M. and Erbe , J. Nucleoside...in Duchenne and myotonic muscular dystrophy. Nature 268:55-56, 1977. I5 . e. -. 𔃺 6 246 407. Sparks, Jr., H.V., and Belloni, F.L. The peripheral

  14. Pathway of processive ATP hydrolysis by kinesin

    Science.gov (United States)

    Gilbert, Susan P.; Webb, Martin R.; Brune, Martin; Johnson, Kenneth A.

    1995-02-01

    Direct measurement of the kinetics of kinesin dissociation from microtubules, the release of phosphate and ADP from kinesin, and rebinding of kinesin to the microtubule have defined the mechanism for the kinesin ATPase cycle. The processivity of ATP hydrolysis is ten molecules per site at low salt concentration but is reduced to one ATP per site at higher salt concentration. Kinesin dissociates from the microtubule after ATP hydrolysis. This step is rate-limiting. The subsequent rebinding of kinesin - ADP to the microtubule is fast, so kinesin spends only a small fraction of its duty cycle in the dissociated state. These results provide an explanation for the motility differences between skeletal myosin and kinesin.

  15. Generation of the membrane potential and its impact on the motility, ATP production and growth in Campylobacter jejuni

    Science.gov (United States)

    The generation of an electrical membrane potential (''), the major constituent of the proton motive force (pmf) is crucial for the ATP synthesis, bacterial growth and motility. The pmf drives the rotation of flagella and is vital for the microaerophilic human pathogen Campylobacter jejuni to coloniz...

  16. Hypophosphatemia promotes lower rates of muscle ATP synthesis

    DEFF Research Database (Denmark)

    Pesta, Dominik H; Tsirigotis, Dimitrios N; Befroy, Douglas E

    2016-01-01

    . Rates of VATP normalized in both hypophosphatemic groups after restoring plasma Pi concentrations. Furthermore, VATP was directly related to cellular and mitochondrial Pi uptake in L6 and RC13 rodent myocytes and isolated muscle mitochondria. Similar findings were observed in a patient with chronic...

  17. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Xue, Z.; Du, Z.; Melese, T.; Boyer, P.D.

    1988-07-12

    Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F/sub 1/ ATPase (CF/sub 1/) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. The authors have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg/sup 2 +/ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF/sub 1/ that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF/sub 1/. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (P/sub i/) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with (/sup 32/P)P/sub i/, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. They also report the occurrence of a 1-2-min delay in the onset of the Mg/sup 2 +/-induced inhibition after addition of CF/sub 1/ to solutions containing Mg/sup 2 +/ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of P/sub i/ formation is followed by a much lower, constant steady-state rate. The burst is not observed with GTP as a substrate or with Ca/sup 2 +/ as the activating cation.

  18. ATP storage and uptake by isolated pancreatic zymogen granules

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Novak, Ivana

    2010-01-01

    ATP is released from pancreatic acini in response to cholinergic and hormonal stimulation. The same stimuli cause exocytosis of ZG (zymogen granules) and release of digestive enzymes. The aim of the present study was to determine whether ZG stored ATP and to characterize the uptake mechanism...... for ATP transport into the ZG. ZG were isolated and the ATP content was measured using luciferin/luciferase assays and was related to protein in the sample. The estimate of ATP concentration in freshly isolated granules was 40-120 µM. The ATP uptake had an apparent Km value of 4.9±2.1 mM when granules...

  19. Bioluminometric assay of ATP in mouse brain

    Indian Academy of Sciences (India)

    Firefly luciferase bioluminescence (FLB) is a highly sensitive and specific method for the analysis of adenosine-5-triphosphate (ATP) in biological samples. Earlier attempts to modify the FLB test for enhanced sensitivity have been typically based on in vitro cell systems. This study reports an optimized FLB procedure for the ...

  20. A novel mitochondrial K(ATP) channel assay.

    Science.gov (United States)

    Wojtovich, Andrew P; Williams, David M; Karcz, Marcin K; Lopes, Coeli M B; Gray, Daniel A; Nehrke, Keith W; Brookes, Paul S

    2010-04-16

    The mitochondrial ATP sensitive potassium channel (mK(ATP)) is implicated in cardioprotection by ischemic preconditioning (IPC), but the molecular identity of the channel remains controversial. The validity of current methods to assay mK(ATP) activity is disputed. We sought to develop novel methods to assay mK(ATP) activity and its regulation. Using a thallium (Tl(+))-sensitive fluorophore, we developed a novel Tl(+) flux based assay for mK(ATP) activity, and used this assay probe several aspects of mK(ATP) function. The following key observations were made. (1) Time-dependent run down of mK(ATP) activity was reversed by phosphatidylinositol-4,5-bisphosphate (PIP(2)). (2) Dose responses of mK(ATP) to nucleotides revealed a UDP EC(50) of approximately 20 micromol/L and an ATP IC(50) of approximately 5 micromol/L. (3) The antidepressant fluoxetine (Prozac) inhibited mK(ATP) (IC(50)=2.4 micromol/L). Fluoxetine also blocked cardioprotection triggered by IPC, but did not block protection triggered by a mK(ATP)-independent stimulus. The related antidepressant zimelidine was without effect on either mK(ATP) or IPC. The Tl(+) flux mK(ATP) assay was validated by correlation with a classical mK(ATP) channel osmotic swelling assay (R(2)=0.855). The pharmacological profile of mK(ATP) (response to ATP, UDP, PIP(2), and fluoxetine) is consistent with that of an inward rectifying K(+) channel (K(IR)) and is somewhat closer to that of the K(IR)6.2 than the K(IR)6.1 isoform. The effect of fluoxetine on mK(ATP)-dependent cardioprotection has implications for the growing use of antidepressants in patients who may benefit from preconditioning.

  1. Sulfite inhibits the F1F0-ATP synthase and activates the F1F0-ATPase of Paracoccus denitrificans.

    Science.gov (United States)

    Pacheco-Moisés, Fermín; Minauro-Sanmiguel, Fernando; Bravo, Concepción; García, José J

    2002-08-01

    The F1F0 complex of Paracoccus denitrificans (PdF1F0) is the fastest ATP synthase but the slowest ATPase. Sulfite exerts maximal activation of the PdF1F0-ATPase (Pacheco-Moisés, F., García, J. J., Rodríguez-Zavala, J. S., and Moreno-Sánchez, R. (2000). Eur J. Biochem. 267, 993-1000) but its effect on the PdF1F0-ATP synthase activity remains unknown. Therefore, we studied the effect of sulfite on ATP synthesis and 32Pi ATP exchange reactions of inside-out membrane vesicles of P. denitrificans. Sulfite inhibited both reactions under conditions of maximal delta pH and normal sensitivity to dicyclohexylcarbodiimide. Sulfite increased by 10- and 5-fold the K0.5 for Mg2+-ADP and Pi during ATP synthesis, respectively, and by 4-fold the IC50 of Mg2+-ADP for inhibition of the PdF1F0-ATPase activity. Thus, sulfite exerts opposite effects on the forward and reverse functioning of the PdF1F0 complex. These effects are not due to membrane or PdF1F0 uncoupling. Kinetic and structural modifications that could account for these results are discussed.

  2. A label-free electrochemiluminescent sensor for ATP detection based on ATP-dependent ligation.

    Science.gov (United States)

    Zhao, Tingting; Lin, Chunshui; Yao, Qiuhong; Chen, Xi

    2016-07-01

    In this work, we describe a new label-free, sensitive and highly selective strategy for the electrochemiluminescent (ECL) detection of ATP at the picomolar level via ATP-induced ligation. The molecular-beacon like DNA probes (P12 complex) are self-assembled on a gold electrode. The presence of ATP leads to the ligation of P12 complex which blocks the digestion by Exonuclease III (Exo III). The protected P12 complex causes the intercalation of numerous ECL indicators (Ru(phen)3(2+)) into the duplex DNA grooves, resulting in significantly amplified ECL signal output. Since the ligating site of T4 DNA ligase and the nicking site of Exo III are the same, it involves no long time of incubation for conformation change. The proposed strategy combines the amplification power of enzyme and the inherent high sensitivity of the ECL technique and enables picomolar detection of ATP. The developed strategy also shows high selectivity against ATP analogs, which makes our new label-free and highly sensitive ligation-based method a useful addition to the amplified ATP detection arena. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  4. Synthesis of adenosine triphosphate tritiated in position 2 and 8

    International Nuclear Information System (INIS)

    Cossery, Jean-Michel

    1986-01-01

    Adenosine triphosphate or ATP is an important molecule present at the cellular level in many fundamental biochemical mechanism, and the study of its metabolism is therefore of particular interest. In this thesis for pharmacy graduation, the author first describes the different steps of synthesis and purification leading to chloride-2-ATP, a precursor of the final tritiated molecule. Then, the author explains the tritiation of this molecule to obtain an ATP tritiated in position 2 and in position 8 [fr

  5. Extracellular matrix structure.

    Science.gov (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K

    2016-02-01

    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives.

    Science.gov (United States)

    Nesci, Salvatore; Trombetti, Fabiana; Ventrella, Vittoria; Pagliarani, Alessandra

    2016-04-01

    The F1FO-ATP synthase is the only enzyme in nature endowed with bi-functional catalytic mechanism of synthesis and hydrolysis of ATP. The enzyme functions, not only confined to energy transduction, are tied to three intrinsic features of the annular arrangement of c subunits which constitutes the so-called c-ring, the core of the membrane-embedded FO domain: (i) the c-ring constitution is linked to the number of ions (H(+) or Na(+)) channeled across the membrane during the dissipation of the transmembrane electrochemical gradient, which in turn determines the species-specific bioenergetic cost of ATP, the "molecular currency unit" of energy transfer in all living beings; (ii) the c-ring is increasingly involved in the mitochondrial permeability transition, an event linked to cell death and to most mitochondrial dysfunctions; (iii) the c subunit species-specific amino acid sequence and susceptibility to post-translational modifications can address antibacterial drug design according to the model of enzyme inhibitors which target the c subunits. Therefore, the simple c-ring structure not only allows the F1FO-ATP synthase to perform the two opposite tasks of molecular machine of cell life and death, but it also amplifies the enzyme's potential role as a drug target.

  7. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  8. Cellular consequences of ATP8B1 deficiency

    NARCIS (Netherlands)

    van der Velden, L.M.

    2010-01-01

    Mutations in the ATP8B1 gene cause a spectrum of familial intrahepatic cholestasis syndromes which we collectively refer to as ATP8B1 deficiency. Patients with ATP8B1 deficiency present with intrahepatic cholestasis (impairment of bile flow) as primary complication. These patients may also present

  9. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    Science.gov (United States)

    Morita, Tomotake; Koike, Hideaki; Hagiwara, Hiroko; Ito, Emi; Machida, Masayuki; Sato, Shun; Habe, Hiroshi; Kitamoto, Dai

    2014-01-01

    Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs), multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes) categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes). The gene encoding an ATP/citrate lyase (ACL) related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials.

  10. Genome and transcriptome analysis of the basidiomycetous yeast Pseudozyma antarctica producing extracellular glycolipids, mannosylerythritol lipids.

    Directory of Open Access Journals (Sweden)

    Tomotake Morita

    Full Text Available Pseudozyma antarctica is a non-pathogenic phyllosphere yeast known as an excellent producer of mannosylerythritol lipids (MELs, multi-functional extracellular glycolipids, from vegetable oils. To clarify the genetic characteristics of P. antarctica, we analyzed the 18 Mb genome of P. antarctica T-34. On the basis of KOG analysis, the number of genes (219 genes categorized into lipid transport and metabolism classification in P. antarctica was one and a half times larger than that of yeast Saccharomyces cerevisiae (140 genes. The gene encoding an ATP/citrate lyase (ACL related to acetyl-CoA synthesis conserved in oleaginous strains was found in P. antarctica genome: the single ACL gene possesses the four domains identical to that of the human gene, whereas the other oleaginous ascomycetous species have the two genes covering the four domains. P. antarctica genome exhibited a remarkable degree of synteny to U. maydis genome, however, the comparison of the gene expression profiles under the culture on the two carbon sources, glucose and soybean oil, by the DNA microarray method revealed that transcriptomes between the two species were significantly different. In P. antarctica, expression of the gene sets relating fatty acid metabolism were markedly up-regulated under the oily conditions compared with glucose. Additionally, MEL biosynthesis cluster of P. antarctica was highly expressed regardless of the carbon source as compared to U. maydis. These results strongly indicate that P. antarctica has an oleaginous nature which is relevant to its non-pathogenic and MEL-overproducing characteristics. The analysis and dataset contribute to stimulate the development of improved strains with customized properties for high yield production of functional bio-based materials.

  11. Extracellular Signatures as Indicators of Processing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.

    2012-01-09

    As described in other chapters within this volume, many aspects of microbial cells vary with culture conditions and therefore can potentially be analyzed as forensic signatures of growth conditions. In addition to changes or variations in components of the microbes themselves, extracellular materials indicative of production processes may remain associated with the final bacterial product. It is well recognized that even with considerable effort to make pure products such as fine chemicals or pharmaceuticals, trace impurities from components or synthesis steps associated with production processes can be detected in the final product. These impurities can be used as indicators of production source or methods, such as to help connect drugs of abuse to supply chains. Extracellular residue associated with microbial cells could similarly help to characterize production processes. For successful growth of microorganisms on culture media there must be an available source of carbon, nitrogen, inorganic phosphate and sulfur, trace metals, water and vitamins. The pH, temperature, and a supply of oxygen or other gases must also be appropriate for a given organism for successful culture. The sources of these components and the range in temperature, pH and other variables has adapted over the years with currently a wide range of possible combinations of media components, recipes and parameters to choose from for a given organism. Because of this wide variability in components, mixtures of components, and other parameters, there is the potential for differentiation of cultured organisms based on changes in culture conditions. The challenge remains how to narrow the field of potential combinations and be able to attribute variations in the final bacterial product and extracellular signatures associated with the final product to information about the culture conditions or recipe used in the production of that product.

  12. Tripartite purinergic modulation of central respiratory networks during perinatal development: the influence of ATP, ectonucleotidases, and ATP metabolites.

    Science.gov (United States)

    Huxtable, Adrianne G; Zwicker, Jennifer D; Poon, Betty Y; Pagliardini, Silvia; Vrouwe, Sebastian Q; Greer, John J; Funk, Gregory D

    2009-11-25

    ATP released during hypoxia from the ventrolateral medulla activates purinergic receptors (P2Rs) to attenuate the secondary hypoxic depression of breathing by a mechanism that likely involves a P2Y(1)R-mediated excitation of preBötzinger complex (preBötC) inspiratory rhythm-generating networks. In this study, we used rhythmically active in vitro preparations from embryonic and postnatal rats and ATP microinjection into the rostral ventral respiratory group (rVRG)/preBötC to reveal that these networks are sensitive to ATP when rhythm emerges at embryonic day 17 (E17). The peak frequency elicited by ATP at E19 and postnatally was the same ( approximately 45 bursts/min), but relative sensitivity was threefold greater at E19, reflecting a lower baseline frequency (5.6 +/- 0.9 vs 19.0 +/- 1.3 bursts/min). Combining microinjection techniques with ATP biosensors revealed that ATP concentration in the rVRG/preBötC falls rapidly as a result of active processes and closely correlates with inspiratory frequency. A phosphate assay established that preBötC-containing tissue punches degrade ATP at rates that increase perinatally. Thus, the agonist profile [ATP/ADP/adenosine (ADO)] produced after ATP release in the rVRG/preBötC will change perinatally. Electrophysiology further established that the ATP metabolite ADP is excitatory and that, in fetal but not postnatal animals, ADO at A(1) receptors exerts a tonic depressive action on rhythm, whereas A(1) antagonists extend the excitatory action of ATP on inspiratory rhythm. These data demonstrate that ATP is a potent excitatory modulator of the rVRG/preBötC inspiratory network from the time it becomes active and that ATP actions are determined by a dynamic interaction between the actions of ATP at P2 receptors, ectonucleotidases that degrade ATP, and ATP metabolites on P2Y and P1 receptors.

  13. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Vitamin A Deficiency and Alterations in the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Teresa Barber

    2014-11-01

    Full Text Available Vitamin A or retinol which is the natural precursor of several biologically active metabolites can be considered the most multifunctional vitamin in mammals. Its deficiency is currently, along with protein malnutrition, the most serious and common nutritional disorder worldwide. It is necessary for normal embryonic development and postnatal tissue homeostasis, and exerts important effects on cell proliferation, differentiation and apoptosis. These actions are produced mainly by regulating the expression of a variety of proteins through transcriptional and non-transcriptional mechanisms. Extracellular matrix proteins are among those whose synthesis is known to be modulated by vitamin A. Retinoic acid, the main biologically active form of vitamin A, influences the expression of collagens, laminins, entactin, fibronectin, elastin and proteoglycans, which are the major components of the extracellular matrix. Consequently, the structure and macromolecular composition of this extracellular compartment is profoundly altered as a result of vitamin A deficiency. As cell behavior, differentiation and apoptosis, and tissue mechanics are influenced by the extracellular matrix, its modifications potentially compromise organ function and may lead to disease. This review focuses on the effects of lack of vitamin A in the extracellular matrix of several organs and discusses possible molecular mechanisms and pathologic implications.

  15. Extracellular vesicles for drug delivery

    NARCIS (Netherlands)

    Vader, Pieter; Mol, Emma A; Pasterkamp, Gerard; Schiffelers, Raymond M

    2016-01-01

    Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained

  16. Extracellular vesicles in renal disease.

    Science.gov (United States)

    Karpman, Diana; Ståhl, Anne-Lie; Arvidsson, Ida

    2017-09-01

    Extracellular vesicles, such as exosomes and microvesicles, are host cell-derived packages of information that allow cell-cell communication and enable cells to rid themselves of unwanted substances. The release and uptake of extracellular vesicles has important physiological functions and may also contribute to the development and propagation of inflammatory, vascular, malignant, infectious and neurodegenerative diseases. This Review describes the different types of extracellular vesicles, how they are detected and the mechanisms by which they communicate with cells and transfer information. We also describe their physiological functions in cellular interactions, such as in thrombosis, immune modulation, cell proliferation, tissue regeneration and matrix modulation, with an emphasis on renal processes. We discuss how the detection of extracellular vesicles could be utilized as biomarkers of renal disease and how they might contribute to disease processes in the kidney, such as in acute kidney injury, chronic kidney disease, renal transplantation, thrombotic microangiopathies, vasculitides, IgA nephropathy, nephrotic syndrome, urinary tract infection, cystic kidney disease and tubulopathies. Finally, we consider how the release or uptake of extracellular vesicles can be blocked, as well as the associated benefits and risks, and how extracellular vesicles might be used to treat renal diseases by delivering therapeutics to specific cells.

  17. Identification of the Inorganic Pyrophosphate Metabolizing, ATP Substituting Pathway in Mammalian Spermatozoa

    Science.gov (United States)

    Yi, Young-Joo; Sutovsky, Miriam; Kennedy, Chelsey; Sutovsky, Peter

    2012-01-01

    Inorganic pyrophosphate (PPi) is generated by ATP hydrolysis in the cells and also present in extracellular matrix, cartilage and bodily fluids. Fueling an alternative pathway for energy production in cells, PPi is hydrolyzed by inorganic pyrophosphatase (PPA1) in a highly exergonic reaction that can under certain conditions substitute for ATP-derived energy. Recombinant PPA1 is used for energy-regeneration in the cell-free systems used to study the zymology of ATP-dependent ubiquitin-proteasome system, including the role of sperm-borne proteasomes in mammalian fertilization. Inspired by an observation of reduced in vitro fertilization (IVF) rates in the presence of external, recombinant PPA1, this study reveals, for the first time, the presence of PPi, PPA1 and PPi transporter, progressive ankylosis protein ANKH in mammalian spermatozoa. Addition of PPi during porcine IVF increased fertilization rates significantly and in a dose-dependent manner. Fluorometric assay detected high levels of PPi in porcine seminal plasma, oviductal fluid and spermatozoa. Immunofluorescence detected PPA1 in the postacrosomal sheath (PAS) and connecting piece of boar spermatozoa; ANKH was present in the sperm head PAS and equatorial segment. Both ANKH and PPA1 were also detected in human and mouse spermatozoa, and in porcine spermatids. Higher proteasomal-proteolytic activity, indispensable for fertilization, was measured in spermatozoa preserved with PPi. The identification of an alternative, PPi dependent pathway for ATP production in spermatozoa elevates our understanding of sperm physiology and sets the stage for the improvement of semen extenders, storage media and IVF media for animal biotechnology and human assisted reproductive therapies. PMID:22485177

  18. Control of ATP hydrolysis by ADP bound at the catalytic site of chloroplast ATP synthase as related to protonmotive force and Mg sup 2+

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Boyer, P.D. (Univ. of California, Los Angeles (USA))

    1989-01-24

    The activation of the ATP synthesis and hydrolysis capacity of isolated chloroplast membranes by protonmotive force is known to be associated with the release of tightly bound ADP from the ATP synthase. The data support the view that the activation requires only those structural changes occurring in the steady-state reaction mechanism. The trapping of ADP released during light activation or the chelation of Mg{sup 2+} with EDTA effectively reduces the rate of decay of the ATPase activity. When the release of tightly bound ADP and Mg{sup 2+} is promoted by light activation, followed by immediate dilution and washing to retard the rebinding of the ADP and Mg{sup 2+} released, the ATPase activity remains high in the dark long after the protonmotive force has disappeared. After the addition of ADP and Mg{sup 2+} the decay of the ATPase activity has the same characteristics as those of the unwashed chloroplast membrane. The results are interpreted as indicating that both Mg{sup 2+} and ADP must be present prior to exposure to MgATP for the ATPase to be inhibited. However, in contrast to the isolated chloroplast ATPase, the steady-state activity of the membrane-bound ATPase is not inhibited by excess Mg{sup 2+}. The replacement of ({sup 3}H)ADP from catalytic sites during hydrolysis of unlabeled ATP or during photophosphorylation with unlabeled ADP occurs as anticipated if Mg{sup 2+} and ADP bound at one catalytic site without P{sub i} block catalysis by all three enzyme sites. The inhibited form induced by Mg{sup 2+} and ADP may occur only under laboratory conditions and not have an in vivo role.

  19. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate?

    Science.gov (United States)

    Agarwal, Renu; Agarwal, Puneet

    2017-02-01

    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.

  20. Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy.

    Science.gov (United States)

    Liu, Man; Barth, Andreas

    2004-11-26

    Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) was studied with time-resolved Fourier transform infrared spectroscopy. ATP and ATP analogs (ITP, 2'- and 3'-dATP) were used to study the effect of the adenine ring and the ribose hydroxyl groups on ATPase phosphorylation. All modifications of ATP altered conformational changes and phosphorylation kinetics. The differences compared with ATP increased in the following order: 3'-dATP > ITP > 2'-dATP. Enzyme phosphorylation with ITP results in larger absorbance changes in the amide I region, indicating larger conformational changes of the Ca(2+)-ATPase. The respective absorbance changes obtained with 3'-dATP are significantly different from the others with different band positions and amplitudes in the amide I region, indicating different conformational changes of the protein backbone. ATPase phosphorylation with 3'-dATP is also much ( approximately 30 times) slower than with ATP. Our results indicate that modifications to functional groups of ATP (the ribose 2'- and 3'-OH and the amino group in the adenine ring) affect gamma-phosphate transfer to the phosphorylation site of the Ca(2+)-ATPase by changing the extent of conformational change and the phosphorylation rate. ADP binding to the ADP-sensitive phosphoenzyme (Ca(2)E1P) stabilizes the closed conformation of Ca(2)E1P.

  1. Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer.

    Science.gov (United States)

    Wei, Changyong; Heitmeier, Monique; Hruz, Paul W; Shanmugam, Mala

    2018-01-01

    Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.

  2. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells.

    Science.gov (United States)

    Lecciso, Mariangela; Ocadlikova, Darina; Sangaletti, Sabina; Trabanelli, Sara; De Marchi, Elena; Orioli, Elisa; Pegoraro, Anna; Portararo, Paola; Jandus, Camilla; Bontadini, Andrea; Redavid, Annarita; Salvestrini, Valentina; Romero, Pedro; Colombo, Mario P; Di Virgilio, Francesco; Cavo, Michele; Adinolfi, Elena; Curti, Antonio

    2017-01-01

    Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC) cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML), ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs) with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1), was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1), which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1 + CD39 + DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  3. ATP Release from Chemotherapy-Treated Dying Leukemia Cells Elicits an Immune Suppressive Effect by Increasing Regulatory T Cells and Tolerogenic Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Mariangela Lecciso

    2017-12-01

    Full Text Available Chemotherapy-induced immunogenic cell death can favor dendritic cell (DC cross-priming of tumor-associated antigens for T cell activation thanks to the release of damage-associated molecular patterns, including ATP. Here, we tested the hypothesis that in acute myeloid leukemia (AML, ATP release, along with its well-known immune stimulatory effect, may also contribute to the generation of an immune suppressive microenvironment. In a cohort of AML patients, undergoing combined daunorubicin and cytarabine chemotherapy, a population of T regulatory cells (Tregs with suppressive phenotype, expressing the immune checkpoint programmed cell death protein 1 (PD-1, was significantly increased. Moving from these results, initial in vitro data showed that daunorubicin was more effective than cytarabine in modulating DC function toward Tregs induction and such difference was correlated with the higher capacity of daunorubicin to induce ATP release from treated AML cells. DCs cultured with daunorubicin-treated AML cells upregulated indoleamine 2,3-dioxygenase 1 (IDO1, which induced anti-leukemia Tregs. These data were confirmed in vivo as daunorubicin-treated mice show an increase in extracellular ATP levels with increased number of Tregs, expressing PD-1 and IDO1+CD39+ DCs. Notably, daunorubicin failed to induce Tregs and tolerogenic DCs in mice lacking the ATP receptor P2X7. Our data indicate that ATP release from chemotherapy-treated dying cells contributes to create an immune suppressive microenvironment in AML.

  4. Tumorigenic Potential of Extracellular Matrix Metalloproteinase Inducer

    Science.gov (United States)

    Zucker, Stanley; Hymowitz, Michelle; Rollo, Ellen E.; Mann, Richard; Conner, Cathleen E.; Cao, Jian; Foda, Hussein D.; Tompkins, David C.; Toole, Bryan P.

    2001-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein present on the cancer cell plasma membrane, enhances fibroblast synthesis of matrix metalloproteinases (MMPs). The demonstration that peritumoral fibroblasts synthesize most of the MMPs in human tumors rather than the cancer cells themselves has ignited interest in the role of EMMPRIN in tumor dissemination. In this report we have demonstrated a role for EMMPRIN in cancer progression. Human MDA-MB-436 breast cancer cells, which are tumorigenic but slow growing in vivo, were transfected with EMMPRIN cDNA and injected orthotopically into mammary tissue of female NCr nu/nu mice. Green fluorescent protein was used to visualize metastases. In three experiments, breast cancer cell clones transfected with EMMPRIN cDNA were considerably more tumorigenic and invasive than plasmid-transfected cancer cells. Increased gelatinase A and gelatinase B expression (demonstrated by in situ hybridization and gelatin substrate zymography) was demonstrated in EMMPRIN-enhanced tumors. In contrast to de novo breast cancers in humans, human tumors transplanted into mice elicited minimal stromal or inflammatory cell reactions. Based on these experimental studies and our previous demonstration that EMMPRIN is prominently displayed in human cancer tissue, we propose that EMMPRIN plays an important role in cancer progression by increasing synthesis of MMPs. PMID:11395366

  5. Clusterin and COMMD1 independently regulate degradation of the mammalian copper ATPases ATP7A and ATP7B.

    Science.gov (United States)

    Materia, Stephanie; Cater, Michael A; Klomp, Leo W J; Mercer, Julian F B; La Fontaine, Sharon

    2012-01-20

    ATP7A and ATP7B are copper-transporting P(1B)-type ATPases (Cu-ATPases) that are critical for regulating intracellular copper homeostasis. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and copper toxicity disorders, Menkes and Wilson diseases, respectively. Clusterin and COMMD1 were previously identified as interacting partners of these Cu-ATPases. In this study, we confirmed that clusterin and COMMD1 interact to down-regulate both ATP7A and ATP7B. Overexpression and knockdown of clusterin/COMMD1 decreased and increased, respectively, endogenous levels of ATP7A and ATP7B, consistent with a role in facilitating Cu-ATPase degradation. We demonstrate that whereas the clusterin/ATP7B interaction was enhanced by oxidative stress or mutation of ATP7B, the COMMD1/ATP7B interaction did not change under oxidative stress conditions, and only increased with ATP7B mutations that led to its misfolding. Clusterin and COMMD1 facilitated the degradation of ATP7B containing the same Wilson disease-causing C-terminal mutations via different degradation pathways, clusterin via the lysosomal pathway and COMMD1 via the proteasomal pathway. Furthermore, endogenous ATP7B existed in a complex with clusterin and COMMD1, but these interactions were neither competitive nor cooperative and occurred independently of each other. Together these data indicate that clusterin and COMMD1 represent alternative and independent systems regulating Cu-ATPase quality control, and consequently contributing to the maintenance of copper homeostasis.

  6. Effects of extracellular nucleotides on single cells and populations of human osteoblasts: contribution of cell heterogeneity to relative potencies

    OpenAIRE

    Jane Dixon, C; Bowler, Wayne B; Walsh, Catherine A; Gallagher, James A

    1997-01-01

    Human osteoblasts responded to the application of extracellular nucleotides, acting at P2-receptors, with increases in cytosolic free calcium concentration ([Ca2+]i).In populations of human osteoblasts, adenosine 5′-diphosphate (ADP) evoked a rise in [Ca2+]i with less than 40% of the amplitude of that induced by adenosine 5′-triphosphate (ATP).ATP and uridine 5′-triphosphate (UTP) were applied to single human osteoblasts and induced [Ca2+]i rises of comparable amplitude in every cell tested.H...

  7. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K.; Dean, Dennis R.; Hoffman, Brian M.; Antony, Edwin; Seefeldt, Lance C.

    2013-01-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s−1, 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s−1, 25 °C), (ii) ATP hydrolysis (kATP = 70 s−1, 25 °C), (iii) Phosphate release (kPi = 16 s−1, 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s−1, 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein–protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Feox(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  8. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

    Science.gov (United States)

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K; Dean, Dennis R; Hoffman, Brian M; Antony, Edwin; Seefeldt, Lance C

    2013-10-08

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s(-1), 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s(-1), 25 °C), (ii) ATP hydrolysis (kATP = 70 s(-1), 25 °C), (iii) Phosphate release (kPi = 16 s(-1), 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s(-1), 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein-protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Fe(ox)(ADP)2 protein and the reduced MoFe protein.

  9. Adenosine Triphosphate (ATP Is a Candidate Signaling Molecule in the Mitochondria-to-Nucleus Retrograde Response Pathway

    Directory of Open Access Journals (Sweden)

    Zhengchang Liu

    2013-03-01

    Full Text Available Intracellular communication from the mitochondria to the nucleus is achieved via the retrograde response. In budding yeast, the retrograde response, also known as the RTG pathway, is regulated positively by Rtg1, Rtg2, Rtg3 and Grr1 and negatively by Mks1, Lst8 and two 14-3-3 proteins, Bmh1/2. Activation of retrograde signaling leads to activation of Rtg1/3, two basic helix-loop-helix leucine zipper transcription factors. Rtg1/3 activation requires Rtg2, a cytoplasmic protein with an N-terminal adenosine triphosphate (ATP binding domain belonging to the actin/Hsp70/sugar kinase superfamily. The critical regulatory step of the retrograde response is the interaction between Rtg2 and Mks1. Rtg2 binds to and inactivates Mks1, allowing for activation of Rtg1/3 and the RTG pathway. When the pathway is inactive, Mks1 has dissociated from Rtg2 and bound to Bmh1/2, preventing activation of Rtg1/3. What signals association or disassociation of Mks1 and Rtg2 is unknown. Here, we show that ATP at physiological concentrations dissociates Mks1 from Rtg2 in a highly cooperative fashion. We report that ATP-mediated dissociation of Mks1 from Rtg2 is conserved in two other fungal species, K. lactis and K. waltii. Activation of Rtg1/3 upregulates expression of genes encoding enzymes catalyzing the first three reactions of the Krebs cycle, which is coupled to ATP synthesis through oxidative phosphorylation. Therefore, we propose that the retrograde response is an ATP homeostasis pathway coupling ATP production with ATP-mediated repression of the retrograde response by releasing Mks1 from Rtg2.

  10. Protein kinase C-mediated ATP stimulation of Na(+)-ATPase activity in LLC-PK1 cells involves a P2Y2 and/or P2Y4 receptor.

    Science.gov (United States)

    Wengert, M; Ribeiro, M C; Abreu, T P; Coutinho-Silva, R; Leão-Ferreira, L R; Pinheiro, A A S; Caruso-Neves, C

    2013-07-15

    ATP-activated P2Y receptors play an important role in renal sodium excretion. The aim of this study was to evaluate the modulation of ATPase-driven sodium reabsorption in the proximal tubule by ATP or adenosine (Ado). LLC-PK1 cells, a model of porcine proximal tubule cells, were used. ATP (10(-6)M) or Ado (10(-6)M) specifically stimulated Na(+)-ATPase activity without any changes in (Na(+)+K(+))-ATPase activity. Our results show that the Ado effect is mediated by its conversion to ATP. Furthermore, it was observed that the effect of ATP was mimicked by UTP, ATPγS and 2-thio-UTP, an agonist of P2Y2 and P2Y4 receptors. In addition, ATP-stimulated Na(+)-ATPase activity involves protein kinase C (PKC). Our results indicate that ATP-induced stimulation of proximal tubule Na(+)-ATPase activity is mediated by a PKC-dependent P2Y2 and/or P2Y4 pathway. These findings provide new perspectives on the role of the effect of P2Y-mediated extracellular ATP on renal sodium handling. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effects of airway surface liquid height on the kinetics of extracellular nucleotides in airway epithelia.

    Science.gov (United States)

    Amarante, Tauanne D; da Silva, Jafferson K L; Garcia, Guilherme J M

    2014-12-21

    Experimental techniques aimed at measuring the concentration of signaling molecules in the airway surface liquid (ASL) often require an unrealistically large ASL volume to facilitate sampling. This experimental limitation, prompted by the difficulty of pipetting liquid from a very shallow layer (~15 μm), leads to dilution and the under-prediction of physiologic concentrations of signaling molecules that are vital to the regulation of mucociliary clearance. Here, we use a computational model to describe the effect of liquid height on the kinetics of extracellular nucleotides in the airway surface liquid coating respiratory epithelia. The model consists of a reaction-diffusion equation with boundary conditions that represent the enzymatic reactions occurring on the epithelial surface. The simulations reproduce successfully the kinetics of extracellular ATP following hypotonic challenge for ASL volumes ranging from 25 μl to 500 μl in a 12-mm diameter cell culture. The model reveals that [ATP] and [ADO] reach 1200 nM and 2200 nM at the epithelial surface, respectively, while their volumetric averages remain less than 200 nM at all times in experiments with a large ASL volume (500 μl). These findings imply that activation of P2Y2 and A2B receptors is robust after hypotonic challenge, in contrast to what could be concluded based on experimental measurements of volumetric concentrations in large ASL volumes. Finally, given the central role that ATP and ADO play in regulating mucociliary clearance, we investigated which enzymes, when inhibited, provide the greatest increase in ATP and ADO concentrations. Our findings suggest that inhibition of NTPDase1/highTNAP would cause the greatest increase in [ATP] after hypotonic challenge, while inhibition of the transporter CNT3 would provide the greatest increase in [ADO]. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Impaired ATP synthase assembly associated with a mutation in the human ATP synthase subunit 6 gene.

    NARCIS (Netherlands)

    Nijtmans, L.G.J.; Henderson, N.S.; Attardi, G.; Holt, L.J.

    2001-01-01

    Mutations in human mitochondrial DNA are a well recognized cause of disease. A mutation at nucleotide position 8993 of human mitochondrial DNA, located within the gene for ATP synthase subunit 6, is associated with the neurological muscle weakness, ataxia, and retinitis pigmentosa (NARP) syndrome.

  13. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function.

    Science.gov (United States)

    Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2007-01-01

    The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures

  14. Identification of poly(ADP-ribose) polymerase-1 as the OXPHOS-generated ATP sensor of nuclei of animal cells

    International Nuclear Information System (INIS)

    Kun, Ernest; Kirsten, Eva; Hakam, Alaeddin; Bauer, Pal I.; Mendeleyev, Jerome

    2008-01-01

    Our results show that in the intact normal animal cell mitochondrial ATP is directly connected to nuclear PARP-1 by way of a specific adenylate kinase enzymatic path. This mechanism is demonstrated in two models: (a) by its inhibition with a specific inhibitor of adenylate kinase, and (b) by disruption of ATP synthesis through uncoupling of OXPHOS. In each instance the de-inhibited PARP-1 is quantitatively determined by enzyme kinetics. The nuclear binding site of PARP-1 is Topo I, and is identified as a critical 'switchpoint' indicating the nuclear element that connects OXPHOS with mRNA synthesis in real time. The mitochondrial-nuclear PARP-1 pathway is not operative in cancer cells

  15. Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2016-01-01

    Full Text Available This paper reviews the role played by glycogen breakdown (glycogenolysis and glycogen re-synthesis in memory processing in two different chick brain regions, (1 the hippocampus and (2 the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM. Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training and glycogen breakdown and re-synthesis are involved. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis at three specific times during the first 60 min after learning (around 2.5, 30 and 55 min. The chicks learn to discriminate in a single trial between beads of two colours and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i] in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo. Neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.

  16. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    to the plasma membrane, clusters within the membrane and intracellularly. Stimulation of P2X7 receptors in HEK-293 cells led to an activation of extracellular signal-regulated kinases ERK1 and ERK2 and this activation was seen after just 1 min of stimulation with ATP. Using C- and N-terminal P2X7-receptor...

  17. Dose-dependent ATP depletion and cancer cell death following calcium electroporation, relative effect of calcium concentration and electric field strength

    DEFF Research Database (Denmark)

    Hansen, Emilie Louise; Sozer, Esin Bengisu; Romeo, Stefania

    2015-01-01

    death and could be a novel cancer treatment. This study aims at understanding the relationship between applied electric field, calcium concentration, ATP depletion and efficacy. METHODS: In three human cell lines--H69 (small-cell lung cancer), SW780 (bladder cancer), and U937 (leukaemia), viability...... was observed with fluorescence confocal microscopy of quinacrine-labelled U937 cells. RESULTS: Both H69 and SW780 cells showed dose-dependent (calcium concentration and electric field) decrease in intracellular ATP (p...-dependently reduced cell survival and intracellular ATP. Increasing extracellular calcium allows the use of a lower electric field. GENERAL SIGNIFICANCE: This study supports the use of calcium electroporation for treatment of cancer and possibly lowering the applied electric field in future trials....

  18. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study.

    Directory of Open Access Journals (Sweden)

    Nikolay Kutuzov

    Full Text Available In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.

  19. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study.

    Science.gov (United States)

    Kutuzov, Nikolay; Gulin, Alexander; Lyaskovskiy, Vladimir; Nadtochenko, Victor; Maksimov, Georgy

    2015-01-01

    In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.

  20. ATP7B detoxifies silver in ciliated airway epithelial cells

    International Nuclear Information System (INIS)

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-01-01

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B -/- mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag + /Cu + transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  1. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P temperature and low ATP economy...

  2. Contributions of ADP and ATP to the increase in skeletal muscle blood flow after manual acupuncture stimulation in rats.

    Science.gov (United States)

    Nagaoka, S; Shinbara, H; Okubo, M; Kawakita, T; Hino, K; Sumiya, E

    2016-06-01

    To investigate the contributions of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) to the increase in skeletal muscle blood flow (MBF) observed following manual acupuncture (MA) stimulation in rats. Male Sprague-Dawley rats were used as experimental animals (300-370 g, n=40). MA was applied to the right tibialis anterior muscle (TA) for 1 min using a stainless steel acupuncture needle. In eight rats, high-performance liquid chromatography with the microdialysis technique was used to measure local extracellular concentrations of ATP, ADP, adenosine monophosphate (AMP), and adenosine in the TA. In the remaining 32 rats, fluorescent microspheres (15 µm in diameter) were used to measure MBF in the TA following pre-treatment with either the P2 receptor antagonist suramin (100 mg/kg intra-arterially) or saline (control) (n=16 each). Rats receiving MA (Suramin+MA and Saline+MA groups, n=8 each) were compared with untreated rats (Suramin and Saline groups, n=8). MA significantly increased the local extracellular concentration of ATP, ADP, and adenosine (pvs 30 min after MA). In addition, MA significantly increased MBF in rats pre-treated with saline or suramin (pvs Saline+MA; pvs Suramin+MA, respectively). However, suramin significantly suppressed this MA-induced increase in MBF (pvs Suramin+MA). These results suggest that both ATP and ADP partially contribute to the MA-induced increase in MBF via P2 receptors. However, further studies are needed to clarify the contributions of other vasodilators. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. ATP requirements for benzoic acid tolerance in Zygosaccharomyces bailii.

    Science.gov (United States)

    Leyva, J S; Peinado, J M

    2005-01-01

    To calculate the energetic requirements for benzoic acid tolerance in Zygosaccharomyces bailii in chemostat experiments. A 5.6-l stirred-tank chemostat was used. The yield of ATP (Y(ATP)) was calculated under nitrogen atmosphere, assuming equimolar ATP and ethanol production. Under these conditions Y(ATP), equal to 20 g mol(-1) of ATP, was not affected by the acid, whereas the maintenance coefficient (m(ATP)) increased from 1.0 mmol of ATP g(-1) h(-1) in the absence of the acid to 4.8 in the presence of 0.67 mmol l(-1) undissociated benzoic acid. These ATP requirements were similar to those found in Saccharomyces cerevisiae with other weak acids. No significant differences have been found in the energy expended to cope with the acid between sensitive and tolerant species. Therefore, the main difference between tolerant and sensitive species could rely on cellular features that would not need extra energy in terms of ATP. The potential mechanisms involved in the tolerance to weak acids in yeasts have been extensively studied but their actual relevance has not been assessed. Our results suggest that future efforts should concentrate on nonexpending energy features as membrane permeability and metabolic tolerance in the cytoplasm.

  4. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  5. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  6. Cellular mechanisms of fever and pasteurization: ATP depletion and RNA degradation in mouse L-cells at supra-optimal temperatures.

    Science.gov (United States)

    Lau, L C

    1978-01-01

    Supra-optimal temperatures have been found to reduce ATP concentrations within cells. This reduction depresses energy-dependent processes such as RNA synthesis, the rate of which may fall below that of its simultaneous breakdown resulting in excessive auto-digestion or cell death.

  7. [Stable isotopes of Mg2+ as activators of the suppressed ATP-generating function of mitochondria].

    Science.gov (United States)

    Kuznetsov, D A; Arkhantel'skiĭ, S E; Berdieva, A G; Markarian, A A; Khasigov, P Z; Gatagonova, T M; Ktsova, S A; Orlova, M A

    2005-01-01

    The ATP-generating activity of rat myocardial mitochondria and intramitochondrial creatine kinase was examined as a function of the isotopy of the incubation medium magnesium pool. The study was performed using in vitro systems prepared from the hearts of animals injected with 1-methylnicotine amide, which suppresses the NAD (NADP)-dependent reactions in vivo. It was shown that the presence of the 25Mg paramagnetic cations essential by compensates for the intramitochondrial ATP deficiency caused by the 1-methyl-nicotine amide-induced blockade of oxidative phosphorylation. This effect is hardey achievable in systems where the magnesium pool consists of isotopes with a zero nuclear spin (24Mg, 26Mg). The restoration of mitochondrial ATP synthesis involves the participation of creatine kinase since the activity of the latter does not depend on 1-methyl-nicotine amide. In this case, the high efficiency of this restaration seems to be a spin-selective phenomenon which requires predominantly 25Mg2+ cations. A possible meaning of the data for further studies on the mechanisms of enzymatic catalysis regulation is discussed.

  8. Neural effects in copper defiient Menkes disease: ATP7A-a distinctive marker

    Directory of Open Access Journals (Sweden)

    S K Kanthlal

    2016-08-01

    Full Text Available Menkes disease, also termed as “Menkes’s syndrome”, is a disastrous infantile neurodegenerative disorder originated by diverse mutations in cupric cation-transport gene called ATP7A. This gene encodes a protein termed as copper transporting P-type ATPase, essential for copper ion transport from intestine to the other parts of our body along with other transporters like copper transporter receptor 1 and divalent metal transporter 1. The copper transportation is vital in the neuronal development and synthesis of various enzymes. It is found to be an appreciated trace element for normal biological functioning but toxic in excess. It is essential for the metallation of cuproenzymes which is responsible for the biosynthesis of neurotransmitters and other vital physiological mechanisms. Copper is also actively involved in the transmission pathway of N-methyl-D-aspartate receptors and its subsequent molecular changes in neural cells. The expression of ATP7A gene in regions of brain depicts the importance of copper in neural development and stabilization. Studies revealed that the mutation of ATP7A gene leads the pathophysiology of various neurodegenerative disorders. This review focused on the normal physiological function of the gene with respect to their harmful outcome of the mutated gene and its associated deficiency which detriments the neural mechanism in Menkes patients.

  9. Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin.

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Wu

    Full Text Available ATP synthase is present on the plasma membrane of several types of cancer cells. Citreoviridin, an ATP synthase inhibitor, selectively suppresses the proliferation and growth of lung cancer without affecting normal cells. However, the global effects of targeting ectopic ATP synthase in vivo have not been well defined. In this study, we performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ and provided a comprehensive insight into the complicated regulation by citreoviridin in a lung cancer xenograft model. With high reproducibility of the quantitation, we obtained quantitative proteomic profiling with 2,659 proteins identified. Bioinformatics analysis of the 141 differentially expressed proteins selected by their relative abundance revealed that citreoviridin induces alterations in the expression of glucose metabolism-related enzymes in lung cancer. The up-regulation of enzymes involved in gluconeogenesis and storage of glucose indicated that citreoviridin may reduce the glycolytic intermediates for macromolecule synthesis and inhibit cell proliferation. Using comprehensive proteomics, the results identify metabolic aspects that help explain the antitumorigenic effect of citreoviridin in lung cancer, which may lead to a better understanding of the links between metabolism and tumorigenesis in cancer therapy.

  10. Extracellular Vesicles in Renal Pathophysiology.

    Science.gov (United States)

    Pomatto, Margherita A C; Gai, Chiara; Bussolati, Benedetta; Camussi, Giovanni

    2017-01-01

    Extracellular vesicles are a heterogeneous population of microparticles released by virtually all living cells which have been recently widely investigated in different biological fields. They are typically composed of two primary types (exosomes and microvesicles) and are recently commanding increasing attention as mediators of cellular signaling. Indeed, these vesicles can affect recipient cells by carrying and delivering complex cargos of biomolecules (including proteins, lipids and nucleic acids), protected from enzymatic degradation in the environment. Their importance has been demonstrated in the pathophysiology of several organs, in particular in kidney, where different cell types secrete extracellular vesicles that mediate their communication with downstream urinary tract cells. Over the past few years, evidence has been shown that vesicles participate in kidney development and normal physiology. Moreover, EVs are widely demonstrated to be implicated in cellular signaling during renal regenerative and pathological processes. Although many EV mechanisms are still poorly understood, in particular in kidney, the discovery of their role could help to shed light on renal biological processes which are so far elusive. Lastly, extracellular vesicles secreted by renal cells gather in urine, thus becoming a great resource for disease or recovery markers and a promising non-invasive diagnostic instrument for renal disease. In the present review, we discuss the most recent findings on the role of extracellular vesicles in renal physiopathology and their potential implication in diagnosis and therapy.

  11. Structural models of the human copper P-type ATPases ATP7A and ATP7B

    DEFF Research Database (Denmark)

    Gourdon, Pontus Emanuel; Sitsel, Oleg; Karlsen, Jesper Lykkegaard

    2012-01-01

    The human copper exporters ATP7A and ATP7B contain domains common to all P-type ATPases as well as class-specific features such as six sequential heavy-metal binding domains (HMBD1-HMBD6) and a type-specific constellation of transmembrane helices. Despite the medical significance of ATP7A and ATP7B......, allowing protein-specific properties to be addressed. Furthermore, the mapping of known disease-causing missense mutations indicates that among the heavy-metal binding domains, HMBD5 and HMBD6 are the most crucial for function, thus mimicking the single or dual HMBDs found in most copper-specific P...

  12. Respiratory infections cause the release of extracellular vesicles: implications in exacerbation of asthma/COPD.

    Directory of Open Access Journals (Sweden)

    Suffwan Eltom

    Full Text Available Infection-related exacerbations of respiratory diseases are a major health concern; thus understanding the mechanisms driving them is of paramount importance. Despite distinct inflammatory profiles and pathological differences, asthma and COPD share a common clinical facet: raised airway ATP levels. Furthermore, evidence is growing to suggest that infective agents can cause the release of extracellular vesicle (EVs in vitro and in bodily fluids. ATP can evoke the P2X7/caspase 1 dependent release of IL-1β/IL-18 from EVs; these cytokines are associated with neutrophilia and are increased during exacerbations. Thus we hypothesized that respiratory infections causes the release of EVs in the airway and that the raised ATP levels, present in respiratory disease, triggers the release of IL-1β/IL-18, neutrophilia and subsequent disease exacerbations.To begin to test this hypothesis we utilised human cell-based assays, ex vivo murine BALF, in vivo pre-clinical models and human samples to test this hypothesis.Data showed that in a murine model of COPD, known to have increased airway ATP levels, infective challenge causes exacerbated inflammation. Using cell-based systems, murine models and samples collected from challenged healthy subjects, we showed that infection can trigger the release of EVs. When exposed to ATP the EVs release IL-1β/IL-18 via a P2X7/caspase-dependent mechanism. Furthermore ATP challenge can cause a P2X7 dependent increase in LPS-driven neutrophilia.This preliminary data suggests a possible mechanism for how infections could exacerbate respiratory diseases and may highlight a possible signalling pathway for drug discovery efforts in this area.

  13. Multiple Roles of the Extracellular Vestibule Amino Acid Residues in the Function of the Rat P2X4 Receptor

    Czech Academy of Sciences Publication Activity Database

    Rokic, Milos Boro; Stojilkovic, S. S.; Vávra, Vojtěch; Kuzyk, Pavlo; Tvrdoňová, Vendula; Zemková, Hana

    2013-01-01

    Roč. 8, č. 3 (2013), e59411 E-ISSN 1932-6203 R&D Projects: GA AV ČR(CZ) IAA500110910; GA ČR(CZ) GBP304/12/G069 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : ATP * purinergic P2X receptor channels * transmembrane domain * extracellular vestibule * gating * ivermectin Subject RIV: ED - Physiology Impact factor: 3.534, year: 2013

  14. A new type of Na(+-driven ATP synthase membrane rotor with a two-carboxylate ion-coupling motif.

    Directory of Open Access Journals (Sweden)

    Sarah Schulz

    Full Text Available The anaerobic bacterium Fusobacterium nucleatum uses glutamate decarboxylation to generate a transmembrane gradient of Na⁺. Here, we demonstrate that this ion-motive force is directly coupled to ATP synthesis, via an F₁F₀-ATP synthase with a novel Na⁺ recognition motif, shared by other human pathogens. Molecular modeling and free-energy simulations of the rotary element of the enzyme, the c-ring, indicate Na⁺ specificity in physiological settings. Consistently, activity measurements showed Na⁺ stimulation of the enzyme, either membrane-embedded or isolated, and ATP synthesis was sensitive to the Na⁺ ionophore monensin. Furthermore, Na⁺ has a protective effect against inhibitors targeting the ion-binding sites, both in the complete ATP synthase and the isolated c-ring. Definitive evidence of Na⁺ coupling is provided by two identical crystal structures of the c₁₁ ring, solved by X-ray crystallography at 2.2 and 2.6 Å resolution, at pH 5.3 and 8.7, respectively. Na⁺ ions occupy all binding sites, each coordinated by four amino acids and a water molecule. Intriguingly, two carboxylates instead of one mediate ion binding. Simulations and experiments demonstrate that this motif implies that a proton is concurrently bound to all sites, although Na⁺ alone drives the rotary mechanism. The structure thus reveals a new mode of ion coupling in ATP synthases and provides a basis for drug-design efforts against this opportunistic pathogen.

  15. Renal epithelial cells can release ATP by vesicular fusion

    Directory of Open Access Journals (Sweden)

    Randi G Bjaelde

    2013-09-01

    Full Text Available Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30, which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1 cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin reduced both the spontaneous and hypotonically (80%-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1 and vesicular transport (nocodazole. These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ∼90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50% or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8% and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells.

  16. K ATP channels in pig and human intracranial arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Sørensen, Mette Aaskov; Strøbech, Lotte

    2008-01-01

    Clinical trials suggest that synthetic ATP-sensitive K(+) (K(ATP)) channel openers may cause headache and migraine by dilating cerebral and meningeal arteries. We studied the mRNA expression profile of K(ATP) channel subunits in the pig and human middle meningeal artery (MMA) and in the pig middle...... pig MMA and MCA. Using conventional RT-PCR, we detected the mRNA transcripts of the K(ATP) channel subunits Kir6.1 and SUR2B in all the examined pig and human intracranial arteries. Application of K(ATP) channel openers to isolated pig MMA and MCA in myographs caused a concentration...... and pharmacological studies indicate that Kir6.1/SUR2B is the major functional K(ATP) channel complex in the pig MMA and MCA, and mRNA expression studies suggest that the human MMA shares this K(ATP) channel subunit profile. Specific blocking of Kir6.1 or SUR2B K(ATP) channel subunits in large cerebral and meningeal...

  17. Exon duplications in the ATP7A gene

    DEFF Research Database (Denmark)

    Mogensen, Mie; Skjørringe, Tina; Kodama, Hiroko

    2011-01-01

    BACKGROUND: Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene. ME...

  18. Glomerular extracellular matrix components and integrins

    NARCIS (Netherlands)

    Sterk, L. M.; de Melker, A. A.; Kramer, D.; Kuikman, I.; Chand, A.; Claessen, N.; Weening, J. J.; Sonnenberg, A.

    1998-01-01

    It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular

  19. Phylogenetic analysis of the thylakoid ATP/ADP carrier reveals new insights into its function restricted to green plants

    Directory of Open Access Journals (Sweden)

    Cornelia eSpetea

    2012-01-01

    Full Text Available ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membranes transporters. One major type of ATP transporter is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC. Thus far, no orthologues of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogenously distributed in a thylakoid membrane system composed of appressed and non-appressed regions.

  20. Keragaman Genetik Sekuen Gen ATP Synthase FO Subunit 6 (ATP6 Monyet Hantu (Tarsius Indonesia (GENETIC DIVERSITY STUDY OF ATP6 GENE SEQUENCES OF TARSIERS FROM INDONESIA

    Directory of Open Access Journals (Sweden)

    Rini Widayanti

    2013-07-01

    Full Text Available In a conservation effort, the identification of Tarsier species, on the bases of the morphological andmolecular characteristic is necessary. Up to now, the identification of the animals were based on themorphology and vocalizations, which is extremely difficult to identify each, tarsier species. The objective ofthis research was to study the genetic diversity on ATP6 gene of Tarsius sp. Based on sequencing of PCRproduct using primer ATP6F and ATP6R with 681 nts. PCR product. The sequence of ATP6 fragmentswere aligned with other primates from Gene bank with aid of software Clustal W, and were analyzed usingMEGA program version 4.0. Three different nucleotide sites were found (nucleotide no. 288, 321 and 367.The genetic distance based on nucleotide ATP6 sequence calculated using Kimura 2-parameter modelindicated that the smallest genetic distance 0%, biggest 0.8% and average 0, 2%. The phylogenetic treeusing neighbor joining method based on the sequence of nucleotide ATP6 gene could not be used todifferentiate among T. Dianae (from Central Sulawesi, T. Spectrum (from North Sulawesi, T. bancanus(from lampung, South Sumatera and T.bancanus from West Kalimantan.

  1. Extracellular vesicles in cardiovascular homeostasis and disease.

    Science.gov (United States)

    Hutcheson, Joshua D; Aikawa, Elena

    2018-05-01

    Extracellular vesicles have emerged as one of the most important means through which cells interact with each other and the extracellular environment, but extracellular vesicle research remains challenging due to their small size, limited amount of material required for traditional molecular biology assays and inconsistency in the methods of their isolation. The advent of new technologies and standards in the field, however, have led to increased mechanistic insight into extracellular vesicle function. Herein, the latest studies on the role of extracellular vesicles in cardiovascular physiology and disease are discussed. Extracellular vesicles help control cardiovascular homeostasis and remodelling by mediating communication between cells and directing alterations in the extracellular matrix to respond to changes in the environment. The message carried from the parent cell to extracellular space can be intended for both local (within the same tissue) and distal (downstream of blood flow) targets. Pathological cargo loaded within extracellular vesicles could further result in various diseases. On the contrary, new studies indicate that injection of extracellular vesicles obtained from cultured cells into diseased tissues can promote restoration of normal tissue function. Extracellular vesicles are an integral part of cell and tissue function, and harnessing the properties inherent to extracellular vesicles may provide a therapeutic strategy to promote tissue regeneration.

  2. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp.

    Directory of Open Access Journals (Sweden)

    Rasesh Y Parikh

    Full Text Available This study was performed to determine whether extracellular silver nanoparticles (AgNPs production is a genus-wide phenotype associated with all the members of genus Morganella, or only Morganella morganii RP-42 isolate is able to synthesize extracellular Ag nanoparticles. To undertake this study, all the available Morganella isolates were exposed to Ag+ ions, and the obtained nanoproducts were thoroughly analyzed using physico-chemical characterization tools such as transmission electron microscopy (TEM, UV-visible spectrophotometry (UV-vis, and X-ray diffraction (XRD analysis. It was identified that extracellular biosynthesis of crystalline silver nanoparticles is a unique biochemical character of all the members of genus Morganella, which was found independent of environmental changes. Significantly, the inability of other closely related members of the family Enterobacteriaceae towards AgNPs synthesis strongly suggests that AgNPs synthesis in the presence of Ag+ ions is a phenotypic character that is uniquely associated with genus Morganella.

  3. Extracellular metalloproteinases in Phytomonas serpens.

    Science.gov (United States)

    Vermelho, Alane B; Almeida, Flávia V S; Bronzato, Leandro S; Branquinha, Marta H

    2003-03-01

    The detection of extracellular proteinases in Phytomonas serpens, a trypanosomatid isolated from tomato fruits, is demonstrated in this paper. Maximal production occurred at the end of the logarithmic phase of growth. These enzymes exhibited selective substrate utilization in SDS-PAGE, being more active with gelatin; hemoglobin and bovine serum albumin were not degraded. Three proteinases were detected in SDS-PAGE-gelatin, with apparent molecular masses between 94 and 70 kDa. The proteolytic activity was completely blocked by 1,10-phenanthroline and strongly inhibited by EDTA, whereas a partial inhibition was observed with trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) and soybean trypsin inhibitor; phenylmethylsulfonyl fluoride weakly inhibited the enzymes. This inhibition profile indicated that these extracellular proteinases belong to the metalloproteinase class.

  4. Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Thaning, Pia; Nyberg, Michael Permin

    2011-01-01

    Intraluminal ATP could play an important role in the local regulation of skeletal muscle blood flow, but the stimuli that cause ATP release and the levels of plasma ATP in vessels supplying and draining human skeletal muscle remain unclear. To gain insight into the mechanisms by which ATP...

  5. Immunotherapeutic Potential of Extracellular Vesicles

    OpenAIRE

    Zhang, Bin; Yin, Yijun; Lai, Ruenn Chai; Lim, Sai Kiang

    2014-01-01

    Extracellular vesicle or EV is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes, the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized...

  6. Extracellular secretion of recombinant proteins

    Science.gov (United States)

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  7. Extracellular Vesicles in Lung Disease.

    Science.gov (United States)

    Kubo, Hiroshi

    2018-01-01

    Accumulating evidence suggests that extracellular vesicles (EVs) play a role in the pathogenesis of lung diseases. These vesicles include exosomes, ectosomes (ie, microparticles, extracellular vesicles, microvesicles, and shedding vesicles), and apoptotic bodies. Exosomes are generated by inward budding of the membrane (endocytosis), subsequent forming of multivesicular bodies, and release by exocytosis. Ectosomes are formed by outward blebbing from the plasma membrane and are then released by proteolytic cleavage from the cell surface. Apoptotic bodies are generated on apoptotic cell shrinkage and death. Extracellular vesicles are released when the cells are activated or undergo apoptosis under inflammatory conditions. The number and types of released EVs are different according to the pathophysiological status of the disease. Therefore, EVs can be novel biomarkers for various lung diseases. EVs contain several molecules, including proteins, mRNA, microRNA, and DNA; they transfer these molecules to distant recipient cells. Circulating EVs modify the targeted cells and influence the microenvironment of the lungs. For this unique capability, EVs are expected to be a new drug delivery system and a novel therapeutic target. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  8. Extracellular Vesicles and Autophagy in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Tianyang Gao

    2016-01-01

    Full Text Available Osteoarthritis (OA is a type of chronic joint disease that is characterized by the degeneration and loss of articular cartilage and hyperplasia of the synovium and subchondral bone. There is reasonable knowledge about articular cartilage physiology, biochemistry, and chondrocyte metabolism. However, the etiology and pathogenesis of OA remain unclear and need urgent clarification to guide the early diagnosis and treatment of OA. Extracellular vesicles (EVs are small membrane-linking particles that are released from cells. In recent decades, several special biological properties have been found in EV, especially in terms of cartilage. Autophagy plays a critical role in the regulation of cellular homeostasis. Likewise, more and more research has gradually focused on the effect of autophagy on chondrocyte proliferation and function in OA. The synthesis and release of EV are closely associated with autophagy. At the same time, both EV and autophagy play a role in OA development. Based on the mechanism of EV and autophagy in OA development, EV may be beneficial in the early diagnosis of OA; on the other hand, the combination of EV and autophagy-related regulatory drugs may provide insight into possible OA therapeutic strategies.

  9. EXTRACELLULAR POLYSACCHARIDES OF POTATO RING ROT PATHOGEN

    Directory of Open Access Journals (Sweden)

    Shafikova Т.N.

    2006-03-01

    Full Text Available Many bacteria, including phytopathogenic ones produce extracellular polysaccharides or exopolysaccharides which are universal molecules. Causal agent of potato ring rot, Clavibacter michiganensis subspecies sepedonicus, secretes exopolysaccharides which role in pathogenesis is poorly investigated. The aim of our research is to ascertain the composition and structure of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides. Exopolysaccharides of Clavibacter michiganensis subspecies sepedonicus are determined to consist of 4-6 anionic and neutral components which have molecular weights from 700 kDa. Glucose is a major monomer of polysaccharides and arabinose, rhamnose and mannose are minor monomers. Glucose is present in α-Dglucopyranose and β-D-glucopyranose configurations. Calcium is determined to be a component of exopolysaccharides. Components of exopolysaccharides of potato ring rot pathogen are probably capableto associate via calcium ions and other ionic interactions that may result in a change of their physiological activity. Further studies of Clavibacter michiganensis subspecies sepedonicus exopolysaccharides composition and structure can serve a base for the synthesis of their chemical analogues with elicitor action.

  10. Three-color Förster resonance energy transfer within single F₀F₁-ATP synthases: monitoring elastic deformations of the rotary double motor in real time.

    Science.gov (United States)

    Ernst, Stefan; Düser, Monika G; Zarrabi, Nawid; Börsch, Michael

    2012-01-01

    Catalytic activities of enzymes are associated with elastic conformational changes of the protein backbone. Förster-type resonance energy transfer, commonly referred to as FRET, is required in order to observe the dynamics of relative movements within the protein. Förster-type resonance energy transfer between two specifically attached fluorophores provides a ruler with subnanometer resolution between 3 and 8 nm, submillisecond time resolution for time trajectories of conformational changes, and single-molecule sensitivity to overcome the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary molecular machine which catalyzes the formation of adenosine triphosphate (ATP). The Escherichia coli enzyme comprises a proton driven 10 stepped rotary F(O) motor connected to a 3-stepped F(1) motor, where ATP is synthesized. This mismatch of step sizes will result in elastic deformations within the rotor parts. We present a new single-molecule FRET approach to observe both rotary motors simultaneously in a single F(O)F(1)-ATP synthase at work. We labeled this enzyme with three fluorophores, specifically at the stator part and at the two rotors. Duty cycle-optimized with alternating laser excitation, referred to as DCO-ALEX, allowed to control enzyme activity and to unravel associated transient twisting within the rotors of a single enzyme during ATP hydrolysis and ATP synthesis. Monte Carlo simulations revealed that the rotor twisting is larger than 36 deg.

  11. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Monica [Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany); Schmetzer, Helga [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Braeu, Marion; Buhmann, Raymund [Helmholtz Center Munich (Germany); German Research Center for Environmental Health, Munich (Germany); Department of Medicine III and Transfusion Medicine, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich (Germany)

    2016-11-15

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3{sup +}T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  12. Inhibitory effect of extracellular purine nucleotide and nucleoside concentrations on T cell proliferation

    International Nuclear Information System (INIS)

    Weiler, Monica; Schmetzer, Helga; Braeu, Marion; Buhmann, Raymund

    2016-01-01

    The release of nucleic acids and derivatives after tissue-injury may affect cellular immune-response. We studied the impact of extracellular ribo-, desoxyribonucleotides and nucleosides on T-cell immunity. Peripheral-blood-mononuclear-cells (PBMCs) or isolated CD3 + T-cells obtained from 6 healthy donors were stimulated via CD3/CD28 Dynabeads or dendritic cells (DCs) in the presence or absence of pyrimidine-, purine-nucleotides and -nucleosides (range 2–200 µM). Addition of deoxy-, guanosine-triphosphate (dGTP, GTP) and guanosine resulted concentration dependent in a complete, adenosine-triphosphate (ATP) in a partial inhibition of the induced T-cell-proliferation. Deoxyadenosine-triphosphate (dATP), adenosine and the pyrimidine-ribo- and -deoxyribonucleotides displayed no inhibitory capacity. Inhibitory effects of dGTP and GTP, but not of guanosine and ATP were culture-media-dependent and could be almost abrogated by use of the serum-free lymphocyte-culture-media X-Vivo15 instead of RPMI1640 with standard-supplementation. In contrast to RPMI1640, X-Vivo15 resulted in a significant down-regulation of the cell-surface-located ectonucleotidases CD39 (Ecto-Apyrase) and CD73 (Ecto-5′-Nucleotidase), critical for the extracellular nucleotides-hydrolysis to nucleosides, explaining the loss of inhibition mediated by dGTP and GTP, but not Guanosine. In line with previous findings ATP was found to exert immunosuppressive effects on T-cell-proliferation. Purine-nucleotides, dGTP and GTP displayed a higher inhibitory capacity, but seem to be strictly dependent on the microenvironmental conditions modulating the responsiveness of the respective T-lymphocytes. Further evaluation of experimental and respective clinical settings should anticipate these findings.

  13. ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Y.C.; Liu, C.

    2010-12-28

    Lignin is a complex biopolymer derived primarily from the condensation of three monomeric precursors, the monolignols. The synthesis of monolignols occurs in the cytoplasm. To reach the cell wall where they are oxidized and polymerized, they must be transported across the cell membrane. However, the molecular mechanisms underlying the transport process are unclear. There are conflicting views about whether the transport of these precursors occurs by passive diffusion or is an energized active process; further, we know little about what chemical forms are required. Using isolated plasma and vacuolar membrane vesicles prepared from Arabidopsis, together with applying different transporter inhibitors in the assays, we examined the uptake of monolignols and their derivatives by these native membrane vesicles. We demonstrate that the transport of lignin precursors across plasmalemma and their sequestration into vacuoles are ATP-dependent primary-transport processes, involving ATP-binding cassette-like transporters. Moreover, we show that both plasma and vacuolar membrane vesicles selectively transport different forms of lignin precursors. In the presence of ATP, the inverted plasma membrane vesicles preferentially take up monolignol aglycones, whereas the vacuolar vesicles are more specific for glucoconjugates, suggesting that the different ATP-binding cassette-like transporters recognize different chemical forms in conveying them to distinct sites, and that glucosylation of monolignols is necessary for their vacuolar storage but not required for direct transport into the cell wall in Arabidopsis.

  14. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available The mitochondrial phosphate transporter (MPT plays crucial roles in ATP production in plant cells. Three MPT genes have been identified in Arabidopsis thaliana. Here we report that the mRNA accumulations of AtMPTs were up-regulated by high salinity stress in A. thaliana seedlings. And the transgenic lines overexpressing AtMPTs displayed increased sensitivity to salt stress compared with the wild-type plants during seed germination and seedling establishment stages. ATP content and energy charge was higher in overexpressing plants than those in wild-type A. thaliana under salt stress. Accordingly, the salt-sensitive phenotype of overexpressing plants was recovered after the exogenous application of atractyloside due to the change of ATP content. Interestingly, Genevestigator survey and qRT-PCR analysis indicated a large number of genes, including those related to gibberellin synthesis could be regulated by the energy availability change under stress conditions in A. thaliana. Moreover, the exogenous application of uniconazole to overexpressing lines showed that gibberellin homeostasis was disturbed in the overexpressors. Our studies reveal a possible link between the ATP content mediated by AtMPTs and gibberellin metabolism in responses to high salinity stress in A. thaliana.

  15. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    Directory of Open Access Journals (Sweden)

    Anke Schloesser

    2015-01-01

    Full Text Available Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3, may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM. Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice.

  16. Nitrosative stress by peroxynitrite impairs ATP production in human spermatozoa.

    Science.gov (United States)

    Uribe, P; Treulen, F; Boguen, R; Sánchez, R; Villegas, J V

    2017-04-01

    The most toxic species in live systems include reactive nitrogen species such as peroxynitrite, which at high levels induces nitrosative stress. In human spermatozoa, the negative effect of peroxynitrite on motility and mitochondrial membrane potential was recently demonstrated, and the hypothesis of this work is that impairment of ATP production could be one cause of the effect on motility. Therefore, the aim here was to evaluate ATP production by both glycolysis and oxidative phosphorylation (OXPHOS) in spermatozoa exposed to peroxynitrite in vitro. Human spermatozoa were incubated with SIN-1, a molecule which generates peroxynitrite, and the ATP level was evaluated. Then, to inactivate glycolysis or OXPHOS, spermatozoa were incubated with pharmacological inhibitors of these pathways. Spermatozoa treated for inactivating one or the other pathway were exposed to SIN-1, and the ATP level was compared to the control without SIN-1 in each condition. The ATP level fell after peroxynitrite exposure. The ATP in spermatozoa treated for inactivating one or the other metabolic pathway and subsequently exposed to peroxynitrite was reduced compared with the control. These results show for the first time that an important mechanism by which peroxynitrite reduces sperm function is the inhibition of ATP production, affecting both glycolysis and OXPHOS. © 2016 Blackwell Verlag GmbH.

  17. Extracellular vesicles in cartilage homeostasis and osteoarthritis.

    Science.gov (United States)

    Miyaki, Shigeru; Lotz, Martin K

    2018-01-01

    Extracellular vesicles carry bioactive molecules that can be transferred between cells and tissues. The purpose of this review is to describe how extracellular vesicles regulate functions of cells in cartilage and other joint tissues. The potential application of extracellular vesicles in the treatment of osteoarthritis and as biomarkers will also be discussed. Extracellular vesicles are found in synovial fluid, in articular cartilage and in the supernatants of synoviocytes and chondrocytes. Extracellular vesicles in cartilage have been proposed to be involved in cross talk between cells in joint tissues and to affect extracellular matrix turnover and inflammation. Extracellular vesicles from arthritic joints can promote abnormal gene expression and changes in cartilage extracellular matrix, including abnormal mineralization. Promising results were obtained in the therapeutic application of mesenchymal stem cell-derived extracellular vesicles for cartilage repair and experimental osteoarthritis. Extracellular vesicles have emerged as vehicles for the exchange of bioactive signaling molecules within cartilage and between joint tissues to promote joint homeostasis and arthritis pathogenesis. As the molecular content of extracellular vesicles can be customized, they offer utility in therapeutic applications.

  18. Extracellular matrix adaptation of tendon and skeletal muscle to exercise

    DEFF Research Database (Denmark)

    Kjaer, Michael; Magnusson, Peter; Krogsgaard, Michael

    2006-01-01

    The extracellular matrix (ECM) of connective tissues enables linking to other tissues, and plays a key role in force transmission and tissue structure maintenance in tendons, ligaments, bone and muscle. ECM turnover is influenced by physical activity, and both collagen synthesis and metalloprotease......-beta and IL-6 is enhanced following exercise. For tendons, metabolic activity (e.g. detected by positron emission tomography scanning), circulatory responses (e.g. as measured by near-infrared spectroscopy and dye dilution) and collagen turnover are markedly increased after exercise. Tendon blood flow...... is regulated by cyclooxygenase-2 (COX-2)-mediated pathways, and glucose uptake is regulated by specific pathways in tendons that differ from those in skeletal muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as to some degree of net collagen synthesis...

  19. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    International Nuclear Information System (INIS)

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-01-01

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag + to Ag 0 ). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged

  20. Isolation of High-Purity Extracellular Vesicles by Extracting Proteins Using Aqueous Two-Phase System.

    Directory of Open Access Journals (Sweden)

    Jongmin Kim

    Full Text Available We present a simple and rapid method to isolate extracellular vesicles (EVs by using a polyethylene glycol/dextran aqueous two-phase system (ATPS. This system isolated more than ~75% of melanoma-derived EVs from a mixture of EVs and serum proteins. To increase the purity of EVs, a batch procedure was combined as additional steps to remove protein contaminants, and removed more than ~95% of the protein contaminants. We also performed RT-PCR and western blotting to verify the diagnostic applicability of the isolated EVs, and detected mRNA derived from melanoma cells and CD81 in isolated EVs.

  1. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells.

    Science.gov (United States)

    Manning Fox, Jocelyn E; Karaman, Gunce; Wheeler, Michael B

    2006-11-17

    Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.

  2. Characterization of nucleoside triphosphate diphosphohydrolase activity in Trichomonas gallinae and the influence of penicillin and streptomycin in extracellular nucleotide hydrolysis.

    Science.gov (United States)

    Borges, Fernanda Pires; de Brum Vieira, Patrícia; Wiltuschnig, Renata C M; Tasca, Tiana; De Carli, Geraldo Attilio; Bonan, Carla Denise

    2008-06-01

    Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.

  3. Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Chun Huang

    2015-11-01

    Full Text Available Background/Aims: Adenosine diphosphate ribose (ADPR, a product of β-NAD+ metabolism generated by the multifunctional enzyme CD38, is recognized as a novel signaling molecule. The catalytic site of CD38 orients extracellularly or intracellularly, capable of generating ADPR outside and inside the cells. CD38-dependent pathways have been characterized in pulmonary artery smooth muscle cells (PASMCs; however the physiological function of extracellular ADPR is unclear. Methods: Ca2+ mobilizing and proliferative effects of extracellular ADPR were characterized and compared with the ATP-induced responses in rat PASMCs; and the expression of purinergic receptor (P2X and P2Y subtypes were examined in pulmonary arteries. Results: ADPR elicited concentration-dependent increase in [Ca2+]i with a fast transient and a sustained phase in PASMCs. The sustained phase was abolished by Ca2+ removal and inhibited by the non-selective cation channel blocker SKF-96365, but was unaffected by TRPM2 antagonists or nifedipine. The purinergic receptor (P2X antagonist pyridoxal-phosphate-6-azophenyl-2', 4'-disulfonate inhibited partially the transient and the sustained Ca2+ response, while the P2(XY inhibitor suramin and the phospholipase C inhibitor U73122 abolished the sustained Ca2+ influx. The P2Y1 antagonist MRS2179 had no effect on the response. By contrast, ATP and ADP activated Ca2+ response exhibited a high and a low affinity component, and the pharmacological profile of ATP-induced Ca2+ response was distinctive from that of ADPR. BrdU incorporation assay showed that ADPR caused significant inhibition whereas ATP caused slight stimulation of PASMC proliferation. RT-PCR analysis found that almost all P2X and P2Y subtypes are expressed in PAs. Conclusion: ADPR and ATP activate Ca2+ responses through different combinations of multiple purinergic receptor subtypes; and extracellular ADPR may exert an autocrine/paracrine action via purinergic receptors on PASMCs.

  4. Shock wave-induced ATP release from osteosarcoma U2OS cells promotes cellular uptake and cytotoxicity of methotrexate.

    Science.gov (United States)

    Qi, Baochang; Yu, Tiecheng; Wang, Chengxue; Wang, Tiejun; Yao, Jihang; Zhang, Xiaomeng; Deng, Pengfei; Xia, Yongning; Junger, Wolfgang G; Sun, Dahui

    2016-10-03

    Osteosarcoma is the most prevalent primary malignant bone tumor, but treatment is difficult and prognosis remains poor. Recently, large-dose chemotherapy has been shown to improve outcome but this approach can cause many side effects. Minimizing the dose of chemotherapeutic drugs and optimizing their curative effects is a current goal in the management of osteosarcoma patients. In our study, trypan blue dye exclusion assay was performed to investigate the optimal conditions for the sensitization of osteosarcoma U2OS cells. Cellular uptake of the fluorophores Lucifer Yellow CH dilithium salt and Calcein was measured by qualitative and quantitative methods. Human MTX ELISA Kit and MTT assay were used to assess the outcome for osteosarcoma U2OS cells in the present of shock wave and methotrexate. To explore the mechanism, P2X7 receptor in U2OS cells was detected by immunofluorescence and the extracellular ATP levels was detected by ATP assay kit. All data were analyzed using SPSS17.0 statistical software. Comparisons were made with t test between two groups. Treatment of human osteosarcoma U2OS cells with up to 450 shock wave pulses at 7 kV or up to 200 shock wave pulses at 14 kV had little effect on cell viability. However, this shock wave treatment significantly promoted the uptake of Calcein and Lucifer Yellow CH by osteosarcoma U2OS cells. Importantly, shock wave treatment also significantly enhanced the uptake of the chemotherapy drug methotrexate and increased the rate of methotrexate-induced apoptosis. We found that shock wave treatment increased the extracellular concentration of ATP and that KN62, an inhibitor of P2X7 receptor reduced the capacity methotrexate-induced apoptosis. Our results suggest that shock wave treatment promotes methotrexate-induced apoptosis by altering cell membrane permeability in a P2X7 receptor-dependent manner. Shock wave treatment may thus represent a possible adjuvant therapy for osteosarcoma.

  5. Intercellular Odontoblast Communication via ATP Mediated by Pannexin-1 Channel and Phospholipase C-coupled Receptor Activation.

    Science.gov (United States)

    Sato, Masaki; Furuya, Tadashi; Kimura, Maki; Kojima, Yuki; Tazaki, Masakazu; Sato, Toru; Shibukawa, Yoshiyuki

    2015-01-01

    Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected from rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s), we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca(2+) concentration ([Ca(2+)]i) by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca(2+)]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca(2+)]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca(2+)]i in a stimulated human embryo kidney (HEK) 293 cell, but not in nearby HEK293 cells. The increase in [Ca(2+)]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP) release channel (pannexin-1) inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC) inhibitor, the increase in [Ca(2+)]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated

  6. Intercellular odontoblast communication via ATP mediated by pannexin-1 channel and phospholipase C-coupled receptor activation.

    Directory of Open Access Journals (Sweden)

    Masaki eSato

    2015-11-01

    Full Text Available Extracellular ATP released via pannexin-1 channels, in response to the activation of mechanosensitive-TRP channels during odontoblast mechanical stimulation, mediates intercellular communication among odontoblasts in dental pulp slice preparation dissected form rat incisor. Recently, odontoblast cell lines, such as mouse odontoblast lineage cells, have been widely used to investigate physiological/pathological cellular functions. To clarify whether the odontoblast cell lines also communicate with each other by diffusible chemical substance(s, we investigated the chemical intercellular communication among cells from mouse odontoblast cell lines following mechanical stimulation. A single cell was stimulated using a glass pipette filled with standard extracellular solution. We measured intracellular free Ca2+ concentration ([Ca2+]i by fura-2 in stimulated cells, as well as in cells located nearby. Direct mechanical stimulation to a single odontoblast increased [Ca2+]i, which showed sensitivity to capsazepine. In addition, we observed increases in [Ca2+]i not only in the mechanically stimulated odontoblast, but also in nearby odontoblasts. We could observe mechanical stimulation-induced increase in [Ca2+]i in a stimulated human embryo kidney (HEK 293 cell, but not in nearby HEK293 cells. The increase in [Ca2+]i in nearby odontoblasts, but not in the stimulated odontoblast, was inhibited by adenosine triphosphate (ATP release channel (pannexin-1 inhibitor in a concentration- and spatial-dependent manner. Moreover, in the presence of phospholipase C (PLC inhibitor, the increase in [Ca2+]i in nearby odontoblasts, following mechanical stimulation of a single odontoblast, was abolished. We could record some inward currents evoked from odontoblasts near the stimulated odontoblast, but the currents were observed in only 4.8% of the recorded odontoblasts. The results of this study showed that ATP is released via pannexin-1, from a mechanically stimulated

  7. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms

    Directory of Open Access Journals (Sweden)

    Marlise eKlein

    2015-02-01

    Full Text Available Biofilms are highly structured microbial communities that are enmeshed in a self-produced extracellular matrix. Within the complex oral microbiome, Streptococcus mutans is a major producer of extracellular polymeric substances including exopolysaccharides (EPS, eDNA and lipoteichoic acid (LTA. EPS produced by S. mutans-derived exoenzymes promote local accumulation of microbes on the teeth, while forming a spatially heterogeneous and diffusion-limiting matrix that protects embedded bacteria. The EPS-rich matrix provides mechanical stability/cohesiveness and facilitates the creation of highly acidic microenvironments, which are critical for the pathogenesis of dental caries. In parallel, S. mutans also releases eDNA and LTA, which can contribute with matrix development. eDNA enhances EPS (glucan synthesis locally, increasing the adhesion of S. mutans to saliva-coated apatitic surfaces and the assembly of highly cohesive biofilms. eDNA and other extracellular substances, acting in concert with EPS, may impact the functional properties of the matrix and the virulence of cariogenic biofilms. Enhanced understanding about the assembly principles of the matrix may lead to efficacious approaches to control biofilm-related diseases.

  8. Direct ATP photolabeling of Escherichia coli recA proteins: identification of regions required for ATP binding

    International Nuclear Information System (INIS)

    Banks, G.R.; Sedgwick, S.G.

    1986-01-01

    When the Escherichia coli RecA protein is UV irradiated in the presence of [alpha- 32 P]ATP, a labeled protein--ATP adduct is formed. All the experimental evidence indicates that, in forming such an adduct, the ATP becomes specifically immobilized in the catalytically relevant ATP binding site. The adduct can also be identified after irradiation of E. coli cell lysates in a similar manner. This direct ATP photolabeling of RecA proteins has been used to identify regions of the polypeptide chain involved in the binding of ATP. The photolabeling of a RecA protein that lacks wild-type carboxy-terminal amino acids is not detectable. A RecA protein in which the amino-terminal sequence NH2-Ala-Ile-Asp-Glu-Asn- is replaced by NH2-Thr-Met-Ile-Thr-Asn-Ser-Ser-Ser- is only about 5% as efficiently photolabeled as the wild-type protein. Both of these RecA protein constructions, however, contain all the elements previously implicated, directly or indirectly, in the binding of ATP. ATP-photolabeled RecA protein has also been chemically cleaved at specific amino acids in order to identify regions of the polypeptide chain to which the nucleotide becomes covalently photolinked. The evidence is consistent with a region comprising amino acids 116-170. Thus, this work and that of others suggest that several disparate regions of the unfolded polypeptide chain may combine to form the ATP binding site upon protein folding or may influence binding through long-range effects

  9. Extracellular Vesicles in Hematological Disorders

    Directory of Open Access Journals (Sweden)

    Anat Aharon

    2014-10-01

    Full Text Available Extracellular vesicles (EVs, comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia, paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias.

  10. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.

    1993-01-01

    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  11. Oxygen isotopic exchange probes of ATP hydrolysis by RNA helicases.

    Science.gov (United States)

    Hackney, David D

    2012-01-01

    It is often possible to obtain a detailed understanding of the forward steps in ATP hydrolysis because they are thermodynamically favored and usually occur rapidly. However, it is difficult to obtain the reverse rates for ATP resynthesis because they are thermodynamically disfavored and little of their product, ATP, accumulates. Isotopic exchange reactions provide access to these reverse reactions because isotopic changes accumulate over time due to multiple reversals of hydrolysis, even in the absence of net resynthesis of significant amounts of ATP. Knowledge of both the forward and reverse rates allows calculation of the free energy changes at each step and how it changes when coupled to an energy-requiring conformational step such as unwinding of an RNA helix. This chapter describes the principal types of oxygen isotopic exchange reactions that are applicable to ATPases, in general, and helicases, in particular, their application and their interpretation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. ( Atp9) gene between cytoplasmic male sterile line and its ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    , the atp9 gene in soybeans was cloned from a soybean cytoplasmic male sterile line NJCMS2A and its maintainer line NJCMS2B. Sequence alignment was performed, and protein structures were analyzed and compared ...

  13. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    Science.gov (United States)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  14. Mitochondrial ATP synthasome: Expression and structural interaction of its components

    Czech Academy of Sciences Publication Activity Database

    Nůsková, Hana; Mráček, Tomáš; Mikulová, Tereza; Vrbacký, Marek; Kovářová, Nikola; Kovalčíková, Jana; Pecina, Petr; Houštěk, Josef

    2015-01-01

    Roč. 464, č. 3 (2015), s. 787-793 ISSN 0006-291X R&D Projects: GA ČR(CZ) GAP303/12/1363; GA MŠk(CZ) LL1204 Grant - others:GA UK(CZ) 1160214 Institutional support: RVO:67985823 Keywords : mitochondria * oxidative phosphorylation * supercomplexes * ATP synthasome * ATP synthase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.371, year: 2015

  15. A Therapeutic Connection between Dietary Phytochemicals and ATP Synthase.

    Science.gov (United States)

    Ahmad, Zulfiqar; Hassan, Sherif S; Azim, Sofiya

    2017-11-20

    For centuries, phytochemicals have been used to prevent and cure multiple health ailments. Phytochemicals have been reported to have antioxidant, antidiabetic, antitussive, antiparasitic, anticancer, and antimicrobial properties. Generally, the therapeutic use of phytochemicals is based on tradition or word of mouth with few evidence-based studies. Moreover, molecular level interactions or molecular targets for the majority of phytochemicals are unknown. In recent years, antibiotic resistance by microbes has become a major healthcare concern. As such, the use of phytochemicals with antimicrobial properties has become pertinent. Natural compounds from plants, vegetables, herbs, and spices with strong antimicrobial properties present an excellent opportunity for preventing and combating antibiotic resistant microbial infections. ATP synthase is the fundamental means of cellular energy. Inhibition of ATP synthase may deprive cells of required energy leading to cell death, and a variety of dietary phytochemicals are known to inhibit ATP synthase. Structural modifications of phytochemicals have been shown to increase the inhibitory potency and extent of inhibition. Sitedirected mutagenic analysis has elucidated the binding site(s) for some phytochemicals on ATP synthase. Amino acid variations in and around the phytochemical binding sites can result in selective binding and inhibition of microbial ATP synthase. In this review, the therapeutic connection between dietary phytochemicals and ATP synthase is summarized based on the inhibition of ATP synthase by dietary phytochemicals. Research suggests selective targeting of ATP synthase is a valuable alternative molecular level approach to combat antibiotic resistant microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases

    Directory of Open Access Journals (Sweden)

    F.T. Borges

    2013-10-01

    Full Text Available Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.

  17. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases.

    Science.gov (United States)

    Borges, F T; Reis, L A; Schor, N

    2013-10-01

    Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.

  18. Myocardial accumulation of BMIPP in relation to ATP concentration

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Y.; Yonekura, Y.; Tamaki, N.; Konishi, J. (Kyoto Univ. (Japan). Hospital); Yamamoto, K.; Som, P.; Knapp, F.F. Jr.; Yokoyama, A.

    1993-12-01

    Iodine-123 labeled 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) was developed for assessment of myocardial metabolic integrity of fatty acid. Previous animal studies have demonstrated diminished accumulation of BMIPP in various disease models including myocardial hypertrophy and cardiomyopathy. In order to examine the accumulation and retention mechanism of BMIPP, effects of beta-oxidation and ATP level on myocardial uptake were studied. Although myocardial BMIPP uptake was not immediately influenced by acute inhibition of beta-oxidation, it was correlated well with myocardial ATP concentration, suggesting that enzymatic reaction from BMIPP to BMIPP-CoA in cytosol which requires ATP may play a key role for myocardial retention of BMIPP. Direct comparison of BMIPP uptake and ATP content in hypertrophied myocardium of salt-sensitive Dahl strain rat, which shows severe reduction of BMIPP uptake, however, demonstrated negative correlation. These paradoxical results could be explained by the hypothesis of limited availability of cytosolic ATP in spite of sufficient amount of ATP in mitochondria. (author).

  19. Pravastatin-induced improvement in coronary reactivity and circulating ATP and ADP levels in young adults with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Tuomas Oskari Kiviniemi

    2012-08-01

    Full Text Available Aims: Extracellular ATP and ADP regulate diverse inflammatory, prothrombotic and vasoactive responses in the vasculature. Statins have been shown to modulate their signaling pathways in vitro. We hypothesized that altered intravascular nucleotide turnover modulates vasodilation in patients with type 1 diabetes (T1DM, and this can be partly restored with pravastatin therapy. Methods: In this randomized double blind study, plasma ATP and ADP levels and echocardiography-derived coronary flow velocity response to cold pressor test (CPT were concurrently assessed in 42 normocholesterolemic patients with T1DM (age 30±6 years, LDL cholesterol 2.5±0.6 mmol/L before and after four-month treatment with pravastatin 40 mg/day or placebo (n=22 and n=20, respectively, and in 41 healthy control subjects. Results: Compared to controls, T1DM patients had significantly higher concentrations of ATP (p<0.01 and ADP (p<0.01 and these levels were partly restored after treatment with pravastatin (p=0.002 and p=0.007, respectively, but not after placebo (p=0.06 and p=0.14, respectively. Coronary flow velocity acceleration was significantly lower in T1DM patients compared to control subjects, and it increased from pre- to post-intervention in the pravastatin (p=0.02, but not in placebo group (p=0.15. Conclusions: Pravastatin treatment significantly reduces circulating ATP and ADP levels of T1DM patients, and concurrently improves coronary flow response to CPT. This study provides a novel insight in purinergic mechanisms involved in pleiotropic effects of pravastatin.

  20. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    Science.gov (United States)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  1. Mitochondrial ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 e subunit

    Czech Academy of Sciences Publication Activity Database

    Mayr, J. A.; Havlíčková, Vendula; Zimmermann, F.; Magler, I.; Kaplanová, Vilma; Ješina, Pavel; Pecinová, Alena; Nůsková, Hana; Koch, J.; Sperl, W.; Houštěk, Josef

    2010-01-01

    Roč. 19, č. 17 (2010), s. 3430-3439 ISSN 0964-6906 R&D Projects: GA MZd(CZ) NS9759; GA MŠk(CZ) 1M0520 Grant - others:Univerzita Karlova(CZ) 97807 Institutional research plan: CEZ:AV0Z50110509 Keywords : ATP-synthase * ATP5E * disease Subject RIV: EB - Gene tics ; Molecular Biology Impact factor: 8.058, year: 2010

  2. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  3. Elastic deformations of the rotary double motor of single F(o)F(1)-ATP synthases detected in real time by Förster resonance energy transfer.

    Science.gov (United States)

    Ernst, Stefan; Düser, Monika G; Zarrabi, Nawid; Dunn, Stanley D; Börsch, Michael

    2012-10-01

    Elastic conformational changes of the protein backbone are essential for catalytic activities of enzymes. To follow relative movements within the protein, Förster-type resonance energy transfer (FRET) between two specifically attached fluorophores can be applied. FRET provides a precise ruler between 3 and 8nm with subnanometer resolution. Corresponding submillisecond time resolution is sufficient to identify conformational changes in FRET time trajectories. Analyzing single enzymes circumvents the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary double motor which catalyzes the synthesis of adenosine triphosphate (ATP). A proton-driven 10-stepped rotary F(O) motor in the Escherichia coli enzyme is connected to a 3-stepped F(1) motor, where ATP is synthesized. To operate the double motor with a mismatch of step sizes smoothly, elastic deformations within the rotor parts have been proposed by W. Junge and coworkers. Here we extend a single-molecule FRET approach to observe both rotary motors simultaneously in individual F(O)F(1)-ATP synthases at work. We labeled this enzyme with two fluorophores specifically, that is, on the ε- and c-subunits of the two rotors. Alternating laser excitation was used to select the FRET-labeled enzymes. FRET changes indicated associated transient twisting within the rotors of single enzyme molecules during ATP hydrolysis and ATP synthesis. Supported by Monte Carlo simulations of the FRET experiments, these studies reveal that the rotor twisting is greater than 36° and is largely suppressed in the presence of the rotation inhibitor DCCD. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  5. The purification and characterization of ATP synthase complexes from the mitochondria of four fungal species.

    Science.gov (United States)

    Liu, Sidong; Charlesworth, Thomas J; Bason, John V; Montgomery, Martin G; Harbour, Michael E; Fearnley, Ian M; Walker, John E

    2015-05-15

    The ATP synthases have been isolated by affinity chromatography from the mitochondria of the fungal species Yarrowia lipolytica, Pichia pastoris, Pichia angusta and Saccharomyces cerevisiae. The subunit compositions of the purified enzyme complexes depended on the detergent used to solubilize and purify the complex, and the presence or absence of exogenous phospholipids. All four enzymes purified in the presence of n-dodecyl-β-D-maltoside had a complete complement of core subunits involved directly in the synthesis of ATP, but they were deficient to different extents in their supernumerary membrane subunits. In contrast, the enzymes from P. angusta and S. cerevisiae purified in the presence of n-decyl-β-maltose neopentyl glycol and the phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, cardiolipin (diphosphatidylglycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] had a complete complement of core subunits and also contained all of the known supernumerary membrane subunits, e, f, g, j, k and ATP8 (or Aap1), plus an additional new membrane component named subunit l, related in sequence to subunit k. The catalytic domain of the enzyme from P. angusta was more resistant to thermal denaturation than the enzyme from S. cerevisiae, but less stable than the catalytic domain of the bovine enzyme, but the stator and the integrity of the transmembrane proton pathway were most stable in the enzyme from P. angusta. The P. angusta enzyme provides a suitable source of enzyme for studying the structure of the membrane domain and properties associated with that sector of the enzyme complex.

  6. Extracellular vesicles in obesity and diabetes mellitus.

    Science.gov (United States)

    Pardo, Fabián; Villalobos-Labra, Roberto; Sobrevia, Bastián; Toledo, Fernando; Sobrevia, Luis

    2018-04-01

    Cell-to-cell communication happens via diverse mechanisms including the synthesis, release and transfer to target cells of extracellular vesicles (EVs). EVs include nanovesicles (i.e., exosomes) and microvesicles, including apoptotic bodies. The amount and cargo of released EVs, which consist of microRNAs (miRNAs), mRNA, proteins, DNA, among other molecules, are altered in obesity and diabetes mellitus. EVs from these diseases show with altered cargo including several miRNAs and the enrichment with molecules involved in inflammation, immune efficiency, and cell activation. The role of EVs in obesity regards with adipocytes-released vesicles that may end in a systemic insulin resistance. In diabetes mellitus, the exosomes cargo may signal to transform a normal phenotype into a diabetic phenotype in endothelial cells. The evidence of EVs as modulators of cell function is increasing; however, it is still unclear whether exosomes or microvesicles are a trustable and useful marker for the diagnose or early detection of obesity or diabetes mellitus. In this review, we summarise the reported information regarding EVs involvement in obesity, T1 and T2 diabetes mellitus, and gestational diabetes mellitus. We emphasise the fact that studies addressing a potential effect of obesity or diabetes mellitus on cell function and the severity of the diseases are done in patients suffering simultaneously with both of these diseases, i.e., diabesity. Unfortunately, the lack of information regarding the biological effects and the potential involved mechanisms makes difficult to understand the role of the EVs as a marker of these and perhaps other diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cloning and characterization of ATP synthase CF1 α gene from ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Full Length Research Paper. Cloning and characterization of ATP ... that atpA gene from sweet potato has high homology with the other plant chloroplast atpA. The transcript levels of the atpA gene in ..... from spinach chloroplasts primary structure deduced from the cloned. cDNA sequence. FEBS J. 232: ...

  8. Attenuating fibrosis : Modulation of myofibroblast formation and extracellular matrix synthesis

    NARCIS (Netherlands)

    Mia, Md Masum

    2016-01-01

    Fibrose behelst het verlittekenen van weefsels en organen. Daardoor kunnen vitale functies uitvallen, met de dood tot gevolg. Fibrose is in veel gevallen dan ook een zeer ernstige aandoening. Toch bestaat er geen enkel effectief medicijn tegen. Hét kenmerk van fibrose is de excessieve productie van

  9. Antimicrobial biosurfactants from marine Bacillus circulans: extracellular synthesis and purification.

    Science.gov (United States)

    Mukherjee, S; Das, P; Sivapathasekaran, C; Sen, R

    2009-03-01

    To purify the biosurfactant produced by a marine Bacillus circulans strain and evaluate the improvement in surface and antimicrobial activities. The study of biosurfactant production by B. circulans was carried out in glucose mineral salts (GMS) medium using high performance thin layer chromatography (HPTLC) for quantitative estimation. The biosurfactant production by this strain was found to be growth-associated showing maximum biosurfactant accumulation at 26 h of fermentation. The crude biosurfactants were purified using gel filtration chromatography with Sephadex G-50 matrix. The purification attained by employing this technique was evident from UV-visible spectroscopy and TLC analysis of crude and purified biosurfactants. The purified biosurfactants showed an increase in surface activity and a decrease in critical micelle concentration values. The antimicrobial action of the biosurfactants was also enhanced after purification. The marine B. circulans used in this study produced biosurfactants in a growth-associated manner. High degree of purification could be obtained by using gel filtration chromatography. The purified biosurfactants showed enhanced surface and antimicrobial activities. The antimicrobial biosurfactant produced by B. circulans could be effectively purified using gel filtration and can serve as new potential drugs in antimicrobial chemotherapy.

  10. Purification Protocols for Extracellular Vesicles.

    Science.gov (United States)

    Lane, Rebecca E; Korbie, Darren; Trau, Matt; Hill, Michelle M

    2017-01-01

    This chapter provides a description of some of the standard methods used for the isolation of extracellular vesicles (EVs) from a variety of biological fluids, including cell culture media, urine, plasma and serum. The methods presented include ultracentrifugation, ultrafiltration, proprietary polymer-based reagents, size exclusion chromatography, density gradient separation, and immunoaffinity capture. Ultracentrifugation methods use high speed centrifugation to pellet vesicles, whilst polymer-based reagents are added to the sample to facilitate vesicle precipitation using lower speeds. Ultrafiltration involves the concentration of vesicles from a large volume of biological fluid using a centrifugal filter unit. Size exclusion chromatography and density gradient separation are both designed to allow the separation of vesicles from other nonvesicular debris. Immunoaffinity capture methods use antibody-coated beads to selectively isolate vesicles displaying a surface marker of interest. Ultimately, the choice of purification method for an individual experiment is influenced by time, cost, and equipment considerations, as well as the sample requirements for any downstream analyses.

  11. Corrigendum to “Extracellular ATP and adenosine: The yin and yang in immune responses?”

    NARCIS (Netherlands)

    Faas, M. M.; Saez, T.; de Vos, P.

    2017-01-01

    The authors regret that they did not mention this funding: This project has received funding from the Marie Curie International Research Staff Exchange Scheme with the 7th European Community Framework Program under grant agreement No. 295185 - EULAMDIMA. The authors would like to apologise for any

  12. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  13. Histidine 114 Is Critical for ATP Hydrolysis by the Universally Conserved ATPase YchF.

    Science.gov (United States)

    Rosler, Kirsten S; Mercier, Evan; Andrews, Ian C; Wieden, Hans-Joachim

    2015-07-24

    GTPases perform a wide range of functions, ranging from protein synthesis to cell signaling. Of all known GTPases, only eight are conserved across all three domains of life. YchF is one of these eight universally conserved GTPases; however, its cellular function and enzymatic properties are poorly understood. YchF differs from the classical GTPases in that it has a higher affinity for ATP than for GTP and is a functional ATPase. As a hydrophobic amino acid-substituted ATPase, YchF does not possess the canonical catalytic Gln required for nucleotide hydrolysis. To elucidate the catalytic mechanism of ATP hydrolysis by YchF, we have taken a two-pronged approach combining classical biochemical and in silico techniques. The use of molecular dynamics simulations allowed us to complement our biochemical findings with information about the structural dynamics of YchF. We have thereby identified the highly conserved His-114 as critical for the ATPase activity of YchF from Escherichia coli. His-114 is located in a flexible loop of the G-domain, which undergoes nucleotide-dependent conformational changes. The use of a catalytic His is also observed in the hydrophobic amino acid-substituted GTPase RbgA and is an identifier of the translational GTPase family. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Oligomycin frames a common drug-binding site in the ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric; Mueller, David M. (Rosalind)

    2015-12-01

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100% conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.

  15. Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes

    Directory of Open Access Journals (Sweden)

    Tejas Yadav

    2016-04-01

    Full Text Available During DNA replication, chromatin must be disassembled and faithfully reassembled on newly synthesized genomes. The mechanisms that govern the assembly of chromatin structures following DNA replication are poorly understood. Here, we exploited Okazaki fragment synthesis and other assays to study how nucleosomes are deposited and become organized in S. cerevisiae. We observe that global nucleosome positioning is quickly established on newly synthesized DNA in vivo. Importantly, we find that ATP-dependent chromatin-remodeling enzymes, Isw1 and Chd1, collaborate with histone chaperones to remodel nucleosomes as they are loaded behind a replication fork. Using a whole-genome sequencing approach, we determine that the positioning of newly deposited nucleosomes in vivo is specified by the combined actions of ATP-dependent chromatin-remodeling enzymes and select DNA-binding proteins. Altogether, our data provide in vivo evidence for coordinated “loading and remodeling” of nucleosomes behind the replication fork, allowing for rapid organization of chromatin during S phase.

  16. Inhibition of cell proliferation through an ATP-responsive co-delivery system of doxorubicin and Bcl-2 siRNA

    Science.gov (United States)

    Zhang, Jianxu; Wang, Yudi; Chen, Jiawen; Liang, Xiao; Han, Haobo; Yang, Yan; Li, Quanshun; Wang, Yanbo

    2017-01-01

    Herein, DNA duplex was constructed through the hybridization of adenosine triphosphate (ATP)-responsive aptamer and its cDNA in which GC-rich motif could be used to load doxorubicin (DOX), and then, cationic polymer PEI25K was used as a carrier to simultaneously condense DOX-Duplex and Bcl-2 siRNA to prepare the ternary nanocomplex polyethylenimine (PEI)/DOX-Duplex/siRNA. The ATP concentration gradient between the cytosol and extracellular environment could achieve the stable loading of DOX in duplex and the rapid drug release in an ATP-responsive manner. Using human prostate tumor cell line PC-3 as a model, an obvious induction of cell proliferation could be detected with a cell viability of 53.3%, which was stronger than single cargo delivery, indicating the synergistic effect between these two components. The enhanced anti-proliferative effect of ternary nanocomplex could be attributed to the improved induction of cell apoptosis in a mitochondria-mediated pathway and cell-cycle arrest at the G2 phase. Overall, the ATP-responsive nanocarrier for co-delivering DOX and Bcl-2 siRNA has been demonstrated to be a smart delivery system with favorable anti-proliferative effect, especially for solving the multidrug resistance of tumors. PMID:28740380

  17. Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair.

    Science.gov (United States)

    Hingorani, Manju M

    2016-02-01

    The focus of this article is on the DNA binding and ATPase activities of the mismatch repair (MMR) protein, MutS-our current understanding of how this protein uses ATP to fuel its actions on DNA and initiate repair via interactions with MutL, the next protein in the pathway. Structure-function and kinetic studies have yielded detailed views of the MutS mechanism of action in MMR. How MutS and MutL work together after mismatch recognition to enable strand-specific nicking, which leads to strand excision and synthesis, is less clear and remains an active area of investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of substrate activation (hydrolysis of ATP by first steps of glycolysis and beta-oxidation) on the effect of enzyme deficiencies, inhibitors, substrate shortage and energy demand on oxidative phosphorylation.

    Science.gov (United States)

    Korzeniewski, Bernard

    2003-05-01

    In intact tissues respiratory substrates (glucose, fatty acids) must be activated with the use of ATP before they may be oxidised and used for energy (ATP) production. This activation by product constitutes an example of a typical positive feedback. In the present paper, the influence of substrate activation on the effect of inborn enzyme deficiencies, inhibitors, lowered oxygen tension, respiratory fuel shortage and increased energy demand on respiration and ATP synthesis is studied with the aid of the dynamic computer model of oxidative phosphorylation in isolated mitochondria developed previously. Computer simulations demonstrate that, in the case where oxidative phosphorylation in the whole organism is partially inhibited, the necessity of substrate activation can have significant impact on the relationship between the activity of (particular steps of) oxidative phosphorylation (or the value of energy demand) and the respiration rate. Depending on the sensitivity of ATP usage to ATP concentration, substrate activation may either slightly enhance the effect of the decrease in the oxidative phosphorylation activity (increase in energy demand) or may lead to a non-stability and sudden collapse of the respiration rate and phosphorylation potential below (above) a certain threshold value of oxidative phosphorylation activity (energy demand). This theoretical finding suggests a possible causal relationship between the affinity of ATP usage to [ATP] and the tissue specificity of mitochondrial diseases.

  19. [ATP content in cryopreserved sperm of Siberian white cranes Grus leucogeranus (Aves: Gruiformes)].

    Science.gov (United States)

    Maksudov, G Iu; Erokhin, A S; Nesterenko, O N; Panchenko, V G

    2002-01-01

    ATP contents were studied in the native and cryoconserved sperm of Siberian white cranes Grus leucogeranus using bioluminescence analysis. The ATP content in freshly obtained spermatozoa was 12.7 nmol/10(8) cells. No ATP was found in the seminal plasma. In the process of freezing-thawing, the ATP concentration in the spermatozoa decreased by 30%. The differences in the dynamics of ATP content during cryoconservation of sperm of white cranes and other birds and mammals are discussed.

  20. Illuminating the physiology of extracellular vesicles

    OpenAIRE

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for trackin...

  1. Detection of extracellular vesicles: size does matter

    NARCIS (Netherlands)

    van der Pol, E.

    2015-01-01

    Cells release small sacks filled with fluid, which are called "extracellular vesicles". The diameter of extracellular vesicles (EV) typically ranges from 30 nm to 1 µm. Because cells release EV into their environment, our body fluids contain numerous EV. Cells release EV to remove waste and to

  2. Phenomenological analysis of ATP dependence of motor proteins.

    Directory of Open Access Journals (Sweden)

    Yunxin Zhang

    Full Text Available In this study, through phenomenological comparison of the velocity-force data of processive motor proteins, including conventional kinesin, cytoplasmic dynein and myosin V, I found that, the ratio between motor velocities of two different ATP concentrations is almost invariant for any substall, superstall or negative external loads. Therefore, the velocity of motors can be well approximated by a Michaelis-Menten like formula V = [ATP]k(FL([ATP] + K(M, with L the step size, and k(F the external load F dependent rate of one mechanochemical cycle of motor motion in saturated ATP solution. The difference of Michaelis-Menten constant K(M for substall, superstall and negative external load indicates, the configurations at which ATP molecule can bind to motor heads for these three cases might be different, though the expression of k(F as a function of F might be unchanged for any external load F. Verifications of this Michaelis-Menten like formula has also been done by fitting to the recent experimental data.

  3. Actions of ADP, but not ATP, on cytosolic free Ca2+ in single rat hepatocytes mimicked by 2-methylthioATP.

    OpenAIRE

    Dixon, C. J.; Cobbold, P. H.; Green, A. K.

    1995-01-01

    1. Aequorin-injected, single rat hepatocytes generate series of repetitive transients in cytosolic free calcium concentration ([Ca2+]i) when stimulated with agonists acting through the phosphoinositide signalling pathway, including ADP and ATP. We have previously described differences in the [Ca2+]i responses of aequorin-injected hepatocytes to ADP and ATP. 2. The effects of the phosphorothioate analogue of ATP, 2-methylthioATP (2-meSATP), have been examined on single rat hepatocytes. This an...

  4. Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus

    Science.gov (United States)

    ReipschlÄGer; PÖRtner

    1996-01-01

    Environmental stresses such as hypoxia or hypercapnia are known to cause acid-base disturbances and in several organisms they lead to metabolic depression. The present study was undertaken to quantify the influence of these changes in acid­p;base parameters on metabolic rate. We determined the rate of oxygen consumption in a non-perfused preparation of the body wall musculature of the marine worm Sipunculus nudus at various levels of extra- and intracellular pH (pHe and pHi, respectively), PCO2 and [HCO3-]. The acid­p;base status of the tissue was modified and clamped by long-term exposure to media set to specific values of extracellular pH, PCO2 and [HCO3-]. At a pHe of 7.90, which is equivalent to the normoxic normocapnic in vivo extracellular pH, and an ambient PCO2 of 0.03 kPa (control conditions), pHi was 7.26±0.02 (mean ± s.d., N=5). A reduction of extracellular pH from 7.90 to 7.20 resulted in a significant decrease of pHi to 7.17±0.05 at 0.03 kPa PCO2 (normocapnia) and to 7.20±0.02 at 1.01 kPa PCO2 (hypercapnia). At the same time, the rate of oxygen consumption of the tissue was significantly depressed by 18.7±4.7 % and 17.7±3.0 %, respectively. A significant depression of oxygen consumption by 13.7±4.7 % also occurred under hypercapnia at pHe 7.55 when pHi was elevated above control values (7.32±0.01). No significant changes in oxygen consumption were observed when pHe was either drastically elevated to 8.70 under normocapnia (pHi 7.36±0.05) or maintained at 7.90 during hypercapnia (pHi 7.37±0.03). ATP and phospho-l-arginine concentrations, as well as the Gibbs free energy change of ATP hydrolysis (dG/dATP), were maintained at high levels during all treatments, indicating an equilibrium between energy supply and demand. We conclude that the depression of aerobic energy turnover in isolated body wall musculature of S. nudus is induced by low extracellular pH. A model is proposed which could explain a reduced ATP cost of pHi regulation during

  5. Fluorone dyes have binding sites on both cytoplasmic and extracellular domains of Na,K-ATPase.

    Science.gov (United States)

    Havlíková, Marika; Huličiak, Miroslav; Bazgier, Václav; Berka, Karel; Kubala, Martin

    2013-02-01

    Combination of fluorescence techniques and molecular docking was used to monitor interaction of Na,K-ATPase and its large cytoplasmic loop connecting fourth and fifth transmembrane helices (C45) with fluorone dyes (i.e. eosin Y, 5(6)-carboxyeosin, rose bengal, fluorescein, and erythrosine B). Our data suggested that there are at least two binding sites for all used fluorone dyes, except of 5(6)-carboxyeosin. The first binding site is located on C45 loop, and it is sensitive to the presence of nucleotide. The other site is located on the extracellular part of the enzyme, and it is sensitive to the presence of Na(+) or K(+) ions. The molecular docking revealed that in the open conformation of C45 loop (which is obtained in the presence of ATP) all used fluorone dyes occupy position directly inside the ATP-binding pocket, while in the closed conformation (i.e. in the absence of any ligand) they are located only near the ATP-binding site depending on their different sizes. On the extracellular part of the protein, the molecular docking predicts two possible binding sites with similar binding energy near Asp897(α) or Gln69(β). The former was identified as a part of interaction site between α- and β-subunits, the latter is in contact with conserved FXYD sequence of the γ-subunit. Our findings provide structural explanation for numerous older studies, which were performed with fluorone dyes before the high-resolution structures were known. Further, fluorone dyes seem to be good probes for monitoring of intersubunit interactions influenced by Na(+) and K(+) binding. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Extracellular vesicles: new players in cardiovascular diseases.

    Science.gov (United States)

    Gaceb, Abderahim; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-05-01

    Extracellular vesicles, particles released by all cell types, represent a new way to convey information between cells such as proteins, second messengers, and genetic information to modify the phenotype and function of the target cells. Recent data suggest that extracellular vesicles play a crucial role in both physiology and pathology, including coagulation, angiogenesis, cell survival, modulation of the immune response, and inflammation. Thus extracellular vesicles participate in the processes of cardiovascular diseases from atherosclerosis, myocardial infarction to heart failure. Consequently, extracellular vesicles can potentially be exploited for therapy, prognosis, and biomarkers for health and disease. This review focuses on the role of extracellular vesicles in the development of cardiovascular diseases, as well as the deleterious and beneficial effects that they may provide in vascular cells and myocardium. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cryptococcus laurentii extracellular biopolymer production for application in wound management.

    Science.gov (United States)

    Smirnou, Dzianis; Hrubošová, Dana; Kulhánek, Jaromír; Švík, Karol; Bobková, Lenka; Moravcová, Veronika; Krčmář, Martin; Franke, Lukáš; Velebný, Vladimír

    2014-10-01

    Cryptococcus laurentii growth and extracellular polysaccharide (EPS) production in bioreactor were studied. Biomass yield 14.3 g/L and EPS synthesis 4.3 g/L in 144 h of submerged cultivation were achieved. EPS synthesis and cell growth had different optima. For EPS formation, pH 3, 25 °C and low aeration (1 %  30 %). As medium pH changed from pH 3 to pH 6, glucuronic acid (GluAc) content in EPS increased, while galactose, xylose, and glucose decreased. Twenty-five degrees Celsius was optimal for GluAc containing polysaccharide synthesis, while lower temperature (15 °C) increased glucose content in EPS. Aeration intensity and time of cultivation had little effect on EPS composition. Molecular mass distribution of raw C. laurentii EPS was determined by SEC-MALS as 1.352. The row EPS was composed of acidic glucuronoxylomannan for more than 85 %. In the in vivo experiments, EPS significantly improved excisional wound healing in healthy rats. The results suggest that C. laurentii EPS is a promising biotechnological product and an advanced material for application in wound management.

  8. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  9. ATP measurements for monitoring microbial drinking water quality

    DEFF Research Database (Denmark)

    Vang, Óluva Karin

    Current standard methods for surveillance of microbial drinking water quality are culture based, which are laborious and time-consuming, where results not are available before one to three days after sampling. This means that the water may have been consumed before results on deteriorated water....... The overall aim of this PhD study was to investigate various methodological features of the ATP assay for a potential implementation on a sensor platform as a real-time parameter for continuous on-line monitoring of microbial drinking water quality. Commercial reagents are commonly used to determine ATP...... in drinking water. For on-line continuous real-time monitoring it is essential to choose an adequate enzyme reagent in terms of limit of detection, stability in catalytic activity and an efficient extraction of microbial ATP from cells. Experiments with different types of commercial and R&D reagents...

  10. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P......) of the total ankle dorsiflexor muscle volume, which was 267 +/- 10 cm. Relative cross-sectional areas occupied by Type I, IIA, and IIB fibers in the tibialis anterior were 69.3 +/- 2.2, 27.4 +/- 2.76, and 3.2 +/- 1.0%, respectively. ATP economy of force maintenance did not change significantly during the 60-s...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P economy compared with those maintaining the force (3...

  11. Isolation and genetic analysis of Aspergillus niger mutants with reduced extracellular glucoamylase

    International Nuclear Information System (INIS)

    Valent, G.U.; Calil, M.R.; Bonatelli Junior, R.

    1992-01-01

    Mutants with impaired production of extracellular glucoamylase were isolated at a high frequency (2% of survivors) from an Aspergillus niger strain treated with UV light. These were designated as low glucoamylase producers (lgp, up to 30% of the parental yield) and medium producers (mgp, a 35 to 50% decrease in enzyme level). All the mutants were shown to be recessive; one strain segregated two unlinked genes. Complementation tests, and segregation from heterozygous diploid, suggested at least three to four unlinked genes, each able to impair glucoamylase production. There is evidence of a single structural gene for glucoamylase in A. niger. Therefore, as production of extracellular enzymes is normally the final result of several steps at intracellular and membrane levels, including regulation of enzyme synthesis, we suggest intergenic interaction that controls extracellular enzyme accumulation and that mutation in any of these genes would result in impaired production. (author)

  12. Diverse Functional Properties of Wilson Disease ATP7B Variants

    Science.gov (United States)

    Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana

    2012-01-01

    BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481

  13. Immunotherapeutic potential of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Bin eZhang

    2014-10-01

    Full Text Available Extracellular vesicles or EVs is a term that encompasses all classes of secreted lipid membrane vesicles. Despite being scientific novelties, EVs are gaining importance as a mediator of important physiological and pathological intercellular activities possibly through the transfer of their cargo of protein and RNA between cells. In particular, exosomes the currently best characterized EVs have been notable for their in vitro and in vivo immunomodulatory activities. Exosomes are nanometer-sized endosome-derived vesicles secreted by many cell types and their immunomodulatory potential is independent of their cell source. Besides immune cells such as dendritic cells, macrophages and T cells, cancer and stem cells also secrete immunologically active exosomes that could influence both physiological and pathological processes. The immunological activities of exosomes affect both innate and adaptive immunity and include antigen presentation, T cell activation, T cell polarisation to Tregs, immune suppression and anti-inflammation. As such, exosomes carry much immunotherapeutic potential as a therapeutic agent and a therapeutic target.

  14. Extracellular vesicles in parasitic diseases

    Directory of Open Access Journals (Sweden)

    Antonio Marcilla

    2014-12-01

    Full Text Available Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens.

  15. Neutrophil extracellular traps go viral

    Directory of Open Access Journals (Sweden)

    Günther Schönrich

    2016-09-01

    Full Text Available Neutrophils are the most numerous immune cells. Their importance as a first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils to produce extracellular traps (NETs in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand disproportionate NET formation can cause local or systemic damage. Only recently was it recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.

  16. Efficient purification and reconstitution of ATP binding cassette transporter B6 (ABCB6) for functional and structural studies.

    Science.gov (United States)

    Chavan, Hemantkumar; Khan, Mohiuddin Md Taimur; Tegos, George; Krishnamurthy, Partha

    2013-08-02

    The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 μM) and an ATPase activity with a Km of 0.99 mM. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6.

  17. Anatomy of an energy-coupling mechanism--the interlocking catalytic cycles of the ATP sulfurylase-GTPase system.

    Science.gov (United States)

    Sun, Meihao; Leyh, Thomas S

    2005-10-25

    ATP sulfurylase, from Escherichia coli K-12, conformationally couples the rates and chemical potentials of the two reactions that it catalyzes, GTP hydrolysis and activated sulfate synthesis. The enzyme is rare among such coupling systems in that it links the potentials of small-molecule chemistries to one another, rather than to vectorial motion. The pre-steady-state stages of the catalytic cycle of ATP sulfurylase were studied using tools capable of distinguishing between enzyme-bound and solution-phase product for each of the four products of the enzyme. The study reveals that the two chemistries are linked at multiple points in the reaction coordinate. Linking begins with an isomerization prior to chemistry that initiates an ordered cleavage of the beta,gamma and alpha,beta bonds of GTP and ATP, respectively; the rates of these three sequential events increase successively, causing them to appear simultaneous. Linking is again seen in the late stages of the catalytic cycle: product release is ordered with P(i) departing prior to either GDP or PP(i). Release rate constants are determined for each product and used to construct a quantitative model of the mechanism that accurately predicts the behavior of this complex system.

  18. Extracellular vesicles in coronary artery disease.

    Science.gov (United States)

    Boulanger, Chantal M; Loyer, Xavier; Rautou, Pierre-Emmanuel; Amabile, Nicolas

    2017-05-01

    Membrane vesicles released in the extracellular space are composed of a lipid bilayer enclosing soluble cytosolic material and nuclear components. Extracellular vesicles include apoptotic bodies, exosomes, and microvesicles (also known previously as microparticles). Originating from different subcellular compartments, the role of extracellular vesicles as regulators of transfer of biological information, acting locally and remotely, is now acknowledged. Circulating vesicles released from platelets, erythrocytes, leukocytes, and endothelial cells contain potential valuable biological information for biomarker discovery in primary and secondary prevention of coronary artery disease. Extracellular vesicles also accumulate in human atherosclerotic plaques, where they affect major biological pathways, including inflammation, proliferation, thrombosis, calcification, and vasoactive responses. Extracellular vesicles also recapitulate the beneficial effect of stem cells to treat cardiac consequences of acute myocardial infarction, and now emerge as an attractive alternative to cell therapy, opening new avenues to vectorize biological information to target tissues. Although interest in microvesicles in the cardiovascular field emerged about 2 decades ago, that for extracellular vesicles, in particular exosomes, started to unfold a decade ago, opening new research and therapeutic avenues. This Review summarizes current knowledge on the role of extracellular vesicles in coronary artery disease, and their emerging potential as biomarkers and therapeutic agents.

  19. Extracellular DNA metabolism in Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Scott eChimileski

    2014-02-01

    Full Text Available Extracellular DNA is found in all environments and is a dynamic component of the micro-bial ecosystem. Microbial cells produce and interact with extracellular DNA through many endogenous mechanisms. Extracellular DNA is processed and internalized for use as genetic information and as a major source of macronutrients, and plays several key roles within prokaryotic biofilms. Hypersaline sites contain some of the highest extracellular DNA con-centrations measured in nature–a potential rich source of carbon, nitrogen and phosphorus for halophilic microorganisms. We conducted DNA growth studies for the halophilic archaeon Haloferax volcanii DS2 and show that this model Halobacteriales strain is capable of using exogenous double-stranded DNA as a nutrient. Further experiments with varying medium composition, DNA concentration and DNA types revealed that DNA is utilized primarily as a phosphorus source, that growth on DNA is concentration-dependent and that DNA isolated from different sources is metabolized selectively, with a bias against highly divergent methylated DNA sources. Additionally, fluorescence microscopy experiments showed that labeled DNA colocalized with Haloferax volcanii cells. The gene Hvo_1477 was also identified using a comparative genomic approach as a factor likely to be involved in extracellular DNA processing at the cell surface, and deletion of Hvo_1477 created an H. volcanii strain deficient in its ability to grow on extracellular DNA. Widespread distribution of Hvo_1477 homologs in archaea suggests metabolism of extracellular DNA may be of broad ecological and physiological relevance in this domain of life.

  20. Extracellular vesicles as emerging intercellular communicasomes.

    Science.gov (United States)

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-10-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

  1. K-ATP channel expression and pharmacological in vivo and in vitro studies of the K-ATP channel blocker PNU-37883A in rat middle meningeal arteries

    DEFF Research Database (Denmark)

    Ploug, K.B.; Boni, L.J.; Baun, M.

    2008-01-01

    Background and purpose: Dilatation of cerebral and dural arteries causes a throbbing, migraine-like pain, indicating that these structures are involved in migraine. Clinical trials suggest that adenosine 5'-triphosphate-sensitive K+ (K-ATP) channel opening may cause migraine by dilatating...... intracranial arteries, including the middle meningeal artery (MMA). We studied the K-ATP channel expression profile in rat MMA and examined the potential inhibitory effects of the K-ATP channel blocker PNU-37883A on K-ATP channel opener-induced relaxation of the rat MMA, using the three K-ATP channel openers...

  2. PATHOGEN IMPACT ON THE ACTIVITY DYNAMICS OF POTATO SUSPENSION CELLS EXTRA-CELLULAR PEROXIDASE

    Directory of Open Access Journals (Sweden)

    Graskova I.A.

    2005-08-01

    Full Text Available Changes in the activity of extracellular peroxidases were measured in cell suspension cultures of potato infected by Clavibacter michiganensis subsp. sepedonicus (Spieck. et Kotth. Skapt et Burkh. The total extracellular peroxidases activity of the resistant potato variety was higher than that of the sensitive variety both before and after infection. The enzyme of the resistant variety had a рН optimum of 6.2, while that of the sensitive variety was 5.4. Extracellular peroxidases of the sensitive potato variety were activated 10 minutes after infection, and displayed highest activity 1.5-2 hours later. In the resistant variety, peroxidase activity rose sharply in the first minutes of infection, and second peak of activity occurred 1.5-2 hours later. The increase of extracellular peroxidases activity of the sensitive potato variety under pathogenesis is connected with the change of genome expression and synthesis of proteins. The increase of enzyme activity of resistant potato variety in the first moments of infection is not related to proteins synthesis and is apparently conditioned by the change of kinetic parameters.

  3. Alterations in the biosynthesis of extracellular matrix molecules in connective tissues by electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ciombor, D.M.

    1992-01-01

    Pulsed electromagnetic fields (PEMFs) of certain configurations have been shown to be effective clinically in promoting the healing of fracture non-unions and are believed to enhance calcification of extracellular matrix. In vitro studies have suggested that PEMFs may also have the effect of modifying the extracellular matrix by promoting the synthesis of matrix molecules. This study examines the effect of one particular type of PEMF and a sinusoidal continuous wave upon the extracellular matrix and calcification of endochondral ossification in vivo. The pulsed magnetic field (SS-22) utilized in these studies is being used clinically for the treatment of fracture non-unions, a condition in which the bone is not restored to form or function. The sinusoidal continuous wave was designed to provide a 5 Gauss amplitude at a 15 Hz. rate. The synthesis of cartilage molecules is enhanced by this type of PEMF and since wave and subsequent endochondral calcification is stimulated. Histomorphometric studies indicate that the maturation of bone trabeculae is also promoted by this type of PEMF stimulation. These results indicate that a specific PEMF or continuous waveform can change the composition of cartilage extracellular matrix in vivo and raises the possibility that the effects on other processes of endochondral ossification (e.g., fracture healing and growth plates) may occur through a similar mechanism.

  4. Rat platelet aggregation by ATP. Aggregometrical and ultrastructural comparison with aggregations induced by ADP and collagen.

    Science.gov (United States)

    Ts'ao, C.

    1976-01-01

    This paper describes the aggregation of rat platelets by adenosine triphosphate (ATP). The aggregometry of ATP-induced aggregation and the ultrastructure of ATP-aggregated platelets were compared and contrasted with those of adenosine diphosphate (ADP)-treated and collagen-treated samples. Human platelets were also studied alongside with rat specimens. Several lines of evidence indicate that the ATP-induced aggregation of rat platelet-rich plasma (PRP) is not a result of contaminating ADP in the ATP preparation. ATP did not cause aggregation of human platelets; it inhibited ADP- and collagen-induced human platelet aggregation. ATP pretreated with a creatine phosphate/creatine phosphokinase system caused similar rat platelet aggregation as did ATP not treated with this system. The aggregometry of ATP-induced aggregation of rat PRP was similar to that of collagen-induced aggregation but markedly different from that of ADP-induced aggregation. However, the nature of ATP-induced aggregation was similar to that induced by ADP. Both ATP- and ADP-induced rat platelet aggregations were not affected by adenosine, adenosine monophosphate, or acetylsalicylic acid. The ultrastructure of ATP-aggregated platelets was similar to that of ADP-aggregated ones. It appears that either platelets of rats possess specific ATP receptors or the rat plasma contains a material, lacking or insufficiently present in human plasma, that converts ATP to ADP in a fashion similar to the release of ADP from platelet storage granules. Images Figure 1 PMID:998732

  5. Inhibition of extracellular matrix production and remodeling by doxycycline in smooth muscle cells

    OpenAIRE

    Rogelio Palomino-Morales; Carolina Torres; Sonia Perales; Ana Linares; Maria Jose Alejandre

    2016-01-01

    Alterations in the extracellular matrix (ECM) production and remodeling of smooth muscle cells (SMCs) have been implicated in processes related to the differentiation in atherosclerosis. Due to the anti-atherosclerotic properties of the tetracyclines, we aimed to investigate whether cholesterol supplementation changes the effect of doxycycline over the ECM proteins synthesis and whether isoprenylated proteins and Rho A protein activation are affected. SMC primary culture isolated from chicks ...

  6. Illuminating the physiology of extracellular vesicles.

    Science.gov (United States)

    Choi, Hongyoon; Lee, Dong Soo

    2016-04-16

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature.

  7. Abnormal expression of ATP1A1 and ATP1A2 in breast cancer [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Alexey Bogdanov

    2017-01-01

    Full Text Available Breast cancer is the first in incidence and the second in death among all solid tumors occurring in women. The identification of molecular genetic abnormalities in breast cancer is important to improve the results of treatment. In the present study, we analyzed microarray data of breast cancer expression profiling (NCBI GEO database, accession GSE65194, focusing on Na+/K+-ATPase coding genes. We found overexpression of the ATP1A1 and down-regulation of the ATP1A2. We expect that our research could help to improve the understanding of predictive and prognostic features of breast cancer.

  8. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  9. Paradox applications integration ATP's for MAC and mass balance programs

    International Nuclear Information System (INIS)

    Russell, V.K.; Mullaney, J.E.

    1994-01-01

    The K Basins Materials Accounting (MAC) and Material Balance (MBA) database system were set up to run under one common applications program. This Acceptance Test Plan (ATP) describes how the code was to be tested to verify its correctness. The scope of the tests is minimal, since both MAC and MBA have already been tested in detail as stand-alone programs

  10. Familial Hemiplegic Migraine With ATP1A2 Mutations

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-05-01

    Full Text Available Three children with prolonged hemiplegia following severe unilateral headache and having mutations in ATP1A2 are reported from UCLA School of Medicine, Los Angeles, CA; University Children’s Hospital, Zurich, Switzerland; and Wake Forest University School of Medicine, Winston-Salem, NC.

  11. Supplementary data: Novel mutation in ATP-binding domain of ...

    Indian Academy of Sciences (India)

    Novel mutation in ATP-binding domain of ABCD1 gene in adrenoleucodystrophy. Neeraj Kumar, Krishna K. Taneja, Atul Kumar, Deepti Nayar, Bhupesh Taneja, Satindra Aneja,. Madhuri Behari, Veena Kalra and Surendra K. Bansal. J. Genet. 89, 473–477. Figure 1. Rmsd plot of native and Arg617Ser substituted models.

  12. Hair bundles are specialized for ATP delivery via creatine kinase.

    NARCIS (Netherlands)

    Shin, J.B.; Streijger, F.; Beynon, A.J.; Peters, T.; Gadzala, L.; McMillen, D.; Bystrom, C.; Zee, C.E.E.M. van der; Wallimann, T.; Gillespie, P.G.

    2007-01-01

    When stimulated strongly, a hair cell's mechanically sensitive hair bundle may consume ATP too rapidly for replenishment by diffusion. To provide a broad view of the bundle's protein complement, including those proteins participating in energy metabolism, we used shotgun mass spectrometry methods to

  13. Bioluminometric assay of ATP in mouse brain: Determinant factors ...

    Indian Academy of Sciences (India)

    Firefly luciferase bioluminescence (FLB) is a highly sensitive and specific method for the analysis of adenosine-5-triphosphate (ATP) in biological samples. Earlier attempts to modify the FLB test for enhanced sensitivity have been typically based on in vitro cell systems. This study reports an optimized FLB procedure for the ...

  14. Carbon and energy metabolism of atp mutants of Escherichia coli

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Michelsen, Ole

    1992-01-01

    The membrane-bound H+-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth r...

  15. Electrochemical Investigation of the Interaction between Catecholamines and ATP.

    Science.gov (United States)

    Taleat, Zahra; Estévez-Herrera, Judith; Machado, José D; Dunevall, Johan; Ewing, Andrew G; Borges, Ricardo

    2018-02-06

    The study of the colligative properties of adenosine 5'-triphosphate (ATP) and catecholamines has received the attention of scientists for decades, as they could explain the capabilities of secretory vesicles (SVs) to accumulate neurotransmitters. In this Article, we have applied electrochemical methods to detect such interactions in vitro, at the acidic pH of SVs (pH 5.5) and examined the effect of compounds having structural similarities that correlate with functional groups of ATP (adenosine, phosphoric acid and sodium phosphate salts) and catecholamines (catechol). Chronoamperometry and fast scan cyclic voltammetry (FSCV) provide evidence compatible with an interaction of the catechol and adenine rings. This interaction is also reinforced by an electrostatic interaction between the phosphate group of ATP and the protonated ammonium group of catecholamines. Furthermore, chronoamperometry data suggest that the presence of ATP subtlety reduces the apparent diffusion coefficient of epinephrine in aqueous media that adds an additional factor leading to a slower rate of catecholamine exocytosis. This adds another plausible mechanism to regulate individual exocytosis events to alter communication.

  16. Ballast water compliance monitoring: A new application for ATP

    Science.gov (United States)

    Lo Curto, A.; Stehouwer, P.; Gianoli, C.; Schneider, G.; Raymond, M.; Bonamin, V.

    2018-03-01

    The coming into force of the USCG ballast water regulations and the IMO ballast water management convention resulted in the development of several technologies approved for the treatment of ballast water. To ensure compliance of these technologies, the development of rapid and robust analysis methods was necessary. In collaboration with the SGS Group (Switzerland) and LuminUltra (Canada), Aqua-tools (France) has developed an innovative Ballast Water Treatment Monitoring (BWTM) kit for rapid onboard testing. The affordable kit provides results in less than 1 h, is easy to use and durable ensuring that the ballast water treatment system on the ship is fully compliant with the discharge standards upon arrival in port. The core of this method is a combination of high-quality reagents (lysis solution and ATP 2G Luminase™ enzyme) not inhibited by salinity and a patented fast homogenizing method for ATP extraction developed for a higher ATP recovery from zooplankton and phytoplankton. Compared to traditional analysis methods, the BWTM Kit provides fast and accurate results for all three fractions of microorganisms (≥ 50 μm, ≥ 10 ÷ treatment systems used. Compliance limits were established for all size fractions and a correlation between the standard methods (microscopy, plate count, MPN) and ATP was evaluated. The BWTM kit can provide a fast indication of compliance or gross exceedance. The rare borderline cases, when encountered, of course require additional confirmation.

  17. Animation Model to Conceptualize ATP Generation: A Mitochondrial Oxidative Phosphorylation

    Science.gov (United States)

    Jena, Ananta Kumar

    2015-01-01

    Adenosine triphosphate (ATP) is the molecular unit of intracellular energy and it is the product of oxidative phosphorylation of cellular respiration uses in cellular processes. The study explores the growth of the misconception levels amongst the learners and evaluates the effectiveness of animation model over traditional methods. The data…

  18. Limitations of ATP as a measure of microbial biomass

    African Journals Online (AJOL)

    limits the use of ATP as a measure of microbial biomass. S. AIr. J. Zool. 1982, 17: 93 - 95. Beraming van die totale .... only micro-organisms present in the experimental culture, but these were later succeeded by a large ... a value of 49: I by the last day of the experiment. Estimates of the total living biomass of the heterotro-.

  19. Misconceptions on ATP thermodynamic role in cellular processes

    Directory of Open Access Journals (Sweden)

    R. M. Martins

    2011-04-01

    Full Text Available The occurrence and permanence of misconceptions have negative implications on the learning processes  since it impairs theconstruction of significant learning. Misconceptions correction is a complex task due to the difficulties intheir detection and high resistance to their removal. The mainobjective of the present work was to investigate misconceptions about the thermodynamic role of theATP in cellular processes. Tests were realized with high school (HS, undergraduate (UG and graduate students involved in PhD programs (G. In this survey students answered a 15 item questionnaire dealing with the ATP role as the cellular energy source. The stability of such misconceptionswere verified: one result shows that 68% HS, 92% UG and 91% G students state that the energy from ATP hydrolysis is responsiblefor driving cellular processes. Overall results show that students carry misconceptions on basic thermodynamic concepts such as energy transfer and chemical reactions spontaneity. One source of the prevalence of the discussed misconceptions aretextbooks, where schemes, figures and even text early introducefalse concepts on the ATP role.

  20. ATP-induced noncooperative thermal unfolding of hen lysozyme

    International Nuclear Information System (INIS)

    Liu, Honglin; Yin, Peidong; He, Shengnan; Sun, Zhihu; Tao, Ye; Huang, Yan; Zhuang, Hao; Zhang, Guobin; Wei, Shiqiang

    2010-01-01

    To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg 2+ -ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the β-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich α-helix and less β-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric β-sheet enriched intermediate.

  1. Cryo-EM structure of the yeast ATP synthase.

    Science.gov (United States)

    Lau, Wilson C Y; Baker, Lindsay A; Rubinstein, John L

    2008-10-24

    We have used electron cryomicroscopy of single particles to determine the structure of the ATP synthase from Saccharomyces cerevisiae. The resulting map at 24 A resolution can accommodate atomic models of the F(1)-c(10) subcomplex, the peripheral stalk subcomplex, and the N-terminal domain of the oligomycin sensitivity conferral protein. The map is similar to an earlier electron cryomicroscopy structure of bovine mitochondrial ATP synthase but with important differences. It resolves the internal structure of the membrane region of the complex, especially the membrane embedded subunits b, c, and a. Comparison of the yeast ATP synthase map, which lacks density from the dimer-specific subunits e and g, with a map of the bovine enzyme that included e and g indicates where these subunits are located in the intact complex. This new map has allowed construction of a model of subunit arrangement in the F(O) motor of ATP synthase that dictates how dimerization of the complex via subunits e and g might occur.

  2. ATP stimulates calcium influx in primary astrocyte cultures

    International Nuclear Information System (INIS)

    Neary, J.T.; van Breemen, C.; Forster, E.; Norenberg, L.O.; Norenberg, M.D.

    1988-01-01

    The effect of ATP and other purines on 45 Ca uptake was studied in primary cultures of rat astrocytes. Treatment of the cells with ATP for 1 to 30 min brought about an increase in cellular 45 Ca. Stimulation of calcium influx by ATP was investigated using a 90 sec exposure to 45 Ca and over a concentration range of 0.1 nM to 3 mM; a biphasic dose-response curve was obtained with EC50 values of 0.3 nM and 9 uM, indicating the presence of low and high affinity purinergic binding sites. Similar levels of 45 Ca influx at 90 sec were observed with ATP, ADP and adenosine (all at 100 uM). Prior treatment of the cultures with LaCl3 blocked the purine-induced 45 Ca influx. These findings indicate that one pathway for calcium entry in astrocytes involves purinergic receptor-operated, calcium channels

  3. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  4. Extracellular matrix component signaling in cancer

    DEFF Research Database (Denmark)

    Multhaupt, Hinke A. B.; Leitinger, Birgit; Gullberg, Donald

    2016-01-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization...

  5. Characterization of Extracellular Chitinolytic Activity in Biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Baty, Ace M.; Diwu, Zhenjun; Dunham, Glen C.; Eastburn, Callie; Geesey, Gill G.; Goodman, Amanda; Suci, Peter; Techkarnjanaruk, Somkiet

    2001-05-01

    It is common for bacteria to produce extracellular enzymes having some form of degradative activity. In some cases these enzymes serve to protect cells from antagonistic substances, or to convert a large and/or insoluble biopolymer to an assimilable nutrient source. In some cases the physiological benefit to the bacterium is not entirely evident. Extracellular enzymes may be membrane bound, but in many cases they are released into the surrounding medium. It has been shown that these relatively large molecules become immobilized in the extracellular polymeric matrix in which cells in flocs and biofilms are embedded. Most proteins adsorb irreversibly to substrata having a variety of surface chemistries, and transport by convection is reduced near any solid surface, regardless of the flow regimen in the bulk liquid. Thus, extracellular enzymes have a tendency to become an integral and significant component of the biofilm/substratum microenvironment, influencing cell physiology and biofilm ecology.

  6. Extracellular polysaccharide production by Thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Tharanathan, R.; Bhosle, N.B.

    Four strains of marine stramenopilan protists, the thraustochytrids, were studied for their ability to produce extracellular polysaccharides (EPSs). Observations by light and scanning electron microscopy revealed the production of a matrix of EPS...

  7. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  8. Activated sludge optimization using ATP in pulp and paper industry.

    Science.gov (United States)

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  9. Extracellular Vesicles: Evolving Contributors in Autoimmunity

    OpenAIRE

    Katsiougiannis, Stergios

    2015-01-01

    Extracellular vesicles, including microvesicles, exosomes and apoptotic bodies are recognized as carriers of pathogen-associated molecules with direct involvement in immune signaling and inflammation. Those observations have enforced the way these membranous vesicles are being considered as promising immunotherapeutic targets. In this review, we discuss the emerging roles of extracellular vesicles in autoimmunity and highlights their potential use as disease biomarkers as well as targets for ...

  10. Human beta-defensin-2 and -3 enhance pro-inflammatory cytokine expression induced by TLR ligands via ATP-release in a P2X7R dependent manner.

    Science.gov (United States)

    Wanke, Daniela; Mauch-Mücke, Katrin; Holler, Ernst; Hehlgans, Thomas

    2016-11-01

    Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  12. Kinetic and hysteretic behavior of ATP hydrolysis of the highly stable dimeric ATP synthase of Polytomella sp.

    Science.gov (United States)

    Villavicencio-Queijeiro, Alexa; Pardo, Juan Pablo; González-Halphen, Diego

    2015-06-01

    The F1FO-ATP synthase of the colorless alga Polytomella sp. exhibits a robust peripheral arm constituted by nine atypical subunits only present in chlorophycean algae. The isolated dimeric enzyme exhibits a latent ATP hydrolytic activity which can be activated by some detergents. To date, the kinetic behavior of the algal ATPase has not been studied. Here we show that while the soluble F1 sector exhibits Michaelis-Menten kinetics, the dimer exhibits a more complex behavior. The kinetic parameters (Vmax and Km) were obtained for both the F1 sector and the dimeric enzyme as isolated or activated by detergent, and this activation was also seen on the enzyme reconstituted in liposomes. Unlike other ATP synthases, the algal dimer hydrolyzes ATP on a wide range of pH and temperature. The enzyme was inhibited by oligomycin, DCCD and Mg-ADP, although oligomycin induced a peculiar inhibition pattern that can be attributed to structural differences in the algal subunit-c. The hydrolytic activity was temperature-dependent and exhibited activation energy of 4 kcal/mol. The enzyme also exhibited a hysteretic behavior with a lag phase strongly dependent on temperature but not on pH, that may be related to a possible regulatory role in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Directory of Open Access Journals (Sweden)

    Milos B Rokic

    Full Text Available The binding of ATP to trimeric P2X receptors (P2XR causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.

  14. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Jonathon eTelianidis

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  15. Time-dependent effect of ethanol force-feeding on glycogen repletion: NMR evidence of a link with ATP turnover in rat liver.

    Science.gov (United States)

    Beauvieux, Marie-Christine; Gin, Henri; Roumes, Hélène; Kassem, Cendrella; Couzigou, Patrice; Gallis, Jean-Louis

    2015-09-01

    The purpose was to study the hepatic effects of low-dose ethanol on the links between ATP and glycogen production. Fasted male Wistar rats received a single force-feeding of glucose plus ethanol or isocaloric glucose. At different times after force-feeding (0-10 h), glycogen repletion and ATP characteristics (content, apparent catalytic time constant, mitochondrial turnover) were monitored by (13)C- or (31)P-nuclear magnetic resonance (NMR) in perfused and isolated liver. In vivo glycogen repletion after force-feeding was slower after glucose plus ethanol vs. glucose (12.04 ± 0.68 and 8.50 ± 0.86 μmol/h/g liver wet weight [ww], respectively), reaching a maximum at the 6th hour. From the 3rd to the 8th hour, glycogen content was lower after glucose plus ethanol vs. glucose. After glucose plus ethanol, the correlation between glycogen and ATP contents presented two linear steps: before and after the 3rd hour (30 and 102 μmol glycogen/g ww per μmol ATP/g ww, respectively, the latter being near the single step measured in glucose). After glucose plus ethanol, ATP turnover remained stable for 2 h, was 3-fold higher from the 3rd hour to the 8th hour, and was higher than after glucose (2.59 ± 0.45 and 1.39 ± 0.19 μmol/min/g ww, respectively). In the 1st hour, glucose plus ethanol induced a transient acidosis and an increase in the phosphomonoesters signal. In conclusion, after ethanol consumption, a large part of the ATP production was diverted to redox re-equilibrium during the first 2 h, thereby reducing the glycogen synthesis. Thereafter, the maintenance of a large oxidative phosphorylation allowed the stimulation of glycogen synthesis requiring ATP. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  17. Towards the development of an automated ATP measuring platform to monitor microbial quality of drinking water

    DEFF Research Database (Denmark)

    Tatari, Karolina; Hansen, C. B.; Rasmussen, A.

    is detected by a photomultiplier. Temperature in the assay box is controlled and set to 25°C. Calibration of the system using ATP standard solutions was successful, both for free and for total ATP. Chemical release of ATP by reagent addition however resulted in the formation of particles that ultimately......, the developed prototype system proves the concept of a lab-on-a-chip ATP analyzer....

  18. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens.

    Science.gov (United States)

    Haddix, Pryce L; Jones, Sarah; Patel, Pratik; Burnham, Sarah; Knights, Kaori; Powell, Joan N; LaForm, Amber

    2008-11-01

    Serratia marcescens is a gram-negative environmental bacterium and opportunistic pathogen. S. marcescens expresses prodigiosin, a bright red and cell-associated pigment which has no known biological function for producing cells. We present here a kinetic model relating cell, ATP, and prodigiosin concentration changes for S. marcescens during cultivation in batch culture. Cells were grown in a variety of complex broth media at temperatures which either promoted or essentially prevented pigmentation. High growth rates were accompanied by large decreases in cellular prodigiosin concentration; low growth rates were associated with rapid pigmentation. Prodigiosin was induced most strongly during limited growth as the population transitioned to stationary phase, suggesting a negative effect of this pigment on biomass production. Mathematically, the combined rate of formation of biomass and bioenergy (as ATP) was shown to be equivalent to the rate of prodigiosin production. Studies with cyanide inhibition of both oxidative phosphorylation and pigment production indicated that rates of biomass and net ATP synthesis were actually higher in the presence of cyanide, further suggesting a negative regulatory role for prodigiosin in cell and energy production under aerobic growth conditions. Considered in the context of the literature, these results suggest that prodigiosin reduces ATP production by a process termed energy spilling. This process may protect the cell by limiting production of reactive oxygen compounds. Other possible functions for prodigiosin as a mediator of cell death at population stationary phase are discussed.

  19. AMP-Activated Protein Kinase Alleviates Extracellular Matrix Accumulation in High Glucose-Induced Renal Fibroblasts through mTOR Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xia Luo

    2015-01-01

    Full Text Available Background/Aims: Extracellular matrix accumulation contributes significantly to the pathogenesis of diabetic nephropathy. Although AMP-activated protein kinase (AMPK has been found to inhibit extracellular matrix synthesis by experiments in vivo and vitro, its role in alleviating the deposition of extracellular matrix in renal interstitial fibroblasts has not been well defined. Methods: Currently, we conducted this study to investigate the effects of AMPK on high glucose-induced extracellular matrix synthesis and involved intracellular signaling pathway by using western blot in the kidney fibroblast cell line (NRK-49f. Results: Collagen IV protein levels were significantly increased by high glucose in a time-dependent manner. This was associated with a decrease in Thr72 phosphorylation of AMPK and an increase in phosphorylation of mTOR on Ser2448. High glucose-induced extracellular matrix accumulation and mTOR activation were significantly inhibited by the co-treatment of rAAV-AMPKα1312 (encoding constitutively active AMPKα1 whereas activated by r-AAV-AMPKα1D157A (encoding dominant negative AMPKα1. In cultured renal fibroblasts, overexpression of AMPKα1D157A upregulated mTOR signaling and matrix synthesis, which were ameliorated by co-treatment with the inhibitor of mTOR, rapamycin. Conclusion: Collectively, these findings indicate that AMPK exerts renoprotective effects by inhibiting the accumulation of extracellular matrix through mTOR signaling pathway.

  20. A comparative study of ATPase subunit 9 (Atp9) gene between ...

    African Journals Online (AJOL)

    ATPase subunit 9 gene (Atp9) is an important functional gene in mitochondria, and is closely related with energy supply. RNA editing of atp9 gene was associated with male sterility in plants. In this study, the atp9 gene in soybeans was cloned from a soybean cytoplasmic male sterile line NJCMS2A and its maintainer line ...

  1. Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network.

    Science.gov (United States)

    Xie, L; Wang, D I

    1996-12-05

    A metabolic reaction network is developed for the estimation of the stoichiometric production of adenosine triphosphate (ATP) in animal cell culture. By using the material balance data from fed-batch and batch cultures of hybridoma cells, the stoichiometric ATP productions are determined with estimated effective P/O ratios of 2 for NADH and 1.2 for FADH(2). A significant percentage of the ATP requirement (16-41%) in hybridoma cells is generated directly from free energy release without the participation of oxygen. The oxidative phosphorylation of NADH accounts for about 60% of the total ATP production in the fed-batch cultures and about 47% in the batch culture. The oxidative phosphorylation of FADH(2) accounts for less then 20% of the total ATP production in all cases.A fractional model is devised to analyze the contribution of each nutrient to the ATP production. Results show that a majority of the ATP is produced from glucose metabolism (60-76%). Less than 30% of the ATP is derived from glutamine, and less than 11% is derived from other essential amino acids. The analysis also shows that the glycolytic pathway generates more ATP in the batch (41%) than in the fed-batch (demand estimated from the dry cell weight and cell composition is significantly lower than that calculated from the maximum ATP yield, indicating that the non-growth-associated ATP demand may contain other factors than what is considered in the estimation of the biosynthetic ATP demand.

  2. Tissue-specific alternative splicing and expression of ATP1B2 gene

    African Journals Online (AJOL)

    user6

    2012-05-15

    May 15, 2012 ... provide some useful information for further studies into the function of the bovine ATP1B2 gene. Alternative splicing (AS) is recognized as the major contributor to protein diversity from limited gene pool. ATP1B2-AS2 was the splice of intron retention found from ATP1B2 in liver, kidney, muscle and.

  3. ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES ...

    African Journals Online (AJOL)

    userpc

    thermal and antibacterial properties of silver nanoparticles have made them suitable for many industrial applications as such it is being rated as being amongst the most commercialized metallic nanoparticles. Quite a number of studies have reported either the extracellular or intracellular synthesis of silver nanoparticles ...

  4. Motor pathway excitability in ATP13A2 mutation carriers

    DEFF Research Database (Denmark)

    Zittel, S; Kroeger, J; van der Vegt, J P M

    2012-01-01

    OBJECTIVE: To describe excitability of motor pathways in Kufor-Rakeb syndrome (PARK9), an autosomal recessive nigro-striatal-pallidal-pyramidal neurodegeneration caused by a mutation in the ATP13A2 gene, using transcranial magnetic stimulation (TMS). METHODS: Five members of a Chilean family...... with an ATP13A2 mutation (one affected mutation carrier (MC) with a compound heterozygous mutation, 4 asymptomatic MC with a single heterozygous mutation) and 11 healthy subjects without mutations were studied. We measured motor evoked potentials (MEP), the contralateral silent period (cSP), short interval...... intracortical inhibition (SICI), intracortical facilitation (ICF), short latency afferent inhibition (SAI) as markers of intracortical intrahemispheric inhibition/facilitation and the ipsilateral silent period (iSP) and paired-pulse interhemispheric inhibition (IHI) to probe interhemispheric motor interactions...

  5. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  6. Microcystin-LR acute exposure does not alter in vitro and in vivo ATP, ADP and AMP hydrolysis in adult zebrafish (Danio rerio brain membranes

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2012-10-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria during the blooms that could accumulate in aquatic animals and be relocated to higher trophic levels. Adenosine triphosphate (ATP acts as an excitatory neurotransmitter and/or a neuromodulator in the extracellular space playing important roles in physiological and pathological conditions. The aim of this study was, therefore, to evaluate the acute effects of different concentrations of MC-LR on nucleoside triphosphate diphosphohydrolases and 5’-nucleotidade in adult zebrafish (Danio rerio brain membranes. The results have shown no significant changes in ATP, adenosine diphosphate (ADP and adenosine monophosphate (AMP hydrolysis in zebrafish brain membranes. MC-LR in vitro also did not alter ATP, ADP and AMP hydrolysis in the concentrations tested. These findings show that acute exposure to MC-LR did not modulate ectonucleotidase activity in the conditions tested. However, additional studies including chronic exposure should be performed in order to achieve a better understanding about MC-LR toxicity mechanisms in the central nervous system.

  7. Extracellular histones in tissue injury and inflammation.

    Science.gov (United States)

    Allam, Ramanjaneyulu; Kumar, Santhosh V R; Darisipudi, Murthy N; Anders, Hans-Joachim

    2014-05-01

    Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

  8. Assessment of extracellular dehydration using saliva osmolality.

    Science.gov (United States)

    Ely, Brett R; Cheuvront, Samuel N; Kenefick, Robert W; Spitz, Marissa G; Heavens, Kristen R; Walsh, Neil P; Sawka, Michael N

    2014-01-01

    When substantial solute losses accompany body water an isotonic hypovolemia (extracellular dehydration) results. The potential for using blood or urine to assess extracellular dehydration is generally poor, but saliva is not a simple ultra-filtrate of plasma and the autonomic regulation of salivary gland function suggests the possibility that saliva osmolality (Sosm) may afford detection of extracellular dehydration via the influence of volume-mediated factors. This study aimed to evaluate the assessment of extracellular dehydration using Sosm. In addition, two common saliva collection methods and their effects on Sosm were compared. Blood, urine, and saliva samples were collected in 24 healthy volunteers during paired euhydration and dehydration trials. Furosemide administration and 12 h fluid restriction were used to produce extracellular dehydration. Expectoration and salivette collection methods were compared in a separate group of eight euhydrated volunteers. All comparisons were made using paired t-tests. The diagnostic potential of body fluids was additionally evaluated. Dehydration (3.1 ± 0.5% loss of body mass) decreased PV (-0.49 ± 0.12 L; -15.12 ± 3.94% change), but Sosm changes were marginal ( 0.05). Extracelluar dehydration was not detectable using plasma, urine, or saliva measures. Salivette and expectoration sampling methods produced similar, consistent results for Sosm, suggesting no methodological influence on Sosm.

  9. Extracellular vesicles in the hematopoietic microenvironment

    Science.gov (United States)

    Butler, John T.; Abdelhamed, Sherif; Kurre, Peter

    2018-01-01

    Self-renewal and differentiation are defining characteristics of hematopoietic stem and progenitor cells, and their balanced regulation is central to lifelong function of both blood and immune systems. In addition to cell-intrinsic programs, hematopoietic stem and progenitor cell fate decisions are subject to extrinsic cues from within the bone marrow microenvironment and systemically. Yet, many of the paracrine and endocrine mediators that shape hematopoietic function remain to be discovered. Extracellular vesicles serve as evolutionarily conserved, constitutive regulators of cell and tissue homeostasis, with several recent reports supporting a role for extracellular vesicles in the regulation of hematopoiesis. We review the physiological and pathophysiological effects that extracellular vesicles have on bone marrow compartmental function while highlighting progress in understanding vesicle biogenesis, cargo incorporation, differential uptake, and downstream effects of vesicle internalization. This review also touches on the role of extracellular vesicles in hematopoietic stem and progenitor cell fate regulation and recent advances in therapeutic and diagnostic applications of extracellular vesicles in hematologic disorders. PMID:29439185

  10. Endothelial Extracellular Vesicles-Promises and Challenges.

    Science.gov (United States)

    Hromada, Carina; Mühleder, Severin; Grillari, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2017-01-01

    Extracellular vesicles, including exosomes, microparticles, and apoptotic bodies, are phospholipid bilayer-enclosed vesicles that have once been considered as cell debris lacking biological functions. However, they have recently gained immense interest in the scientific community due to their role in intercellular communication, immunity, tissue regeneration as well as in the onset, and progression of various pathologic conditions. Extracellular vesicles of endothelial origin have been found to play a versatile role in the human body, since they are on the one hand known to contribute to cardiovascular diseases, but on the other hand have also been reported to promote endothelial cell survival. Hence, endothelial extracellular vesicles hold promising therapeutic potential to be used as a new tool to detect as well as treat a great number of diseases. This calls for clinically approved, standardized, and efficient isolation and characterization protocols to harvest and purify endothelial extracellular vesicles. However, such methods and techniques to fulfill stringent requirements for clinical trials have yet to be developed or are not harmonized internationally. In this review, recent advances and challenges in the field of endothelial extracellular vesicle research are discussed and current problems and limitations regarding isolation and characterization are pointed out.

  11. Optical sensing system for ATP using porphyrin-alkaloid conjugates

    Czech Academy of Sciences Publication Activity Database

    Kejík, Z.; Záruba, K.; Machalík, D.; Šebek, Jiří; Dian, J.; Pataridis, S.; Volka, K.; Král, Vladimír

    -, č. 14 (2006), s. 1533-1539 ISSN 1359-7345 R&D Projects: GA MŠk(CZ) LC512; GA ČR(CZ) GA203/03/0900; GA ČR(CZ) GA203/06/1038 Grant - others:CIDNA(XE) NMP4-CT-2003-505669 Institutional research plan: CEZ:AV0Z40550506 Keywords : optical sensing * ATP * porphyrin Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.521, year: 2006

  12. Deficiency of mitochondrial ATP synthase of nuclear genetic origin

    Czech Academy of Sciences Publication Activity Database

    Sperl, W.; Ješina, Pavel; Zeman, J.; Mayr, J. A.; DeMeirleir, L.; VanCoster, R.; Pícková, Andrea; Hansíková, H.; Houšťková, H.; Krejčík, Zdeněk; Koch, J.; Smet, J.; Muss, W.; Holme, E.; Houštěk, Josef

    2006-01-01

    Roč. 16, č. 11 (2006), s. 821-829 ISSN 0960-8966 R&D Projects: GA MZd(CZ) NR7790; GA MŠk(CZ) 1M0520 Grant - others:CZ-AT(CZ) 6-06-3 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondria * ATP synthase * disease Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.615, year: 2006

  13. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  14. Alternative mitochondrial functions in cell physiopathology: beyond ATP production

    Directory of Open Access Journals (Sweden)

    Kowaltowski A.J.

    2000-01-01

    Full Text Available It is well known that mitochondria are the main site for ATP generation within most tissues. However, mitochondria also participate in a surprising number of alternative activities, including intracellular Ca2+ regulation, thermogenesis and the control of apoptosis. In addition, mitochondria are the main cellular generators of reactive oxygen species, and may trigger necrotic cell death under conditions of oxidative stress. This review concentrates on these alternative mitochondrial functions, and their role in cell physiopathology.

  15. Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells: regulation of ATP sulfurylase and SO4(-2) transport activities

    International Nuclear Information System (INIS)

    Hatzfeld, Y.; Cathala, N.; Grignon, C.; Davidian, J.C.

    1998-01-01

    To determine if the ATP sulfurylase reaction is a regulatory step for the SO4(2-)-assimilation pathway in plants, an Arabidopsis thaliana ATP sulfurylase cDNA, APS2, was fused to the 355 promoter of the cauliflower mosaic virus and introduced by Agrobacterium tumefaciens-mediated transformation into isolated Bright Yellow 2 tobacco (Nicotiana tabacum) cells. The ATP sulfurylase activity in transgenic cells was 8-fold that in control cells, and was correlated with the expression of a specific polypeptide revealed by western analysis using an anti-ATP sulfurylase antibody. The molecular mass of this polypeptide agreed with that for the overexpressed mature protein. ATP sulfurylase overexpression had no effect on [35S]SO4(2-) influx or ATP sulfurylase activity regulation by S availability, except that ATP sulfurylase activity variations in response to S starvation in transgenic cells were 8 times higher than in the wild type. There were also no differences in cell growth or sensitivity to SeO4(2-) (a toxic SO4(2-) analog) between transgenic and wild-type cells. We propose that in Bright Yellow 2 tobacco cells, the ATP sulfurylase derepression by S deficiency may involve a posttranscriptional mechanism, and that the ATP sulfurylase abundance is not limiting for cell metabolism

  16. Persister formation in Staphylococcus aureus is associated with ATP depletion

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Brian P.; Rowe, Sarah E.; Gandt, Autumn Brown; Nuxoll, Austin S.; Donegan, Niles P.; Zalis, Eliza A.; Clair, Geremy; Adkins, Joshua N.; Cheung, Ambrose L.; Lewis, Kim

    2016-04-18

    Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic bacterial infection and antibiotic treatment failure. In Escherichia coli, toxin/antitoxin (TA) modules are responsible for persister formation. The mechanism of persister formation in Gram positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrance to stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers was associated with a 100-1000 fold increased likelihood of survival to antibiotic challenge. We find that the antibiotic tolerance of these cells is due to a drop in intracellular ATP. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotic treatment.

  17. Human ATP-binding cassette (ABC transporter family

    Directory of Open Access Journals (Sweden)

    Vasiliou Vasilis

    2009-04-01

    Full Text Available Abstract There exist four fundamentally different classes of membrane-bound transport proteins: ion channels; transporters; aquaporins; and ATP-powered pumps. ATP-binding cassette (ABC transporters are an example of ATP-dependent pumps. ABC transporters are ubiquitous membrane-bound proteins, present in all prokaryotes, as well as plants, fungi, yeast and animals. These pumps can move substrates in (influx or out (efflux of cells. In mammals, ABC transporters are expressed predominantly in the liver, intestine, blood-brain barrier, blood-testis barrier, placenta and kidney. ABC proteins transport a number of endogenous substrates, including inorganic anions, metal ions, peptides, amino acids, sugars and a large number of hydrophobic compounds and metabolites across the plasma membrane, and also across intracellular membranes. The human genome contains 49 ABC genes, arranged in eight subfamilies and named via divergent evolution. That ABC genes are important is underscored by the fact that mutations in at least I I of these genes are already known to cause severe inherited diseases (eg cystic fibrosis and X-linked adrenoleukodystrophy [X-ALD]. ABC transporters also participate in the movement of most drugs and their metabolites across cell surface and cellular organelle membranes; thus, defects in these genes can be important in terms of cancer therapy, pharmacokinetics and innumerable pharmacogenetic disorders.

  18. Extracellular polysaccharides produced by marine bacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Kim, Se-Kwon

    2014-01-01

    Extracellular polysaccharides (EPSs) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids, and humic substances. Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides, and extracellular polysaccharides or exopolysaccharides. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of marine microorganisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. The aim of this chapter is to give an overview of current knowledge on extracellular polysaccharides producing marine bacteria isolated from marine environment. © 2014 Elsevier Inc. All rights reserved.

  19. Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia

    DEFF Research Database (Denmark)

    Parpura, Vladimir; Fisher, Elizabeth S; Lechleiter, James D

    2017-01-01

    Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate...... can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology...

  20. [ATP-P2X7R signalling pathway and its effects in parasitic diseases].

    Science.gov (United States)

    Wang-Fang, J; Chun-Jie, J; Fei, G; Jia-Hui, L; Ming, L

    2017-07-24

    ATP (Adenosine triphosphate) is an important endogenous damage - associated molecular pattern (DAMP). P2X 7 R is an ATP-gated cation channel. ATP-P2X 7 R plays a vital role in the pathophysiology of many diseases because P2X 7 R is distributed on various immune cells. ATP-P2X 7 R signal transduction pathway has been implicated to participate in the body's immune defense against pathogens. This paper reviews the recent progress regarding ATP-P2X 7 R and its effects on parasitic diseases.

  1. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Sinsabaugh, Robert L.; Belnap, Jayne; Findlay, Stuart G.; Follstad Shah, Jennifer J.; Hill, Brian H.; Kuehn, Kevin A.; Kuske, Cheryl; Litvak, Marcy E.; Martinez, Noelle G.; Moorhead, Daryl L.; Warnock, Daniel D.

    2014-01-01

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimilation of carbon, nitrogen and phosphorus by diverse aquatic and terrestrial microbial communities (1160 cases). Regression analyses were conducted by habitat (aquatic and terrestrial), enzyme class (hydrolases and oxidoreductases) and assay methodology (low affinity and high affinity substrates) to relate potential reaction rates to substrate availability. Across enzyme classes and habitats, the scaling relationships between apparent Vmax and apparent Km followed similar power laws with exponents of 0.44 to 0.67. These exponents, called elasticities, were not statistically distinct from a central value of 0.50, which occurs when the Km of an enzyme equals substrate concentration, a condition optimal for maintenance of steady state. We also conducted an ecosystem scale analysis of ten extracellular hydrolase activities in relation to soil and sediment organic carbon (2,000–5,000 cases/enzyme) that yielded elasticities near 1.0 (0.9 ± 0.2, n = 36). At the metabolomic scale, the elasticity of extracellular enzymatic reactions is the proportionality constant that connects the C:N:P stoichiometries of organic matter and ecoenzymatic activities. At the ecosystem scale, the elasticity of extracellular enzymatic reactions shows that organic matter ultimately limits effective enzyme binding sites. Our findings suggest that one mechanism by which microbial communities maintain homeostasis is regulating extracellular enzyme expression to optimize the short-term responsiveness of substrate acquisition. The analyses also show that, like elemental stoichiometry, the fundamental attributes of enzymatic reactions can be extrapolated from biochemical to community and ecosystem scales.

  2. Conserved lysin and arginin residues in the extracellular loop of P2X(3) receptors are involved in agonist binding.

    Science.gov (United States)

    Fischer, Wolfgang; Zadori, Zoltan; Kullnick, Yvonne; Gröger-Arndt, Helke; Franke, Heike; Wirkner, Kerstin; Illes, Peter; Mager, Peter P

    2007-12-08

    Wild-type human (h) P2X(3) receptors expressed in HEK293 cells responded to the prototypic agonist alpha,beta-methylene ATP (alpha,beta-meATP) with rapidly desensitizing inward currents and an increase in the intracellular Ca(2+) concentration. In contrast to electrophysiological recordings, Ca(2+) microfluorimetry showed a lower maximum of the concentration-response curve of alpha,beta-meATP in the transiently than in the permanently transfected HEK293 cells. However, the concentrations causing 50% of the maximum possible effect (EC(50) values) were identical, when measured with either method. In order to determine the role of certain conserved, positively charged amino acids in the nucleotide binding domains (NBD-1-4) of hP2X(3) receptors for agonist binding, the lysine-63, -65, -176 and -299 as well as the arginine-281 and -295 residues were substituted by the neutral amino acid alanine. We observed no effect of alpha,beta-meATP at the K63A, K176A, R295A, and K299A mutants, and a marked decrease of agonist potency at the K65A and R281A mutants. The P2X(3) receptor antagonist 2',3'-O-trinitrophenyl-ATP (TNP-ATP) blocked the effect of alpha,beta-meATP at the wild-type hP2X(3) receptor with lower affinity than at the mutant K65A, indicating an interference of this mutation with the docking of the antagonist with its binding sites. The use of confocal fluorescence microscopy in conjunction with an antibody raised against the extracellular loop of the hP2X(3) receptor documented the expression of all mutants in the plasma membrane of HEK293 cells. Eventually, we modelled the possible agonist and antagonist binding sites NBD-1-4 of the hP2X(3) subunit by using structural bioinformatics. This model is in complete agreement with the available data and integrates results from mutagenesis studies with geometry optimization of the tertiary structure predictions of the receptor.

  3. Bovine Polymorphonuclear Neutrophils Cast Neutrophil Extracellular Traps against the Abortive Parasite Neospora caninum

    Science.gov (United States)

    Villagra-Blanco, Rodolfo; Silva, Liliana M. R.; Muñoz-Caro, Tamara; Yang, Zhengtao; Li, Jianhua; Gärtner, Ulrich; Taubert, Anja; Zhang, Xichen; Hermosilla, Carlos

    2017-01-01

    Neospora caninum represents a relevant apicomplexan parasite causing severe reproductive disorders in cattle worldwide. Neutrophil extracellular trap (NET) generation was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites. In vitro interactions of bovine PMN with N. caninum were analyzed at different ratios and time spans. Extracellular DNA staining was used to illustrate the typical molecules of NETs [i.e., histones (H3), neutrophil elastase (NE), myeloperoxidase (MPO), pentraxin] via antibody-based immunofluorescence analyses. Functional inhibitor treatments were applied to reveal the role of several enzymes [NADPH oxidase (NOX), NE, MPO, PAD4], ATP-dependent P2Y2 receptor, store-operated Ca++entry (SOCE), CD11b receptor, ERK1/2- and p38 MAPK-mediated signaling pathway in tachyzoite-triggered NETosis. N. caninum tachyzoites triggered NETosis in a time- and dose-dependent manner. Scanning electron microscopy analyses revealed NET structures being released by bovine PMN and entrapping tachyzoites. N. caninum-induced NET formation was found not to be NOX-, NE-, MPO-, PAD4-, ERK1/2-, and p38 MAP kinase-dependent process since inhibition of these enzymes led to a slight decrease of NET formation. CD11b was also identified as a neutrophil receptor being involved in NETosis. Furthermore, N. caninum-triggered NETosis depends on Ca++ influx as well as neutrophil metabolism since both the inhibition of SOCE and of P2Y2-mediated ATP uptake diminished NET formation. Host cell invasion assays indicated that PMN-derived NETosis hampered tachyzoites from active host cell invasion, thereby inhibiting further intracellular replication. NET formation represents an early and effective mechanism of response of the innate immune system, which might reduce initial infection rates during the acute phase of cattle neosporosis. PMID:28611772

  4. atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples

    Science.gov (United States)

    2013-01-01

    Background The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. Results Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. Conclusions The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples. PMID:24299240

  5. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  6. Synthesis of high specific activity tritium labelled [2-3H]-adenosine-5'-triphosphate

    International Nuclear Information System (INIS)

    Jaiswal, D.K.; Morimoto, H.; Trump, E.L.; Williams, P.G.; Wemmer, D.E.

    1996-01-01

    A procedure for high level tritium labelling at the C2-H position of adenosine 5'-triphosphate ([2- 3 H]-ATP, 1), based on the tritiodehalogenation reaction of 2-bromoadenosine 5'-triphosphate (2) has been elaborated. This precursor was prepared in a six-step synthesis from guanosine. The tritiodehalogenation of (2) for three hours over palladium oxide in phosphate buffer yielded tritium labelled ATP with high specific activity, in good chemical yield. (author)

  7. Effect of irradiation on detection of bacteria in dehydrated vegetables with ATP bioluminescence assay

    International Nuclear Information System (INIS)

    Xiao Huan; Luo Shishi; Wang Zegang; Feng Min; Zhu Jiating; Chen Xiulan; Zhai Jianqing

    2011-01-01

    ATP bioluminescence intensity of 4 kinds of irradiated dehydrated vegetables was inconsistent with the bacteria number, the reasons were investigated in this paper. Results showed that irradiation had little effect on background luminescence, and there was no effect on luciferase-luminous system. When irradiation killed the bacteria, the ATPase activity also decreased. As a result, the ATP content in bacteria didn't decreased with the killed of bacteria, which contributed to the increase of free ATP in ATP extract and finally led to the disagreement between the bioluminescence intensity and the actual number of bacteria. When the free ATP in the dehydrated vegetable was removed, the bioluminescence intensity of ATP extract was consistent with the actual number of bacteria in irradiated dehydrated vegetable and ATP bioluminescence technology could be used in bacteria detection of irradiated samples. (authors)

  8. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract

    Directory of Open Access Journals (Sweden)

    Afrah Eltayeb Mohammed

    2015-05-01

    Conclusions: Our findings indicated that extracellular synthesis of AgNPs mediated by E. camaldulensis leaf extract had an efficient bactericidal activity against the bacterial species tested. The exact mechanism of the extracellular biosynthesis of metal NP was not well understood. Further studies are needed to highlight the biosynthesis process of AgNPs and also to characterize the toxicity effect of these particles.

  9. Abnormal secretion or extracellular matrix incorporation of fibrillin by dermal fibroblasts from patients with thoracic aortic aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Milewicz, D.; Cao, S.; Cosselli, J. [Univ. of Texas Medical School, Houston, TX (United States)

    1994-09-01

    Abnormal synthesis, secretion, and extracellular matrix incorporation of fibrillin is observed in the majority of fibroblast cell strains obtained from individuals with the Marfan syndrome (>85%). These fibrillin protein abnormalities are due to mutations in the FBN1 gene. We have screened fibroblast cell strains from patients with thoracic aortic aneurysms (TAA) without skeletal or ocular features of the Marfan syndrome for defects in fibrillin synthesis or processing. Dermal fibroblasts obtained from biopsies were pulse labeled with [{sup 35}S]cysteine for 30 minutes and then chased for 0, 4, and 20 hours. The media, cell lysate and extracellular matrix were harvested separately, then analyzed by SDS-PAGE. We selected fibroblasts from 17 TAA patients to study based on the development of a TAA at a young age or a family history of TAAs. Cells from 3 patients synthesized and secreted fibrillin normally, but did not incorporate the fibrillin in the extracellular matrix. None of the cell strains were found to have diminished synthesis of fibrillin when compared with control cells. We were unable to detect abnormalities in the synthesis, secretion, or matrix incorporation of fibrillin by cells from 9 of the 17 patients. These results indicate that fibrillin protein defects are found in a significant number of patients with TAAs who are young or have a family history of TAAs. Analysis of the FBN1 gene for mutations in these patients with fibrillin protein defects will determine if the observed protein abnormalities are the result of FBN1 gene mutations.

  10. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  11. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    Science.gov (United States)

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of the ATPase inhibitor protein IF{sub 1} on H{sup +} translocation in the mitochondrial ATP synthase complex

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti, Franco [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Inst. of Biomembranes and Bioenergetics, CNR, Bari (Italy); Gnoni, Antonio; Mangiullo, Roberto [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Papa, Sergio, E-mail: papabchm@cimedoc.uniba.it [Dept. of Medical Biochemistry, Biology and Physics, University of Bari (Italy); Inst. of Biomembranes and Bioenergetics, CNR, Bari (Italy)

    2009-06-19

    The H{sup +} F{sub o}F{sub 1}-ATP synthase complex of coupling membranes converts the proton-motive force into rotatory mechanical energy to drive ATP synthesis. The F{sub 1} moiety of the complex protrudes at the inner side of the membrane, the F{sub o} sector spans the membrane reaching the outer side. The IF{sub 1} component of the mitochondrial complex is a basic 10 kDa protein, which inhibits the F{sub o}F{sub 1}-ATP hydrolase activity. The mitochondrial matrix pH is the critical factor for the inhibitory binding of the central segment of IF{sub 1} (residue 42-58) to the F{sub 1}-{alpha}/{beta} subunits. We have analyzed the effect of native purified IF{sub 1} the IF{sub 1}-(42-58) synthetic peptide and its mutants on proton conduction, driven by ATP hydrolysis or by [K{sup +}] gradients, in bovine heart inside-out submitochondrial particles and in liposome-reconstituted F{sub o}F{sub 1} complex. The results show that IF{sub 1}, and in particular its central 42-58 segment, displays different inhibitory affinity for proton conduction from the F{sub 1} to the F{sub o} side and in the opposite direction. Cross-linking of IF{sub 1} to F{sub 1}-{alpha}/{beta} subunits inhibits the ATP-driven H{sup +} translocation but enhances H{sup +} conduction in the reverse direction. These observation are discussed in terms of the rotary mechanism of the F{sub o}F{sub 1} complex.

  13. Fibroblasts and the extracellular matrix in right ventricular disease.

    Science.gov (United States)

    Frangogiannis, Nikolaos G

    2017-10-01

    Right ventricular failure predicts adverse outcome in patients with pulmonary hypertension (PH), and in subjects with left ventricular heart failure and is associated with interstitial fibrosis. This review manuscript discusses the cellular effectors and molecular mechanisms implicated in right ventricular fibrosis. The right ventricular interstitium contains vascular cells, fibroblasts, and immune cells, enmeshed in a collagen-based matrix. Right ventricular pressure overload in PH is associated with the expansion of the fibroblast population, myofibroblast activation, and secretion of extracellular matrix proteins. Mechanosensitive transduction of adrenergic signalling and stimulation of the renin-angiotensin-aldosterone cascade trigger the activation of right ventricular fibroblasts. Inflammatory cytokines and chemokines may contribute to expansion and activation of macrophages that may serve as a source of fibrogenic growth factors, such as transforming growth factor (TGF)-β. Endothelin-1, TGF-βs, and matricellular proteins co-operate to activate cardiac myofibroblasts, and promote synthesis of matrix proteins. In comparison with the left ventricle, the RV tolerates well volume overload and ischemia; whether the right ventricular interstitial cells and matrix are implicated in these favourable responses remains unknown. Expansion of fibroblasts and extracellular matrix protein deposition are prominent features of arrhythmogenic right ventricular cardiomyopathies and may be implicated in the pathogenesis of arrhythmic events. Prevailing conceptual paradigms on right ventricular remodelling are based on extrapolation of findings in models of left ventricular injury. Considering the unique embryologic, morphological, and physiologic properties of the RV and the clinical significance of right ventricular failure, there is a need further to dissect RV-specific mechanisms of fibrosis and interstitial remodelling. Published on behalf of the European Society of

  14. Phosphocreatine, an Intracellular High-Energy Compound, is Found in the Extracellular Fluid of the Seminal Vesicles in Mice and Rats

    Science.gov (United States)

    Lee, H. J.; Fillers, W. S.; Iyengar, M. R.

    1988-10-01

    High levels of phosphocreatine, a compound known to serve as an intracellular energy reserve, were found in the fluid contained in seminal vesicle glands. The concentrations of phosphocreatine in the extracellular fluid in the mouse and rat were found to be 5.6 ± 1.6 and 2.2 ± 0.8 μ mol/g, respectively, which are higher than the intracellular levels reported for smooth muscles. The creatine concentrations in the seminal vesicular fluid from these two species were 22.8 ± 3.1 and 13.0 ± 5.3 μ mol/g, respectively. These creatine levels are approximately 100 and 65 times higher than the creatine levels in mammalian blood. Smaller amounts of ATP (phosphocreatine/ATP ratio of 20-40) and traces of ADP were also found. Comparison of the pattern of distribution of macromolecules (proteins and DNA) with the distribution of phosphocreatine between the cells and the fluid of the seminal vesicle indicates that cell lysis did not account for the phosphocreatine in the seminal vesicle fluid. Rather, the available evidence strongly suggests that this high-energy compound is actively secreted. We found that in the testes, the sperm are exposed to the highest known creatine concentration in any mammalian tissue studied. Based on these results and other recent reports, we propose that the extracellular phosphocreatine, ATP, and creatine are involved in sperm metabolism.

  15. Clusterin (Apolipoprotein J), a Molecular Chaperone That Facilitates Degradation of the Copper-ATPases ATP7A and ATP7B

    NARCIS (Netherlands)

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2011-01-01

    The copper-transporting P1B-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper.

  16. Distinct Wilson's disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B

    NARCIS (Netherlands)

    de Bie, Prim; van de Sluis, Bart; Burstein, Ezra; van den Berghe, Peter V. E.; Muller, Patricia; Berger, Ruud; Gitlin, Jonathan D.; Wijmenga, Cisca; Klomp, Leo W. J.

    2007-01-01

    Background & Aims: Wilson's disease (WD) is characterized by hepatic copper overload and caused by mutations in the gene encoding the copper-transporting P-type adenosine triphospharase (ATPase) ATP7B. ATP7B interacts with COMMD1, a protein that is deleted in Bedlington terriers with hereditary

  17. Interaction of acetamiprid with extracellular polymeric substances ...

    African Journals Online (AJOL)

    Extracellular polymeric substances (EPS) are important components of activated sludge and it plays an important role in removing pollutants. The interaction between EPS and organic pollutants is still little known. In the present study, the interaction of soluble/bound EPS with acetamiprid, a neonicotinoid insecticide, was ...

  18. Optimization of extracellular catalase production from Aspergillus ...

    African Journals Online (AJOL)

    The studies of the effect of each variable and the establishment of a correlation between the response of enzyme activity and variables revealed that the link is a multiple linear regression form. The optimization was carried out through a simplex algorithm. The amount of extracellular catalase produced by the strain in the ...

  19. Methodological Guidelines to Study Extracellular Vesicles

    NARCIS (Netherlands)

    Coumans, Frank A. W.; Brisson, Alain R.; Buzas, Edit I.; Dignat-George, Françoise; Drees, Esther E. E.; El-Andaloussi, Samir; Emanueli, Costanza; Gasecka, Aleksandra; Hendrix, An; Hill, Andrew F.; Lacroix, Romaric; Lee, Yi; van Leeuwen, Ton G.; Mackman, Nigel; Mäger, Imre; Nolan, John P.; van der Pol, Edwin; Pegtel, D. Michiel; Sahoo, Susmita; Siljander, Pia R. M.; Sturk, Guus; de Wever, Olivier; Nieuwland, Rienk

    2017-01-01

    Owing to the relationship between extracellular vesicles (EVs) and physiological and pathological conditions, the interest in EVs is exponentially growing. EVs hold high hopes for novel diagnostic and translational discoveries. This review provides an expert-based update of recent advances in the

  20. Production of extracellular aspartic protease in submerged ...

    African Journals Online (AJOL)

    Production of extracellular aspartic protease in submerged fermentation with Mucor mucedo DSM 809. ... The preferred method was the inoculation of the culture media with spores at a total load of 6x105 spores per flask. Key words: Milk clotting enzyme, Aspartic protease, Mucor mucedo, Sub-merged fermentation.

  1. Extracellular space diffusion and extrasynaptic transmission

    Czech Academy of Sciences Publication Activity Database

    Vargová, Lýdia; Syková, Eva

    2008-01-01

    Roč. 57, Suppl.3 (2008), S89-S99 ISSN 0862-8408 R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50390512 Keywords : Diffusion * Extracellular volume * Tortuosity Subject RIV: FH - Neurology Impact factor: 1.653, year: 2008

  2. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  3. Optimization of extracellular polysaccharide production in ...

    African Journals Online (AJOL)

    The present study was conducted to optimize the media composition through response surface methodology (RSM) for extracellular polysaccharide (EPS) production in Halobacillus trueperi AJSK strain isolated from the salt pan. Halobacillus trueperi was identified with morphological, biochemical characteristics as well as ...

  4. Heparin affinity purification of extracellular vesicles

    NARCIS (Netherlands)<