WorldWideScience

Sample records for extra focal convective

  1. CALCULATION OF A GLARE STOP FOR TWO-MIRROR EXTRA-FOCAL OBJECTIVE

    Directory of Open Access Journals (Sweden)

    L. F. Zambrano

    2017-01-01

    Full Text Available Recently, efforts to improve optical characteristics in canonical mirror systems, including aspherical surfaces and corrective aberration capabilities. At the same time, much attention is paid to the development of new optical schemes of two-mirror objectives. Development measures to protect the image plane from stray light and harmful flows with minimal vignetting and screening is one of the most perspective ways for improving the image quality objectives. The only method to eliminate or even reduce these non-constructive rays is to set glare stops. The aim of the work was an improving method for constructing a glare stop to protect the image plane and the creation of a calculation algorithm of glare stop for protecting the image plane based on two-mirror extra-focal objectives.The study was conducted in two stages. In the course of the first stage, the positions of screening and intermediate image plane were obtained, as well as the central screening coefficient. At the second stage, an arrangement for the position of glare stop is proposed using the algorithm calculation. Thus, mathematical expressions were achieved by geometric constructions. The relation of the screening coefficient with the distance between the surfaces of the mirrors and the height of the paraxial rays is established. А representation of vignetting diagram for two-mirror extra-focal objective with D/f´ = 1 : 1,3 and 2ω = 4° was realized. The Q estimation of vignetting of inclined light beams is k= 0,56.

  2. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are

  3. Phenomenology of convection-parameterization closure

    Directory of Open Access Journals (Sweden)

    J.-I. Yano

    2013-04-01

    Full Text Available Closure is a problem of defining the convective intensity in a given parameterization. In spite of many years of efforts and progress, it is still considered an overall unresolved problem. The present article reviews this problem from phenomenological perspectives. The physical variables that may contribute in defining the convective intensity are listed, and their statistical significances identified by observational data analyses are reviewed. A possibility is discussed for identifying a correct closure hypothesis by performing a linear stability analysis of tropical convectively coupled waves with various different closure hypotheses. Various individual theoretical issues are considered from various different perspectives. The review also emphasizes that the dominant physical factors controlling convection differ between the tropics and extra-tropics, as well as between oceanic and land areas. Both observational as well as theoretical analyses, often focused on the tropics, do not necessarily lead to conclusions consistent with our operational experiences focused on midlatitudes. Though we emphasize the importance of the interplays between these observational, theoretical and operational perspectives, we also face challenges for establishing a solid research framework that is universally applicable. An energy cycle framework is suggested as such a candidate.

  4. NUMERICALLY DETERMINED TRANSPORT LAWS FOR FINGERING ('THERMOHALINE') CONVECTION IN ASTROPHYSICS

    International Nuclear Information System (INIS)

    Traxler, A.; Garaud, P.; Stellmach, S.

    2011-01-01

    We present the first three-dimensional simulations of fingering convection performed at parameter values approaching those relevant for astrophysics. Our simulations reveal the existence of simple asymptotic scaling laws for turbulent heat and compositional transport, which can be straightforwardly extrapolated from our numerically tractable values to the true astrophysical regime. Our investigation also indicates that thermo-compositional 'staircases', a key consequence of fingering convection in the ocean, cannot form spontaneously in the fingering regime in stellar interiors. Our proposed empirically determined transport laws thus provide simple prescriptions for mixing by fingering convection in a variety of astrophysical situations, and should, from here on, be used preferentially over older and less accurate parameterizations. They also establish that fingering convection does not provide sufficient extra-mixing to explain observed chemical abundances in red giant branch stars.

  5. The role of executive functioning in memory performance in pediatric focal epilepsy

    Science.gov (United States)

    Sepeta, Leigh N.; Casaletto, Kaitlin Blackstone; Terwilliger, Virginia; Facella-Ervolini, Joy; Sady, Maegan; Mayo, Jessica; Gaillard, William D.; Berl, Madison M.

    2016-01-01

    Objective Learning and memory are essential for academic success and everyday functioning, but the pattern of memory skills and its relationship to executive functioning in children with focal epilepsy is not fully delineated. We address a gap in the literature by examining the relationship between memory and executive functioning in a pediatric focal epilepsy population. Methods Seventy children with focal epilepsy and 70 typically developing children matched on age, intellectual functioning, and gender underwent neuropsychological assessment, including measures of intelligence (WASI/DAS), as well as visual (CMS Dot Locations) and verbal episodic memory (WRAML Story Memory and CVLT-C). Executive functioning was measured directly (WISC-IV Digit Span Backward; CELF-IV Recalling Sentences) and by parent report (Behavior Rating Inventory of Executive Function (BRIEF)). Results Children with focal epilepsy had lower delayed free recall scores than controls across visual and verbal memory tasks (p = 0.02; partial η2 = .12). In contrast, recognition memory performance was similar for patients and controls (p = 0.36; partial η2 = .03). Children with focal epilepsy demonstrated difficulties in working memory (p = 0.02; partial η2 = .08) and planning/organization (p = 0.02) compared to controls. Working memory predicted 9–19% of the variance in delayed free recall for verbal and visual memory; organization predicted 9–10% of the variance in verbal memory. Patients with both left and right focal epilepsy demonstrated more difficulty on verbal versus visual tasks (p = 0.002). Memory performance did not differ by location of seizure foci (temporal vs. extra-temporal, frontal vs. extra-frontal). Significance Children with focal epilepsy demonstrated memory ability within age-level expectations, but delayed free recall was inefficient compared to typically developing controls. Memory difficulties were not related to general cognitive impairment or seizure localization

  6. DESI focal plate mechanical integration and cooling

    Science.gov (United States)

    Lambert, A. R.; Besuner, R. W.; Claybaugh, T. M.; Silber, J. H.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique[1]. The spectra of 40 million galaxies over 14000 sq. deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. This paper describes the mechanical integration of the DESI focal plate and the thermal system design. The DESI focal plate is comprised of ten identical petal assemblies. Each petal contains 500 robotic fiber positioners. Each petal is a complete, self-contained unit, independent from the others, with integrated power supply, controllers, fiber routing, and cooling services. The major advantages of this scheme are: (1) supports installation and removal of complete petal assemblies in-situ, without disturbing the others, (2) component production, assembly stations, and test procedures are repeated and parallelizable, (3) a complete, full-scale prototype can be built and tested at an early date, (4) each production petal can be surveyed and tested as a complete unit, prior to integration, from the fiber tip at the focal surface to the fiber slit at the spectrograph. The ten petal assemblies will be installed in a single integration ring, which is mounted to the DESI corrector. The aluminum integration ring attaches to the steel corrector barrel via a flexured steel adapter, isolating the focal plate from differential thermal expansions. The plate scale will be kept stable by conductive cooling of the petal assembly. The guider and wavefront sensors (one per petal) will be convectively cooled by forced flow of air. Heat will be removed from the system at ten liquid-cooled cold plates, one per petal, operating at ambient temperature. The entire focal plate structure is enclosed in an insulating shroud, which serves as a thermal barrier

  7. EXTraS: Exploring the X-ray Transient and variable Sky

    Science.gov (United States)

    De Luca, A.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Watson, M.; Haberl, F.; Wilms, J.

    2017-10-01

    The EXTraS project extracted all temporal domain information buried in the whole database collected by the EPIC cameras onboard the XMM-Newton mission. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in time scale and six orders of magnitude in flux, as well as a search for fast transients, missed by standard image analysis. Phenomenological classification of variable sources, based on X-ray and multiwavelength information, has also been performed. All results and products of EXTraS are made available to the scientific community through a web public data archive. A dedicated science gateway will allow scientists to apply EXTraS pipelines on new observations. EXTraS is the most comprehensive analysis of variability, on the largest ever sample of soft X-ray sources. The resulting archive and tools disclose an enormous scientific discovery space to the community, with applications ranging from the search for rare events to population studies, with impact on the study of virtually all astrophysical source classes. EXTraS, funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).

  8. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  9. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  10. Seizure ending signs in patients with dyscognitive focal seizures.

    Science.gov (United States)

    Gavvala, Jay R; Gerard, Elizabeth E; Macken, Mícheál; Schuele, Stephan U

    2015-09-01

    Signs indicating the end of a focal seizure with loss of awareness and/or responsiveness but without progression to focal or generalized motor symptoms are poorly defined and can be difficult to determine. Not recognizing the transition from ictal to postictal behaviour can affect seizure reporting accuracy by family members and may lead to delayed or a lack of examination during EEG monitoring, erroneous seizure localization and inadequate medical intervention for prolonged seizure duration. Our epilepsy monitoring unit database was searched for focal seizures without secondary generalization for the period from 2007 to 2011. The first focal seizure in a patient with loss of awareness and/or responsiveness and/or behavioural arrest, with or without automatisms, was included. Seizures without objective symptoms or inadequate video-EEG quality were excluded. A total of 67 patients were included, with an average age of 41.7 years. Thirty-six of the patients had seizures from the left hemisphere and 29 from the right. All patients showed an abrupt change in motor activity and resumed contact with the environment as a sign of clinical seizure ending. Specific ending signs (nose wiping, coughing, sighing, throat clearing, or laughter) were seen in 23 of 47 of temporal lobe seizures and 7 of 20 extra-temporal seizures. Seizure ending signs are often subtle and the most common finding is a sudden change in motor activity and resumption of contact with the environment. More distinct signs, such as nose wiping, coughing or throat clearing, are not specific to temporal lobe onset. A higher proportion of seizures during sleep went unexamined, compared to those during wakefulness. This demonstrates that seizure semiology can be very subtle and arousals from sleep during monitoring should alert staff. Patient accounts of seizure frequency appear to be unreliable and witness reports need to be taken into account. [Published with video sequences].

  11. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  12. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  13. Focal myositis

    International Nuclear Information System (INIS)

    Kransdorf, M.J.; Temple, H.T.; Sweet, D.E.

    1998-01-01

    Focal myositis is a pseudotumor of soft tissue that typically occurs in the deep soft tissue of the extremities, and is a relatively rare lesion. There is a wide clinical spectrum, with approximately one-third of patients with focal myositis subsequently developing polymyositis, and clinical symptoms of generalized weakness, fever, myalgia, and weight loss, with elevation of creatine phosphokinase. We report the case of a patient with focal myositis who subsequently developed myositis ossificans-like features. (orig.)

  14. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  15. Focal myositis

    Energy Technology Data Exchange (ETDEWEB)

    Kransdorf, M.J. [Saint Mary`s Hospital, Richmond, VA (United States). Dept. of Radiol.]|[Department of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Temple, H.T. [Department of Orthopedic Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia (United States)]|[Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Sweet, D.E. [Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States)

    1998-05-01

    Focal myositis is a pseudotumor of soft tissue that typically occurs in the deep soft tissue of the extremities, and is a relatively rare lesion. There is a wide clinical spectrum, with approximately one-third of patients with focal myositis subsequently developing polymyositis, and clinical symptoms of generalized weakness, fever, myalgia, and weight loss, with elevation of creatine phosphokinase. We report the case of a patient with focal myositis who subsequently developed myositis ossificans-like features. (orig.) With 3 figs., 25 refs.

  16. Focal retinal phlebitis.

    Science.gov (United States)

    Hoang, Quan V; Freund, K Bailey; Klancnik, James M; Sorenson, John A; Cunningham, Emmett T; Yannuzzi, Lawrence A

    2012-01-01

    To report three cases of solitary, focal retinal phlebitis. An observational case series. Three eyes in three patients were noted to have unilateral decreased vision, macular edema, and a focal retinal phlebitis, which was not at an arteriovenous crossing. All three patients developed a branch retinal vein occlusion at the site of inflammation. These patients had no other evidence of intraocular inflammation, including vitritis, retinitis, retinal vasculitis, or choroiditis, nor was there any systemic disorder associated with inflammation, infection, or coagulation identified. Focal retinal phlebitis appears to be an uncommon and unique entity that produces macular edema and ultimately branch retinal vein occlusion. In our patients, the focal phlebitis and venous occlusion did not occur at an arteriovenous crossing, which is the typical site for branch retinal venous occlusive disease. This suggests that our cases represent a distinct clinical entity, which starts with a focal abnormality in the wall of a retinal venule, resulting in surrounding exudation and, ultimately, ends with branch retinal vein occlusion.

  17. Focal myositis

    International Nuclear Information System (INIS)

    Galloway, H.R.; Dahlstrom, J.E.; Bennett, G.M.

    2001-01-01

    Focal myositis is a rare, benign focal inflammation of muscle. The lesion often presents as a mass that may be mistaken for a soft tissue sarcoma. This report describes the MRI and histopathological features of a case and illustrates how the diagnosis may be suspected on the basis of the MR findings. Copyright (2001) Blackwell Science Pty Ltd

  18. Focal pancreatic enlargement: differentiation between pancreatic adenocarcinoma and focal pancreatitis on CT and ERCP

    International Nuclear Information System (INIS)

    Kim, Eun Kyung; Kim, Ki Whang; Lee, Jong Tae; Kim, Hee Soo; Yoo, Hyung Sik; Yu, Jeong Sik; Yoon, Sang Wook

    1995-01-01

    To differentiate the pancreatic adenocarcinoma from focal pancreatitis on CT and ERCP in cases of focal pancreatic enlargement. We analysed CT findings of 66 patients of pancreatic adenocarcinoma (n = 45) or focal pancreatitis (n = 21) with respect to size, density, calcification, pancreatic or biliary duct dilatation, fat plane obliteration around the vessels, direction of retroperitoneal extension, lymphadenopathy, pseudocyst formation and atrophy of pancreas. ERCP available in 48 patients were analysed in respect to morphologic appearance of CBD and pancreatic duct, and distance between the two ducts. The patients in focal pancreatitis were younger with more common history of alcohol drinking. There was no statistical difference in calcifications of the mass (18% in the adenocarcinoma, 33% in the focal pancreatitis), but a tendency of denser, larger number of calcifications was noted in focal pancreatitis. The finding of fat plane obliteration around the vessels were more common in pancreatic adenocarcinoma, and fascial thickenings were more prominent in focal pancreatitis, although not statistically significant. On ERCP, there were no differential points of CBD, pancreatic duct morphology, but distance between the two ducts at the lesion center was more wider in focal pancreatitis. Differentiating focal pancreatitis from pancreatic adenocarcinoma is difficult. However, we should consider the possibility of focal pancreatitis in cases of patients with young age, having alcoholic history in association with CT findings of large numbers of and dense calcifications, and ERCP findings of prominent separation of two duct at the lesion center

  19. Persistent extra-axial post-surgical collections and Propionibacterium acnes infection. Presentation of two cases and literature review.

    Science.gov (United States)

    González, Pedro; Thenier, José; Galárraga, Raúl; de la Lama, Adolfo; Azevedo, Eva; Conde, Cesáreo

    It is common to observe the persistence of extra-axial collections after craniotomies. Most of these disappear in weeks or months but some remain. The onset of focal symptoms or the growth of these persistent collections months or years after surgery may indicate the presence of a chronic and latent infection by germs of low virulence such as Propionibacterium acnes (P. acnes). We present two clinical cases with persistent extra-axial collections, which required surgery years after diagnosis, in which P. acnes was isolated as an aetiological agent and we reviewed the literature published in this regard. These are two patients who, following surgical procedures (decompressive craniectomy for severe TBI and craniotomy for right parietal meningioma) and extra-axial collections were kept, which were monitored over time and then were infected and required emergency evacuation. In these collections P. acnes grew as a causal agent and required targeted antibiotics. We must consider P. acnes as an infectious agent of post-surgical collections of long evolution. Atypical presentation and radiological changes may be helpful in diagnosis. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Transparent meta-analysis: does aging spare prospective memory with focal vs. non-focal cues?

    Directory of Open Access Journals (Sweden)

    Bob Uttl

    Full Text Available BACKGROUND: Prospective memory (ProM is the ability to become aware of a previously-formed plan at the right time and place. For over twenty years, researchers have been debating whether prospective memory declines with aging or whether it is spared by aging and, most recently, whether aging spares prospective memory with focal vs. non-focal cues. Two recent meta-analyses examining these claims did not include all relevant studies and ignored prevalent ceiling effects, age confounds, and did not distinguish between prospective memory subdomains (e.g., ProM proper, vigilance, habitual ProM (see Uttl, 2008, PLoS ONE. The present meta-analysis focuses on the following questions: Does prospective memory decline with aging? Does prospective memory with focal vs. non-focal cues decline with aging? Does the size of age-related declines with focal vs. non-focal cues vary across ProM subdomains? And are age-related declines in ProM smaller than age-related declines in retrospective memory? METHODS AND FINDINGS: A meta-analysis of event-cued ProM using data visualization and modeling, robust count methods, and conventional meta-analysis techniques revealed that first, the size of age-related declines in ProM with both focal and non-focal cues are large. Second, age-related declines in ProM with focal cues are larger in ProM proper and smaller in vigilance. Third, age-related declines in ProM proper with focal cues are as large as age-related declines in recall measures of retrospective memory. CONCLUSIONS: The results are consistent with Craik's (1983 proposal that age-related declines on ProM tasks are generally large, support the distinction between ProM proper vs. vigilance, and directly contradict widespread claims that ProM, with or without focal cues, is spared by aging.

  1. Investigation of the extra-extra-push by pre-scission neutron measurements with DEMON

    International Nuclear Information System (INIS)

    Rudolf, Gerard

    1998-01-01

    The objective of this talk is to present a simple method to calculate pre- and post-scission neutron multiplicities in the frame of the Bass model. This method is of particular interest for very heavy systems for which an extra-extra-push is supposed to hinder fusion. The multiplicities calculated by the model are compared to published data covering a broad range of projectile and target masses, and to more recent ones obtained with the help of the Demon detector and addressing specifically the existence of the extra-extra-push

  2. Focal thyroid inferno” on color Doppler ultrasonography: A specific feature of focal Hashimoto's thyroiditis

    International Nuclear Information System (INIS)

    Fu, Xianshui; Guo, Limei; Zhang, Huabin; Ran, Weiqiang; Fu, Peng; Li, Zhiqiang; Chen, Wen; Jiang, Ling; Wang, Jinrui; Jia, Jianwen

    2012-01-01

    Purpose: To evaluate color-Doppler features predictive of focal Hashimoto's thyroiditis. Materials and methods: A total of 521 patients with 561 thyroid nodules that underwent surgeries or gun biopsies were included in this study. These nodules were divided into three groups: focal Hashimoto's thyroiditis (104 nodules in 101 patients), benignity other than focal Hashimoto's thyroiditis (73 nodules in 70 patients), and malignancy (358 nodules in 350 patients). On color Doppler sonography, four vascularity types were determined as: hypovascularity, marked internal flow, marked peripheral flow and focal thyroid inferno. The χ 2 test was performed to seek the potential vascularity type with the predictive ability of certain thyroid pathology. Furthermore, the gray-scale features of each nodule were also studied. Results: The vascularity type I (hypovascularity) was more often seen in focal Hashimoto's thyroiditis than other benignity and malignancy (46% vs. 20.5% and 19%). While the type II (marked internal flow) showed the opposite tendency (26.9% [focal Hashimoto's thyroiditis] vs. 45.2% [other benignity] and 52.8% [malignancy]). However, type III (marked peripheral flow) was unable to predict any thyroid pathology. Importantly, type IV (focal thyroid inferno) was exclusive to focal Hashimoto's thyroiditis. All 8 type IV nodules appeared to be solid, hypoechoic, and well-defined. Using “focal thyroid inferno” as an indicator of FHT, the diagnostic sensitivity and specificity were 7.7% and 100% respectively. Conclusions: The vascularity type of “focal thyroid inferno” is specific for focal Hashimoto thyroiditis. Recognition of this particular feature may avoid unnecessary interventional procedures for some solid hypoechoic thyroid nodules suspicious of malignancy.

  3. TESTING CONVECTIVE-CORE OVERSHOOTING USING PERIOD SPACINGS OF DIPOLE MODES IN RED GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Montalban, J.; Noels, A.; Dupret, M.-A.; Scuflaire, R. [Institut d' Astrophysique et Geophysique de l' Universite de Liege, Allee du six Aout, 17 B-4000 Liege (Belgium); Miglio, A. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Ventura, P. [Osservatorio Astronomico di Roma-INAF, via Frascati 33, I-00040 Monteporzio Catone, Rome (Italy)

    2013-04-01

    Uncertainties on central mixing in main-sequence (MS) and core He-burning (He-B) phases affect key predictions of stellar evolution such as late evolutionary phases, chemical enrichment, ages, etc. We propose a test of the extension of extra-mixing in two relevant evolutionary phases based on period spacing ({Delta}P) of solar-like oscillating giants. From stellar models and their corresponding adiabatic frequencies (respectively, computed with ATON and LOSC codes), we provide the first predictions of the observable {Delta}P for stars in the red giant branch and in the red clump (RC). We find (1) a clear correlation between {Delta}P and the mass of the helium core (M{sub He}); the latter in intermediate-mass stars depends on the MS overshooting, and hence it can be used to set constraints on extra-mixing during MS when coupled with chemical composition; and (2) a linear dependence of the average value of the asymptotic period spacing (({Delta}P){sub a}) on the size of the convective core during the He-B phase. A first comparison with the inferred asymptotic period spacing for Kepler RC stars also suggests the need for extra-mixing during this phase, as evinced from other observational facts.

  4. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane

    Science.gov (United States)

    Zhang, Y. A.; Lin, C. F.; Lin, J. P.; Zeng, X. Y.; Yan, Q.; Zhou, X. T.; Guo, T. L.

    2018-04-01

    Electric-field-driven liquid crystal (ELC) lens with tunable focal length and their depth of field has been extensively applied in 3D display and imaging systems. In this work, a dual-layer electrode-driven liquid crystal (DELC) lens with electrically tunable focal length and controllable focal plane is demonstrated. ITO-SiO2-AZO electrodes with the dual-layer staggered structure on the top substrate are used as driven electrodes within a LC cell, which permits the establishment of an alternative controllability. The focal length of the DELC lens can be adjusted from 1.41 cm to 0.29 cm when the operating voltage changes from 15 V to 40 V. Furthermore, the focal plane of the DELC lens can selectively move by changing the driving method of the applied voltage to the next driven electrodes. This work demonstrates that the DELC lens has potential applications in imaging systems because of electrically tunable focal length and controllable focal plane.

  5. Inhomogeneous compact extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [Center of Gravity and Fundamental Metrology, VNIIMS, 46 Ozyornaya st., Moscow 119361 (Russian Federation); Budaev, R.I.; Grobov, A.V.; Dmitriev, A.E.; Rubin, Sergey G., E-mail: kb20@yandex.ru, E-mail: buday48@mail.ru, E-mail: alexey.grobov@gmail.com, E-mail: alexdintras@mail.ru, E-mail: sergeirubin@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow (Russian Federation)

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ{sub 4} in pure f ( R ) theory, and the extra dimensions are stable relative to the 'radion mode' of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ{sub 4}. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f ( R ) gravity.

  6. EXTRA LIFE

    Directory of Open Access Journals (Sweden)

    Ruth S. Contreras Espinosa

    2016-02-01

    Full Text Available El creciente número de personas jugando videojuegos significa que estos están teniendo un efecto innegable sobre nuestra cultura. Este efecto es claramente visible en una aceptación general. Los videojuegos también han cambiado la forma en que muchas otras formas de medios de comunicación, se producen y consumen. Los videojuegos tienen una influencia creciente en nuestra cultura, y en "EXTRA LIFE" diferentes autores expresan sus opiniones sobre este nuevo medio. EXTRA LIFE Abstract The increasing number of people playing video games means that they are having an undeniable effect on culture. This effect is clearly visible in the increasing mainstream acceptance of aspects of gaming culture. Video games have also changed the way that many other forms of media, are produced and consumed. Video games have an increasing influence on our culture,  and in "EXTRA LIFE" diferent authors have voiced their opinions on this new media. Keywords: Video games; culture; effects; games.

  7. The structure and dynamics of patterns of Benard convection cells

    International Nuclear Information System (INIS)

    Rivier, N.; Imperial Coll. of Science and Technology, London; Lausanne Univ.

    1990-08-01

    Benard-Marangoni convection, in containers with large aspect ratio, exhibits space-filling cellular structures, highly deformable, but crystallized. They contain dislocations and grain boundaries generated and moved by elementary topological transformations, and are subjected to a weak shear stress due to the earth's rotation. The cellular structure and its fluctuations are analyzed from a crystallographic viewpoint, by using two complementary approaches. One is a global analysis of cellular structures in cylindrical symmetry. Their structural stability and defect pattern are obtained as topological mode-locking of a continuous structural parameter. The other, a local, molecular dynamics of the cells, gives a realistic parametrization of the forces and the transformations by generalizing the Voronoi cell construction in one extra dimension. 23 refs., 8 figs

  8. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  9. STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Silva Aguirre, V.; Christensen-Dalsgaard, J.; Chaplin, W. J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, S.; Deheuvels, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Brandao, I. M.; Cunha, M. S.; Sousa, S. G. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Dogan, G. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Metcalfe, T. S. [Space Science Institute, Boulder, CO 80301 (United States); Serenelli, A. M.; Garcia, R. A. [Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106 (United States); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); Weiss, A. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching bei Muenchen (Germany); Appourchaux, T. [Institut d' Astrophysique Spatiale, Universite Paris Sud-CNRS (UMR8617) Batiment 121, F-91405 Orsay Cedex (France); Casagrande, L. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Cassisi, S. [INAF-Astronomical Observatory of Teramo, Via M. Maggini sn, I-64100 Teramo (Italy); Creevey, O. L. [Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, CNRS, I-06300 Nice, France. (France); Lebreton, Y. [Observatoire de Paris, GEPI, CNRS UMR 8111, F-92195 Meudon (France); Noels, A. [Institute of Astrophysics and Geophysics, University of Liege, B-4000 Liege (Belgium); and others

    2013-06-01

    Using asteroseismic data and stellar evolution models we obtain the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence lifetime is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass, and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.

  10. An introduction to extra dimensions

    International Nuclear Information System (INIS)

    Perez-Lorenzana, Abdel

    2005-01-01

    Models that involve extra dimensions have introduced completely new ways of looking up on old problems in theoretical physics. The aim of the present notes is to provide a brief introduction to the many uses that extra dimensions have found over the last few years, mainly following an effective field theory point of view. Most parts of the discussion are devoted to models with flat extra dimensions, covering both theoretical and phenomenological aspects. We also discuss some of the new ideas for model building where extra dimensions may play a role, including symmetry breaking by diverse new and old mechanisms. Some interesting applications of these ideas are discussed over the notes, including models for neutrino masses and proton stability. The last part of this review addresses some aspects of warped extra dimensions, and graviton localization

  11. Systems considerations in mosaic focal planes

    Science.gov (United States)

    White, K. P., III

    1983-08-01

    Two key reasons for pursuing the development of mosaic focal planes are reviewed and it is shown that rapid frame repetition rate is the only requirement that can be solved no other way than through mosaic focal planes. With the view that spaceborne mosaic focal plane sensors are necessarily 'smart sensors' requiring a lot of onboard processing just to function, it is pointed out that various artificial intelligence techniques may be the most appropriate to incorporate in the data processing. Finally, a novel mosaic focal plane design is proposed, termed a virtual mosaic focal plane, in response to other system constraints.

  12. Lateralizing value of unilateral relative ictal immobility in patients with refractory focal seizures--Looking beyond unilateral automatisms.

    Science.gov (United States)

    Agarwal, Priya; Kaul, Bhavna; Shukla, Garima; Srivastava, Achal; Singh, Mamta Bhushan; Goyal, Vinay; Behari, Madhuri; Suri, Ashish; Gupta, Aditya; Garg, Ajay; Gaikwad, Shailesh; Bal, C S

    2015-12-01

    Ictal motor phenomena play a crucial role in the localization of seizure focus in the management of refractory focal epilepsy. While the importance of unilateral automatisms is well established, little attention is paid to the contralateral relatively immobile limb. In cases where automatisms mimic clonic or dystonic movements and in the absence of previously well-established signs, unilateral relative ictal immobility (RII) is potentially useful as a lateralizing sign. This study was carried out to examine the lateralizing value of this sign and to define its characteristics among patients of refractory focal epilepsy. VEEGs of 69 consecutive patients of refractory focal epilepsy who had undergone epilepsy surgery at our center over last four years were reviewed and analyzed for the presence of RII. Unilateral RII was defined as a paucity of movement in one limb lasting for at least 10s while the contralateral limb showed purposive or semi-purposive movements (in the absence of tonic or dystonic posturing or clonic movements in the involved limb). The findings were seen in the light of VEEG, radiological and nuclear imaging data, and with post-surgical outcome. Unilateral RII as a lateralizing sign was found in 24 of 69 patients (34.78%), consisting of both temporal and extra temporal epilepsy, with 100% concordance with VEEG and MRI data. All patients demonstrating this sign had a good post-surgical outcome. RII, when well characterized is a frequent and reliable lateralizing sign in patients of refractory focal epilepsy. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Classification of Focal and Non Focal Epileptic Seizures Using Multi-Features and SVM Classifier.

    Science.gov (United States)

    Sriraam, N; Raghu, S

    2017-09-02

    Identifying epileptogenic zones prior to surgery is an essential and crucial step in treating patients having pharmacoresistant focal epilepsy. Electroencephalogram (EEG) is a significant measurement benchmark to assess patients suffering from epilepsy. This paper investigates the application of multi-features derived from different domains to recognize the focal and non focal epileptic seizures obtained from pharmacoresistant focal epilepsy patients from Bern Barcelona database. From the dataset, five different classification tasks were formed. Total 26 features were extracted from focal and non focal EEG. Significant features were selected using Wilcoxon rank sum test by setting p-value (p z > 1.96) at 95% significance interval. Hypothesis was made that the effect of removing outliers improves the classification accuracy. Turkey's range test was adopted for pruning outliers from feature set. Finally, 21 features were classified using optimized support vector machine (SVM) classifier with 10-fold cross validation. Bayesian optimization technique was adopted to minimize the cross-validation loss. From the simulation results, it was inferred that the highest sensitivity, specificity, and classification accuracy of 94.56%, 89.74%, and 92.15% achieved respectively and found to be better than the state-of-the-art approaches. Further, it was observed that the classification accuracy improved from 80.2% with outliers to 92.15% without outliers. The classifier performance metrics ensures the suitability of the proposed multi-features with optimized SVM classifier. It can be concluded that the proposed approach can be applied for recognition of focal EEG signals to localize epileptogenic zones.

  14. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  15. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Directory of Open Access Journals (Sweden)

    M. Keller

    2018-04-01

    Full Text Available Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM and 2 km grid spacing (convection-resolving model, CRM are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW using a vertically uniform warming and the other with vertically dependent warming (VW that enables changes in lapse rate.The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  16. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    Science.gov (United States)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  17. 'Focal thyroid inferno' on color Doppler ultrasonography: A specific feature of focal Hashimoto's thyroiditis

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Xianshui, E-mail: fuxs1968@163.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Guo, Limei, E-mail: guolimei@bjmu.edu.cn [Department of Pathology, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Zhang, Huabin, E-mail: huabinzhang@bjmu.edu.cn [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Ran, Weiqiang, E-mail: ranwq-sina@vip.sina.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Fu, Peng, E-mail: fupeng01@gmail.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Li, Zhiqiang, E-mail: lizhq126@126.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Chen, Wen, E-mail: wendy7989@sina.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Jiang, Ling, E-mail: papayaling@yahoo.com.cn [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Wang, Jinrui, E-mail: jinrui_wang@sina.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China); Jia, Jianwen, E-mail: drjia88@sohu.com [Department of Ultrasound, Peking University Third Hospital, 49 Huayuanbeilu Road, Beijing 100191 (China)

    2012-11-15

    Purpose: To evaluate color-Doppler features predictive of focal Hashimoto's thyroiditis. Materials and methods: A total of 521 patients with 561 thyroid nodules that underwent surgeries or gun biopsies were included in this study. These nodules were divided into three groups: focal Hashimoto's thyroiditis (104 nodules in 101 patients), benignity other than focal Hashimoto's thyroiditis (73 nodules in 70 patients), and malignancy (358 nodules in 350 patients). On color Doppler sonography, four vascularity types were determined as: hypovascularity, marked internal flow, marked peripheral flow and focal thyroid inferno. The {chi}{sup 2} test was performed to seek the potential vascularity type with the predictive ability of certain thyroid pathology. Furthermore, the gray-scale features of each nodule were also studied. Results: The vascularity type I (hypovascularity) was more often seen in focal Hashimoto's thyroiditis than other benignity and malignancy (46% vs. 20.5% and 19%). While the type II (marked internal flow) showed the opposite tendency (26.9% [focal Hashimoto's thyroiditis] vs. 45.2% [other benignity] and 52.8% [malignancy]). However, type III (marked peripheral flow) was unable to predict any thyroid pathology. Importantly, type IV (focal thyroid inferno) was exclusive to focal Hashimoto's thyroiditis. All 8 type IV nodules appeared to be solid, hypoechoic, and well-defined. Using 'focal thyroid inferno' as an indicator of FHT, the diagnostic sensitivity and specificity were 7.7% and 100% respectively. Conclusions: The vascularity type of 'focal thyroid inferno' is specific for focal Hashimoto thyroiditis. Recognition of this particular feature may avoid unnecessary interventional procedures for some solid hypoechoic thyroid nodules suspicious of malignancy.

  18. EXTRA-OSSEOUS EWING SARCOMA

    NARCIS (Netherlands)

    van den Berg, Hendrik; Heinen, Richard C.; van der Pal, Heleen J.; Merks, Johannes H. M.

    2009-01-01

    Background: Clinical data and data on outcome of extra-osseous Ewing tumors are scarce. Procedure: After a search for Ewing tumors in the database of a single institution over a period of 20 years, 16 out of 192 cases were found to have extra-osseous primary tumors. Results: Ages at initial

  19. Focal dermal hypoplasia without focal dermal hypoplasia

    NARCIS (Netherlands)

    Contreras-Capetillo, Silvina N.; Lombardi, Maria Paola; Pinto-Escalante, Doris; Hennekam, Raoul C.

    2014-01-01

    Focal dermal hypoplasia (FDH; Goltz-Gorlin syndrome) is an X-linked dominant disorder affecting mainly tissues of ectodermal and mesodermal origin. The phenotype is characterized by hypoplastic linear skin lesions, eye malformations, hair and teeth anomalies, and multiple limbs malformations. The

  20. Sighting optics including an optical element having a first focal length and a second focal length

    Science.gov (United States)

    Crandall, David Lynn [Idaho Falls, ID

    2011-08-01

    One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.

  1. Adding an extra storey

    DEFF Research Database (Denmark)

    Engelmark, Jesper; Dahl, Torben; Melgaard, Ebbe

    2007-01-01

    of them had to be renovated after a shorter period. In stead of just replacing the original roof with a new one, it is now a days rather common to ad an extra storey where that is possible according to local planning. The reason is as a rule based on economical benefits, but very often this extra storey...

  2. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  3. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  4. Particle Phenomenology of Compact Extra Dimensions

    International Nuclear Information System (INIS)

    Melbeus, Henrik

    2012-01-01

    This thesis is an investigation of the subject of extra dimensions in particle physics. In recent years, there has been a large interest in this subject. In particular, a number of models have been suggested that provide solutions to some of the problem with the current Standard Model of particle physics. These models typically give rise to experimental signatures around the TeV energy scale, which means that they could be tested in the next generation of high-energy experiments, such as the LHC. Among the most important of these models are the universal extra dimensions model, the large extra dimensions model by Arkani-Hamed, Dimopolous, and Dvali, and models where right-handed neutrinos propagate in the extra dimensions. In the thesis, we study phenomenological aspects of these models, or simple modifications of them. In particular, we focus on Kaluza-Klein dark matter in universal extra dimensions models, different aspects of neutrino physics in higher dimensions, and collider phenomenology of extra dimensions. In addition, we consider consequences of the enhanced renormalization group running of physical parameters in higher-dimensional models

  5. Convection in complex shaped vessel; Convection dans des enceintes de forme complexe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The 8 november 2000, the SFT (Societe Francaise de Thermique) organized a technical day on the convection in complex shaped vessels. Nine papers have been presented in the domains of the heat transfers, the natural convection, the fluid distribution, the thermosyphon effect, the steam flow in a sterilization cycle and the transformers cooling. Eight papers are analyzed in ETDE and one paper dealing with the natural convection in spent fuels depository is analyzed in INIS. (A.L.B.)

  6. Inflation from periodic extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Department of Physics, Keio University, Kanagawa 223-8522 (Japan); Tatsuta, Yoshiyuki, E-mail: thigaki@rk.phys.keio.ac.jp, E-mail: y_tatsuta@akane.waseda.jp [Department of Physics, Waseda University, Tokyo 169-8555 (Japan)

    2017-07-01

    We discuss a realization of a small field inflation based on string inspired supergravities. In theories accompanying extra dimensions, compactification of them with small radii is required for realistic situations. Since the extra dimension can have a periodicity, there will appear (quasi-)periodic functions under transformations of moduli of the extra dimensions in low energy scales. Such a periodic property can lead to a UV completion of so-called multi-natural inflation model where inflaton potential consists of a sum of multiple sinusoidal functions with a decay constant smaller than the Planck scale. As an illustration, we construct a SUSY breaking model, and then show that such an inflaton potential can be generated by a sum of world sheet instantons in intersecting brane models on extra dimensions containing orbifold. We show also predictions of cosmic observables by numerical analyzes.

  7. Evaluation of Hemodynamics in Focal Steatosis and Focal Spared Lesion of the Liver Using Contrast-Enhanced Ultrasonography with Sonazoid

    International Nuclear Information System (INIS)

    Shiozawa, K.; Watanabe, M.; Ikehara, T.; Kogame, M.; Shinohara, M.; Shinohara, M.; Ishii, K.; Igarashi, Y.; Sumino, Y.; Shiozawa, K.; Makino, H.

    2014-01-01

    We aim to investigate the hemodynamics in focal steatosis and focal spared lesion of the liver using contrast-enhanced ultrasonography (CEUS) with Sonazoid. The subjects were 47 patients with focal steatosis and focal spared lesion. We evaluated enhancement patterns (hyper enhancement, iso enhancement, and hypo enhancement) in the vascular phase and the presence or absence of a hypoechoic area in the post vascular phase for these lesions using CEUS. Of the 24 patients with focal steatosis, the enhancement pattern was iso enhancement in 19 and hypo enhancement in 5. Hypoechoic areas were noted in the post vascular phase in 3 patients. Of the 23 patients with focal spared lesions, the enhancement pattern was iso enhancement in 18 and hyper enhancement in 5. No hypoechoic areas were noted in the post vascular phase in any patient. The hemodynamics in focal steatosis and focal spared lesions in non diffuse fatty liver can be observed using low-invasive procedures in real-time by CEUS. It was suggested that differences in the dynamics of enhancement in the vascular phase of CEUS were influenced by the fat deposits in the target lesion, the surrounding liver parenchyma, and the third inflow.

  8. Supersymmetry breaking with extra dimensions

    International Nuclear Information System (INIS)

    Zwirner, Fabio

    2004-01-01

    This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)

  9. Radiological dorsal tilt analysis of AO type A, B, and C fractures of the distal radius treated conservatively or with extra-focal K-wire plus external fixateur

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Michael [University Medical Center Hamburg-Eppendorf, Department of Trauma, Hand and Reconstructive Surgery, Hamburg (Germany); Borders General Hospital, Department for Trauma and Orthopaedic Surgery, Melrose, Roxburghshire, Scotland (United Kingdom); Schroeder, Malte; Gruber-Rathmann, Michaela; Ruecker, Andreas H. [University Medical Center Hamburg-Eppendorf, Department of Trauma, Hand and Reconstructive Surgery, Hamburg (Germany); Kossow, Kai [Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany)

    2012-09-15

    Fractures of the distal radius are amongst the most common injury patterns. The dorsal tilt represents an important co-factor determining functional outcome. The purpose of this study was to analyze the radiological dorsal tilt and identify critical time frames in conservative and operative treatment of distal radius fractures. Eighty-seven conservatively treated (hematoma block assisted reduction and splinting) and 37 operatively treated (reduction, extra-focal K-wire fixation, bridging external fixateur) AO type A, B, and C fractures of the distal radius in 124 females were retrospectively analyzed. The dorsal tilt at the initial, post-reduction, and 2 weeks post-reduction stages was correlated with the final radiographic outcome at 6 weeks. Mean initial dorsal tilt was 16.53 in the conservatively treated group and 26.76 in the operatively treated group. Mean dorsal tilt after 6 weeks showed significant differences from the mean initial dorsal tilt at time of presentation within both groups (both groups p < 0.000). No significant differences between the two groups were found after 6 weeks of treatment (p = 0.194) regardless of the underlying AO fracture type. Conservatively treated radius fractures showed a significantly higher slip rate within the first 2 weeks (primary slip rate), whereas the operative group presented a significantly higher slip rate between the 2-week and 6-week radiographic checks (secondary slip rate). In terms of dorsal tilt, conservative (cast immobilization) and operative (K-wire fixation plus external fixateur) treatment demonstrated no significant differences at the final radiographic examination (6 weeks) regardless of the underlying AO fracture type. Both treatment groups showed treatment-associated different primary and secondary slip rates, indicating a need for more frequent radiographic checks within these critical time frames. (orig.)

  10. Southern Ocean Convection and tropical telleconnections

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gnanadesikan, A.

    2014-12-01

    We show that Southern Ocean (SO) temperatures in the latest generation of Earth System Models exhibit two major modes of variation, one driven by deep convection, the other by tropical variability. We perform a CMIP5 model intercomparison to understand why different climate models represent SO variability so differently in long, control simulations. We show that multiyear variability in Southern Ocean sea surface temperatures (SSTs) can in turn influence oceanic and atmospheric conditions in the tropics on short (atmospheric) time-scales. We argue that the strength and pattern of SO-tropical teleconnections depends on the intensity of SO deep convection. Periodic convection in the SO is a feature of most CMIP5 models under preindustrial forcing (deLavergne et al., 2014). Models show a wide distribution in the spatial extent, periodicity and intensity of their SO convection, with some models convecting most of the time, and some showing very little convection. In a highly convective coupled model, we find that multidecadal variability in SO and global SSTs, as well as SO heat storage are driven by Weddell Sea convective variability, with convective decades relatively warm due to the heat released from the deep southern ocean and non-convective decades cold due to the subsurface storage of heat. Furthermore, pulses of SO convection drive SST and sea ice variations, influencing absorbed shortwave and emitted longwave radiation, wind, cloud and precipitation patterns, with climatic implications for the low latitudes via fast atmospheric teleconnections. We suggest that these high-low latitude teleconnection mechanisms are relevant for understanding hiatus decades. Additionally, Southern Ocean deep convection varied significantly during past, natural climate changes such as during the last deglaciation. Weddell Sea open convection was recently weakened, likely as a consequence of anthropogenic forcing and the resulting surface freshening. Our study opens up the

  11. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    Science.gov (United States)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  12. Focal midbrain tumors in children

    NARCIS (Netherlands)

    Vandertop, W. P.; Hoffman, H. J.; Drake, J. M.; Humphreys, R. P.; Rutka, J. T.; Amstrong, D. C.; Becker, L. E.

    1992-01-01

    The clinical and neuroradiological features of focal midbrain tumors in 12 children are described, and the results of their surgical management are presented. Patients with a focal midbrain tumor usually exhibit either symptoms and signs of raised intracranial pressure caused by an obstructive

  13. Diagnostic imaging in focal epilepsy

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2013-01-01

    Focal epilepsies account for 60% of all seizure disorders worldwide. In this review the classic and new classification system of epileptic seizures and syndromes as well as genetic forms are discussed. Magnetic resonance (MR) is the technique of choice for diagnostic imaging in focal epilepsy because of its sensitivity and high tissue contrast. The review is focused on the lack of consensus of imaging protocols and reported findings in refractory epilepsy. The most frequently encountered MRI findings in epilepsy are reported and their imaging characteristics are depicted. Diagnosis of hippocampal sclerosis and malformations of cortical development as two major causes of refractory focal epilepsy is described in details. Some promising new techniques as positron emission tomography computed tomography (PET/CT) and MR and PET/CT fusion are briefly discussed. Also the relevance of adequate imaging in focal epilepsy, some practical points in imaging interpretation and differential diagnosis are highlighted. (author)

  14. Moisture Vertical Structure, Deep Convective Organization, and Convective Transition in the Amazon

    Science.gov (United States)

    Schiro, K. A.; Neelin, J. D.

    2017-12-01

    Constraining precipitation processes in climate models with observations is crucial to accurately simulating current climate and reducing uncertainties in future projections. Results from the Green Ocean Amazon (GOAmazon) field campaign (2014-2015) provide evidence that deep convection is strongly controlled by the availability of moisture in the free troposphere over the Amazon, much like over tropical oceans. Entraining plume buoyancy calculations confirm that CWV is a good proxy for the conditional instability of the environment, yet differences in convective onset as a function of CWV exist over land and ocean, as well as seasonally and diurnally over land. This is largely due to variability in the contribution of lower tropospheric humidity to the total column moisture. Boundary layer moisture shows a strong relationship to the onset during the day, which largely disappears during nighttime. Using S-Band radar, these transition statistics are examined separately for unorganized and mesoscale-organized convection, which exhibit sharp increases in probability of occurrence with increasing moisture throughout the column, particularly in the lower free troposphere. Retrievals of vertical velocity from a radar wind profiler indicate updraft velocity and mass flux increasing with height through the lower troposphere. A deep-inflow mixing scheme motivated by this — corresponding to deep inflow of environmental air into a plume that grows with height — provides a weighting of boundary layer and free tropospheric air that yields buoyancies consistent with the observed onset of deep convection across seasons and times of day, across land and ocean sites, and for all convection types. This provides a substantial improvement relative to more traditional constant mixing assumptions, and a dramatic improvement relative to no mixing. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for unorganized convection.

  15. RTG diagnostics of dental focal infection

    International Nuclear Information System (INIS)

    Petrasova, A.; Ondrasovicova, J.; Cecctkova, A.

    2008-01-01

    The theory of focal infection has always been and still is a controversial issue for many dentists and scientists. Even though the focal infection does not occupy the first place in modern medicine, its understanding is imperative. The authors summarized the knowledge about dental focal infection and its relationship to systemic the diseases of the whole body in their publication and they also focused on the radiodiagnostics of this disease. (authors)

  16. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  17. Quantifying inbreeding avoidance through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Arcese, Peter; Keller, Lukas F; Germain, Ryan R; Duthie, A Bradley; Losdat, Sylvain; Wolak, Matthew E; Nietlisbach, Pirmin

    2015-01-01

    Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females' alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females' within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  19. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    International Nuclear Information System (INIS)

    Inada, Haruo; Miyano, Satoshi

    1995-01-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author)

  20. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Haruo; Miyano, Satoshi [Jikei Univ., Tokyo (Japan). School of Medicine

    1995-03-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author).

  1. Collapse of large extra dimensions

    International Nuclear Information System (INIS)

    Geddes, James

    2002-01-01

    In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided

  2. Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States

    Science.gov (United States)

    Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.

    2017-11-01

    Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.

  3. Introduction to Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.; /SLAC

    2010-04-29

    Extra dimensions provide a very useful tool in addressing a number of the fundamental problems faced by the Standard Model. The following provides a very basic introduction to this very broad subject area as given at the VIII School of the Gravitational and Mathematical Physics Division of the Mexican Physical Society in December 2009. Some prospects for extra dimensional searches at the 7 TeV LHC with {approx}1 fb{sup -1} of integrated luminosity are provided.

  4. Cosmology in theories with extra dimensions

    International Nuclear Information System (INIS)

    Kolb, E.W.

    1985-01-01

    Some possible cosmological effects of the existence of extra compact dimensions are discussed. Particular attention is given to the possibility that extra dimensions might naturally lead to an inflationary Universe scenario

  5. The dispersion-focalization theory of sound systems

    Science.gov (United States)

    Schwartz, Jean-Luc; Abry, Christian; Boë, Louis-Jean; Vallée, Nathalie; Ménard, Lucie

    2005-04-01

    The Dispersion-Focalization Theory states that sound systems in human languages are shaped by two major perceptual constraints: dispersion driving auditory contrast towards maximal or sufficient values [B. Lindblom, J. Phonetics 18, 135-152 (1990)] and focalization driving auditory spectra towards patterns with close neighboring formants. Dispersion is computed from the sum of the inverse squared inter-spectra distances in the (F1, F2, F3, F4) space, using a non-linear process based on the 3.5 Bark critical distance to estimate F2'. Focalization is based on the idea that close neighboring formants produce vowel spectra with marked peaks, easier to process and memorize in the auditory system. Evidence for increased stability of focal vowels in short-term memory was provided in a discrimination experiment on adult French subjects [J. L. Schwartz and P. Escudier, Speech Comm. 8, 235-259 (1989)]. A reanalysis of infant discrimination data shows that focalization could well be the responsible for recurrent discrimination asymmetries [J. L. Schwartz et al., Speech Comm. (in press)]. Recent data about children vowel production indicate that focalization seems to be part of the perceptual templates driving speech development. The Dispersion-Focalization Theory produces valid predictions for both vowel and consonant systems, in relation with available databases of human languages inventories.

  6. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  7. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  8. Seven tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy

    NARCIS (Netherlands)

    Veersema, Tim J; Ferrier, Cyrille H; van Eijsden, Pieter; Gosselaar, Peter H; Aronica, Eleonora; Visser, Fredy; Zwanenburg, Jaco M; de Kort, Gerard A P; Hendrikse, Jeroen; Luijten, Peter R; Braun, Kees P J

    Objective: The aim of this study is to determine whether the use of 7 tesla (T) MRI in clinical practice leads to higher detection rates of focal cortical dysplasias in possible candidates for epilepsy surgery. Methods: In our center patients are referred for 7 T MRI if lesional focal epilepsy is

  9. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  10. Periodontitis in patients with focal tuberculosis

    Directory of Open Access Journals (Sweden)

    Alexandrova Е.А.

    2010-12-01

    Full Text Available The research goal is to investigate the mechanisms of formation and peculiarities of periodontitis in patients with focal tuberculosis. Patients with periodontitis and focal tuberculosis are proved to develop local inflammatory reaction with increased infection and activation of proinflammatory cytokines in parodontal pockets fluid. The main risk factor of frequent and durable recurrence of parodontal pathology in case of focal tuberculosis was the development of pathologic process as a cause of disbalance of lipid peroxidation and antioxidant system, endotoxicosis syndrome

  11. Expansive focal cemento-osseous dysplasia.

    Science.gov (United States)

    Bulut, Emel Uzun; Acikgoz, Aydan; Ozan, Bora; Zengin, Ayse Zeynep; Gunhan, Omer

    2012-01-01

    To present a case of expansive focal cemento-osseous dysplasia and emphasize the importance of differential diagnosis. Cemento-osseous dysplasia is categorized into three subtypes on the basis of the clinical and radiographic features: Periapical, focal and florid. The focal type exhibits a single site of involvement in any tooth-bearing or edentulous area of the jaws. These lesions are usually asymptomatic; therefore, they are frequently diagnosed incidentally during routine radiographic examinations. Lesions are usually benign, show limited growth, and do not require further surgical intervention, but periodic follow-up is recommended because occasionally, this type of dysplasia progresses into florid osseous dysplasia and simple bone cysts are formed. A 24-year-old female patient was referred to our clinic for swelling in the left edentulous mandibular premolarmolar region and felt discomfort when she wore her prosthetics. She had no pain, tenderness or paresthesia. Clinical examination showed that the swelling in the posterior mandible that was firm, nonfluctuant and covered by normal mucosa. On panoramic radiography and computed tomography, a well defined lesion of approximately 1.5 cm in diameter of mixed density was observed. The swelling increased slightly in size over 2 years making it difficult to use prosthetics and, therefore, the lesion was totally excised under local anesthesia, and surgical specimens were submitted for histopathological examination. The histopathological diagnosis was focal cemento-osseous dysplasia. In the present case, because of the increasing size of the swelling making it difficult to use prosthetics, young age of the patient and localization of the lesion, in the initial examination, cemento-ossifying fibroma was suspected, and the lesion was excised surgically; the histopathological diagnosis confirmed it as focal cemento-osseous dysplasia. We present a case of expansive focal cemento-osseous dysplasia. Differential diagnosis

  12. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  13. Biomass Smoke Influences on Deep Convection during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E)

    Science.gov (United States)

    Dong, X.; Logan, T.; Xi, B.

    2015-12-01

    Three deep convective cloud cases were selected during the 2011 Mid-Latitude Continental Convective Clouds Experiment (MC3E). Although biomass burning smoke advected from Mexico and Central America was the dominant source of cloud condensation nuclei (CCN) for deep convective cloud formation, the 11 May, 20 May, and 23 May cases exhibited different convective characteristics. The convection in the 11 May and 23 May cases formed in smoke laden environments in the presence of convective available potential energy (CAPE) values exceeding 1000 m2 s-2 and 3000 m2 s-2 along with low-level (0-1 km) shear of 10.3 m s-1 and 5.1 m s-1, respectively. The 11 May case had linear convection while the 23 May case featured discrete supercells. The 20 May case featured elevated linear convection that formed in a more moist environment with cleaner aerosol conditions, weak CAPE (9 km) suggesting a warm rain suppression mechanism caused by a combination of strong aerosol loading, large CAPE, and weak low-level wind shear. The observed results for the 20 May and 23 May cases agree well with recent modeling studies that simulated the convection and precipitation in these cases. Furthermore, the modeling of the 11 May case is suggested since the abundant amount of smoke CCN did not greatly enhance the overall precipitation amount and could be a possible aerosol-induced precipitation suppression case.

  14. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  15. An empirical assessment of the focal species hypothesis.

    Science.gov (United States)

    Lindenmayer, D B; Lane, P W; Westgate, M J; Crane, M; Michael, D; Okada, S; Barton, P S

    2014-12-01

    Biodiversity surrogates and indicators are commonly used in conservation management. The focal species approach (FSA) is one method for identifying biodiversity surrogates, and it is underpinned by the hypothesis that management aimed at a particular focal species will confer protection on co-occurring species. This concept has been the subject of much debate, in part because the validity of the FSA has not been subject to detailed empirical assessment of the extent to which a given focal species actually co-occurs with other species in an assemblage. To address this knowledge gap, we used large-scale, long-term data sets of temperate woodland birds to select focal species associated with threatening processes such as habitat isolation and loss of key vegetation attributes. We quantified co-occurrence patterns among focal species, species in the wider bird assemblage, and species of conservation concern. Some, but not all, focal species were associated with high levels of species richness. One of our selected focal species was negatively associated with the occurrence of other species (i.e., it was an antisurrogate)-a previously undescribed property of nominated focal species. Furthermore, combinations of focal species were not associated with substantially elevated levels of bird species richness, relative to levels associated with individual species. Our results suggest that although there is some merit to the underpinning concept of the FSA, there is also a need to ensure that actions are sufficiently flexible because management tightly focused on a given focal species may not benefit some other species, including species of conservation concern, such of which might not occur in species-rich assemblages. © 2014 Society for Conservation Biology.

  16. The effect of convection and semi-convection on the C/O yield of massive stars

    International Nuclear Information System (INIS)

    Dearborn, D.S.

    1979-01-01

    The C/O ratio produced during core helium burning affects the future evolution and nucleosynthetic yield of massive stars. This ratio is shown to be sensitive to the treatment of convection as well as uncertainties in nuclear rates. By minimizing the effect of semi-convection and reducing the size of the convective core, mass loss in OB stars increases the C/O ratio. (Author)

  17. Screening and validation of EXTraS data products

    Science.gov (United States)

    Carpano, Stefania; Haberl, F.; De Luca, A.; Tiengo, A.: Israel, G.; Rodriguez, G.; Belfiore, A.; Rosen, S.; Read, A.; Wilms, J.; Kreikenbohm, A.; Law-Green, D.

    2015-09-01

    The EXTraS project (Exploring the X-ray Transient and variable Sky) is aimed at fullyexploring the serendipitous content of the XMM-Newton EPIC database in the timedomain. The project is funded within the EU/FP7-Cooperation Space framework and is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany). The several tasks consist in characterise aperiodicvariability for all 3XMM sources, search for short-term periodic variability on hundreds of thousands sources, detect new transient sources that are missed by standard source detection and hence not belonging to the 3XMM catalogue, search for long term variability by measuring fluxes or upper limits for both pointed and slew observations, and finally perform multiwavelength characterisation andclassification. Screening and validation of the different products is essentially in order to reject flawed results, generated by the automatic pipelines. We present here the screening tool we developed in the form of a Graphical User Interface and our plans for a systematic screening of the different catalogues.

  18. Investigation of tropical diurnal convection biases in a climate model using TWP-ICE observations and convection-permitting simulations

    Science.gov (United States)

    Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.

    2017-12-01

    Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.

  19. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  20. Convective overshoot at the solar tachocline

    Science.gov (United States)

    Brown, Benjamin; Oishi, Jeffrey S.; Anders, Evan H.; Lecoanet, Daniel; Burns, Keaton; Vasil, Geoffrey M.

    2017-08-01

    At the base of the solar convection zone lies the solar tachocline. This internal interface is where motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important, and where the compressible dynamics are similar to those of convective motions in the deep solar interior. We find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline and for the storage of magnetic fields there by overshooting convection.

  1. Experimental Focal Cerebral Ischemia

    DEFF Research Database (Denmark)

    Christensen, Thomas

    2007-01-01

    Focal cerebral ischemia due to occlusion of a major cerebral artery is the cause of ischemic stroke which is a major reason of mortality, morbidity and disability in the populations of the developed countries. In the seven studies summarized in the thesis focal ischemia in rats induced by occlusion...... in the penumbra is recruited in the infarction process leading to a progressive growth of the infarct. The penumbra hence constitutes an important target for pharmacological treatment because of the existence of a therapeutic time window during which treatment with neuroprotective compounds may prevent...

  2. Sighting optics including an optical element having a first focal length and a second focal length and methods for sighting

    Science.gov (United States)

    Crandall, David Lynn

    2011-08-16

    Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.

  3. Dynamics of acoustic-convective drying of sunflower cake

    Science.gov (United States)

    Zhilin, A. A.

    2017-10-01

    The dynamics of drying sunflower cake by a new acoustic-convective method has been studied. Unlike the conventional (thermal-convective) method, the proposed method allows moisture to be extracted from porous materials without applying heat to the sample to be dried. Kinetic curves of drying by the thermal-convective and acoustic-convective methods were obtained and analyzed. The advantages of the acoustic-convective extraction of moisture over the thermal-convective method are discussed. The relaxation times of drying were determined for both drying methods. An intermittent drying mode which improves the efficiency of acoustic-convective extraction of moisture is considered.

  4. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  5. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  6. Towards the Proper Integration of Extra-Functional Requirements

    Directory of Open Access Journals (Sweden)

    Elke Hochmuller

    1999-05-01

    Full Text Available In spite of the many achievements in software engineering, proper treatment of extra-functional requirements (also known as non-functional requirements within the software development process is still a challenge to our discipline. The application of functionality-biased software development methodologies can lead to major contradictions in the joint modelling of functional and extra-functional requirements. Based on a thorough discussion on the nature of extra-functional requirements as well as on open issues in coping with them, this paper emphasizes the role of extra-functional requirements in the software development process. Particularly, a framework supporting the explicit integration of extra functional requirements into a conventional phase-driven process model is proposed and outlined.

  7. Inverse-designed stretchable metalens with tunable focal distance

    Science.gov (United States)

    Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray

    2018-02-01

    In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.

  8. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  9. The pattern of convection in the Sun

    International Nuclear Information System (INIS)

    Weiss, N.O.

    1976-01-01

    The structure of solar magnetic fields is dominated by the effects of convection, which should be incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the structure of main sequence stars, a better description of convection is needed for any detailed dynamo model. Recent work on nonlinear convection at low Prandt numbers is reviewed. There has been some progress towards a theory of compressible convection, though there is still no firm theoretical evidence for cells with scales less than the depth of the convecting layer. However, it remains likely that the pattern of solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these cells are briefly considered. (Auth.)

  10. Extra dimensions and color confinement

    Energy Technology Data Exchange (ETDEWEB)

    Pleitez, V

    1995-04-01

    An extension of the ordinary four dimensional Minkowski space by introducing additional dimensions which have their own Lorentz transformation is considered. Particles can transform in a different way under each Lorentz group. It is shown that only quark interactions are slightly modified and that color confinement automatic since these degrees of freedom run only in the extra dimensions. No compactification of the extra dimensions is needed. (author). 4 refs.

  11. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    This thesis deals with topology optimisation for coupled convection problems. The aim is to extend and apply topology optimisation to steady-state conjugate heat transfer problems, where the heat conduction equation governs the heat transfer in a solid and is coupled to thermal transport...... in a surrounding uid, governed by a convection-diffusion equation, where the convective velocity field is found from solving the isothermal incompressible steady-state Navier-Stokes equations. Topology optimisation is also applied to steady-state natural convection problems. The modelling is done using stabilised...... finite elements, the formulation and implementation of which was done partly during a special course as prepatory work for this thesis. The formulation is extended with a Brinkman friction term in order to facilitate the topology optimisation of fluid flow and convective cooling problems. The derived...

  12. Convective penetration in a young sun

    Science.gov (United States)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  13. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  14. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  15. 23 CFR 635.120 - Changes and extra work.

    Science.gov (United States)

    2010-04-01

    ... CONSTRUCTION AND MAINTENANCE Contract Procedures § 635.120 Changes and extra work. (a) Following authorization to proceed with a project, all major changes in the plans and contract provisions and all major extra... to what constitutes a non-major change and non-major extra work. (c) Changes in contract time, as...

  16. Sunspots and the physics of magnetic flux tubes. VI - Convective propulsion. VII - Heat flow in a convective downdraft

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    The effect of negative aerodynamic drag in an ideal fluid subject to convective instability is considered. It is shown that a cylinder moving in such a fluid is propelled forward in its motion by the convective forces and that the characteristic acceleration time is comparable to the onset time of convective motions in the fluid. It is suggested that convective propulsion plays an important role in the dynamics of flux tubes extending through the surface of the sun. The suppression of the upward heat flow in a Boussinesq convective cell with free upper and lower boundaries by a downdraft is then analyzed. Application to the solar convection zone indicates that downdrafts of 1 to 2 km/s at depths of 1000 to 4000 km beneath the visible surface of the sun are sufficient to reduce the upward heat flux to a small fraction of the ambient value.

  17. Experimental approbation of a new ultrosound contrast agent based on sulfur geksafluoride in diagnostics of focal liver lesions of inflammatory genesis

    Directory of Open Access Journals (Sweden)

    S. V. Fomina

    2017-01-01

    Full Text Available Purpose of the study. Experimental approbation of a new domestic ultrasound contrast agent (UCA based on sulfur hexafluoride in the diagnosis of focal liver lesions of inflammatory genesis.Materials and methods. The investigated ultrasound contrast agent (UCA was a heterogeneous gas-liquid system consisting of micro bubbles of a sparingly soluble gas of sulfur hexafluoride (SF6 surrounded by a flexible mobile membrane of surfactants. Experimental work was carried out on rabbits. The study group included rabbits of males and females with focal liver lesion of inflammatory genesis (n = 12 weighing 1500- 1700 g. UCA was administered to animals in the ear vein. Focal lesions of the liver in animals were created in the experimental laboratory conditions. 14 days after the operation, all animals were subjected to ultrasound examination of the surgical intervention zones by using the Toshiba Aplio 400 scanners (Japan with a 3,5–8 MHz convection sensor. In a natural study, the size, structure and echogenicity of the focus were assessed, the degree of vascularization, the evenness and clarity of the contours were determined. When performing post contrast ultrasound, the time of the onset of contrast enhancement, the total duration of contrast, the changes in the contrast enhancement of the focus in different phases of the study were measured, the dimensions of the focus were measured, and the evenness and acuity of contours were measured. For histological examination, liver fragments and lungs were used. 

  18. Convective Heat Transfer Coefficients of the Human Body under Forced Convection from Ceiling

    DEFF Research Database (Denmark)

    Kurazumi, Yoshihito; Rezgals, Lauris; Melikov, Arsen Krikor

    2014-01-01

    The average convective heat transfer coefficient for a seated human body exposed to downward flow from above was determined. Thermal manikin with complex body shape and size of an average Scandinavian female was used. The surface temperature distribution of the manikin’s body was as the skin...... of the convective heat transfer coefficient of the whole body (hc [W/(m2•K)]) was proposed: hc=4.088+6.592V1.715 for a seated naked body at 20ºC and hc=2.874+7.427V1.345 for a seated naked body at 26ºC. Differences in the convective heat transfer coefficient of the whole body in low air velocity range, V

  19. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  20. Pharmacological response of systemically derived focal epileptic lesions

    Energy Technology Data Exchange (ETDEWEB)

    Remler, M.P.; Sigvardt, K.; Marcussen, W.H.

    1986-11-01

    Focal epileptic lesions were made in rats by systemic focal epileptogenesis. In this method, a focal lesion of the blood-brain barrier (BBB) is produced by focal alpha irradiation followed by repeated systemic injection of a convulsant drug that cannot cross the normal BBB, resulting in a chronic epileptic focus. Changes in the spike frequency of these foci in response to various drugs was recorded. The controls, saline and chlorpromazine, produced no change. Phenytoin, phenobarbital, chlordiazepoxide, and valproic acid produced the expected decrease in spike frequency. Pentobarbital and diazepam produced a paradoxical increase in spike frequency.

  1. Recurrent Bilateral Focal Myositis.

    Science.gov (United States)

    Nagafuchi, Hiroko; Nakano, Hiromasa; Ooka, Seido; Takakuwa, Yukiko; Yamada, Hidehiro; Tadokoro, Mamoru; Shimojo, Sadatomo; Ozaki, Shoichi

    This report describes a rare case of recurrent bilateral focal myositis and its successful treatment via methotrexate. A 38-year-old man presented myalgia of the right gastrocnemius in May 2005. Magnetic resonance imaging showed very high signal intensity in the right gastrocnemius on short-tau inversion recovery images. A muscle biopsy revealed inflammatory CD4+ cell-dominant myogenic change. Focal myositis was diagnosed. The first steroid treatment was effective. Tapering of prednisolone, however, repeatedly induced myositis relapse, which progressed to multiple muscle lesions of both lower limbs. Initiation of methotrexate finally allowed successful tapering of prednisolone, with no relapse in the past 4 years.

  2. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  3. Convergence behavior of idealized convection-resolving simulations of summertime deep moist convection over land

    Science.gov (United States)

    Panosetti, Davide; Schlemmer, Linda; Schär, Christoph

    2018-05-01

    Convection-resolving models (CRMs) can explicitly simulate deep convection and resolve interactions between convective updrafts. They are thus increasingly used in numerous weather and climate applications. However, the truncation of the continuous energy cascade at scales of O (1 km) poses a serious challenge, as in kilometer-scale simulations the size and properties of the simulated convective cells are often determined by the horizontal grid spacing (Δ x ).In this study, idealized simulations of deep moist convection over land are performed to assess the convergence behavior of a CRM at Δ x = 8, 4, 2, 1 km and 500 m. Two types of convergence estimates are investigated: bulk convergence addressing domain-averaged and integrated variables related to the water and energy budgets, and structural convergence addressing the statistics and scales of individual clouds and updrafts. Results show that bulk convergence generally begins at Δ x =4 km, while structural convergence is not yet fully achieved at the kilometer scale, despite some evidence that the resolution sensitivity of updraft velocities and convective mass fluxes decreases at finer resolution. In particular, at finer grid spacings the maximum updraft velocity generally increases, and the size of the smallest clouds is mostly determined by Δ x . A number of different experiments are conducted, and it is found that the presence of orography and environmental vertical wind shear yields more energetic structures at scales much larger than Δ x , sometimes reducing the resolution sensitivity. Overall the results lend support to the use of kilometer-scale resolutions in CRMs, despite the inability of these models to fully resolve the associated cloud field.

  4. Magnetic Fields in the Solar Convection Zone

    Directory of Open Access Journals (Sweden)

    Fan Yuhong

    2004-07-01

    Full Text Available Recent studies of the dynamic evolution of magnetic flux tubes in the solar convection zone are reviewed with focus on emerging flux tubes responsible for the formation of solar active regions. The current prevailing picture is that active regions on the solar surface originate from strong toroidal magnetic fields generated by the solar dynamo mechanism at the thin tachocline layer at the base of the solar convection zone. Thus the magnetic fields need to traverse the entire convection zone before they reach the photosphere to form the observed solar active regions. This review discusses results with regard to the following major topics: 1. the equilibrium properties of the toroidal magnetic fields stored in the stable overshoot region at the base of the convection zone, 2. the buoyancy instability associated with the toroidal magnetic fields and the formation of buoyant magnetic flux tubes, 3. the rise of emerging flux loops through the solar convective envelope as modeled by the thin flux tube calculations which infer that the field strength of the toroidal magnetic fields at the base of the solar convection zone is significantly higher than the value in equipartition with convection, 4. the minimum twist needed for maintaining cohesion of the rising flux tubes, 5. the rise of highly twisted kink unstable flux tubes as a possible origin of d -sunspots, 6. the evolution of buoyant magnetic flux tubes in 3D stratified convection, 7. turbulent pumping of magnetic flux by penetrative compressible convection, 8. an alternative mechanism for intensifying toroidal magnetic fields to significantly super-equipartition field strengths by conversion of the potential energy associated with the superadiabatic stratification of the solar convection zone, and finally 9. a brief overview of our current understanding of flux emergence at the surface and post-emergence evolution of the subsurface magnetic fields.

  5. Natural convection in superposed fluid-porous layers

    CERN Document Server

    Bagchi, Aniruddha

    2013-01-01

    Natural Convection in Composite Fluid-Porous Domains provides a timely overview of the current state of understanding on the phenomenon of convection in composite fluid-porous layers. Natural convection in horizontal fluid-porous layers has received renewed attention because of engineering problems such as post-accident cooling of nuclear reactors, contaminant transport in groundwater, and convection in fibrous insulation systems. Because applications of the problem span many scientific domains, the book serves as a valuable resource for a wide audience.

  6. Multi-focal Vision and Gaze Control Improve Navigation Performance

    Directory of Open Access Journals (Sweden)

    Kolja Kuehnlenz

    2008-11-01

    Full Text Available Multi-focal vision systems comprise cameras with various fields of view and measurement accuracies. This article presents a multi-focal approach to localization and mapping of mobile robots with active vision. An implementation of the novel concept is done considering a humanoid robot navigation scenario where the robot is visually guided through a structured environment with several landmarks. Various embodiments of multi-focal vision systems are investigated and the impact on navigation performance is evaluated in comparison to a conventional mono-focal stereo set-up. The comparative studies clearly show the benefits of multi-focal vision for mobile robot navigation: flexibility to assign the different available sensors optimally in each situation, enhancement of the visible field, higher localization accuracy, and, thus, better task performance, i.e. path following behavior of the mobile robot. It is shown that multi-focal vision may strongly improve navigation performance.

  7. Flotillins Regulate Focal Adhesions by Interacting with α-Actinin and by Influencing the Activation of Focal Adhesion Kinase

    Directory of Open Access Journals (Sweden)

    Antje Banning

    2018-04-01

    Full Text Available Cell–matrix adhesion and cell migration are physiologically important processes that also play a major role in cancer spreading. In cultured cells, matrix adhesion depends on integrin-containing contacts such as focal adhesions. Flotillin-1 and flotillin-2 are frequently overexpressed in cancers and are associated with poor survival. Our previous studies have revealed a role for flotillin-2 in cell–matrix adhesion and in the regulation of the actin cytoskeleton. We here show that flotillins are important for cell migration in a wound healing assay and influence the morphology and dynamics of focal adhesions. Furthermore, anchorage-independent growth in soft agar is enhanced by flotillins. In the absence of flotillins, especially flotillin-2, phosphorylation of focal adhesion kinase and extracellularly regulated kinase is diminished. Flotillins interact with α-actinin, a major regulator of focal adhesion dynamics. These findings are important for understanding the molecular mechanisms of how flotillin overexpression in cancers may affect cell migration and, especially, enhance metastasis formation.

  8. The search for extra dimensions

    International Nuclear Information System (INIS)

    Abel, Steven; March-Russell, John

    2000-01-01

    The possibility of extra dimensions, beyond the three dimensions of space of our everyday experience, sometimes crops up as a convenient, if rather vague, plot in science fiction. In science, however, the idea of extra dimensions has a rich history, dating back at least as far as the 1920s. Recently there has been a remarkable renaissance in this area due to the work of a number of theoretical physicists. It now seems possible that we, the Earth and, indeed, the entire visible universe are stuck on a membrane in a higher-dimensional space, like dust particles that are trapped on a soap bubble. In this article the authors look at the major issues behind this new development. Why, for example, don't we see these extra dimensions? If they exist, how can we detect them? And perhaps the trickiest question of all: how did this fanciful idea come to be considered in the first place? (U.K.)

  9. Primary Issues of Mixed Convection Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    The computer code analyzing the system operating and transient behavior must distinguish flow conditions involved with convective heat transfer flow regimes. And the proper correlations must be supplied to those flow regimes. However the existing safety analysis codes are focused on the Light Water Reactor and they are skeptical to be applied to the GCRs (Gas Cooled Reactors). One of the technical issues raise by the development of the VHTR is the mixed convection, which occur when the driving forces of both forced and natural convection are of comparable magnitudes. It can be encountered as in channel of the stacked with fuel elements and a decay heat removal system and in VHTR. The mixed convection is not intermediate phenomena with natural convection and forced convection but independent complicated phenomena. Therefore, many researchers have been studied and some primary issues were propounded for phenomena mixed convection. This paper is to discuss some problems identified through reviewing the papers for mixed convection phenomena. And primary issues of mixed convection heat transfer were proposed respect to thermal hydraulic problems for VHTR. The VHTR thermal hydraulic study requires an indepth study of the mixed convection phenomena. In this study we reviewed the classical flow regime map of Metais and Eckert and derived further issues to be considered. The following issues were raised: (1) Buoyancy aided an opposed flows were not differentiated and plotted in a map. (2) Experimental results for UWT and UHF condition were also plotted in the same map without differentiation. (3) The buoyancy coefficient was not generalized for correlating with buoyancy coefficient. (4) The phenomenon analysis for laminarization and returbulization as buoyancy effects in turbulent mixed convection was not established. (5) The defining to transition in mixed convection regime was difficult.

  10. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  11. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  12. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  13. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  14. Extra force and extra mass from non-compact Kaluza-Klein theory in a cosmological model

    International Nuclear Information System (INIS)

    MadrizAguilar, J.E.; Bellini, M.

    2005-01-01

    Using the Hamilton-Jacobi formalism, we study extra force and extra mass in a recently introduced non-compact Kaluza-Klein cosmological model. We examine the inertial 4D mass m 0 of the inflaton field on a 4D FRW bulk in two examples. We find that m 0 has a geometrical origin and antigravitational effects on a non-inertial 4D bulk should be a consequence of the motion of the fifth coordinate with respect to the 4D bulk. (orig.)

  15. Extra osseous primary Ewing's sarcoma.

    Science.gov (United States)

    Ali, Syed Asad; Muhammad, Agha Taj; Soomro, Abdul Ghani; Siddiqui, Akmal Jamal

    2010-01-01

    The case of 20 years old boy with an extra osseous Ewing's sarcoma is described. He was initially diagnosed as a case of infiltrative malignant tumour of left suprarenal gland on the basis of preoperative workup but postoperative biopsy of surgically excised specimen confirmed Extra-osseous Ewing's Sarcoma (EES) suprarenal gland with no evidence of malignancy on skeletal scintiscan, bone marrow aspirate and histopathology Suprarenal location of primary EES is unknown and probably has not been reported in literature. We report a unique case of EES.

  16. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  17. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  18. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  19. CT appearance of focal fatty infiltration of the liver

    International Nuclear Information System (INIS)

    Halvorsen, R.A.; Korobkin, M.; Ram, P.C.; Thompson, W.M.

    1982-01-01

    Focal fatty infiltration of the liver is an entity that may be confused with liver metastasis on computed tomography (CT). The imaging results and medical records of 16 patients with CT appearance suggestive of focal fatty liver were reviewed, three of whom had the simultaneous presence of metastitic liver disease. Focal fatty liver often has a distinctive appearance with CT, usually with a nonspherical shape, absence of mass effect, and density close to water. Liver metastases are usually round or oval, and unless cystic or necrotic, they have CT attenuation values closer to normal liver parenchyma than water. A radionuclide liver scan almost always resolves any confusion about the differential diagnosis of focal fatty liver: a well defined focus of photon deficiency is due to neoplasm rather than focal fatty infiltration. Sonography sometimes helps to confirm the CT impression, but may be misleading if the diagnosis of focal or diffuse fatty infiltration is not suspected before the examination

  20. The study of the focal trough in panoramic radiograph

    International Nuclear Information System (INIS)

    Park, C. S.; Kim, H. P.

    1982-01-01

    In the study of the focal trough of panoramic radiograph, using the Moritta company Panex EC a series of 48 exposures were taken with the 6-18 brass pins placed in the holes of the plastic model plate, then evaluated by 4 observers. The author analyzed the focal trough defined by the sharpness criteria and calculated the vertical and horizontal magnification range in the corrected focal trough. The results were as follows; 1. Continuous focal trough was not defined in the anterior region using a very high degree of sharpness. 2. As degree of sharpness used in the analysis became less, focal trough was continuous in the anterior and posterior regions, symmetrized bilaterally, and the widths of the focal trough increased more in the posterior region. 3. As sharpness criteria were reduced, the percentage range of image magnification increased in both vertical and horizontal magnification, and especially the percentage range of horizontal magnification was greater than that of vertical magnification.

  1. Natural convection of nanofluids over a convectively heated vertical plate embedded in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Ghalambaz, M.; Noghrehabadi, A.; Ghanbarzadeh, A., E-mail: m.ghalambaz@gmail.com, E-mail: ghanbarzadeh.a@scu.ac.ir [Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of)

    2014-04-15

    In this paper, the natural convective flow of nanofluids over a convectively heated vertical plate in a saturated Darcy porous medium is studied numerically. The governing equations are transformed into a set of ordinary differential equations by using appropriate similarity variables, and they are numerically solved using the fourth-order Runge-Kutta method associated with the Gauss-Newton method. The effects of parametric variation of the Brownian motion parameter (Nb), thermophoresis parameter (Nt) and the convective heating parameter (Nc) on the boundary layer profiles are investigated. Furthermore, the variation of the reduced Nusselt number and reduced Sherwood number, as important parameters of heat and mass transfer, as a function of the Brownian motion, thermophoresis and convective heating parameters is discussed in detail. The results show that the thickness of the concentration profiles is much lower than the temperature and velocity profiles. For low values of the convective heating parameter (Nc), as the Brownian motion parameter increases, the non-dimensional wall temperature increases. However, for high values of Nc, the effect of the Brownian motion parameter on the non-dimensional wall temperature is not significant. As the Brownian motion parameter increases, the reduced Sherwood number increases and the reduced Nusselt number decreases. (author)

  2. Comparative numerical study of kaolin clay with three drying methods: Convective, convective–microwave and convective infrared modes

    International Nuclear Information System (INIS)

    Hammouda, I.; Mihoubi, D.

    2014-01-01

    Highlights: • Modelling of drying of deformable media. • Theoretical study of kaolin clay with three drying methods: convective, convective–microwave and convective infrared mode. • The stresses generated during convective, microwave/convective drying and infrared/convective drying. • The combined drying decrease the intensity of stresses developed during drying. - Abstract: A mathematical model is developed to simulate the response of a kaolin clay sample when subjected to convective, convective–microwave and convective–infrared mode. This model is proposed to describe heat, mass, and momentum transfers applied to a viscoelastic medium described by a Maxwell model with two branches. The combined drying methods were investigated to examine whether these types of drying may minimize cracking that can be generated in the product and to know whether the best enhancement is developed by the use of infra-red or microwave radiation. The numerical code allowed us to determine, and thus, compare the effect of the drying mode on drying rate, temperature, moisture content and mechanical stress evolutions during drying. The numerical results show that the combined drying decrease the intensity of stresses developed during drying and that convective–microwave drying is the best method that gives a good quality of dried product

  3. Towards the Proper Integration of Extra-Functional Requirements

    OpenAIRE

    Elke Hochmuller

    1999-01-01

    In spite of the many achievements in software engineering, proper treatment of extra-functional requirements (also known as non-functional requirements) within the software development process is still a challenge to our discipline. The application of functionality-biased software development methodologies can lead to major contradictions in the joint modelling of functional and extra-functional requirements. Based on a thorough discussion on the nature of extra-functional requirements as wel...

  4. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  5. Focal myositis: A review.

    Science.gov (United States)

    Devic, P; Gallay, L; Streichenberger, N; Petiot, P

    2016-11-01

    Amongst the heterogeneous group of inflammatory myopathies, focal myositis stands as a rare and benign dysimmune disease. Although it can be associated with root and/or nerve lesions, traumatic muscle lesions and autoimmune diseases, its triggering factors remain poorly understood. Defined as an isolated inflammatory pseudotumour usually restricted to one skeletal muscle, clinical presentation of focal myositis is that of a rapidly growing solitary mass within a single muscle, usually in the lower limbs. Electromyography shows spontaneous activity associated with a myopathic pattern. MRI reveals a contrast enhanced enlarged muscle appearing hyper-intense on FAT-SAT T2 weighted images. Adjacent structures are spared and there are no calcifications. Serum creatine kinase (CK) levels are usually moderately augmented and biological markers of systemic inflammation are absent in most cases. Pathological histological features include marked variation in fibre size, inflammatory infiltrates mostly composed of T CD4+ lymphocytes and macrophages, degenerating/regenerating fibres and interstitial fibrosis. Differential diagnoses are numerous and include myositis of other origin with focal onset. Steroid treatment should be reserved for patients who present with major pain, nerve lesions, associated autoimmune disease, or elevated C reactive protein or CK. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Extra-pulmonary tuberculosis in Uyo, South - South, Nigeria | Abudu ...

    African Journals Online (AJOL)

    Background: Tuberculosis is a disease of the poor, affecting the pulmonary and extra-pulmonary organs. Objectives: To assess the frequency and morphologic pattern of extra-pulmonary tuberculosis as well as determining the occurrence of other acid fast organisms from extra-pulmonary tissue biopsies using common ...

  7. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    International Nuclear Information System (INIS)

    Ryu, Jung-Kyu; Cho, Jeong-Yeon; Choi, Jong-Sun

    2003-01-01

    Focal musculoskeletal anomalies vary, and can manifest as part of a syndrome or be accompanied by numerous other conditions such as genetic disorders, karyotype abnormalities, central nervous system anomalies and other skeletal anomalies, lsolated focal musculoskeletal anomaly does, however, also occur; its early prenatal diagnosis is important in deciding prenatal care, and also helps in counseling parents about the postnatal effects of numerous possible associated anomalies. We have encountered 50 cases involving focal musculoskeletal anomalies, including total limb dysplasia [radial ray abnormality (n=3), mesomelic dysplasia (n=1)]; anomalies of the hand [polydactyly (n=8), syndactyly (n=3), ectrodactyly (n=1), clinodactyly (n=6), clenched hand (n=5)]; anomalies of the foot [clubfoot (n=10), rockerbottom foot (n=5), sandal gap deformity (n=1), curly toe (n=2)]; amniotic band syndrome (n=3); and anomalies of the focal spine [block vertebra (n=1), hemivertebra (n=1)]. Among these 50 cases, five [polydactyly (n=1), syndactyly (n=2) and curly toe (n=2) were confirmed by postnatal physical evaluation, two (focal spine anomalies) were diagnosed after postnatal radiologic examination, and the remaining 43 were proven at autopsy. For each condition, we describe the prenatal sonographic findings, and include a brief review

  8. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung-Kyu; Cho, Jeong-Yeon; Choi, Jong-Sun [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2003-12-15

    Focal musculoskeletal anomalies vary, and can manifest as part of a syndrome or be accompanied by numerous other conditions such as genetic disorders, karyotype abnormalities, central nervous system anomalies and other skeletal anomalies, lsolated focal musculoskeletal anomaly does, however, also occur; its early prenatal diagnosis is important in deciding prenatal care, and also helps in counseling parents about the postnatal effects of numerous possible associated anomalies. We have encountered 50 cases involving focal musculoskeletal anomalies, including total limb dysplasia [radial ray abnormality (n=3), mesomelic dysplasia (n=1)]; anomalies of the hand [polydactyly (n=8), syndactyly (n=3), ectrodactyly (n=1), clinodactyly (n=6), clenched hand (n=5)]; anomalies of the foot [clubfoot (n=10), rockerbottom foot (n=5), sandal gap deformity (n=1), curly toe (n=2)]; amniotic band syndrome (n=3); and anomalies of the focal spine [block vertebra (n=1), hemivertebra (n=1)]. Among these 50 cases, five [polydactyly (n=1), syndactyly (n=2) and curly toe (n=2) were confirmed by postnatal physical evaluation, two (focal spine anomalies) were diagnosed after postnatal radiologic examination, and the remaining 43 were proven at autopsy. For each condition, we describe the prenatal sonographic findings, and include a brief review.

  9. A thermodynamically general theory for convective vortices

    Science.gov (United States)

    Renno, Nilton O.

    2008-08-01

    Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.

  10. Numerical simulations of convectively excited gravity waves

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.

    1983-01-01

    Magneto-convection and gravity waves are numerically simulated with a nonlinear, three-dimensional, time-dependent model of a stratified, rotating, spherical fluid shell heated from below. A Solar-like reference state is specified while global velocity, magnetic field, and thermodynamic perturbations are computed from the anelastic magnetohydrodynamic equations. Convective overshooting from the upper (superadiabatic) part of the shell excites gravity waves in the lower (subadiabatic) part. Due to differential rotation and Coriolis forces, convective cell patterns propagate eastward with a latitudinally dependent phase velocity. The structure of the excited wave motions in the stable region is more time-dependent than that of the convective motions above. The magnetic field tends to be concentrated over giant-cell downdrafts in the convective zone but is affected very little by the wave motion in the stable region

  11. Extra colonic Findings on CT Colonography in Symptomatic Patients

    International Nuclear Information System (INIS)

    Drahovska, I.; Nigut, F.; Mach, P.; Lazurova, I.; Gombosova, L.

    2011-01-01

    The paper is an analysis of the consequences of the extra colonic findings identified on CT colonography examination of symptomatic patients and the validity of the intravenous application of contrast medium in this examination. The authors enrolled 252 patients, who underwent CT colonogprahy.128 extra colonic findings was identified in 80 patients (31.74%). The average age was 65.62 years (SD = 12.7, min. age was 29, max. age. 85 years). According the clinical significance the extra colonic findings have been divided into three groups – low, moderate and very important extra colonic findings. Low significant findings were 68 (53.12%), moderate 26 (20.31%) and very important extra colonic findings were 34 (26.56%), of which 30 were malignant nature. (author)

  12. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  13. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  14. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  15. Thermo-electro-hydrodynamic convection under microgravity: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mutabazi, Innocent; Yoshikawa, Harunori N; Fogaing, Mireille Tadie; Travnikov, Vadim; Crumeyrolle, Olivier [Laboratoire Ondes et Milieux Complexes, UMR 6294, CNRS-Université du Havre, CS 80450, F-76058 Le Havre Cedex (France); Futterer, Birgit; Egbers, Christoph, E-mail: Innocent.Mutabazi@univ-lehavre.fr [Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus (Germany)

    2016-12-15

    Recent studies on thermo-electro-hydrodynamic (TEHD) convection are reviewed with focus on investigations motivated by the analogy with natural convection. TEHD convection originates in the action of the dielectrophoretic force generated by an alternating electric voltage applied to a dielectric fluid with a temperature gradient. This electrohydrodynamic force is analogous to Archimedean thermal buoyancy and can be regarded as a thermal buoyancy force in electric effective gravity. The review is concerned with TEHD convection in plane, cylindrical, and spherical capacitors under microgravity conditions, where the electric gravity can induce convection without any complexities arising from geometry or the buoyancy force due to the Earth’s gravity. We will highlight the convection in spherical geometry, comparing developed theories and numerical simulations with the GEOFLOW experiments performed on board the International Space Station (ISS). (paper)

  16. Transient Mixed Convection Validation for NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [Utah State Univ., Logan, UT (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-19

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  17. Transient Mixed Convection Validation for NGNP

    International Nuclear Information System (INIS)

    Smith, Barton; Schultz, Richard

    2015-01-01

    The results of this project are best described by the papers and dissertations that resulted from the work. They are included in their entirety in this document. They are: (1) Jeff Harris PhD dissertation (focused mainly on forced convection); (2) Blake Lance PhD dissertation (focused mainly on mixed and transient convection). This dissertation is in multi-paper format and includes the article currently submitted and one to be submitted shortly; and, (3) JFE paper on CFD Validation Benchmark for Forced Convection.

  18. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  19. REVERSALS IN THE 6-CELLS CONVECTION DRIVEN

    Directory of Open Access Journals (Sweden)

    G.M. Vodinchar

    2015-12-01

    Full Text Available We describe the large-scale model geodynamo, which based on indirect data of inhomogeneities in the density of the Earth’s core. Convection structure is associated with spherical harmonic Y24 , which defines the basic poloidal component of velocity. Coriolis drift of this mode determines the toroidal component of velocity. Thus, 6 convective cells are formed. The model takes into account the feedback effect of the magnetic field on convection. It was ascertained that the model contains stable regimes of field generation. The velocity of convection and the dipole component of the magnetic field are close to the observed ones.

  20. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  1. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  2. Convectively coupled Kelvin waves in aquachannel simulations: 2. Life cycle and dynamical-convective coupling

    Science.gov (United States)

    Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.

    2016-10-01

    This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.

  3. THE EFFECT OF SOLAR RADIATION ON AUTOMOBILE ENVIRONMENT THROUGH NATURAL CONVECTION AND MIXED CONVECTION

    Directory of Open Access Journals (Sweden)

    MD. FAISAL KADER

    2012-10-01

    Full Text Available In the present paper, the effect of solar radiation on automobiles has been studied by both experimentally and numerically. The numerical solution is done by an operation friendly and fast CFD code – SC/Tetra with a full scale model of a SM3 car and turbulence is modeled by the standard k-ε equation. Numerical analysis of the three-dimensional model predicts a detailed description of fluid flow and temperature distribution in the passenger compartment during both the natural convection due to the incoming solar radiation and mixed convection due to the flow from defrost nozzle and radiation. It can be seen that solar radiation is an important parameter to raise the compartment temperature above the ambient temperature during summer. During natural convection, the rate of heat transfer is fast at the initial period. In the mixed convection analyses, it is found that the temperature drops down to a comfortable range almost linearly at the initial stage. Experimental investigations are performed to determine the temperature contour on the windshield and the local temperature at a particular point for further validation of the numerical results.

  4. search of extra space dimensions with ATLAs

    Indian Academy of Sciences (India)

    search of extra space dimensions with ATLAs. AMBREEsH GUPTA (for the ATLAs Collaboration). 5640 South Ellis Avenue, Enrico Fermi Institute, University of Chicago, Chicago,. IL 60637, USA. Abstract. If extra spatial dimensions were to exist, they could provide a solution to the hierarchy problem. The studies done by the ...

  5. Extra-pair mating and evolution of cooperative neighbourhoods.

    Directory of Open Access Journals (Sweden)

    Sigrunn Eliassen

    Full Text Available A striking but unexplained pattern in biology is the promiscuous mating behaviour in socially monogamous species. Although females commonly solicit extra-pair copulations, the adaptive reason has remained elusive. We use evolutionary modelling of breeding ecology to show that females benefit because extra-pair paternity incentivizes males to shift focus from a single brood towards the entire neighbourhood, as they are likely to have offspring there. Male-male cooperation towards public goods and dear enemy effects of reduced territorial aggression evolve from selfish interests, and lead to safer and more productive neighbourhoods. The mechanism provides adaptive explanations for the common empirical observations that females engage in extra-pair copulations, that neighbours dominate as extra-pair sires, and that extra-pair mating correlates with predation mortality and breeding density. The models predict cooperative behaviours at breeding sites where males cooperate more towards public goods than females. Where maternity certainty makes females care for offspring at home, paternity uncertainty and a potential for offspring in several broods make males invest in communal benefits and public goods. The models further predict that benefits of extra-pair mating affect whole nests or neighbourhoods, and that cuckolding males are often cuckolded themselves. Derived from ecological mechanisms, these new perspectives point towards the evolution of sociality in birds, with relevance also for mammals and primates including humans.

  6. Focal Atrichia: A Diagnostic Clue in Female Pattern Hair Loss.

    Science.gov (United States)

    Olsen, Elise A; Whiting, David A

    2017-10-07

    Focal atrichia is a common clinical finding in female pattern hair loss whose specificity and histologic findings need further clarification. To determine the frequency of focal atrichia in various types of hair loss and its histologic characteristics in female pattern hair loss. Part 1: Review of 250 consecutive female patients seen with hair loss for the presence of focal atrichia and Part 2: paired biopsies of haired areas vs focal atrichia in 18 subjects with female pattern hair loss RESULTS: Focal atrichia was seen in 46/104 (44%) of women with female pattern hair loss, including 67% of late onset vs 15% of early onset, compared to 3/146 (2%) of those with other hair disorders Biopsy findings of focal atrichia in female pattern hair loss showed primarily a more progressive miniaturization process than that of haired areas of the scalp. Some women with female pattern hair loss may have had concomitant chronic telogen effluvium CONCLUSIONS: When present, focal atrichia is a clinical clue to the diagnosis of female pattern hair loss, particularly late onset subtype. Copyright © 2017. Published by Elsevier Inc.

  7. What Determines Upscale Growth of Oceanic Convection into MCSs?

    Science.gov (United States)

    Zipser, E. J.

    2017-12-01

    Over tropical oceans, widely scattered convection of various depths may or may not grow upscale into mesoscale convective systems (MCSs). But what distinguishes the large-scale environment that favors such upscale growth from that favoring "unorganized", scattered convection? Is it some combination of large-scale low-level convergence and ascending motion, combined with sufficient instability? We recently put this to a test with ERA-I reanalysis data, with disappointing results. The "usual suspects" of total column water vapor, large-scale ascent, and CAPE may all be required to some extent, but their differences between large MCSs and scattered convection are small. The main positive results from this work (already published) demonstrate that the strength of convection is well correlated with the size and perhaps "organization" of convective features over tropical oceans, in contrast to tropical land, where strong convection is common for large or small convective features. So, important questions remain: Over tropical oceans, how should we define "organized" convection? By size of the precipitation area? And what environmental conditions lead to larger and better organized MCSs? Some recent attempts to answer these questions will be described, but good answers may require more data, and more insights.

  8. Simulating the convective precipitation diurnal cycle in a North American scale convection-permitting model

    Science.gov (United States)

    Scaff, L.; Li, Y.; Prein, A. F.; Liu, C.; Rasmussen, R.; Ikeda, K.

    2017-12-01

    A better representation of the diurnal cycle of convective precipitation is essential for the analysis of the energy balance and the water budget components such as runoff, evaporation and infiltration. Convection-permitting regional climate modeling (CPM) has been shown to improve the models' performance of summer precipitation, allowing to: (1) simulate the mesoscale processes in more detail and (2) to provide more insights in future changes in convective precipitation under climate change. In this work we investigate the skill of the Weather Research and Forecast model (WRF) in simulating the summer precipitation diurnal cycle over most of North America. We use 4 km horizontal grid spacing in a 13-years long current and future period. The future scenario is assuming no significant changes in large-scale weather patterns and aims to answer how the weather of the current climate would change if it would reoccur at the end of the century under a high-end emission scenario (Pseudo Global Warming). We emphasize on a region centered on the lee side of the Canadian Rocky Mountains, where the summer precipitation amount shows a regional maximum. The historical simulations are capable to correctly represent the diurnal cycle. At the lee-side of the Canadian Rockies the increase in the convective available potential energy as well as pronounced low-level moisture flux from the southeast Prairies explains the local maximum in summer precipitation. The PGW scenario shows an increase in summer precipitation amount and intensity in this region, consistently with a stronger source of moisture and convective energy.

  9. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  10. Diagnosing an extra-axial chordoma of the proximal tibia with the help of brachyury, a molecule required for notochordal differentiation

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, Paul [Royal National Orthopaedic Hospital, Department of Radiology, Stanmore, Middlesex (United Kingdom); University College London, Institute of Orthopaedics and Musculoskeletal Science, Stanmore, Middlesex (United Kingdom); Tirabosco, Roberto [Royal National Orthopaedic Hospital, Department of Histopathology, Stanmore, Middlesex (United Kingdom); Vujovic, Sonja; Henderson, Stephen; Boshoff, Chris [University College London, Wolfson Institute for Biomedical Research, London (United Kingdom); Bartlett, William; Briggs, Timothy W.R. [Royal National Orthopaedic Hospital, Department of Orthopaedic Surgery, Stanmore, Middlesex (United Kingdom); Flanagan, Adrienne M. [Royal National Orthopaedic Hospital, Department of Histopathology, Stanmore, Middlesex (United Kingdom); University College London, Institute of Orthopaedics and Musculoskeletal Science, Stanmore, Middlesex (United Kingdom)

    2007-01-15

    Chordomas are rare malignant bone tumours considered to arise from notochordal remnants that persist in the axial skeleton. Although their morphology can resemble that of a carcinoma, chondrosarcoma or malignant melanoma, the axial location and their well-defined immunophenotype, including expression of cytokeratins (CK7/20/8/18/19) and S100, generally allow the diagnosis to be made with confidence once the possibility is considered. In contrast, making a robust diagnosis of an extra-axial chordoma has been difficult in the absence of specific markers for chordomas. We have recently shown in gene expression microarray and immunohistochemistry studies that brachyury, a transcription factor crucial for notochordal development, is a specific and sensitive maker for chordomas. We now present a case of an intracortical tibial tumour, with detailed report of the imaging, and morphological features consistent with a chordoma, where notochordal differentiation was demonstrated with an antibody to brachyury. The tumour cells were also positive for cytokeratins, including CK19, and S100, CEA, EMA and HMBE1, findings which support the diagnosis of chordoma. Brachyury can be employed as a marker of notochordal differentiation and help identify confidently, for the first time, extra-axial bone and soft tissue chordomas, and tumours which may show focal notochordal differentiation. (orig.)

  11. Diagnosing an extra-axial chordoma of the proximal tibia with the help of brachyury, a molecule required for notochordal differentiation

    International Nuclear Information System (INIS)

    O'Donnell, Paul; Tirabosco, Roberto; Vujovic, Sonja; Henderson, Stephen; Boshoff, Chris; Bartlett, William; Briggs, Timothy W.R.; Flanagan, Adrienne M.

    2007-01-01

    Chordomas are rare malignant bone tumours considered to arise from notochordal remnants that persist in the axial skeleton. Although their morphology can resemble that of a carcinoma, chondrosarcoma or malignant melanoma, the axial location and their well-defined immunophenotype, including expression of cytokeratins (CK7/20/8/18/19) and S100, generally allow the diagnosis to be made with confidence once the possibility is considered. In contrast, making a robust diagnosis of an extra-axial chordoma has been difficult in the absence of specific markers for chordomas. We have recently shown in gene expression microarray and immunohistochemistry studies that brachyury, a transcription factor crucial for notochordal development, is a specific and sensitive maker for chordomas. We now present a case of an intracortical tibial tumour, with detailed report of the imaging, and morphological features consistent with a chordoma, where notochordal differentiation was demonstrated with an antibody to brachyury. The tumour cells were also positive for cytokeratins, including CK19, and S100, CEA, EMA and HMBE1, findings which support the diagnosis of chordoma. Brachyury can be employed as a marker of notochordal differentiation and help identify confidently, for the first time, extra-axial bone and soft tissue chordomas, and tumours which may show focal notochordal differentiation. (orig.)

  12. Convective Radio Occultations Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Biondi, R. [Atmospheric Radiation Measurement, Washington, DC (United States)

    2016-03-01

    Deep convective systems are destructive weather phenomena that annually cause many deaths and injuries as well as much damage, thereby accounting for major economic losses in several countries. The number and intensity of such phenomena have increased over the last decades in some areas of the globe. Damage is mostly caused by strong winds and heavy rain parameters that are strongly connected to the structure of the particular storm. Convection over land is usually stronger and deeper than over the ocean and some convective systems, known as supercells, also develop tornadoes through processes that remain mostly unclear. The intensity forecast and monitoring of convective systems is one of the major challenges for meteorology because in situ measurements during extreme events are too sparse or unreliable and most ongoing satellite missions do not provide suitable time/space coverage.

  13. Vorticity imbalance and stability in relation to convection

    Science.gov (United States)

    Read, W. L.; Scoggins, J. R.

    1977-01-01

    A complete synoptic-scale vorticity budget was related to convection storm development in the eastern two-thirds of the United States. The 3-h sounding interval permitted a study of time changes of the vorticity budget in areas of convective storms. Results of analyses revealed significant changes in values of terms in the vorticity equation at different stages of squall line development. Average budgets for all areas of convection indicate systematic imbalance in the terms in the vorticity equation. This imbalance resulted primarily from sub-grid scale processes. Potential instability in the lower troposphere was analyzed in relation to the development of convective activity. Instability was related to areas of convection; however, instability alone was inadequate for forecast purposes. Combinations of stability and terms in the vorticity equation in the form of indices succeeded in depicting areas of convection better than any one item separately.

  14. Effects on stratospheric moistening by rates of change of aerosol optical depth and ozone due to solar activity in extra-tropics

    Science.gov (United States)

    Saha, U.; Maitra, A.

    2014-11-01

    The solar-induced changes in ozone and aerosol optical depth have relative effects on stratospheric moistening at upper troposphere/lower stratosphere region. Wavelet-based multi-scale principal component analysis technique has been applied to de-noise component of quasi-biennial oscillation and El Niño-Southern Oscillation from ozone and aerosol optical depth variations. Rate of change of aerosol optical depth sharply increases indicating a positive gradient whereas rate of change of ozone sharply decreases indicating a negative gradient with solar activity during the years 2004-2010. It is also observed that with increase of rate of change of aerosol optical depth, there is a sharp increase of stratospheric moistening caused by enhanced deep convection. On the contrary, with the increase of stratospheric moistening, there is a sharp decrease of rate of change of ozone resulting in a cross-over between the two parameters. An increase in aerosol optical depth may cause a significant increase in the gradient of vertical temperature profile, as well as formation of cloud condensation nuclei, clouds and hence rainfall. This may lead to formation of strong convective system in the atmosphere that is essential for vertical transfer of water vapour in the tropics percolating tropical tropopause layer and depleting stratospheric ozone in the extra-tropics.

  15. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  16. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  17. Focal Length Affects Depicted Shape and Perception of Facial Images.

    Directory of Open Access Journals (Sweden)

    Vít Třebický

    Full Text Available Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males. Facial width-to-height ratio (fWHR was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM. Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits.

  18. Modeling of plasma-sheet convection: implications for substorms

    International Nuclear Information System (INIS)

    Erickson, G.M.

    1985-01-01

    An answer is suggested to the question of why plasma and magnetic energy accumulate in the Earth's magnetotail to be released in sporadic events, namely substorms. It is shown that the idea of steady convection is inconsistent with the idea of slow, approximately lossless, plasma convection in a long, closed-field-line region that extends into a long magnetotail, such as occurs during Earthward convection in the Earth's plasma sheet. This inconsistency is argued generally and demonstrated specifically using several quantitative models of the Earth's magnetospheric magnetic field. These results suggest that plasma-sheet convection is necessarily time dependent. If flux tubes are to convect adiabatically earthward, the confining magnetic pressure in the tail lobes must increase with time, and the magnetotail must evolve into a more stretched configuration. Eventually, the magnetosphere must find some way to release plasma from inner-plasma-sheet flux tubes. This suggests an obvious role for the magnetospheric substorm in the convection process. To probe this process further, a two-dimensional, self-consistent, quasi-static convection model was developed. This model self consistently includes a dipole field and can reasonably account for the effects of inner-magnetospheric shielding

  19. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jung Kyu; Cho, Jeong Yeon; Lee, Young Ho; Kim, Ei Jeong; Chun, Yi Kyeong [Samsung Cheil Hospital, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-09-15

    Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.

  20. Prenatal sonographic diagnosis of focal musculoskeletal anomalies

    International Nuclear Information System (INIS)

    Ryu, Jung Kyu; Cho, Jeong Yeon; Lee, Young Ho; Kim, Ei Jeong; Chun, Yi Kyeong

    2002-01-01

    Focal musculoskeletal anomalies are various and may be an isolated finding or may be found in conjunction with numerous associations, including genetic syndromes, Karyotype abnormals, central nervous system anomalies and other general musculoskeletal disorders. Early prenatal diagnosis of these focal musculoskeletal anomalies nor only affects prenatal care and postnatal outcome but also helps in approaching other numerous associated anomalies.

  1. FOCAL CORTICAL DYSPLASIAS: CLINICAL AND ELECTRO-NEUROIMAGING CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    K. Yu. Mukhin

    2016-01-01

    Full Text Available In spite of a notable advance made in epileptology, resistant epilepsies account for approximately 30 % of all forms of epilepsy particularly in patients with focal seizures. One of the main causes of therapy-resistant focal epilepsies is focal cortical dysplasias (FCD. This term was first introduced by D. Taylor et al. in 1971. FCD belongs to abnormal cortical development. Among all abnormalities of cortical development, FCD in surgically treated children amounts to 75 %. FCD is the most common cause of resistant epilepsy in children and the most frequent reason for diagnosing cryptogenic focal epilepsy with intractable seizures. The author gives a detailed literature review dedicated to FCD as a cause of resistant epilepsy, including the classification and histologic characteristics of FCD, its clinical manifestations and prognosis, and approaches to medical and surgical treatments. 

  2. Multispectral linear array (MLA) focal plane mechanical and thermal design

    Science.gov (United States)

    Mitchell, A. S.; Kaminski, E. F.

    1982-01-01

    The mechanical and thermal design of an integrated focal plane subsystem of a Multispectral Linear Array (MLA) instrument is discussed in terms of focal-plane alignment, thermoelastic performance, and thermal requirements. The modular construction and thermal control of the focal plane array are discussed.

  3. Dimensiones Extra y los Límites de la Física Dimensiones Extra y los Límites de la Física

    Directory of Open Access Journals (Sweden)

    Selim Gómez Ávila

    2012-02-01

    Full Text Available The history and cultural impact of extra dimensional models in physics is briefl y examined. Emphasis is put in the influence in the fine arts, and in particular the case of Marcel Duchamp is used as an example. Some perspectives of the study of extra dimensions aresketched.Se examina brevemente la historia y el impacto cultural de modelos de dimensiones extraen física. Se enfatiza la influencia en las bellas artes, y en particular el caso de Marcel Duchamp es usado como ejemplo. Se bosquejan algunas perspectivas del estudio de dimensiones extra.

  4. Extra-pair parentage and personality in a cooperatively breeding bird

    NARCIS (Netherlands)

    Edwards, Hannah A; Dugdale, Hannah L; Richardson, David S; Komdeur, Jan; Burke, Terry

    Abstract: Why so much variation in extra-pair parentage occurs within and among populations remains unclear. Often the fitness costs and benefits of extra-pair parentage are hypothesised to explain its occurrence; therefore, linking extra-pair parentage with traits such as personality (behavioural

  5. Convective equilibrium and mixing-length theory for stellarator reactors

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    In high β stellarator and tokamak reactors, the plasma pressure gradient in some regions of the plasma may exceed the critical pressure gradient set by ballooning instabilities. In these regions, convective cells break out to enhance the transport. As a result, the pressure gradient can rise only slightly above the critical gradient and the plasma is in another state of equilibrium - ''convective equilibrium'' - in these regions. Although the convective transport cannot be calculated precisely, it is shown that the density and temperature profiles in the convective region can still be estimated. A simple mixing-length theory, similar to that used for convection in stellar interiors, is introduced in this paper to provide a qualitative description of the convective cells and to show that the convective transport is highly efficient. A numerical example for obtaining the density and temperature profiles in a stellarator reactor is given

  6. The semiology of febrile seizures: Focal features are frequent.

    Science.gov (United States)

    Takasu, Michihiko; Kubota, Tetsuo; Tsuji, Takeshi; Kurahashi, Hirokazu; Numoto, Shingo; Watanabe, Kazuyoshi; Okumura, Akihisa

    2017-08-01

    To clarify the semiology of febrile seizures (FS) and to determine the frequency of FS with symptoms suggestive of focal onset. FS symptoms in children were reported within 24h of seizure onset by the parents using a structured questionnaire consisting principally of closed-ended questions. We focused on events at seizure commencement, including changes in behavior and facial expression, and ocular and oral symptoms. We also investigated the autonomic and motor symptoms developing during seizures. The presence or absence of focal and limbic features was determined for each patient. The associations of certain focal and limbic features with patient characteristics were assessed. Information was obtained on FS in 106 children. Various events were recorded at seizure commencement. Behavioral changes were observed in 35 children, changes in facial expression in 53, ocular symptoms in 78, and oral symptoms in 90. In terms of events during seizures, autonomic symptoms were recognized in 78, and convulsive motor symptoms were recognized in 68 children. Focal features were evident in 81 children; 38 children had two or more such features. Limbic features were observed in 44 children, 9 of whom had two or more such features. There was no significant relationship between any patient characteristic and the numbers of focal or limbic features. The semiology of FS varied widely among children, and symptoms suggestive of focal onset were frequent. FS of focal onset may be more common than is generally thought. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Understanding and controlling plasmon-induced convection

    Science.gov (United States)

    Roxworthy, Brian J.; Bhuiya, Abdul M.; Vanka, Surya P.; Toussaint, Kimani C.

    2014-01-01

    The heat generation and fluid convection induced by plasmonic nanostructures is attractive for optofluidic applications. However, previously published theoretical studies predict only nanometre per second fluid velocities that are inadequate for microscale mass transport. Here we show both theoretically and experimentally that an array of plasmonic nanoantennas coupled to an optically absorptive indium-tin-oxide (ITO) substrate can generate >micrometre per second fluid convection. Crucially, the ITO distributes thermal energy created by the nanoantennas generating an order of magnitude increase in convection velocities compared with nanoantennas on a SiO2 base layer. In addition, the plasmonic array alters absorption in the ITO, causing a deviation from Beer-Lambert absorption that results in an optimum ITO thickness for a given system. This work elucidates the role of convection in plasmonic optical trapping and particle assembly, and opens up new avenues for controlling fluid and mass transport on the micro- and nanoscale.

  8. The flexible engagement of monitoring processes in non-focal and focal prospective memory tasks with salient cues.

    Science.gov (United States)

    Hefer, Carmen; Cohen, Anna-Lisa; Jaudas, Alexander; Dreisbach, Gesine

    2017-09-01

    Prospective memory (PM) refers to the ability to remember to perform a delayed intention. Here, we aimed to investigate the ability to suspend such an intention and thus to confirm previous findings (Cohen, Gordon, Jaudas, Hefer, & Dreisbach, 2016) demonstrating the ability to flexibly engage in monitoring processes. In the current study, we presented a perceptually salient PM cue (bold and red) to rule out that previous findings were limited to non-salient and, thus, easy to ignore PM cues. Moreover, we used both a non-focal (Experiment 1) and a focal PM (Experiment 2) cue. In both Experiments, three groups of participants performed an Eriksen flanker task as an ongoing task with an embedded PM task (they had to remember to press the F1 key if a pre-specified cue appeared). Participants were assigned to either a control condition (performed solely the flanker task), a standard PM condition (performed the flanker task along with the PM task), or a PM delayed condition (performed the flanker task but were instructed to postpone their PM task intention). The results of Experiment 1 with the non-focal PM cue closely replicated those of Cohen et al. (2016) and confirmed that participants were able to successfully postpone the PM cue intention without additional costs even when the PM cue was a perceptually salient one. However, when the PM cue was focal (Experiment 2), it was much more difficult for participants to ignore it as evidenced by commission errors and slower latencies on PM cue trials. In sum, results showed that the focality of the PM cue plays a more crucial role in the flexibility of the monitoring process whereas the saliency of the PM cue does not. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  10. Behaviors and transitions along the path to magnetostrophic convection

    Science.gov (United States)

    Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.

    2017-12-01

    The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.

  11. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  12. Focal necrotizing pneumonia is a distinct entity from lung abscess.

    Science.gov (United States)

    Seo, Hyewon; Cha, Seung-Ick; Shin, Kyung-Min; Lim, Jaekwang; Yoo, Seung-Soo; Lee, Jaehee; Lee, Shin-Yup; Kim, Chang-Ho; Park, Jae-Yong

    2013-10-01

    'Focal necrotizing pneumonia' was defined as a localized type of necrotizing pneumonia characterized by a single or few cavities of low density without rim enhancement on computed tomography (CT) scan. The purpose of this study was to investigate the clinical features and course of patients with focal necrotizing pneumonia, thereby elucidating its clinical relevance. The present study was conducted retrospectively in patients who had been interpreted as having lung abscess or necrotizing pneumonia on CT scan. Clinical and radiological characteristics were compared between the focal necrotizing pneumonia and lung abscess groups. Overall, 68 patients with focal necrotizing pneumonia (n = 35) or lung abscess (n = 33) were included in the present study. The frequency of risk factors for aspiration was significantly lower in the focal necrotizing group, compared with the lung abscess group (14.3% vs 45.5%, P = 0.005). Compared with lung abscess, focal necrotizing pneumonia was observed more commonly in non-gravity-dependent segments (66% vs 36%, P lung abscess group (31% vs 12%, P = 0.08). However, in terms of treatment outcomes, a similar high rate of success was observed in both groups: 97%, respectively. Compared to lung abscess, focal necrotizing pneumonia occurs more commonly in non-gravity-dependent segments with lower incidence of risk factors for aspiration. Similar to lung abscess, the rate of success for treatment of focal necrotizing pneumonia was high. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  13. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  14. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  15. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  16. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  17. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  18. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  19. CKM pattern from localized generations in extra dimension

    International Nuclear Information System (INIS)

    Matti, C.

    2006-01-01

    We revisit the issue of the quark masses and mixing angles in the framework of large extra dimension. We consider three identical standard model families resulting from higher-dimensional fields localized on different branes embedded in a large extra dimension. Furthermore we use a decaying profile in the bulk different form previous works. With the Higgs field also localized on a different brane, the hierarchy of masses between the families results from their different positions in the extra space. When the left-handed doublet and the right-handed singlets are localized with different couplings on the branes, we found a set of brane locations in one extra dimension which leads to the correct quark masses and mixing angles with the sufficient strength of CP-violation. We see that the decaying profile of the Higgs field plays a crucial role for producing the hierarchies in a rather natural way. (orig.)

  20. Proximal Focal Femoral Deficiency in Ibadan a Developing ...

    African Journals Online (AJOL)

    The cultural aversion to amputation in our environment makes it difficult to employ that option of treatment. Proximal focal femoral deficiency in Ibadan a developing country's perspective and a review of the literature. Keywords: Proximal focal femoral deficiency , congenital malformations , limb malformations , lower limb ...

  1. Implementation of focal zooming on the Nike KrF laser

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. M.; Karasik, M.; Weaver, J. L.; Chan, Y.; Obenschain, S. P. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Aglitsky, Y. [Science Applications International, McLean, Virginia 22150 (United States); Smyth, Z.; Lehmberg, R. H. [Research Support Instruments, Inc., Lanham, Maryland 20706 (United States); Terrell, S. [Commonwealth Technologies, Inc., Alexandria, Virginia 22315 (United States)

    2013-01-15

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser ({lambda}= 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 {mu}m thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  2. Implementation of focal zooming on the Nike KrF laser

    International Nuclear Information System (INIS)

    Kehne, D. M.; Karasik, M.; Weaver, J. L.; Chan, Y.; Obenschain, S. P.; Aglitsky, Y.; Smyth, Z.; Lehmberg, R. H.; Terrell, S.

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ= 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  3. Implementation of focal zooming on the Nike KrF laser

    Science.gov (United States)

    Kehne, D. M.; Karasik, M.; Aglitsky, Y.; Smyth, Z.; Terrell, S.; Weaver, J. L.; Chan, Y.; Lehmberg, R. H.; Obenschain, S. P.

    2013-01-01

    In direct drive inertial confinement laser fusion, a pellet containing D-T fuel is imploded by ablation arising from absorption of laser energy at its outer surface. For optimal coupling, the focal spot of the laser would continuously decrease to match the reduction in the pellet's diameter, thereby minimizing wasted energy. A krypton-fluoride laser (λ = 248 nm) that incorporates beam smoothing by induced spatial incoherence has the ability to produce a high quality focal profile whose diameter varies with time, a property known as focal zooming. A two-stage focal zoom has been demonstrated on the Nike laser at the Naval Research Laboratory. In the experiment, a 4.4 ns laser pulse was created in which the on-target focal spot diameter was 1.3 mm (full width at half maximum) for the first 2.4 ns and 0.28 mm for the final 2 ns. These two diameters appear in time-integrated focal plane equivalent images taken at several locations in the amplification chain. Eight of the zoomed output beams were overlapped on a 60 μm thick planar polystyrene target. Time resolved images of self-emission from the rear of the target show the separate shocks launched by the two corresponding laser focal diameters.

  4. Demographic mechanisms of inbreeding adjustment through extra-pair reproduction.

    Science.gov (United States)

    Reid, Jane M; Duthie, A Bradley; Wolak, Matthew E; Arcese, Peter

    2015-07-01

    One hypothesis explaining extra-pair reproduction is that socially monogamous females mate with extra-pair males to adjust the coefficient of inbreeding (f) of extra-pair offspring (EPO) relative to that of within-pair offspring (WPO) they would produce with their socially paired male. Such adjustment of offspring f requires non-random extra-pair reproduction with respect to relatedness, which is in turn often assumed to require some mechanism of explicit pre-copulatory or post-copulatory kin discrimination. We propose three demographic processes that could potentially cause mean f to differ between individual females' EPO and WPO given random extra-pair reproduction with available males without necessarily requiring explicit kin discrimination. Specifically, such a difference could arise if social pairings formed non-randomly with respect to relatedness or persisted non-randomly with respect to relatedness, or if the distribution of relatedness between females and their sets of potential mates changed during the period through which social pairings persisted. We used comprehensive pedigree and pairing data from free-living song sparrows (Melospiza melodia) to quantify these three processes and hence investigate how individual females could adjust mean offspring f through instantaneously random extra-pair reproduction. Female song sparrows tended to form social pairings with unrelated or distantly related males slightly less frequently than expected given random pairing within the defined set of available males. Furthermore, social pairings between more closely related mates tended to be more likely to persist across years than social pairings between less closely related mates. However, these effects were small and the mean relatedness between females and their sets of potential extra-pair males did not change substantially across the years through which social pairings persisted. Our framework and analyses illustrate how demographic and social structuring within

  5. TEVATRON Searches for Large Extra Dimensions and Leptoquarks

    International Nuclear Information System (INIS)

    Mattingly, S.

    2002-01-01

    This paper presents searches for large extra dimensions and leptoquarks in p(anti)p collisions from Run 1 at the Tevatron. Large extra dimensions are searched for in real graviton production with a monojet or monophoton and in virtual graviton exchange processes with electron or photon pairs. Results from leptoquark searches are presented for three generations of leptoquarks. No evidence of signal is found in any searches for large extra dimensions or leptoquarks and limits are placed. Perceptivities for these searches in the Tevatron's Run 2 are discussed and initial Run 2 data is presented. (author)

  6. Extra Molting and Selection on Nymphal Growth in the Desert Locust.

    Directory of Open Access Journals (Sweden)

    Benjamin Pélissié

    Full Text Available In insects, extra-molting has been viewed as a compensatory mechanism for nymphal growth that contributes to optimize body weight for successful reproduction. However, little is known on the capacity of extra-molting to evolve in natural populations, which limits our understanding of how selection acts on nymphal growth. We used a multi-generational pedigree, individual monitoring and quantitative genetics models to investigate the evolution of extra-molting and its impact on nymphal growth in a solitarious population of the desert locust, Schistocerca gregaria. Growth compensation via extra-molting was observed for 46% of the females, whose adult weight exceeded by 4% that of other females, at a cost of a 22% longer development time. We found a null heritability for body weight threshold only, and the highest and a strongly female-biased heritability for extra molting. Our genetic estimates show that (1 directional selection can act on growth rate, development time and extra-molting to optimize body weight threshold, the target of stabilizing selection, (2 extra-molting can evolve in natural populations, and (3 a genetic conflict, due to sexually antagonistic selection on extra-molting, might prevent its fixation. Finally, we discuss how antagonistic selection between solitarious and gregarious environments and/or genetic correlations between growth and phase traits might also impact the evolution of extra-molting in locusts.

  7. Focal fatty infiltra- tion and focal fatty sparing of the liver

    African Journals Online (AJOL)

    Enrique

    Department of Radiology. Nelson Mandela School of Health Sciences. Durban. Fig. 1a. Unenhanced CT of the liver in case 1 demonstrates multiple focal low density regions in both lobes of the liver. Region of interest 1 over the fatty left lobe measured 10 HU while region of interest 2 over the right lobe measure 40 HU in.

  8. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  9. Laminar Mixed Convection Heat Transfer Correlation for Horizontal Pipes

    International Nuclear Information System (INIS)

    Chae, Myeong Seon; Chung, Bum Jin

    2013-01-01

    This study aimed at producing experimental results and developing a new heat transfer correlation based upon a semi-empirical buoyancy coefficient. Mixed convection mass transfers inside horizontal pipe were investigated for the pipe of various length-to-diameters with varying Re. Forced convection correlation was developed using a very short cathode. With the length of cathode increase and Re decrease, the heat transfer rates were enhanced and becomes higher than that of forced convection. An empirical buoyancy coefficient was derived from correlation of natural convection and forced convection with the addition of L/D. And the heat transfer correlation for laminar mixed convection was developed using the buoyancy coefficient, it describes not only current results, but also results of other studies. Mixed convection occurs when the driving forces of both forced and natural convections are of comparable magnitude (Gr/Re 2 ∼1). It is classical problem but is still an active area of research for various thermal applications such as flat plate solar collectors, nuclear reactors and heat exchangers. The effect of buoyancy on heat transfer in a forced flow is varied by the direction of the buoyancy force. In a horizontal pipe the direction of the forced and buoyancy forces are perpendicular. The studies on the mixed convections of the horizontal pipes were not investigated very much due to the lack of practical uses compared to those of vertical pipes. Even the definitions on the buoyancy coefficient that presents the relative influence of the forced and the natural convections, are different by scholars. And the proposed heat transfer correlations do not agree

  10. Graviton collider effects in one and more large extra dimensions

    International Nuclear Information System (INIS)

    Giudice, Gian F.; Plehn, Tilman; Strumia, Alessandro

    2005-01-01

    Astrophysical bounds severely limit the possibility of observing collider signals of gravity with less than 3 flat extra dimensions. However, small distortions of the compactified space can lift the masses of the lightest graviton excitations, evading astrophysical bounds without affecting collider signals of quantum gravity. Following this procedure we reconsider theories with one large extra dimension. A slight space warping gives a model which is safe in the infrared against astrophysical and observational bounds, and which has the ultraviolet properties of gravity with a single flat extra dimension. We extend collider studies to the case of one extra dimension, pointing out its peculiarities. Finally, for a generic number of extra dimensions, we compare different channels in LHC searches for quantum gravity, introducing an ultraviolet cutoff as an additional parameter besides the Planck mass

  11. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  12. Project "Convective Wind Gusts" (ConWinG)

    Science.gov (United States)

    Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo

    2017-04-01

    Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost

  13. Thermomechanical architecture of the VIS focal plane for Euclid

    International Nuclear Information System (INIS)

    Martignac, Jerome; Carty, Michael; Tourette, Thierry; Bachet, Damien; Berthe, Michel; Augueres, Jean-Louis; Amiaux, Jerome; Fontignie, Jean; Horeau, Benoit; Renaud, Diana

    2014-01-01

    One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150 K) connected to their front end electronics (operated at 280 K) as to obtain one of the largest focal plane (0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints. (authors)

  14. 7 CFR 51.300 - U.S. Extra Fancy.

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Grades of Apples Grades § 51.300 U.S. Extra Fancy. “U.S. Extra Fancy” consists of apples of...

  15. Focal cemento-osseous dysplasia: review and a case report.

    Science.gov (United States)

    Salem, Y M Y; Osman, Y I; Norval, E J G

    2010-10-01

    Focal cemento-osseous dysplasia is a benign fibro-osseous condition that can be seen in dentate and edentulous patients. It is an asymptomatic lesion and needs no treatment; however follow-up is essential due to the possibility that focal cemento-osseous dysplasia can progress to a condition called florid osseous dysplasia that involves multiple sites. A case report is presented here, along with a review of the differential diagnoses considered in order to reach a final diagnosis of focal cemento-osseous dysplasia.

  16. Environmental Characteristics of Convective Systems During TRMM-LBA

    Science.gov (United States)

    Halverson, Jeffrey B.; Rickenbach, Thomas; Roy, Biswadev; Pierce, Harold; Williams, Earle; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper, data collected from 51 days of continual upper atmospheric soundings and TOGA radar at ABRACOS Hill during the TRMM-LBA experiment are used to describe the mean thermodynamic and kinematic airmass properties of wet season convection over Rondonia, Brazil. Distinct multi-day easterly and westerly lower tropospheric wind regimes occurred during the campaign with contrasting airmass characteristics. Westerly wind periods featured modest CAPE (1000 J/kg), moist conditions (>90% RH) extending through 700 mb and shallow (900 mb) speed shear on the order of 10(exp -4)/s. This combination of characteristics promoted convective systems that featured a relatively large fraction of stratiform rainfall and weak convection nearly devoid of lightning. The environment is very similar to the general airmass conditions experienced during the Darwin, Australia monsoon convective regime. In contrast, easterly regime convective systems were more strongly electrified and featured larger convective rain rates and reduced stratiform rainfall fraction. These systems formed in an environment with significantly larger CAPE (1500 J/kg), drier lower and middle level humidities (in the lowest 1-2 km, thus contributing to a more explosive growth of convection. The time series of low- and mid-level averaged humidity exhibited marked variability between westerly and easterly regimes and was characterized by low frequency (i.e., multi-day to weekly) oscillations. The synoptic scale origins of these moisture fluctuations are examined, which include the effects of variable low-level airmass trajectories and upper-level, westward migrating cyclonic vortices. The results reported herein provide an environmental context for ongoing dual Doppler analyses and numerical modeling case studies of individual TRMM-LBA convective systems.

  17. Quantifying near-wall coherent structures in turbulent convection

    Science.gov (United States)

    Gunasegarane, G. S.; A Puthenveettil, Baburaj; K Agrawal, Yogesh; Schmeling, Daniel; Bosbach, Johannes; Arakeri, Jaywant; IIT Madras-DLR-IISc Collaboration

    2011-11-01

    We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of near- wall line plumes measured from these planforms, in a six decade range of Rayleigh numbers (105 < Ra <1011) and at three Prandtl numbers (Pr = 0 . 7 , 6 , 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of these near-wall plumes in turbulent convection. The plume length per unit area (Lp / A), made dimensionless by the near-wall length scale in turbulent convection (Zw) remains a constant for a given fluid. The Nusselt number is shown to be directly proportional to Lp H / A for a given fluid layer of height H. Increase in Pr has a weak influence in decreasing Lp / A . These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.

  18. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi

    2016-01-01

    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  19. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  20. Some problems of free convection in a macrocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Luikov, A V; Berkovsky, B M; Kolpashchikov, V L

    1971-01-01

    Solution is given to a number of problems of free convection in incompressible viscous fluid in elementary macrocapillaries with nonuniform temperature distribution at the boundary. The fluid flow structure and effect of a magnetic field on convection in the case of conducting fluid has been studied in detail. The influence of macrocapillary properties on the flow structure, rate of convection, and temperature distribution has been estimated.

  1. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  2. Exploring extra dimensions through inflationary tensor modes

    Science.gov (United States)

    Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas

    2018-03-01

    Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.

  3. Convective behaviour in vapour-gas-aerosol mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1986-01-01

    Unusual convective behaviour can occur in mixtures of gases and heavy vapour, including stabilization of mixtures hot at the base and 'upside-down' convection in mixtures hot at the top. Previous work produced a criterion for this behaviour which ignored the necessary presence of an aerosol. Modification arising from aerosol condensation is derived and is shown to involve the Lewis and condensation numbers of the mixture, as well as a quantity involving the temperature drop across a boundary layer. It becomes negligible at high temperatures, but can crucially affect the temperature for the onset of unusual behaviour. Aerosol formation produces an asymmetry between the convective forces in boundary layers in which the mixture is being heated and cooled, respectively, for example at the base and roof of a cavity. The convective behaviour discussed could occur in situations relevant to nuclear safety. (author)

  4. Regime-dependent forecast uncertainty of convective precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Christian; Craig, George C. [Muenchen Univ. (Germany). Meteorologisches Inst.

    2011-04-15

    Forecast uncertainty of convective precipitation is influenced by all scales, but in different ways in different meteorological situations. Forecasts of the high resolution ensemble prediction system COSMO-DE-EPS of Deutscher Wetterdienst (DWD) are used to examine the dominant sources of uncertainty of convective precipitation. A validation with radar data using traditional as well as spatial verification measures highlights differences in precipitation forecast performance in differing weather regimes. When the forecast uncertainty can primarily be associated with local, small-scale processes individual members run with the same variation of the physical parameterisation driven by different global models outperform all other ensemble members. In contrast when the precipitation is governed by the large-scale flow all ensemble members perform similarly. Application of the convective adjustment time scale confirms this separation and shows a regime-dependent forecast uncertainty of convective precipitation. (orig.)

  5. Fast multifrequency focal beam analysis for 3D seismic acquisition geometry

    NARCIS (Netherlands)

    Wei, W.; Fu, L.; Blacquiere, G.

    2012-01-01

    A method for the efficient computation of multifrequency focal beams for 3D seismic acquisition geometry analysis has been developed. By computing them for all the frequency components of seismic data, single-frequency focal beams can be extended to multifrequency focal beams. However, this

  6. Search for Extra Dimensions With ATLAS at LHC

    CERN Document Server

    Benslama, Kamal

    2004-01-01

    Theories with extra space time dimensions aiming at resolving the hierarchy problem have recently been developed. These scenarios have provided exciting new grounds for experimental probes. A review of the studies done by the ATLAS collaboration on the sensitivity of the detector to various extra dimension models is reported in this document

  7. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  8. Convective effects in a regulatory and proposed fire model

    International Nuclear Information System (INIS)

    Wix, S.D.; Hohnstreiter, G.F.

    1995-01-01

    Radiation is the dominant mode of heat transfer in large fires. However, convection can be as much as 10 to 20 percent of the total heat transfer to an object in a large fire. The current radioactive material transportation packaging regulations include convection as a mode of heat transfer in the accident condition scenario. The current International Atomic Energy Agency Safety Series 6 packaging regulation states ''the convection coefficient shall be that value which the designer can justify if the package were exposed to the specified fire''. The current Title 10, Code of Federal Regulations, Part 71 (10CFR71) packaging regulation states ''when significant, convection heat input must be included on the basis of still, ambient air at 800 degrees C (1475 degrees F)''. Two questions that can arise in an analysts mind from an examination of the packaging regulations is whether convection is significant and whether convection should be included in the design analysis of a radioactive materials transportation container. The objective of this study is to examine the convective effects on an actual radioactive materials transportation package using a regulatory and a proposed thermal boundary condition

  9. Evaluation of convection-resolving models using satellite data: The diurnal cycle of summer convection over the Alps

    Directory of Open Access Journals (Sweden)

    Michael Keller

    2016-05-01

    Full Text Available Diurnal moist convection is an important element of summer precipitation over Central Europe and the Alps. It is poorly represented in models using parameterized convection. In this study, we investigate the diurnal cycle of convection during 11 days in June 2007 using the COSMO model. The numerical simulations are compared with satellite measurements of GERB and SEVIRI, AVHRR satellite-based cloud properties and ground-based precipitation and temperature measurements. The simulations use horizontal resolutions of 12 km (convection-parameterizing model, CPM and 2 km (convection-resolving model, CRM and either a one-moment microphysics scheme (1M or a two-moment microphysics scheme (2M.They are conducted for a computational domain that covers an extended Alpine area from Northern Italy to Northern Germany. The CPM with 1M exhibits a significant overestimation of high cloud cover. This results in a compensation effect in the top of the atmosphere energy budget due to an underestimation of outgoing longwave radiation (OLR and an overestimation of reflected solar radiation (RSR. The CRM reduces high cloud cover and improves the OLR bias from a domain mean of −20.1 to −2.6 W/m2. When using 2M with ice sedimentation in the CRM, high cloud cover is further reduced. The stronger diurnal cycle of high cloud cover and associated convection over the Alps, compared to less mountainous regions, is well represented by the CRM but underestimated by the CPM. Despite substantial differences in high cloud cover, the use of a 2M has no significant impact on the diurnal cycle of precipitation. Furthermore, a negative mid-level cloud bias is found for all simulations.

  10. Angle dependent focal spot size of a conical X-ray target

    International Nuclear Information System (INIS)

    Saeed Raza, Hamid; Jin Kim, Hyun; Nam Kim, Hyun; Oh Cho, Sung

    2015-01-01

    Misaligned phantoms may severely affect the focal spot calculations. A method is proposed to determine the geometry of the X-ray target and the position of the image radiograph around the X-ray target to get a relatively smaller focal spot size. Results reveal that the focal spot size is not always isotropic around the target but it decreases as the point of observation shifts radially away from the center line of the conical X-ray target. This research will help in producing high quality X-ray images in multi-directions by properly aligning the phantoms and the radiograph tallies. - Highlights: • Misaligned phantoms may severely affect the focal spot calculations. • The aim of this research is to analyze systematically the angle dependent behavior of the focal spot size around a conical shaped X-ray target. • A general purpose Monte Carlo (MCNP5) computer code is used to achieve a relatively small focal spot size. • Angular distribution of the X-ray focal spot size mainly depends on the angular orientation of the phantom and its aligned FIR tally. • This research will help in producing high quality X-ray images in multi-directions

  11. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  12. Position sensitive proportional counters as focal plane detectors

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.

    1979-01-01

    The rise time and charge division techniques for position decoding with RC-line proportional counters are reviewed. The advantages that these detectors offer as focal plane counters for nuclear spectroscopy performed with magnetic spectrographs are discussed. The theory of operation of proportional counters as position sensing devices is summarized, as well as practical aspects affecting their application. Factors limiting the position and energy resolutions obtainable with a focal plane proportional counter are evaluated and measured position and energy loss values are presented for comparison. Detector systems capable of the multiparameter measurements required for particle identification, background suppression and ray-tracing are described in order to illustrate the wide applicability of proportional counters within complex focal plane systems. Examples of the use of these counters other than with magnetic spectrographs are given in order to demonstrate their usefulness in not only nuclear physics but also in fields such as solid state physics, biology, and medicine. The influence of the new focal plane detector systems on future magnetic spectrograph designs is discussed. (Auth.)

  13. Benign focal liver lesions: discrimination from malignant mimickers.

    Science.gov (United States)

    Alobaidi, Mohammad; Shirkhoda, Ali

    2004-01-01

    Focal lesions of the liver often have various imaging characteristics which may be interpreted as either benign or malignant. Understanding the underlying pathophysiology of these liver lesions may lead to characteristic imaging manifestations, which direct the radiologist to the diagnosis. Benign lesions include congenital hepatic cyst, autosomal dominant polycystic disease, hemangioma, focal nodular hyperplasia (FNH), hepatic adenoma, inflammatory pseudotumor, peliosis hepatis, focal fatty infiltration, hamartoma, and infectious processes such as hepatic abscess, echinococcal cyst, and candidiasis. Characteristic imaging features, clinical symptoms, and treatment/prognosis will be discussed. Emphasis will be placed on key reliable features of each disease to develop a method of discriminating these lesions from other benign and malignant disorders.

  14. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  15. Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research.

    Directory of Open Access Journals (Sweden)

    Liam D Harper

    Full Text Available Qualitative research investigating soccer practitioners' perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time regulations, and ideas for future research. Using inductive content analysis, the following general dimensions were identified: 'importance of extra-time', 'rule changes', 'efficacy of extra-time hydro-nutritional provision', 'nutritional timing', 'future research directions', 'preparatory modulations' and 'recovery'. The majority of practitioners (63% either agreed or strongly agreed that extra-time is an important period for determining success in knockout football match-play. When asked if a fourth substitution should be permitted in extra-time, 67% agreed. The use of hydro-nutritional strategies prior to extra-time was predominately considered important or very important. However; only 41% of practitioners felt that it was the most important time point for the use of nutritional products. A similar number of practitioners account (50% and do not (50% account for the potential of extra-time when training and preparing players and 89% of practitioners stated that extra-time influences recovery practices following matches. In the five minute break prior to extra-time, the following practices (in order of priority were advocated to players: hydration, energy provision, massage, and tactical preparations. Additionally, 87% of practitioners advocate a particular nutritional supplementation strategy prior to extra-time. In order of importance, practitioners see the following as future research areas: nutritional interventions, fatigue responses, acute injury risk

  16. Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research.

    Science.gov (United States)

    Harper, Liam D; Fothergill, Melissa; West, Daniel J; Stevenson, Emma; Russell, Mark

    2016-01-01

    Qualitative research investigating soccer practitioners' perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time regulations, and ideas for future research. Using inductive content analysis, the following general dimensions were identified: 'importance of extra-time', 'rule changes', 'efficacy of extra-time hydro-nutritional provision', 'nutritional timing', 'future research directions', 'preparatory modulations' and 'recovery'. The majority of practitioners (63%) either agreed or strongly agreed that extra-time is an important period for determining success in knockout football match-play. When asked if a fourth substitution should be permitted in extra-time, 67% agreed. The use of hydro-nutritional strategies prior to extra-time was predominately considered important or very important. However; only 41% of practitioners felt that it was the most important time point for the use of nutritional products. A similar number of practitioners account (50%) and do not (50%) account for the potential of extra-time when training and preparing players and 89% of practitioners stated that extra-time influences recovery practices following matches. In the five minute break prior to extra-time, the following practices (in order of priority) were advocated to players: hydration, energy provision, massage, and tactical preparations. Additionally, 87% of practitioners advocate a particular nutritional supplementation strategy prior to extra-time. In order of importance, practitioners see the following as future research areas: nutritional interventions, fatigue responses, acute injury risk, recovery

  17. The impact of parametrized convection on cloud feedback

    Science.gov (United States)

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  18. From convection rolls to finger convection in double-diffusive turbulence

    NARCIS (Netherlands)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2015-01-01

    Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars’ transfer rate and flow structures. Here we systematically investigate DDC flow

  19. Functional paraganglioma extra-adrenal

    International Nuclear Information System (INIS)

    Arroyo-Martinez, Laura; Alvarez-Pertuz, Humberto; Acuna-Calvo, Jorge; Montoya-Calles, Juan Diego

    2006-01-01

    Functioning paragangliomas are rare tumours that produce catecholamines.They originate from extra-adrenal chromaffin cells. They are frequently malignant and are associated with high incidence of persistent or recurrent disease after their primary treatment. They are known as glomus, chemodectomas, chromaffin paragangliomas and glomerulocytomas. The location is diverse and reflects the paragangliomar distribution in the body from the base of the skull to the pelvic floor. The paragangliomas are found where there are nodes of the autonomous system, however, approximately 90% of these tumours appear in the adrenal glands (and they constitute the pheochromocytomas) and the remaining 10% is a location extra adrenal, but it has been said that its impact can be underestimated, ranging from 18% to 22% in adults and children up to 30%. The extra-adrenal are originated more frequently in the abdomen (85%), other in the chest (12%) and more rarely in the head and neck (3%). Imaging studies and measurement of non-physiological production of catecholamines may aid in the diagnosis of this entity. Surgery is the treatment of choice. It is presented the case of a primigravidas patient aged 32 with HTAIE requiring caesarean section, who had a postpartum torpid and despite to multiple antihypertensive treatments their pathology was difficult to deal, with ophthalmic complications. Some time later, the patient is studied by hyperhidrosis, laboratory tests and images are requested and it is documented incidentally, a left retroperitoneal tumour, the studies are expanded and reach the correct diagnosis. The tumour required surgical resection. The patient had a satisfactory postoperative period and she discharged with control in the external consultation. (author) [es

  20. Natural-focal diseases: mapping experience in Russia.

    Science.gov (United States)

    Malkhazova, Svetlana M; Mironova, Varvara A; Kotova, Tatiana V; Shartova, Natalia V; Orlov, Dmitry S

    2014-06-14

    Natural-focal diseases constitute a serious hazard for human health. Agents and vectors of such diseases belong to natural landscapes. The aim of this study is to identify the diversity and geography of natural-focal diseases in Russia and to develop cartographic approaches for their mapping, including mathematical-cartographical modeling. Russian medico-geographical mapping of natural-focal diseases is highly developed regionally and locally but extremely limited at the national level. To solve this problem, a scientific team of the Faculty of Geography at Lomonosov Moscow State University has developed and implemented a project of a medico-geographical Atlas of Russia "Natural-Focal Diseases". The mapping is based on medical statistics data. The Atlas contains a series of maps on disease incidence, long-term dynamics of disease morbidity, etc. In addition, other materials available to the authors were used: mapping of the natural environment, field data, archival materials, analyzed satellite images, etc. The maps are processed using ArcGIS (ESRI) software application. Different methods of rendering of mapped phenomena are used (geographical ranges, diagrams, choropleth maps etc.). A series of analytical, integrated, and synthetic maps shows disease incidence in the population at both the national and regional levels for the last 15 years. Maps of the mean annual morbidity of certain infections and maps of morbidity dynamics and nosological profiles allow for a detailed analysis of the situation for each of 83 administrative units of the Russian Federation. The degree of epidemic hazard in Russia by natural-focal diseases is reflected in a synthetic medico-geographical map that shows the degree of epidemic risks due to such diseases in Russia and allows one to estimate the risk of disease manifestation in a given region. This is the first attempt at aggregation and public presentation of diverse and multifaceted information about natural-focal diseases in Russia

  1. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  2. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  3. Focal lesions in the central nervous system

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Budinger, T.F.; Tobias, C.A.; Born, J.L.

    1980-01-01

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  4. Extra Z neutral bosons, families and heavy fermions

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-08-01

    The minimal Grand Unified Theories with three-family should include two extra Z neufral bosons which belong to the different broken scales. Georgi's argument on heavy Dirac fermions has been realized. These fermions should not be bizarre. The extra Z and Dirac fermions are not too heavy. The difficulty of the proton decay may be resolved

  5. a clarification on extra curial statements and hearsay

    African Journals Online (AJOL)

    MJM Venter

    court in Ndhlovu applied section 3 of the Law of Evidence Amendment Act 3 and found that the hearsay extra curial ... law rule, which is that the extra curial statement of an accused (whether an informal admission or a ..... their cellular telephones.38 One patron was assaulted and in the violent gun battle which ensued ...

  6. Focal plane detector for QDD spectrography in Institute of Nuclear Study and detector for SMART 2nd focal plane in RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Fuchi, Yoshihide [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study

    1996-09-01

    The focal plane detector for QDD spectrography in Institute of Nuclear Study was composed of drift space and a proportional counter tube, and the latter is composed of position detector and two delta E detector for recognizing the particles. In this detector, a uniform parallel electric field can be obtained by placing a guard plate at the same height as that of a drift plate outer place of the detector. On the other hand, the detector for SMART 2nd focal plate in RIKEN is composed of drift space and a single wire proportional counter, and has two cathode read out single wire drift counters set so as to hold the focal plane. (G.K.)

  7. A targeted resequencing gene panel for focal epilepsy.

    Science.gov (United States)

    Hildebrand, Michael S; Myers, Candace T; Carvill, Gemma L; Regan, Brigid M; Damiano, John A; Mullen, Saul A; Newton, Mark R; Nair, Umesh; Gazina, Elena V; Milligan, Carol J; Reid, Christopher A; Petrou, Steven; Scheffer, Ingrid E; Berkovic, Samuel F; Mefford, Heather C

    2016-04-26

    We report development of a targeted resequencing gene panel for focal epilepsy, the most prevalent phenotypic group of the epilepsies. The targeted resequencing gene panel was designed using molecular inversion probe (MIP) capture technology and sequenced using massively parallel Illumina sequencing. We demonstrated proof of principle that mutations can be detected in 4 previously genotyped focal epilepsy cases. We searched for both germline and somatic mutations in 251 patients with unsolved sporadic or familial focal epilepsy and identified 11 novel or very rare missense variants in 5 different genes: CHRNA4, GRIN2B, KCNT1, PCDH19, and SCN1A. Of these, 2 were predicted to be pathogenic or likely pathogenic, explaining ∼0.8% of the cohort, and 8 were of uncertain significance based on available data. We have developed and validated a targeted resequencing panel for focal epilepsies, the most important clinical class of epilepsies, accounting for about 60% of all cases. Our application of MIP technology is an innovative approach that will be advantageous in the clinical setting because it is highly sensitive, efficient, and cost-effective for screening large patient cohorts. Our findings indicate that mutations in known genes likely explain only a small proportion of focal epilepsy cases. This is not surprising given the established clinical and genetic heterogeneity of these disorders and underscores the importance of further gene discovery studies in this complex syndrome. © 2016 American Academy of Neurology.

  8. Convective mixing in helium white dwarfs

    International Nuclear Information System (INIS)

    Vauclair, G.; Fontaine, G.

    1979-01-01

    The conditions under which convective mixing episodes take place between the helium envelopes and the underlying carbon layers in helium-rich white dwarfs are investigated. It is found that, for essentially any value of the initial helium content less than the maximum mass a helium convection zone can have, mixing does occur, and leads, in the vast majority of cases, to an almost pure carbon superficial composition. Mixing products that show only traces of carbon while retaining helium-dominated envelopes are possible only if the initial helium content is quite close to the maximum possible mass of the helium convection zone. In the presence of turbulence, this restriction could be relaxed, however, and the helium-rich lambda4670 stars may possibly be explained in this fashion

  9. Magnetic electroanatomical mapping for ablation of focal atrial tachycardias.

    Science.gov (United States)

    Marchlinski, F; Callans, D; Gottlieb, C; Rodriguez, E; Coyne, R; Kleinman, D

    1998-08-01

    Uniform success for ablation of focal atrial tachycardias has been difficult to achieve using standard catheter mapping and ablation techniques. In addition, our understanding of the complex relationship between atrial anatomy, electrophysiology, and surface ECG P wave morphology remains primitive. The magnetic electroanatomical mapping and display system (CARTO) offers an on-line display of electrical activation and/or signal amplitude related to the anatomical location of the recorded sites in the mapped chamber. A window of electrical interest is established based on signals timed from an electrical reference that usually represents a fixed electrogram recording from the coronary sinus or the atrial appendage. This window of electrical interest is established to include atrial activation prior to the onset of the P wave activity associated with the site of origin of a focal atrial tachycardia. Anatomical and electrical landmarks are defined with limited fluoroscopic imaging support and more detailed global chamber and more focal atrial mapping can be performed with minimal fluoroscopic guidance. A three-dimensional color map representing atrial activation or voltage amplitude at the magnetically defined anatomical sites is displayed with on-line data acquisition. This display can be manipulated to facilitate viewing from any angle. Altering the zoom control, triangle fill threshold, clipping plane, or color range can all enhance the display of a more focal area of interest. We documented the feasibility of using this single mapping catheter technique for localizing and ablating focal atrial tachycardias. In a consecutive series of 8 patients with 9 focal atrial tachycardias, the use of the single catheter CARTO mapping system was associated with ablation success in all but one patient who had a left atrial tachycardia localized to the medial aspect of the orifice of the left atrial appendage. Only low power energy delivery was used in this patient because of the

  10. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    Science.gov (United States)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  11. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...... and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components...

  12. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  13. High Ra, high Pr convection with viscosity gradients

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.

  14. Management of Localized Prostate Cancer by Focal Transurethral Resection of Prostate Cancer: An Application of Radical TUR-PCa to Focal Therapy.

    Science.gov (United States)

    Morita, Masaru; Matsuura, Takeshi

    2012-01-01

    Background. We analyzed radical TUR-PCa against localized prostate cancer. Patients and Methods. Seventy-nine out of 209 patients with prostate cancer in one lobe were studied. Patients' age ranged from 58 to 91 years and preoperative PSA, 0.70 to 17.30 ng/mL. In other 16 additional patients we performed focal TUR-PCa. Patients' age ranged from 51 to 87 years and preoperative PSA, 1.51 to 25.74 ng/mL. Results. PSA failure in radical TUR-PCa was 5.1% during the mean follow-up period of 58.9 months. The actuarial biochemical non-recurrence rate was 98.2% for pT2a and 90.5% for pT2b. Bladder neck contracture occurred in 28 patients (35.4%). In 209 patients, pathological study revealed prostate cancer of the peripheral zone near the neurovascular bundle bilaterally in 25%, unilaterally in 39% and no cancer bilaterally in 35%, suggesting the possibility of focal TUR-PCa. Postoperative PSA of 16 patients treated by focal TUR-PCa was stable between 0.007 and 0.406 ng/mL at 24.2 months' follow-up. No patients suffered from urinary incontinence. Bladder neck contracture developed in only 1 patient and all 5 patients underwent nerve-preserving TUR-PCa did not show erectile dysfunction. Conclusion. Focal TUR-PCa was considered to be a promising option among focal therapies against localized prostate cancer.

  15. Management of Localized Prostate Cancer by Focal Transurethral Resection of Prostate Cancer: An Application of Radical TUR-PCa to Focal Therapy

    Directory of Open Access Journals (Sweden)

    Masaru Morita

    2012-01-01

    Full Text Available Background. We analyzed radical TUR-PCa against localized prostate cancer. Patients and Methods. Seventy-nine out of 209 patients with prostate cancer in one lobe were studied. Patients’ age ranged from 58 to 91 years and preoperative PSA, 0.70 to 17.30 ng/mL. In other 16 additional patients we performed focal TUR-PCa. Patients’ age ranged from 51 to 87 years and preoperative PSA, 1.51 to 25.74 ng/mL. Results. PSA failure in radical TUR-PCa was 5.1% during the mean follow-up period of 58.9 months. The actuarial biochemical non-recurrence rate was 98.2% for pT2a and 90.5% for pT2b. Bladder neck contracture occurred in 28 patients (35.4%. In 209 patients, pathological study revealed prostate cancer of the peripheral zone near the neurovascular bundle bilaterally in 25%, unilaterally in 39% and no cancer bilaterally in 35%, suggesting the possibility of focal TUR-PCa. Postoperative PSA of 16 patients treated by focal TUR-PCa was stable between 0.007 and 0.406 ng/mL at 24.2 months’ follow-up. No patients suffered from urinary incontinence. Bladder neck contracture developed in only 1 patient and all 5 patients underwent nerve-preserving TUR-PCa did not show erectile dysfunction. Conclusion. Focal TUR-PCa was considered to be a promising option among focal therapies against localized prostate cancer.

  16. Penetrative convection at high Rayleigh numbers

    Science.gov (United States)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  17. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  18. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  19. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  20. Some Anti-Nutritional and Mineral Contents of Extra-Cotyledonous ...

    African Journals Online (AJOL)

    The edible extra-cotyledonous deposit of Pride of Barbados (Caesalpina pulcherrima) was investigated for some minerals and antinutritional factors. Results obtained showed that while phytohaemagglutinin was absent, vanadium was very low in the extra-cotyledons of this legume. However, oxalate, trypsin inhibitor, ...

  1. La tuberculose extra-ganglionnaire de la sphere O.R.L. | Mighri ...

    African Journals Online (AJOL)

    Conclusion : La tuberculose extra-ganglionnaire en ORL pose surtout des problèmes diagnostiques. Son diagnostic est le plus souvent histo-pathologique. Son traitement repose sur la himiothérapie anti-tuberculeuse. Extra-nodal tuberculosis is a rare in ENT practice. We report 10 cases of extra-ganglionic localizations of ...

  2. Experimental methods in natural convection

    International Nuclear Information System (INIS)

    Koster, J.N.

    1982-11-01

    Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de

  3. A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds

    Science.gov (United States)

    Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng

    2018-02-01

    A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.

  4. Induced convection cylindrical probe conductivity measurements on permeable media

    International Nuclear Information System (INIS)

    Fodemesi, S.P.; Beck, A.E.

    1983-01-01

    This chapter presents results from a program of investigation using the transient needle probe thermal conductivity technique on fluid saturated permeable media with a glass bead matrix. Uses eight additional radially located sensors in order to correlate the convection effects on the temperature sensor in the heater probe with convection behavior in the medium; all were scanned frequently with a data acquisition system, from the start of the experiment through a few hours of experimental time. Points out that with typical conditions encountered in oceanic heat flow work, induced convection may commence as early as 60 s from the start of the experiment. Finds that the convection effects are worse when the needle probe is oriented horizontally than when it is oriented vertically (gradients orthogonal to the gravitational field), and a correlation is made between permeability and the time of onset and the extent of convective effects. Indicates errors in conductivity as large as 40%. Suggests empirical techniques for detecting and correcting for thermal convection using probe sensor data alone

  5. Convective Self-Aggregation in Numerical Simulations: A Review

    Science.gov (United States)

    Wing, Allison A.; Emanuel, Kerry; Holloway, Christopher E.; Muller, Caroline

    Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is ``self-aggregation,'' in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative-convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.

  6. Convective losses through an air-filled gap

    Energy Technology Data Exchange (ETDEWEB)

    Baum, V A; Ovezsakhatov, N

    1976-01-01

    Simplified formulas for the heat fluxes with given parameters of the air are used to calculate the specific heat losses by convection in a number of solar-energy systems (water heater, thermal generator, double-glazed window, and still). Heat losses by convection and radiation are compared.

  7. Signatures of extra dimensions in gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Andriot, David; Gómez, Gustavo Lucena, E-mail: andriotphysics@gmail.com, E-mail: glucenag@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14467 Potsdam-Golm (Germany)

    2017-06-01

    Considering gravitational waves propagating on the most general 4+ N -dimensional space-time, we investigate the effects due to the N extra dimensions on the four-dimensional waves. All wave equations are derived in general and discussed. On Minkowski{sub 4} times an arbitrary Ricci-flat compact manifold, we find: a massless wave with an additional polarization, the breathing mode, and extra waves with high frequencies fixed by Kaluza-Klein masses. We discuss whether these two effects could be observed.

  8. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Science.gov (United States)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  9. Analysis and modeling of tropical convection observed by CYGNSS

    Science.gov (United States)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  10. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  11. Managing focal fields of vector beams with multiple polarization singularities.

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin

    2016-11-10

    We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.

  12. BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions

    Science.gov (United States)

    Frolov, Valeri P.

    2013-10-01

    The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f(R)-theories and gravity in higher dimensions. Part I of the book is called 'Gravity'. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. This material is quite standard and can be found in practically any book on General Relativity. A brief summary of the Kerr metric and black hole thermodynamics are given in chapter four. The main part of this chapter is devoted to spherically symmetric black holes in non-Einstein gravity (with scalar and phantom fields), black holes with regular interior, and black holes in brane worlds. Chapters five and six are mainly dedicated to wormholes and the problem of their stability. Part II (Cosmology) starts with discussion of the Friedmann-Robertson-Walker and de Sitter solutions of the Einstein equations and their properties. It follows by describing a `big picture' of the modern cosmology (inflation, post-inflationary reheating, the radiation-dominated and matter-dominated states, and modern stage of the (secondary) inflation). The authors explain how the inflation models allow one to solve many of the long-standing problems of cosmology, such as

  13. Radiotherapy studies and extra-nodal non-Hodgkin lymphomas, progress and challenges

    DEFF Research Database (Denmark)

    Specht, L

    2012-01-01

    Extra-nodal lymphomas may arise in any organ, and different histological subtypes occur in distinct patterns. Prognosis and treatment depend not only on the histological subtype and disease extent, but also on the particular involved extra-nodal organ. The clinical course and response to treatment...... for the more common extra-nodal organs, e.g. stomach, Waldeyer's ring, skin and brain, are fairly well known and show significant variation. A few randomised trials have been carried out testing the role of radiotherapy in these lymphomas. However, for most extra-nodal lymphomas, randomised trials have...... not been carried out, and treatment decisions are made on small patient series and extrapolations from nodal lymphomas. Hopefully, wide international collaboration will make controlled clinical trials possible in the less common extra-nodal lymphomas. Modern highly conformal radiotherapy allows better...

  14. Canonical structure and extra mode of generalized unimodular gravity

    Science.gov (United States)

    Bufalo, Rodrigo; Oksanen, Markku

    2018-02-01

    We consider a recently proposed generalization of unimodular gravity, where the lapse function is constrained to be equal to a function of the determinant of the spatial metric f (h ), as a potential origin of a dark fluid with a generally h -dependent equation of state parameter. We establish the Hamiltonian analysis and the canonical path integral for the theory. All the special cases that do not match unimodular gravity involve the violation of general covariance, and consequently the physical content of the theory is changed significantly. Particularly, the case of a constant function f is shown to contain an extra physical degree of freedom in each point of space. Physical consequences of the extra degree of freedom are studied in a linearized theory, where the extra mode is carried by the trace of the metric perturbation. The trace mode does not propagate as a wave, since it satisfies an elliptic partial differential equation in spacetime. Consequently, the trace perturbation is shown to grow exponentially with time, which implies instability. The case of a general f (h ) involves additional second-class constraints, which implies the presence of an extra global degree of freedom that depends only on time (instead of the extra local degree of freedom in the case of a constant f ).

  15. Focal vitiligo: long-term follow-up of 52 cases

    NARCIS (Netherlands)

    Lommerts, J. E.; Schilder, Y.; de Rie, M. A.; Wolkerstorfer, A.; Bekkenk, M. W.

    2016-01-01

    Focal vitiligo is characterized by depigmented patches located in a small area without a typical segmental distribution. Focal vitiligo is classified as an undetermined type of vitiligo, and a more definitive diagnosis can be made when the lesions have not evolved into non-segmental or segmental

  16. NeuroSeek dual-color image processing infrared focal plane array

    Science.gov (United States)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  17. Context cue focality influences strategic prospective memory monitoring.

    Science.gov (United States)

    Hunter Ball, B; Bugg, Julie M

    2018-02-12

    Monitoring the environment for the occurrence of prospective memory (PM) targets is a resource-demanding process that produces cost (e.g., slower responding) to ongoing activities. However, research suggests that individuals are able to monitor strategically by using contextual cues to reduce monitoring in contexts in which PM targets are not expected to occur. In the current study, we investigated the processes supporting context identification (i.e., determining whether or not the context is appropriate for monitoring) by testing the context cue focality hypothesis. This hypothesis predicts that the ability to monitor strategically depends on whether the ongoing task orients attention to the contextual cues that are available to guide monitoring. In Experiment 1, participants performed an ongoing lexical decision task and were told that PM targets (TOR syllable) would only occur in word trials (focal context cue condition) or in items starting with consonants (nonfocal context cue condition). In Experiment 2, participants performed an ongoing first letter judgment (consonant/vowel) task and were told that PM targets would only occur in items starting with consonants (focal context cue condition) or in word trials (nonfocal context cue condition). Consistent with the context cue focality hypothesis, strategic monitoring was only observed during focal context cue conditions in which the type of ongoing task processing automatically oriented attention to the relevant features of the contextual cue. These findings suggest that strategic monitoring is dependent on limited-capacity processing resources and may be relatively limited when the attentional demands of context identification are sufficiently high.

  18. Evidence for extra radiation?

    DEFF Research Database (Denmark)

    Hamann, J.

    2012-01-01

    A number of recent analyses of cosmological data have reported hints for the presence of extra radiation beyond the standard model expectation. In order to test the robustness of these claims under different methods of constructing parameter constraints, we perform a Bayesian posterior-based and ......A number of recent analyses of cosmological data have reported hints for the presence of extra radiation beyond the standard model expectation. In order to test the robustness of these claims under different methods of constructing parameter constraints, we perform a Bayesian posterior...... during the marginalisation process, and we demonstrate that the effect is related to the fact that cosmic microwave background (CMB) data constrain N_eff only indirectly via the redshift of matter-radiation equality. Once present CMB data are combined with external information about, e.g., the Hubble...... parameter, the difference between the methods becomes small compared to the uncertainty of N_eff. We conclude that the preference of precision cosmological data for excess radiation is "real" and not an artifact of a specific choice of credible/confidence interval construction....

  19. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  20. Exploring the Contribution of Extra Credit in Marketing Education

    Science.gov (United States)

    Elbeck, Matt; DeLong, Deborah

    2015-01-01

    This study advances the literature on the incidence, attitudes and motivations to complete extra credit assignments. Behavioral feedback from 59 marketing instructors and 43 Principles of Marketing students aligned with reported incidence rates of offering and completing extra credit assignments, respectively. This was followed with open-ended…

  1. Female bluethroats enhance offspring immunocompetence through extra-pair copulations.

    Science.gov (United States)

    Johnsen, A; Andersen, V; Sunding, C; Lifjeld, J T

    2000-07-20

    Female birds frequently copulate with extra-pair males, but the adaptive value of this behaviour is poorly understood. Some studies have suggested that 'good genes' may be involved, where females seek to have their eggs fertilized by high-quality males without receiving any material benefits from them. Nevertheless, it remains to be shown that a genetic benefit is passed on to offspring. Here we report that nestling bluethroats, Luscinia svecica, sired by extra-pair males had a higher T-cell-mediated immune response than their maternal half-siblings raised in the same nest. The difference could not be attributed to nestling body mass, sex or hatching order, but may be an effect of paternal genotype. Extra-pair young were also more immunocompetent than their paternal half-sibs raised in the genetic father's own nest, which indicates an additional effect of maternal genotype. Our results are consistent with the idea that females engage in extra-pair copulations to obtain compatible viability genes, rather than 'good genes' per se.

  2. Radiologic manifestations of focal cerebral hyperemia in acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Skriver, E B; Herning, M

    1991-01-01

    In 16 acute stroke patients with focal cerebral hyperemia angiography and regional cerebral blood flow (rCBF) were studied 1 to 4 days post stroke. CT was performed twice with and without contrast enhancement 3 +/- 1 days and 16 +/- 4 days post stroke. Angiographic evidence of focal cerebral hype...

  3. Convective mixing and accretion in white dwarfs

    International Nuclear Information System (INIS)

    Koester, D.

    1976-01-01

    The evolution of convection zones in cooling white dwarfs with helium envelopes and outer hydrogen layers is calculated with a complete stellar evolution code. It is shown that white dwarfs of spectral type DB cannot be formed from DA stars by convective mixing. However, for cooler temperatures (Tsub(e) [de

  4. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    Science.gov (United States)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  5. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  6. Performance and optimum design of convective-radiative rectangular fin with convective base heating, wall conduction resistance, and contact resistance between the wall and the fin base

    International Nuclear Information System (INIS)

    Aziz, Abdul; Beers-Green, Arlen B.

    2009-01-01

    This paper investigates the performance and optimum design of a longitudinal rectangular fin attached to a convectively heated wall of finite thickness. The exposed surfaces of the fin lose heat to the environmental sink by simultaneous convection and radiation. The tip of the fin is assumed to lose heat by convection and radiation to the same sink. The analysis and optimization of the fin is conducted numerically using the symbolic algebra package Maple. The temperature distribution, the heat transfer rates, and the fin efficiency data is presented illustrating how the thermal performance of the fin is affected by the convection-conduction number, the radiation-conduction number, the base convection Biot number, the convection and radiation Biot numbers at the tip, and the dimensionless sink temperature. Charts are presented showing the relationship between the optimum convection-conduction number and the optimum radiation-conduction number for different values of the base convection Biot number and dimensionless sink temperature and fixed values of the convection and radiation Biot numbers at the tip. Unlike the few other papers which have applied the Adomian's decomposition and the differential quadrature element method to this problem but give illustrative results for specific fin geometry and thermal variables, the present graphical data are generally applicable and can be used by fin designers without delving into the mathematical details of the computational techniques.

  7. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    Science.gov (United States)

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  8. Focal airtrapping at expiratory high-resolution CT: comparison with pulmonary function tests

    International Nuclear Information System (INIS)

    Kauczor, H.U.; Hast, J.; Heussel, C.P.; Mildenberger, P.; Thelen, M.; Schlegel, J.

    2000-01-01

    This study was undertaken to determine prevalence, extent, and severity of focal airtrapping at expiratory high-resolution CT, and to compare focal airtrapping with age, gender, pulmonary function tests, and blood gas analysis. Two-hundred seventeen patients with and without pulmonary disease underwent paired inspiratory/expiratory high-resolution CT. Six scan pairs with corresponding scan levels were visually assessed for focal - not diffuse - airtrapping using a four-point scale. Pulmonary function tests and blood gas analysis were available for correlation in all patients (mean interval 5 days). Focal airtrapping with lower lung predominance was observed in 80 % of patients. Twenty-six of 26 patients with restrictive lung function impairment exhibited focal airtrapping (mean score 2.4), whereas only 72 of 98 (74 %) patients with obstruction did (mean score 1.5; p < 0.05). Fifty-eight of 70 (83 %) patients with normal lung function (mean score 1.8) and 19 of 23 (83 %) patients with mixed impairment (mean score 1.8) had focal airtrapping. Focal airtrapping showed negative correlations with static lung volumes (-0.27 to -0.37; p < 0.001) in all patients and moderate positive correlations with dynamic parameters (0.3-0.4; p < 0.001) in patients with obstruction. No significant correlations were found with age, gender, and blood gas analysis. Visual assessment of focal - not diffuse - airtrapping at expiratory high-resolution CT does not correlate with physiological evidence of obstruction as derived from pulmonary function tests since the perception of focal airtrapping requires an adequate expiratory increase in lung density. (orig.)

  9. DEPDC5 takes a second hit in familial focal epilepsy.

    Science.gov (United States)

    Anderson, Matthew P

    2018-04-30

    Loss-of-function mutations in a single allele of the gene encoding DEP domain-containing 5 protein (DEPDC5) are commonly linked to familial focal epilepsy with variable foci; however, a subset of patients presents with focal cortical dysplasia that is proposed to result from a second-hit somatic mutation. In this issue of the JCI, Ribierre and colleagues provide several lines of evidence to support second-hit DEPDC5 mutations in this disorder. Moreover, the authors use in vivo, in utero electroporation combined with CRISPR-Cas9 technology to generate a murine model of the disease that recapitulates human manifestations, including cortical dysplasia-like changes, focal seizures, and sudden unexpected death. This study provides important insights into familial focal epilepsy and provides a preclinical model for evaluating potential therapies.

  10. International symposium on transient convective heat transfer: book of abstracts

    International Nuclear Information System (INIS)

    1996-01-01

    The international symposium on convective heat transfer was held on 19-23 August 1996, in Cesme, Izmir, Turkey. The spesialists discussed forced convection, heat exchangers, free convection and multiphase media and phase change at the meeting. Almost 53 papers were presented in the meeting

  11. Natural Convection Analysis with Various Turbulent Models Using FLUENT

    International Nuclear Information System (INIS)

    Park, Yu Sun

    2007-01-01

    The buoyancy driven convective flow fields are steady circulatory flows which were made between surfaces maintained at two fixed temperatures. They are ubiquitous in nature and play an important role in many engineering applications. Especially, in last decades, natural convection in a close loop or cavity becomes the main issue in the molecular biology for the polymerase chain reaction (PCR). Application of a natural convection can reduce the costs and efforts remarkably. This paper focuses on the sensitivity study of turbulence analysis using CFD for a natural convection in a closed rectangular cavity. Using commercial CFD code, FLUENT, various turbulent models were applied to the turbulent flow. Results from each CFD model will be compared each other in the viewpoints of flow characteristics. This work will suggest the best turbulent model of CFD for analyzing turbulent flows of the natural convection in an enclosure system

  12. A hybrid convection scheme for use in non-hydrostatic numerical weather prediction models

    Directory of Open Access Journals (Sweden)

    Volker Kuell

    2008-12-01

    Full Text Available The correct representation of convection in numerical weather prediction (NWP models is essential for quantitative precipitation forecasts. Due to its small horizontal scale convection usually has to be parameterized, e.g. by mass flux convection schemes. Classical schemes originally developed for use in coarse grid NWP models assume zero net convective mass flux, because the whole circulation of a convective cell is confined to the local grid column and all convective mass fluxes cancel out. However, in contemporary NWP models with grid sizes of a few kilometers this assumption becomes questionable, because here convection is partially resolved on the grid. To overcome this conceptual problem we propose a hybrid mass flux convection scheme (HYMACS in which only the convective updrafts and downdrafts are parameterized. The generation of the larger scale environmental subsidence, which may cover several grid columns, is transferred to the grid scale equations. This means that the convection scheme now has to generate a net convective mass flux exerting a direct dynamical forcing to the grid scale model via pressure gradient forces. The hybrid convection scheme implemented into the COSMO model of Deutscher Wetterdienst (DWD is tested in an idealized simulation of a sea breeze circulation initiating convection in a realistic manner. The results are compared with analogous simulations with the classical Tiedtke and Kain-Fritsch convection schemes.

  13. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  14. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  15. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Science.gov (United States)

    O'Rourke, D.J.; Bergin, A.; Rotenberg, A.; Peters, J.; Gorman, M.; Poduri, A.; Cryan, J.; Lidov, H.; Madsen, J.; Harini, C.

    2014-01-01

    Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD) and discuss the literature on this topic. PMID:25667877

  16. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  17. Extra dimensions and micro black holes at the LHC

    International Nuclear Information System (INIS)

    Valuev, V.

    2009-01-01

    Models with extra dimensions have been proposed to solve outstanding problems of the Standard Model. In some of those models the strength of gravity is increased at TeV energies and unified with the electroweak interaction. New studies are presented on the sensitivity to searches for new gauge bosons, such as W' and Z' bosons and other high mass resonances, as predicted e.g. by Randall-Sundrum models; to searches for large (ADD) extra dimensions in channels with missing transverse energy; to searches with di-photon final states; to searches for universal extra dimensions, and to searches for micro black hole production at the LHC. (author)

  18. Focal therapy in prostate cancer

    NARCIS (Netherlands)

    van den Bos, W.

    2016-01-01

    Interesting developments took place in the treatment of prostate cancer including focal therapy for less aggressive organ-confined prostate cancer. Fortunately, curative treatment is often still an option for patients suffering from the lower staged tumors. In carefully selected patients, the

  19. Gallbladder adenoma with focal adenocarcinoma.

    Science.gov (United States)

    Ciurea, S; Matei, E; Petrisor, P; Luca, L; Boros, Mirela; Herlea, V; Popescu, I

    2008-01-01

    The majority of polypoid lesions of the gallbladder are cholesterolosis pseudopolyps. True neoplastic GB polyps are represented mainly by adenomas. The case of a 52-year old male patient with an adenomatous polyp of the GB with focal adenocarcinoma is presented.

  20. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  1. AN ANALYTIC RADIATIVE-CONVECTIVE MODEL FOR PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Robinson, Tyler D.; Catling, David C.

    2012-01-01

    We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.

  2. Parametric modulation of thermomagnetic convection in magnetic fluids.

    Science.gov (United States)

    Engler, H; Odenbach, S

    2008-05-21

    Previous theoretical investigations on thermal flow in a horizontal fluid layer have shown that the critical temperature difference, where heat transfer changes from diffusion to convective flow, depends on the frequency of a time-modulated driving force. The driving force of thermal convection is the buoyancy force resulting from the interaction of gravity and the density gradient provided by a temperature difference in the vertical direction of a horizontal fluid layer. An experimental investigation of such phenomena fails because of technical problems arising if buoyancy is to be changed by altering the temperature difference or gravitational acceleration. The possibility of influencing convective flow in a horizontal magnetic fluid layer by magnetic forces might provide us with a means to solve the problem of a time-modulated magnetic driving force. An experimental setup to investigate the dependence of the critical temperature difference on the frequency of the driving force has been designed and implemented. First results show that the time modulation of the driving force has significant influence on the strength of the convective flow. In particular a pronounced minimum in the strength of convection has been found for a particular frequency.

  3. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  4. Heterogeneity of Focal Adhesions and Focal Contacts in Motile Fibroblasts.

    Science.gov (United States)

    Gladkikh, Aleena; Kovaleva, Anastasia; Tvorogova, Anna; Vorobjev, Ivan A

    2018-01-01

    Cell-extracellular matrix (ECM) adhesion is an important property of virtually all cells in multicellular organisms. Cell-ECM adhesion studies, therefore, are very significant both for biology and medicine. Over the last three decades, biomedical studies resulted in a tremendous advance in our understanding of the molecular basis and functions of cell-ECM adhesion. Based on morphological and molecular criteria, several different types of model cell-ECM adhesion structures including focal adhesions, focal complexes, fibrillar adhesions, podosomes, and three-dimensional matrix adhesions have been described. All the subcellular structures that mediate cell-ECM adhesion are quite heterogeneous, often varying in size, shape, distribution, dynamics, and, to a certain extent, molecular constituents. The morphological "plasticity" of cell-ECM adhesion perhaps reflects the needs of cells to sense, adapt, and respond to a variety of extracellular environments. In addition, cell type (e.g., differentiation status, oncogenic transformation, etc.) often exerts marked influence on the structure of cell-ECM adhesions. Although molecular, genetic, biochemical, and structural studies provide important maps or "snapshots" of cell-ECM adhesions, the area of research that is equally valuable is to study the heterogeneity of FA subpopulations within cells. Recently time-lapse observations on the FA dynamics become feasible, and behavior of individual FA gives additional information on cell-ECM interactions. Here we describe a robust method of labeling of FA using plasmids with fluorescent markers for paxillin and vinculin and quantifying the morphological and dynamical parameters of FA.

  5. Physics with large extra dimensions

    Indian Academy of Sciences (India)

    can then be accounted by the existence of large internal dimensions, in the sub- ... strongly coupled heterotic theory with one large dimension is described by a weakly ..... one additional U(1) factor corresponding to an extra 'U(1)' D-brane is ...

  6. Systematic study of the focal shift effect in planar plasmonic slit lenses

    International Nuclear Information System (INIS)

    Hu Bin; Wang Qijie; Zhang Ying

    2012-01-01

    In this paper, we systematically studied the focal shift effect in planar plasmonic slit lenses. Through theoretical derivations and numerical simulations, we found that there is a focal length shift between the traditional design model and the finite-difference time-domain simulations. The shift is not only dependent on the Fresnel number (FN) of the lens, like traditional dielectric lenses, determined by the lens width and the designed focal length, but also on the surface plasmon polariton (SPPs) interaction on the lens surfaces, dependent on the slit numbers. We also found that the FN-induced focal shift is predominant when FN 1. An approximated theoretical model is presented to estimate the focal shift of plasmonic slit lens with FN < 1. (paper)

  7. Stretched flow of Carreau nanofluid with convective boundary ...

    Indian Academy of Sciences (India)

    journal of. January 2016 physics pp. 3–17. Stretched flow of Carreau nanofluid with ... fluid over a flat plate subjected to convective surface condition. ... the steady laminar boundary layer flow over a permeable plate with a convective boundary.

  8. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1992-01-01

    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  9. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  10. Convective aggregation in idealised models and realistic equatorial cases

    Science.gov (United States)

    Holloway, Chris

    2015-04-01

    Idealised explicit convection simulations of the Met Office Unified Model are shown to exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen previously in other models in several recent studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapour (CWV) field. To investigate the relevance of this behaviour to the real world, these idealized simulations are compared with five 15-day cases of real organized convection in the tropics, including multiple simulations of each case testing sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. Despite similar large-scale forcing via lateral boundary conditions, systematic differences in mean CWV, CWV distribution shape, and the length scale of CWV features are found between the different sensitivity runs, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations.

  11. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  12. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  13. A 1.3 giga pixels focal plane for GAIA

    Science.gov (United States)

    Laborie, Anouk; Pouny, Pierre; Vetel, Cyril; Collados, Emmanuel; Rougier, Gilles; Davancens, Robert; Zayer, Igor; Perryman, Michael; Pace, Oscar

    2004-06-01

    The astrometric mission GAIA is a cornerstone mission of the European Space Agency, due for launch in the 2010 time frame. Requiring extremely demanding performance GAIA calls for the development of an unprecedented large focal plane featuring innovative technologies. For securing the very challenging GAIA development, a significant number of technology activities have been initiated by ESA through a competitive selection process. In this context, an industrial consortium led by EADS-Astrium (France) with e2v technologies (UK) as major subcontractor was selected for the GAIA CCD and Focal Plane Technology Demonstrators programme, which is by far the most significant and the most critical GAIA pre-development for all aspects: science performance, development schedule and cost. This programme has started since August 2002 and will end early 2005 prior to commencement of the GAIA Phase B. While the GAIA payload will host three instruments and related focal planes, the major mission objectives are assigned to the Astrometric (ASTRO) Focal Plane, which is the subject of this presentation.

  14. Solar wind effects on ionospheric convection: a review

    DEFF Research Database (Denmark)

    Lu, G.; Cowley, S.W.H.; Milan, S.E.

    2002-01-01

    ), and travelling convection vortices (TCVs). Furthermore, the large-scale ionospheric convection configuration has also demonstrated a strong correspondence to variations in the interplanetary medium and substorm activity. This report briefly discusses the progress made over the past decade in studies...

  15. Focal adhesions, stress fibers and mechanical tension

    Energy Technology Data Exchange (ETDEWEB)

    Burridge, Keith, E-mail: Keith_Burridge@med.unc.edu [Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC (United States); Guilluy, Christophe, E-mail: christophe.guilluy@univ-nantes.fr [Inserm UMR-S1087, CNRS UMR-C6291, L' institut du Thorax, and Université de Nantes, Nantes (France)

    2016-04-10

    Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function. - Highlights: • The different types of stress fiber and focal adhesion are described. • We discuss the controversy about tension and assembly of these structures. • We describe the different models used to investigate assembly of these structures. • The influence of substratum rigidity is discussed. • Stress fiber connections to the nucleus are reviewed.

  16. XQCAT eXtra Quark Combined Analysis Tool

    CERN Document Server

    Barducci, D; Buchkremer, M; Marrouche, J; Moretti, S; Panizzi, L

    2015-01-01

    XQCAT (eXtra Quark Combined Analysis Tool) is a tool aimed to determine exclusion Confidence Levels (eCLs) for scenarios of new physics characterised by the presence of one or multiple heavy extra quarks (XQ) which interact through Yukawa couplings with any of the Standard Model (SM) quarks. The code uses a database of efficiencies for pre-simulated processes of Quantum Chromo-Dynamics (QCD) pair production and on-shell decays of extra quarks. In the version 1.0 of XQCAT the efficiencies have been computed for a set of seven publicly available search results by the CMS experiment, and the package is subject to future updates to include further searches by both ATLAS and CMS collaborations. The input for the code is a text file in which masses, branching ratios (BRs) and dominant chirality of the couplings of the new quarks are provided. The output of the code is the eCL of the test point for each implemented experimental analysis considered individually and, when possible, in statistical combination.

  17. An Extra Push from Entrance-Channel Effects

    International Nuclear Information System (INIS)

    Grar, Nabila; Rowley, Neil

    2006-01-01

    The fusion probability for heavy symmetric systems is known to show certain very specific features. Apart from the large variance of the fusion barrier distribution, it is found that the energy at which the s-wave transmission is 0.5 is shifted to an energy significantly higher than the nominal (e.g. Bass) Coulomb barrier. This last feature is referred to in the literature as the 'extra push' effect. Many models have been devised to explain the origin of these findings. It is worth noting, however, that despite the extra push, the capture cross section is still greatly enhanced at the very lowest energies. This fact cannot be explained within the framework of macroscopic theories involving conditional saddle points or frictional forces. We have performed full coupled-channel calculations for heavy, symmetric systems treating correctly the long-range Coulomb excitations of the collective quadrupole- and octupole-phonon states in the target and projectile. The results obtained show that the extra push and the overall shape of the fusion probability are simply explained by these entrance-channel effects

  18. Life Cycle of Tropical Convection and Anvil in Observations and Models

    Science.gov (United States)

    McFarlane, S. A.; Hagos, S. M.; Comstock, J. M.

    2011-12-01

    Tropical convective clouds are important elements of the hydrological cycle and produce extensive cirrus anvils that strongly affect the tropical radiative energy balance. To improve simulations of the global water and energy cycles and accurately predict both precipitation and cloud radiative feedbacks, models need to realistically simulate the lifecycle of tropical convection, including the formation and radiative properties of ice anvil clouds. By combining remote sensing datasets from precipitation and cloud radars at the Atmospheric Radiation Measurement (ARM) Darwin site with geostationary satellite data, we can develop observational understanding of the lifetime of convective systems and the links between the properties of convective systems and their associated anvil clouds. The relationships between convection and anvil in model simulations can then be compared to those seen in the observations to identify areas for improvement in the model simulations. We identify and track tropical convective systems in the Tropical Western Pacific using geostationary satellite observations. We present statistics of the tropical convective systems including size, age, and intensity and classify the lifecycle stage of each system as developing, mature, or dissipating. For systems that cross over the ARM Darwin site, information on convective intensity and anvil properties are obtained from the C-Pol precipitation radar and MMCR cloud radar, respectively, and are examined as a function of the system lifecycle. Initial results from applying the convective identification and tracking algorithm to a tropical simulation from the Weather Research and Forecasting (WRF) model run show that the model produces reasonable overall statistics of convective systems, but details of the life cycle (such as diurnal cycle, system tracks) differ from the observations. Further work will focus on the role of atmospheric temperature and moisture profiles in the model's convective life cycle.

  19. MRI of a family with focal abnormalities of gyration

    International Nuclear Information System (INIS)

    Muntaner, L.; Perez-Ferron, J.J.; Herrera, M.; Rosell, J.; Taboada, D.; Climent, S.

    1997-01-01

    Focal abnormalities of gyration (FAG) are developmental disorders that may occur in isolated patients or, as in the case being reported, as part of a familial disorder. Analysis of individuals in a family spanning three generations was carried out using MRI. Abnormalities, present in all members of generations II and III, included focal cortical dysplasia (three patients), focal cortical infolding (two patients) and schizencephaly (one patient); associated minor anomalies, such as white matter abnormalities, were seen in the remaining three members of generations II and III. MRI recognition of FAG in the family being reported proved useful in defining their phenotypical expression and providing proper counselling for individual family members. (orig.). With 6 figs

  20. Transition from galactic to extra-galactic cosmic rays

    International Nuclear Information System (INIS)

    Aloisio, Roberto

    2006-01-01

    In this paper we review the main features of the observed Cosmic Rays spectrum in the energy range 10 17 eV to 10 20 eV. We present a theoretical model that explains the main observed features of the spectrum, namely the second Knee and Dip, and implies a transition from Galactic to Extra-Galactic cosmic rays at energy E ≅ 10 18 eV, with a proton dominated Extra-Galactic spectrum

  1. Mixed thermal convection: fundamental issues and analysis of the planar case

    Directory of Open Access Journals (Sweden)

    JACQUES PADET

    2015-09-01

    Full Text Available This paper aims to renew interest on mixed thermal convection research and to emphasize three issues that arise from the present analysis: (i a clear definition of the reference temperature in the Boussinesq approximation; (ii a practical delimitation of the three convective modes, which are the forced convection (FC, mixed convection (MC and natural (or free convection (NC; (iii and, finally, a uniform description of the set FC/MC/NC in the similarity framework. The planar case, for which analytical solutions are available, allows a detailed illustration of the answers here advanced to the above issues.

  2. Concordance of MRI and EEG Focal Slowing in Nonsyndromic Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-04-01

    Full Text Available Investigators at the Kangwon National University, Korea, and The Epilepsy Center, Lurie Children’s Hospital of Chicago, USA studied the correlation and significance of EEG focal slowing and focal MRI abnormalities in 253 children with nonsyndromic epilepsy.

  3. Focal low-dose rate brachytherapy for the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Tong WY

    2013-09-01

    Full Text Available William Y Tong, Gilad Cohen, Yoshiya Yamada Memorial Sloan-Kettering Cancer Center, Department of Radiation Oncology, New York, NY, USA Abstract: Whole-gland low-dose rate (LDR brachytherapy has been a well-established modality of treating low-risk prostate cancer. Treatment in a focal manner has the advantages of reduced toxicity to surrounding organs. Focal treatment using LDR brachytherapy has been relatively unexplored, but it may offer advantages over other modalities that have established experiences with a focal approach. This is particularly true as prostate cancer is being detected at an earlier and more localized stage with the advent of better detection methods and newer imaging modalities. Keywords: prostate cancer, focal, low dose rate, brachytherapy

  4. Convective transport resistance in the vitreous humor

    Science.gov (United States)

    Penkova, Anita; Sadhal, Satwindar; Ratanakijsuntorn, Komsan; Moats, Rex; Tang, Yang; Hughes, Patrick; Robinson, Michael; Lee, Susan

    2012-11-01

    It has been established by MRI visualization experiments that the convection of nanoparticles and large molecules with high rate of water flow in the vitreous humor will experience resistance, depending on the respective permeabilities of the injected solute. A set of experiments conducted with Gd-DTPA (Magnevist, Bayer AG, Leverkusen, Germany) and 30 nm gadolinium-based particles (Gado CELLTrackTM, Biopal, Worcester, MA) as MRI contrast agents showed that the degree of convective transport in this Darcy-type porous medium varies between the two solutes. These experiments consisted of injecting a mixture of the two (a 30 μl solution of 2% Magnevist and 1% nanoparticles) at the middle of the vitreous of an ex vivo whole bovine eye and subjecting the vitreous to water flow rate of 100 μl/min. The water (0.9% saline solution) was injected at the top of the eye, and was allowed to drain through small slits cut at the bottom of the eyeball. After 50 minutes of pumping, MRI images showed that the water flow carried the Gd-DTPA farther than the nanoparticles, even though the two solutes, being mixed, were subjected to the same convective flow conditions. We find that the convected solute lags the water flow, depending on the solute permeability. The usual convection term needs to be adjusted to allow for the filtration effect on the larger particles in the form (1- σ) u . ∇ c with important implications for the modeling of such systems.

  5. On the mapping of ionospheric convection into the magnetosphere

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Hoffman, R.A.

    1997-01-01

    Under steady state conditions and in the absence of parallel electric fields, ionospheric convection is a direct map of plasma and magnetic flux convection in the magnetosphere, and quantitative estimates can be obtained from the mapping along magnetic field lines of electrostatic ionospheric electric fields. The resulting magnetospheric electrostatic potential distribution then provides the convection electric field in various magnetospheric regions. We present a quantitative framework for the investigation of the applicability and limitations of this approach based on an analytical theory derived from first principles. Particular emphasis is on the role of parallel electric field regions and on inductive effects, such as expected during the growth and expansive phases of magnetospheric substorms. We derive quantitative estimates for the limits in which either effect leads to a significant decoupling between ionospheric and magnetospheric convection and provide an interpretation of ionospheric convection which is independent of the presence of inductive electric fields elsewhere in the magnetosphere. Finally, we present a study of the relation between average and instantaneous convection, using two periodic dynamical models. The models demonstrate and quantify the potential mismatch between the average electric fields in the ionosphere and the magnetosphere in strongly time-dependent cases that may exist even when they are governed entirely by ideal MHD

  6. Is Convection Sensitive to Model Vertical Resolution and Why?

    Science.gov (United States)

    Xie, S.; Lin, W.; Zhang, G. J.

    2017-12-01

    Model sensitivity to horizontal resolutions has been studied extensively, whereas model sensitivity to vertical resolution is much less explored. In this study, we use the US Department of Energy (DOE)'s Accelerated Climate Modeling for Energy (ACME) atmosphere model to examine the sensitivity of clouds and precipitation to the increase of vertical resolution of the model. We attempt to understand what results in the behavior change (if any) of convective processes represented by the unified shallow and turbulent scheme named CLUBB (Cloud Layers Unified by Binormals) and the Zhang-McFarlane deep convection scheme in ACME. A short-term hindcast approach is used to isolate parameterization issues from the large-scale circulation. The analysis emphasizes on how the change of vertical resolution could affect precipitation partitioning between convective- and grid-scale as well as the vertical profiles of convection-related quantities such as temperature, humidity, clouds, convective heating and drying, and entrainment and detrainment. The goal is to provide physical insight into potential issues with model convective processes associated with the increase of model vertical resolution. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Qaisieh, Bashar [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Mason, Josh, E-mail: joshua.mason@nhs.net [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Bownes, Peter; Henry, Ann [Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds (United Kingdom); Dickinson, Louise [Division of Surgery and Interventional Science, University College London, London (United Kingdom); Department of Radiology, Northwick Park Hospital, London North West NHS Trust, London (United Kingdom); Ahmed, Hashim U. [Division of Surgery and Interventional Science, University College London, London (United Kingdom); University College London Hospital, London (United Kingdom); Emberton, Mark [University College London Hospital, London (United Kingdom); Langley, Stephen [St Luke' s Cancer Centre, Guildford (United Kingdom)

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  8. Intersection democracy for winding branes and stabilization of extra dimensions

    International Nuclear Information System (INIS)

    Rador, Tonguc

    2005-01-01

    We show that, in the context of pure Einstein gravity, a democratic principle for intersection possibilities of branes winding around extra dimensions in a given partitioning yield stabilization, while what the observed space follows is matter-like dust evolution. Here democracy is used in the sense that, in a given decimation of extra dimensions, all possible wrappings and hence all possible intersections are allowed. Generally, the necessary and sufficient condition for this is that the dimensionality m of the observed space dimensions obey 3= =3, where N is the decimation order of the extra dimensions

  9. Fusing Multiple Satellite Datasets Toward Defining and Understanding Organized Convection

    Science.gov (United States)

    Elsaesser, G.; Del Genio, A. D.

    2017-12-01

    How do we differentiate unorganized from organized convection? We might think of organized convection as being long lasting (at least longer than the lifetime of any individual cumulus cell), clustered at larger spatial scales (>100 km), and responsible for substantial rainfall accumulation. Organized convection is sustained on such scales due to the arrangement of moist/dry and buoyant/non-buoyant mesoscale circulations. The nature of these circulations is tied to system diabatic heating profiles; in particular, the 2nd baroclinic (top-heavy), stratiform heating mode is thought to be important for organized convection maintenance/propagation. We investigate the extent to which these characteristics are jointly found in propagating convective systems. Lifecycle information comes from hi-res IR data. Diabatic heating profiles, convective fractions and rainfall are provided by GPM retrievals mapped to convective system tracks. Moisture is provided by AIRS/AMSU and passive microwave retrievals. Instead of compositing heating profile information along a system track, where information is smoothed out, we sort system heating profile structures according to their "top heaviness" and then analyze PDFs of system rainfall, system sizes, durations, convective/stratiform ratios, etc. as a function of diabatic heating structure. Perhaps contrary to expectation, we find only small differences in PDFs of rainfall rates, system sizes, and system duration for different heating profile structures. If organization is defined according to heating structures, then one possible interpretation of these results is that organization is independent of system size, duration, and many times, even lifecycle stage. Is it possible that most systems "hobble" along and exhibit varying degrees of organization, dependent on local environment moisture/buoyancy variations, unlike the archetypical MCS paradigm? This presentation will also discuss the questions posed above within the context of

  10. Detection is unaffected by the deployment of focal attention

    Directory of Open Access Journals (Sweden)

    Jeff eMoher

    2013-05-01

    Full Text Available There has been much debate regarding how much information humans can extract from their environment without the use of limited attentional resources. In a recent study, Theeuwes, Van der Burg, and Belopolsky (2008 argued that even detection of simple feature targets is not possible without selection by focal attention. Supporting this claim, they found response time benefits in a simple feature (color detection task when a target letter’s identity was repeated on consecutive trials, suggesting that the letter was selected by focal attention and identified prior to detection. This intertrial repetition benefit remained even when observers were required to simultaneously identify a central digit. However, we found that intertrial repetition benefits disappeared when a simple color target was presented among a heterogeneously (rather than homogeneously colored set of distractors, thus reducing its bottom-up salience. Still, detection performance remained high. Thus, detection performance was unaffected by whether a letter was focally attended and identified prior to detection or not. Intertrial identity repetition benefits also disappeared when observers were required to perform a simultaneous, attention-demanding central task (Experiment 2, or when unfamiliar Chinese characters were used (Experiment 3. Together, these results suggest that while shifts of focal attention can be affected by target salience, by the availability of excess cognitive resources, and by target familiarity, detection performance itself is unaffected by these manipulations and is thus unaffected by the deployment of focal attention.

  11. Lagrangian evaluation of convective shower characteristics in a convection-permitting model

    Directory of Open Access Journals (Sweden)

    Erwan Brisson

    2018-01-01

    Full Text Available Convection-permitting models (CPMs have proven their usefulness in representing precipitation on a sub-daily scale. However, investigations on sub-hourly scales are still lacking, even though these are the scales for which showers exhibit the most variability. A Lagrangian approach is implemented here to evaluate the representation of showers in a CPM, using the limited-area climate model COSMO-CLM. This approach consists of tracking 5‑min precipitation fields to retrieve different features of showers (e.g., temporal pattern, horizontal speed, lifetime. In total, 312 cases are simulated at a resolution of 0.01 ° over Central Germany, and among these cases, 78 are evaluated against a radar dataset. The model is able to represent most observed features for different types of convective cells. In addition, the CPM reproduced well the observed relationship between the precipitation characteristics and temperature indicating that the COSMO-CLM model is sophisticated enough to represent the climatological features of showers.

  12. Extra Oral Periapical Radiography: A Review

    Directory of Open Access Journals (Sweden)

    Rachna Kaul

    2014-01-01

    Full Text Available Background: Intra oral periapical radiographs remain the backbone of diagnostic assessment of dento-facial pathologies. However, in some clinical situation like in developmentally disabled individuals, those with an exaggerated gag reflex, pediatric dental patients and anxious dental patients, it may be very difficult to obtain an intra-oral periapical radiograph of diagnostic quality. In such situations, extra oral periapical radiographs are very useful. They are obtained by placing a sensor outside the oral cavity and then making the radiographic exposure using a digital X ray machine for intra oral radiographs. The radiation dose in this technique is much lesser as compared to panoramic radiographs. This article reviews the technique, advantages, disadvantages and indications of extra oral periapical radiographs.

  13. Rasmussen's encephalitis presenting as focal cortical dysplasia

    Directory of Open Access Journals (Sweden)

    D.J. O'Rourke

    2014-01-01

    Full Text Available Rasmussen's encephalitis is a rare syndrome characterized by intractable seizures, often associated with epilepsia partialis continua and symptoms of progressive hemispheric dysfunction. Seizures are usually the hallmark of presentation, but antiepileptic drug treatment fails in most patients and is ineffective against epilepsia partialis continua, which often requires surgical intervention. Co-occurrence of focal cortical dysplasia has only rarely been described and may have implications regarding pathophysiology and management. We describe a rare case of dual pathology of Rasmussen's encephalitis presenting as a focal cortical dysplasia (FCD and discuss the literature on this topic.

  14. Chest pain in focal musculoskeletal disorders

    DEFF Research Database (Denmark)

    Stochkendahl, Mette Jensen; Christensen, Henrik Wulff

    2010-01-01

    overlapping conditions and syndromes of focal disorders, including Tietze syndrome, costochondritis, chest wall syndrome, muscle tenderness, slipping rib, cervical angina, and segmental dysfunction of the cervical and thoracic spine, have been reported to cause pain. For most of these syndromes, evidence......The musculoskeletal system is a recognized source of chest pain. However, despite the apparently benign origin, patients with musculoskeletal chest pain remain under-diagnosed, untreated, and potentially continuously disabled in terms of anxiety, depression, and activities of daily living. Several...... arises mainly from case stories and empiric knowledge. For segmental dysfunction, clinical features of musculoskeletal chest pain have been characterized in a few clinical trials. This article summarizes the most commonly encountered syndromes of focal musculoskeletal disorders in clinical practice....

  15. Unstable mixed convective transport in groundwater

    International Nuclear Information System (INIS)

    Schincariol, R.A.; Schwartz, F.W.

    1990-01-01

    This study is an experimental investigation of variable density groundwater flow in homogeneous and lenticular porous media. A solution of 500 mg/l Rhodamine WT dye served as the carrier for various concentrations of solute (NaCl) introduced into a two-dimensional flow tank at concentrations ranging from 1000 to 100,000 mg/l. At the scale of the experiments, mass transport depends upon both forced and free convection. In addition, density differences as low as 0.008 g/cm 3 (1000 mg/l NaCl) between a plume of dense water and ambient groundwater in homogeneous medium produces gravitational instabilities at realistic groundwater velocities. These instabilities are manifest by lobe-shaped protuberances that formed first along the bottom edge of the plume and later within the plume. As the density difference increases to 0.0015 g/cm 3 (2000 mg/l NaCl), 0.0037 g/cm 3 (5000 mg/l NaCl) or higher, this unstable mixing due to convective dispersion significantly alters the spreading process, resulting in a large degree of vertical spreading of the plume. In a lenticular medium the combination of convective dispersion and nonuniform flow due to heterogeneities results in relatively large dispersion. Scale considerations indicate that convective dispersion may provide an important component of mixing at the field scale. (Author) (30 refs., 12 figs., 3 tabs.)

  16. Convection in Slab and Spheroidal Geometries

    Science.gov (United States)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  17. Mechanical design and analysis of focal plate for gravity deformation

    Science.gov (United States)

    Wang, Jianping; Chu, Jiaru; Hu, Hongzhuan; Li, Kexuan; Zhou, Zengxiang

    2014-07-01

    The surface accuracy of astronomical telescope focal plate is a key indicator to precision stellar observation. To conduct accurate deformation measurement for focal plate in different status, a 6-DOF hexapod platform was used for attitude adjustment. For the small adjustment range of a classic 6-DOF hexapod platform, an improved structural arrangement method was proposed in the paper to achieve ultimate adjustment of the focal plate in horizontal and vertical direction. To validate the feasibility of this method, an angle change model which used ball hinge was set up for the movement and base plate. Simulation results in MATLAB suggested that the ball hinge angle change of movement and base plate is within the range of the limiting angle in the process of the platform plate adjusting to ultimate attitude. The proposed method has some guiding significance for accurate surface measurement of focal plate.

  18. A stochastic parameterization for deep convection using cellular automata

    Science.gov (United States)

    Bengtsson, L.; Steinheimer, M.; Bechtold, P.; Geleyn, J.

    2012-12-01

    Cumulus parameterizations used in most operational weather and climate models today are based on the mass-flux concept which took form in the early 1970's. In such schemes it is assumed that a unique relationship exists between the ensemble-average of the sub-grid convection, and the instantaneous state of the atmosphere in a vertical grid box column. However, such a relationship is unlikely to be described by a simple deterministic function (Palmer, 2011). Thus, because of the statistical nature of the parameterization challenge, it has been recognized by the community that it is important to introduce stochastic elements to the parameterizations (for instance: Plant and Craig, 2008, Khouider et al. 2010, Frenkel et al. 2011, Bentsson et al. 2011, but the list is far from exhaustive). There are undoubtedly many ways in which stochastisity can enter new developments. In this study we use a two-way interacting cellular automata (CA), as its intrinsic nature possesses many qualities interesting for deep convection parameterization. In the one-dimensional entraining plume approach, there is no parameterization of horizontal transport of heat, moisture or momentum due to cumulus convection. In reality, mass transport due to gravity waves that propagate in the horizontal can trigger new convection, important for the organization of deep convection (Huang, 1988). The self-organizational characteristics of the CA allows for lateral communication between adjacent NWP model grid-boxes, and temporal memory. Thus the CA scheme used in this study contain three interesting components for representation of cumulus convection, which are not present in the traditional one-dimensional bulk entraining plume method: horizontal communication, memory and stochastisity. The scheme is implemented in the high resolution regional NWP model ALARO, and simulations show enhanced organization of convective activity along squall-lines. Probabilistic evaluation demonstrate an enhanced spread in

  19. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    U. Lohmann

    2008-04-01

    Full Text Available Aerosols affect the climate system by changing cloud characteristics in many ways. They act as cloud condensation and ice nuclei and may have an influence on the hydrological cycle. Here we investigate aerosol effects on convective clouds by extending the double-moment cloud microphysics scheme developed for stratiform clouds, which is coupled to the HAM double-moment aerosol scheme, to convective clouds in the ECHAM5 general circulation model. This enables us to investigate whether more, and smaller cloud droplets suppress the warm rain formation in the lower parts of convective clouds and thus release more latent heat upon freezing, which would then result in more vigorous convection and more precipitation. In ECHAM5, including aerosol effects in large-scale and convective clouds (simulation ECHAM5-conv reduces the sensitivity of the liquid water path increase with increasing aerosol optical depth in better agreement with observations and large-eddy simulation studies. In simulation ECHAM5-conv with increases in greenhouse gas and aerosol emissions since pre-industrial times, the geographical distribution of the changes in precipitation better matches the observed increase in precipitation than neglecting microphysics in convective clouds. In this simulation the convective precipitation increases the most suggesting that the convection has indeed become more vigorous.

  20. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    Science.gov (United States)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  1. Lattice BGK simulation of natural convection

    International Nuclear Information System (INIS)

    Chen, Yu; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Recently a new thermal lattice Bhatnagar-Gross-Krook fluid model was suggested by the authors. In this study, this new model was applied into the numerical simulation of natural convection, namely the Rayleigh Benard flow. The critical number for the onset of convective phenomenon was numerically measured and compared with that of theoretical prediction. A gravity dependent deviation was found in the numerical simulation, which is explained as an unavoidable consequence of the incorporation of gravity force in the lattice BGK system. (author)

  2. The Universe’s extra bits

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Parallel universes, unknown forms of matter, extra dimensions….This is not cheap science fiction but very concrete physics theories that the scientists are trying to confirm with the LHC and other ongoing experiments. Although it's enough to make us dream about going to a parallel world for the weekend, let’s keep our feet firmly on the ground and try to work out what all these things really are…   Given the astonishing fact that 96% of the Universe is actually unknown, we can think of filling it with all sorts of weird and exotic things. Extra dimensions and parallel universes may indeed be real, that is, their existence is accepted by a large community of scientists who have worked out mathematical models and physical constraints. “The idea of a fifth dimension was first introduced by Kaluza and Klein at the beginning of the last century in an attempt to unify gravity and electromagnetism”, confirms Ignatios Antoniadis from CERN’s Th...

  3. Charging as a Focal Practice

    DEFF Research Database (Denmark)

    Bødker, Mads

    This position paper reflects on Borgmann’s notion of ‘focal things’ and its applicability in the discourse about interaction with technologies in nature. Using the example of a combined cooking burner and thermoelectric 5W smartphone charger (a BioLite cook stove), this position paper gives...

  4. CT findings of focal organizing pneumonia: correlation with pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Soo; Kim, Young Goo; Park, Un Sup [College of Medicine, Chungang University, Seoul (Korea, Republic of)

    1994-11-15

    To evaluate the CT findings of focal organizing pneumonia and to correlate them with pathologic findings to help differentiating from lung cancer. We evaluated radiologic and pathologic findings of five patients with solitary pulmonary nodule which were confirmed as focal organizing pneumonia pathologically. On CT scan, focal organizing pneumonia had irregular margin contacting the pleura in all five cases. The shape of the nodules were spherical to wedge or elliptical and the size from 3.5cm to 5.5cm(average 4.2 cm) in largest diameter. On postcontrast CT scan, all nodules showed enhancement and four cases showed central low density components. Two nodules contained air within the nodule. In four cases, pleural changes such as effusion and/or focal thickening were noted. No lymphadenopathy was found in all cases. Pathologically, the enhancing portion on CT showed findings of organizing pneumonia such as granulation tissue with fibroblast proliferation in alveolar space and interstitial thickening. The central low density areas on CT were due to ischemic necrosis, abscess and exudate, transudate and infiltration of foamy histiocyte. The possibility of focal organizing pneumonia should be considered when peripherally located solitary pulmonary nodule had enhancing component with no combined lymphadenopathy on CT scan.

  5. CT findings of focal organizing pneumonia: correlation with pathologic findings

    International Nuclear Information System (INIS)

    Kim, Yang Soo; Kim, Young Goo; Park, Un Sup

    1994-01-01

    To evaluate the CT findings of focal organizing pneumonia and to correlate them with pathologic findings to help differentiating from lung cancer. We evaluated radiologic and pathologic findings of five patients with solitary pulmonary nodule which were confirmed as focal organizing pneumonia pathologically. On CT scan, focal organizing pneumonia had irregular margin contacting the pleura in all five cases. The shape of the nodules were spherical to wedge or elliptical and the size from 3.5cm to 5.5cm(average 4.2 cm) in largest diameter. On postcontrast CT scan, all nodules showed enhancement and four cases showed central low density components. Two nodules contained air within the nodule. In four cases, pleural changes such as effusion and/or focal thickening were noted. No lymphadenopathy was found in all cases. Pathologically, the enhancing portion on CT showed findings of organizing pneumonia such as granulation tissue with fibroblast proliferation in alveolar space and interstitial thickening. The central low density areas on CT were due to ischemic necrosis, abscess and exudate, transudate and infiltration of foamy histiocyte. The possibility of focal organizing pneumonia should be considered when peripherally located solitary pulmonary nodule had enhancing component with no combined lymphadenopathy on CT scan

  6. EEG dynamical correlates of focal and diffuse causes of coma.

    Science.gov (United States)

    Kafashan, MohammadMehdi; Ryu, Shoko; Hargis, Mitchell J; Laurido-Soto, Osvaldo; Roberts, Debra E; Thontakudi, Akshay; Eisenman, Lawrence; Kummer, Terrance T; Ching, ShiNung

    2017-11-15

    Rapidly determining the causes of a depressed level of consciousness (DLOC) including coma is a common clinical challenge. Quantitative analysis of the electroencephalogram (EEG) has the potential to improve DLOC assessment by providing readily deployable, temporally detailed characterization of brain activity in such patients. While used commonly for seizure detection, EEG-based assessment of DLOC etiology is less well-established. As a first step towards etiological diagnosis, we sought to distinguish focal and diffuse causes of DLOC through assessment of temporal dynamics within EEG signals. We retrospectively analyzed EEG recordings from 40 patients with DLOC with consensus focal or diffuse culprit pathology. For each recording, we performed a suite of time-series analyses, then used a statistical framework to identify which analyses (features) could be used to distinguish between focal and diffuse cases. Using cross-validation approaches, we identified several spectral and non-spectral EEG features that were significantly different between DLOC patients with focal vs. diffuse etiologies, enabling EEG-based classification with an accuracy of 76%. Our findings suggest that DLOC due to focal vs. diffuse injuries differ along several electrophysiological parameters. These results may form the basis of future classification strategies for DLOC and coma that are more etiologically-specific and therefore therapeutically-relevant.

  7. Tratamento focal e perifocal contra Aëdes aegypti

    Directory of Open Access Journals (Sweden)

    Milton Moura Lima

    1987-06-01

    Full Text Available Em quatro bairros da cidade do Rio de Janeiro, foram feitos ensaios de tratamento focal com abate granulado a 1 ppm e perifocal com pó molhável de Sumition a 2,5%. Esses tratamentos foram feitos tanto isoladamente quanto em conjunto e, também, associados à aplicação de inseticida a ultrabaixo volume. Os índices prediais, levantados um mês depois de terminado o trabalho, mostraram que o tratamento focal dispensa qualquer medida auxiliar. O tratamento perifocal mostrou-se inócuo e incapaz de impedir o aparecimento de larvas de Aëdes aegypti e de outros insetos, em pneus pintados, na face externa, com Sumition e com Malation.In four districts of the city of Rio dc Janeiro focal treatment essays with granulated Abate at 1 ppm and perifocal treatment essays with wettable powder of Sumithion at 2,5% were performed. These were made either alone or in combination as well as associated to insecticides applied at ultra low volume. The premise indices obtained one month after the treatments indicates that the focal treatment alone is effective, no other addicional methods being necessary. The perifocal treatment is not effective and did not prevent the development of Aedes aegypti larvae and other insects in tires which had their external surface painted with Sumithion and Malathion.

  8. Effects of variable thermal diffusivity on the structure of convection

    Science.gov (United States)

    Shcheritsa, O. V.; Getling, A. V.; Mazhorova, O. S.

    2018-03-01

    The structure of multiscale convection in a thermally stratified plane horizontal fluid layer is investigated by means of numerical simulations. The thermal diffusivity is assumed to produce a thin boundary sublayer convectively much more unstable than the bulk of the layer. The simulated flow is a superposition of cellular structures with three different characteristic scales. In contrast to the largest convection cells, the smaller ones are localised in the upper portion of the layer. The smallest cells are advected by the larger-scale convective flows. The simulated flow pattern qualitatively resembles that observed on the Sun.

  9. [Focal myositis: An unknown disease].

    Science.gov (United States)

    Gallay, L; Streichenberger, N; Benveniste, O; Allenbach, Y

    2017-10-01

    Focal myositis are inflammatory muscle diseases of unknown origin. At the opposite from the other idiopathic inflammatory myopathies, they are restricted to a single muscle or to a muscle group. They are not associated with extramuscular manifestations, and they have a good prognosis without any treatment. They are characterized by a localized swelling affecting mostly lower limbs. The pseudo-tumor can be painful, but is not associated with a muscle weakness. Creatine kinase level is normal. Muscle MRI shows an inflammation restricted to a muscle or a muscle group. Muscle biopsy and pathological analysis remain necessary for the diagnosis, showing inflammatory infiltrates composed by macrophages and lymphocytes without any specific distribution within the muscle. Focal overexpression of HLA-1 by the muscle fibers is frequently observed. The muscle biopsy permits to rule out differential diagnosis such a malignancy (sarcoma). Spontaneous remission occurs within weeks or months after the first symptoms, relapse is unusual. Copyright © 2017. Published by Elsevier SAS.

  10. Black Holes, Cosmology and Extra Dimensions

    International Nuclear Information System (INIS)

    Frolov, Valeri P

    2013-01-01

    Book review: The book Black holes, Cosmology and Extra Dimensions written by Kirill A Bronnikov and Sergey G Rubin has been published recently by World Scientific Publishing Company. The authors are well known experts in gravity and cosmology. The book is a monograph, a considerable part of which is based on the original work of the authors. Their original point of view on some of the problems makes the book quite interesting, covering a variety of important topics of the modern theory of gravity, astrophysics and cosmology. It consists of 11 chapters which are organized in three parts. The book starts with an introduction, where the authors briefly discuss the main ideas of General Relativity, giving some historical remarks on its development and application to cosmology, and mentioning some more recent subjects such as brane worlds, f (R)−theories and gravity in higher dimensions. Part I of the book is called ‘Gravity’. Chapters two and three are devoted to the Einstein equations and their spherical symmetric black hole solutions. Part II (Cosmology) starts with discussion of the Friedmann–Robertson–Walker and de Sitter solutions of the Einstein equations and their properties. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza–Klein scheme

  11. Terminal project heat convection in thin cylinders

    International Nuclear Information System (INIS)

    Morales Corona, J.

    1992-01-01

    Heat convection in thin cylinders and analysis about natural convection for straight vertical plates, and straight vertical cylinders submersed in a fluid are presented some works carry out by different authors in the field of heat transfer. In the part of conduction, deduction of the equation of heat conduction in cylindrical coordinates by means of energy balance in a control volume is presented. Enthalpy and internal energy are used for the outlining of the equation and finally the equation in its vectorial form is obtained. In the convection part development to calculate the Nusselt number for a straight vertical plate by a forces analysis, an energy balance and mass conservation over a control volume is outlined. Several empiric correlations to calculate the Nusselt number and its relations with other dimensionless numbers are presented. In the experimental part the way in which a prototype rode is assembled is presented measurements of temperatures attained in steady state and in free convection for working fluids as air and water are showed in tables. Also graphs of Nusselt numbers obtained in the experimental way through some empiric correlations are showed (Author)

  12. Heat transfer by natural convection into an horizontal cavity

    International Nuclear Information System (INIS)

    Arevalo J, P.

    1998-01-01

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling's part that is described the regimes and correlations differences for boiling's curve. It is designed a horizontal cavity for realize the experimental part and it's mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it's present process from natural convection involving part boiling's subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it's proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling's subcooled. It is realize analysis graphics too where it's show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  13. The influence of convective current generator on the global current

    Directory of Open Access Journals (Sweden)

    V. N. Morozov

    2006-01-01

    Full Text Available The mathematical generalization of classical model of the global circuit with taking into account the convective current generator, working in the planetary boundary layer was considered. Convective current generator may be interpreted as generator, in which the electromotive force is generated by processes, of the turbulent transport of electrical charge. It is shown that the average potential of ionosphere is defined not only by the thunderstorm current generators, working at the present moment, but by the convective current generator also. The influence of the convective processes in the boundary layer on the electrical parameters of the atmosphere is not only local, but has global character as well. The numerical estimations, made for the case of the convective-unstable boundary layer demonstrate that the increase of the average potential of ionosphere may be of the order of 10% to 40%.

  14. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  15. Large Eddy Simulations of Severe Convection Induced Turbulence

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    Convective storms can pose a serious risk to aviation operations since they are often accompanied by turbulence, heavy rain, hail, icing, lightning, strong winds, and poor visibility. They can cause major delays in air traffic due to the re-routing of flights, and by disrupting operations at the airports in the vicinity of the storm system. In this study, the Terminal Area Simulation System is used to simulate five different convective events ranging from a mesoscale convective complex to isolated storms. The occurrence of convection induced turbulence is analyzed from these simulations. The validation of model results with the radar data and other observations is reported and an aircraft-centric turbulence hazard metric calculated for each case is discussed. The turbulence analysis showed that large pockets of significant turbulence hazard can be found in regions of low radar reflectivity. Moderate and severe turbulence was often found in building cumulus turrets and overshooting tops.

  16. Extra dimensions in space and time

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    Covers topics such as Einstein and the Fourth Dimension; Waves in a Fifth Dimension; and String Theory and Branes Experimental Tests of Extra Dimensions. This book offers a discussion on Two-Time Physics

  17. Theory of the mechanical response of focal adhesions to shear flow

    International Nuclear Information System (INIS)

    Biton, Y Y; Safran, S A

    2010-01-01

    The response of cells to shear flow is primarily determined by the asymmetry of the external forces and moments that are sensed by each member of a focal adhesion pair connected by a contractile stress fiber. In the theory presented here, we suggest a physical model in which each member of such a pair of focal adhesions is treated as an elastic body subject to both a myosin-activated contractile force and the shear stress induced by the external flow. The elastic response of a focal adhesion complex is much faster than the active cellular processes that determine the size of the associated focal adhesions and the direction of the complex relative to the imposed flow. Therefore, the complex attains its mechanical equilibrium configuration which may change because of the cellular activity. Our theory is based on the experimental observation that focal adhesions modulate their cross-sectional area in order to attain an optimal shear. Using this assumption, our elastic model shows that such a complex can passively change its orientation to align parallel to the direction of the flow.

  18. Extra-oral halitosis : an overview

    NARCIS (Netherlands)

    Tangerman, A.; Winkel, E. G.

    Halitosis can be subdivided into intra-oral and extra-oral halitosis, depending on the place where it originates. Most reports now agree that the most frequent sources of halitosis exist within the oral cavity and include bacterial reservoirs such as the dorsum of the tongue, saliva and periodontal

  19. Focal decompositions for linear differential equations of the second order

    Directory of Open Access Journals (Sweden)

    L. Birbrair

    2003-01-01

    two-points problems to itself such that the image of the focal decomposition associated to the first equation is a focal decomposition associated to the second one. In this paper, we present a complete classification for linear second-order equations with respect to this equivalence relation.

  20. Focal spot motion of linear accelerators and its effect on portal image analysis

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Brand, Bob; Herk, Marcel van

    2003-01-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned ∼0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motion was estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spot motion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate

  1. Examining Chaotic Convection with Super-Parameterization Ensembles

    Science.gov (United States)

    Jones, Todd R.

    This study investigates a variety of features present in a new configuration of the Community Atmosphere Model (CAM) variant, SP-CAM 2.0. The new configuration (multiple-parameterization-CAM, MP-CAM) changes the manner in which the super-parameterization (SP) concept represents physical tendency feedbacks to the large-scale by using the mean of 10 independent two-dimensional cloud-permitting model (CPM) curtains in each global model column instead of the conventional single CPM curtain. The climates of the SP and MP configurations are examined to investigate any significant differences caused by the application of convective physical tendencies that are more deterministic in nature, paying particular attention to extreme precipitation events and large-scale weather systems, such as the Madden-Julian Oscillation (MJO). A number of small but significant changes in the mean state climate are uncovered, and it is found that the new formulation degrades MJO performance. Despite these deficiencies, the ensemble of possible realizations of convective states in the MP configuration allows for analysis of uncertainty in the small-scale solution, lending to examination of those weather regimes and physical mechanisms associated with strong, chaotic convection. Methods of quantifying precipitation predictability are explored, and use of the most reliable of these leads to the conclusion that poor precipitation predictability is most directly related to the proximity of the global climate model column state to atmospheric critical points. Secondarily, the predictability is tied to the availability of potential convective energy, the presence of mesoscale convective organization on the CPM grid, and the directive power of the large-scale.

  2. The Resurrection of Jesus: do extra-canonical sources change the landscape?

    Directory of Open Access Journals (Sweden)

    F P Viljoen

    2005-10-01

    Full Text Available The resurrection of Jesus is assumed by the New Testament to be a historical event. Some scholars argue, however, that there was no empty tomb, but that the New Testament accounts are midrashic or mythological stories about Jesus.� In this article extra-canonical writings are investigated to find out what light it may throw on intra-canonical tradition. Many extra-canonical texts seemingly have no knowledge of the passion and resurrection, and such traditions may be earlier than the intra-canonical traditions. Was the resurrection a later invention?� Are intra-canonical texts developments of extra-canonical tradition, or vice versa?� This article demonstrates that extra-canonical texts do not materially alter the landscape of enquiry.

  3. Perceived organizational support and extra-role performance: which leads to which?

    Science.gov (United States)

    Chen, Zhixia; Eisenberger, Robert; Johnson, Kelly M; Sucharski, Ivan L; Aselage, Justin

    2009-02-01

    L. Rhoades and R. Eisenberger (2002) reported the meta-analytic finding of a highly statistically significant relation between perceived organizational support (POS) and performance but concluded that the reviewed studies' methodology allowed no conclusion concerning the direction of the association. To investigate this issue, the authors assessed POS and extra-role performance 2 times, separated by a 3-year interval, among 199 employees of an electronic and appliance sales organization. Using a cross-lagged panel design, the authors found that POS was positively associated with a temporal change in extra-role performance. In contrast, the relation between extra-role performance and temporal change in POS was not statistically significant. These findings provide evidence that POS leads to extra-role performance.

  4. Focal myositis of lower extremity responsive to botulinum A toxin.

    Science.gov (United States)

    Mitrovic, Josko; Prka, Zeljko; Zic, Rado; Marusic, Srecko; Morovic-Vergles, Jadranka

    2014-01-01

    Focal myositis is a rare, mostly benign disease (pseudotumor) of skeletal muscle, histopathologically characterized by interstitial myositis and tumorous enlargement of a single muscle. The etiology of focal myositis remains unknown; however, localized myopathy has been postulated to be caused by denervation lesions. This case report describes a patient that presented with clinical, laboratory, electromyoneurography, and magnetic resonance imaging features of focal myositis complicated with intervertebral disk protrusion in the lumbosacral spine affected with radicular distress. In most cases, focal myositic lesions show spontaneous regression, relapses are rare, and long-term prognosis is good. There is a wide spectrum of therapeutic options, from no therapy at all through nonsteroidal antirheumatics and glucocorticoids to radiotherapy, surgical excision, and immunosuppressants. In the patient presented, treatment with glucocorticoids, methotrexate, and surgical excision failed to produce satisfactory results. Clinical improvement, pain relief, and reduction in lower leg volume were only achieved by local infiltration of botulinum A toxin.

  5. Deriving the effective focal plane for the CBM-RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Kres, Ievgenii [Wuppertal University (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The Compressed Baryonic Matter (CBM) experiment at the future FAIR complex will investigate the phase diagram of strongly interacting matter at high baryon density and moderate temperatures in A+A collisions from 2-11 AGeV (SIS100). A central component of the proposed detector setup is a ring imaging Cherenkov detector (RICH) using CO2 as radiator gas, and a focussing optic with a large spherical mirror. In the present design, the optimal focal plane is approximated using four individual, flat detection surfaces. However, the exact shape and position of the ideal focal plane is subject to further optimization due to effects from tilting the focussing mirror and from momentum dependant deflection of the electron tracks in the magnetic stray field. In this talk, we present a new approach to derive the effective 3-dimensional shape of the focal plane based on a set of Monte Carlo simulations, comparing the ring sharpness at each point of a preliminary focal plane as function of z-position.

  6. Concentration field in traveling-wave and stationary convection in fluid mixtures

    International Nuclear Information System (INIS)

    Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.

    1991-01-01

    By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern

  7. METHOD FOR DETERMINATION OF FOCAL PLANE LOCATION OF FOCUSING COMPONENTS

    Directory of Open Access Journals (Sweden)

    A. I. Ivashko

    2017-01-01

    Full Text Available Mass-production of different laser systems often requires utilization of the focal spot size method for determination of output laser beam spatial characteristics. The main challenge of this method is high accuracy maintenance of a CCD camera beam profiler in the collecting lens focal plane. The aim of our work is development of new method for placing of photodetector array in the collecting lens focal plane with high accuracy.Proposed technique is based on focusing of several parallel laser beams. Determination of the focal plane position requires only longitudinal translation of the CCD-camera to find a point of laser beams intersection. Continuous-wave (CW diode-pumped laser emitting in the spectral region near 1μm was created to satisfy the requirements of the developed technique. Designed microchip laser generates two stigmatic Gaussian beams with automatically parallel beam axes due to independent pumping of different areas of the one microchip crystal having the same cavity mirrors.It was theoretically demonstrated that developed method provides possibility of the lenses focal plane determination with 1 % accuracy. The microchip laser generates two parallel Gaussian beams with divergence of about 10 mrad. Laser output power can be varied in the range of 0.1–1.5 W by changing the pumping laser diode electrical current. The distance between two beam axes can be changed in the range of 0.5–5.0 mm.We have proposed method for determination of positive lens focal plane location by using of CCDcamera and two laser beams with parallel axes without utilization of additional optical devices. We have developed CW longitudinally diode pumped microchip laser emitting in the 1-μm spectral region that can be used in the measuring instrument that doesn’t require precision mechanical components for determination of focal plane location with 1 % accuracy. The overall dimensions of laser head was 70 × 40 × 40 mm3 and maximum power consumption was

  8. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES by Derek E. Fletcher June 2016 Thesis Advisor: Garth Hobson Second Reader...COVERED Master’s Thesis 4. TITLE AND SUBTITLE NOVEL NATURAL CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES 5. FUNDING NUMBERS 6...CONVECTION HEAT SINK DESIGN CONCEPTS FROM FIRST PRINCIPLES Derek E. Fletcher Lieutenant Commander, United States Navy B.S., Southwestern

  9. Extra dimensions and black hole production

    International Nuclear Information System (INIS)

    Pagliarona, C.

    2001-01-01

    This article reviews recent development in models with Large Extra Dimensions and Black hole production at future colliders. Experimental results from current experiments as well as the expectation for the future colliders are summarized

  10. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  11. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  12. The diurnal interaction between convection and peninsular-scale forcing over South Florida

    Science.gov (United States)

    Cooper, H. J.; Simpson, J.; Garstang, M.

    1982-01-01

    One of the outstanding problems in modern meterology is that of describing in detail the manner in which larger scales of motion interact with, influence and are influenced by successively smaller scales of motion. The present investigation is concerned with a study of the diurnal evolution of convection, the interaction between the peninsular-scale convergence and convection, and the role of the feedback produced by the cloud-scale downdrafts in the maintenance of the convection. Attention is given to the analysis, the diurnal cycle of the network area-averaged divergence, convective-scale divergence, convective mass transports, and the peninsular scale divergence. The links established in the investigation between the large scale (peninsular), the mesoscale (network), and the convective scale (cloud) are found to be of fundamental importance to the understanding of the initiation, maintenance, and decay of deep precipitating convection and to its theoretical parameterization.

  13. Double Diffusive Natural Convection in a Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun

    2006-01-01

    In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport

  14. Strategic Repositioning for Convection Business Case Study: AR Vendor

    OpenAIRE

    Anindita, Pratisara Satwika; Toha, Mohamad

    2013-01-01

    The study aims to determine suitable position and strategy in order to reach superiority in convection business based on the company strengths and weaknesses. A study conducted in late 2012 at AR Vendor, a home-based convection company which focus on the t-shirt screen printing service. In response to the issue of the below average profit margin, the company has to rethink their position and strategy in handling the convection business environment. While AR Vendor business may growth in accor...

  15. Focal depth measurement of scanning helium ion microscope

    International Nuclear Information System (INIS)

    Guo, Hongxuan; Itoh, Hiroshi; Wang, Chunmei; Zhang, Han; Fujita, Daisuke

    2014-01-01

    When facing the challenges of critical dimension measurement of complicated nanostructures, such as of the three dimension integrated circuit, characterization of the focal depth of microscopes is important. In this Letter, we developed a method for characterizing the focal depth of a scanning helium ion microscope (HIM) by using an atomic force microscope tip characterizer (ATC). The ATC was tilted in a sample chamber at an angle to the scanning plan. Secondary electron images (SEIs) were obtained at different positions of the ATC. The edge resolution of the SEIs shows the nominal diameters of the helium ion beam at different focal levels. With this method, the nominal shapes of the helium ion beams were obtained with different apertures. Our results show that a small aperture is necessary to get a high spatial resolution and high depth of field images with HIM. This work provides a method for characterizing and improving the performance of HIM.

  16. Celulitis por cuerpo extraño

    Directory of Open Access Journals (Sweden)

    Miguel B. Carrasco Guzmán

    2016-01-01

    Full Text Available Las infecciones de la piel y el tejido celular subcutáneo surgen como un grupo importante de afecciones con una alta morbilidad en edades pediátricas, generalmente relacionada con traumatismo y cuerpos extraños. Se presenta el caso de una escolar femenina de 6 años de edad, con síntomas y signos clínicos que sugieren celulitis en el muslo derecho,  por su evolución tórpida se le realizó el estudio ultrasonográfico que confirmó el diagnóstico etiológico de una celulitis secundaria a un traumatismo, provocada por la introducción de un gran cuerpo extraño, que pasó inadvertido para a familia de la menor.

  17. Acute abdomen in children due to extra-abdominal causes.

    Science.gov (United States)

    Tsalkidis, Aggelos; Gardikis, Stefanos; Cassimos, Dimitrios; Kambouri, Katerina; Tsalkidou, Evanthia; Deftereos, Savas; Chatzimichael, Athanasios

    2008-06-01

    Acute abdominal pain in children is a common cause for referral to the emergency room and for subsequent hospitalization to pediatric medical or surgical departments. There are rare occasions when the abdominal pain is derived from extra-abdominal organs or systems. The aim of the present study was to establish the most common extra-abdominal causes of acute abdominal pain. The notes of all children (1 month-14 years of age) examined for acute abdominal pain in the Accident and Emergency (A&E) Department of Alexandroupolis District University Hospital in January 2001-December 2005 were analyzed retrospectively. Demographic data, clinical signs and symptoms, and laboratory findings were recorded, as well as the final diagnosis and outcome. Of a total number of 28 124 children who were brought to the A&E department, in 1731 the main complaint was acute abdominal pain. In 51 children their symptoms had an extra-abdominal cause, the most frequent being pneumonia (n = 15), tonsillitis (n = 10), otitis media (n = 9), and acute leukemia (n = 5). Both abdominal and extra-abdominal causes should be considered by a pediatrician who is confronted with a child with acute abdominal pain.

  18. Time-Distance Analysis of Deep Solar Convection

    Science.gov (United States)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2011-01-01

    Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees ldeep-focusing Lime-distance technique used to develop the upper limit was applied to linear acoustic simulations of a solar interior perturbed by convective flows in order to calibrate the technique. This technique has been applied to other depths in the convection zone and the results will be presented. The deep-focusing technique has considerable sensitivity to the flow ' signals at the desired subsurface location ' However, as shown by Birch {ref}, there is remaining much sensitivity to near-surface signals. Modifications to the technique using multiple bounce signals have been examined in a search for a more refined sensitivity, or kernel function. Initial results are encouraging and results will be presented'

  19. Super-resolution links vinculin localization to function in focal adhesions.

    Science.gov (United States)

    Giannone, Grégory

    2015-07-01

    Integrin-based focal adhesions integrate biochemical and biomechanical signals from the extracellular matrix and the actin cytoskeleton. The combination of three-dimensional super-resolution imaging and loss- or gain-of-function protein mutants now links the nanoscale dynamic localization of proteins to their activation and function within focal adhesions.

  20. Extra-Anatomic Revascularization of Extensive Coral Reef Aorta.

    Science.gov (United States)

    Gaggiano, Andrea; Kasemi, Holta; Monti, Andrea; Laurito, Antonella; Maselli, Mauro; Manzo, Paola; Quaglino, Simone; Tavolini, Valeria

    2017-10-01

    Coral reef aorta (CRA) is a rare, potential lethal disease of the visceral aorta as it can cause visceral and renal infarction. Various surgical approaches have been proposed for the CRA treatment. The purpose of this article is to report different extensive extra-anatomic CRA treatment modalities tailored on the patients' clinical and anatomic presentation. From April 2006 to October 2012, 4 symptomatic patients with extensive CRA were treated at our department. Extra-anatomic aortic revascularization with selective visceral vessels clamping was performed in all cases. Technical success was 100%. No perioperative death was registered. All patients remained asymptomatic during the follow-up period (62, 49, 25, and 94 months, respectively), with bypasses and target vessels patency. The extra-anatomic bypass with selective visceral vessels clamping reduces the aortic occlusion time and the risk of organ ischemia. All approaches available should be considered on a case-by-case basis and in high-volume centers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Membership Functions for Fuzzy Focal Elements

    Directory of Open Access Journals (Sweden)

    Porębski Sebastian

    2016-09-01

    Full Text Available The paper presents a study on data-driven diagnostic rules, which are easy to interpret by human experts. To this end, the Dempster-Shafer theory extended for fuzzy focal elements is used. Premises of the rules (fuzzy focal elements are provided by membership functions which shapes are changing according to input symptoms. The main aim of the present study is to evaluate common membership function shapes and to introduce a rule elimination algorithm. Proposed methods are first illustrated with the popular Iris data set. Next experiments with five medical benchmark databases are performed. Results of the experiments show that various membership function shapes provide different inference efficiency but the extracted rule sets are close to each other. Thus indications for determining rules with possible heuristic interpretation can be formulated.

  2. Focal epilepsy in the Belgian shepherd

    DEFF Research Database (Denmark)

    Berendt, Mette; Gulløv, Christina Hedal; Fredholm, Merete

    2009-01-01

    and deceased) were ascertained through a telephone interview using a standardised questionnaire regarding seizure history and phenomenology. Living dogs were invited to a detailed clinical evaluation. Litters more than five years of age, or where epilepsy was present in all offspring before the age of five......, were included in the calculations of inheritance. results: Out of 199 family members, 66 dogs suffered from epilepsy. The prevalence of epilepsy in the family was 33%. Fifty-five dogs experienced focal seizures with or without secondary generalisation, while four dogs experienced primary generalised...... seizures. In seven dogs, seizures could not be classified. The mode of inheritance of epilepsy was simple Mendelian. CLINICAL SIGNIFICANCE: This study identified that the Belgian shepherd suffers from genetically transmitted focal epilepsy. The seizure phenomenology expressed by family members have...

  3. Impacts of initial convective structure on subsequent squall line evolution

    Science.gov (United States)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region

  4. Extensive Focal Epithelial Hyperplasia: A Case Report.

    Science.gov (United States)

    Mansouri, Zahra; Bakhtiari, Sedigheh; Noormohamadi, Robab

    2015-01-01

    Focal epithelial hyperplasia (FEH) or Heck's disease is a rare viral infection of the oral mucosa caused by human papilloma virus especially subtypes 13 or 32. The frequency of this disease varies widely from one geographic region and ethnic groups to another. This paper reports an Iranian case of extensive focal epithelial hyperplasia. A 35-year-old man with FEH is described, in whom the lesions had persisted for more than 25 years. The lesion was diagnosed according to both clinical and histopathological features. Dental practitioner should be aware of these types of lesions and histopathological examination together and a careful clinical observation should be carried out for a definitive diagnosis.

  5. Focal splenic masses of the extramedullary hematopoiesis

    International Nuclear Information System (INIS)

    Incedayi, M.; Sivrioglu, A.

    2012-01-01

    Full text: Extramedullary hematopoiesis arises from pleuripotential stem cells distributed throughout the body. It is most common in patients with congenital hemolytic anemia, such as thalassemia, sickle cell anemia and hereditary spherocytosis as a response to ineffective red blood cell formation. Although microscopic foci of Extramedullary hematopoiesis are commonly seen in the spleen and liver parenchyma, focal mass-like lesion of extramedullary hematopoiesis in the liver and spleen are rare. We report a case of intrasplenic focal extramedullary hematopoiesis lesions and the imaging features of extramedullary hematopoiesis on computed tomography and magnetic resonance imaging. Extramedullary hematopoiesis should always be considered as a diagnosis in a patient with a known hematological disorder

  6. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  7. Midlatitude Continental Convective Clouds Experiment (MC3E)

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, MP; Petersen, WA; Del Genio, AD; Giangrande, SE; Heymsfield, A; Heymsfield, G; Hou, AY; Kollias, P; Orr, B; Rutledge, SA; Schwaller, MR; Zipser, E

    2010-04-01

    Convective processes play a critical role in the Earth’s energy balance through the redistribution of heat and moisture in the atmosphere and subsequent impacts on the hydrologic cycle. Global observation and accurate representation of these processes in numerical models is vital to improving our current understanding and future simulations of Earth’s climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales that are associated with convective and stratiform precipitation processes; therefore, they must turn to parameterization schemes to represent these processes. In turn, the physical basis for these parameterization schemes needs to be evaluated for general application under a variety of atmospheric conditions. Analogously, space-based remote sensing algorithms designed to retrieve related cloud and precipitation information for use in hydrological, climate, and numerical weather prediction applications often rely on physical “parameterizations” that reliably translate indirectly related instrument measurements to the physical quantity of interest (e.g., precipitation rate). Importantly, both spaceborne retrieval algorithms and model convective parameterization schemes traditionally rely on field campaign data sets as a basis for evaluating and improving the physics of their respective approaches. The Midlatitude Continental Convective Clouds Experiment (MC3E) will take place in central Oklahoma during the April–May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility and the National Aeronautics and Space Administration’s (NASA) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The field campaign leverages the unprecedented observing infrastructure currently available in the central United States

  8. Do tropical wetland plants possess a convective gas flow mechanism?

    DEFF Research Database (Denmark)

    Jensen, Dennis Konnerup; Sorrell, Brian Keith; Brix, Hans

    2011-01-01

    Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. The occurrence of pressurization and convective flow was determined...... in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature....... Nine of the 20 species studied were able to build up a static pressure of >50Pa, and eight species had convective flow rates higher than 1mlmin-1. There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero...

  9. Neutral beam injection and plasma convection in a magnetic field

    International Nuclear Information System (INIS)

    Okuda, H.; Hiroe, S.

    1988-06-01

    Injection of a neutral beam into a plasma in a magnetic field has been studied by means of numerical plasma simulations. It is found that, in the absence of a rotational transform, the convection electric field arising from the polarization charges at the edges of the beam is dissipated by turbulent plasma convection, leading to anomalous plasma diffusion across the magnetic field. The convection electric field increases with the beam density and beam energy. In the presence of a rotational transform, polarization charges can be neutralized by the electron motion along the magnetic field. Even in the presence of a rotational transform, a steady-state convection electric field and, hence, anomalous plasma diffusion can develop when a neutral beam is constantly injected into a plasma. Theoretical investigations on the convection electric field are described for a plasma in the presence of rotational transform. 11 refs., 19 figs

  10. Pump out the volume--The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus).

    Science.gov (United States)

    Duncan, Frances D; Förster, Thomas D; Hetz, Stefan K

    2010-05-01

    Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange. No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO(2)-peaks on a continuous CO(2) baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action. Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO(2) release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. SOUND-SPEED INVERSION OF THE SUN USING A NONLOCAL STATISTICAL CONVECTION THEORY

    International Nuclear Information System (INIS)

    Zhang Chunguang; Deng Licai; Xiong Darun; Christensen-Dalsgaard, Jørgen

    2012-01-01

    Helioseismic inversions reveal a major discrepancy in sound speed between the Sun and the standard solar model just below the base of the solar convection zone. We demonstrate that this discrepancy is caused by the inherent shortcomings of the local mixing-length theory adopted in the standard solar model. Using a self-consistent nonlocal convection theory, we construct an envelope model of the Sun for sound-speed inversion. Our solar model has a very smooth transition from the convective envelope to the radiative interior, and the convective energy flux changes sign crossing the boundaries of the convection zone. It shows evident improvement over the standard solar model, with a significant reduction in the discrepancy in sound speed between the Sun and local convection models.

  12. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  13. The design of LMJ focal spots for indirect drive experiments

    International Nuclear Information System (INIS)

    Le Garrec, B J; Sajer, J M

    2008-01-01

    LMJ is a 240 high power laser beam facility for achieving laser matter interaction experiments, high energy density science, including the demonstration of fusion ignition through Inertial Confinement. The Laser Integration Line (LIL) facility is currently a 4-beam prototype for LMJ. The intensity I 0 at the focal spot centre drives hydrodynamic and plasma instabilities and the intensity in the wings must be low to go through the laser entrance Hohlraum. A simple model has been developed to compute the LMJ focal spot. The model gives the intensity at the centre as a function of the focal spot area at 3% of the maximum

  14. Focal myositis of the thigh: unusual MR pattern

    International Nuclear Information System (INIS)

    Llauger, Jaume; Palmer, Jaume; San Roman, Luis; Bague, Silvia; Matias-Guiu, Xavier; Doncel, Antonio

    2002-01-01

    Focal myositis is a commonly referenced, infrequently reported and poorly documented benign inflammatory pseudotumor which may be misdiagnosed clinically as a malignant tumor. We report the clinicopathologic features and magnetic resonance imaging findings in a case of focal myositis in the thigh of a 55-year-old woman. A different radiologic presentation of this disorder is described. The gross appearance of the lesion, previously undescribed, appears to be rather specific for such a pseudoneoplastic disorder, and correlates very well with the magnetic resonance imaging features. (orig.)

  15. Focal myositis of the thigh: unusual MR pattern

    Energy Technology Data Exchange (ETDEWEB)

    Llauger, Jaume; Palmer, Jaume; San Roman, Luis [Department of Radiology, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Bague, Silvia; Matias-Guiu, Xavier [Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Doncel, Antonio [Department of Orthopedic Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain)

    2002-05-01

    Focal myositis is a commonly referenced, infrequently reported and poorly documented benign inflammatory pseudotumor which may be misdiagnosed clinically as a malignant tumor. We report the clinicopathologic features and magnetic resonance imaging findings in a case of focal myositis in the thigh of a 55-year-old woman. A different radiologic presentation of this disorder is described. The gross appearance of the lesion, previously undescribed, appears to be rather specific for such a pseudoneoplastic disorder, and correlates very well with the magnetic resonance imaging features. (orig.)

  16. Expansion characteristics of coronary stents in focal stenoses

    Directory of Open Access Journals (Sweden)

    Schmidt Wolfram

    2017-09-01

    Full Text Available The presented experimental in vitro approach was designed to assess the expansion behavior of stent systems in a resistant focal stenosis model with respect to a potential dog-boning effect. Five different stent systems (nominal diameter 3.0 mm were investigated. The focal stenosis was simulated by a stainless steel tube (ID ≤ 1.20 mm. Stent expansion was performed using a proprietary test device consisting of a test chamber with 37 °C water, 2-axis laser scanner and a pressure controller.

  17. Extra generations and discrepancies of electroweak precision data

    OpenAIRE

    Novikov, V. A.; Okun, L. B.; Rozanov, A. N.; Vysotsky, M. I.

    2001-01-01

    It is shown that additional chiral generations are not excluded by the latest electroweak precision data if one assumes that there is no mixing with the known three generations. In the case of ``heavy extra generations'', when all four new particles are heavier than $Z$ boson, quality of the fit for the one new generation is as good as for zero new generations (Standard Model). In the case of neutral leptons with masses around 50 GeV (``partially heavy extra generations'') the minimum of $\\ch...

  18. Extra-Articular Manifestations of Seronegative and Seropositive Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Vjollca Sahatçiu-Meka

    2010-02-01

    Full Text Available Although considered a “joint disease,” rheumatoid arthritis is associated with the involvement of extra-articular manifestations. The aim of the study is the investigation and comparison of frequency and type of extra-articular manifestations in a well defined community based cohort of patients with seropositive and seronegative rheumatoid arthritis. Using the ACR (1987 criteria for rheumatoid arthritis, patients have been classified into the 2nd and 3rd functional class (ARA. The studied group consisted of 125 seronegative patients with titters lower than 1:64 as defined by Rose-Waaler test, whereas the control group consisted of 125 seropositive patients with titters of 1:64 or higher. All patients were between 25-60 years of age (Xb=49,96, with disease duration between 1-27 years (Xb=6,41. In order to present the findings of the study, the structure, prevalence, arithmetic mean (Xb, standard deviation (SB, variation quotient (QV% and variation interval (Rmax-Rmin have been used. Probability level has been expressed by p<0,01 and p<0,05. Correlation between the number of extra-articular manifestations and duration of the disease has been calculated by means of Pearson linear correlation. Higher presence of diffuse lung fibrosis, central and peripheral nervous system damages have been confirmed in the seropositive group, and osteoporosis in the seronegative; however, no statistical difference has been found. In extra-articular manifestations, “rheumatoid core” in the seropositive subset (χ2=4,80, p<0,05 presented significant statistical difference. Rheumatoid nodules were more frequent in seropositive subset (12%:16%, in both sexes; however, they were not of significant statistical difference. Neuropathy and lung diseases were also frequently present in seropositive group, but no statistical difference has been found regarding the statistical difference. Longer duration of the disease resulted in an increase of the number of extra

  19. Extra-articular manifestations of seronegative and seropositive rheumatoid arthritis.

    Science.gov (United States)

    Sahatciu-Meka, Vjollca; Rexhepi, Sylejman; Manxhuka-Kerliu, Suzana; Rexhepi, Mjellma

    2010-02-01

    Although considered a "joint disease," rheumatoid arthritis is associated with the involvement of extra-articular manifestations. The aim of the study is the investigation and comparison of frequency and type of extra-articular manifestations in a well defined community based cohort of patients with seropositive and seronegative rheumatoid arthritis. Using the ACR (1987) criteria for rheumatoid arthritis, patients have been classified into the 2nd and 3rd functional class (ARA). The studied group consisted of 125 seronegative patients with titters lower than 1:64 as defined by Rose-Waaler test, whereas the control group consisted of 125 seropositive patients with titters of 1:64 or higher. All patients were between 25-60 years of age (Xb=49,96), with disease duration between 1-27 years (Xb=6,41). In order to present the findings of the study, the structure, prevalence, arithmetic mean (Xb), standard deviation (SB), variation quotient (QV%) and variation interval (Rmax-Rmin) have been used. Probability level has been expressed by p<0,01 and p<0,05. Correlation between the number of extra-articular manifestations and duration of the disease has been calculated by means of Pearson linear correlation. Higher presence of diffuse lung fibrosis, central and peripheral nervous system damages have been confirmed in the seropositive group, and osteoporosis in the seronegative; however, no statistical difference has been found. In extra-articular manifestations, "rheumatoid core" in the seropositive subset (chi2=4,80, p<0,05) presented significant statistical difference. Rheumatoid nodules were more frequent in seropositive subset (12%:16%), in both sexes; however, they were not of significant statistical difference. Neuropathy and lung diseases were also frequently present in seropositive group, but no statistical difference has been found regarding the statistical difference. Longer duration of the disease resulted in an increase of the number of extra

  20. Building on comparative experience : the Venezuelan extra-heavy crude oil projects

    International Nuclear Information System (INIS)

    Valentine, T.E.

    2004-01-01

    This paper reviewed legal considerations regarding heavy and extra heavy oil production in both Canada and Venezuela. The paper focused on Venezuela's extra heavy oil projects in the Orinoco Oil Belt, one of the world's largest accumulation of bitumen with an estimated reserve of 1.2 trillion barrels. The paper described the following four projects: the Petrozuata, Cerro Negro, SINCOR, and Hamaca heavy oil projects which are all congressionally approved joint ventures for extra-heavy crudes in the Orinoco Belt. It also described the legal regime which governs heavy oil projects in Venezuela, including the Organic Gaseous Hydrocarbon Law and the Organic Hydrocarbon Law. Twenty congressional conditions which have been imposed were also outlined along with the legal considerations and lessons learned regarding new extra-heavy crude projects under the two legal regimes. 1 fig

  1. Non-Alcoholic Fatty Liver Disease and Extra-Hepatic Cancers

    Directory of Open Access Journals (Sweden)

    Claudia Sanna

    2016-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a leading cause of chronic liver disease but the second cause of death among NAFLD patients are attributed to malignancies at both gastrointestinal (liver, colon, esophagus, stomach, and pancreas and extra-intestinal sites (kidney in men, and breast in women. Obesity and related metabolic abnormalities are associated with increased incidence or mortality for a number of cancers. NAFLD has an intertwined relationship with metabolic syndrome and significantly contributes to the risk of hepatocellular carcinoma (HCC, but recent evidence have fuelled concerns that NAFLD may be a new, and added, risk factor for extra-hepatic cancers, particularly in the gastrointestinal tract. In this review we critically appraise key studies on NAFLD-associated extra-hepatic cancers and speculate on how NAFLD may influence carcinogenesis at these sites.

  2. Topology Optimisation for Coupled Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Andreasen, Casper Schousboe; Aage, Niels

    stabilised finite elements implemented in a parallel multiphysics analysis and optimisation framework DFEM [1], developed and maintained in house. Focus is put on control of the temperature field within the solid structure and the problems can therefore be seen as conjugate heat transfer problems, where heat...... conduction governs in the solid parts of the design domain and couples to convection-dominated heat transfer to a surrounding fluid. Both loosely coupled and tightly coupled problems are considered. The loosely coupled problems are convection-diffusion problems, based on an advective velocity field from...

  3. Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid

    Directory of Open Access Journals (Sweden)

    Mehta C.B.

    2018-02-01

    Full Text Available Thermal Instability (Benard’s Convection in the presence of uniform rotation and uniform magnetic field (separately is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard’s stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.

  4. Determination of the paraxial focal length using Zernike polynomials over different apertures

    Science.gov (United States)

    Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich

    2017-02-01

    The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.

  5. Improved image quality for asymmetric double-focal cone-beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.W.

    1993-01-01

    To optimize both spatial resolution and detection efficiency in brain SPECT imaging using a rectangular camera, an asymmetric double-focal cone-beam collimator is proposed with the focal points located near the base plane of the patient's head. To fit the entire head into the field-of-view of the collimator with dimensions of 50cmx40cm and at a radius-of-rotation of 15 cm, the focal lengths of the collimator are 55 and 70 cm, respectively, in the transverse and axial directions. With this geometry, the artifacts in the reconstructed image produced by the Feldkamp algorithm are more severe compared to those in a symmetric cone-beam geometry, due to the larger vertex angle between the top of the head and the base plane. To improve the reconstructed image quality, a fully three-dimensional (3D) reconstruction algorithm developed previously for single-focal cone-beam SPECT was extended to the asymmetric double-focal cone-beam geometry. The algorithm involves nonstationary 2D filtering and a reprojection technique for estimation of the missing data caused by a single-orbit cone-beam geometry. The results from simulation studies with the 3D Defrise slab phantom demonstrated that the fully 3D algorithm provided a much improved image quality in terms of reduced slice-to-slice cross talks and shape elongation compared to that produced by the conventional Feldkamp algorithm

  6. CT and ERCP findings of chronic focal pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Soo; Lee, Jong Tae; Yoo, Hyung Sik; Kim, Eun Kyeong [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-10-01

    To evaluate the major radiologic features of chronic focal pancreatitis in various imaging studies, with special emphasis on CT and ERCP findings. From 1991 to 1995, twelve patients were pathologically proved to be suffering from focal chronic pancreatitis after pancreatico-duodenectomy;for retrospective evaluation, imaging studies were available for eight(seven men, one woman;mean age 58.9{+-}6.6, range 47 to 67). Clinical, surgical, and radiological findings, including CT(n=8), ultrasound(n=7), ERCP(n=8) and UGI(n=3) were analysed. Seven male patients had suffered from chronic alcoholism for between 20 and 50 years. Serum bilirubin levels were normal in eight patients and alkaline phosphatase levels were normal in seven patients. Serum CA 19-9 levels were normal in all five patients who had undergone preoperative evaluation. Seven patients(87.5%) showed focal enlargement without definable margin on CT, and five of the six lesions detectable on ultrasound(83.3%) were ill defined hypoechoic nodules. Dilated side branches within lesions were seen in five of eight patients(83.3%) on CT and ERCP. Double duct signs were observed in siven(87.5%) patients, and dilated intrahepatic ducts in six(75%), with diameters ranging from 5 to 8mm(average:5.42{+-}1.96mm). The average ratio of pancreatic duct caliber to gland width was 0.33{+-}0.19. None of the patients had calcification within the lesion and one case showed intraductal calcification. None showed perivascular fat obliteration around the superior mesenteric artery or celiac axis. The average biductal distance between abnormal common bile duct and the immediately adjacent pancreatic duct was 4.0{+-}1.15mm. One of three cases who under went a UGI examination showed severe luminal narrowing and mucosal thickening in the second protion of the duodenum, another showed double contour, and the other merely showed widening of the C-loop of the duodenum. Chronic focal pancreatitis mostly demonstrated ill defined focal

  7. CT and ERCP findings of chronic focal pancreatitis

    International Nuclear Information System (INIS)

    Kim, Hee Soo; Lee, Jong Tae; Yoo, Hyung Sik; Kim, Eun Kyeong

    1996-01-01

    To evaluate the major radiologic features of chronic focal pancreatitis in various imaging studies, with special emphasis on CT and ERCP findings. From 1991 to 1995, twelve patients were pathologically proved to be suffering from focal chronic pancreatitis after pancreatico-duodenectomy;for retrospective evaluation, imaging studies were available for eight(seven men, one woman;mean age 58.9±6.6, range 47 to 67). Clinical, surgical, and radiological findings, including CT(n=8), ultrasound(n=7), ERCP(n=8) and UGI(n=3) were analysed. Seven male patients had suffered from chronic alcoholism for between 20 and 50 years. Serum bilirubin levels were normal in eight patients and alkaline phosphatase levels were normal in seven patients. Serum CA 19-9 levels were normal in all five patients who had undergone preoperative evaluation. Seven patients(87.5%) showed focal enlargement without definable margin on CT, and five of the six lesions detectable on ultrasound(83.3%) were ill defined hypoechoic nodules. Dilated side branches within lesions were seen in five of eight patients(83.3%) on CT and ERCP. Double duct signs were observed in siven(87.5%) patients, and dilated intrahepatic ducts in six(75%), with diameters ranging from 5 to 8mm(average:5.42±1.96mm). The average ratio of pancreatic duct caliber to gland width was 0.33±0.19. None of the patients had calcification within the lesion and one case showed intraductal calcification. None showed perivascular fat obliteration around the superior mesenteric artery or celiac axis. The average biductal distance between abnormal common bile duct and the immediately adjacent pancreatic duct was 4.0±1.15mm. One of three cases who under went a UGI examination showed severe luminal narrowing and mucosal thickening in the second protion of the duodenum, another showed double contour, and the other merely showed widening of the C-loop of the duodenum. Chronic focal pancreatitis mostly demonstrated ill defined focal enlargement and

  8. Theoretical study of the high-latitude ionosphere's response to multicell convection patterns

    International Nuclear Information System (INIS)

    Sojka, J.J.; Schunk, R.W.

    1987-01-01

    It is well known that the convection electric fields have an important effect on the ionosphere at high latitudes and that a quantitative understanding of their effect requires a knowledge of the plasma convection pattern. When the interplanetary magnetic field (IMF) is southward, plasma convection at F region altitudes displays a two-cell pattern with antisunward flow over the polar cap and return flow at lower latitudes. However, when the IMF is northward, multiple convection cells can exist, with both sunward flow and auroral precipitation (theta aurora) in the polar cap. The characteristic ionospheric signatures associated with multicell convection patterns were studied with the aid of a three-dimensional time-dependent ionospheric model. Two-, three-, and four-cell patterns were considered and the ionosphere's response was calculated for the same cross-tail potential and for solar maximum and winter conditions in the northern hemisphere. As expected, there are major distinguishing ionospheric features associated with the different convection patterns, particularly in the polar cap. For two-cell convection the antisunward flow the plasma from the dayside into the polar cap. For two-cell convection the antisunward flow of plasma from the dayside into the polar cap acts to maintain the densities in this region in winter. For four-cell convection, on the other hand, the two aditional convection cells in the polar cap are in darkness most of the time, and the resulting O + decay acts to produce twin polar holes that are separated by a sun-aligned ridge of enhanced ionization due to theta aurora precipitation

  9. [Primary focal dystonia: descriptive study of 205 patients].

    Science.gov (United States)

    Bartolomé, F M; Fanjul, S; Cantarero, S; Hernández, J; García Ruiz, P J

    2003-03-01

    To describe the clinical and epidemiologic aspects of different types of focal dystonia. A total of 205 patients with primary focal dystonia were studied retrospectively and the following variables were analyzed: gender, age of onset, age at examination, evolution time, history of trauma, association with other movement disorders, fluctuations of dystonic symptoms as well as a family history of dystonia, Parkinson's disease, tremor, and lefthandedness or stuttering. We compared these variables among the different clinical categories of focal dystonia. Those patients with cranial and laryngeal dystonia were significantly older at the onset of symptoms compared with patients with writer's cramp. Males were more prevalent than females in all categories of focal dystonia except for cranial dystonia. Prior history of trauma and association with tremor were more frequent in patients with cervical dystonia than in those with others dystonic categories. Most patients with cranial, cervical and laryngeal dystonia had fluctuations in the intensity of dystonic symptoms, unlike the patients with writer's cramp. There is a caudo-cranial gradient in age of onset and the age of onset increases as the cranial presentation becomes greater. Females are more prevalent in cranial dystonia and there is a preponderance of males in the dystonias with a lower location. The dystonias with cranial distribution frequently present fluctuations of symptoms during the day. Association with other movement disorders, such as tremor, and prior history of trauma, is common in patients with cervical dystonia.

  10. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    Science.gov (United States)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  11. Genetics Home Reference: focal dermal hypoplasia

    Science.gov (United States)

    ... in people with focal dermal hypoplasia is an omphalocele , which is an opening in the wall of ... Dermal Hypoplasia MedlinePlus Encyclopedia: Ectodermal dysplasia MedlinePlus Encyclopedia: Omphalocele General Information from MedlinePlus (5 links) Diagnostic Tests ...

  12. Improving microphysics in a convective parameterization: possibilities and limitations

    Science.gov (United States)

    Labbouz, Laurent; Heikenfeld, Max; Stier, Philip; Morrison, Hugh; Milbrandt, Jason; Protat, Alain; Kipling, Zak

    2017-04-01

    The convective cloud field model (CCFM) is a convective parameterization implemented in the climate model ECHAM6.1-HAM2.2. It represents a population of clouds within each ECHAM-HAM model column, simulating up to 10 different convective cloud types with individual radius, vertical velocities and microphysical properties. Comparisons between CCFM and radar data at Darwin, Australia, show that in order to reproduce both the convective cloud top height distribution and the vertical velocity profile, the effect of aerodynamic drag on the rising parcel has to be considered, along with a reduced entrainment parameter. A new double-moment microphysics (the Predicted Particle Properties scheme, P3) has been implemented in the latest version of CCFM and is compared to the standard single-moment microphysics and the radar retrievals at Darwin. The microphysical process rates (autoconversion, accretion, deposition, freezing, …) and their response to changes in CDNC are investigated and compared to high resolution CRM WRF simulations over the Amazon region. The results shed light on the possibilities and limitations of microphysics improvements in the framework of CCFM and in convective parameterizations in general.

  13. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    Science.gov (United States)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  14. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  15. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Science.gov (United States)

    Taira, Wataru; Otaki, Joji M

    2016-01-01

    Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.

  16. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies.

    Directory of Open Access Journals (Sweden)

    Wataru Taira

    Full Text Available Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.

  17. Focal thyroid incidentalomas identified with whole-body FDG-PET warrant further investigation.

    LENUS (Irish Health Repository)

    Prichard, R S

    2012-02-01

    Fluorodeoxyglucose (FDG) whole body positron emission computed tomography (PET-CT) detects clinically occult malignancy. The aim of this study was to assess the prevalence and significance of focal thyroid 18F - fluorodeoxyglucose uptake. A retrospective review of all patients who had FDG PET-CT examinations, in a single tertiary referral centre was performed. PET scan findings and the final pathological diagnosis were collated. 2105 scans were reviewed. Focal uptake was identified in 35 (1.66%) patients. Final surgical histology was available on eight patients, which confirmed papillary carcinoma in four (20%) patients and lymphoma and metastatic disease in two patients respectively. This gave an overall malignancy rate in focal thyroid uptake of at least 33%. Thyroid incidentalomas occurred with a frequency of 2.13%, with an associated malignancy rate of at least 33% in focal thyroid uptake. The high malignancy rate associated with focal thyroid uptake mandates further investigation in medically fit patients.

  18. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  19. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  20. Confinement and dynamical regulation in two-dimensional convective turbulence

    DEFF Research Database (Denmark)

    Bian, N.H.; Garcia, O.E.

    2003-01-01

    In this work the nature of confinement improvement implied by the self-consistent generation of mean flows in two-dimensional convective turbulence is studied. The confinement variations are linked to two distinct regulation mechanisms which are also shown to be at the origin of low......-frequency bursting in the fluctuation level and the convective heat flux integral, both resulting in a state of large-scale intermittency. The first one involves the control of convective transport by sheared mean flows. This regulation relies on the conservative transfer of kinetic energy from tilted fluctuations...

  1. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  2. Continuous contour phase plates for tailoring the focal plane irradiance profile

    International Nuclear Information System (INIS)

    Dixit, S.N.; Rushford, M.C.; Thomas, I.M.; Perry, M.D.

    1995-01-01

    We present fully continuous phase screens for producing super-Gaussian focal-plane irradiance profiles. Such phase screens are constructed with the assumption of either circular symmetric near-field and far-field profiles or a separable phase screen in Cartesian co-ordinates. In each case, the phase screen is only a few waves deep. Under illumination by coherent light, such phase screens produce high order super-Gaussian profiles in the focal plane with high energy content effects of beam aberrations on the focal profiles and their energy content are also discussed

  3. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  4. Extra-oral Appliances in Orthodontic Treatment.

    Science.gov (United States)

    Almuzian, Mohammed; Alharbi, Fahad; McIntyre, Grant

    2016-01-01

    Extra-oral appliances are used in orthodontics to apply forces to the jaws, dentition or both and the popularity of these appliances is cyclical. Although the use of retraction headgear for the management of Class II malocclusion has declined over the last 20 years with the refinement of non-compliance approaches, including temporary anchorage devices, headgear still has a useful role in orthodontics. The use of protraction headgear has increased as more evidence of its effectiveness for the treatment of Class lIl malocclusion has become available. This paper describes the mechanics and contemporary uses of headgear in orthodontics for primary care dentists and specialist orthodontists. CPD/CLINICAL RELEVANCE: Extra-oral appliances have specific uses in orthodontic biomechanics. Clinicians using retraction headgear and protraction headgear should be familiar with their clinical indications, the potential problems and how these can be avoided.

  5. Extra-Curricular Social Studies in an Open Air History Museum

    Science.gov (United States)

    Morris, Ronald Vaughan

    2008-01-01

    This article discusses extra-curricular social studies in an Open Air History Museum. Open Air History Museum, Conner Prairie Interpretive Park in Fishers, Indiana, is a cultural institution that encourages and supports talented students as they participate in an extra-curricular program. Ten-to sixteen-year-old youths "apply for jobs"…

  6. Modeling the Solar Convective Dynamo and Emerging Flux

    Science.gov (United States)

    Fan, Y.

    2017-12-01

    Significant advances have been made in recent years in global-scale fully dynamic three-dimensional convective dynamo simulations of the solar/stellar convective envelopes to reproduce some of the basic features of the Sun's large-scale cyclic magnetic field. It is found that the presence of the dynamo-generated magnetic fields plays an important role for the maintenance of the solar differential rotation, without which the differential rotation tends to become anti-solar (with a faster rotating pole instead of the observed faster rotation at the equator). Convective dynamo simulations are also found to produce emergence of coherent super-equipartition toroidal flux bundles with a statistically significant mean tilt angle that is consistent with the mean tilt of solar active regions. The emerging flux bundles are sheared by the giant cell convection into a forward leaning loop shape with its leading side (in the direction of rotation) pushed closer to the strong downflow lanes. Such asymmetric emerging flux pattern may lead to the observed asymmetric properties of solar active regions.

  7. Characterization of LIL laser UV focal spot

    International Nuclear Information System (INIS)

    Mangeant, M.; Dubois, J.L.; Behar, G.; Arroyo, P.; Durand, V.; Lahonde, C.

    2006-01-01

    One way to get the fusion of hydrogen in laboratory consists in heating and compressing a DT fuel capsule by using a laser. To reach this aim requires a new generation of high power laser facility. Cea (French board for atomic energy) is developing for this purpose a new 240 laser line facility, the LMJ facility. The LIL which is the prototype of four LMJ laser lines is operational now. In order to confirm the technical choices, a systematic characterization of LIL was carried out. A particular effort has been provided to measure the 3ω high energy focal spot (1.5 kJ/700 ps and 5 ns for one beam) and the synchronization of laser beams onto the target, which are key issues for the plasma production. An experimental device, SAT-3ω (a 3ω laser focal spot analysis) has been designed to perform these measures. That diagnostic which is located at the end of the laser lines delivered its first results during the 2004 quadruplet qualification campaigns. The near field imaging showed no diaphony and vignetting. Low power spots allowed us to control we had no ghost. The energy measurement quality showed the photometric transfer function was perfectly known. Our caustic image are given with an average dynamic range of 800, a spatial resolution of 10 μm and diameter accuracy about 1% for 50% and 3% for 90% of encircled energy. The high energy focal spot diameters are in agreement with low and very low energy diameters. The phase plate and 14 GHz effects are similar to what we had expected. For a laser shot completed with a continuous phase plate at 14 GHz, and for an energy level of 1.5 kJ per beam at 351 nm, the focal beam diameter at 3% of the peak level is (875 ± 45) μm

  8. Natural convection and wall radiation in tall cavities

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, C [Regional Engineering College, Tiruchirapalli (India). Dept. of Mechanical Engineering; Venkateshan, S P [Indian Inst. of Tech., Madras (India). Dept. of Mechanical Engineering

    1996-12-01

    The problem of combined natural convection and wall radiation in tall cavities has been taken up for a detailed numerical investigation. The governing equations for fluid flow have been solved by a finite volume method and the radiation has been treated by the radiosity-irradiation method. The analysis has been specifically made for the case where the emissivity of the hot left wall is different from that of the cold right wall. For this case it was found that decoupling radiation from free convection can lead to considerable error. Correlations have been suggested for predicting both the convective as well as the radiative heat transfer rates across the cavity. (author). 7 refs., 3 figs., 3 tabs.

  9. Natural convection and wall radiation in tall cavities

    International Nuclear Information System (INIS)

    Balaji, C.; Venkateshan, S.P.

    1996-01-01

    The problem of combined natural convection and wall radiation in tall cavities has been taken up for a detailed numerical investigation. The governing equations for fluid flow have been solved by a finite volume method and the radiation has been treated by the radiosity-irradiation method. The analysis has been specifically made for the case where the emissivity of the hot left wall is different from that of the cold right wall. For this case it was found that decoupling radiation from free convection can lead to considerable error. Correlations have been suggested for predicting both the convective as well as the radiative heat transfer rates across the cavity. (author). 7 refs., 3 figs., 3 tabs

  10. Unravelling convective heat transfer in the Rotated Arc Mixer

    NARCIS (Netherlands)

    Speetjens, M.F.M.; Baskan, O.; Metcalfe, G.; Clercx, H.J.H.

    2014-01-01

    Thermal homogenization is essentially a transient problem and convective heat transfer by (chaotic) advection is known to accelerate this process. Convective heat transfer traditionally is examined in terms of heat-transfer coefficients at domain walls and characterised by Nusselt relations.

  11. Breast metastases primitive extra mammary

    International Nuclear Information System (INIS)

    Terzieff, V.; Vázquez, A.; Alonso, I.; Sabini, G.

    2004-01-01

    Less than 3% of all breast cancers originate from a primitive extra mammary. In 40% of cases it is the first manifestation of the primitive properly studied but 80% are associated with widely disseminated disease. It typically presents as a nodule on external quadrant s painful in half the cases. The majority (60%) of metastases derived from breast contralateral breast tumors are believed to via the lymphatic system. of the ; extra mammary the most common tumors are melanoma; hematologic and neuroendocrine. Although some imaging characteristics can guide diagnosis is histological. Cytology has good performance in experienced hands; but up to 25% of cases there may be difficulty in establishing diagnosis. Treatment depends on the type of tumor. Mastectomy should not be practiced or axillary clearance routine as is generally the context of disease disseminated. Radiation therapy may be useful for local control. It has been proposed laser ablation but no experience with it. The overall prognosis is bad. For a man of 45 with a breast metastasis occurs only a clear cell carcinoma of the kidney

  12. Implementing a citizen's DWI reporting program using the Extra Eyes model

    Science.gov (United States)

    2008-09-01

    This manual is a guide for law enforcement agencies and community organizations in creating and implementing a citizens DWI reporting program in their communities modeling the Operation Extra Eyes program. Extra Eyes is a program that engages volu...

  13. A case of pathological rib fractures: focal osteolysis or osteoporosis?

    Science.gov (United States)

    Vrbanić, T S L; Novak, S; Sestan, B; Tudor, A; Gulan, G

    2008-03-01

    This paper reports on a unique, previously unreported, successful outcome in the case of a patient with focal osteolytic lesions of the ribs as a first sign of osteoporosis. The lesions were detected by chance after acute cough-induced rib fractures were seen on plain chest radiographs. The diagnosis had to be approached as a diagnosis of exclusion since known causes of the osteolytic process had to be eliminated. The authors describe multiple focal osteolytic lesions with rib fractures appearing in a pattern that could be confused with metastases. Laboratory results were normal. Final diagnosis was based on plain radiography, bone scan and bone densitometry. Pharmacomedical treatments for osteoporosis were applied. The patient was observed between the year 2000 and 2005. Five years later radiological and bone scintigraphy revealed resolution of the lesion. We conclude that osteoporosis should be included in the differential diagnosis of asymptomatic focal osteolysis of the ribs with rib fractures as a complication of acute cough. The case suggests that focal osteolytic lesions of the ribs may regress over time and become scintigraphically inactive.

  14. Transition from natural-convection-controlled freezing to conduction-controlled freezing

    International Nuclear Information System (INIS)

    Sparrow, E.M.; Ramsey, J.W.; Harris, J.S.

    1981-01-01

    Experiments were performed to study the transition between freezing controlled by natural convection in the liquid adjacent to a freezing interface and freezing controlled by heat conduction in the solidified material. The freezing took place on a cooled vertical tube immersed in an initially superheated liquid contained in an adiabatic-walled vessel. At early and intermediate times, temperature differences throughout the liquid induce a vigorous natural convection motion which retards freezing, but the temperature differences diminish with time and natural convection ebbs. At large times, the freezing rate is fully controlled by heat conduction in the solidified material. The frozen specimens for short and intermediate freezing times are smooth-surfaced and tapered, while those for large times are straight-sided and have surfaces that are overlaid with a thicket of large discrete crystals. These characteristics correspond respectively to those of natural-convection- controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing and conduction-controlled freezing. At early times, the measured mass of the frozen material is identical to that for natural-convection-controlled freezing. At later times, the frozen mass tends to approach that for conduction-controlled freezing, but a residual deficit remains

  15. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array

  16. Simulation of the Focal Spot of the Accelerator Bremsstrahlung Radiation

    Science.gov (United States)

    Sorokin, V.; Bespalov, V.

    2016-06-01

    Testing of thick-walled objects by bremsstrahlung radiation (BR) is primarily performed via high-energy quanta. The testing parameters are specified by the focal spot size of the high-energy bremsstrahlung radiation. In determining the focal spot size, the high- energy BR portion cannot be experimentally separated from the low-energy BR to use high- energy quanta only. The patterns of BR focal spot formation have been investigated via statistical modeling of the radiation transfer in the target material. The distributions of BR quanta emitted by the target for different energies and emission angles under normal distribution of the accelerated electrons bombarding the target have been obtained, and the ratio of the distribution parameters has been determined.

  17. Focal adhesions and cell-matrix interactions

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1988-01-01

    Focal adhesions are areas of cell surfaces where specializations of cytoskeletal, membrane and extracellular components combine to produce stable cell-matrix interactions. The morphology of these adhesions and the components identified in them are discussed together with possible mechanisms...

  18. Practitioners' Perceptions of the Soccer Extra-Time Period: Implications for Future Research

    OpenAIRE

    Harper, Liam D.; Fothergill, Melissa; West, Daniel J.; Stevenson, Emma; Russell, Mark

    2016-01-01

    Qualitative research investigating soccer practitioners’ perceptions can allow researchers to create practical research investigations. The extra-time period of soccer is understudied compared to other areas of soccer research. Using an open-ended online survey containing eleven main and nine sub questions, we gathered the perceptions of extra-time from 46 soccer practitioners, all working for different professional soccer clubs. Questions related to current practices, views on extra-time reg...

  19. Deviations from Newton's law in supersymmetric large extra dimensions

    International Nuclear Information System (INIS)

    Callin, P.; Burgess, C.P.

    2006-01-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case

  20. Radiopneumographic characteristics of focal pneumonia in children

    International Nuclear Information System (INIS)

    Smirnova, A.A.

    1980-01-01

    Zonal ventilation and blood flow were studied by the radiopneumography method in 50 children of school age with lower-lobe-of-the lung focal pneumonia (26 with left-side and 24 with right-side). It is established that during right-side localization of pneumonic focus preserved was the predomination of ventilation of right lung relative to left. Complete normalization of common and regional indexes of ventilation and blood flow was established by the 21st day from the beginning of treatment during right-side focal pneumonias. In case of left-side localization of pneumonic focus only partial reduction of external respiration and perfusion comes. Therefore, compensatory and reducing capabilities of right lung are preferrable

  1. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  2. Plasma convection in the magnetotail lobes: statistical results from Cluster EDI measurements

    Directory of Open Access Journals (Sweden)

    S. Haaland

    2008-08-01

    Full Text Available A major part of the plasma in the Earth's magnetotail is populated through transport of plasma from the solar wind via the magnetotail lobes. In this paper, we present a statistical study of plasma convection in the lobes for different directions of the interplanetary magnetic field and for different geomagnetic disturbance levels. The data set used in this study consists of roughly 340 000 one-minute vector measurements of the plasma convection from the Cluster Electron Drift Instrument (EDI obtained during the period February 2001 to June 2007. The results show that both convection magnitude and direction are largely controlled by the interplanetary magnetic field (IMF. For a southward IMF, there is a strong convection towards the central plasma sheet with convection velocities around 10 km s−1. During periods of northward IMF, the lobe convection is almost stagnant. A By dominated IMF causes a rotation of the convection patterns in the tail with an oppositely directed dawn-dusk component of the convection for the northern and southern lobe. Our results also show that there is an overall persistent duskward component, which is most likely a result of conductivity gradients in the footpoints of the magnetic field lines in the ionosphere.

  3. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  4. The Formulation of Extra-Territorial Recognition

    Czech Academy of Sciences Publication Activity Database

    Hrubec, Marek

    2010-01-01

    Roč. 1, č. 1 (2010), s. 65-72 ISSN 1674-1277 R&D Projects: GA MŠk(CZ) LC06013 Institutional research plan: CEZ:AV0Z90090514 Keywords : global justice * extra-territorial recognition Subject RIV: AA - Philosophy ; Religion

  5. Differential diagnosis of extra-axial intracranial tumours by dynamic spin-echo MRI

    International Nuclear Information System (INIS)

    Joo, Y.G.; Korogi, Y.; Hirai, T.; Sakamoto, Y.; Sumi, M.; Takahashi, M.; Ushio, Y.

    1995-01-01

    Dynamic MRI was performed on 22 patients with extra-axial intracranial tumours. Serial images were obtained every 30 s for 3 min using a spin-echo sequence (TR 200, TE 15 ms) after rapid injection of Gd-DTPA, 0.1 mmol/kg body weight. The contrast medium enhancement ratio (CER) was correlated with the histology of the tumours. Meningiomas and extra-axial metastases showed a sharp rise, then a gradual decline. Although both had a definite early peak of CER, metastases showed a more rapid decline. Neuromas and extra-axial lymphoma showed a slow, steady increase with no peak within 180 s. This study indicates that the CER is helpful in the differentiation of extra-axial tumours. (orig.)

  6. Modelling deep convection and its impacts on the tropical tropopause layer

    Directory of Open Access Journals (Sweden)

    J. S. Hosking

    2010-11-01

    Full Text Available The UK Met Office's Unified Model is used at a climate resolution (N216, ~0.83°×~0.56°, ~60 km to assess the impact of deep tropical convection on the structure of the tropical tropopause layer (TTL. We focus on the potential for rapid transport of short-lived ozone depleting species to the stratosphere by rapid convective uplift. The modelled horizontal structure of organised convection is shown to match closely with signatures found in the OLR satellite data. In the model, deep convective elevators rapidly lift air from 4–5 km up to 12–14 km. The influx of tropospheric air entering the TTL (11–12 km is similar for all tropical regions with most convection stopping below ~14 km. The tropical tropopause is coldest and driest between November and February, coinciding with the greatest upwelling over the tropical warm pool. As this deep convection is co-located with bromine-rich biogenic coastal emissions, this period and location could potentially be the preferential gateway for stratospheric bromine.

  7. Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences

    Directory of Open Access Journals (Sweden)

    Deng Min

    2016-01-01

    The total anvil clouds detrained from convection counts for 0.4 to 0.8 of the cluster horizontal scale, 0.2 to 0.6 of the cluster cross section volume, and 0.05 to 0.20 of the cluster ice mass, depending on the cluster scales and height. There are two main detrainment layers. When the convective clusters is less than about 100 km, the anvil clouds are mainly detrained at about 6-8 km with a spreading ratio (ratio of maximum cluster width to convection rainy core width less than 1.5. When convective clusters becomes 100 km or wider, it reaches the dominate detrainment layer at about 12 km, the detrainment index increase from 2 to more 6. Among 8 regions, convection clusters in MA produce the most anvil volume fraction. The more the ice mass is pumped upward in the anvil clouds till clusters are about 500 km wider. Nevertheless, the anvil ice mass pumped above 15 km is less than 0.1% of the total ice mass in the convective cluster.

  8. Flux dynamics in ultrasensitive superconducting focal planes

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance of superconducting focal planes will drive the achievable specifications of ultrasensitive instruments for NASA astrophysics missions, yet they have...

  9. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  10. Signatures from an extra-dimensional seesaw model

    International Nuclear Information System (INIS)

    Blennow, Mattias; Melbeus, Henrik; Ohlsson, Tommy; Zhang He

    2010-01-01

    We study the generation of small neutrino masses in an extra-dimensional model, where singlet fermions are allowed to propagate in the extra dimension, while the standard model particles are confined to a brane. Motivated by the fact that extra-dimensional models are nonrenormalizable, we truncate the Kaluza-Klein towers at a maximal Kaluza-Klein number. This truncation, together with the structure of the bulk Majorana mass term, motivated by the Sherk-Schwarz mechanism, implies that the Kaluza-Klein modes of the singlet fermions pair to form Dirac fermions, except for a number of unpaired Majorana fermions at the top of each tower. These heavy Majorana fermions are the only sources of lepton number breaking in the model, and similarly to the type-I seesaw mechanism, they naturally generate small masses for the left-handed neutrinos. The lower Kaluza-Klein modes mix with the light neutrinos, and the mixing effects are not suppressed with respect to the light-neutrino masses. Compared to conventional fermionic seesaw models, such mixing can be more significant. We study the signals of this model at the Large Hadron Collider, and find that the current low-energy bounds on the nonunitarity of the leptonic mixing matrix are strong enough to exclude an observation.

  11. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  12. Extended Subadiabatic Layer in Simulations of Overshooting Convection

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Petri J.; Arlt, Rainer [Leibniz-Institut für Astrophysik, An der Sternwarte 16, D-14482 Potsdam (Germany); Rheinhardt, Matthias; Käpylä, Maarit J.; Olspert, Nigul [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto (Finland); Brandenburg, Axel [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Lagg, Andreas; Warnecke, Jörn [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-08-20

    We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper parts of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.

  13. VARIATION OF STELLAR ENVELOPE CONVECTION AND OVERSHOOT WITH METALLICITY

    International Nuclear Information System (INIS)

    Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre

    2013-01-01

    We examine how metallicity affects convection and overshoot in the superadiabatic layer of main sequence stars. We present results from a grid of three-dimensional radiation hydrodynamic simulations with four metallicities (Z = 0.040, 0.020, 0.010, 0.001), and spanning a range in effective temperature (4950 eff < 6230). We show that changing the metallicity alters properties of the convective gas dynamics, and the structure of the superadiabatic layer and atmosphere. Our grid of simulations shows that the amount of superadiabaticity, which tracks the transition from efficient to inefficient convection, is sensitive to changes in metallicity. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well.

  14. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  15. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  16. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    Science.gov (United States)

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  17. Extra Facial Landmark Localization via Global Shape Reconstruction

    Directory of Open Access Journals (Sweden)

    Shuqiu Tan

    2017-01-01

    Full Text Available Localizing facial landmarks is a popular topic in the field of face analysis. However, problems arose in practical applications such as handling pose variations and partial occlusions while maintaining moderate training model size and computational efficiency still challenges current solutions. In this paper, we present a global shape reconstruction method for locating extra facial landmarks comparing to facial landmarks used in the training phase. In the proposed method, the reduced configuration of facial landmarks is first decomposed into corresponding sparse coefficients. Then explicit face shape correlations are exploited to regress between sparse coefficients of different facial landmark configurations. Finally extra facial landmarks are reconstructed by combining the pretrained shape dictionary and the approximation of sparse coefficients. By applying the proposed method, both the training time and the model size of a class of methods which stack local evidences as an appearance descriptor can be scaled down with only a minor compromise in detection accuracy. Extensive experiments prove that the proposed method is feasible and is able to reconstruct extra facial landmarks even under very asymmetrical face poses.

  18. Forced and free convection hydromagnetic flow past a vertical flat plate

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2004-01-01

    The effects of magnetic field and temperature heat source on the free and forced convection flow past an infinite vertical plate is studied analytically. Solutions of the reduced equation appropriate in the forced convection and free convection regime are obtained using perturbation technique. The expression for the velocity field, skin friction and Nusselt number have been obtained

  19. Hydrodynamical simulation of the core helium flash with two-dimensional convection

    International Nuclear Information System (INIS)

    Cole, P.W.

    1981-01-01

    The thermonuclear runaway of helium reactions under the condition of electron degeneracy in the hot, dense central regions of a low mass Population II red giant is investigated. A two-dimensional finite difference approach to time dependent convection has been applied to a peak energy production model of this phenomenon called the core helium flash. The dynamical conservation equations are integrated in two spatial dimensions and time which allow the horizontal variations of the dynamical variables to be followed explicitly. The unbalanced bouyancy forces in convectively unstable regions lead to mass flow (i.e., convective energy transport) by calculation of the velocity flow patterns produced by the conservation laws of mass, momentum, and energy without recourse to any phenomenological theory of convection. The initial phase of this hydrodynamical simulation is characterized by a thermal readjustment via downward convective energy transport into the neutrino cooled core in a series of convection modulated thermal pulses. Each of these pulses is driven by the thermal runaway and quenched by the convective energy transport when the actual temperature gradient in the flash region becomes sufficiently superadiabatic. These convection modulated thermal pulses are observed throughout 95% of the calculation, the duration of which is approximately 570,000 cycles or nearly 96,000 seconds of evolution. After this initial thermal restructuring, there ensues in the simulation a dynamic phase in which the thermonuclear runaway becomes violent. The degree of violence, the final composition, and the peak temperature depend sensitively on the nuclear energy generation rates of those reactions involving alpha particle captures

  20. MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk [Department of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter (United Kingdom)

    2016-08-20

    Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.

  1. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J; Lindsay, P [Princess Margaret Cancer Centre, Toronto (Canada); University of Toronto, Toronto (Canada); Jaffray, D [Princess Margaret Cancer Centre, Toronto (Canada); The Techna Institute for the Advancement of Technology for Health, Toronto (Canada)

    2014-06-15

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations

  2. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    International Nuclear Information System (INIS)

    Stewart, J; Lindsay, P; Jaffray, D

    2014-01-01

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations

  3. Water-induced convection in the Earth's mantle transition zone

    Science.gov (United States)

    Richard, Guillaume C.; Bercovici, David

    2009-01-01

    Water enters the Earth's mantle by subduction of oceanic lithosphere. Most of this water immediately returns to the atmosphere through arc volcanism, but a part of it is expected as deep as the mantle transition zone (410-660 km depth). There, slabs can be deflected and linger before sinking into the lower mantle. Because it lowers the density and viscosity of the transition zone minerals (i.e., wadsleyite and ringwoodite), water is likely to affect the dynamics of the transition zone mantle overlying stagnant slabs. The consequences of water exchange between a floating slab and the transition zone are investigated. In particular, we focus on the possible onset of small-scale convection despite the adverse thermal gradient (i.e., mantle is cooled from below by the slab). The competition between thermal and hydrous effects on the density and thus on the convective stability of the top layer of the slab is examined numerically, including water-dependent density and viscosity and temperature-dependent water solubility. For plausible initial water content in a slab (≥0.5 wt %), an episode of convection is likely to occur after a relatively short time delay (5-20 Ma) after the slab enters the transition zone. However, water induced rheological weakening is seen to be a controlling parameter for the onset time of convection. Moreover, small-scale convection above a stagnant slab greatly enhances the rate of slab dehydration. Small-scale convection also facilitates heating of the slab, which in itself may prolong the residence time of the slab in the transition zone.

  4. Escaping in extra dimensions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Recent progress in the formulation of fundamental theories for a Universe with more than 4 dimensions will be reviewed. Particular emphasis will be given to theories predicting the existence of extra dimensions at distance scales within the reach of current or forthcoming experiments. The phenomenological implications of these theories, ranging from detectable deviations from Newton's law at sub-millimeter scales, to phenomena of cosmological and astrophysical interest, as well as to high-energy laboratory experiments, will be discussed.

  5. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  6. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  7. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  8. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  9. Towards the ultimate variance-conserving convection scheme

    International Nuclear Information System (INIS)

    Os, J.J.A.M. van; Uittenbogaard, R.E.

    2004-01-01

    In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287

  10. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  11. Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Musilová, Věra; Skrbek, L.

    2011-01-01

    Roč. 107, č. 1 (2011), 014302:1-4 ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011

  12. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  13. Large scale circulation in the convection zone and solar differential rotation

    Energy Technology Data Exchange (ETDEWEB)

    Belvedere, G [Instituto di Astronomia dell' Universita di Catania, 95125 Italy; Paterno, L [Osservatorio Astrofisico di Catania, 95125 Italy

    1976-04-01

    In this paper the dependence on depth and latitude of the solar angular velocity produced by a meridian circulation in the convection zone is studied assuming that the main mechanism responsible for setting up and driving the circulation is the interaction of rotation with convection. The first order equations (perturbation of the spherically symmetric state are solved in the Boussinesq approximation and in the steady state for the axissymmetric case. The interaction of convection with rotation is modelled by a convective transport coefficient. The model is consistent with the fact that the interaction of convection with rotation sets up a circulation (driven by the temperature gradient) which carries angular momentum toward the equator against the viscous friction. Unfortunately also a large flux variation at the surface is obtained. Nevertheless it seems that the model has the basic requisites for correct dynamo action.

  14. Production of high energy, uniform focal profiles with the Nike laser

    Science.gov (United States)

    Lehecka, T.; Lehmberg, R. H.; Deniz, A. V.; Gerber, K. A.; Obenschain, S. P.; Pawley, C. J.; Pronko, M. S.; Sullivan, C. A.

    1995-02-01

    Nike, a KrF laser facility at the Naval Research Laboratory, is designed to produce high intensity, ultra-uniform focal profiles for experiments relating to direct drive inertial confinement fusion. We present measurements of focal profiles through the next-to-last amplifier, a 20 × 20 cm 2 aperture electron beam pumped amplifier capable of producing more than 120 J of output in a 120 ns pulse. Using echelon free induced spatial incoherence beam smoothing this system has produced focal profiles with less than 2% tilt and curvature and less than 2% rms variation from a flat top distribution.

  15. Ignition in Convective-Diffusive Systems

    National Research Council Canada - National Science Library

    Law, Chung

    1999-01-01

    ... efficiency as well as the knock and emission characteristics. The ignition event is clearly controlled by the chemical reactions of fuel oxidation and the fluid mechanics of convective and diffusive transport...

  16. Adult-onset Rasmussen encephalitis associated with focal cortical dysplasia.

    Science.gov (United States)

    Hohenbichler, Katharina; Lelotte, Julie; Lhommel, Renaud; Tahry, Riëm El; Vrielynck, Pascal; Santos, Susana Ferrao

    2017-12-01

    Rasmussen encephalitis is a rare, devastating condition, typically presenting in childhood. Cases of adult-onset Rasmussen have also been described, but the clinical picture is less defined, rendering final diagnosis difficult. We present a case of adult-onset Rasmussen encephalitis with dual pathology, associated with focal cortical dysplasia and encephalitis. We interpreted the Rasmussen encephalitis to be caused by severe and continuous epileptic activity due to focal cortical dysplasia. The best therapeutic approach for such cases remains unclear.

  17. Simulation of Thermomagnetic Convection in a Cavity Using the Lattice Boltzmann Model

    Directory of Open Access Journals (Sweden)

    Mahshid Hadavand

    2011-01-01

    Full Text Available Thermomagnetic convection in a differentially heated square cavity with an infinitely long third dimension is numerically simulated using the single relaxation time lattice Boltzmann method (LBM. This problem is of considerable interest when dealing with cooling of microelectronic devices, in situations where natural convection does not meet the cooling requirements, and forced convection is not viable due to the difficulties associated with pumping a ferrofluid. Therefore, circulation is achieved by imposing a magnetic field, which is created and controlled by placing a dipole at the bottom of the enclosure. The magnitude of the magnetic force is controlled by changing the electrical current through the dipole. In this study, the effects of combined natural convection and magnetic convection, which is commonly known as “thermomagnetic convection,” are analysed in terms of the flow modes and heat transfer characteristics of a magnetic fluid.

  18. Re-Conceptualizing Extra Help for High School Students in a High Standards Era.

    Science.gov (United States)

    Balfanz, Robert; McPartland, James; Shaw, Alta

    The push for higher academic standards has resulted in an increase in the numbers of high school students needing extra help. The need for extra help is most pervasive in high-poverty areas and most high school students need extra help not in traditional basic elementary skills but in reading, mathematics, and advanced reasoning skills. Most…

  19. Focal cryotherapy of localized prostate cancer: a systematic review of the literature.

    Science.gov (United States)

    Shah, Taimur Tariq; Ahmed, Hashim; Kanthabalan, Abi; Lau, Benjamin; Ghei, Maneesh; Maraj, Barry; Arya, Manit

    2014-11-01

    Radical/whole gland treatment for prostate cancer has significant side-effects. Therefore focal treatments such as cryotherapy have been used to treat localized lesions whilst aiming to provide adequate cancer control with minimal side-effects. We performed a systematic review of Pubmed/Medline and Cochrane databases' to yield 9 papers for primary focal prostate cryotherapy and 2 papers for focal salvage treatment (radio-recurrent). The results of 1582 primary patients showed biochemical disease-free survival between 71-93% at 9-70 months follow-up. Incontinence rates were 0-3.6% and ED 0-42%. Recto-urethral fistula occurred in only 2 patients. Salvage focal cryotherapy had biochemical disease-free survival of 50-68% at 3 years. ED occurred in 60-71%. Focal cryotherapy appears to be an effective treatment for primary localized prostate cancer and compares favorably to radical/whole gland treatments in medium-term oncological outcomes and side-effects. Although more studies are needed it is also effective for radio-recurrent cancer with a low complications rates.

  20. Transition from boiling to two-phase forced convection

    International Nuclear Information System (INIS)

    Maroti, L.

    1985-01-01

    The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries

  1. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Science.gov (United States)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  2. Factores pronósticos de recurrencia de la epilepsia focal en el niño Prognostic factors of recurrence of focal epilepsy in children

    Directory of Open Access Journals (Sweden)

    Albia Pozo Alonso

    2009-12-01

    Full Text Available INTRODUCCIÓN. El objetivo de este trabajo fue determinar los factores pronósticos de recurrencia de las crisis epilépticas focales a los 2 años del diagnóstico y del inicio del tratamiento. MÉTODOS. Este estudio observacional, analítico y prospectivo incluyó a 207 niños que presentaron dos o más crisis epilépticas focales no provocadas, hospitalizados en el Departamento de Neuropediatría del Hospital «William Soler», entre diciembre de 2001 y diciembre de 2003. Al final de los 2 años de seguimiento, 185 pacientes concluyeron el estudio. RESULTADOS. El 33,5 % de los pacientes presentó recurrencias de las crisis epilépticas focales al finalizar el estudio. Constituyeron factores de riesgo de recurrencia de las crisis epilépticas focales los siguientes: edad menor de un año, etiología sintomática, presencia de antecedentes personales de crisis neonatales sintomáticas y discapacidades neurológicas y la persistencia de descargas en el electroencefalograma (EEG evolutivo. El análisis de regresión logística demostró como variables pronósticas de recurrencia la etiología sintomática (p = 0,000; OR = 3,107, el antecedente personal de crisis neonatales sintomáticas (p = 0,037; OR = 4,623 y la persistencia de descargas en el EEG evolutivo (p = 0,000; OR = 2,109. CONCLUSIONES. El antecedente personal de crisis neonatales sintomáticas constituyó el factor independiente con mayor influencia en las recurrencias de las crisis epilépticas focales.INTRODUCTION: The objective of present paper was to determine the recurrent prognostic factors of focal epileptic crises at 2 years of diagnosis and of treatment onset. METHODS: This prospective, analytical and observational study included 207 children presenting two or more non-provoked epileptic crises, admitted in Neuropediatrics Department of "William Soler" Hospital between December, 2001 and December, 2003. At a two years follow-up, 185 patients concluded the study. RESULTS: The

  3. Convection and Overshoot in Models of Doradus and Scuti Stars

    International Nuclear Information System (INIS)

    Lovekin, Catherine C.

    2017-01-01

    We investigate the pulsation properties of stellar models that are representative of δ Scuti and γ Doradus variables. Here we have calculated a grid of stellar models from 1.2 to 2.2 M ⊙, including the effects of both rotation and convective overshoot using MESA, and we investigate the pulsation properties of these models using GYRE. We discuss the observable patterns in the frequency spacing for p modes and the period spacings for g modes. Using the observable patterns in the g mode period spacings, it may be possible to observationally constrain the convective overshoot and rotation of a model. We also calculate the pulsation constant (Q) for all models in our grid and investigate the variation with convective overshoot and rotation. The variation in the Q values of the radial modes can be used to place constraints on the convective overshoot and rotation of stars in this region. Finally, as a test case, we apply this method to a sample of 22 High-Amplitude δ Scuti stars (HADS) and provide estimates for the convective overshoot of the sample.

  4. Focal plane for the next generation of earth observation instruments

    Science.gov (United States)

    Pranyies, P.; Toubhans, I.; Badoil, B.; Tanguy, F.; Descours, Francis

    2017-09-01

    Sodern is the French focal plane provider for Earth Observation (EO) satellites. Since the 1980's, Sodern has played an active role first in the SPOT program. Within the two-spacecraft constellation Pleiades 1A/1B over the next years, Sodern introduced advanced technologies as Silicon Carbide (SiC) focal plane structure and multispectral strip filters dedicated to multiple-lines detectors.

  5. Magnetic-resonance-guided biopsy of focal liver lesions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ethan A. [University of Michigan Health System, Section of Pediatric Radiology, C.S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); Grove, Jason J. [University of Michigan Health System, Division of Interventional Radiology, C.S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); Der Spek, Abraham F.L.V. [University of Michigan Health System, Department of Anesthesiology, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States); Jarboe, Marcus D. [University of Michigan Health System, Division of Interventional Radiology, C.S. Mott Children' s Hospital, Department of Radiology, Ann Arbor, MI (United States); University of Michigan Health System, Section of Pediatric Surgery, C.S. Mott Children' s Hospital, Department of Surgery, Ann Arbor, MI (United States)

    2017-05-15

    Image-guided biopsy techniques are widely used in clinical practice. Commonly used methods employ either ultrasound (US) or computed tomography (CT) for image guidance. In certain patients, US or CT guidance may be suboptimal, or even impossible, because of artifacts, suboptimal lesion visualization, or both. We recently began performing magnetic resonance (MR)-guided biopsy of focal liver lesions in select pediatric patients with lesions that are not well visualized by US or CT. This report describes our experience performing MR-guided biopsy of focal liver lesions, with case examples to illustrate innovative techniques and novel aspects of these procedures. (orig.)

  6. Inflation from extra dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.

    1984-01-01

    Recently there has been growing interest (1) in the possibility that the universe could have more than four dimensions. Aside from any light this may shed on problems in particle physics, if true it would undoubtedly have important implications for early cosmology. A rather speculative but very appealing possibility suggested by D. Sahdev and by E. Alvarez and B. Gavela is that the gravitational collapse of extra spatial dimensions could drive an inflation of ordinary space. This kind of inflationary cosmology would be quite different from the inflationary cosmologies now so intensively studied which are supposed to result from changes in vacuum energy during phase transitions in the early universe. In our work we examine the physics of these Kaluza-Klein inflationary cosmologies and come to three main conclusions. (1) It is desirable to have many extra dimensions, many being of order forty or fifty. (2) For models which give a realistically large inflation almost all of this inflation occurs in a period when quantum gravity is certainly important. This means that Einstein's equations cannot be used to calculate the details of this inflationary period. (3) Under plausible assumptions one may argue from the second law of thermodynamics that given appropriate initial conditions a large inflation will occur even when details of the inflationary phase cannot be calculated classically

  7. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    International Nuclear Information System (INIS)

    Blau, Matthias; O'Loughlin, Martin; Meessen, Patrick

    2003-01-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  8. Goedel, Penrose, anti-Mach: extra supersymmetries of time-dependent plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias; O' Loughlin, Martin; Meessen, Patrick [SISSA/ISAS, Via Beirut 2-4, 34014 Trieste (Italy)]. E-mail: meessen@sissa.it

    2003-09-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Goedel-like metrics, show that the Penrose limit of the M-theory Goedel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves. (author)

  9. Spectrally-consistent regularization modeling of turbulent natural convection flows

    International Nuclear Information System (INIS)

    Trias, F Xavier; Gorobets, Andrey; Oliva, Assensi; Verstappen, Roel

    2012-01-01

    The incompressible Navier-Stokes equations constitute an excellent mathematical modelization of turbulence. Unfortunately, attempts at performing direct simulations are limited to relatively low-Reynolds numbers because of the almost numberless small scales produced by the non-linear convective term. Alternatively, a dynamically less complex formulation is proposed here. Namely, regularizations of the Navier-Stokes equations that preserve the symmetry and conservation properties exactly. To do so, both convective and diffusive terms are altered in the same vein. In this way, the convective production of small scales is effectively restrained whereas the modified diffusive term introduces a hyperviscosity effect and consequently enhances the destruction of small scales. In practice, the only additional ingredient is a self-adjoint linear filter whose local filter length is determined from the requirement that vortex-stretching must stop at the smallest grid scale. In the present work, the performance of the above-mentioned recent improvements is assessed through application to turbulent natural convection flows by means of comparison with DNS reference data.

  10. Casimir Energy, Extra Dimensions and Exotic Propulsion

    Science.gov (United States)

    Obousy, R.; Saharian, A.

    It is well known that the Casimir effect is an excellent candidate for the stabilization of the extra dimensions. It has also been suggested that the Casimir effect in higher dimensions may be the underlying phenomenon that is responsible for the dark energy which is currently driving the accelerated expansion of the universe. In this paper we suggest that, in principle, it may be possible to directly manipulate the size of an extra dimension locally using Standard Model fields in the next generation of particle accelerators. This adjustment of the size of the higher dimension could serve as a technological mechanism to locally adjust the dark energy density and change the local expansion of spacetime. This idea holds tantalizing possibilities in the context of exotic spacecraft propulsion.

  11. 99mTc-HM-PAO SPECT of epileptic patients showing focal paroxysm on electroencephalography

    International Nuclear Information System (INIS)

    Takaishi, Yasuko; Hashimoto, Kiyoshi; Fujino, Osamu; Kamayachi, Satoshi; Fujita, Takehisa; Enokido, Hisashi; Komatsuzaki, Hideki; Kawakami, Yasuhiko; Hirayama, Tsunenori

    1995-01-01

    The usefulness of 99m Tc-HM-PAO SPECT in diagnosing epilepsy was studied. The subjects were 33 epileptic patients, ranging in age from 5 years and 5 months to 28 years and 3 months, who showed focal paroxysm on electroencephalograms. Lowered accumulation site was found on SPECT in 19 patients. Four patients with abnormal findings on X-ray CT or MRI showed lowered accumulation and focal paroxysm at the same site. Of 29 patients with normal X-ray CT or MRI findings, 15 (52%) showed lowered accumulation. Five patients showed a focal paroxysm at the site of lowered accumulation. In 8 patients the focal paroxysm site was partly coincided with the accumulation site. In some patients the focal site predicted by the findings of clinical symptoms and the lowered accumulation site coincided. SPECT is therefore a useful method in diagnosing a focal site in epilepsy and considered to reflect the severity of disease. (Y.S.)

  12. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    Science.gov (United States)

    Itterly, Kyle; Taylor, Patrick

    2015-01-01

    This presentation uses publicly available CERES and radiosonde data to investigate the sensitivity of thetropical convective diurnal cycle to atmosphere state. Averaging surface observations into regimes of convective intensitydefined by satellite shows great promise for physical understandingof convection.• Convective processes in the Amazon are highly variable seasonallyand locally.• Buoyancy/CIN more important JJA– Mesoscale/synoptic features easier to separate– Length/depth of buoyancy layer very important in DJF (EL).• Moisture more important DJF, esp. UTH– Humidity of lower atmosphere significantly impacts LTS, LCL and abilityfor parcels to reach LFC.• Lower level jet strength/direction important• Convective initiation correlated with LTS, LR, LTH, EL• Duration/Phase better correlated with humidity variables• Surface Flux amplitude well correlated with convection

  13. IMF By associated interhemispheric asymmetries in ionospheric convection and field-aligned currents

    Science.gov (United States)

    Kunduri, B.; Baker, J.; Ruohoniemi, J. M.; Clausen, L.; Ribeiro, A.

    2012-12-01

    The solar wind-magnetosphere interaction plays an important role in controlling the dynamics of ionospheric convection. It is widely known that the By component of IMF generates asymmetries in ionospheric convection between the northern and southern polar caps. Some studies show that IMF By-generated electric field penetrates into the closed magnetosphere producing differences in the high latitude ionospheric convection between hemispheres. The differences in convection were attributed to field-aligned potential drop between hemispheres resulting in flow of interhemispheric field aligned currents. In the current paper we present interhemispheric observations of high latitude ionospheric convection on closed field lines in the noon-dusk sector. The observations reveal that the convection is stronger in the northern (southern) hemisphere when IMF By is positive (negative) irrespective of season. The inter-hemispheric differences can be attributed to the flow of interhemispheric field aligned currents which support the existence of oppositely-directed zonal plasma flows in the closed field line regions, suppressing the convection in one hemisphere and aiding it in the other. We estimate the strength of these currents, analyze their characteristics and identify the various factors such as magnetic local time, magnetic latitude and ionospheric conductivity that impact them.

  14. Measuring the Flatness of Focal Plane for Very Large Mosaic CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Estrada, Juan; Cease, Herman; Diehl, H.Thomas; Flaugher, Brenna L.; Kubik, Donna; Kuk, Keivin; Kuropatkine, Nickolai; Lin, Huan; Montes, Jorge; Scarpine, Vic; /Fermilab

    2010-06-08

    Large mosaic multiCCD camera is the key instrument for modern digital sky survey. DECam is an extremely red sensitive 520 Megapixel camera designed for the incoming Dark Energy Survey (DES). It is consist of sixty two 4k x 2k and twelve 2k x 2k 250-micron thick fully-depleted CCDs, with a focal plane of 44 cm in diameter and a field of view of 2.2 square degree. It will be attached to the Blanco 4-meter telescope at CTIO. The DES will cover 5000 square-degrees of the southern galactic cap in 5 color bands (g, r, i, z, Y) in 5 years starting from 2011. To achieve the science goal of constraining the Dark Energy evolution, stringent requirements are laid down for the design of DECam. Among them, the flatness of the focal plane needs to be controlled within a 60-micron envelope in order to achieve the specified PSF variation limit. It is very challenging to measure the flatness of the focal plane to such precision when it is placed in a high vacuum dewar at 173 K. We developed two image based techniques to measure the flatness of the focal plane. By imaging a regular grid of dots on the focal plane, the CCD offset along the optical axis is converted to the variation the grid spacings at different positions on the focal plane. After extracting the patterns and comparing the change in spacings, we can measure the flatness to high precision. In method 1, the regular dots are kept in high sub micron precision and cover the whole focal plane. In method 2, no high precision for the grid is required. Instead, we use a precise XY stage moves the pattern across the whole focal plane and comparing the variations of the spacing when it is imaged by different CCDs. Simulation and real measurements show that the two methods work very well for our purpose, and are in good agreement with the direct optical measurements.

  15. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.

    Science.gov (United States)

    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L

    2015-02-06

    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Focal masses in a non-cirrhotic liver: The additional benefit of CEUS over baseline imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chiorean, L., E-mail: lilichiorean@yahoo.com [Sino-German Research Center of Ultrasound in Medicine, The First Affiliated Hospital of Zhengzhou University (China); Med. Klinik 2, Caritas Krankenhaus Bad Mergentheim, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany); Département d’imagerie médicale, Clinique des Cévennes, 07100 Annonay (France); Cantisani, V., E-mail: vito.cantisani@uniroma1.it [Dipartimento di Scienze Radiologiche, Oncologiche, Anatomo-patologiche, Policlinico Umberto I, Univ. Sapienza, Roma (Italy); Jenssen, C., E-mail: C.Jenssen@khmol.de [Innere Medizin, Krankenhaus Märkisch Oderland, Prötzeler Chaussee 5, 15433 Strausberg (Germany); Sidhu, P.S., E-mail: paulsidhu@nhs.net [Department of Radiology, King' s College Hospital, Denmark Hill, London SE5 9RS, England (United Kingdom); Baum, U., E-mail: Ulrich.Baum@ckbm.de [Department of Radiology, Caritas Krankenhaus Bad Mergentheim, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany); Dietrich, C.F., E-mail: christoph.dietrich@ckbm.de [Sino-German Research Center of Ultrasound in Medicine, The First Affiliated Hospital of Zhengzhou University (China); Med. Klinik 2, Caritas Krankenhaus Bad Mergentheim, Uhlandstr. 7, D-97980 Bad Mergentheim (Germany)

    2015-09-15

    Highlights: • Contrast-enhanced ultrasound in detection of focal liver lesions. • Contrast-enhanced ultrasound in characterization of focal liver lesions. • Contrast-enhanced ultrasound in differential diagnosis of focal liver lesions. • Contrast-enhanced ultrasound in final diagnosis of focal liver lesions. • Contrast-enhanced ultrasound in liver metastases screening. • Roles of cross-sectional imaging techniques for focal liver lesions assessment. • Advantages of contrast-enhanced ultrasound over other imaging procedures. - Abstract: Incidentally detected focal liver lesions are commonly encountered in clinical practice presenting a challenge in the daily department work flow. Guidelines for the management of incidental focal liver lesions have been published but comments, illustrations and recommendations regarding practical issues are crucial. The unique features of contrast-enhanced ultrasound in non-invasive assessment of focal liver lesion enhancement throughout the vascular phases in real-time has allowed an impressive improvement in the diagnostic accuracy of ultrasound. We highlight the additional benefit of contrast-enhanced ultrasound over conventional B-mode ultrasound imaging in detection, characterization, differential and final diagnosis of focal liver lesions, as well as for liver metastases screening. The current roles of cross-sectional imaging are explained in detail, with indications and limitations for each procedure. The advantages of CEUS, such as non-ionizing radiation exposure, cost benefits, non-iodinate contrast agents, and repeatability are also described ultimately improving patient management.

  17. Searching for Hysteresis in Models of Mantle Convection with Grain-Damage

    Science.gov (United States)

    Lamichhane, R.; Foley, B. J.

    2017-12-01

    The mode of surface tectonics on terrestrial planets is determined by whether mantle convective forces are capable of forming weak zones of localized deformation in the lithosphere, which act as plate boundaries. If plate boundaries can form then a plate tectonic mode develops, and if not convection will be in the stagnant lid regime. Episodic subduction or sluggish lid convection are also possible in between the nominal plate tectonic and stagnant lid regimes. Plate boundary formation is largely a function of the state of the mantle, e.g. mantle temperature or surface temperature, and how these conditions influence both mantle convection and the mantle rheology's propensity for forming weak, localized plate boundaries. However, a planet's tectonic mode also influences whether plate boundaries can form, as the driving forces for plate boundary formation (e.g. stress and viscous dissipation) are different in a plate tectonic versus stagnant lid regime. As a result, tectonic mode can display hysteresis, where convection under otherwise identical conditions can reach different final states as a result of the initial regime of convection. Previous work has explored this effect in pseudoplastic models, finding that it is more difficult to initiate plate tectonics starting from a stagnant lid state than it is to sustain plate tectonics when already in a mobile lid regime, because convective stresses in the lithosphere are lower in a stagnant lid regime than in a plate tectonic regime. However, whether and to what extent such hysteresis is displayed when alternative rheological models for lithospheric shear localization are used is unknown. In particular, grainsize reduction is commonly hypothesized to be a primary cause of shear localization and plate boundary formation. We use new models of mantle convection with grain-size evolution to determine how the initial mode of surface tectonics influences the final convective regime reached when convection reaches statistical

  18. Focal shift and faculae dimension of focused flat beam propagating in turbulent atmosphere

    International Nuclear Information System (INIS)

    Zhang Jianzhu; Li Youkuan; Zhang Feizhou; An Jianzhu

    2011-01-01

    Through theoretic analysis and numerical simulation,the focal shift of a focused flat beam propagating in turbulent atmosphere is studied. When a focused flat beam propagates in turbulent atmosphere, the effect of turbulence will induce the focal spot to move toward the transmitter. The turbulence is stronger and the diameter of transmitter is smaller, the measure of focal shift is larger. When adjusting the focus of transmitter and letting the focal spot of beam locate on detector, the laser intensity received by detector is not the strongest. The laser intensity will be the strongest if the focus of transmitter equals to the distance from transmitter to detector. (authors)

  19. Convection in the Labrador Sea

    National Research Council Canada - National Science Library

    Davis, R

    1997-01-01

    The long-term goal of this grant was to describe the process of deep oceanic convection well enough to provide critical tests of, and guidance to, models used to predict subsurface ocean conditions...

  20. Tuberculose extra ganglionnaire de la tête et du cou

    African Journals Online (AJOL)

    Objective : ENT extra-nodal localisation of tuberculosis is an uncommon condition. Clinical symptomatology is misleading, so having the problem of differential diagnosis with tumoral disease. We report 12 cases of extra-nodal localisations of tuberculosis treated in ENT department of the Fattouma Bourguiba hospital of ...

  1. Natural convection and vapor loss during underground waste storage

    International Nuclear Information System (INIS)

    Plys, M.G.; Epstein, M.; Turner, D.

    1996-01-01

    Natural convection and vapor loss from underground waste storage tanks is examined here. Stability criteria are provided for the onset of natural convection flow within the headspace of a tank, and between tanks and the environment. The flowrate is quantified and used to predict vapor losses during storage

  2. Soret-driven double diffusive magneto-convection in couple stress liquid

    Directory of Open Access Journals (Sweden)

    Mishra P.

    2012-07-01

    Full Text Available The stability analysis of Soret driven double diffusive convection for electrically conducting couple stress liquid is investigated theoretically. The couple stress liquid is confined between two horizontal surfaces and a constant vertical magnetic field is applied across the surfaces. Linear stability analysis is used to investigate the effect of various parameters on the onset of convection. Effect of magnetic field on the onset of convection is presented by means of Chandrasekhar number. The problem is analyzed as a function of Chandrasekhar number (Q, positive and negative Soret parameter (S r and couple stress parameter (C, mainly. The results show that the Q, both positive and negative Sr and C delay the onset of convection. The effect of other parameters is also discussed in paper and shown by graphs.

  3. Collusion through Price Ceilings? In Search of a Focal-Point Effect

    NARCIS (Netherlands)

    Engelmann, D.; Müller, W.

    2008-01-01

    With this study we resume the search for a collusive focal-point effect of price ceilings in laboratory markets. We argue that market conditions in previous studies were unfavorable for collusion which may have been responsible for not finding such a focal-point effect. Our design aims at maximizing

  4. Collusion through price ceilings? In search of a focal-point effect

    NARCIS (Netherlands)

    Engelmann, D.; Müller, W.

    2011-01-01

    We resume the search for a collusive focal-point effect of price ceilings in laboratory markets. We argue that market conditions in previous studies were unfavorable for collusion which may have been responsible for not finding such a focal-point effect. Our design aims at maximizing the likelihood

  5. Relationships between radiation, clouds, and convection during DYNAMO

    Science.gov (United States)

    Ciesielski, Paul E.; Johnson, Richard H.; Jiang, Xianan; Zhang, Yunyan; Xie, Shaocheng

    2017-03-01

    The relationships between radiation, clouds, and convection on an intraseasonal time scale are examined with data taken during the Dynamics of the Madden-Julian Oscillation (MJO) field campaign. Specifically, column-net, as well as vertical profiles of radiative heating rates, computed over Gan Island in the central Indian Ocean (IO) are used along with an objective analysis of large-scale fields to examine three MJO events that occurred during the 3 month period (October to December 2011) over this region. Longwave (LW) and shortwave radiative heating rates exhibit tilted structures, reflecting radiative effects associated with the prevalence of shallow cumulus during the dry, suppressed MJO phase followed by increasing deep convection leading into the active phase. As the convection builds going into the MJO active phase, there are increasingly top-heavy anomalous radiative heating rates while the column-net radiative cooling rate progressively decreases. Temporal fluctuations in the cloud radiative forcing, being quite sensitive to changes in high cloudiness, are dominated by LW effects with an intraseasonal variation of 0.4-0.6 K/d. While both the water vapor and cloud fields are inextricably linked, it appears that the tilted radiative structures are more related to water vapor effects. The intraseasonal variation of column-net radiative heating enhances the convective signal in the mean by 20% with a minimum in this enhancement 10 days prior to peak MJO rainfall and maximum 7 days after. This suggests that as MJO convective envelope weakens over the central IO, cloud-radiative feedbacks help maintain the mature MJO as it moves eastward.

  6. Study of mixed convection in sodium pool

    International Nuclear Information System (INIS)

    Wang Zhou; Chen Yan

    1995-01-01

    The mixed convection phenomena in the sodium pool of fast reactor have been studied systematically by the two dimensional modeling method. A generalized concept of circumferential line in the cylindrical coordinates was proposed to overcome the three dimensional effect induced by the pool geometry in an analysis of two dimensional modeling. A method of sub-step in time was developed for solving the turbulent equations. The treatments on the boundary condition for the auxiliary velocity field have been proposed, and the explanation of allowing the flow function method to be used in the flow field in presence of a mass source term was given. As examples of verification, the experiments were conducted with water flow in a rectangular cavity. The results from theoretical analysis were applied to the numerical computation for the mixed convection in the cavity. The mechanism of stratified flow in the cavity was studied. A numerical calculation was carried out for the mixed convection in hot plenum of a typical fast reactor

  7. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  8. Convection and crystal settling in sills

    Science.gov (United States)

    Gibb, Fergus G. F.; Henderson, C. Michael B.

    1992-02-01

    It has been advocated that convective and crystal settling processes play significant, and perhaps crucial, roles in magmatic differentiation. The fluid dynamics of magma chambers have been extensively studied in recent years, both theoretically and experimentally, but there is disagreement over the nature and scale of the convection, over its bearing on fractionation and possibly over whether it occurs at all. The differential distribution of modal olivine with height in differentiated alkaline basic sills provides critical evidence to resolve this controversy, at least for small to medium-large magma chambers. Our own and others' published data for such sills show that, irrespective of overall olivine content, modal olivine contents tend to increase in a roughly symmetrical manner inwards from the upper and lower margins of the sill, i.e. the distribution patterns are more often approximately D-shaped rather than the classic S-shape generally ascribed to gravity settling. We concur with the majority of other authors that this is an original feature of the filling process which has survived more or less unchanged since emplacement. We therefore conclude that the magmas have not undergone turbulent convection and that gravity settling has usually played only a minor modifying role since the intrusion of these sills. We offer a possible explanation for the apparent contradiction between fluid dynamical theory and the petrological evidence by suggesting that such sills rarely fill by the rapid injection of a single pulse of magma. Rather, they form from a series of pulses or a continuous pulsed influx over a protracted interval during which marginal cooling severely limits the potential for thermal convection.

  9. Convection and waves on Small Earth and Deep Atmosphere

    Directory of Open Access Journals (Sweden)

    Noureddine Semane

    2015-06-01

    Full Text Available A scaled version of the European Centre for Medium-Range Weather Forecasts (ECMWF spectral hydrostatic forecast model (IFS has been developed with full physics using an Aqua planet configuration. This includes Kuang et al.'s Small Earth Diabatic Acceleration and REscaling (DARE/SE approach bringing the synoptic scale a factor γ closer to the convective scale by reducing the Earth radius by γ, and increasing the rotation rate and all diabatic processes by the same factor. Furthermore, the scaled version also provides an alternative system to DARE/SE, dubbed ‘Deep Atmosphere Diabatic Acceleration and REscaling’ (DARE/DA, which reduces gravity by a factor γ and thereby increases the horizontal scale of convection by γ, while only weakly affecting the large-scale flow. The two approaches have been evaluated using a T159 spectral truncation and γ = 8 with the deep convection scheme switched off. The evaluation is against the baseline unscaled model at T1279 spectral resolution without deep convection parametrisation, as well as the unscaled T159 model using the deep convection parametrisation. It is shown that the DARE/SE and DARE/DA systems provide fairly equivalent results, while the DARE/DA system seems to be the preferred choice as it damps divergent modes, providing a better climatology, and is technically easier to implement. However, neither of the systems could reproduce the motion range and modes of the high-resolution spectral model. Higher equivalent horizontal resolution in the 1–10 km range and the full non-hydrostatic system might be necessary to successfully simulate the convective and large-scale explicitly at reduced cost.

  10. Mapping high-latitude plasma convection with coherent HF radars

    International Nuclear Information System (INIS)

    Ruohoniemi, J.M.; Greenwald, R.A.; Baker, K.B.; Villain, J.-P.; Hanuise, C.; Kelly, J.

    1989-01-01

    In this decade, a new technique for the study of ionosphere electrodynamics has been implemented in an evolving generation of high-latitude HF radars. Coherent backscatter from electron density irregularities at F region altitudes is utilized to observe convective plasma motion. The electronic beam forming and scanning capabilities of the radars afford an excellent combination of spatial (∼50 km) and temporal (∼1 min) resolution of the large-scale (∼10 6 km 2 ) convection pattern. In this paper, we outline the methods developed to synthesize the HF radar data into two-dimensional maps of convection velocity. Although any single radar can directly measure only the line-of-sight, or radial, component of the plasma motion, the convection pattern is sometimes so uniform and stable that scanning in azimuth serves to determine the transverse component as well. Under more variable conditions, data from a second radar are necessary to unambiguously resolve velocity vectors. In either case, a limited region of vector solution can be expanded into contiguous areas of single-radar radial velocity data by noting that the convection must everywhere be divergence-free, i.e., ∇·v=0. It is thus often possible to map velocity vectors without extensive second-radar coverage. We present several examples of two-dimensional velocity maps. These show instances of L shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft. We include a study of merged coherent and incoherent radar data that illustrates the applicability of these methods to other ionospheric radar systems. copyright American Geophysical Union 1989

  11. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  12. Zero-point length, extra-dimensions and string T-duality

    OpenAIRE

    Spallucci, Euro; Fontanini, Michele

    2005-01-01

    In this paper, we are going to put in a single consistent framework apparently unrelated pieces of information, i.e. zero-point length, extra-dimensions, string T-duality. More in details we are going to introduce a modified Kaluza-Klein theory interpolating between (high-energy) string theory and (low-energy) quantum field theory. In our model zero-point length is a four dimensional ``virtual memory'' of compact extra-dimensions length scale. Such a scale turns out to be determined by T-dual...

  13. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  14. Utility of dark-lumen MR colonography for the assessment of extra-colonic organs

    International Nuclear Information System (INIS)

    Ajaj, Waleed; Goyen, Mathias; Ruehm, Stefan G.; Ladd, Susanne C.; Gerken, Guido

    2007-01-01

    The aim of the study was to evaluate the utility of dark-lumen MR colonography (MRC) for the assessment of extra-colonic organs. Three hundred seventy-five subjects with suspected colonic disease underwent a complete MRC examination. MRC data were evaluated by two radiologists in a blinded fashion. In addition to the large bowel, the extra-intestinal organs from the lung bases to the pelvis were assessed for the presence of pathologies. All findings were divided into known or unknown findings and therapeutically relevant or irrelevant findings. If deemed necessary, other diagnostic imaging tests to further assess those findings were performed. In total, 510 extra-colonic findings were found in 260 (69%) of the 375 subjects. Known extra-colonic findings were found in 140 subjects (54%) and unknown findings in 120 subjects (46%). Thirty-one (12%) of the 260 subjects had therapeutically relevant findings (45 findings); 229 patients (88%) had irrelevant findings (465 findings). Dark-lumen MRC is a useful tool not only for the assessment of the entire colon, but also for the evaluation of extra-colonic organs. Thus, intra- and extra-colonic pathologies can be diagnosed within the same examination. (orig.)

  15. Tests for removal of decay heat by natural convection

    International Nuclear Information System (INIS)

    Kashiwagi, E.; Wataru, M.; Gomi, Y.; Hattori, Y.; Ozaki, S.

    1993-01-01

    Interim storage technology for spent fuel by dry storage casks have been investigated. The casks are vertically placed in a storage building. The decay heat is removed from the outer cask surface by natural convection of air entering from the building wall to the roof. The air flow pattern in the storage building was governed by the natural driving pressure difference and circulating flow. The purpose of this study is to understand the mechanism of the removal of decay heat from casks by natural convection. The simulated flow conditions in the building were assumed as a natural and forced combined convection and were investigated by the turbulent quantities near wall. (author)

  16. [A case of focal epilepsy manifesting multiple psychiatric auras].

    Science.gov (United States)

    Ezura, Michinori; Kakisaka, Yosuke; Jin, Kazutaka; Kato, Kazuhiro; Iwasaki, Masaki; Fujikawa, Mayu; Aoki, Masashi; Nakasato, Nobukazu

    2015-01-01

    We present a case of epilepsy with multiple types of focal seizures that were misdiagnosed as psychiatric disorders. A 20-year-old female patient presented with a variety of episodes, including loss of consciousness, deja vu, fear, delusion of possession, violent movements, and generalized convulsions. Each of these symptoms appeared in a stereotypic manner. She was initially diagnosed with a psychiatric disorder and treated with psychoactive medications, which had no effect. Long-term video electroencephalography revealed that her episodes of violent movement with impaired consciousness and secondarily generalized seizure were epileptic events originating in the right hemisphere. High-field brain magnetic resonance imaging for detecting subtle lesions revealed bilateral lesions from periventricular nodular heterotopia. Her final diagnosis was right hemispheric focal epilepsy. Carbamazepine administration was started, which successfully controlled all seizures. The present case demonstrates the pitfall of diagnosing focal epilepsy when it presents with multiple types of psychiatric aura. Epilepsy should thus be included in differential diagnoses, considering the stereotypic nature of symptoms, to avoid misdiagnosis.

  17. Focal hepatic lesions with peripheral eosinophilia: imaging features of various disease

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Joon Beom; Han, Joon Koo; Kim, Tae Kyoung; Choi, Byung Ihn; Han, Man Chung [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of); Song, Chi Sung [Seoul City Boramae Hospital, Seoul (Korea, Republic of)

    1999-01-01

    Due to the recent advent of various imaging modalities such as ultrasonography, computed tomography and magnetic resonance imaging, as well as knowledge of the characteristic imaging features of hepatic lesions, radiologic examination plays a major role in the differential diagnosis of focal hepatic lesions. However, various 'nonspecific' or 'unusual' imaging features of focal hepatic lesions are occasionally encountered, and this makes correct diagnosis difficult. In such a situation, the presence of peripheral eosinophilia helps narrow the differential diagnoses. The aim of this pictorial essay is to describe the imaging features of various disease entities which cause focal hepatic lesions and peripheral eosinophilia.

  18. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  19. Natural convection in heat-generating fluids

    International Nuclear Information System (INIS)

    Bol'shov, Leonid A; Kondratenko, Petr S; Strizhov, Valerii F

    2001-01-01

    Experimental and theoretical studies of convective heat transfer from a heat-generating fluid confined to a closed volume are reviewed. Theoretical results are inferred from analytical estimates based on the relevant conservation laws and the current understanding of the convective heat-transfer processes. Four basic and one asymptotic regime of heat transfer are identified depending on the heat generation rate. Limiting heat-transfer distribution patterns are found for the lower boundary. Heat transfer in a quasi-two-dimensional geometry is analyzed. Quasi-steady-state heat transfer from a cooling-down fluid without internal heat sources is studied separately. Experimental results and theoretical predictions are compared. (reviews of topical problems)

  20. Economic consequences of extra by-passes in district heating networks. Investment-, running- and maintenance costs

    International Nuclear Information System (INIS)

    Herbert, P.

    1995-02-01

    For various reasons, extra by-passes are installed in district heating networks to ensure a high flow temperature when the water circulation is insufficient. By 'extra by-pass' we here mean a connection between the distribution pipe and the return pipe. This study mainly deals with extra by-passes to prevent freezing. The estimation of the extra by-pass costs is based on the district heating rates. Our assumption is that an extra by-pass can be regarded as a substation in the district heating network, with regard to the demand for the water flow, heat and power. The reason is the difficulty to obtain available facts to estimate the real costs concerning extra by-passes. Therefore, the method can not claim that the information about the costs is exact but gives an indication of the size of them. The valves in an extra by-pass can be set more or less open. We assume that manual valves in extra by-passes are wide open. Thermostatic valves are, however, assumed to be adjusted in order to cause a very small water flow. 2 refs, 16 figs, 9 tabs, 6 appendices