WorldWideScience

Sample records for external resource solar

  1. Externalities: Their role and value in near-term solar power implementation

    International Nuclear Information System (INIS)

    Swindler, G.

    1992-01-01

    The total cost of electricity includes social and environmental costs, or externalities, that have traditionally been discluded from the cost of energy. Under current regulatory and public pressure to account for these costs as they vary between generating resources, externalities are being reviewed and are gradually being added to the construction and operation costs of all generating resources. Accounting for externalities is described as being obligatory for the electric utility industry. This paper analyzes a variety of quantifiable externalities in comparing solar and wind power to coal, nuclear, natural gas and oil. The inclusion of externalities in full-cost resource accounting is shown to make renewable resources such as solar and wind more competitive in a levelized market

  2. Externality costs by resource. E. Renewable generation resources

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter describes the environmental impacts associated with operation of renewable energy technologies. Renewable energy technologies currently supply 8% of US total energy usage and that figure is certain to grow. The rate of growth will depend heavily on the availability of research and development funds, and could reach 28% of US energy demands by 2030. Renewable generation resources include hydroelectric development, solar energy technologies, wind conversion facilities, and biomass fueled generation. A task force of personnel from five national laboratories recently concluded that renewable energy technologies generally have lower environmental impacts than do fossil fuel energy systems. The task force also stated that a comprehensive and comparative analysis of environmental impacts is needed and would strengthen the National Energy Strategy. This chapter summarizes some of the available literature on costing the environmental externalities associated with hydro, solar, wind, and biomass facilities. The less prevalent renewable energy technologies, including geothermal and ocean energy technologies, were not researched. The cost ranges identified are summarized in Table 1. The Table does not include a value for hydroelectric energy. The one study which attempted to value hydroelectric externalities was highly site-specific and has been criticized for having vastly overstated the value of the externalities

  3. Solar Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  4. Wind and solar resource data sets: Wind and solar resource data sets

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, Andrew [National Renewable Energy Laboratory, Golden CO USA; Hodge, Bri-Mathias [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA; Draxl, Caroline [National Renewable Energy Laboratory, Golden CO USA; National Wind Technology Center, National Renewable Energy Laboratory, Golden CO USA; Badger, Jake [Department of Wind Energy, Danish Technical University, Copenhagen Denmark; Habte, Aron [National Renewable Energy Laboratory, Golden CO USA; Power Systems Engineering Center, National Renewable Energy Laboratory, Golden CO USA

    2017-12-05

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research.

  5. Enhancing the stepped solar still performance using internal and external reflectors

    International Nuclear Information System (INIS)

    Omara, Z.M.; Kabeel, A.E.; Younes, M.M.

    2014-01-01

    Highlights: • Stepped solar still with internal and external reflectors have been investigated. • The productivity of the modified stepped solar still is higher than conventional by 103%. • The productivity of stepped still with external mirror is higher than that for conventional still by 88%. - Abstract: The performance of stepped solar still with internal and external reflectors have been investigated in the current study. The reflectors are used to enhance energy input to the stepped still. The influence of internal and external (top and bottom) reflectors on the performance of the stepped solar still is investigated. A comparison between modified stepped solar still and conventional solar still is carried out to evaluate the developed desalination system performance under the same climate conditions. The results indicated that, during experimentation the productivity of the modified stepped solar still with internal and external (top and bottom) reflectors is higher than that for conventional still approximately by 125%. In this case the estimated cost of 1 l of distillate for stepped still with reflectors and conventional solar stills is approximately 0.031$ and 0.049$, respectively

  6. DIY Solar Market Analysis Webinar Series: Solar Resource and Technical

    Science.gov (United States)

    Series: Solar Resource and Technical Potential DIY Solar Market Analysis Webinar Series: Solar Resource and Technical Potential Wednesday, June 11, 2014 As part of a Do-It-Yourself Solar Market Analysis Potential | State, Local, and Tribal Governments | NREL DIY Solar Market Analysis Webinar

  7. 3D-Printed external light traps for solar cells

    NARCIS (Netherlands)

    van Dijk, L.; Paetzold, U.W.; Blab, Gerhard; Marcus, E.A.P.; Oostra, A.J.; van de Groep, J.; Polman, A.; Schropp, R.E.I.; Di Vece, M.

    2015-01-01

    We demonstrate a universally applicable 3D-printed external light trap for solar cells. We placed a macroscopic external light trap made of smoothened, silver coated plastic at the sun-facing surface of different types of solar cells. The trap consists of a reflective parabolic concentrator on top

  8. Wind and solar resource data sets

    DEFF Research Database (Denmark)

    Clifton, Andrew; Hodge, Bri-Mathias; Draxl, Caroline

    2017-01-01

    The range of resource data sets spans from static cartography showing the mean annual wind speed or solar irradiance across a region to high temporal and high spatial resolution products that provide detailed information at a potential wind or solar energy facility. These data sets are used...... to support continental-scale, national, or regional renewable energy development; facilitate prospecting by developers; and enable grid integration studies. This review first provides an introduction to the wind and solar resource data sets, then provides an overview of the common methods used...... for their creation and validation. A brief history of wind and solar resource data sets is then presented, followed by areas for future research. For further resources related to this article, please visit the WIREs website....

  9. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  10. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Omara, Z.M.; Essa, F.A.

    2014-01-01

    Highlights: • The effect of using nanofluids on the solar still performance is investigated. • The solar still with external condenser increases the productivity by about 53.2%. • Using nanofluids improves the solar still water productivity by about 116%. - Abstract: The distilled water productivity of the single basin solar still is very limited. In this context, the design modification of a single basin solar still has been investigated to improve the solar still performance through increasing the productivity of distilled water. The experimental attempts are made to enhance the solar still productivity by using nanofluids and also by integrating the still basin with external condenser. The used nanofluid is the suspended nanosized solid particles of aluminum-oxide in water. Nanofluids change the transport properties, heat transfer characteristics and evaporative properties of the water. Nanofluids are expected to exhibit superior evaporation rate compared with conventional water. The effect of adding external condenser to the still basin is to decrease the heat loss by convection from water to glass as the condenser acts as an additional and effective heat and mass sink. So, the effect of drawn vapor at different speeds was investigated. The results show that integrating the solar still with external condenser increases the distillate water yield by about 53.2%. And using nanofluids improves the solar still water productivity by about 116%, when the still integrated with the external condenser

  11. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E.A.P.; Oostra, A.J.; Schropp, R.E.I.; Vece, Di M.

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  12. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the

  13. Treatment of Solar Generation in Electric Utility Resource Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  14. Resource Letter OSE-1: Observing Solar Eclipses

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew

    2017-07-01

    This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.

  15. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  16. ESTIMATION OF EXTERNAL FACTORS INFLUENCE ON THE ORGANIZATIONAL AND RESOURCE SUPPORT OF ENGINEERING

    Directory of Open Access Journals (Sweden)

    Yu. V. Gusak

    2013-09-01

    Full Text Available Purpose. The engineering industry is characterized by deep specialization and high co-operation, which suggests a high degree of interaction with other industries and the economy, highly sensitive to external factors. Effective regulation of the engineering industry’s organizational-resource support will ensure coherence of all the subsystems of the market economy, the competitive environment, a full course of the investment process and the success of the industry. Therefore there is a need for detailed estimation and analysis of the external factors’ influence on the formation and implementation indexes of the engineering industry’s organizational-resource support. Methodology. To establish the close connection between the set of external factors of formation and implementation indexes of the engineering industry organizational-resource support the correlation analysis was used, to calculate the amount of the formation and implementation indexes of the engineering industry organizational-resource support’s change under the influence of the external factors with malleability coefficient were applied. Findings. The external influence factors on the engineering industry organizational-resource support by the source of origin: industrial, economical, political, informational, and social were separated and grouped. The classification of the external factors influence on the engineering industry organizational-resource support, depending on their influence’s direction on the formation and implementation indexes of the engineering industry’s organizational-resource support was made. The connection closeness and the amount of the formation and implementation indexes of the engineering industry organizational-resource support change (the machinery index of and the sales volume machinery index under the influence of the external factors with malleability coefficient were determined. Originality. The estimation of the external factors

  17. Internal and External Reconnection Series Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.

    2001-01-01

    Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approx. 20 km/ s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively

  18. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  19. NREL Solar Radiation Resource Assessment Project: Status and outlook

    Science.gov (United States)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961 - 1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities were measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93 percent of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952 - 1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial resources were devoted to the data base development. However, in FY 1991 the SRRAP was involved in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory.

  20. Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (CSP)

    Energy Technology Data Exchange (ETDEWEB)

    Stoffel, T.; Renne, D.; Myers, D.; Wilcox, S.; Sengupta, M.; George, R.; Turchi, C.

    2010-09-01

    As the world looks for low-carbon sources of energy, solar power stands out as the most abundant energy resource. Harnessing this energy is the challenge for this century. Photovoltaics and concentrating solar power (CSP) are two primary forms of electricity generation using sunlight. These use different technologies, collect different fractions of the solar resource, and have different siting and production capabilities. Although PV systems are most often deployed as distributed generation sources, CSP systems favor large, centrally located systems. Accordingly, large CSP systems require a substantial investment, sometimes exceeding $1 billion in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need to have reliable data about the solar resource available at specific locations to predict the daily and annual performance of a proposed CSP plant. Without these data, no financial analysis is possible. This handbook presents detailed information about solar resource data and the resulting data products needed for each stage of the project.

  1. SERI Solar Radiation Resource Assessment Project: Fiscal Year 1990 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, C; Maxwell, E; Stoffel, T; Rymes, M; Wilcox, S

    1991-07-01

    The purpose of the Solar Radiation Resource Project is to help meet the needs of the public, government, industry, and utilities for solar radiation data, models, and assessments as required to develop, design, deploy, and operate solar energy conversion systems. The project scientists produce information on the spatial (geographic), temporal (hourly, daily, and seasonal), and spectral (wavelength distribution) variability of solar radiation at different locations in the United States. Resources committed to the project in FY 1990 supported about four staff members, including part-time administrative support. With these resources, the staff must concentrate on solar radiation resource assessment in the United States; funds do not allow for significant efforts to respond to a common need for improved worldwide data. 34 refs., 21 figs., 6 tabs.

  2. Electric utility resource expansion planning using environmental externalities

    International Nuclear Information System (INIS)

    Mitchell, D.

    1992-01-01

    This paper describes the recent experience of San Diego Gas ampersand Electric Company using environmental externalities in the expansion planning of its electrical system. This is the first time that this method of planning has been used in the electric utility industry in California. The paper reviews the conceptual development of the monetary values for environmental externalities and shows how the application of these values modifies the resource selection process. This paper should be of interest to professionals involved in policy issues relating to the use of environmental externalities as a means to improve the environment. The experience gained through this analyses should also benefit electric utility personnel involved in planning, and regulators interested in planning

  3. Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gueymard, Christian [Solar Consulting Services, Daytona Beach, FL (United States); Wilbert, Stefan [German Aerospace Center (DLR), Cologne (Germany); Renne, Dave [Dave Renne Renewables, LLC, Boulder, CO (United States)

    2017-12-01

    As the world looks for low-carbon sources of energy, solar power stands out as the single most abundant energy resource on Earth. Harnessing this energy is the challenge for this century. Photovoltaics, solar heating and cooling, and concentrating solar power (CSP) are primary forms of energy applications using sunlight. These solar energy systems use different technologies, collect different fractions of the solar resource, and have different siting requirements and production capabilities. Reliable information about the solar resource is required for every solar energy application. This holds true for small installations on a rooftop as well as for large solar power plants; however, solar resource information is of particular interest for large installations, because they require substantial investment, sometimes exceeding 1 billion dollars in construction costs. Before such a project is undertaken, the best possible information about the quality and reliability of the fuel source must be made available. That is, project developers need reliable data about the solar resource available at specific locations, including historic trends with seasonal, daily, hourly, and (preferably) subhourly variability to predict the daily and annual performance of a proposed power plant. Without this data, an accurate financial analysis is not possible. Additionally, with the deployment of large amounts of distributed photovoltaics, there is an urgent need to integrate this source of generation to ensure the reliability and stability of the grid. Forecasting generation from the various sources will allow for larger penetrations of these generation sources because utilities and system operators can then ensure stable grid operations. Developed by the foremost experts in the field who have come together under the umbrella of the International Energy Agency's Solar Heating and Cooling Task 46, this handbook summarizes state-of-the-art information about all the above topics.

  4. Solmap: Project In India's Solar Resource Assessment

    Directory of Open Access Journals (Sweden)

    Indradip Mitra

    2014-12-01

    Full Text Available India launched Jawaharlal Nehru National Solar Mission in 2009, which aims to set up 20 000 MW of grid connected solar power, besides 2 000 MW equivalent of off-grid applications and cumulative growth of solar thermal collector area to 20 million m2 by 2022. Availability of reliable and accurate solar radiation data is crucial to achieve the targets. As a result of this initiative, Ministry of New and Renewable Energy (MNRE of Government of India (GoI has awarded a project to Centre for Wind Energy Technology (C-WET, Chennai in the year 2011 to set up 51 Solar Radiation Resource Assessment (SRRA stations using the state-of-the-art equipment in various parts of the country, especially the sites with high potential for solar power. The GoI project has synergy with SolMap project, which is implemented by the Deutsche GesellschaftfürInternationaleZusammenarbeit (GIZ in cooperation with the MNRE. SolMap project is contributing to SRRA project in establishing quality checks on the data obtained as per International protocols and helping data processing to generate investment grade data. The paper highlights the details of SRRA stations and an attempt has been made to present some of the important results of quality control and data analysis with respect to GHI and DNI. While our analysis of the data over one year finds that intensity and profile of the insolation are not uniform across the geographic regions, the variability in DNI is particularly high. Strong influence of monsoon is also identified. SRRA infrastructure aims to develop investment grade solar radiation resource information to assist project activities under the National Solar Mission of India.

  5. How Solar Resource Data supports Research and Development

    OpenAIRE

    Kern, Jürgen

    2013-01-01

    The presentation describes the methods of renewable resource data, how the research and development will benefits from Renewable Resource Atlas and how institutions will leverage the solar monitoring station data to support renewable energy project deployment in other locations throughout the Kingdom.

  6. Analysis of the solar/wind resources in Southern Spain for optimal sizing of hybrid solar-wind power generation systems

    Science.gov (United States)

    Quesada-Ruiz, S.; Pozo-Vazquez, D.; Santos-Alamillos, F. J.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Tovar-Pescador, J.

    2010-09-01

    A drawback common to the solar and wind energy systems is their unpredictable nature and dependence on weather and climate on a wide range of time scales. In addition, the variation of the energy output may not match with the time distribution of the load demand. This can partially be solved by the use of batteries for energy storage in stand-alone systems. The problem caused by the variable nature of the solar and wind resources can be partially overcome by the use of energy systems that uses both renewable resources in a combined manner, that is, hybrid wind-solar systems. Since both resources can show complementary characteristics in certain location, the independent use of solar or wind systems results in considerable over sizing of the batteries system compared to the use of hybrid solar-wind systems. Nevertheless, to the day, there is no single recognized method for properly sizing these hybrid wind-solar systems. In this work, we present a method for sizing wind-solar hybrid systems in southern Spain. The method is based on the analysis of the wind and solar resources on daily scale, particularly, its temporal complementary characteristics. The method aims to minimize the size of the energy storage systems, trying to provide the most reliable supply.

  7. Hydrological externalities and livelihoods impacts: Informed communities for better resource management

    Science.gov (United States)

    Reddy, V. Ratna

    2012-01-01

    SummaryHydrological knowledge or information has mostly remained in the domain of scientific community. The communities that interact with the hydrological aspects such as groundwater and surface water on a day to day basis are hardly aware of the information that could critically influence their livelihoods. From the perspective of the communities' information pertaining to groundwater aquifer characters, potential to provide the water resource, surface groundwater interactions in varying geo-hydrological conditions are important. The 'public good' nature of the resources and their linkages with ecological systems gives rise to externalities that could be pervasive. In a number of countries, especially the developing countries, groundwater is the single largest source of drinking as well as irrigation water. In the absence of scientific information with the communities, extraction of groundwater resources for productive purposes has become a risky venture leading to adverse impacts on livelihoods. The externalities associated with over exploitation of groundwater resources and the resulting widespread well failure is identified as one of the main reasons for pushing farmers into debt trap and one of the reasons for farmer suicides in India. The negative externalities are increasingly becoming severe in the context of climate variability. This paper attempts to highlight the importance of hydrological information to the user communities from a socioeconomic perspective using a newly developed framework 'REDUCE' based on theories of effective communication. It shows, based on the evidence, how farming communities are getting affected in the absence of the basic hydrological information across socioeconomic groups. It is argued, using relevant information that the negative externalities could be mitigated to a large extent with proper dissemination of information among the communities and capacitating them to measure and use the information on their own. In order to

  8. The contribution of internal resources, external resources, and emotional distress to use of drugs and alcohol among Israeli Jewish urban adolescents.

    Science.gov (United States)

    Lipschitz-Elhawi, Racheli; Itzhaky, Haya

    2014-03-01

    The contribution of selected background variables (age, gender), internal resources (mastery, emotional maturity), external resources (parental and peer support), and emotional distress to alcohol and drug use among 160 Israeli Jewish urban high school students were examined. Analyzing the variables with hierarchical regression, emotional distress contributed most significantly to both alcohol and drug use, and the contribution of age was somewhat less significant for both of them. Emotional distress also contributed indirectly to drug use through an interaction with one's sense of mastery. Gender, internal resources, and external resources contributed differentially to alcohol and drug use. Whereas gender and internal resources contributed only to drug use, external resources contributed only to alcohol use. Specifically, peer support contributed positively to alcohol use whereas parental support contributed negatively. The discussion provides explanations for these research findings and their implications, and the research's limitations are noted.

  9. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  10. Methodology for Clustering High-Resolution Spatiotemporal Solar Resource Data

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Dan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dyson, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    In this report, we introduce a methodology to achieve multiple levels of spatial resolution reduction of solar resource data, with minimal impact on data variability, for use in energy systems modeling. The selection of an appropriate clustering algorithm, parameter selection including cluster size, methods of temporal data segmentation, and methods of cluster evaluation are explored in the context of a repeatable process. In describing this process, we illustrate the steps in creating a reduced resolution, but still viable, dataset to support energy systems modeling, e.g. capacity expansion or production cost modeling. This process is demonstrated through the use of a solar resource dataset; however, the methods are applicable to other resource data represented through spatiotemporal grids, including wind data. In addition to energy modeling, the techniques demonstrated in this paper can be used in a novel top-down approach to assess renewable resources within many other contexts that leverage variability in resource data but require reduction in spatial resolution to accommodate modeling or computing constraints.

  11. Consideration of environmental externality costs in electric utility resource selections and regulation

    International Nuclear Information System (INIS)

    Ottinger, R.L.

    1990-01-01

    A surprising number of state electric utility regulatory commissions (half) have started to require consideration of environmental externality costs in utility planning and resource selection. The principal rationale for doing so is that electric utility operations impose very real and large damages to human health and the environment which are not taken into account by traditional utility least cost planning, resource selection procedures, or by government pollution regulation. These failures effectively value the residual environmental costs to society of utility operations at zero. The likely future prospect for more stringent governmental pollution regulation renders imprudent the selection of resources without taking environmental externality costs into consideration. Most regulatory commissions requiring environmental externality consideration have left it to the utilities to compute the societal costs, although a few have either set those costs themselves or used a proxy adder to polluting resource costs (or bonus for non-polluting resources). These commissions have used control or pollution mitigation costs, rather than societal damage costs, in their regulatory computations. This paper recommends that damage costs be used where adequate studies exist to permit quantification, discusses the methodologies for their measurement, and describes the means that have been and might be used for their incorporation

  12. Internal and External reconnection in a Series of Homologous Solar Flares

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities approximately 20 km/s. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the. time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME. External reconnection, first occurring between the escaping CME and the coronal hole field, and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the "breakout model" of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, are released primarily by the internal reconnection.

  13. Internal and External Light Trapping for Solar Cells and Modules

    NARCIS (Netherlands)

    van Dijk, L.

    2016-01-01

    Renewable energy resources are essential to realize a sustainable society and a clean environment. In virtually all energy scenarios, solar power will supply a significant share of the world energy demand within a few decades. This energy transition can be significantly supported and accelerated

  14. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  15. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly......How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  16. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information

    International Nuclear Information System (INIS)

    Polo, J.; Bernardos, A.; Navarro, A.A.; Fernandez-Peruchena, C.M.; Ramírez, L.; Guisado, María V.; Martínez, S.

    2015-01-01

    Highlights: • Satellite-based, reanalysis data and measurements are combined for solar mapping. • Plant output modeling for PV and CSP results in simple expressions of solar potential. • Solar resource, solar potential are used in a GIS for determine technical solar potential. • Solar resource and potential maps of Vietnam are presented. - Abstract: The present paper presents maps of the solar resources in Vietnam and of the solar potential for concentrating solar power (CSP) and for grid-connected photovoltaic (PV) technology. The mapping of solar radiation components has been calculated from satellite-derived data combined with solar radiation derived from sunshine duration and other additional sources of information based on reanalysis for several atmospheric and meteorological parameters involved. Two scenarios have been selected for the study of the solar potential: CSP Parabolic Trough of 50 MWe and grid-connected Flat Plate PV plant of around 1 MWe. For each selected scenario plant performance simulations have been computed for developing simple expressions that allow the estimation of the solar potential from the annual solar irradiation and the latitude of every site in Vietnam. Finally, Geographic Information Systems (GIS) have been used for combining the solar potential with the land availability according each scenario to deliver the technical solar potential maps of Vietnam

  17. Implications of applying solar industry best practice resource estimation on project financing

    International Nuclear Information System (INIS)

    Pacudan, Romeo

    2016-01-01

    Solar resource estimation risk is one of the main solar PV project risks that influences lender’s decision in providing financing and in determining the cost of capital. More recently, a number of measures have emerged to mitigate this risk. The study focuses on solar industry’s best practice energy resource estimation and assesses its financing implications to the 27 MWp solar PV project study in Brunei Darussalam. The best practice in resource estimation uses multiple data sources through the measure-correlate-predict (MCP) technique as compared with the standard practice that rely solely on modelled data source. The best practice case generates resource data with lower uncertainty and yields superior high-confidence energy production estimate than the standard practice case. Using project financial parameters in Brunei Darussalam for project financing and adopting the international debt-service coverage ratio (DSCR) benchmark rates, the best practice case yields DSCRs that surpass the target rates while those of standard practice case stay below the reference rates. The best practice case could also accommodate higher debt share and have lower levelized cost of electricity (LCOE) while the standard practice case would require a lower debt share but having a higher LCOE. - Highlights: •Best practice solar energy resource estimation uses multiple datasets. •Multiple datasets are combined through measure-correlate-predict technique. •Correlated data have lower uncertainty and yields superior high-confidence energy production. •Best practice case yields debt-service coverage ratios (DSCRs) that surpass the benchmark rates. •Best practice case accommodates high debt share and have low levelized cost of electricity.

  18. Anatomical entity recognition with a hierarchical framework augmented by external resources.

    Directory of Open Access Journals (Sweden)

    Yan Xu

    Full Text Available References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available.

  19. External walls made of solar Lego bricks. Sulfurcell head office building: External wall construction according to the dimensions of Sulfurcell solar modules; Solare Legosteinfassade. Die Masse der hauseigenen Module bildeten den Ausgangspunkt fuer die Planung des Sulfurcell-Hauptquartiers

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Neelke

    2009-11-15

    The Sulfurcell Solartechnik GmbH constructed a new office building at Berlin-Adlershof. The building's external walls were designed on the basis of the frameless Sulfurcell standard module. The building intends to prove that solar modules are not a luxury item but an efficient and easy-to-handle constructional material. (orig.)

  20. Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells.

    Science.gov (United States)

    Ravishankar, Sandheep; Aranda, Clara; Boix, Pablo P; Anta, Juan A; Bisquert, Juan; Garcia-Belmonte, Germà

    2018-06-07

    Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, identifying the evolution of the EQE over a range of frequencies, displaying a singular reduction at very low frequencies. This reduction in EQE is ascribed to additional resistive contributions hindering charge extraction in the perovskite solar cell at short-circuit conditions, which are delayed because of the concomitant large low-frequency capacitance.

  1. Examining internal and external job resources in child welfare: Protecting against caseworker burnout.

    Science.gov (United States)

    He, Amy S; Phillips, Jon D; Lizano, Erica L; Rienks, Shauna; Leake, Robin

    2018-04-28

    Given intense job demands, it is not surprising that job burnout is a consistent threat to the well-being and retention of the child welfare workforce. Guided by central postulates of the Job Demands and Resources (JD-R) model which suggests that job burnout develops because of experiences of high work demands coupled with low resources in the workplace, we applied a conceptual model of job burnout (client and work related) that accounts for both internal and external resources available to child welfare workers. Findings among child welfare caseworkers from three states (N = 1917) indicate that job demands (stress and time pressure) were positively related to client- and work-related burnout. Additionally, both internal and external resources moderated the relationships between job demands and client- and work-related burnout. Study findings have workforce management implications in the child welfare sector, including the role resources might play in mitigating the negative impact of job demands on burnout in the child welfare workforce. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Estimating solar resources in Mexico using cloud cover data

    Energy Technology Data Exchange (ETDEWEB)

    Renne, David; George, Ray; Brady, Liz; Marion, Bill [National Renewable Energy Laboratory, Colorado (United States); Estrada Cajigal, Vicente [Cuernavaca, Morelos (Mexico)

    2000-07-01

    This paper presents the results of applying the National Renewable Energy Laboratory's (NREL) Climatological Solar Radiation (CSR) model to Mexico to develop solar resource data. A major input to the CSR model is a worldwide surface and satellite-derived cloud cover database, called the Real Time Nephanalysis (RTNEPH). The RTNEPH is developed by the U.S. Air Force and distributed by the U.S. National Climatic Data Center. The RTNEPH combines routine ground-based cloud cover observations made every three hours at national weather centers throughout the world with satellite-derived cloud cover information developed from polar orbiting weather satellites. The data are geospatially digitized so that multilayerd cloud cover information is available on a grid of approximately 40-km to a side. The development of this database is an ongoing project that now covers more than twenty years of observations. For the North America analysis (including Mexico) we used an 8-year summarized histogram of the RTNEPH that provides monthly average cloud cover information for the period 1985-1992. The CSR model also accounts for attenuation of the solar beam due to aerosols, atmospheric trace gases, and water vapor. The CSR model outputs monthly average direct normal, global horizontal and diffuse solar information for each of the 40-km grid cells. From this information it is also possible to produce solar resource estimates for various solar collector types and orientations, such as flat plate collectors oriented at latitude tilt, or concentrating solar power collectors. Model results are displayed using Geographic Information System software. CSR model results for Mexico are presented here, along with a discussion of earlier solar resource assessment studies for Mexico, where both modeling approaches and measurement analyses have been used. [Spanish] Este articulo presenta los resultados de aplicar el modelo Radiacion Solar Climatologica CSR del NREL (National Renewable Energy

  3. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.

    Science.gov (United States)

    Kaya, Mine; Hajimirza, Shima

    2018-05-25

    This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.

  4. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  5. The effect of natural resources on a sustainable development policy: The approach of non-sustainable externalities

    International Nuclear Information System (INIS)

    Schilling, Markus; Chiang Lichun

    2011-01-01

    The debate about the importance of non-renewable resources for economic development between optimists and pessimists shows that the extensive depletion of non-renewable resources, particularly oil, along with a higher level of consumption could have a significant impact on the economic development of future generations. Based on this debate, this paper proposes criteria under which the depletion of non-renewable resources would create excess costs for future generations. Therefore, this paper aims to answer the question 'What will be the impact of the depletion of non-renewable resources on sustainable economic development?' Accordingly, a sustainable development policy appears feasible by minimizing non-sustainable externalities which derive from future externalities that weigh the benefits from a previous employment of natural resources. The research based on qualitative analysis clarifies the reasons for and the extents of taking sustainability into account as well as points to difficulties of implementing policies to time the transition towards a sustainable economic development. Finally, the research shows the implications of this approach for environmental degradation, the depletion of non-renewable resources and energy production. - Research Highlights: →Economic development will more or less smoothly switch to the use of renewable substitutes. →The transition towards a sustainable use of resources may inherit costs for future generations. →Non-sustainable externalities show the future costs of excessive resource depletion. →The approach aims to take the long-term global effects of resource substitution into account.

  6. Enhanced Light Harvesting in Dye-Sensitized Solar Cell Using External Lightguide

    Directory of Open Access Journals (Sweden)

    Chi-Hui Chien

    2011-01-01

    Full Text Available An external lightguide (EL for enhancing the light-harvesting efficiency of dye-sensitized solar cells (DSSCs was designed and developed. The EL attached to the exterior of a DSSC photoelectrode directed light on a dye-covered nanoporous TiO2 film (D-NTF of the photoelectrode. Experimental tests confirmed that the EL increased the light-harvesting efficiency of a DSSC with an active area of 0.25 cm2 by 30.69%. Photocurrent density and the power conversion efficiency were also increased by 38.12% and 25.09%, respectively.

  7. The evaluation of external data resources for business intelligence applications: the example of the Czech Republic

    Directory of Open Access Journals (Sweden)

    Veronika Jasikova

    2012-01-01

    Full Text Available Contemporary business requires relevant data for appropriate, effective and reliable decisions. The concept of Business Intelligence which has been successfully established in a lot of organisations necessitates gathering relevant internal as well as external data which are often hardly acquirable. The aim of this paper is to analyse both the quality and availability of the sample of the external data resources on the basis of selected criteria and to enable the evaluation of their potential. The research reveals that the resources are currently not as suitable and utilisable for the purposes of Business Intelligence as they are expected to be. Although there are exceptions such as data provided by particular governmental or national institutions, the majority of external data resources does not correspond to the requirements posed to their availability, credibility, update regularity, stability and technical accessibility.

  8. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    International Nuclear Information System (INIS)

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H 2 . We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H 2 , He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M ⊕ of water vapor in the outer solar nebula and protoplanetary disks in H II regions

  9. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    Science.gov (United States)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  10. Wind/solar resource in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, V.; Starcher, K.; Gaines, H. [West Texas A& M Univ., Canyon, TX (United States)

    1997-12-31

    Data are being collected at 17 sites to delineate a baseline for the wind and solar resource across Texas. Wind data are being collected at 10, 25, and 40 m (in some cases at 50 m) to determine wind shear and power at hub heights of large turbines. Many of the sites are located in areas of predicted terrain enhancement. The typical day in a month for power and wind turbine output was calculated for selected sites and combination of sites; distributed systems. Major result to date is that there is the possibility of load matching in South Texas during the summer months, even though the average values by month indicate a low wind potential.

  11. Ultra-Portable Solar-Powered 3D Printers for Onsite Manufacturing of Medical Resources.

    Science.gov (United States)

    Wong, Julielynn Y

    2015-09-01

    The first space-based fused deposition modeling (FDM) 3D printer is powered by solar photovoltaics. This study seeks to demonstrate the feasibility of using solar energy to power a FDM 3D printer to manufacture medical resources at the Mars Desert Research Station and to design an ultra-portable solar-powered 3D printer for off-grid environments. Six solar panels in a 3×2 configuration, a voltage regulator/capacitor improvised from a power adapter, and two 12V batteries in series were connected to power a FDM 3D printer. Three designs were printed onsite and evaluated by experts post analogue mission. A solar-powered 3D printer composed of off-the-shelf components was designed to be transported in airline carry-on luggage. During the analogue mission, the solar-powered printer could only be operated for solar-powered 3D printer was designed that could print an estimated 16 dental tools or 8 mallet finger splints or 7 scalpel handles on one fully charged 12V 150Wh battery with a 110V AC converter. It is feasible to use solar energy to power a 3D printer to manufacture functional and personalized medical resources at a Mars analogue research station. Based on these findings, a solar-powered suitcase 3D printing system containing solar panels, 12V battery with charge controller and AC inverter, and back-up solar charge controller and inverter was designed for transport to and use in off-grid communities.

  12. Smoothing out the volatility of South Africa’s wind and solar energy resources

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2015-10-01

    Full Text Available In the past, renewables were mainly driven by the US, Europe and China, but South Africa is slowly picking up. This presentation discusses South Africa's wind and solar resources as alternative energy resources....

  13. Assessment of optical performance of three non-tracking, non-imaging, external compound parabolic concentrators designed for high temperature solar thermal collector units

    OpenAIRE

    Cisneros, Jesus

    2010-01-01

    The objective of this thesis is to perform a preliminary optical assessment of the external compound parabolic concentrator (XCPC) component in three concentrating solar thermal units. Each solar thermal unit consists an optical element (the non-imaging concentrating reflector) and a thermal element (the evacuated glass tube solar absorber). The three concentrating solar thermal units discussed in this work are DEWAR 58, a direct flow all-glass dewar, DEWAR 47 an indirect flow ...

  14. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  15. Wind and solar energy resources on the 'Roof of the World'

    Science.gov (United States)

    Zandler, Harald; Morche, Thomas; Samimi, Cyrus

    2015-04-01

    The Eastern Pamirs of Tajikistan, often referred to as 'Roof of the World', are an arid high mountain plateau characterized by severe energy poverty that may have great potential for renewable energy resources due to the prevailing natural conditions. The lack of energetic infrastructure makes the region a prime target for decentralized integration of wind and solar power. However, up to date no scientific attempt to assess the regional potential of these resources has been carried out. In this context, it is particularly important to evaluate if wind and solar energy are able to provide enough power to generate thermal energy, as other thermal energy carriers are scarce or unavailable and the existing alternative, local harvest of dwarf shrubs, is unsustainable due to the slow regeneration in this environment. Therefore, this study examines the feasibility of using wind and solar energy as thermal energy sources. Financial frame conditions were set on a maximum amount of five million Euros. This sum provides a realistic scenario as it is based on the current budget of the KfW development bank to finance the modernization of the local hydropower plant in the regions only city, Murghab, with about 1500 households. The basis for resource assessment is data of four climate stations, erected for this purpose in 2012, where wind speed, wind direction, global radiation and temperature are measured at a half hourly interval. These measurements confirm the expectation of a large photovoltaic potential and high panel efficiency with up to 84 percent of extraterrestrial radiation reaching the surface and only 16 hours of temperatures above 25°C were measured in two years at the village stations on average. As these observations are only point measurements, radiation data and the ASTER GDEM was used to train a GIS based solar radiation model to spatially extrapolate incoming radiation. With mean validation errors ranging from 5% in July (minimum) to 15% in December (maximum

  16. Evaluation of Sources of Uncertainties in Solar Resource Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-25

    This poster presents a high-level overview of sources of uncertainties in solar resource measurement, demonstrating the impact of various sources of uncertainties -- such as cosine response, thermal offset, spectral response, and others -- on the accuracy of data from several radiometers. The study provides insight on how to reduce the impact of some of the sources of uncertainties.

  17. Determining magnetospheric ULF wave activity from external drivers using the most influential solar wind parameters

    Science.gov (United States)

    Bentley, S.; Watt, C.; Owens, M. J.

    2017-12-01

    Ultra-low frequency (ULF) waves in the magnetosphere are involved in the energisation and transport of radiation belt particles and are predominantly driven by the external solar wind. By systematically examining the instantaneous relative contribution of non-derived solar wind parameters and accounting for their interdependencies using fifteen years of ground-based measurements (CANOPUS) at a single frequency and magnetic latitude, we conclude that the dominant causal parameters for ground-based ULF wave power are solar wind speed v, interplanetary magnetic field component Bz and summed power in number density perturbations δNp. We suggest that these correspond to driving by the Kelvin-Helmholtz instability, flux transfer events and direct perturbations from solar wind structures sweeping past. We will also extend our analysis to a stochastic wave model at multiple magnetic latitudes that will be used in future to predict background ULF wave power across the radiation belts in different magnetic local time sectors, and to examine the relative contribution of the parameters v, Bz and var(Np) in these sectors.

  18. Scaled model guidelines for solar coronagraphs' external occulters with an optimized shape.

    Science.gov (United States)

    Landini, Federico; Baccani, Cristian; Schweitzer, Hagen; Asoubar, Daniel; Romoli, Marco; Taccola, Matteo; Focardi, Mauro; Pancrazzi, Maurizio; Fineschi, Silvano

    2017-12-01

    One of the major challenges faced by externally occulted solar coronagraphs is the suppression of the light diffracted by the occulter edge. It is a contribution to the stray light that overwhelms the coronal signal on the focal plane and must be reduced by modifying the geometrical shape of the occulter. There is a rich literature, mostly experimental, on the appropriate choice of the most suitable shape. The problem arises when huge coronagraphs, such as those in formation flight, shall be tested in a laboratory. A recent contribution [Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757] provides the guidelines for scaling the geometry and replicate in the laboratory the flight diffraction pattern as produced by the whole solar disk and a flight occulter but leaves the conclusion on the occulter scale law somehow unjustified. This paper provides the numerical support for validating that conclusion and presents the first-ever simulation of the diffraction behind an occulter with an optimized shape along the optical axis with the solar disk as a source. This paper, together with Opt. Lett.41, 757 (2016)OPLEDP0146-959210.1364/OL.41.000757, aims at constituting a complete guide for scaling the coronagraphs' geometry.

  19. Competition partition of soil and solar radiation resources between soybean cultivars and concurrent genotypes

    International Nuclear Information System (INIS)

    Bianchi, M.A.; Fleck, N.G.; Dillenburg, L.R.

    2006-01-01

    Plants compete for environmental resources located below and over soil surface. Physical separation of competition allows understanding the relative importance of each fraction, as well as identifying possible differences among species. The aim of this research was to separate the individual effects resulting from competition for soil or solar radiation resources, between soybean and concurrent plants. Thus, experiments using pots were carried out at UFRGS, in Porto Alegre-RS, in 2001 and 2002. The treatments tested resulted from the combinations of two concurrent genotypes (crop and competitor) and four competition conditions (absence of competition, competition for soil and solar radiation, competition for soil resources, and competition for solar radiation). Soybean cultivars IAS 5 and FEPAGRO RS 10 represented the crop, whereas radish forage and the soybean cultivar FUNDACEP 33 were the competitors tested. Morpho-physiological variables were evaluated in the soybean plants and radish forage. Growth of the soybean plants was most affected by soil resources competition, with RS 10 cultivar being more competitive than IAS 5.Radish forage did not interfere in the growth of soybean cultivars but it benefited from soybean presence. (author) 6

  20. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  1. Elastic Extension of a CMS Computing Centre Resources on External Clouds

    Science.gov (United States)

    Codispoti, G.; Di Maria, R.; Aiftimiei, C.; Bonacorsi, D.; Calligola, P.; Ciaschini, V.; Costantini, A.; Dal Pra, S.; DeGirolamo, D.; Grandi, C.; Michelotto, D.; Panella, M.; Peco, G.; Sapunenko, V.; Sgaravatto, M.; Taneja, S.; Zizzi, G.

    2016-10-01

    After the successful LHC data taking in Run-I and in view of the future runs, the LHC experiments are facing new challenges in the design and operation of the computing facilities. The computing infrastructure for Run-II is dimensioned to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, CMS - along the lines followed by other LHC experiments - is exploring the opportunity to access Cloud resources provided by external partners or commercial providers. Specific use cases have already been explored and successfully exploited during Long Shutdown 1 (LS1) and the first part of Run 2. In this work we present the proof of concept of the elastic extension of a CMS site, specifically the Bologna Tier-3, on an external OpenStack infrastructure. We focus on the “Cloud Bursting” of a CMS Grid site using a newly designed LSF configuration that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on the OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage. The amount of resources allocated thus can be elastically modeled to cope up with the needs of CMS experiment and local users. Moreover, a direct access/integration of OpenStack resources to the CMS workload management system is explored. In this paper we present this approach, we report on the performances of the on-demand allocated resources, and we discuss the lessons learned and the next steps.

  2. The Impact of Internal and External Resources, and Strategic Actions in Business Networks on Firm Performance in the Software Industry

    OpenAIRE

    Anggraeni, E.

    2014-01-01

    Understanding the variance in firm performance has been an important topic in the strategic management literature. In the last two decades it has become particularly interesting as business networks increasingly have become an integrated part of a firm's environment. Besides the internal resources, the less-controlled external resources in the firm’s business networks to affect its performance too. The uncertainty associated with the lower levels of control over external resources implies tha...

  3. COMPLEX MAPPING OF ENERGY RESOURCES FOR ALLOCATION OF SOLAR AND WIND ENERGY OBJECTS

    Directory of Open Access Journals (Sweden)

    B. A. Novakovskiy

    2016-01-01

    Full Text Available The paper presents developed methodology of solar and wind energy resources complex mapping at the regional level, taking into account the environmental and socio-economic factors affecting the placement of renewable energy facilities. Methodology provides a reasonable search and allocation of areas, the most promising for the placement of wind and solar power plants.

  4. Wind and Solar Energy Resource Assessment for Navy Installations in the Midwestern US

    Science.gov (United States)

    Darmenova, K.; Apling, D.; Higgins, G. J.; Carnes, J.; Smith, C.

    2012-12-01

    A stable supply of energy is critical for sustainable economic development and the ever-increasing demand for energy resources drives the need for alternative weather-driven renewable energy solutions such as solar and wind-generated power. Recognizing the importance of energy as a strategic resource, the Department of the Navy has focused on energy efficient solutions aiming to increase tactical and shore energy security and reduce greenhouse gas emissions. Implementing alternative energy solutions will alleviate the Navy installations demands on the National power grid, however transitioning to renewable energy sources is a complex multi-stage process that involves initial investment in resource assessment and feasibility of building solar and wind power systems in Navy's facilities. This study focuses on the wind and solar energy resource assessment for Navy installations in the Midwestern US. We use the dynamically downscaled datasets at 12 km resolution over the Continental US generated with the Weather Research and Forecasting (WRF) model to derive the wind climatology in terms of wind speed, direction, and wind power at 20 m above the surface for 65 Navy facilities. In addition, we derived the transmissivity of the atmosphere, diffuse radiation fraction, cloud cover and seasonal energy potential for a zenith facing surface with unobstructed horizon for each installation location based on the results of a broadband radiative transfer model and our cloud database based on 17-years of GOES data. Our analysis was incorporated in a GIS framework in combination with additional infrastructure data that enabled a synergistic resource assessment based on the combination of climatological and engineering factors.

  5. The state of solar energy resource assessment in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Alberto; Escobar, Rodrigo [Mechanical and Metallurgical Engineering Department, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago (Chile); Colle, Sergio [Laboratorios de Engenharia de Processos de Conversao e Tecnologia de Energia - LEPTEN, Mechanical Engineering Department, Universidade Federal de Santa Catarina, Florianopolis (Brazil); de Abreu, Samuel Luna [IFSC - Instituto Federal de Santa Catarina, Campus Sao Jose, Sao Jose - SC (Brazil)

    2010-11-15

    The Chilean government has determined that a renewable energy quota of up to 10% of the electrical energy generated must be met by 2024. This plan has already sparked interest in wind, geothermal, hydro and biomass power plants in order to introduce renewable energy systems to the country. Solar energy is being considered only for demonstration, small-scale CSP plants and for domestic water heating applications. This apparent lack of interest in solar energy is partly due to the absence of a valid solar energy database, adequate for energy system simulation and planning activities. One of the available solar radiation databases is 20-40 years old, with measurements taken by pyranographs and Campbell-Stokes devices. A second database from the Chilean Meteorological Service is composed by pyranometer readings, sparsely distributed along the country and available from 1988, with a number of these stations operating intermittently. The Chilean government through its National Energy Commission (CNE) has contracted the formulation of a simulation model and also the deployment of network of measurement stations in northern Chile. Recent efforts by the authors have resulted in a preliminary assessment by satellite image processing. Here, we compare the existing databases of solar radiation in Chile. Monthly mean solar energy maps are created from ground measurements and satellite estimations and compared. It is found that significant deviation exists between sources, and that all ground-station measurements display unknown uncertainty levels, thus highlighting the need for a proper, country-wide long-term resource assessment initiative. However, the solar energy levels throughout the country can be considered as high, and it is thought that they are adequate for energy planning activities - although not yet for proper power plant design and dimensioning. (author)

  6. Enhancing the solar still using immersion type water heater productivity and the effect of external cooling fan in winter

    International Nuclear Information System (INIS)

    Al-Garni, Ahmed Z.

    2012-01-01

    In the present work an attempt is made to enhance the of double slope solar still productivity by an immersion type water heater using. The effect of using an external fan to cool the glass surface is also examined. Experiments were carried out for winter season in Saudi Arabian climatic conditions at latitude 26 degree N. A solar still with 35 degree glass slope angle is chosen in our study. Since the yield of a solar still is more for low water depths, the water level in the base tank was maintained at 1 cm. The experimental results showed that the productivity increased by a significant 370% when two water heaters each having 500 W capacities was used. When external cooling fan was used the productivity was found to decrease by 4 % and 8% for wind speeds of 7 m/s and 9 m/s respectively. Thermal modeling was also done by the heat and mass transfer relations using, and then numerical simulations were carried out to validate with the experimental results. A good agreement between experimental and numerical results was found. The present study is partial implementation of two patents submitted in this field. (authors)

  7. Renewable energy and resource curse on the possible consequences of solar energy in North Africa

    NARCIS (Netherlands)

    Bae, Yuh Jin

    2013-01-01

    The main aim of this thesis is to project whether the five North African countries (Algeria, Egypt, Libya, Morocco, and Tunisa) have the potentials to suffer from a solar energy curse. Under the assumption that a solar energy curse will be similar to the current resource curse, the combination of

  8. Theoretical performance of serrated external occulters for solar coronagraphy. Application to ASPIICS

    Science.gov (United States)

    Rougeot, R.; Aime, C.

    2018-04-01

    Context. This study is made in the context of the future solar coronagraph ASPIICS of the ESA formation-flying mission Proba-3. Aims: In the context of solar coronagraphy, we provide a comparative study of the theoretical performance of serrated (or toothed) external occulters by varying the number and size of the teeth, which we compare to the sharp-edged and apodized disks. The tooth height is small (a few centimeters), to avoid hindering the observation of the solar corona near the limb. We first analyze the diffraction pattern produced by such occulters. In a second step, we compute the umbra profile by integration over the Sun. Methods: We explored a few methods to compute the diffraction pattern. Two of them were implemented. The first is based on 2D fast Fourier transformation (FFT) routines and a multiplication by the Fresnel filter of the form exp(-iπλzu2). Simple rules were derived and discussed to set the sampling conditions. The Maggi-Rubinowicz representation is then proposed as an alternative method, and is proven to be very efficient for this study. Results: Serrated occulters tend to create a two-level intensity pattern, the inner being the darker, which perfectly matches a previously reported geometrical prediction. The diffraction in this central region is lower by two to four orders of magnitude when compared to the sharp-edged disk. The achieved umbra level at the center ranges from 10-4 to below 10-7, depending on the geometry of the teeth. Conclusions: Our study shows that serrated occulters can achieve a high rejection and can almost reach the performance of the apodized disk when very many teeth are used. We prove that shaped occulters must be preferred to simple disks in solar and stellar coronagraphy.

  9. Why can’t I measure the external quantum efficiency of the Ge subcell of my multijunction solar cell?

    Energy Technology Data Exchange (ETDEWEB)

    Barrigón, Enrique, E-mail: enrique.barrigon@ies-def.upm.es; Espinet-González, Pilar; Contreras, Yedileth; Rey-Stolle, Ignacio [Instituto de Energía Solar, Universidad Politécnica de Madrid ETSI de Telecomunicación, Avd. Complutense 30, 28040 Madrid (Spain)

    2015-09-28

    The measurement of the external quantum efficiency (EQE) of low bandgap subcells in a multijunction solar cell can be sometimes problematic. In particular, this paper describes a set of cases where the EQE of a Ge subcell in a conventional GaInP/GaInAs/Ge triple-junction solar cell cannot be fully measured. We describe the way to identify each case by tracing the I-V curve under the same light-bias conditions applied for the EQE measurement, together with the strategies that could be implemented to attain the best possible measurement of the EQE of the Ge subcell.

  10. Entrepreneurial Team: How Human and Social Capital Influence Entrepreneurial Opportunity Identification and Mobilization of External Resources

    Directory of Open Access Journals (Sweden)

    Ahlem Omri

    2015-01-01

    Full Text Available Entrepreneurial teams play an extremely important role in the development of any country, especially in developing countries. To understand entrepreneurial teams that operate in a low-technology industry, we rely on the network and human perspective on entrepreneurship. In this paper, we investigate how the social and human capital of entrepreneurial team members influences their ability to identify entrepreneurial opportunities and mobilize external resources. We extend prior research in two ways. First, by using the ordered probit method to measure the identified entrepreneurial opportunities number at the level of entrepreneurial teams. Second, to our knowledge, there is a very small number of studies that have theoretically and empirically investigated the mobilization of external resources, especially at the level of entrepreneurial teams.

  11. Visual Resource Analysis for Solar Energy Zones in the San Luis Valley

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Abplanalp, Jennifer M. [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Zvolanek, Emily [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Brown, Jeffery [Bureau of Land Management, Washington, DC (United States). Dept. of the Interior

    2016-01-01

    This report summarizes the results of a study conducted by Argonne National Laboratory’s (Argonne’s) Environmental Science Division for the U.S. Department of the Interior Bureau of Land Management (BLM). The study analyzed the regional effects of potential visual impacts of solar energy development on three BLM-designated solar energy zones (SEZs) in the San Luis Valley (SLV) in Colorado, and, based on the analysis, made recommendations for or against regional compensatory mitigation to compensate residents and other stakeholders for the potential visual impacts to the SEZs. The analysis was conducted as part of the solar regional mitigation strategy (SRMS) task conducted by BLM Colorado with assistance from Argonne. Two separate analyses were performed. The first analysis, referred to as the VSA Analysis, analyzed the potential visual impacts of solar energy development in the SEZs on nearby visually sensitive areas (VSAs), and, based on the impact analyses, made recommendations for or against regional compensatory mitigation. VSAs are locations for which some type of visual sensitivity has been identified, either because the location is an area of high scenic value or because it is a location from which people view the surrounding landscape and attach some level of importance or sensitivity to what is seen from the location. The VSA analysis included both BLM-administered lands in Colorado and in the Taos FO in New Mexico. The second analysis, referred to as the SEZ Analysis, used BLM visual resource inventory (VRI) and other data on visual resources in the former Saguache and La Jara Field Offices (FOs), now contained within the San Luis Valley FO (SLFO), to determine whether the changes in scenic values that would result from the development of utility-scale solar energy facilities in the SEZs would affect the quality and quantity of valued scenic resources in the SLV region as a whole. If the regional effects were judged to be significant, regional

  12. An analysis of wind and solar energy resources for the State of Kuwait

    Science.gov (United States)

    Alhusainan, Haya Nasser

    Kuwait is an important producer of oil and gas. Its rapid socio-economic growth has been characterized by increasing population, high rates of urbanization, and substantial industrialization, which is transforming it into a large big energy consumer as well. In addition to urbanization, climatic conditions have played an important function in increasing demand for electricity in Kuwait. Electricity for thermal cooling has become essential in the hot desert climate, and its use has developed rapidly along with the economic development, urbanization, and population growth. This study examines the long-term wind and solar resources over the Kuwait to determine the feasibility of these resources as potential sustainable and renewable energy sources. The ultimate goal of this research is to help identify the potential role of renewable energy in Kuwait. This study will examine the drivers and requirements for the deployment of these energy sources and their possible integration into the electricity generation sector to illustrate how renewable energy can be a suitable resource for power production in Kuwait and to illustrate how they can also be used to provide electricity for the country. For this study, data from sixteen established stations monitored by the meteorological department were analyzed. A solar resource map was developed that identifies the most suitable locations for solar farm development. A range of different relevant variables, including, for example, electric networks, population zones, fuel networks, elevation, water wells, streets, and weather stations, were combined in a geospatial analysis to predict suitable locations for solar farm development and placement. An analysis of recommendations, future energy targets and strategies for renewable energy policy in Kuwait are then conducted. This study was put together to identify issues and opportunities related to renewable energy in the region, since renewable energy technologies are still limited in

  13. Determining the Location of the Snowline in an Externally-Photoevaporated Solar Nebula

    Science.gov (United States)

    Kalyaan, Anusha; Desch, Steven

    2015-11-01

    The water snowline in the solar nebula, the point beyond which water exists abundantly as ice, is often taken to lie at 2.7 AU from the Sun, where temperatures are ~170 K, the sublimation point of water [1,2]. While superficially consistent with the spatial distribution of (wet) C-type and (dry) S-type asteroids between 2-3AU [3], most disk models place the snowline closer to ~1AU [4]. Aside from temperature, radial transport and outward diffusion of water vapor, and the inward drift of ices also determine where the snowline is [5,6]. Over many Myr, a steady cycling of water inward and outward across the T=170 K line balance out, with an enhanced ice abundance outside creating the ‘snowline’[2]. But external effects like photoevaporation of the nebula by nearby massive stars can potentially shift this balance, lead to net outward water vapor transport from the inner nebula [7,8], pushing the snowline beyond T=170 K, thus giving rise to water-poor planets.To test this hypothesis, we have first built a 1+1D protoplanetary disk evolution model, incorporating viscosity due to the magnetorotational instability with a non-uniform turbulent viscosity α across disk radius r, ionization equilibrium with dust, and external photoevaporation [8]. Our simulation results suggest that the structure of the photoevaporated solar nebula with a non-uniform α(r) was more complex than previously thought, with the following features: (i) very steep Σ profile (Σ(r)=Σ0 r-p, where slope p = 3-5, > pMMSN=1.5) due to the varying α(r), that is further steepened by the effect of dust and photoevaporation, and (ii) transition radius (where net disk mass flow changes from inward flow to outward) that is present very close to the star (~3AU). We apply these new results to study the distribution of water in the solar nebula. References: [1] Hayashi, C., (1981) PThP.Supp. 70, 35-53 [2] Stevenson,D., & Lunine,J., (1988) Icarus 75, 146-155 [3] Gradie, J., & Tedesco, E.,(1982) Science 216

  14. Externalities in utility resource selection: A means to formally recognize the envionmental benefits of wind farms

    International Nuclear Information System (INIS)

    Birner, S.

    1992-01-01

    Wind can only make its full contribution to the minimization of the total cost of energy services if it is valued for all the costs that it avoids, including avoided environmental costs. Means of incorporating environmental costs, or externalities, into utility planning decisions are described. Externalities are defined as uncompensated costs or benefits of an action borne by a party other than the one causing the costs. A simple example of the use of externalities in utility resource selection is presented, comparing costs of a coal-fired power plant and a wind farm. Externalities of wind farms are analyzed and found to be very low. An examination of some aspects of legislation in the USA and Canada shows a trend for utility commissions and other regulatory bodies to determine that including externalitites lies within their mandate. By formally recognizing and accounting for the environmental benefits of wind farms, it is seen that externalities can have a significant effect on utility demand for wind energy. A review of USA state actions regarding externalities is appended. 10 refs

  15. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    Science.gov (United States)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  16. Solar Energy Resource Analysis and Evaluation of Photovoltaic System Performance in Various Regions of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmed Bilal Awan

    2018-04-01

    Full Text Available According to Vision 2030, the Kingdom of Saudi Arabia (K.S.A plans to harness 9.5 GW of energy from renewable energy sources, which includes a major part of solar PV generation. This massive implementation of solar projects requires an accurate assessment and analysis of solar resource data and PV site selection. This paper presents a detailed analysis of one-year solar radiation data and energy output of 100 kW PV systems at 44 different locations across the K.S.A. Coastal areas have a lower amount of global horizontal irradiance (GHI as compared to inland areas. Najran University station gives the highest annual electrical output of 172,083 kWh, yield factor of 1721, and capacity utilization factor of 19.6%. Sharurah and Timma TVTC are second and third best with respect to annual PV performance. Similarly, during high load summer season (April–October, Tabuk station is the best location for a PV power plant with an electrical output of 110,250 kWh, yield factor of 1102, and capacity utilization factor of 21.46%. Overall, the northern province of Tabuk is the most feasible region for a solar PV plant. The basic approach presented in this research study compares solar resource pattern and solar PV system output pattern with the load profile of the country. The site selected based on this criterion is recommended to be economically most feasible which can reduce the stress on electricity companies during high load seasons by clipping the peak load during daytime in the hot summer period.

  17. Controlling thermal properties of dense gas fluidized beds for concentrated solar power by internal and external solids circulation

    Science.gov (United States)

    Ammendola, Paola; Bareschino, Piero; Chirone, Riccardo; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Fluidization technology displays a long record of success stories, mostly related to applications to thermal and thermochemical processes, which are fostering extension to novel and relatively unexplored fields. Application of fluidized beds to collection and thermal storage of solar radiation in Concentrated Solar Power (CSP) is one of the most promising, a field which poses challenging issues and great opportunities to fluidization scientists and technologists. The potential of this growing field calls for reconsideration of some of the typical design and operation guidelines and criteria, with the goal of exploiting the inherently good thermal performances of gas-fluidized beds at their best. "Creative" and non-conventional design and operation of fluidized beds, like those based on internal and external solids circulation, may be beneficial to the enhancement of thermal diffusivity and surface-to-bed heat transfer, improving the potential for application in the very demanding context of CSP with thermal energy storage. This paper investigated: i) a fluidized bed configuration with an uneven distribution of the fluidizing gas to promote vortices in the scale of bed height (internal solids circulation); ii) a dual fluidized bed configuration characterized by an external solids circulation achieved by the operation of a riser and a bubbling fluidized bed. CFD simulations showed the hydrodynamics conditions under which the internal solids circulation was established. The hydrodynamic characterization of the external solids circulation was achieved by an experimental study carried out with different cold models. The dual fluidized bed system was optimized in terms of operating conditions and geometrical features of the connections between two fluidized beds.

  18. Idaho | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov (United States)

    % interest for solar PV projects. Low-interest financing Idaho Energy Resources Authority Solar PV project for financing through the Idaho Governor's Office and the Idaho Energy Resources Authority. Latest -owned community solar project for Idaho Power. Net Metering Idaho does not have statewide net metering

  19. Analysis of the balancing of the wind and solar energy resources in Andalusia (Southern Spain)

    Science.gov (United States)

    Santos-Alamillos, F. J.; Pozo-Vazquez, D.; Lara-Fanego, V.; Ruiz-Arias, J. A.; Hernandez-Alvaro, J.; Tova-Pescador, J.

    2010-09-01

    A higher penetration of the renewable energy in the electric system in the future will be conditioned to a reduction of the uncertainty of the yield. A way to obtain this goal is to analyze the balancing between the productions of different sources of renewable energy, trying to combine these productions. In this work we analyze, from a meteorological point of view, the balancing between wind and solar energy resources in Andalusia (southern Iberian Peninsula). To this end, wind speed and global radiation data corresponding to an one year integration of the Weather Research and Forecasting (WRF) Numerical Weather Prediction (NWP) model were analyzed. Two method of analysis were used: a point correlation analysis and a Canonical Correlation Analysis (CCA). Results from these analyses allow obtaining, eventually, areas of local and distributed balancing between the wind and solar energy resources. The analysis was carried out separately for the different seasons of the year. Results showed, overall, a considerable balancing effect between the wind and solar resources in the mountain areas of the interior of the region, along the coast of the central part of the region and, specially, in the coastal area near the Gibraltar strait. Nevertheless, considerable differences were found between the seasons of the year, which may lead to compensating effects. Autumn proved to be the season with the most significant results.

  20. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2012-07-01

    Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  1. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments

    KAUST Repository

    Sherif, A.

    2012-09-01

    In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a thickness that provides selective shading properties. Perforated wooden solar screens were traditionally used for windows shading. Developing modern types of these shading systems can lead to significant energy savings. The paper addresses the influence of changing the perforation percentage and depth of these screens on the annual energy loads, hence defining the optimum depth/perforation configurations for various window orientations. Series of experiments were performed using the EnergyPlus simulation software for a typical residential building in the Kharga Oasis, located in the Egyptian desert. A range of perforation percentages and depths were tested. Conclusions prove that external fixed deep perforated solar screens could effectively achieve energy savings up to 30% of the total energy consumption in the West and South orientations. Optimum range of depths and perforation percentages were recommended. These are: 80-90% perforation rate and 1:1 depth/opening width ratio. These lighter and deeper solar screen configurations were found to be more efficient in energy consumption in comparison with the traditional ones. © 2012 Elsevier B.V. All rights reserved.

  2. Solar Maps | Geospatial Data Science | NREL

    Science.gov (United States)

    Solar Maps Solar Maps These solar maps provide average daily total solar resource information on disability, contact the Geospatial Data Science Team. U.S. State Solar Resource Maps Access state maps of MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY × U.S. Solar Resource

  3. Books and Other Resources for Education about the August 21, 2017, Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Fraknoi, Andrew; Kentrianakis, Michael

    2017-06-01

    As part of our work to reach and educate the 300+ million Americans of all ages about observing the August 21 solar eclipse, especially by being outdoors in the path of totality but also for those who will see only partial phases, we have compiled annotated lists of books, pamphlets, travel guides, websites, and other information useful for teachers, students, and the general public and made them available on the web, at conferences, and through webinars. Our list includes new eclipse books by David Barron, Anthony Aveni, Frank Close, Tyler Nordgren, John Dvorak, Michael Bakich, and others. We list websites accessible to the general public including those of the International Astronomical Union Working Group on Eclipses (http://eclipses.info, which has links to all the sites listed below); the AAS Eclipse 2017 Task Force (http://eclipse2017.aas.org); NASA Heliophysics (http://eclipse.nasa.gov); Fred Espenak (the updated successor to his authoritative "NASA website": http://EclipseWise.com); Michael Zeiler (http://GreatAmericanEclipse.com); Xavier Jubier (http://xjubier.free.fr/en/site_pages/solar_eclipses/); Jay Anderson (meteorology: http://eclipsophile.com); NASA's Eyes (http://eyes.nasa.gov/eyes-on-eclipse.html and its related app); the Astronomical Society of the Pacific (http://www.astrosociety.org/eclipse); Dan McGlaun (http://eclipse2017.org/); Bill Kramer (http://eclipse-chasers.com). Specialized guides include Dennis Schatz and Andrew Fraknoi's Solar Science for teachers (from the National Science Teachers Association:http://www.nsta.org/publications/press/extras/files/solarscience/SolarScienceInsert.pdf), and a printing with expanded eclipse coverage of Jay Pasachoff's, Peterson Field Guide to the Stars and Planets (14th printing of the fourth edition, 2016: http://solarcorona.com).A version of our joint list is to be published in the July issue of the American Journal of Physics as a Resource Letter on Eclipses, adding to JMP's 2010, "Resource Letter SP

  4. Solar resources estimation combining digital terrain models and satellite images techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, J.L.; Batlles, F.J. [Universidad de Almeria, Departamento de Fisica Aplicada, Ctra. Sacramento s/n, 04120-Almeria (Spain); Zarzalejo, L.F. [CIEMAT, Departamento de Energia, Madrid (Spain); Lopez, G. [EPS-Universidad de Huelva, Departamento de Ingenieria Electrica y Termica, Huelva (Spain)

    2010-12-15

    One of the most important steps to make use of any renewable energy is to perform an accurate estimation of the resource that has to be exploited. In the designing process of both active and passive solar energy systems, radiation data is required for the site, with proper spatial resolution. Generally, a radiometric stations network is used in this evaluation, but when they are too dispersed or not available for the study area, satellite images can be utilized as indirect solar radiation measurements. Although satellite images cover wide areas with a good acquisition frequency they usually have a poor spatial resolution limited by the size of the image pixel, and irradiation must be interpolated to evaluate solar irradiation at a sub-pixel scale. When pixels are located in flat and homogeneous areas, correlation of solar irradiation is relatively high, and classic interpolation can provide a good estimation. However, in complex topography zones, data interpolation is not adequate and the use of Digital Terrain Model (DTM) information can be helpful. In this work, daily solar irradiation is estimated for a wide mountainous area using a combination of Meteosat satellite images and a DTM, with the advantage of avoiding the necessity of ground measurements. This methodology utilizes a modified Heliosat-2 model, and applies for all sky conditions; it also introduces a horizon calculation of the DTM points and accounts for the effect of snow covers. Model performance has been evaluated against data measured in 12 radiometric stations, with results in terms of the Root Mean Square Error (RMSE) of 10%, and a Mean Bias Error (MBE) of +2%, both expressed as a percentage of the mean value measured. (author)

  5. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  6. Estimation of wind and solar resources in Mali

    Energy Technology Data Exchange (ETDEWEB)

    Badger, J.; Kamissoko, F.; Olander Rasmussen, M.; Larsen, Soeren; Guidon, N.; Boye Hansen, L.; Dewilde, L.; Alhousseini, M.; Noergaard, P.; Nygaard, I.

    2012-11-15

    The wind resource has been estimated for all of Mali at 7.5 km resolution using the KAMM/WAsP numerical wind atlas methodology. Three domains were used to cover entire country and three sets of wind classes used to capture change in large scale forcing over country. The final output includes generalized climate statistics for any location in Mali, giving wind direction and wind speed distribution. The modelled generalized climate statistics can be used directly in the WAsP software. The preliminary results show a wind resource, which is relatively low, but which under certain conditions may be economically feasible, i.e. at favourably exposed sites, giving enhanced winds, and where practical utilization is possible, given consideration to grid connection or replacement or augmentation of diesel-based electricity systems. The solar energy resource for Mali was assessed for the period between July 2008 and June 2011 using a remote sensing based estimate of the down-welling surface shortwave flux. The remote sensing estimates were adjusted on a month-by-month basis to account for seasonal differences between the remote sensing estimates and in situ data. Calibration was found to improve the coefficient of determination as well as decreasing the mean error both for the calibration and validation data. Compared to the results presented in the ''Renewable energy resources in Mali - preliminary mapping''-report that showed a tendency for underestimation compared to data from the NASA PPOWER/SSE database, the presented results show a very good agreement with the in situ data (after calibration) with no significant bias. Unfortunately, the NASA-database only contains data up until 2005, so a similar comparison could not be done for the time period analyzed in this study, although the agreement with the historic NASA data is still useful as reference. (LN)

  7. Final Report for Annex II--Assessment of Solar Radiation Resources In Saudi Arabia, 1998-2000

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Wilcox, S. M.; Marion, W. F.; Al-Abbadi, N. M.; Mahfoodh, M.; Al-Otaibi, Z.

    2002-04-01

    The Final Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1998-2000 summarizes the accomplishment of work performed, results achieved, and products produced under Annex II, a project established under the Agreement for Cooperation in the Field of Renewable Energy Research and Development between the Kingdom of Saudi Arabia and the United States. The report covers work and accomplishments from January 1998 to December 2000. A previous progress report, Progress Report for Annex II - Assessment of Solar Radiation Resources in Saudi Arabia 1993-1997, NREL/TP-560-29374, summarizes earlier work and technical transfer of information under the project. The work was performed in at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, at the King Abdulaziz City for Science and Technology (KACST) in Riyadh, Saudi Arabia, and at selected weather stations of the Saudi Meteorological and Environmental Protection Administration (MEPA).

  8. Job Demands and Job Resources in Human Service Managerial Work An External Assessment ThroughWork Content Analysis

    Directory of Open Access Journals (Sweden)

    Linda Corin

    2016-12-01

    Full Text Available Managers’ psychosocial working conditions are important for managerial sustainability in the public sector. The job demands-resources (JD-R model is a widely applied and well-recognized framework for measuring psychosocial working conditions. However, there is still a need for methodological contributions including more objective as well as qualitative ways to assess these conditions. In this study, job demands and job resources as well as the balance between them was qualitatively and externally assessed for first-line human service managers using a work content analysis method. Conditions and actions were focused upon with an external perspective. Special attention was paid to concrete examples and consequences of work characteristics with predefined criteria and cut-off points to guide the assessments. The results reveal an imbalance for human service managers between high levels of job demands and the lack of job resources available to meet these demands. Work overload, conflicting and unclear goals and tasks, emotional demands, restricted control, and lack of supervisory and organizational support generally characterized the managerial assignment. The analysis provided concrete explanations of the current work strain in this group of employees, thereby giving both short-term and long-term possibilities for improvement of managerial work and sustainability.

  9. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  10. Solar energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role solar energy may have in the energy future of the US. The topics discussed in the chapter include the solar resource, solar architecture including passive solar design and solar collectors, solar-thermal concentrating systems including parabolic troughs and dishes and central receivers, photovoltaic cells including photovoltaic systems for home use, and environmental, health and safety issues

  11. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  12. Solar Tutorial and Annotation Resource (STAR)

    Science.gov (United States)

    Showalter, C.; Rex, R.; Hurlburt, N. E.; Zita, E. J.

    2009-12-01

    We have written a software suite designed to facilitate solar data analysis by scientists, students, and the public, anticipating enormous datasets from future instruments. Our “STAR" suite includes an interactive learning section explaining 15 classes of solar events. Users learn software tools that exploit humans’ superior ability (over computers) to identify many events. Annotation tools include time slice generation to quantify loop oscillations, the interpolation of event shapes using natural cubic splines (for loops, sigmoids, and filaments) and closed cubic splines (for coronal holes). Learning these tools in an environment where examples are provided prepares new users to comfortably utilize annotation software with new data. Upon completion of our tutorial, users are presented with media of various solar events and asked to identify and annotate the images, to test their mastery of the system. Goals of the project include public input into the data analysis of very large datasets from future solar satellites, and increased public interest and knowledge about the Sun. In 2010, the Solar Dynamics Observatory (SDO) will be launched into orbit. SDO’s advancements in solar telescope technology will generate a terabyte per day of high-quality data, requiring innovation in data management. While major projects develop automated feature recognition software, so that computers can complete much of the initial event tagging and analysis, still, that software cannot annotate features such as sigmoids, coronal magnetic loops, coronal dimming, etc., due to large amounts of data concentrated in relatively small areas. Previously, solar physicists manually annotated these features, but with the imminent influx of data it is unrealistic to expect specialized researchers to examine every image that computers cannot fully process. A new approach is needed to efficiently process these data. Providing analysis tools and data access to students and the public have proven

  13. Principles of solar engineering

    CERN Document Server

    Goswami, D Yogi

    2015-01-01

    Introduction to Solar Energy ConversionGlobal Energy Needs and ResourcesSolar EnergyEnergy StorageEconomics of Solar SystemsSummary of RE ResourcesForecast of Future Energy MixReferencesFundamentals of Solar RadiationThe Physics of the Sun and Its Energy TransportThermal Radiation FundamentalsSun-Earth Geometric RelationshipSolar RadiationEstimation of Terrestrial Solar RadiationModels Based on Long-Term Measured Horizontal Solar RadiationMeasurement of Solar RadiationSolar Radiation Mapping Using Satellite DataReferencesSuggested ReadingsSolar Thermal CollectorsRadiative Properties and Characteristics of MaterialsFlat-Plate CollectorsTubular Solar Energy CollectorsExperimental Testing of CollectorsConcentrating Solar CollectorsParabolic Trough ConcentratorCompound-Curvature Solar ConcentratorsCentral Receiver CollectorFresnel Reflectors and LensesSolar Concentrator SummaryReferencesSuggested ReadingThermal Energy Storage and TransportThermal Energy StorageTypes of TESDesign of Storage SystemEnergy Transport ...

  14. The Development of a Long-Term, Continually Updated Global Solar Resource at 10 km Resolution: Preliminary Results From Test Processing and Continuing Plans

    Science.gov (United States)

    Stackhouse, P.; Perez, R.; Sengupta, M.; Knapp, K.; Cox, Stephen; Mikovitz, J. Colleen; Zhang, T.; Hemker, K.; Schlemmer, J.; Kivalov, S.

    2014-01-01

    Background: Considering the likelihood of global climatic weather pattern changes and the global competition for energy resources, there is an increasing need to provide improved and continuously updated global Earth surface solar resource information. Toward this end, a project was funded under the NASA Applied Science program involving the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), National Renewable Energy Laboratory (NREL), the State University of New York/Albany (SUNY) and the NOAA National Climatic Data Center (NCDC) to provide NREL with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and variability and to provide a mechanism for continual updates of solar resource information. This new production system is made possible by the efforts of NOAA and NASA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 3-hourly basis beginning from July 1983. The old version of the ISCCP data provided this information for all the world TMs available geosynchronous satellite systems and NOAA TMs AVHRR data sets at a 30 km effective resolution. This new version aims to provide a new and improved satellite calibration at an effective 10 km resolution. Thus, working with SUNY, NASA will develop and test an improved production system that will enable NREL to continually update the Earth TM solar resource. Objective and Methods: In this presentation, we provide a general overview of this project together with samples of the new solar irradiance mapped data products and comparisons to surface measurements at various locations across the world. An assessment of the solar resource values relative to calibration uncertainty and assumptions are presented. Errors resulting assumptions in snow cover and background aerosol

  15. External resources in Libraries: the practice of Fundraising in the State Public Library in Cáceres.

    Directory of Open Access Journals (Sweden)

    Margarita Pérez Pulido

    2013-03-01

    Full Text Available Fundraising is presented as a technique of marketing and communication for managing external resources in libraries. The convergence of the fundraising plan and conceptual planning model can prove the importance of fundraising as a planning tool. From the analysis of a case study, Caceres Public Library, are made some improvements to consolidate this practice as an essential element of the planning libraries.

  16. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Science.gov (United States)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  17. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  18. Influence of misalignments on the performance of externally occulted solar coronagraphs. Application to PROBA-3/ASPIICS

    Science.gov (United States)

    Shestov, S. V.; Zhukov, A. N.

    2018-05-01

    Context. The ASPIICS instrument is a novel externally occulted coronagraph that will be launched on board the PROBA-3 mission of the European Space Agency. The external occulter will be placed on one satellite 150 m ahead of the second satellite that will carry an optical instrument. During 6 h out of 19.38 h of orbit, the satellites will fly in a precise (accuracy around a few millimeters) formation, constituting a giant externally occulted coronagraph. The large distance between the external occulter and the primary objective will allow observations of the white-light solar corona starting from extremely low heights 1.1R⊙. Aims: We intend to analyze influence of shifts of the satellites and misalignments of optical elements on the ASPIICS performance in terms of diffracted light. Based on the quantitative influence of misalignments on diffracted light, we provide a recipe for choosing the size of the internal occulter (IO) to achieve a trade-off between the minimal height of observations and sustainability to possible misalignments. Methods: We considered different types of misalignments and analyzed their influence from optical and computational points of view. We implemented a numerical model of the diffracted light and its propagation through the optical system and computed intensities of diffracted light throughout the instrument. Our numerical approach is based on a model from the literature that considered the axisymmetrical case. Here we extend the model to include nonsymmetrical cases and possible misalignments. Results: The numerical computations fully confirm the main properties of the diffracted light that we obtained from semi-analytical consideration. We obtain that relative influences of various misalignments are significantly different. We show that the internal occulter with RIO = 1.694 mm = 1.1R⊙ is large enough to compensate possible misalignments expected to occur in PROBA-3/ASPIICS. Besides that we show that apodizing the edge of the

  19. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2005-01-01

    ). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more......A large variety of solar combi systems are on the marked to day. The best performing systems are highly advanced energy systems with thermal stratification manifolds, an efficient boiler and only one control system, which controls both the boiler and the solar collector loop (Weiss et al., 2003...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...

  20. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  1. Solar tower enhanced natural draft dry cooling tower

    Science.gov (United States)

    Yang, Huiqiang; Xu, Yan; Acosta-Iborra, Alberto; Santana, Domingo

    2017-06-01

    Concentrating Solar Power (CSP) plants are located in desert areas where the Direct Normal Irradiance (DNI) value is very high. Since water resource is scarcely available, mechanical draft cooing technology is commonly used, with power consumption of mechanical fans being approximately 2% of the total power generated. Today, there is only one solar power plant (Khi Solar One in South Africa) uses a condenser installed in a Natural Draft Cooling (NDC) tower that avoids the windage loss of water occurring in wet cooling towers. Although, Khi Solar One is a cavity receiver power tower, the receivers can be hung onto the NDC tower. This paper looks at a novel integration of a NDC tower into an external molten salt receiver of a solar power plant, which is one of a largest commercial molten salt tower in China, with 100MWe power capacity. In this configuration study, the NDC tower surrounds the concrete tower of the receiver concentrically. In this way, the receiver concrete tower is the central support of the NDC tower, which consists of cable networks that are fixed to the concrete tower and suspended at a certain height over the floor. The cable networks support the shell of the NDC tower. To perform a preliminary analysis of the behavior of this novel configuration, two cases of numerical simulation in three dimensional (3D) models have been solved using the commercial Computational Fluid Dynamics (CFD) code, ANSYS Fluent 6.3. The results show that the integration of the NDC tower into an external central receiver tower is feasible. Additionally, the total heat transfer rate is not reduced but slightly increases when the molten salt receiver is in operation because of the additional natural draft induced by the high temperature of the receiver.

  2. Environmental benefits of DSM externalities and resource planning

    International Nuclear Information System (INIS)

    Tempchin, R.S.; Goldsmith, M.W.

    1991-01-01

    Recently, political and regulatory initiatives have prompted the expansion of demand-side management (DSM) programs as a means of realizing environmental and economic benefits for both consumers and electric utilities. The Edison Electric Institute sponsored two recent studies to examine the effectiveness of this effort. A national survey of DSM program activity was conducted to determine the resultant air emissions reductions. Due to pervasive inconsistencies in data measurement and reporting, coupled with the number and degree of assumptions necessary to quantify state-by-state energy savings, scientifically verifiable estimates of these emissions reductions could not be developed. The second study, a review of the development and application of monetized environmental externalities, found that the current state regulatory practice of assigned monetary values to the environmental impacts of resource options is based on imcomplete data and applied in an imbalanced manner. Due to the complexity of assessing the direct impact costs of power generation, shadow prices derived from cost conditions have been developed to assign a dollar value per pound of pollutant. These alternative measures of cost, which vary by as much as 300,000 percent from direct impact costs, are applied only to electricity. This singluar focus placed a potential financial disincentive on electricity use, precludes a balanced assessment of all potential fuel choices and excludes any valuation of the considerable environmental and economic benefits of electric technologies

  3. Thickness optimization of the ZnO based TCO layer in a CZTSSe solar cell. Evolution of its performance with thickness when external temperature changes.

    Science.gov (United States)

    Chadel, Meriem; Moustafa Bouzaki, Mohammed; Chadel, Asma; Aillerie, Michel; Benyoucef, Boumediene

    2017-07-01

    The influence of the thickness of a Zinc Oxide (ZnO) transparent conductive oxide (TCO) layer on the performance of the CZTSSe solar cell is shown in detail. In a photovoltaic cell, the thickness of each layer largely influence the performance of the solar cell and optimization of each layer constitutes a complete work. Here, using the Solar Cell Capacitance Simulation (SCAPS) software, we present simulation results obtained in the analyze of the influence of the TCO layer thickness on the performance of a CZTSSe solar cell, starting from performance of a CZTSSe solar cell commercialized in 2014 with an initial efficiency equal to 12.6%. In simulation, the temperature was considered as a functioning parameter and the evolution of tthe performance of the cell for various thickness of the TCO layer when the external temperature changes is simulated and discussed. The best efficiency of the solar cell based in CZTSSe is obtained with a ZnO thickness equal to 50 nm and low temperature. Based on the considered marketed cell, we show a technological possible increase of the global efficiency achieving 13% by optimization of ZnO based TCO layer.

  4. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50.

    Science.gov (United States)

    Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao

    2018-02-15

    Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.

  5. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 1: Solar energy

    Science.gov (United States)

    Williams, J. R.

    1974-01-01

    The utilization of solar energy to meet the energy needs of the U.S. is discussed. Topics discussed include: availability of solar energy, solar energy collectors, heating for houses and buildings, solar water heater, electric power generation, and ocean thermal power.

  6. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  7. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  8. Renewable Resources: a national catalog of model projects. Volume 4. Western Solar Utilization Network Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Western Solar Utilization Network Region. (WHK)

  9. Space Resource Utilization and Extending Human Presence Across the Solar System

    Science.gov (United States)

    Curreri, Peter A.

    2005-01-01

    investment enables commercial and private viability beyond Earth orbit. For example, analysis has shown the lunar oxygen production for propellant becomes commercially viable after the exploration program completes the R&D, and power from lunar derived photovoltaics could, according to past NASA sponsored studies, pay for themselves while supplying most of Earth's electrical energy after about 17 years. Besides the Moon and Mars the resources of the near Earth asteroids enable the building of large space structures and science payloads. Analysis has shown that one of the thousands of these objects (some as easily accessible in space as the Moon and Mars), 2 km dia, the size of a typical open pit mine, would cost the total global financial product of Earth for 30,000 years if we were to launch it from Earth. Beyond Mars, the belt asteroids have been calculated to contain enough materials for habitat and life to support 10 quadrillion people. Thus, the development and use of space resources enables the extension of human life through the solar system allowing humanity to move from a planetary to a solar system society.

  10. Resource-sharing between internal maintenance and external selection modulates attentional capture by working memory content

    Directory of Open Access Journals (Sweden)

    Anastasia eKiyonaga

    2014-08-01

    Full Text Available It is unclear why and under what circumstances working memory (WM and attention interact. Here, we apply the logic of the time-based resource-sharing (TBRS model of WM (e.g., Barrouillet, Bernardin, & Camos, 2004 to explore the mixed findings of a separate, but related, literature that studies the guidance of visual attention by WM contents. Specifically, we hypothesize that the linkage between WM representations and visual attention is governed by a time-shared cognitive resource that alternately refreshes internal (WM and selects external (visual attention information. If this were the case, WM content should guide visual attention (involuntarily, but only when there is time for it to be refreshed in an internal focus of attention. To provide an initial test for this hypothesis, we examined whether the amount of unoccupied time during a WM delay could impact the magnitude of attentional capture by WM contents. Participants were presented with a series of visual search trials while they maintained a WM cue for a delayed-recognition test. WM cues could coincide with the search target, a distracter, or neither. We varied both the number of searches to be performed, and the amount of available time to perform them. Slowing of visual search by a WM matching distracter—and facilitation by a matching target—were curtailed when the delay was filled with fast-paced (refreshing-preventing search trials, as was subsequent memory probe accuracy. WM content may, therefore, only capture visual attention when it can be refreshed, suggesting that internal (WM and external attention demands reciprocally impact one another because they share a limited resource. The TBRS rationale can thus be applied in a novel context to explain why WM contents capture attention, and under what conditions that effect should be observed.

  11. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Mercury and Saturn Exploration

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.

  12. Solar radiation and thermal performance of solar collectors for Denmark

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon

    This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark.......This report describes the part of the EUDP project “EUDP 11-l, Solar Resource Assessment in Denmark”, which is carried out at Department of Civil Engineering, Technical University of Denmark....

  13. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  14. External perforated Solar Screens for daylighting in residential desert buildings: Identification of minimum perforation percentages

    KAUST Repository

    Sherif, Ahmed

    2012-06-01

    The desert climate is endowed by clear sky conditions, providing an excellent opportunity for optimum utilization of natural light in daylighting building indoor spaces. However, the sunny conditions of the desert skies, in countries like Egypt and Saudi Arabia, result in the admittance of direct solar radiation, which leads to thermal discomfort and the incidence of undesired glare. One type of shading systems that is used to permit daylight while controlling solar penetration is " Solar Screens" Very little research work addressed different design aspects of external Solar Screens and their influence on daylighting performance, especially in desert conditions, although these screens proved their effectiveness in controlling solar radiation in traditional buildings throughout history.This paper reports on the outcomes of an investigation that studied the influence of perforation percentage of Solar Screens on daylighting performance in a typical residential living room of a building in a desert location. The objective was to identify minimum perforation percentage of screen openings that provides adequate illuminance levels in design-specific cases and all-year-round.Research work was divided into three stages. Stage one focused on the analysis of daylighting illuminance levels in specific dates and times, while the second stage was built on the results of the first stage, and addressed year round performance using Dynamic Daylight Performance Metrics (DDPMs). The third stage addressed the possibility of incidence of glare in specific cases where illuminance levels where found very high in some specific points during the analysis of first stage. The research examined the daylighting performance in an indoor space with a number of assumed fixed experimentation parameters that were chosen to represent the principal features of a typical residential living room located in a desert environment setting.Stage one experiments demonstrated that the screens fulfilled the

  15. Solar System Exploration Augmented by In-Situ Resource Utilization: Mercury and Saturn Propulsion Investigations

    Science.gov (United States)

    Palaszewski, Bryan

    2016-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.

  16. Solar resource assessment in complex orography: a comparison of available datasets for the Trentino region

    Science.gov (United States)

    Laiti, Lavinia; Giovannini, Lorenzo; Zardi, Dino

    2015-04-01

    The accurate assessment of the solar radiation available at the Earth's surface is essential for a wide range of energy-related applications, such as the design of solar power plants, water heating systems and energy-efficient buildings, as well as in the fields of climatology, hydrology, ecology and agriculture. The characterization of solar radiation is particularly challenging in complex-orography areas, where topographic shadowing and altitude effects, together with local weather phenomena, greatly increase the spatial and temporal variability of such variable. At present, approaches ranging from surface measurements interpolation to orographic down-scaling of satellite data, to numerical model simulations are adopted for mapping solar radiation. In this contribution a high-resolution (200 m) solar atlas for the Trentino region (Italy) is presented, which was recently developed on the basis of hourly observations of global radiation collected from the local radiometric stations during the period 2004-2012. Monthly and annual climatological irradiation maps were obtained by the combined use of a GIS-based clear-sky model (r.sun module of GRASS GIS) and geostatistical interpolation techniques (kriging). Moreover, satellite radiation data derived by the MeteoSwiss HelioMont algorithm (2 km resolution) were used for missing-data reconstruction and for the final mapping, thus integrating ground-based and remote-sensing information. The results are compared with existing solar resource datasets, such as the PVGIS dataset, produced by the Joint Research Center Institute for Energy and Transport, and the HelioMont dataset, in order to evaluate the accuracy of the different datasets available for the region of interest.

  17. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  18. Solar Glazing Tips for School Construction

    Science.gov (United States)

    Smith, Jonathan

    2012-01-01

    Glazing can be optimized to enhance passive solar heating and daylight harvesting by exceeding the prescriptive limits of the energy code. This savings can be garnered without the high cost of external overhangs or expensive glazing products. The majority of savings from solar glazing are attributable to the increase in solar heating and…

  19. Possibilities of electricity generation from solar and other renewable resources in Turkey

    International Nuclear Information System (INIS)

    Tasdemiroglu, E.

    1993-01-01

    The paper begins by reviewing the conventional power generation in the country. Increasing power demand due to rapid industrialization as well as the environmental consequences of power generation will be discussed. The potential of renewable energy resources including solar, biomass, wind, and wave and their role in the power generation will be pointed out. Among the strong alternatives are thermal power plants, and rural electricity production by photovoltaic and by small wind machines. Finally, the technical economic difficulties in adapting renewable electricity generation systems for the conditions of the country will be discussed. (Author) 22 refs

  20. Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2017-10-01

    We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative below the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i}  ≈ 0–0.8, the cutoff lies in the range ω{sub c}  ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β  = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.

  1. Alternatives for the assessment of the solar resource in Argentina

    International Nuclear Information System (INIS)

    Grossi Gallegos, H; Righini, R; Raichijk, C

    2005-01-01

    In Argentina, from 1972 on, several maps were presented which reported the distribution of global solar irradiation received on a horizontal plane placed at ground level and which used different time bases and information quality, whether estimates obtained from correlations established with other meteorological variables or direct irradiation measurements.n a paper by Grossi Gallegos (1998) 12 charts were presented with the monthly distribution of the mean value of daily global irradiation and one with their annual distribution, using all available information up to that moment in Argentina, whether from daily irradiation data obtained with Argentina s Solarimetric Network pyrano meters or sunshine hours measured by the National Meteorological Service (SMN) Network; the error due to the inclusion of estimates and interpolations was evaluated as lower than 10%.Argentina's Solarimetric Network underwent a continuous decrease in the number of operational stations due to the lack of resources for supporting them.In view of this situation, different alternatives were gradually evaluated which would make it possible to improve the already mentioned available global solar irradiation charts.In this sense, a statistical survey of the adjustment of satellite irradiation data available in Internet (in the base known as Surface Solar Energy (SSE) Data Set, Version 1.00) to the ground values.The objective was evaluating the possibility of using them as a complement to the data that had already been used and their application in order to obtain contour maps in homogeneous zones such as the Pampa Humeda, using geostatistical methods for drawing the irradiation isolines.Root-mean-square errors (RMSE) range from 3.7% to 24.8% depending on the inhomogeneity of the area. Nevertheless, the available temporal series are limited in time and thus their climatic representativity can be questioned.Given the shortage of solar irradiation measured data accurate enough to fulfill

  2. In the world of solar technology

    International Nuclear Information System (INIS)

    Tomson, T.

    1993-01-01

    The paper gives a short survey of the development of solar electrical and thermal technologies. The thermal solar technology is also applicable in Estonia with the view of using our local industrial potential. The theoretical solar resource in Estonia is 977 kWh/m 2 per year, which will make it possible to build (central) heating systems with partial solar fraction by using the method of seasonal storage. The technological solar resource can be improved by using an inter medial storage and heat pump between the solar collector and the main storage in the process of charging. (author). fig., 2 refs

  3. Organizing socially constructed internal and external resources

    NARCIS (Netherlands)

    Sorge, A

    The analysis of economic institutions stands to gain from a consideration of the interactionist theory of institutions, a resource-based view of organizations to develop business and economic perspectives, and a linkage between the two and any theory of economic institutions. A resource-based view

  4. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  5. Comprehensive Solutions for Integration of Solar Resources into Grid Operations

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, Kenneth [AWS Truepower, LLC, Albany, NY (United States); Makarov, Yuri V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rajagopal, Sankaran [Siemens Energy, Erlangen (Germany); Loutan, Clyde [California Independent System Operator; Etingov, Pavel V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Laurie E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lu, Bo [Siemens Energy, Erlangen (Germany); Mansingh, Ashmin [Siemens Energy, Erlangen (Germany); Zack, John [MESO, Inc., Raleigh, NC (United States); Sherick, Robert [Southern California Edison, Rosemead, CA (United States); Romo, Abraham [Southern California Edison; Habibi-Ashrafi, Farrokh [Southern California Edison; Johnson, Raymond [Southern California Edison

    2016-01-14

    The need for proactive closed-loop integration of uncertainty information into system operations and probability-based controls is widely recognized, but rarely implemented in system operations. Proactive integration for this project means that the information concerning expected uncertainty ranges for net load and balancing requirements, including required balancing capacity, ramping and ramp duration characteristics, will be fed back into the generation commitment and dispatch algorithms to modify their performance so that potential shortages of these characteristics can be prevented. This basic, yet important, premise is the motivating factor for this project. The achieved project goal is to demonstrate the benefit of such a system. The project quantifies future uncertainties, predicts additional system balancing needs including the prediction intervals for capacity and ramping requirements of future dispatch intervals, evaluates the impacts of uncertainties on transmission including the risk of overloads and voltage problems, and explores opportunities for intra-hour generation adjustments helping to provide more flexibility for system operators. The resulting benefits culminate in more reliable grid operation in the face of increased system uncertainty and variability caused by solar power. The project identifies that solar power does not require special separate penetration level restrictions or penalization for its intermittency. Ultimately, the collective consideration of all sources of intermittency distributed over a wide area unified with the comprehensive evaluation of various elements of balancing process, i.e. capacity, ramping, and energy requirements, help system operators more robustly and effectively balance generation against load and interchange. This project showed that doing so can facilitate more solar and other renewable resources on the grid without compromising reliability and control performance. Efforts during the project included

  6. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  7. EnviroAtlas - Average Direct Normal Solar resources kWh/m2/Day by 12-Digit HUC for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — The annual average direct normal solar resources by 12-Digit Hydrologic Unit (HUC) was estimated from maps produced by the National Renewable Energy Laboratory for...

  8. Simulation studies on the effect of a buffer layer on the external ...

    Indian Academy of Sciences (India)

    Wintec

    parameters of hydrogenated amorphous silicon p–i–n solar cells ... of a buffer layer in between the p- and i-layers of the p–i–n solar cell on the external parameters such as dark .... H 1988 Photovoltaic specialist conference, in Conference re-.

  9. Bias-dependent high saturation solar LBIC scanning of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Vorster, F.J.; van Dyk, E.E. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2007-06-15

    A light beam-induced current measurement system that uses concentrated solar radiation as a beam probe to map spatially distributed defects on a solar cell has been developed and tested [F.J. Vorster, E.E. van Dyk, Rev. Sci. Instrum., submitted for review]. The induced current response from a flat plate EFG Si solar cell was mapped as a function of surface position and cell bias by using a solar light beam induced current (S-LBIC) mapping system while at the same time dynamically biasing the whole cell with an external voltage. This paper examines the issues relating to transient capacitive effects as well as the electrical behaviour of typical solar cell defect mechanisms under spot illumination. By examining the bias dependence of the S-LBIC maps, various defect mechanisms of photovoltaic (PV) cells under concentrated solar irradiance may be identified. The techniques employed to interpret the spatially distributed IV curves as well as initial results are discussed. (author)

  10. Investigating the impact of ceo’s social network on sme performance and access to external resources in the moroccan textile industry

    Directory of Open Access Journals (Sweden)

    Tahirou Younoussi Meda Adama

    2018-03-01

    Full Text Available This paper analyses the relationship between the social network dimensions, the performance of Moroccan SMEs of the textile industry and their access to external resources. As these companies face a fierce competition in recent years, their CEOs’ social networks are playing a significant role in their success and survival.  Through a sample of 112 SMEs and a quantitative method, our results show that the more the network is important, the more it promotes SME performance and access to information resources, that having closer tie with the bankers allows a better access to financial resources, that knowing and having links with people in high places is a privilege and contributes effectively to an organizational performance.

  11. The valuation of external costs: An overview of issues and state actions

    International Nuclear Information System (INIS)

    Caverhill, E.J.

    1992-01-01

    The valuation of externalities helps determine the cost effectiveness of environmentally superior resources that would not be cost effective on a direct cost comparison to utility avoided costs. Explicitly monetizing externalities appears to be the best way to meet the criteria of consistency across resource options and pollutants and allowing selection of societally least-cost resources among a variety of resource types. Environmental costs should be defined so as not to exclude any potential external effects, including all environmental, social, and economic effects. For practical purposes, the definition could probably include only environmental externalities without materially affecting resource decisions in the foreseeable future for most North American utilities. More specifically, a comprehensive list of external costs should at least include emissions of pollutants such as SO 2 , CO, NO x , volatile organics, and greenhouse gases; thermal effluents; solid wastes; risk of catastrophic accidents; and for hydro projects, destruction of habitat and recreational areas, and mercury accumulation in reservoirs. Environmental effects should then be counted and valued, most commonly by damage costing or regulatory cost of control. Some utilities and other parties have proposed a market-based approach to valuing externalities, determining the marginal cost of controlling emissions by the market price of emissions allowances. Quantification of environmental costs, ensuring consistency among externality sources, and estimation of avoided externality costs are also discussed. Examples are presented of externality values selected in a number of areas of the USA. 11 refs., 5 figs

  12. 75 FR 75335 - Integration of Variable Energy Resources

    Science.gov (United States)

    2010-12-02

    ... difficulties posed by the deployment of solar resources.\\26\\ Further still, commenters in the South explain... the facility owner or operator. This includes, for example, wind, solar thermal and photovoltaic, and... significant wind and solar resources.\\27\\ Commenters therefore express a need for flexibility in responding to...

  13. World resources: engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The proceedings include 10 papers that contribute to population environment; fossil fuel resources and energy conservation; nuclear and solar power; production of ores and manufacture and use of metallic resources; resources of manufactured and natural nonmetallic materials; water as a reusable resource; and timber as a replaceable resource.

  14. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  15. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  16. Decadal period external magnetic field variations determined via eigenanalysis

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2016-01-01

    to a full solar cycle. Our analysis focuses on geomagnetically quiet days and middle to low latitudes. We use the climatological eigenanalysis technique called empirical orthogonal functions (EOFs), which allows us to identify discrete spatiotemporal patterns with no a priori specification of their geometry...... mean external field distribution. Separate patterns of semiannual and solar-cycle-length periods appear to stem from the amplitude modulations of spatially fixed background fields....

  17. Thermal solar energy

    International Nuclear Information System (INIS)

    Gonzalez, J.C.; Leal C, H.

    1998-01-01

    Some relative aspects to the development and current state of thermal solar energy are summarized, so much at domestic level as international. To facilitate the criteria understanding as the size of the facilities in thermal solar systems, topics as availability of the solar resource and its interactions with the matter are included. Finally, some perspectives for the development of this energetic alternative are presented

  18. External shading devices for energy efficient building

    Science.gov (United States)

    Shahdan, M. S.; Ahmad, S. S.; Hussin, M. A.

    2018-02-01

    External shading devices on a building façade is an important passive design strategy as they reduce solar radiation. Although studies have proven the benefits of external shading devices, many are designed solely for aesthetic purposes without fully considering its high potential to reduce solar radiation and glare. Furthermore, explorations into shading devices by the design team are mostly left too late in the design development phases. Hence, the paper looks into the effectiveness of external shading devices on a building towards more energy efficient building. The study aims to analyse the effects of various configurations of external shading devices towards the energy consumption of a case study building based on computer simulations. This study uses Building Information Modelling (BIM) through Autodesk Revit software as simulation tool. The constant variables for the simulation are the orientation of the building, types of glazing used by the building and the internal loads of the building. Whereas, the manipulated variable is the types of shading device used. The data were sorted according to the categories and translated into a chart. Analysis of the findings indicate that shading devices with different configurations show significant results in the energy consumption and the best configuration is the egg-crate shading devices. The study recommends that the consideration for shading device as a passive design strategy needs to be developed at the early stage of the building design.

  19. Electroweak processes in external active media

    CERN Document Server

    Kuznetsov, Alexander

    2013-01-01

    Expanding on the concept of the authors’ previous book “Electroweak Processes in External Electromagnetic Fields,” this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a “cherry stone shooting” mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book...

  20. Solar and atmospheric forcing on mountain lakes.

    Science.gov (United States)

    Luoto, Tomi P; Nevalainen, Liisa

    2016-10-01

    We investigated the influence of long-term external forcing on aquatic communities in Alpine lakes. Fossil microcrustacean (Cladocera) and macrobenthos (Chironomidae) community variability in four Austrian high-altitude lakes, determined as ultra-sensitive to climate change, were compared against records of air temperature, North Atlantic Oscillation (NAO) and solar forcing over the past ~400years. Summer temperature variability affected both aquatic invertebrate groups in all study sites. The influence of NAO and solar forcing on aquatic invertebrates was also significant in the lakes except in the less transparent lake known to have remained uniformly cold during the past centuries due to summertime snowmelt input. The results suggest that external forcing plays an important role in these pristine ecosystems through their impacts on limnology of the lakes. Not only does the air temperature variability influence the communities but also larger-scale external factors related to atmospheric circulation patterns and solar activity cause long-term changes in high-altitude aquatic ecosystems, through their connections to hydroclimatic conditions and light environment. These findings are important in the assessment of climate change impacts on aquatic ecosystems and in greater understanding of the consequences of external forcing on lake ontogeny. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  2. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  3. Solar energy resources not accounted in Brazilian National Energy Balance

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Paulo Cesar da Costa [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], Emails: pinheiro@netuno.Lcc.ufmg.br, pinheiro@demec.ufmg.br

    2009-07-01

    The main development vector of a society is the energy. The solar energy is the main energy source on the planet earth. Brazil is a tropical country, and the incident solar energy on its soil (15 trillion MWh/year) is 20,000 times its annual oil production. Several uses of solar energy are part of our lives in a so natural way that it despised in the consumption and use energy balance. In Brazil, solar energy is used directly in many activities and not accounted for in Energy Balance (BEN 2007), consisting of a virtual power generation. This work aims to make a preliminary assessment of solar energy used in different segments of the Brazilian economy. (author)

  4. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  5. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    available that can build fundamentally new infrastructure from the common silicate materials of asteroids and the moons of Mars. Commercial power can be beamed from the Moon to ion-propelled rockets and to industrial facilities throughout the inner solar systems (6, 7). The LSP System can establish the Earth and the Moon as a two-planet economy. Lunar and cis-lunar industry will grow through profitable activities. Exploration of the inner solar system can stage, at marginal cost, from the Moon and cis-lunar space rather than the surface of Earth. 1. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 2. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.uk] 3. Strong, Marice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 4. Criswell, D. R. And R. D. Waldron (1993), "International lunar base and the lunar-based power system to supply Earth with electric power," Acta Astronautica, 29, No. 6: 469-480. 5. Criswell, D. R. (1998), Lunar Solar Power: Lunar unit processes, scales, and challenges, 6 p.p. (ms), ExploSpace: Workshop on Space Exploration and Resources Exploitation, European Space Agency, Cagliari, Sardinia, (October 20 - 22). 6. Criswell, D. R. (1999), Commercial lunar solar power and sustainable growth of the two-planet economy, Proc. Third International Working Group on Lunar Exploration and Exploitation, Solar System Research, Vol. 33, #5, 356-362, Moscow, (October 11-14). 7. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.

  6. Washington, D.C. | Midmarket Solar Policies in the United States | Solar

    Science.gov (United States)

    development have kept SREC prices high. Recent DC solar initiatives (e.g., the Solar Advantage Plus Program ) have targeted low-income residents. Small businesses may be able to leverage resources from the DC residential and commercial customer-generators with systems powered by renewable-energy sources. DC's net

  7. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  8. The renewable energy resources in Bulgaria

    International Nuclear Information System (INIS)

    Ivanov, P.; Lingova, S.; Trifonova, L.

    1996-01-01

    The paper presents the results from the joint study between the National Laboratory of Renewable Energy Resources of USA and the National Institute of Meteorology and Hydrology, Sofia (BG). The geographical distribution of solar and wind energy potential in Bulgaria as well as inventory of biomass is studied. Calculation of total, available and reserve solar and wind resources is performed. Comparative data on all kind of renewable energy resources in Bulgaria are presented. The evaluation of economically accessible resources and feasibility of implementation of specific technologies is given. 7 refs., 1 tab

  9. Solar Resources for Universities | State, Local, and Tribal Governments |

    Science.gov (United States)

    stakeholders to develop deployment solutions, and empower decision makers. Text version To assist organizations Federal Tax Incentives for Battery Storage Systems Non-Power Purchase Agreement (PPA) Options to Financing Power Purchase Agreements for Solar Deployment at Universities Writing Solar Requests for Proposals

  10. Temporal and spatial complementarity of wind and solar resources in Lower Silesia (Poland)

    Science.gov (United States)

    Jurasz, Jakub; Wdowikowski, Marcin; Kaźmierczak, Bartosz; Dąbek, Paweł

    2017-11-01

    This paper investigates the concept of temporal and spatial complementarity of wind and solar resources in Lower Silesia (south-wester Poland). For the purpose of our research we have used hourly load and energy yield from photovoltaics and wind turbines covering period 2010-2014. In order to assess the spatial complementarity we have divided the considered voivodeship into 74 squared regions with maximal area of 400 km2. The obtained results indicate an existence of temporal complementarity on a monthly time scale and a positive correlation between load and wind generation patterns (also on a monthly time scale). The temporal complementarity for hourly time series in relatively low but has potential to smooth the energy generation curves.

  11. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What...... is the advantage by using inlet stratifiers? To answer the questions, theoretical investigations are carried out for differently designed solar combi systems. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32 Advanced storage concepts...... for solar houses and low energy buildings....

  12. The Little Data Book on External Debt 2009

    OpenAIRE

    World Bank

    2009-01-01

    The little data book on external debt, a pocket edition of Global Development Finance (GDF) 2009, volume two, summary and country tables, contains statistical tables on the external debt of the 128 countries that report public and publicly guaranteed external debt under the debtor reporting system. It also includes tables of selected debt and resource flow statistics for individual reporting ...

  13. Stress corrosion cracking prevention using solar electricity

    International Nuclear Information System (INIS)

    Harijan, K.; Uqaaili, M.A; Mirani, M.

    2004-01-01

    Metallic structures exposed to soil and water naturally experience corrosion due to electrolytic action. These structures are also subjected to sustained tensile stresses. The combined effects of corrosion and stress results stress corrosion cracking (SCC). Removal of either of these i.e. stress or corrosion prevents SCC. The cathodic protection (CP) prevents corrosion, and hence prevents stress corrosion. Solar Photo voltaic (PV) generated electricity can be best external power source for CP systems especially in remote areas. This paper presents CP system using solar PV generated electricity as an external power source for prevention of SCC of metallic structures. The paper also compares CP systems using solar electricity with those of CP systems using conventional electricity. The paper concludes that a solar electricity power system provides a reliable solution for powering CP stations especially in remote areas, enables the placing of CP units in any location, and thus ensures optimal current distribution for the exact protection requirements. The paper also concludes that solar electricity CP systems are well suited for SCC protection of metallic structures especially in remote areas of an energy deficit country like Pakistan. (author)

  14. Solar System Exploration Augmented by In-Situ Resource Utilization: Human Planetary Base Issues for Mercury and Saturn

    Science.gov (United States)

    Palaszewski, Bryan A.

    2017-01-01

    Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.

  15. Energy generation externalities with conventional and renewable sources; Externalidades da geracao de energia com fontes convencionais e renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Shayani, Rafael Amaral; Oliveira, Marco Aurelio Goncalves de [Universidade de Brasilia (UnB), DF (Brazil). Dept. de Engenharia Eletrica. Lab. de Fontes Alternativas de Energia

    2008-07-01

    The energy generation externalities have both positive and negative sides. The conventional sources, including fossil and nuclear fuel, have environment, political, economical and social negative externalities. The environment one affects the world climate, the political one includes the wars caused by oil control, the governmental financial support is economical aspects, and black outs, that affect all citizen's job, are a social example. The photovoltaic solar energy has a negative externality when the lead-acid battery is used into stand-alone systems. This batteries need special attention because has harmful components that can pollute the water. The use of other way to storage the energy is a solution to this, like non pollute batteries, electrostatic accumulation, flywheels, compressed air, hydrogen fuel cell or thermo accumulation. The PV system can be grid-connected too; this solutions have positive externalities, because the solar collector can replace the electric shower, reducing the transmission system demand during the peak time, and saving some energy from the conventional power plant during drought season. A house's roof can support more than twice of PV system needed to supply the energy of the house, so the potential to use the solar energy without needing new places is huge. The consciousness that the Earth is but one country, and mankind its citizens, should be adopted for all mankind, because the environment pollution of a specific place affects everyone, and the negative externalities must be calculated. The PV prices is getting cheaper each year, forecasting 45% of price reduction into the next 10 years. The governmental support to use solar hot water at residences, research and nationalization of the PV production are necessary to amplify the positive externalities of the solar energy. (author)

  16. Energy generation externalities with conventional and renewable sources; Externalidades da geracao de energia com fontes convencionais e renovaveis

    Energy Technology Data Exchange (ETDEWEB)

    Shayani, Rafael Amaral; Oliveira, Marco Aurelio Goncalves de [Universidade de Brasilia (UnB), DF (Brazil). Dept. de Engenharia Eletrica. Lab. de Fontes Alternativas de Energia

    2008-07-01

    The energy generation externalities have both positive and negative sides. The conventional sources, including fossil and nuclear fuel, have environment, political, economical and social negative externalities. The environment one affects the world climate, the political one includes the wars caused by oil control, the governmental financial support is economical aspects, and black outs, that affect all citizen's job, are a social example. The photovoltaic solar energy has a negative externality when the lead-acid battery is used into stand-alone systems. This batteries need special attention because has harmful components that can pollute the water. The use of other way to storage the energy is a solution to this, like non pollute batteries, electrostatic accumulation, flywheels, compressed air, hydrogen fuel cell or thermo accumulation. The PV system can be grid-connected too; this solutions have positive externalities, because the solar collector can replace the electric shower, reducing the transmission system demand during the peak time, and saving some energy from the conventional power plant during drought season. A house's roof can support more than twice of PV system needed to supply the energy of the house, so the potential to use the solar energy without needing new places is huge. The consciousness that the Earth is but one country, and mankind its citizens, should be adopted for all mankind, because the environment pollution of a specific place affects everyone, and the negative externalities must be calculated. The PV prices is getting cheaper each year, forecasting 45% of price reduction into the next 10 years. The governmental support to use solar hot water at residences, research and nationalization of the PV production are necessary to amplify the positive externalities of the solar energy. (author)

  17. Global status of recycling waste solar panels: A review.

    Science.gov (United States)

    Xu, Yan; Li, Jinhui; Tan, Quanyin; Peters, Anesia Lauren; Yang, Congren

    2018-05-01

    With the enormous growth in the development and utilization of solar-energy resources, the proliferation of waste solar panels has become problematic. While current research into solar panels has focused on how to improve the efficiency of the production capacity, the dismantling and recycling of end-of-life (EOL) panels are seldom considered, as can be seen, for instance, in the lack of dedicated solar-panel recycling plants. EOL solar-panel recycling can effectively save natural resources and reduce the cost of production. To address the environmental conservation and resource recycling issues posed by the huge amount of waste solar panels regarding environmental conservation and resource recycling, the status of the management and recycling technologies for waste solar panels are systemically reviewed and discussed in this article. This review can provide a quantitative basis to support the recycling of PV panels, and suggests future directions for public policy makers. At present, from the technical aspect, the research on solar panel recovery is facing many problems, and we need to further develop an economically feasible and non-toxic technology. The research on solar photovoltaic panels' management at the end of life is just beginning in many countries, and there is a need for further improvement and expansion of producer responsibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Space and Planetary Resources

    Science.gov (United States)

    Abbud-Madrid, Angel

    2018-02-01

    The space and multitude of celestial bodies surrounding Earth hold a vast wealth of resources for a variety of space and terrestrial applications. The unlimited solar energy, vacuum, and low gravity in space, as well as the minerals, metals, water, atmospheric gases, and volatile elements on the Moon, asteroids, comets, and the inner and outer planets of the Solar System and their moons, constitute potential valuable resources for robotic and human space missions and for future use in our own planet. In the short term, these resources could be transformed into useful materials at the site where they are found to extend mission duration and to reduce the costly dependence from materials sent from Earth. Making propellants and human consumables from local resources can significantly reduce mission mass and cost, enabling longer stays and fueling transportation systems for use within and beyond the planetary surface. Use of finely grained soils and rocks can serve for habitat construction, radiation protection, solar cell fabrication, and food growth. The same material could also be used to develop repair and replacement capabilities using advanced manufacturing technologies. Following similar mining practices utilized for centuries on Earth, identifying, extracting, and utilizing extraterrestrial resources will enable further space exploration, while increasing commercial activities beyond our planet. In the long term, planetary resources and solar energy could also be brought to Earth if obtaining these resources locally prove to be no longer economically or environmentally acceptable. Throughout human history, resources have been the driving force for the exploration and settling of our planet. Similarly, extraterrestrial resources will make space the next destination in the quest for further exploration and expansion of our species. However, just like on Earth, not all challenges are scientific and technological. As private companies start working toward

  19. Integrated Resource Management and Recovery

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard

    2014-01-01

    , depends on the quality of these resources and technological abilities to extract resources from mixed materials, e.g. mobile phones, solar cells, or mixed domestic waste. The "effort" invested in recovery of secondary resources should not be more than the "benefit" associated with the secondary resources...

  20. The evaluation of external costs from energy sources

    International Nuclear Information System (INIS)

    Lee, R.; Valette, P.; Krupnick, A.; Markandya, A.

    1994-01-01

    The paper outlines the progress of the joint EC-US Fuel Cycle study. This study seeks to provide a methodological framework for precisely the evaluation of external costs over the complete fuel cycle, from fuel extraction to decommissioning, conservation technologies, solar and wind power. (authors). 19 refs., 4 figs

  1. Opening up the solar box: Cultural resource management and actor network theory in solar energy projects in the Mojave Desert

    Science.gov (United States)

    Gorrie, Bryan F.

    This project considers the ways that Actor-Network Theory (ANT) can be brought to bear upon Cultural Resource Management (CRM) practices on renewable energy projects. ANT is a way of making inquiry into scientific knowledge practices and as CRM is intended to preserve environmental, historic, and prehistoric resources, it necessarily involves certain kinds of knowledge generation about regions in which projects are being developed. Because the practice of CRM is complex, involving a range of actors from developers to biologists, native peoples to academics, private landholders to environmental and cultural activists, it is imperative to account for the interests of all stakeholders and to resist devolving into the polemical relations of winners and losers, good and bad participants, or simple situations of right and wrong. This project intends to account for the "matters of concern" of various actors, both primary and secondary, by examining the case study of a single solar installation project in the Mojave Desert. A theoretical description of ANT is provided at the beginning and the concerns of this theory are brought to bear upon the case study project through describing the project, discussing the laws governing CRM on federal lands and in the state of California, and providing the points of view of various interviewees who worked directly or indirectly on various aspects of CRM for the solar project. The creators of ANT claim that it is not a methodology but it does speak to ethnomethodologies in that it insists that there is always something more to learn from inquiring into and describing any given situation. These descriptions avoid generalizations, providing instead various points of entry, from diverse perspectives to the project. There is an invitation to avoid assuming that one knows all there is to know about a given situation and to choose instead to continue investigating and thus give voice to the more obscure, often marginalized, voices in the

  2. SOLAR ENERGY POLICY DEVELOPMENTS IN EUROPE

    OpenAIRE

    Mihaela PÃCE?ILÃ

    2015-01-01

    Solar energy is one of the most important renewable energy sources in Europe offering new possibilities to generate electricity and heat. In this context, the study provides accurate information about researches that characterize the solar resource and investigates the potential of solar energy in European countries. The analysis is also focused on the current status of market development including photovoltaic capacity, electricity production from solar photovoltaic power, solar thermal capa...

  3. Solar Energy - It's Growth, Development, and Use

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Solar Energy Resources with Additional Information Solar has played a major role in solar energy development through previous research and ongoing activities . As a result of research and development, the "cost of solar energy has been reduced 100-fold

  4. Investment choice and perceived mating intentions regulated by external resource cues and internal fluctuation in blood glucose levels.

    Science.gov (United States)

    Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu

    2014-01-01

    We examined resource allocation priorities in the framework of an updated Maslow hierarchy of fundamental human needs. In Experiment 1, the participants in the food abundance priming condition viewing photos of high-calorie food allocated more money to savings than to spending. However, the participants preferred spending to savings under the condition of mating availability priming with romantic photographs. In Experiment 2, before and after drinking either water or a sugary beverage, fasting participants rated photos of a conversation between a man and a woman. Water drinking lowered the rating scores of mating intentions as well as blood glucose (BG) levels. The sugary drink buffered this decline in sexual perceptivity. Overall, the change in BG levels was positively associated with changes in the ratings of mating intentions but was not associated with other likelihood ratings. These results suggest that both external cues of food and mating resources and internal BG fluctuation regulate the cognitive priority of physiological needs vs. mate acquisition and retention.

  5. Investment Choice and Perceived Mating Intentions Regulated by External Resource Cues and Internal Fluctuation in Blood Glucose Levels

    Directory of Open Access Journals (Sweden)

    Li-Lin eRao

    2015-01-01

    Full Text Available We examined resource allocation priorities in the framework of an updated Maslow hierarchy of fundamental human needs. In Experiment 1, the participants in the food abundance priming condition viewing photos of high-calorie food allocated more money to savings than to spending. However, the participants preferred spending to savings under the condition of mating availability priming with romantic photographs. In Experiment 2, before and after drinking either water or a sugary beverage, fasting participants rated photos of a conversation between a man and a woman. Water drinking lowered the rating scores of mating intentions as well as blood glucose (BG levels. The sugary drink buffered this decline in sexual perceptivity. Overall, the change in BG levels was positively associated with changes in the ratings of mating intentions but was not associated with other likelihood ratings. These results suggest that both external cues of food and mating resources and internal BG fluctuation regulate the cognitive priority of physiological needs versus mate acquisition and retention.

  6. Solar Measurement and Modeling | Grid Modernization | NREL

    Science.gov (United States)

    Measurement and Modeling Solar Measurement and Modeling NREL supports grid integration studies , industry, government, and academia by disseminating solar resource measurements, models, and best practices have continuously gathered basic solar radiation information, and they now gather high-resolution data

  7. Solar electricity and solar fuels

    Science.gov (United States)

    Spiers, David J.

    1989-04-01

    The nature of solar radiation and its variation with location is described. The distribution of energy in the solar spectrum places immediate limits on the theoretical efficiency of conversion processes, since practical absorbers cannot convert all wavelengths received to useful energy. The principles of solar energy conversion methods are described. Absorption of solar energy can give rise to direct electrical generation, heating, or chemical change. Electrical generation from sunlight can be achieved by photovoltaic systems directly or by thermal systems which use solar heat to drive a heat engine and generator. The technology used and under research for promising ways of producing electricity or fuel from solar energy is described. Photovoltaic technology is established today for remote area, small power applications, and photovoltaic module sales alone are over 100 million dollars per year at present. The photovoltaic market has grown steadily since the mid-1970's, as prices have fallen continuously. Future energy options are briefly described. The merits of a sustainable energy economy, based on renewable energy resources, including solar energy, are emphasized, as this seems to provide the only hope of eliminating the problems caused by the build-up of atmospheric carbon dioxide, acid rain pollution and nuclear waste disposal. There is no doubt that clean fuels which were derived from solar energy and either did not involve carbon dioxide and used atmospheric carbon dioxide as the source dioxide as the source of carbon would be a worthy ideal. Methods described could one day achieve this.

  8. Internal and external North Atlantic Sector variability in the Kiel climate model

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Mojib; Park, Wonsun; Ding, Hui; Keenlyside, Noel S. [Leibniz-Inst. fuer Meereswissenschaften, Kiel (Germany)

    2009-08-15

    The internal and external North Atlantic Sector variability is investigated by means of a multimillennial control run and forced experiments with the Kiel Climate Model (KCM). The internal variability is studied by analyzing the control run. The externally forced variability is investigated in a run with periodic millennial solar forcing and in greenhouse warming experiments with enhanced carbon dioxide concentrations. The surface air temperature (SAT) averaged over the Northern Hemisphere simulated in the control run displays enhanced variability relative to the red background at decadal, centennial, and millennial timescales. Special emphasis is given to the variability of the Meridional Overturning Circulation (MOC). The MOC plays an important role in the generation of internal climate modes. Furthermore, the MOC provides a strong negative feedback on the Northern Hemisphere SAT in both the solar and greenhouse warming experiments, thereby moderating the direct effects of the external forcing in the North Atlantic. The implications of the results for decadal predictability are discussed. (orig.)

  9. A Study on a Solar Simulator for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Kyoung-Jun Lee

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSC are emerging low-cost, simple alternatives to conventional solar cells. While there has been considerable study on improving the efficiency of DSSCs, there has not been sufficient research on a photovoltaic power conditioning system adaptable to DSSCs or on a solar simulator for DSSCs. When DSSCs are commercialized in the near future, the DSSC modules must be connected to an adaptable power conditioning system in order to manage the energy produced and provide a suitable interface to the load. In the process of developing a power conditioning system, a solar simulator with the characteristics of DSSCs is essential to show the performance of the maximum power point tracking. In this paper, a virtual DSSC is designed and simulated in PSIM. Irradiation factors, temperature and shadow effects are considered in dynamic link library block in PSIM which is linked to the external C routine. A 100 W converter is built to show the performance of a DSSC as the solar simulator controlled by a digital signal processor.

  10. Evolution of External Consultant Involvement in Human Resource Management in Eastern Europe (1990-2007

    Directory of Open Access Journals (Sweden)

    József Poór

    2015-03-01

    Full Text Available This paper aims to analyze the evolution of Human Resources (HR consulting in transitional economies of Eastern Europe (EE from the political changes till the economic crisis (2008. This article provides insights into the specific socio-economic environment and HR practice of the region.  Following Markham's model (1999 we analyze specific characteristics of four typical ways of external consultant involvement: informative-becnhmarking, design, change and organizational learning consulting.  in this region. In general, before the political changes at the end of the 1980's, in most EE countries , consulting service was redendered by sector  research institutes, controlled by the state or by the different minsitries. Consulting approach in EE countries  were predominant similar to the school of scientific management. HR consulting hardly existed that time. Since changes in the regime's consulting linked to privatization, firm restructuring, and development has been developing significantly in all countries of the region. HR consulting underwent a significant development in the region.

  11. Optical modelling of thin-film silicon solar cells deposited on textured substrates

    International Nuclear Information System (INIS)

    Krc, J.; Zeman, M.; Smole, F.; Topic, M.

    2004-01-01

    Optical modelling is used to investigate effects of light scattering in amorphous silicon and microcrystalline silicon solar cells. The role of enhanced haze parameter and different angular distribution function of scattered light is analyzed. Results of optical simulation show that enhanced haze parameter compared to that of Asahi U-type SnO 2 :F does not improve external quantum efficiency and short-circuit current density of amorphous silicon solar cell significantly, whereas for microcrystalline silicon solar cell the improvement is larger. Angular distribution function affects the external quantum efficiency and the short-circuit current density significantly

  12. Development of Non-Tracking Solar Thermal Technology

    Science.gov (United States)

    Winston, Roland; Johnston, Bruce; Balkowski, Kevin

    2011-11-01

    The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non-imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200 ° C and can be readily manufactured at a cost between 15 and 18 per square foot.

  13. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  14. Technical review of externalities issues. Final report

    International Nuclear Information System (INIS)

    Niemeyer, V.

    1994-12-01

    Externalities has become the catchword for a major experiment in electric utility regulation. Together with increased competition as a means for economic regulation, this experiment represents a potential revolution in how electric utilities are regulated. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This Technical Review presents four papers covering topics in economics that may play important roles in this revolution. The four papers are: Economic Issues in the Application of Externalities to Electricity Resource Selection; Climate Change, the Marginal Cost of Carbon Dioxide Emissions and the Implications for Carbon Dioxide Emissions Adders; Positive Externalities and Benefits from Electricity; and Socioeconomic Effects of Externality Adders for Electric Utility Emissions

  15. Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

  16. A Solar Atlas for Building-Integrated Photovoltaic Electricity Resource Assessment

    DEFF Research Database (Denmark)

    Möller, Bernd; Nielsen, Steffen; Sperling, Karl

    While photovoltaic energy gathers momentum as power costs increase and panel costs decrease, the total technical and economic potentials for building integrated solar energy in Denmark remain largely unidentified. The current net metering feed-in scheme is restricted to 6kW plant size, limiting...... large scale application. This paper presents a solar atlas based on a high-resolution digital elevation model (DEM) of all 2.9 million buildings in the country, combined with a building register. The 1.6 m resolution DEM has been processed into global radiation input, solar energy output and production....... The continuous assessment of solar electricity generation potentials by marginal costs, ownership and plant type presented in the paper may be used for defining long term policies for the development of photovoltaic energy, as well as political instruments such as a multi-tier feed-in tariff....

  17. Agua Caliente Wind/Solar Project at Whitewater Ranch

    Energy Technology Data Exchange (ETDEWEB)

    Hooks, Todd [Agua Caliente Band of Cahuilla Indians, Palm Springs, CA (United States); Stewart, Royce [Red Mountain Energy Partners, Sante Fe, NM (United States)

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  18. Winning the competition for supplier resources: The role of preferential resource allocation from suppliers

    NARCIS (Netherlands)

    Pulles, Niels Jaring; Veldman, Jasper; Schiele, Holger

    2016-01-01

    Purpose This paper examines the competition between buying firms for the supplier’s competitive resources. The purpose of this paper is to examine how indirect capabilities – the ability to access external resources – can help in obtaining preferential resource allocation from suppliers.

  19. Weighing environmental externalities: Let's do it right

    International Nuclear Information System (INIS)

    Joskow, P.L.

    1992-01-01

    Should we as a society adopt policies to internalize external environmental costs? Of course we should. But we should do it correctly. State public utility commissions (PUCs) that are using numerical 'externality adders' reflecting global and regional environmental impacts in the resource planning and selection process are doing it wrong. The use of these adders is likely to lead to higher electricity prices without a commensurate improvement in environmental impacts in the resource planning and selection process are doing it wrong. The use of these adders is likely to lead to higher electricity prices without a commensurate improvement in environmental quality. Alternative approaches for dealing with environmental damages or externalities exist that can lead utilities to take account of the environmental costs associated with the generation of electricity more effectively and at lower cost. This article discusses what an externality is and why the use of environmental adders by PUCs in the resource selection process, while well intentioned, is a bad idea. The author discusses how the most egregious errors associated with the use of adders can be corrected if PUCs insist on using them. Finally, he outlines an alternative approach that state PUCs can pursue which will better serve the electricity customers they are supposed to protect and promote a cleaner environment at the lowest reasonable cost. The author emphasizes that this is not a debate about whether or not environmental costs should be factored into the investment and operating decisions of firms that produce pollution. Rather, it is about how it should be done and whether state PUCs are in a particularly good position to do it well, given their expertise, legal authorities, other responsibilities and scarce resources

  20. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  1. Data requirements for valuing externalities: The role of existing permitting processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.D.; Baechler, M.C.; Callaway, J.M.

    1990-08-01

    While the assessment of externalities, or residual impacts, will place new demands on regulators, utilities, and developers, existing processes already require certain data and information that may fulfill some of the data needs for externality valuation. This paper examines existing siting, permitting, and other processes and highlights similarities and differences between their data requirements and the data required to value environmental externalities. It specifically considers existing requirements for siting new electricity resources in Oregon and compares them with the information and data needed to value externalities for such resources. This paper also presents several observations about how states can take advantage of data acquired through processes already in place as they move into an era when externalities are considered in utility decision-making. It presents other observations on the similarities and differences between the data requirements under existing processes and those for valuing externalities. This paper also briefly discusses the special case of cumulative impacts. And it presents recommendations on what steps to take in future efforts to value externalities. 35 refs., 2 tabs.

  2. External perforated Solar Screens for daylighting in residential desert buildings: Identification of minimum perforation percentages

    KAUST Repository

    Sherif, Ahmed; Sabry, Hanan; Rakha, Tarek

    2012-01-01

    and Saudi Arabia, result in the admittance of direct solar radiation, which leads to thermal discomfort and the incidence of undesired glare. One type of shading systems that is used to permit daylight while controlling solar penetration is " Solar Screens

  3. Long Island Solar Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  4. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia

    Science.gov (United States)

    Hamed, N. K. A.; Ahmad, M. K.; Urus, N. S. T.; Mohamad, F.; Nafarizal, N.; Ahmad, N.; Soon, C. F.; Ameruddin, A. S.; Faridah, A. B.; Shimomura, M.; Murakami, K.

    2017-09-01

    In carrying out experimental research in performance between silicon solar panel and dye-sensitive solar panel, we have been developing a device and a system. This system has been developed consisting of controllers, hardware and software. This system is capable to get most of the input sources. If only need to change the main circuit and coding for a different source input value. This device is able to get the ambient temperature, surface temperature, surrounding humidity, voltage with load, current with load, voltage without load and current without load and save the data into external memory. This device is able to withstand the heat and rain as it was fabricated in a waterproof box. This experiment was conducted to examine the performance of both the solar panels which are capable to maintain their stability and performance. A conclusion based on data populated, the distribution of data for dye-sensitized solar panel is much better than silicon solar panel as dye-sensitized solar panel is very sensitive to heat and not depend only on midday where is that is the maximum ambient temperature for both solar panel as silicon solar panel only can give maximum and high output only when midday.

  5. Output performance analyses of solar array on stratospheric airship with thermal effect

    International Nuclear Information System (INIS)

    Li, Jun; Lv, Mingyun; Tan, Dongjie; Zhu, Weiyu; Sun, Kangwen; Zhang, Yuanyuan

    2016-01-01

    Highlights: • A model investigating the output power of solar array is proposed. • The output power in the cruise condition with thermal effect is researched. • The effect of some factors on output performance is discussed in detail. • A suitable transmissivity of external layer is crucial in preliminary design step. - Abstract: Output performance analyses of the solar array are very critical for solving the energy problem of a long endurance stratospheric airship, and the solar cell efficiency is very sensitive to temperature of the solar cell. But the research about output performance of solar array with thermal effect is rare. This paper outlines a numerical model including the thermal model of airship and solar cells, the incident solar radiation model on the solar array, and the power output model. Based on this numerical model, a MATLAB computer program is developed. In the course of the investigation, the comparisons of the simulation results with and without considering thermal effect are reported. Furthermore, effects of the transmissivity of external encapsulation layer of solar array and wind speed on the thermal performance and output power of solar array are discussed in detail. The results indicate that this method is helpful for planning energy management.

  6. New Earth-abundant Materials for Large-scale Solar Fuels Generation.

    Science.gov (United States)

    Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David

    2018-05-30

    The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

  7. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  8. SPADER - Science Planning Analysis and Data Estimation Resource for the NASA Parker Solar Probe Mission

    Science.gov (United States)

    Rodgers, D. J.; Fox, N. J.; Kusterer, M. B.; Turner, F. S.; Woleslagle, A. B.

    2017-12-01

    Scheduled to launch in July 2018, the Parker Solar Probe (PSP) will orbit the Sun for seven years, making a total of twenty-four extended encounters inside a solar radial distance of 0.25 AU. During most orbits, there are extended periods of time where PSP-Sun-Earth geometry dramatically reduces PSP-Earth communications via the Deep Space Network (DSN); there is the possibility that multiple orbits will have little to no high-rate downlink available. Science and housekeeping data taken during an encounter may reside on the spacecraft solid state recorder (SSR) for multiple orbits, potentially running the risk of overflowing the SSR in the absence of mitigation. The Science Planning Analysis and Data Estimation Resource (SPADER) has been developed to provide the science and operations teams the ability to plan operations accounting for multiple orbits in order to mitigate the effects caused by the lack of high-rate downlink. Capabilities and visualizations of SPADER are presented; further complications associated with file downlink priority and high-speed data transfers between instrument SSRs and the spacecraft SSR are discussed, as well as the long-term consequences of variations in DSN downlink parameters on the science data downlink.

  9. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  10. The potential impact of externalities considerations on the market for biomass power technologies

    International Nuclear Information System (INIS)

    Swezey, B.G.; Porter, K.L.; Feher, J.S.

    1995-01-01

    Of all the renewable energy sources used for power generation, biomass energy has experienced the greatest growth over the last decade. Spurred by requirements established in the Public Utility Regulatory Policies Act of 1978 (PURPA), as well as various tax incentives, biomass-based power generation now provides more than 50 billion kWh of electric energy from 10,000 MW of installed capacity. The overwhelming majority of this capacity, primarily wood-based, has been developed by the nonutility sector. However, the biomass industry is currently facing more difficult market conditions due to a reduction in federal incentives and changes in the generation market, such as lower utility avoided costs, slower demand growth, and greater competition among both generators and fuel sources. States are increasingly contemplating the inclusion of market externalities costs and benefits associated with different generation options in electricity resource planning and procurement decisions. Market externalities, as they relate to generation resources and technologies, represent impacts that are not wholly reflected in the market price of electricity derived from these sources. These impacts, which can be either positive or negative, can encompass environmental, economic and other social factors, but state considerations have focused predominantly on environmental externalities costs, especially air emissions. The explicit quantification of externalities could measurably affect the competitive standing of various energy resources and technologies in future generation resource acquisitions. This paper summarizes work undertaken to assess the status the externalities considerations in state and utility electricity resource planning processes and to determine how externalities considerations might help or hinder future development of biomass power plants. (author)

  11. Modification of circuit module of dye-sensitized solar cells (DSSC) for solar windows applications

    Science.gov (United States)

    Hastuti, S. D.; Nurosyid, F.; Supriyanto, A.; Suryana, R.

    2016-11-01

    This research has been conducted to obtain a modification of circuit producing the best efficiency of solar window modules as an alternative energy for daily usage. Solar window module was constructed by DSSC cells. In the previous research, solar window was created by a single cell of DSSC. Because it had small size, it could not be applied in the manufacture of solar window. Fabrication of solar window required a larger size of DSSC cell. Therefore, in the next research, a module of solar window was fabricated by connecting few cells of DSSC. It was done by using external electrical circuit method which was modified in the formation of series circuit and parallel circuit. Its fabrication used six cells of DSSC with the size of each cell was 1 cm × 9 cm. DSSC cells were sandwich structures constructed by an active layer of TiO2 as the working electrode, electrolyte solution, dye, and carbon layer. Characterization of module was started one by one, from one cell, two cells, three cells, until six cells of a module. It was conducted to recognize the increasing efficiency value as the larger surface area given. The efficiency of solar window module with series circuit was 0.06%, while using parallel circuit was 0.006%. Module with series circuit generated the higher voltage as the larger surface area. Meanwhile, module through parallel circuit tended to produce the constant voltage as the larger surface area. It was caused by the influence of resistance within the cable in each module. Module with circuit parallel used a longer cable than module with series circuit, so that its resistance increased. Therefore, module with parallel circuit generated voltage that tended to be constant and resulted small efficiency compared to the module with series circuit. It could be concluded that series external circuit was the best modification which could produce the higher efficiency.

  12. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    Science.gov (United States)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  13. Quantitative variability of renewable energy resources in Norway

    Science.gov (United States)

    Christakos, Konstantinos; Varlas, George; Cheliotis, Ioannis; Aalstad, Kristoffer; Papadopoulos, Anastasios; Katsafados, Petros; Steeneveld, Gert-Jan

    2017-04-01

    Based on European Union (EU) targets for 2030, the share of renewable energy (RE) consumption should be increased at 27%. RE resources such as hydropower, wind, wave power and solar power are strongly depending on the chaotic behavior of the weather conditions and climate. Due to this dependency, the prediction of the spatiotemporal variability of the RE resources is more crucial factor than in other energy resources (i.e. carbon based energy). The fluctuation of the RE resources can affect the development of the RE technologies, the energy grid, supply and prices. This study investigates the variability of the potential RE resources in Norway. More specifically, hydropower, wind, wave, and solar power are quantitatively analyzed and correlated with respect to various spatial and temporal scales. In order to analyze the diversities and their interrelationships, reanalysis and observational data of wind, precipitation, wave, and solar radiation are used for a quantitative assessment. The results indicate a high variability of marine RE resources in the North Sea and the Norwegian Sea.

  14. Optimization of the occulter for the Solar Orbiter/METIS coronagraph

    Science.gov (United States)

    Landini, Federico; Vivès, Sébastien; Romoli, Marco; Guillon, Christophe; Pancrazzi, Maurizio; Escolle, Clement; Focardi, Mauro; Antonucci, Ester; Fineschi, Silvano; Naletto, Giampiero; Nicolini, Gianalfredo; Nicolosi, Piergiorgio; Spadaro, Daniele

    2012-09-01

    METIS (Multi Element Telescope for Imaging and Spectroscopy investigation), selected to fly aboard the Solar Orbiter ESA/NASA mission, is conceived to perform imaging (in visible, UV and EUV) and spectroscopy (in EUV) of the solar corona, by means of an integrated instrument suite located on a single optical bench and sharing the same aperture on the satellite heat shield. As every coronagraph, METIS is highly demanding in terms of stray light suppression. Coronagraphs history teaches that a particular attention must be dedicated to the occulter optimization. The METIS occulting system is of particular interest due to its innovative concept. In order to meet the strict thermal requirements of Solar Orbiter, METIS optical design has been optimized by moving the entrance pupil at the level of the external occulter on the S/C thermal shield, thus reducing the size of the external aperture. The scheme is based on an inverted external-occulter (IEO). The IEO consists of a circular aperture on the Solar Orbiter thermal shield. A spherical mirror rejects back the disk-light through the IEO. A breadboard of the occulting assembly (BOA) has been manufactured in order to perform stray light tests in front of two solar simulators (in Marseille, France and in Torino, Italy). A first measurement campaign has been carried on at the Laboratoire d'Astrophysique de Marseille. In this paper we describe the BOA design, the laboratory set-up and the preliminary results.

  15. Social costs of energy consumption. External effects of electricity consumption in the Federal Republic of Germany. Soziale Kosten des Energieverbrauchs. Externe Effekte des Elektrizitaetsverbrauchs in der Bundesrepublik Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Hohmeyer, O

    1988-01-01

    This study provides a first systematic quantification and conversion into monetary terms of the relevant social costs and benefits, in order to create a basis for corrective measures with respect to the use of wind power and the photovoltaic use of solar energy. Four main areas of social costs of energy systems are looked at in the study: Environmental costs, including the effect on human health. Inadequate consideration of the long-term shortage of resources in present-day market prices. Macroeconomic effects such as changes in the net product or employment. Subsidies via state agencies, which are made partly in the form of direct payments and partly in an indirect way in the form of state services. State subsidies in the area of research and development can be subsumed under the last point. In each of these main fields there is a multiplicity of separate external effects which are dealt with at length in a special chapter. (orig./UA) With 20 figs., 24 tabs.

  16. Internal and External Resources as Determinants of Health and Quality of Life.

    Directory of Open Access Journals (Sweden)

    Elfriede Greimel

    Full Text Available The salutogenic model has been established as a health promoting resource that is related to a strong sense of coherence (SOC, positive subjective health and quality of life (QoL. The aim of the study was to compare internal and external resources, life style factors, perceived health and QoL in Japan and Austria and to determine associations among these factors.A survey was conducted in a Japanese (N = 460 and an Austrian (N = 421 student sample using the following self-report health questionnaires: Sense of Coherence Scale (SOC-13, Social and Gender Role Scale, Multidimensional Scale of Perceived Social Support (MSPSS, Dutch Eating Behaviour Questionnaire (DEBQ, SF-12 Health Survey, and the Cross-cultural Health Survey. Analyses of data showed that age (ß -0.12, and stress (ß -0.21 were negatively related and SOC (ß 0.47, family support are (ß -0.35 positively related to mental QoL. Significant predictors for emotional strain, were female gender (ß -0.24, older age (ß-0.14, lower SOC (ß 0.28, less traditional gender and social role patterns (ß 0.10, more restrained eating (ß -0.20, more alcohol intake (ß -0.16, and more stress (ß -0.25 explaining 42% of the variance in Austrian students. In Japan stress (ß -0.38 was negatively related and SOC (ß 0.37 positively related to mental QoL. Older age (ß -0.20, lower SOC (ß 0.29 and more stress (ß -0.33 were identified as significant predictors explaining 35% of the variance in Japanese students.SOC and stress are strongly associated with QoL and perceived health in Austria as well as in Japan. SOC seems to be a crucial predictor for stress, and emotional health independent of the cultural context. A major challenge of cross-cultural research is to understand perceived health and QoL and the extent in which it is individually, socially, or culturally determined.

  17. Internal and External Resources as Determinants of Health and Quality of Life.

    Science.gov (United States)

    Greimel, Elfriede; Kato, Yoshiko; Müller-Gartner, Maria; Salchinger, Beate; Roth, Roswith; Freidl, Wolfgang

    2016-01-01

    The salutogenic model has been established as a health promoting resource that is related to a strong sense of coherence (SOC), positive subjective health and quality of life (QoL). The aim of the study was to compare internal and external resources, life style factors, perceived health and QoL in Japan and Austria and to determine associations among these factors. A survey was conducted in a Japanese (N = 460) and an Austrian (N = 421) student sample using the following self-report health questionnaires: Sense of Coherence Scale (SOC-13), Social and Gender Role Scale, Multidimensional Scale of Perceived Social Support (MSPSS), Dutch Eating Behaviour Questionnaire (DEBQ), SF-12 Health Survey, and the Cross-cultural Health Survey. Analyses of data showed that age (ß -0.12), and stress (ß -0.21) were negatively related and SOC (ß 0.47), family support are (ß -0.35) positively related to mental QoL. Significant predictors for emotional strain, were female gender (ß -0.24), older age (ß-0.14), lower SOC (ß 0.28), less traditional gender and social role patterns (ß 0.10), more restrained eating (ß -0.20), more alcohol intake (ß -0.16), and more stress (ß -0.25) explaining 42% of the variance in Austrian students. In Japan stress (ß -0.38) was negatively related and SOC (ß 0.37) positively related to mental QoL. Older age (ß -0.20), lower SOC (ß 0.29) and more stress (ß -0.33) were identified as significant predictors explaining 35% of the variance in Japanese students. SOC and stress are strongly associated with QoL and perceived health in Austria as well as in Japan. SOC seems to be a crucial predictor for stress, and emotional health independent of the cultural context. A major challenge of cross-cultural research is to understand perceived health and QoL and the extent in which it is individually, socially, or culturally determined.

  18. The Market Value and Cost of Solar Photovoltaic Electricity Production

    OpenAIRE

    Borenstein, Severin

    2008-01-01

    The high cost of power from solar photovoltaic (PV) panels has been a major deterrent to the technology’s market penetration. Proponents have argued, however, that typical analyses overlook many of the benefits of solar PV. Some of those benefits are in the realm of environmental and security externalities, but others occur within the electricity markets. In this paper, I attempt to do a more complete market valuation of solar PV. I incorporate the fact that power from solar PV panels is gene...

  19. 1991 SOLAR WORLD CONGRESS - VOLUME 1, PART I

    Science.gov (United States)

    The four-volume proceedings document the 1991 Solar World Congress (the biennial congress of the International Solar Energy Society) in Denver, CO, August 19-23, 1991. Volume 1 is dedicated to solar electricity, biofuels, and renewable resources. Volume 2 contains papers on activ...

  20. Milwaukee, Wisconsin: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Milwaukee, WI, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  1. Sacramento, California: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Sacramento, CA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  2. Pittsburgh, Pennsylvania: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Pittsburgh, PA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  3. Seattle, Washington: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Seattle, WA, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  4. Orlando, Florida: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Orlando, FL, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Austin, Texas: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Austin, Texas, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  6. Solar thermal central receivers

    International Nuclear Information System (INIS)

    Vant-Hull, L.L.

    1993-01-01

    Market issues, environmental impact, and technology issues related to the Solar Central Receiver concept are addressed. The rationale for selection of the preferred configuration and working fluid are presented as the result of a joint utility-industry analysis. A $30 million conversion of Solar One to an external molten salt receiver would provide the intermediate step to a commercial demonstration plant. The first plant in this series could produce electricity at 11.2 cents/kWhr and the seventh at 8.2 cents/kWhr, completely competitive with projected costs of new utility plants in 1992

  7. Building a parabolic solar concentrator prototype

    International Nuclear Information System (INIS)

    Escobar-Romero, J F M; Montiel, S Vazquez y; Granados-AgustIn, F; Rodriguez-Rivera, E; Martinez-Yanez, L; Cruz-Martinez, V M

    2011-01-01

    In order to not further degrade the environment, people have been seeking to replace non-renewable natural resources such as fossil fuels by developing technologies that are based on renewable resources. An example of these technologies is solar energy. In this paper, we show the building and test of a solar parabolic concentrator as a prototype for the production of steam that can be coupled to a turbine to generate electricity or a steam engine in any particular industrial process.

  8. Regional programme on quality control of radioimmunoassay: Development of human resources and external quality assessments

    International Nuclear Information System (INIS)

    Quiroga, S.; Torres, M.; Mendizabal, A.F.; Farinati, Z.; Galanternik, A.

    1986-01-01

    Since 1978 the authors have been concerned with helping to standardize radioimmunoassay (RIA) methodology in Argentina and other Latin American countries by: (1) developing human resources through courses on quality control of RIA and training of fellows, and (2) developing four external quality assessment (EQA) schemes to evaluate the performance of laboratories in determining several analytes by RIA. The number of collaborating laboratories increased between the first and fourth schemes. The average analytical performance achieved by the participants in each scheme was estimated by the average between-laboratory variation. Thyroxine, cortisol and tri-iodothyronine were measured the most accurately. Different problems were evident in the RIAs of thyrotrophin, luteinizing hormone, follicle stimulating hormone, prolactin, testosterone, progesterone, cortisol, immunoglobulin E and human growth hormone. RIA of oestradiol showed the worst accuracy. Analysis of the results showed an increasing interest in RIA quality control as it was found to improve the reliability of RIA. (author)

  9. The Little Data Book on External Debt 2007

    OpenAIRE

    World Bank

    2007-01-01

    The little data book on external debt, a pocket edition of Global Development Finance (GDF) 2007, volume two, summary and country tables, contains statistical tables on the external debt of the 135 countries that report public and publicly guaranteed debt under the debtor reporting system. It also includes tables of selected debt and resource flow statistics for individual reporting countr...

  10. The Solar Bank concept

    International Nuclear Information System (INIS)

    Eckhart, M.T.

    1999-01-01

    The Solar Bank is proposed to be established as a multinational wholesale lending institution supporting the adoption of solar photovoltaic (PV) systems by as much as 40% of the world's population. It would supply capital resources to local lending institutions such as banks, credit unions, cooperatives, and rural lending organizations in the developing countries, and to financial institutions in the developed countries. The Solar Bank is intended to be global in scope, with operations in the major countries. The Solar Bank will bring a degree of standardization to the process of making small loans to many people for the purchase of PV systems, and it will provide technical support and training to its participating financial institutions. 'Solar Bank International' is likely to be headquartered in Europe. (orig.)

  11. Scaled-model guidelines for formation-flying solar coronagraph missions.

    Science.gov (United States)

    Landini, Federico; Romoli, Marco; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio; Galano, Damien; Kirschner, Volker

    2016-02-15

    Stray light suppression is the main concern in designing a solar coronagraph. The main contribution to the stray light for an externally occulted space-borne solar coronagraph is the light diffracted by the occulter and scattered by the optics. It is mandatory to carefully evaluate the diffraction generated by an external occulter and the impact that it has on the stray light signal on the focal plane. The scientific need for observations to cover a large portion of the heliosphere with an inner field of view as close as possible to the photospheric limb supports the ambition of launching formation-flying giant solar coronagraphs. Their dimension prevents the possibility of replicating the flight geometry in a clean laboratory environment, and the strong need for a scaled model is thus envisaged. The problem of scaling a coronagraph has already been faced for exoplanets, for a single point source on axis at infinity. We face the problem here by adopting an original approach and by introducing the scaling of the solar disk as an extended source.

  12. Solar energy in Germany: a national commitment

    International Nuclear Information System (INIS)

    Persem, Melanie

    2012-01-01

    This document presents some key information and figures about the development of solar energy in Germany: national energy plan and share of solar energy in the German energy mix, the photovoltaic industry: a dynamic industry which creates jobs, 2006-2012 evolution of photovoltaic power plant costs, solar thermal resource potentialities and effective exploitation

  13. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  14. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  15. Down the slippery slop: Utility incorporation of environmental externalities

    International Nuclear Information System (INIS)

    Vandenberg, A.J.; Tempchin, R.S.; Mitnick, S.A.; Harron, A.L.

    1993-01-01

    Advocates of incorporating environmental externalities in electric utility decision-making have concentrated on new electric generating resources, with some success. Such public utility commission actions compel utilities to consider, explicitly, the cost of sulfur dioxide, carbon dioxide, nitrogen oxides and other emission of power-plants when comparing the economics of new generating resources with those of other resource options (e.g., demand-side management and gas-fired non-utility generator projects). This paper summarizes a study which estimated costs of incorporating externalities in utility system operations. We also present an analysis of the Tellus work in this area, and contrast Tellus' methodology, assumptions and results with our own. Estimates of the cost of incorporating externalities in system operations is rather large, in terms of the increased fuel and purchased power cost that ratepayers would have to bear. For the eight cases we examined, the incorporation of externalities caused fuel and purchased power cost to be 9.3 to 69.5 percent higher, relative to what it would have been under traditional generating unit commitment and dispatch. Furthermore, we believe that these estimates of fuel and purchased power cost increases are conservative. In particular, because our analyses focused on utility system operations in 1995, the key assumption about the fuel cost differential (i.e., coal versus natural gas) probably underestimates the differential in later years, significantly, when virtually all forecasters foresee faster cost escalation rates for gas. In general, the higher the fuel cost differential, the faster cost escalation rates for gas. In general, the higher the fuel cost differential, the greater the cost of an externality policy. Unless the record is set straight soon, the idea that incorporating externalities is virtually costless will further spread in the regulatory community and among government policy-makers

  16. Solar Technical Assistance Team 2013 Webinars | State, Local, and Tribal

    Science.gov (United States)

    Governments | NREL 3 Webinars Solar Technical Assistance Team 2013 Webinars The Solar Technical Assistance Team (STAT) 2013 webinar series provides an overview of solar technologies, resources, and the following sessions are available: Solar Finance for Residential and Commercial Customers and Potential Roles

  17. Solar-system Education for the 2017 Total Solar Eclipse

    Science.gov (United States)

    Pasachoff, Jay M.

    2017-10-01

    I describe an extensive outreach program about the Sun, the silhouette of the Moon, and the circumstances both celestial and terrestrial of the August 21, 2017, total solar eclipse. Publications included a summary of the last decade of solar-eclipse research for Nature Astronomy, a Resource Letter on Observing Solar Eclipses for the American Journal of Physics, and book reviews for Nature and for Phi Beta Kappa's Key Reporter. Symposia arranged include sessions at AAS, APS, AGU, and AAAS. Lectures include all ages from pre-school through elementary school to high school to senior-citizen residences. The work, including the scientific research about the solar corona that is not part of this abstract, was supported by grants from the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of NSF and from the Committee for Research and Exploration of the National Geographic Society. Additional student support was received from NSF, NASA's Massachusetts Space Grant Consortium, the Honorary Research Society Sigma Xi, the Clare Booth Luce Foundation, and funds at Williams College.

  18. Evaluation of the National Solar Radiation Database (NSRDB): 1998-2015

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-01

    This paper validates the performance of the physics-based Physical Solar Model (PSM) data set in the National Solar Radiation Data Base (NSRDB) to quantify the accuracy of the magnitude and the spatial and temporal variability of the solar radiation data. Achieving higher penetrations of solar energy on the electric grid and reducing integration costs requires accurate knowledge of the available solar resource. Understanding the impacts of clouds and other meteorological constituents on the solar resource and quantifying intra-/inter-hour, seasonal, and interannual variability are essential for accurately designing utility-scale solar energy projects. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. The availability of measurements is scarce, both temporally and spatially, because it is expensive to maintain a high-density solar radiation measurement network that collects good quality data for long periods of time. On the other hand, high temporal and spatial resolution gridded satellite data can be used to estimate surface radiation for long periods of time and is extremely useful for solar energy development. Because of the advantages of satellite-based solar resource assessment, the National Renewable Energy Laboratory developed the PSM. The PSM produced gridded solar irradiance -- global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance -- for the NSRDB at a 4-km by 4-km spatial resolution and half-hourly temporal resolution covering the 18 years from 1998-2015. The NSRDB also contains additional ancillary meteorological data sets, such as temperature, relative humidity, surface pressure, dew point, and wind speed. Details of the model and data are available at https://nsrdb.nrel.gov. The results described in this paper show that the hourly-averaged satellite-derived data have a systematic (bias) error of approximately +5% for GHI and less than +10% for

  19. Climate Wind Power Resources

    Directory of Open Access Journals (Sweden)

    Nana M. Berdzenishvili

    2013-01-01

    Full Text Available Georgia as a whole is characterized by rather rich solar energy resources, which allows to construct alternative power stations in the close proximity to traditional power plants. In this case the use of solar energy is meant. Georgia is divided into 5 zones based on the assessment of wind power resources. The selection of these zones is based on the index of average annual wind speed in the examined area, V> 3 m / s and V> 5 m / s wind speed by the summing duration in the course of the year and V = 0. . . 2 m / s of passive wind by total and continuous duration of these indices per hour.

  20. Practice of Meteorological Services in Turpan Solar Eco-City in China (Invited)

    Science.gov (United States)

    Shen, Y.; Chang, R.; He, X.; Jiang, Y.; Zhao, D.; Ma, J.

    2013-12-01

    Turpan Solar Eco-City is located in Gobi in Northwest China, which is one of the National New Energy Demonstration Urban. The city was planed and designed from October of 2008 and constructed from May of 2010, and the first phase of the project has been completed by October of 2013. Energy supply in Turpan Solar Eco-City is mainly from PV power, which is installed in all of the roof and the total capacity is 13.4MW. During the planning and designing of the city, and the running of the smart grid, meteorological services have played an important role. 1) Solar Energy Resource Assessment during Planning Phase. According to the observed data from meteorological stations in recent 30 years, solar energy resource was assessed and available PV power generation capacity was calculated. The results showed that PV power generation capacity is 1.3 times the power consumption, that is, solar energy resource in Turpan is rich. 2) Key Meteorological Parameters Determination for Architectural Design. A professional solar energy resource station was constructed and the observational items included Global Horizontal Irradiance, Inclined Total Solar Irradiance at 30 degree, Inclined Total Solar Irradiance at local latitude, and so on. According these measured data, the optical inclined angle for PV array was determined, that is, 30 degree. The results indicated that the annual irradiation on inclined plane with optimal angle is 1.4% higher than the inclined surface with latitude angle, and 23.16% higher than the horizontal plane. The diffuse ratio and annual variation of the solar elevation angle are two major factors that influence the irradiation on inclined plane. 3) Solar Energy Resource Forecast for Smart Grid. Weather Research Forecast (WRF) model was used to forecast the hourly solar radiation of future 72 hours and the measured irradiance data was used to forecast the minutely solar radiation of future 4 hours. The forecast results were submitted to smart grid and used to

  1. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  2. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  3. Solar thermal electricity generation

    Science.gov (United States)

    Gasemagha, Khairy Ramadan

    1993-01-01

    This report presents the results of modeling the thermal performance and economic feasibility of large (utility scale) and small solar thermal power plants for electricity generation. A number of solar concepts for power systems applications have been investigated. Each concept has been analyzed over a range of plant power ratings from 1 MW(sub e) to 300 MW(sub e) and over a range of capacity factors from a no-storage case (capacity factor of about 0.25 to 0.30) up to intermediate load capacity factors in the range of 0.46 to 0.60. The solar plant's economic viability is investigated by examining the effect of various parameters on the plant costs (both capital and O & M) and the levelized energy costs (LEC). The cost components are reported in six categories: collectors, energy transport, energy storage, energy conversion, balance of plant, and indirect/contingency costs. Concentrator and receiver costs are included in the collector category. Thermal and electric energy transport costs are included in the energy transport category. Costs for the thermal or electric storage are included in the energy storage category; energy conversion costs are included in the energy conversion category. The balance of plant cost category comprises the structures, land, service facilities, power conditioning, instrumentation and controls, and spare part costs. The indirect/contingency category consists of the indirect construction and the contingency costs. The concepts included in the study are (1) molten salt cavity central receiver with salt storage (PFCR/R-C-Salt); (2) molten salt external central receiver with salt storage (PFCR/R-E-Salt); (3) sodium external central receiver with sodium storage (PFCR/RE-Na); (4) sodium external central receiver with salt storage (PFCR/R-E-Na/Salt); (5) water/steam external central receiver with oil/rock storage (PFCR/R-E-W/S); (6) parabolic dish with stirling engine conversion and lead acid battery storage (PFDR/SLAB); (7) parabolic dish

  4. New Orleans, Louisiana: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of New Orleans, LA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Low cost thermal solar collector

    International Nuclear Information System (INIS)

    Abugderah, M. M.; Schneider, E. L.; Tontini, M. V.

    2006-01-01

    Solar energy is a good alternative in the economy of the electric energy mainly for the water heating. However, the solar heaters used demand a high initial investment, becoming the warm water from solar energy inaccessible to a large part of the society. Thus, a low cost solar heater was developed, constructed and tested in the chemical engineering department of West Parana State University-Unioeste. This equipment consists of 300 cans, divided in 30 columns of 10 cans each, all painted in black to enhance the obsorption of the solar radiation. The columns are connected to a pipe of pvc of 8 liters with 0.085m of external diameter. The equipment is capable to heat 120 liters of water in temperatures around 60 degree centigrade. The heater is insolated in its inferior part with cardboard and aluminum, covered with a transparent plastic in its superior. The system still counts with a insulated thermal reservoir, which can conserve the water in temperatures adjusted for the night non-solar days domestic use. The advantage of the constructed is it low cost material. The results are given an graphical tabular from showing acceptable efficiencies.(Autho

  6. The competition for supplier resources

    NARCIS (Netherlands)

    Pulles, Niels Jaring

    2014-01-01

    Suppliers can have a major influence on the overall competitiveness of a firm. When firms lack certain capabilities or resources within their own organization, collaborations with suppliers can help them to acquire these resources and capabilities externally and improve competitive advantage.

  7. Sustained orderly development of the solar electric technologies

    International Nuclear Information System (INIS)

    Aitken, D.W.

    1992-01-01

    This article examines the need of electric utilities to support the commercialization of solar electric technologies now in order to have the technology available for future energy resources. The topics of the article include deteriorating opportunities, sustained orderly development of solar electric technologies, historical aspects, and market forces in the solar electric industry

  8. Improved model for solar heating of buildings

    OpenAIRE

    Lie, Bernt

    2015-01-01

    A considerable future increase in the global energy use is expected, and the effects of energy conversion on the climate are already observed. Future energy conversion should thus be based on resources that have negligible climate effects; solar energy is perhaps the most important of such resources. The presented work builds on a previous complete model for solar heating of a house; here the aim to introduce ventilation heat recovery and improve on the hot water storage model. Ventilation he...

  9. Development of gridded solar radiation data over Belgium based on Meteosat and in-situ observations

    Science.gov (United States)

    Journée, Michel; Vanderveken, Gilles; Bertrand, Cédric

    2013-04-01

    Knowledge on solar resources is highly important for all forms of solar energy applications. With the recent development in solar-based technologies national meteorological services are faced with increasing demands for high-quality and reliable site-time specific solar resource information. Traditionally, solar radiation is observed by means of networks of meteorological stations. Costs for installation and maintenance of such networks are very high and national networks comprise only few stations. Consequently the availability of ground-based solar radiation measurements has proven to be spatially and temporally inadequate for many applications. To overcome such a limitation, a major effort has been undertaken at the Royal Meteorological Institute of Belgium (RMI) to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information on the solar radiation resources at the Earth's surface over the Belgian territory. Only space-based observations can deliver a global coverage of the solar irradiation impinging on horizontal surface at the ground level. Because only geostationary data allow to capture the diurnal cycle of the solar irradiance at the Earth's surface, a method that combines information from Meteosat Second Generation satellites and ground-measurement has been implemented at RMI to generate high resolution solar products over Belgium on an operational basis. Besides these new products, the annual and seasonal variability of solar energy resource was evaluated, solar radiation climate zones were defined and the recent trend in solar radiation was characterized.

  10. Impact of the 2017 Solar Eclipse on Smart Grid

    Science.gov (United States)

    Reda, I.; Andreas, A.; Sengupta, M.; Habte, A.

    2017-12-01

    With the increasing interest in using solar energy as a major contributor to renewable energy utilization, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, arises the need to know the Moon position in the sky with respect to the Sun. When a solar eclipse occurs, the Moon disk might totally or partially shade the Sun disk, which can affect the irradiance level from the sun disk, consequently, a resource on the grid is affected. The Moon position can then provide the smart grid users with information about potential total or partial solar eclipse at different locations in the grid, so that other resources on the grid can be directed where this might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on earth, they can last three hours or more depending on the location, which can have devastating effects on the smart grid users. On August 21, 2017 a partial solar eclipse will occur at the National Renewable Energy Laboratory in Golden, Colorado, USA. The solar irradiance will be measured during the eclipse and compared to the data generated by a model for validation.

  11. Environmental externalities: Applying the concept to Asian coal-based power generation. [Includes external environmental and societal costs and methods of evaluating them

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  12. ENHANCEMENT OF A SUNSPOT LIGHT WALL WITH EXTERNAL DISTURBANCES

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Erdélyi, Robert, E-mail: shuhongyang@nao.cas.cn [Solar Physics and Space Plasma Research Centre, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2016-12-20

    Based on the Interface Region Imaging Spectrograph observations, we study the response of a solar sunspot light wall to external disturbances. A flare occurrence near the light wall caused material to erupt from the lower solar atmosphere into the corona. Some material falls back to the solar surface and hits the light bridge (i.e., the base of the light wall), then sudden brightenings appear at the wall base followed by the rise of wall top, leading to an increase of the wall height. Once the brightness of the wall base fades, the height of the light wall begins to decrease. Five hours later, another nearby flare takes place, and a bright channel is formed that extends from the flare toward the light bridge. Although no obvious material flow along the bright channel is found, some ejected material is conjectured to reach the light bridge. Subsequently, the wall base brightens and the wall height begins to increase again. Once more, when the brightness of the wall base decays, the wall top fluctuates to lower heights. We suggest, based on the observed cases, that the interaction of falling material and ejected flare material with the light wall results in the brightenings of wall base and causes the height of the light wall to increase. Our results reveal that the light wall can be not only powered by the linkage of p -mode from below the photosphere, but may also be enhanced by external disturbances, such as falling material.

  13. Solar process heat for industry, seawater desalination and solar chemistry; Solare Prozesswaerme fuer Industrie, Meerwasserentsalzung und Solarchemie

    Energy Technology Data Exchange (ETDEWEB)

    Hennecke, K. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany); Lokurlu, A. [Solitem GmbH, Aachen (Germany); Rommel, M. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Spaete, F. [Fachhochschule Aachen, Juelich (Germany). Solar-Institut Juelich

    2006-02-15

    The examples discussed in this paper show that solar process heat can make an important contribution to climate protection and resource conservation. Marketable technologies providing temperatures up to approx. 200 C will be available in the short to medium term future. Continue low prices for fossil fuels and high consulting and planning costs impede the further spread of these technologies. Politicians must be called upon to facilitate the development of the market through suitable promotion programmes. There is still a long-term requirement for research, especially regarding high-temperature applications and solar chemistry.

  14. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  15. Empirical model of TEC response to geomagnetic and solar forcing over Balkan Peninsula

    Science.gov (United States)

    Mukhtarov, P.; Andonov, B.; Pancheva, D.

    2018-01-01

    An empirical total electron content (TEC) model response to external forcing over Balkan Peninsula (35°N-50°N; 15°E-30°E) is built by using the Center for Orbit Determination of Europe (CODE) TEC data for full 17 years, January 1999 - December 2015. The external forcing includes geomagnetic activity described by the Kp-index and solar activity described by the solar radio flux F10.7. The model describes the most probable spatial distribution and temporal variability of the externally forced TEC anomalies assuming that they depend mainly on latitude, Kp-index, F10.7 and LT. The anomalies are expressed by the relative deviation of the TEC from its 15-day mean, rTEC, as the mean value is calculated from the 15 preceding days. The approach for building this regional model is similar to that of the global TEC model reported by Mukhtarov et al. (2013a) however it includes two important improvements related to short-term variability of the solar activity and amended geomagnetic forcing by using a "modified" Kp index. The quality assessment of the new constructing model procedure in terms of modeling error calculated for the period of 1999-2015 indicates significant improvement in accordance with the global TEC model (Mukhtarov et al., 2013a). The short-term prediction capabilities of the model based on the error calculations for 2016 are improved as well. In order to demonstrate how the model is able to reproduce the rTEC response to external forcing three geomagnetic storms, accompanied also with short-term solar activity variations, which occur at different seasons and solar activity conditions are presented.

  16. Solar energy legal bibliography. Final report. [160 references

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, D.; Euser, B.; Joyce, C.; Morgan, G. H.; Laitos, J. G.; Adams, A.

    1979-03-01

    The Solar Energy Legal Bibliography is a compilation of approximately 160 solar publications abstracted for their legal and policy content (through October 1978). Emphasis is on legal barriers and incentives to solar energy development. Abstracts are arranged under the following categories: Antitrust, Biomass, Building Codes, Consumer Protection, Environmental Aspects, Federal Legislation and Programs, Financing/Insurance, International Law, Labor, Land Use (Covenants, Easements, Nuisance, Zoning), Local Legislation and Programs, Ocean Energy, Patents and Licenses, Photovoltaics, Solar Access Rights, Solar Heating and Cooling, Solar Thermal Power Systems, Standards, State Legislation and Programs, Tax Law, Tort Liability, Utilities, Warranties, Wind Resources, and General Solar Law.

  17. Low Power FPGA Based Solar Charge Sensor Design Using Frequency Scaling

    DEFF Research Database (Denmark)

    Tomar, Puneet; Gupta, Sheigali; Kaur, Amanpreet

    2016-01-01

    Resources of energy are degrading day by day the concept of energy saving is very important. Solar chargers are very most widely used devices which saves our energy resources. Use of Solar charges is now extremely increased. But the performance and effective output of these chargers depend upon h...

  18. Experimental study on comprehensive utilization of solar energy and energy balance in an integrated solar house

    International Nuclear Information System (INIS)

    Chang, Huawei; Liu, Yuting; Shen, Jinqiu; Xiang, Can; He, Sinian; Wan, Zhongmin; Jiang, Meng; Duan, Chen; Shu, Shuiming

    2015-01-01

    Highlights: • Active and passive solar house technology is integrated in the solar house. • Solar thermal system and solar photoelectric system are measured and analyzed. • Energy balance and energy consumption are analyzed with valuable experimental data. • “Zero energy consumption” is truly achieved with the solar supply rate of 1.19 in winter. - Abstract: An integrated solar house with numerous advanced envelops is designed and constructed to investigate the comprehensive utilization of solar energy, energy efficiency and energy balance, which combines active solar house technology with passive solar house technology including solar photovoltaic system, solar water heating system, direct-gain door and windows. Solar radiation intensity, performance of the photovoltaic system, water temperature, and indoor and outdoor temperature are measured, results of the experiments indicate that solar glass window on the south wall can maintain the average indoor temperature at 21.4 °C in the case of average outdoor temperature at 11.2 °C without any external heat supply. The output current of the solar photovoltaic system shows the same trend as solar radiation intensity. When the intensity is 619.7 W/m"2, the instantaneous generation power could reach a value of 781.9 W, cumulative capacity throughout the day achieves 4.56 kW h and photovoltaic conversion efficiency 9.8%. When the average intensity throughout a day is 358 W/m"2, the solar water heating system could help to raise the temperature of 450 L water by 30 °C with its heat collecting efficiency being 37.4%. Through the analysis of the overall energy system in the solar house, it can be derived that this solar house could achieve “zero energy consumption” in winter with the solar supply rate at 1.19.

  19. High temperature solar thermal technology: The North Africa Market

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  20. Optical performance of inclined south-north single-axis tracked solar panels

    International Nuclear Information System (INIS)

    Li, Zhimin; Liu, Xinyue; Tang, Runsheng

    2010-01-01

    To investigate optical performance of the inclined south-north single-axis (ISN-axis, in short) tracked solar panels, a mathematical procedure to estimate the annual collectible radiation on fixed and tracked panels was suggested based on solar geometry and monthly horizontal radiation. For solar panels tracking about ISN-axis, the yearly optimal tilt-angle of ISN-axis for maximizing annual solar gain was about 3 o deviating from the site latitude in most of China except in areas with poor solar resources, and the maximum annual collectible radiation on ISN-axis tracked panels was about 97-98% of that on dual-axis tracked panels; whereas for ISN-axis tracked panels with the tilt-angle of ISN-axis being adjusted four times in a year at three fixed tilt-angles, the annual collectible radiation was almost close to that on dual-axis tracked panels, the optimum date of tilt-angle adjustment of ISN-axis was 23 days from the equinoxes, and the optimum tilt-angle adjustment value for each adjustment was about 22 o . Compared to fixed south-facing solar panels inclined at an optimal tilt-angle, the increase in the annual solar gain due to using ISN-axis sun tracking was above 30% in the areas with abundant solar resources and less than 20% in the areas with poor solar resources.

  1. Solar Energy Education. Home economics: student activities. Field test edition

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

  2. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  3. PSA Solar furnace: A facility for testing PV cells under concentrated solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Canadas, I.; Sanchez, M.; Ballestrin, J.; Yebra, L.; Monterreal, R.; Rodriguez, J.; Garcia, G. [Concentration Solar Technologies, Plataforma Solar de Almeria-CIEMAT P.O. Box 22, Tabernas, E-04200 (Almeria) (Spain); Alonso, M.; Chenlo, F. [Photovoltaic Components and Systems, Renewable Energies Department-CIEMAT Avda. Complutense, 22, Madrid, E-28040 (Spain)

    2006-09-22

    The Plataforma Solar de Almeria (PSA), the largest centre for research, development and testing of concentration solar thermal technologies in Europe, has started to apply its knowledge, facilities and resources to development of the Concentration PV technology in an EU-funded project HiConPV. A facility for testing PV cells under solar radiation concentrated up to 2000x has recently been completed. The advantages of this facility are that, since it is illuminated by solar radiation, it is possible to obtain the appropriate cell spectral response directly, and the flash tests can be combined with prolonged PV-cell irradiation on large surfaces (up to 150cm{sup 2}), so the thermal response of the PV cell can be evaluated simultaneously. (author)

  4. Design and testing of an innovative solar radiation measurement device

    International Nuclear Information System (INIS)

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  5. Aboriginal research coalition externalities associated with energy production: Types, measures and integration

    International Nuclear Information System (INIS)

    Goodman, I.

    1992-01-01

    A system that has evolved to determine the environmental externalities associated with energy generation is described. The system involves identification and understanding of the activity being considered (power generation from a specific type of plant), effects such as air pollution, measures such as pollution control that can influence the levels of the preceding effects, the resources affected, impacts on human resource uses, and the values humans place on the use of the resources. Considerations in estimating external costs are then discussed. These include property rights, air emissions, electromagnetic fields, pollution control effectiveness and costs, valuation of air emissions, water quality and quantity, effects on fisheries and recreational activities, and effects of dams and inundation. A least-cost, or integrated management process, selects the combination of electricity supply and demand sources that have the least social cost. Total externality costs are estimated, based on emissions or effects from each source multiplied by unit costs, and control measures selected. The external costs are combined with the usual fixed and variable cost calculations to provide a total social cost measure. This monetization procedure allows a complete accounting of all costs to society on an equal basis. 53 refs., 4 figs

  6. Solar thermal collectors at design and technology activity days

    OpenAIRE

    Petrina, Darinka

    2016-01-01

    Thesis encompases usage of renewable resources of energy, especially solar energy, which is essential for our future. On one hand, certain ways of exploiting solar energy (with solar cells) have been well established and is included in the Design and technology curriculum, on the other hand however, solar thermal collectors have not been recognized enough in spite of their distribution, applicability and environmentally friendly technology. Consequently thesis emphasizes the usage of solar en...

  7. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  8. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  9. Does External Funding Help Adaptation? Evidence from Community-Based Water Management in the Colombian Andes

    Science.gov (United States)

    Murtinho, Felipe; Eakin, Hallie; López-Carr, David; Hayes, Tanya M.

    2013-11-01

    Despite debate regarding whether, and in what form, communities need external support for adaptation to environmental change, few studies have examined how external funding impacts adaptation decisions in rural resource-dependent communities. In this article, we use quantitative and qualitative methods to assess how different funding sources influence the initiative to adapt to water scarcity in the Colombian Andes. We compare efforts to adapt to water scarcity in 111 rural Andean communities with varied dependence on external funding for water management activities. Findings suggest that despite efforts to use their own internal resources, communities often need external support to finance adaptation strategies. However, not all external financial support positively impacts a community’s abilities to adapt. Results show the importance of community-driven requests for external support. In cases where external support was unsolicited, the results show a decline, or “crowding-out,” in community efforts to adapt. In contrast, in cases where communities initiated the request for external support to fund their own projects, findings show that external intervention is more likely to enhance or “crowds-in” community-driven adaptation.

  10. Interpersonal Stressors and Resources as Predictors of Adolescent Adjustment Following Traumatic Brain Injury.

    Science.gov (United States)

    Lantagne, Ann; Peterson, Robin L; Kirkwood, Michael W; Taylor, H Gerry; Stancin, Terry; Yeates, Keith Owen; Wade, Shari L

    2018-03-29

    The present study sought to examine adolescents' perceptions of their interpersonal stressors and resources across parent, sibling, friend, and school relationships, and the longitudinal associations with self-reported adjustment after traumatic brain injury (TBI) over a 12-month period. We examined the main effects of stressors and resources on internalizing and externalizing symptoms in 152 adolescents who had sustained complicated mild-to-severe TBI. We also investigated the conjoint effects of stressors and resources and the moderating effects of TBI severity with stressors and resources on outcomes. High stressors consistently predicted worse adjustment. High resources were generally only associated with fewer internalizing symptoms. Main effects were qualified by interactions between school stressors and resources in predicting externalizing symptoms and between friend stressors and resources in predicting internalizing and externalizing symptoms. For school stressors, the effects of resources on externalizing symptoms functioned as a buffer. In comparison, the buffering effects of friend resources on internalizing and externalizing symptoms disappeared at moderate-to-high levels of friend stress. Moderating effects of TBI severity were also observed, such that as family resources increased, only adolescents with complicated mild-to-moderate TBI, but not those with severe TBI, experienced decreases in internalizing and eternalizing symptoms. Interpersonal stressors and social support have important implications for adolescent adjustment after TBI. Adolescents with low levels of school resources, with high levels of friend stress, and who sustain severe TBI are at greatest risk for difficulties with adjustment.

  11. Internal and external market orientation as organizational resources - consequences for market and financial performance

    Directory of Open Access Journals (Sweden)

    Boris Snoj

    2010-11-01

    Full Text Available The concept of internal marketing has been discussed in marketing literature for over 30 years. Despite this fact there is little theoretical and empirical evidence of the way in which the internal market orientation impacts market and financial performance. On the other hand, there is considerable empirical evidence concerning the impact of the external market orientation on market and financial performance. Consequently, very few research projects have dealt with the impact of both market orientations on the performance of companies. In this paper a structural model was constructed, consisting of the internal market orientation, external market orientation, market performance and financial performance. With the help of the structural equation model the hypothesis that the internal market orientation is a significant predecessor of the external market orientation was confirmed. The external market orientation was found to significantly influence market as well as financial performance.

  12. SolarSoft Web Services

    Science.gov (United States)

    Freeland, S.; Hurlburt, N.

    2005-12-01

    The SolarSoft system (SSW) is a set of integrated software libraries, databases, and system utilities which provide a common programming and data analysis environment for solar physics. The system includes contributions from a large community base, representing the efforts of many NASA PI team MO&DA teams,spanning many years and multiple NASA and international orbital and ground based missions. The SSW general use libraries include Many hundreds of utilities which are instrument and mission independent. A large subset are also SOLAR independent, such as time conversions, digital detector cleanup, time series analysis, mathematics, image display, WWW server communications and the like. PI teams may draw on these general purpose libraries for analysis and application development while concentrating efforts on instrument specific calibration issues rather than reinvention of general use software. By the same token, PI teams are encouraged to contribute new applications or enhancements to existing utilities which may have more general interest. Recent areas of intense evolution include space weather applications, automated distributed data access and analysis, interfaces with the ongoing Virtual Solar Observatory efforts, and externalization of SolarSoft power through Web Services. We will discuss the current status of SSW web services and demonstrate how this facilitates accessing the underlying power of SolarSoft in more abstract terms. In this context, we will describe the use of SSW services within the Collaborative Sun Earth Connector environment.

  13. 76 FR 72717 - Draft Environmental Impact Statement for the Proposed KRoad Moapa Solar Generation Facility...

    Science.gov (United States)

    2011-11-25

    ... benefits for the Tribe by using solar resources from Reservation lands where exposure to levels of high... their renewable energy goals by providing electricity generated from solar resources from tribal lands... site impacts. The proposed Federal action is the BIA approval of a solar energy ground lease and...

  14. External cost of coal based electricity generation:A tale of Ahmedabad city

    DEFF Research Database (Denmark)

    Mahapatra, Diptiranjan; Shukla, Priyadarshi; Dhar, Subash

    2012-01-01

    Electricity production causes unintended impacts.Theire xclusion by the market leads to suboptimal resource allocations.Monetizing and internalizing of external costs, though challenging and debatable, leads to a better allocation of economic resources and welfare. In this paper, a life-cycle ana......Electricity production causes unintended impacts.Theire xclusion by the market leads to suboptimal resource allocations.Monetizing and internalizing of external costs, though challenging and debatable, leads to a better allocation of economic resources and welfare. In this paper, a life......–response functions, we make an attempt to estimate the damages to human health, crops, and building materials resulting from the operation of coal power plants and its associated mines. Further, we use geographic information system to account for spatially dependent data. Finally, monetary values have been assigned...

  15. Energy policy and externalities: an overview

    International Nuclear Information System (INIS)

    Pearce, D.

    2002-01-01

    Substantial progress has been made in estimating the monetary value of the environmental impacts of different energy systems. Perhaps the best known study in Europe is that sponsored by the European Commission and known as the ExternE programme. In the USA a comparable project is that jointly sponsored by the US Department of Energy and the European Commission. There are many others. In each case what is sought is a monetary value of an environmental impact arising from a unit of energy, usually standardised as a kilowatt hour. These environmental impacts are usually termed 'externalities'. An externality exists if two conditions are met. First, some negative (or positive) impact is generated by an economic activity and imposed on third parties. Second, that impact must not be priced in the market place, i.e. if the effect is negative, no compensation is paid by the generator of the externality to the sufferer. If the effect is positive, the generator of the externality must not appropriate the gains to the third party, e.g. via some price that is charged. In the energy externality literature, the procedure of expressing the externalities in, say, cents or milli-euros (1000 th of an Euro = m-euro) per kWh results in an 'adder'. An adder is simply the unit externality cost added to the standard resource cost of energy. Thus, if an electricity source costs X m/euros to produce or deliver, the final social cost of it is (X+y) m-euros where y is the externality adder. While externality adders have been researched most in the context of energy, they are increasingly being estimated for other economic sectors, notably transport and agriculture. This paper presents the uses of such figures. (author)

  16. ULF Wave Activity in the Magnetosphere: Resolving Solar Wind Interdependencies to Identify Driving Mechanisms

    Science.gov (United States)

    Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.

    2018-04-01

    Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bzstill account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.

  17. Evaluation of Franchising Business Model to Solar Energy Market in Vietnam

    OpenAIRE

    Nguyen, Thanh

    2009-01-01

    The shortage of energy, the running out of natural resources, the concern for environment pollution and the advantage of potential solar resource has become an opportunity for foreign investors who have intention to enter Vietnam‟s solar energy market. There are so many entry modes for the investors to choose rom but the application of franchising business model to solar energy industry is still a new concept not only in Vietnam but also all over the world. Therefore, this study works on the...

  18. Development of Inorganic Solar Cells by Nano-technology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; HueyLiang Hwang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light, have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  19. 77 FR 15794 - Final Environmental Impact Statement for the Proposed KRoad Moapa Solar Generation Facility...

    Science.gov (United States)

    2012-03-16

    ... benefits for the Tribe by using solar resources from reservation lands where exposure to levels of high... energy goals, by providing electricity generated from solar resources from tribal lands that may be...'s purpose and need for the proposed Federal action is to respond to the proposed solar energy ground...

  20. Photochromic dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Noah M. Johnson

    2015-11-01

    Full Text Available We report the fabrication and characterization of photochromic dye sensitized solar cells that possess the ability to change color depending on external lighting conditions. This device can be used as a “smart” window shade that tints, collects the sun's energy, and blocks sunlight when the sun shines, and is completely transparent at night.

  1. Externalities and carbon taxes: Status and impacts on coal use

    International Nuclear Information System (INIS)

    Davis, R.J.

    1993-01-01

    More than half of the Nation's public utility commissions have developed, are developing, or are seriously considering the use of environmental externalities in the selection of new electric power generation. Most externality-based resource planning approaches heavily penalize carbon dioxide emissions and therefore the externality issue is linked closely to the issue of carbon taxes. Several foreign countries have instituted carbon taxes and many state and federal legislators and policy makers favor carbon taxes as a means of reducing carbon dioxide emissions which are believed to play a major role in future global warming. Both externalities and carbon taxes will have a disproportionate and a significant impact on future coal use because of the relatively higher proportion of carbon in coal compared to other fossil fuels and the absence of carbon in other means of electricity generation. The purpose of this paper is twofold: (1) to report on the status of carbon taxes and externality-based electric utility resource allocation requirements around the world with an emphasis on the US, and (2) to present a review of the literature dealing with estimated impacts of these policies on coal use, in general, and the deployment of specific coal-using technologies in particular

  2. Impact of the 2017 Solar Eclipse on the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Andreas, Afshin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-12

    With the increasing interest in using solar energy as a major contributor to the use of renewable generation, and with the focus on using smart grids to optimize the use of electrical energy based on demand and resources from different locations, the need arises to know the moons position in the sky with respect to the sun. When a solar eclipse occurs, the moon disk might totally or partially shade the sun disk, which can affect the irradiance level from the sun disk, consequently affecting a resource on the electric grid. The moons position can then provide smart grid users with information about how potential total or partial solar eclipses might affect different locations on the grid so that other resources on the grid can be directed to where they might be needed when such phenomena occurs. At least five solar eclipses occur yearly at different locations on Earth, they can last 3 hours or more depending on the location, and they can affect smart grid users. On August 21, 2017, a partial and full solar eclipse occurred in many locations in the United States, including at the National Renewable Energy Laboratory in Golden, Colorado. Solar irradiance measurements during the eclipse were compared to the data generated by a model for validation at eight locations.

  3. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  4. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  5. Accessing external innovation in drug discovery and development.

    Science.gov (United States)

    Tufféry, Pierre

    2015-06-01

    A decline in the productivity of the pharmaceutical industry research and development (R&D) pipeline has highlighted the need to reconsider the classical strategies of drug discovery and development, which are based on internal resources, and to identify new means to improve the drug discovery process. Accepting that the combination of internal and external ideas can improve innovation, ways to access external innovation, that is, opening projects to external contributions, have recently been sought. In this review, the authors look at a number of external innovation opportunities. These include increased interactions with academia via academic centers of excellence/innovation centers, better communication on projects using crowdsourcing or social media and new models centered on external providers such as built-to-buy startups or virtual pharmaceutical companies. The buzz for accessing external innovation relies on the pharmaceutical industry's major challenge to improve R&D productivity, a conjuncture favorable to increase interactions with academia and new business models supporting access to external innovation. So far, access to external innovation has mostly been considered during early stages of drug development, and there is room for enhancement. First outcomes suggest that external innovation should become part of drug development in the long term. However, the balance between internal and external developments in drug discovery can vary largely depending on the company strategies.

  6. Shedding light on solar technologies-A techno-economic assessment and its policy implications

    International Nuclear Information System (INIS)

    Peters, Michael; Schmidt, Tobias S.; Wiederkehr, David; Schneider, Malte

    2011-01-01

    Solar power technologies will have to become a major pillar in the world's future energy system to combat climate change and resource depletion. However, it is unclear which solar technology is and will prove most viable. Therefore, a comprehensive comparative assessment of solar technologies along the key quantitative and qualitative competitiveness criteria is needed. Based on a literature review and detailed techno-economic modeling for 2010 and 2020 in five locations, we provide such an assessment for the three currently leading large-scale solar technologies. We show that today these technologies cannot yet compete with conventional forms of power generation but approach competitiveness around 2020 in favorable locations. Furthermore, from a global perspective we find that none of the solar technologies emerges as a clear winner and that cost of storing energy differs by technology and can change the order of competitiveness in some instances. Importantly, the competitiveness of the different technologies varies considerably across locations due to differences in, e.g., solar resource and discount rates. Based on this analysis, we discuss policy implications with regard to fostering the diffusion of solar technologies while increasing the efficiency of policy support through an adequate geographical allocation of solar technologies. - Highlights: → We conduct a comprehensive comparative assessment of solar technologies (CSP/PV). → While solar technologies approach competitiveness in 2020, no clear winner emerges. → Solar resource and discount rate heavily impact competitiveness of solar technologies. → Adequate geographical allocation of solar technologies increases policy efficiency. → Focus on key cost down levers and strategic co-benefits of solar technologies needed.

  7. Salt Lake City, Utah: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Salt Lake City, UT, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  8. Schools under Pressure: The External Environment and Recent Organizational Reforms.

    Science.gov (United States)

    Salganik, Laura H.

    Reductions in resources and increases in external demands place schools under pressure that can be relieved to some extent by organizational changes. When resources are sufficient, these changes may take the form of technical rationality--that is, decisions concerning policy and practices are made on the basis of neutral, measurable data rather…

  9. Direct solar energy and its applications

    International Nuclear Information System (INIS)

    Hamdani, A.J.

    1997-01-01

    Solar energy, which was a utopian dream forty years ago, is today already on the market, particularly for specialized uses and in remote areas. Even solar cells are now on the eve of becoming economically competitive. After a brief account of solar-cell theory, this paper gives the essential details of Photovoltaic Module Manufacturing Technologies, Single Crystal Technology, Fabrication of Wafers, Fabrication of Solar Cell, Photovoltaic Module, Multi Crystalline Silicon, Amorphous Silicon Cell. Semi-conductor based Thin-Film Technology (other than silicon), Copper-Indium Di selenide (IS), Gallium Arsenide, Multi-Junction Devices, as well as Technologies for Improving Conversion Efficiencies, Criteria for high-efficiency Cells and Module Fabrication. It concludes with a section on Direct Utilisation of solar energy, in which a brief description is presented on Solar Thermal Devices, Solar Water Heaters, Calculating hot-water requirements, Solar Stills, Solar Drying, Concentrator Collectors and, finally Measurement of the Solar Resource. At the end, there is a useful Appendix on World-Wide Photovoltaic Cell/Module Manufacturing Capacity Expansion Profile. (author)

  10. Biomass and Solar Technologies Lauded | News | NREL

    Science.gov (United States)

    4 » Biomass and Solar Technologies Lauded News Release: Biomass and Solar Technologies Lauded July security and reduce our reliance on foreign sources of oil." The Enzymatic Hydrolysis of Biomass Cellulose to Sugars technology is expected to allow a wide range of biomass resources to be used to produce

  11. Solar energy perspectives in France

    International Nuclear Information System (INIS)

    2008-01-01

    In a context combining climate change, energy supply crisis, an increased interest in solar energy, a strongly increasing market of solar installations, new technologies, a promotion of the development of the use solar energy in France and a fast development of the water heater and photovoltaic generator markets in France, this report proposes a wide overview of the past, present and future development of solar energy. It discusses the evolution of the French national energy policy and of the solar energy within this policy. It presents and discusses the solar energy resources, their strengths and weaknesses, their geographical and time distribution. It describes the various uses and applications of solar energy in buildings, discusses different aspects of this market (actors, economical data, evolutions, public incentives, perspectives). Then, it describes and discusses technical and economical aspects of two important technologies, the photovoltaic solar energy and the thermodynamic conversion of solar energy. Public incentives, laws and regulations, technical and economic aspects of the connection to the distribution network are then discussed. Some recommendations and ideas are formulated concerning research activities, industrial development, quality of equipment and facilities, personnel education, investment needs

  12. A study on evaluating the power generation of solar-wind hybrid systems in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Ulgen, K. [Ege Univ., Solar Energy Inst., Izmir (Turkey); Hepbasli, A. [Ege Univ., Dept. of Mechanical Engineering, Izmir (Turkey)

    2003-03-15

    Turkey is abundant in terms of renewable energy resources. Residential and industrial utilization of solar energy started in the 1980s, while the first Build-Operate-Transfer (BOT) windmill park, located at Alacati, Izmir, was commissioned in 1998. Additionally, power generation through solar-wind hybrid systems has recently appeared on the Turkish market. This study investigates the wind and solar thermal power availability in Izmir, located in the western part of Turkey. Simple models were developed to determine wind, solar, and hybrid power resources per unit area. Experimental data, consisting of hourly records over a 5 yr period, 1995-1999, were measured in the Solar/Wind Meteorological Station of the Solar Energy Institute at Ege University. Correlations between solar and wind power data were carried out on an hourly, a daily, and a monthly basis. It can be concluded that possible applications of hybrid systems could be considered for the efficient utilization of these resources. (Author)

  13. Interanual variability os solar radiation in Peninsula Iberica; Variabilidad interanual de la radiacion solar en la Peninsula Iberica

    Energy Technology Data Exchange (ETDEWEB)

    Pozo-Vazquez, D.; Tovar-Pescador, J.; Gamiz-Fortis, S.; Esteban-Parra, M.; Castro-Diez, Y.

    2004-07-01

    The NAO climatic phenomenon is the main responsible for the interanual cloud cover variability in Europe. We explore the relationship between the NAO and the solar radiation spatio-temporal variability in Europe during winter. Measured monthly sums of sunshine duration and short-wave downward solar flux reanalysis data have been used. Correlation analysis between the NAO index and the measured sunshine duration shows a maximum positive value (+0.75) over the Iberian Peninsula. Accordingly, solar radiation in this area undergoes an interanual variability that can reach up to 30%, with the derived consequences for a reliable solar energy resources evaluation. (Author)

  14. Partição da competição por recursos do solo e radiação solar entre cultivares de soja e genótipos concorrentes Competition partition of soil and solar radiation resources between soybean cultivars and concurrent genotypes

    Directory of Open Access Journals (Sweden)

    M.A. Bianchi

    2006-12-01

    Full Text Available As plantas competem por recursos do meio situados abaixo e/ou acima da superfície do solo. A separação física da competição entre plantas possibilita conhecer a importância relativa de cada fração, bem como apontar possíveis diferenças em competitividade entre espécies. Objetivou-se neste trabalho separar os efeitos individuais decorrentes da competição por recursos do solo ou radiação solar, entre soja e plantas concorrentes. Foram realizados seis experimentos em vasos na UFRGS, em Porto Alegre-RS, sendo dois em 2001 e quatro em 2002. Os tratamentos testados resultaram das combinações de dois genótipos concorrentes (cultura e competidor e quatro condições de competição (ausência de competição, competição por recursos do solo e radiação solar, competição por recursos do solo e competição por radiação solar. Os cultivares de soja IAS 5 e Fepagro RS 10 representaram a cultura, enquanto o nabo forrageiro e o cultivar de soja Fundacep 33 foram os competidores. Determinaram-se variáveis morfofisiológicas em plantas de soja e de nabo forrageiro. O crescimento das plantas de soja foi mais afetado pela competição por recursos do solo, sendo o cultivar RS 10 mais competitivo do que IAS 5. O nabo forrageiro não interferiu no crescimento dos cultivares de soja, porém cresceu mais na presença da cultura.Plants compete for environmental resources located below and over soil surface. Physical separation of competition allows understanding the relative importance of each fraction, as well as identifying possible differences among species. The aim of this research was to separate the individual effects resulting from competition for soil or solar radiation resources, between soybean and concurrent plants. Thus, experiments using pots were carried out at UFRGS, in Porto Alegre-RS, in 2001 and 2002. The treatments tested resulted from the combinations of two concurrent genotypes (crop and competitor and four competition

  15. Solar wind controlled pulsations: A review

    International Nuclear Information System (INIS)

    Odera, T.J.

    1986-01-01

    Studies of the solar wind controlled Pc 3, 4 pulsations by early and recent researchers are highlighted. The review focuses on the recent observations, which cover the time during the International Magnetospheric Study (IMS). Results from early and recent observations agree on one point, that is, that the Pc 3, 4 pulsations are influenced by three main solar wind parameters, namely, the solar wind velocity V/sub 5w/, the IMF orientation theta/sub x/B, and magnitude B. The results can be interpreted, preferably, in terms of an external origin for Pc 3, 4 pulsations. This implies, essentially, the signal model, which means that the pulsations originate in the upstream waves (in the interplanetary medium) and are transported by convection to the magnetopause, where they couple to oscillations of the magnetospheric field lines

  16. IMPACT OF SOLAR RADIATION CHANGE ON THE COLLECTOR EFFICIENTLY

    Directory of Open Access Journals (Sweden)

    Danuta Proszak-Miąsik

    2017-01-01

    Full Text Available In October 2014 in a building of Rzeszow University of Technology, a series of measurements was taken to calculate the parameters of a solar system with a flat collector, as installed on the roof of the building. The following parameters were obtained: the value of solar radiation intensity, the temperature of external air, the temperature on the collector, the temperature of water in the tank and the temperature of glycol on the supply and return lines. On the basis of the data received, charts were made to visually present how changes of solar radiation intensity affected parameters of the system. The study was conducted in autumn when the intensity of solar radiation decreases, compared with summer months. The publication aims to show that the solar system brings energy gains in periods of transition, and the instantaneous intensity of solar radiation are comparable to those in the summer.

  17. Solar Resources for Local Governments | State, Local, and Tribal

    Science.gov (United States)

    Validation, and Permitting April: Project Financing, Policy, and Incentives May: Solar Procurement (Requests Module 3 Presentation Module 4: Project Financing, Policy, and Incentives Introduction Text version Clarification February: Screening and Identifying PV Projects March: Detailed Site Evaluation, Project

  18. SREQP: A Solar Radiation Extraction and Query Platform for the Production and Consumption of Linked Data from Weather Stations Sensors

    Directory of Open Access Journals (Sweden)

    José Luis Sánchez-Cervantes

    2016-01-01

    Full Text Available Nowadays, solar radiation information is provided from sensors installed in different geographic locations and platforms of meteorological agencies. However, common formats such as PDF files and HTML documents to provide solar radiation information do not offer semantics in their content, and they may pose problems to integrate and fuse data from multiple resources. One of the challenges of sensors Web is the unification of data from multiple sources, although this type of information facilitates interoperability with other sensor Web systems. This research proposes architecture SREQP (Solar Radiation Extraction and Query Platform to extract solar radiation data from multiple external sources and merge them on a single and unique platform. SREQP makes use of Linked Data to generate a set of triples containing information about extracted data, which allows final users to query data through a SPARQL endpoint. The conceptual model was developed by using known vocabularies, such as SSN or WGS84. Moreover, an Analytic Hierarchy Process was carried out for the evaluation of SREQP in order to identify and evaluate the main features of Linked-Sensor-Data and the sensor Web systems. Results from the evaluation indicated that SREQP contained most of the features considered essential in Linked-Sensor-Data and sensor Web systems.

  19. Meeting Europe's resource challenge within and beyond EU borders

    International Nuclear Information System (INIS)

    Ahtonen, Annika; Frontini, Andrea

    2013-01-01

    The European Union (EU) faces a serious resource challenge. It is dependent on external sources of energy and other raw materials, and this makes it vulnerable to resource availability and price fluctuations. If not managed, this could have serious implications for Europe and its competitiveness, for public and private sectors, for citizens and for overall European well-being. The EU takes environmental challenges seriously, at least on paper, and has developed a number of internal policies and initiatives to tackle problems related to loss of biodiversity, inefficient use of resources and poor waste management. It is widely recognised that the EU should work together to tackle the energy challenge. At the same time, the EU has a two-fold approach to the external dimensions of resource challenges. Firstly, the EU has made sustainable development a fully-fledged component of its own narrative worldwide. Secondly, as do all actors, it has an interest in protecting its self-interests amidst increasing global competition over resources. However, in order to tackle the resource challenge effectively, the EU must both turn words into action within Europe and clarify its external strategy and the means to implement it

  20. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  1. Combined wind and solar feed-in to the grid

    CSIR Research Space (South Africa)

    Mushwana, Crescent

    2018-05-01

    Full Text Available This presentation highlights South African wind and solar resources and presents a case study on wind and solar PV combination. It also distinguishes between traditional and new philosophies regarding energy system design and the changes...

  2. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  3. Spatio-temporal mapping of solar energy potential of Dutse, Jigawa ...

    African Journals Online (AJOL)

    Efficient solar energy harnessing technology is required for sustainability and effective utilization of the resource. In this work, a survey of solar energy potential of Dutse, Jigawa state Nigeria was carried out with the aim of identifying the best location for optimal performance of solar energy power plant. Elevation information ...

  4. Evaluation of the National Solar Radiation Database (NSRDB) Using Ground-Based Measurements

    Science.gov (United States)

    Xie, Y.; Sengupta, M.; Habte, A.; Lopez, A.

    2017-12-01

    Solar resource is essential for a wide spectrum of applications including renewable energy, climate studies, and solar forecasting. Solar resource information can be obtained from ground-based measurement stations and/or from modeled data sets. While measurements provide data for the development and validation of solar resource models and other applications modeled data expands the ability to address the needs for increased accuracy and spatial and temporal resolution. The National Renewable Energy Laboratory (NREL) has developed and regular updates modeled solar resource through the National Solar Radiation Database (NSRDB). The recent NSRDB dataset was developed using the physics-based Physical Solar Model (PSM) and provides gridded solar irradiance (global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse horizontal irradiance) at a 4-km by 4-km spatial and half-hourly temporal resolution covering 18 years from 1998-2015. A comprehensive validation of the performance of the NSRDB (1998-2015) was conducted to quantify the accuracy of the spatial and temporal variability of the solar radiation data. Further, the study assessed the ability of NSRDB (1998-2015) to accurately capture inter-annual variability, which is essential information for solar energy conversion projects and grid integration studies. Comparisons of the NSRDB (1998-2015) with nine selected ground-measured data were conducted under both clear- and cloudy-sky conditions. These locations provide a high quality data covering a variety of geographical locations and climates. The comparison of the NSRDB to the ground-based data demonstrated that biases were within +/- 5% for GHI and +/-10% for DNI. A comprehensive uncertainty estimation methodology was established to analyze the performance of the gridded NSRDB and includes all sources of uncertainty at various time-averaged periods, a method that is not often used in model evaluation. Further, the study analyzed the inter

  5. PERFORMANCE & ANALYSIS AND OPTIMIZATION OF STEPPED TYPE SOLAR STILL (A REVIEW)

    OpenAIRE

    Mr. Mujahid Ahmed Khan Abdul Sayeed Khan*1, Prof. A .G. Bhuibhar2 & Prof. P. P. Pande3

    2018-01-01

    The availability of drinking water is reducing day by day; where as the requirement of drinking water is increasing rapidly. To overcome this problem there is a need for some sustainable source for the water distillation (purification). Solar still is a useful device that can be used for the distilling of brackish water for the drinking purposes Solar still is a simple way of distilling water using the heat of the sun. The performance of stepped type solar still with internal and external ref...

  6. Lightweight, Light-Trapped, Thin GaAs Solar Cells for Spacecraft Applications.

    Science.gov (United States)

    1995-10-05

    improve the efficiency of this type of cell. 2 The high efficiency and light weight of the cover glass supported GaAs solar cell can have a significant...is a 3-mil cover glass and 1-mil silicone adhesive on the front surface of the GaAs solar cell. Power Output 3000 400 -{ 2400 { N 300 S18200 W/m2...the ultra-thin, light-trapped GaAs solar ceill 3. Incorporate light trapping. 0 external quantum efficiency at 850 nm increased by 5.2% 4. Develop

  7. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Mustamin [Department of Architecture, Khairun University, Ternate (Indonesia); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Yoshino, Jun; Yasuda, Takashi [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan)

    2012-07-01

    This study was undertaken to analyze solar radiation abundance to ascertain the potential of solar energy as an electrical energy resource. Local weather forecasting for predicting solar radiation is performed using a meteorological model MM5. The prediction results are compared with observed results obtained from the Japan Meteorological Agency for verification of the data accuracy. Results show that local weather forecasting has high accuracy. Prediction of solar radiation is similar with observation results. Monthly average values of solar radiation are sufficiently good during March–September. Electrical energy generated by photovoltaic cells is almost proportional to the solar radiation amount. Effects of clouds on solar radiation can be removed by monthly averaging. The balance between supply and demand of electricity can be estimated using a standard curve obtained from the temporal average. When the amount of solar radiation every hour with average of more than 100 km radius area does not yield the standard curve, we can estimate the system of storage and auxiliary power necessary based on the evaluated results of imbalance between supply and demand.

  8. Climate and land-use change impacts on potential solar photovoltaic power generation in the Black Sea region

    International Nuclear Information System (INIS)

    Gunderson, I.; Goyette, S.; Gago-Silva, A.; Quiquerez, L.; Lehmann, A.

    2015-01-01

    Highlights: • The solar resource is sufficient to provide PV power at suitable locations within the Black Sea catchment. • Climate change will not significantly impact the solar resource, although uncertainty exists. • Land-use change will significantly impact potential PV power, although socio-economic factors will have more importance. • It is important to strengthen regional cooperation for the integration of renewable energy resources. - Abstract: Climate change is a naturally occurring phenomenon that has recently been greatly impacted by anthropogenic greenhouse gas (GHG) emissions. One of the main contributing sectors to GHG emissions is the energy sector, due to its high dependency on fossil fuels. Renewable energy systems, notably solar energy, can be an effective climate change mitigation alternative. Photovoltaic (PV) technology provides an interesting method to produce electricity through a virtually infinite renewable resource at the human time scale: solar radiation. This study evaluates the current and future solar energy potential through the use of grid-connected PV power plants at the scale of countries within the Black Sea catchment. Simulated data are used to determine potential change in climate and land-use according to two different development scenarios. Incident solar radiation flux from re-analyses, spatial interpolation, and the application of the Delta change method are used to assess the current and future solar resource potential within this catchment. Potential sites suitable for PV power plants are selected following a Fuzzy logic approach, and thus the total potential solar energy through PV power generation can be determined. Results show that climate change will have little impact on the solar radiation resource, while land-use change induces more variability. However, regardless of the scenario followed, the solar energy potential is sufficient to provide an interesting contribution to the electricity generation mix of

  9. Solar vision 2025 : beyond market competitiveness

    International Nuclear Information System (INIS)

    2010-12-01

    Canada's reputation as an energy superpower is based on its abundant traditional energy resources. The Canadian Solar Industries Association (CanSIA) has presented a vision of Canada's future solar energy industry. Rising demands for energy, along with the high cost of replacing Canada's aging generation facilities may provide an opportunity for the development of renewable energy sources and a more diversified energy system. The vision focused on creating high quality energy solutions while reducing the high cost of solar energy equipment. Studies have suggested that the solar photovoltaic energy will be market competitive by 2020. By 2025, it is hoped that the solar industry will support more than 35,000 jobs in the economy, and displace 15 to 31 million tonnes of greenhouse gas (GHG) emissions per year. The economic benefits of solar energy were outlined, and new technologies were presented. The export potential of solar energy was discussed. 26 refs., 4 tabs., 40 figs.

  10. Solar Energy Prospecting in Remote Alaska: An Economic Analysis of Solar Photovoltaics in the Last Frontier State

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-11

    This report provides a high-level examination of the potential economics of solar energy in rural Alaska across a geographically diverse sample of remote Alaska Native villages throughout the state. It analyzes at a high level what combination of diesel fuel prices, solar resource quality, and photovoltaic (PV) system costs could lead to an economically competitive moderate-scale PV installation at a remote village. The goal of this analysis is to provide a baseline economic assessment to highlight the possible economic opportunities for solar PV in rural Alaska for both the public and private sectors.

  11. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of Minneapolis, MN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  12. Solar thermal

    International Nuclear Information System (INIS)

    Jones, J.

    2006-01-01

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m 3 - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become increasingly important as

  13. Solar thermal

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.

    2006-07-15

    While wind power is widely acknowledged as the most developed of the 'new' renewables, the number two technology, in terms of installed capacity functioning worldwide, is solar heating, or solar thermal. The author has investigated recent industry reports on how these markets are developing. The authors of an International Energy Agency (IEA) survey studied 41 countries in depth at the end of 2004, revealing that 141 million m{sup 3} - corresponding to an installed capacity of 98.4 GWth - were installed in the sample countries (these nations represent 3.74 billion people, about 57% of the world's population). The installed capacity within the areas studied represents approximately 85%-90% of the solar thermal market worldwide. The use of solar heating varies greatly between countries - even close neighbours - and between economic regions. Its uptake often has more to do with policy than solar resource. There is also different uptake of technology. In China, Europe and Japan, plants with flat-plate and evacuated tube collectors are used, mainly to heat water and for space heating. Unglazed plastic collectors, used mainly for swimming pool heating, meanwhile, dominate the North American markets. Though the majority of solar heating installations today are installed on domestic rooftops, the larger-scale installations should not be overlooked. One important part of the market is the hotel sector - in particular hotels in locations that serve the seasonal summer holiday market, where solar is extremely effective. Likewise hospitals and residential homes, multi-family apartment blocks and sports centres are all good examples of places where solar thermal can deliver results. There are also a growing number of industrial applications, where solar thermal can meet the hot water needs (and possibly more) of a range of industries, such as food processing and agriculture. The ability of solar to provide a heat source for cooling is expected to become

  14. Resources of educator’s professional activity

    OpenAIRE

    Mukasheva N.Sh.; Dolinin E.V.

    2016-01-01

    the article deals with the idea of resource dependencies on the professional activity of teacher psychological prevention and stress tolerance as a personal quality of resistance to stress. the phenomenon of teacher profession, internal and external resources of professional work, levels, scientific and methodological recommendations are characterized.

  15. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  16. Measuring the external quantum efficiency of two-terminal polymer tandem solar cells

    NARCIS (Netherlands)

    Gilot, J.; Wienk, M.M.; Janssen, R.A.J.

    2010-01-01

    Tandem configurations, in which two cells are stacked and connected in series, offer a viable approach to further increase the power conversion efficiency (PCE) of organic solar cells. To enable the future rational design of new materials it is important to accurately assess the contributions of

  17. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  18. Design of a Novel Voltage Controller for Conversion of Carbon Dioxide into Clean Fuels Using the Integration of a Vanadium Redox Battery with Solar Energy

    Directory of Open Access Journals (Sweden)

    Ting-Chia Ou

    2018-02-01

    Full Text Available This letter presents a design for a novel voltage controller (NVC which can exhibit three different reactions using the integration of a vanadium redox battery (VRB with solar energy, and uses only electrochemical potentials with optimal external bias voltage control to carry out hydrogen production and the conversion of carbon dioxide (CO2 into methane and methanol. This NVC is simply constructed by using dynamic switch and control strategies with a time-variant control system. In this design, the interval voltage bias solutions obtained by the proposed NVC exhibit better voltage ranges and good agreement with the practical scenarios, which will bring significant benefits to operation for continuous reduction of CO2 into value-added clean fuels using the integration of a VRB with solar energy or any other renewable energy resource for future applications.

  19. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).

  20. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    Science.gov (United States)

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  1. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Ren, Huaying; Tang, Miao; Guan, Baolu; Wang, Kexin; Yang, Jiawei; Wang, Feifan; Wang, Mingzhan; Shan, Jingyuan; Chen, Zhaolong; Wei, Di; Peng, Hailin; Liu, Zhongfan

    2017-10-01

    Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Development of an Embedded Solar Tracker using Compact RIO

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jin; Lee, Yoon Joon; Chun, Won Gee [Jeju National University, Jeju (Korea, Republic of)

    2011-08-15

    An embedded two-axis solar tracking system using LabVIEW to write the operation and control algorithms was developed for enhancing solar energy utilization. The system consists of a real-time processor, two motion- control modules, two step drives, two step motors, feedback devices, and other accessories needed for functional stability. The real-time processor allows the solar tracker to be used as a stand-alone, real-time system that can operate automatically without any external control. The system combines two different solar tracking methods: the optical method and the astronomical method. CdS sensors are employed to continuously generate feedback signals to the controller, ensuring high-precision solar tracking even under adverse conditions. CdS sensor is a resistor whose resistance decreases with increasing incident light intensity. A database of solar altitude, azimuth, and sunrise and sunset times is provided by this solar tracking system. Other solar trackers operating in an astronomical method may access and use this database over the Internet. Solar position and sunrise and sunset times in the database were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The differences were found to be negligible.

  3. Development of an Embedded Solar Tracker using Compact RIO

    International Nuclear Information System (INIS)

    Oh, Seung Jin; Lee, Yoon Joon; Chun, Won Gee

    2011-01-01

    An embedded two-axis solar tracking system using LabVIEW to write the operation and control algorithms was developed for enhancing solar energy utilization. The system consists of a real-time processor, two motion- control modules, two step drives, two step motors, feedback devices, and other accessories needed for functional stability. The real-time processor allows the solar tracker to be used as a stand-alone, real-time system that can operate automatically without any external control. The system combines two different solar tracking methods: the optical method and the astronomical method. CdS sensors are employed to continuously generate feedback signals to the controller, ensuring high-precision solar tracking even under adverse conditions. CdS sensor is a resistor whose resistance decreases with increasing incident light intensity. A database of solar altitude, azimuth, and sunrise and sunset times is provided by this solar tracking system. Other solar trackers operating in an astronomical method may access and use this database over the Internet. Solar position and sunrise and sunset times in the database were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The differences were found to be negligible

  4. New York City, New York: Solar in Action (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-10-01

    This brochure provides an overview of the challenges and successes of New York City, NY, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  5. Assessment of the solar radiation potential of the Thika and Nairobi ...

    African Journals Online (AJOL)

    This assessment seeks to provide information on the solar energy resource potential of the Thika – Nairobi area essential in the dissemination of Renewable Energy Technologies which are essentially solar photovoltaic and thermal systems. To achieve this, solar radiation data for three stations (Dagoretti Corner, Thika and ...

  6. Concepts for external light trapping and its utilization in colored and image displaying photovoltaic modules

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Schropp, R.E.I.

    2017-01-01

    The reflection of incident sunlight prevents photovoltaic modules from reaching their full energy conversion potential. Recently, we demonstrated significant absorption enhancement in various solar cells by external light trapping, using 3D-printed and milled light traps. In order to facilitate

  7. Best Practices of Uncertainty Estimation for the National Solar Radiation Database (NSRDB 1998-2015): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    It is essential to apply a traceable and standard approach to determine the uncertainty of solar resource data. Solar resource data are used for all phases of solar energy conversion projects, from the conceptual phase to routine solar power plant operation, and to determine performance guarantees of solar energy conversion systems. These guarantees are based on the available solar resource derived from a measurement station or modeled data set such as the National Solar Radiation Database (NSRDB). Therefore, quantifying the uncertainty of these data sets provides confidence to financiers, developers, and site operators of solar energy conversion systems and ultimately reduces deployment costs. In this study, we implemented the Guide to the Expression of Uncertainty in Measurement (GUM) 1 to quantify the overall uncertainty of the NSRDB data. First, we start with quantifying measurement uncertainty, then we determine each uncertainty statistic of the NSRDB data, and we combine them using the root-sum-of-the-squares method. The statistics were derived by comparing the NSRDB data to the seven measurement stations from the National Oceanic and Atmospheric Administration's Surface Radiation Budget Network, National Renewable Energy Laboratory's Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement program's Southern Great Plains Central Facility, in Billings, Oklahoma. The evaluation was conducted for hourly values, daily totals, monthly mean daily totals, and annual mean monthly mean daily totals. Varying time averages assist to capture the temporal uncertainty of the specific modeled solar resource data required for each phase of a solar energy project; some phases require higher temporal resolution than others. Overall, by including the uncertainty of measurements of solar radiation made at ground stations, bias, and root mean square error, the NSRDB data demonstrated expanded uncertainty of 17 percent - 29 percent on hourly

  8. Inhibition of solar wind impingement on Mercury by planetary induction currents

    International Nuclear Information System (INIS)

    Hood, L.L.; Schubert, G.

    1979-01-01

    The simple compression of a planetary magnetosphere by varying solar wind stagnation pressure is limited by currents induced in the electrically conducting parts of the planet. This inhibition is especially important for Mercury, since the radius of the electrically conducting iron core is a large fraction of the planetary radius, which in turn is a significant fraction of the subsolar magnetospheric radius b. Previous treatments of solar wind standoff distance variations at Mercury using the terrestrial analogue b 6 assumption have neglected this phenomenon. Using the lowest suggested value of the planetary dipole moment, 2.4 x 10 22 G cm 3 , we estimate that a minimum pressure of approx.38P 0 where P 0 is the external stagnation pressure in the steady state, is required to force the standoff distance down to the subsolar surface of Mercury if the pressure change persists for at least 1 day. This value is 4.3 times that which would be predicted if Mercury had no core, and it is larger than the maximum pressure predicted at Mercury's orbit (approx.25P 0 ) on the basis of hourly averaged solar wind statistics at 1 AU. Thus a direct interaction at any time of solar wind plasma with the surface of Mercury due to external compression effects alone is unlikely for solar wind conditions similar to those at present

  9. Carrier loss mechanisms in textured crystalline Si-based solar cells

    OpenAIRE

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-01-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the optical and physical limiting factors of the state-of-the-art solar cells with ~20% efficiencies have been revealed. In the established method, the carrier loss mechanisms are characterized from the external quantum efficiency (EQE) analysis with very low computational cost. In particula...

  10. Renewable Resources in SA

    CSIR Research Space (South Africa)

    Mushwana, C

    2015-02-01

    Full Text Available Renewable energy is derived form natural resources that are replenished at a faster rate than they are consumed, and thus cannot be depleted. Solar, wind, geothermal, hydro, and some forms of biomass are common sources of renewable energy. Almost 90...

  11. Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in Thailand

    Directory of Open Access Journals (Sweden)

    Prachuab Peerapong

    2017-11-01

    Full Text Available Isolated grid diesel-based systems have been a basic electricity system in islands in developing countries. Nevertheless, the increasing diesel price and the higher cost of diesel transport to a long distance to the remote islands make the diesel-based systems unsustainable. This study analyzes the viability to increase solar photovoltaic (PV resources in the existing diesel-based systems. The hybrid PV/diesel system is not only reducing the cost of electricity generation but also decreasing the harmful emissions from fossil fuels. This study uses net present cost (NPC to evaluate the optimum PV/diesel system configurations for installation in isolated island in Thailand. The results of analyses show that the optimal case PV/diesel system can decrease COE from $0.429/kWh to $0.374/kWh when compared to the existing diesel-based system and can decrease emissions both carbon dioxide of 796.61 tons/yr and other gases of 21.47 tons/yr. The hybrid PV/diesel system also reduces diesel fuel consumption of 302,510 liters per year as a result from an optimal of 41% PV resource shares in this system.

  12. Solar Retinopathy: A Multimodal Analysis

    Directory of Open Access Journals (Sweden)

    Claudia Bruè

    2013-01-01

    Full Text Available Purpose. Solar retinopathy is a rare clinical disturbance, for which spectral-domain optical coherence tomography (SD-OCT findings are not always consistent. We report on two cases of solar retinopathy and discuss its differential diagnosis. Methods. This is an observational case study. Results. A 12-year-old female was referred to ophthalmology for bilateral scotoma. Visual acuity was 20/50 in both eyes. Fundus examination was unremarkable, except for slight yellowish material in the central macula, bilaterally. SD-OCT revealed juxtafoveal microcystic cavities in the outer retina, interruption of the external limiting membrane and the inner and outer segment junctions, with disorganized material in the vitelliform space. Fundus autofluorescence showed hypoautofluorescence surrounded by a relatively hyperautofluorescent ring, bilaterally. Similar clinical and morphological findings were detected in a 27-year-old male. Conclusions. Solar retinopathy has a subtle presentation and patients often deny sun-gazing. SD-OCT and fundus autofluorescence are noninvasive and useful tools for its diagnosis.

  13. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  14. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  15. Urban Mining's Potential to Relieve China's Coming Resource Crisis

    NARCIS (Netherlands)

    Wen, Zongguo; Zhang, Chenkai; Ji, Xiaoli; Xue, Yanyan

    2015-01-01

    China's mineral resource consumption has gone through multiple increases since 1980, resulting in the inadequacy of important strategic resources and a high level of external dependence. Some developed countries have already reduced primary resources consumption through urban mining. Can China also

  16. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...

  17. Materials and processes for solar fuel production

    CERN Document Server

    Viswanathan, Balasubramanian; Lee, Jae Sung

    2014-01-01

    This book features different approaches to non-biochemical pathways for solar fuel production. This one-of-a-kind book addresses photovoltaics, photocatalytic water splitting for clean hydrogen production and CO2 conversion to hydrocarbon fuel through in-depth comprehensive contributions from a select blend of established and experienced authors from across the world. The commercial application of solar based systems, with particular emphasis on non-PV based devices have been discussed. This book intends to serve as a primary resource for a multidisciplinary audience including chemists, engineers and scientists providing a one-stop location for all aspects related to solar fuel production. The material is divided into three sections: Solar assisted water splitting to produce hydrogen; Solar assisted CO2 utilization to produce green fuels and Solar assisted electricity generation. The content strikes a balance between theory, material synthesis and application with the central theme being solar fuels.

  18. Resources of educator’s professional activity

    Directory of Open Access Journals (Sweden)

    Mukasheva N.Sh.

    2016-12-01

    Full Text Available the article deals with the idea of resource dependencies on the professional activity of teacher psychological prevention and stress tolerance as a personal quality of resistance to stress. the phenomenon of teacher profession, internal and external resources of professional work, levels, scientific and methodological recommendations are characterized.

  19. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  20. Location optimization of solar plants by an integrated hierarchical DEA PCA approach

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Maghsoudi, A.

    2008-01-01

    Unique features of renewable energies such as solar energy has caused increasing demands for such resources. In order to use solar energy as a natural resource, environmental circumstances and geographical location related to solar intensity must be considered. Different factors may affect on the selection of a suitable location for solar plants. These factors must be considered concurrently for optimum location identification of solar plants. This article presents an integrated hierarchical approach for location of solar plants by data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT). Furthermore, an integrated hierarchical DEA approach incorporating the most relevant parameters of solar plants is introduced. Moreover, 2 multivariable methods namely, PCA and NT are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 6 different regions within each city. This is the first study that considers an integrated hierarchical DEA approach for geographical location optimization of solar plants. Implementation of the proposed approach would enable the energy policy makers to select the best-possible location for construction of a solar power plant with lowest possible costs

  1. Solar drying: An appropriate technology for the north Argentina; Secado solar: Una tecnologia apropiada para el norte argentino

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, Hugo D; Vergara, Liliana; Spotorno, Ruben; Benitez, Francisco; De Pedro, Jorge; Cervino, Veronica; Monzon, Sergio [Universidad Tecnologica Nacional, Chaco (Argentina)

    2000-07-01

    The results concerning to solar drying of nutritious products for rehearsed a low cost solar dryer, adapted to the area, composed by a plane solar collector of 2 m{sup 2} and a drying camera with capacity for, approximately, 5 kg of product. The objectives of the work were: a) to develop a low cost solar dry, capable to dehydrate products for human alimentary use; b) to transfer the developed technology to low resources rural communities through the INCUPO (Institute of Popular Culture) and to small producers through the INTA (National Institute of Agricultural Technology) and c) to diffuse the practice of the solar drying among small producers. The diffusion and transfer of the developed technology to small rural producers, contribute to improve their quality of life when facilitating them additional revenues for productive diversification, besides the contribution to the sustainable use of the forest like source of non conventional nutritious resources contributing to the task of cultural rescue faced by organizations like the INCUPO. [Spanish] Se exponen los resultados concernientes al secado solar de productos alimenticios para consumo humano. Se diseno, construyo y ensayo un secador solar de bajo costo, adaptado a la zona, compuesto por un colector solar plano de 2m{sup 2} y una camara de secado con capacidad para, aproximadamente, 5 kg de producto fresco. Los objetivos del trabajo fueron: a) desarrollar un secadero solar de bajo costo, apto para deshidratar productos para uso alimentario humano; b) transferir la tecnologia desarrollada a comunidades rurales de bajos recursos a traves del INCUPO (Instituto de Cultura Popular) y a pequenos productores a traves del INTA (Instituto Nacional de Tecnologia Agropecuaria) y c) difundir la practica del secado solar entre productores frutihorticolas. La difusion y transferencia de la tecnologia desarrollada a pequenos productores rurales, contribuye a mejorar su calidad de vida al posibilitarles ingresos adicionales

  2. Environmental externalities: Applying the concept to Asian coal-based power generation

    International Nuclear Information System (INIS)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies

  3. Environmental externalities: Applying the concept to Asian coal-based power generation

    Energy Technology Data Exchange (ETDEWEB)

    Szpunar, C.B.; Gillette, J.L.

    1993-03-01

    This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.

  4. Towards Building Reliable, High-Accuracy Solar Irradiance Database For Arid Climates

    Science.gov (United States)

    Munawwar, S.; Ghedira, H.

    2012-12-01

    Middle East's growing interest in renewable energy has led to increased activity in solar technology development with the recent commissioning of several utility-scale solar power projects and many other commercial installations across the Arabian Peninsula. The region, lying in a virtually rainless sunny belt with a typical daily average solar radiation exceeding 6 kWh/m2, is also one of the most promising candidates for solar energy deployment. However, it is not the availability of resource, but its characterization and reasonably accurate assessment that determines the application potential. Solar irradiance, magnitude and variability inclusive, is the key input in assessing the economic feasibility of a solar system. The accuracy of such data is of critical importance for realistic on-site performance estimates. This contribution aims to identify the key stages in developing a robust solar database for desert climate by focusing on the challenges that an arid environment presents to parameterization of solar irradiance attenuating factors. Adjustments are proposed based on the currently available resource assessment tools to produce high quality data for assessing bankability. Establishing and maintaining ground solar irradiance measurements is an expensive affair and fairly limited in time (recently operational) and space (fewer sites) in the Gulf region. Developers within solar technology industry, therefore, rely on solar radiation models and satellite-derived data for prompt resource assessment needs. It is imperative that such estimation tools are as accurate as possible. While purely empirical models have been widely researched and validated in the Arabian Peninsula's solar modeling history, they are known to be intrinsically site-specific. A primal step to modeling is an in-depth understanding of the region's climate, identifying the key players attenuating radiation and their appropriate characterization to determine solar irradiance. Physical approach

  5. Prefrontal Cortex Networks Shift from External to Internal Modes during Learning

    Science.gov (United States)

    Brincat, Scott L.

    2016-01-01

    As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722

  6. Reuniting the Solar System: Integrated Education and Public Outreach Projects for Solar System Exploration Missions and Programs

    Science.gov (United States)

    Lowes, Leslie; Lindstrom, Marilyn; Stockman, Stephanie; Scalice, Daniela; Klug, Sheri

    2003-01-01

    The Solar System Exploration Education Forum has worked for five years to foster Education and Public Outreach (E/PO) cooperation among missions and programs in order to leverage resources and better meet the needs of educators and the public. These efforts are coming together in a number of programs and products and in '2004 - The Year of the Solar System.' NASA's practice of having independent E/PO programs for each mission and its public affairs emphasis on uniqueness has led to a public perception of a fragmented solar system exploration program. By working to integrate solar system E/PO, the breadth and depth of the solar system exploration program is revealed. When emphasis is put on what missions have in common, as well as their differences, each mission is seen in the context of the whole program.

  7. Analysis of the influence of external factors on efficiency of use of resource potential and economic growth of the region

    Directory of Open Access Journals (Sweden)

    M. P. Vasiliev

    2017-01-01

    Full Text Available In the article are described and analyzed the influence of factors of external and internal environments on maintaining the planned economic growth, efficient use of the resource potential of the regional economic complex. Are provided methods of analysis and comprehensive measures to maintain the planned pace of economic growth of the region, expansion of competitive advantages. Enlargement and generalization determine the impact of economic environmental factors, in accordance with the duration of optimization and changes in the business cycle, provide a high level of confidence in the estimates of the impact of the macro environment on the process of achieving economic success, efficient use of the resource potential of the regional economic complex. Analysis of the internal conditions of region is carried out by management on the basis of establishing the optimal values of the distribution of the resource potential for high-priority, economically viable, and socially important areas of efficient use of logistical, labor, information, and natural resources, analysis of the current or having a tendency to the formation of informal communities in the sectoral components of economic activities, industrial complexes and social services. The possibilities of the availability and abilities of the region to influence the structural components in achieving the economic and financial goals of the activity are considered, including ensuring sustainable dynamics in increasing the efficiency of regional production, providing competitive advantages in the use of consumed resources. The factors proposed for consideration, different management of the regional economy, contribute to the creation of both formal and informal organizational and economic communities, taking into account the interests of all its participants. In addition, mechanisms and tools are proposed that facilitate the creation of favorable conditions for participants in informal clusters

  8. Economic Dispatch for Power System Included Wind and Solar Thermal Energy

    Directory of Open Access Journals (Sweden)

    Saoussen BRINI

    2009-07-01

    Full Text Available With the fast development of technologies of alternative energy, the electric power network can be composed of several renewable energy resources. The energy resources have various characteristics in terms of operational costs and reliability. In this study, the problem is the Economic Environmental Dispatching (EED of hybrid power system including wind and solar thermal energies. Renewable energy resources depend on the data of the climate such as the wind speed for wind energy, solar radiation and the temperature for solar thermal energy. In this article it proposes a methodology to solve this problem. The resolution takes account of the fuel costs and reducing of the emissions of the polluting gases. The resolution is done by the Strength Pareto Evolutionary Algorithm (SPEA method and the simulations have been made on an IEEE network test (30 nodes, 8 machines and 41 lines.

  9. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor

    International Nuclear Information System (INIS)

    Narayanan, Remya; Kumar, P. Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-01-01

    Graphical abstract: - Highlights: • A plasmonic TiO_2/CdS/Au fibers photoanode is fabricated for the first time. • The efficiency of the plasmonic cell is greater by 1.35 times than the non-plasmonic one. • A solar powered supercapacitor is developed with plasmonic photoanode and multiwalled carbon nanotubes. • The solar cell current charges the supercapacitor. • A specific capacitance of 150 F g"−"1 is achieved under sunlight without any external bias. - Abstract: A solar powered supercapacitor wherein a plasmonic quantum dot solar cell (QDSC) sources the photocurrent for charging/discharging a conjoined supercapacitor based on multiwalled carbon nanotubes (MWCNTs) is demonstrated. Gold or Au fibers are integrated into a titanium dioxide/cadmium sulfide (TiO_2/CdS) electrode to yield a TiO_2/CdS/Au photoanode. The plasmonic effect of Au fibers is reflected in the higher incident photon to current conversion efficiency (IPCE = 55%) and an improved overall power conversion efficiency (3.45%) produced by the TiO_2/CdS/Au photoanode relative to the non-plasmonic TiO_2/CdS photoanode. A Janus type bi-functional electrode composed of MWCNTs on either face separated by glass is prepared and it is coupled with the TiO_2/CdS/Au electrode and another MWCNT electrode to yield the tandem solar powered supercapacitor. By channelling the photocurrent produced by the QDSC part, under 0.1 sun illumination, the capacitance of the symmetric supercapacitor, without the application of any external bias is 150 F g"−"1 which compares well with reported values of electrically powered MWCNT supercapacitors. Our innovative design for a photo-supercapacitor offers a new paradigm for combining low cost photovoltaics with energy storage to yield a technologically useful device that needs nothing else other than solar energy to run.

  10. Managing Natural Resources for Sustainable Livelihoods: Uniting ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    31 juil. 2003 ... Management of local resources has a greater chance of a sustainable outcome when there is partnership between local people and external agencies, and agendas relevant to their aspirations and circumstances. Managing Natural Resources for Sustainable Livelihoods analyses and extends this premise ...

  11. General characterisation of the solar radiation behaviour in Mozambique

    Energy Technology Data Exchange (ETDEWEB)

    Cuamba, B.C. [Renewable Energies Research and Training Programme, Department of Physics, Faculty of Sciences, Eduardo Mondlane University (UEM), Maputo (Mozambique)]|[Action Group for Renewable Energies and Sustainable Development, Maputo (Mozambique); Chenene, M.L.; Mahumane, G. [Renewable Energies Research and Training Programme, Department of Physics, Faculty of Sciences, Eduardo Mondlane University (UEM), Maputo (Mozambique); Quissico, D.Z. [Renewable Energies Research and Training Programme, Department of Physics, Faculty of Sciences, Eduardo Mondlane University (UEM), Maputo (Mozambique)]|[National Institute of Meteorology, Maputo (Mozambique); Vasco, E. [National Institute of Meteorology, Maputo (Mozambique); Lovseth, J. [Solar Energy and Environmental Group, Department of Physics (LADE), Trondheim University of Science and Technology (NTNU) (Norway); O' Keefe, P. [University of Northumbria at Newcastle, Newcastle Upon Tyne (United Kingdom)

    2004-07-01

    Just as with the other Southern African Development Community (SADC) countries, Mozambique faces severe and interrelated problems of energy and environment linked with the massive consumption of fuel wood biomass. The conventional power grid caters for less than 7% of the energy needs for the country's 17 million inhabitants, and about 83% of the energy consumed in the country comes from biomass. Areas around the major urban centres and along the main development corridors are the most affected by energy shortages. This hinders the country's economic and social development as it is generally acknowledged that no development can be sustainable without linking it to energy planning and environmental management. Renewable energy resources can play an important role in the process of development of the country. From the vast renewable energy resources available in the country, solar energy represents one of those with the highest potential. Thus the evaluation of its potential is of extreme importance. This paper represents a first attempt to systemise the solar radiation data being measured by the National Institute of Meteorology (INAM). The period considered for analysis is from 1970 to 2000. Results of the present work reveal that the country has substantial solar energy resources for a variety of solar energy technologies. (orig.)

  12. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations

    Energy Technology Data Exchange (ETDEWEB)

    Sterling, John [Solar Electric Power Association (SEPA), Washington, DC (United States); Davidovich, Ted [Solar Electric Power Association (SEPA), Washington, DC (United States); Cory, Karlynn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixes and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.

  13. Ecological and economical aspects of solar energy use

    Directory of Open Access Journals (Sweden)

    Sobczyk Wiktoria

    2017-01-01

    Full Text Available The natural environment is devastated by the industry and by households, which use fuels such as coal, oil and natural gas for heating water and buildings as well as for generating electricity. One of the ways to limit the degradation of the environment and the usage of natural resources is to use unconventional and renewable resources and to implement energy-saving technologies in construction, industry and households. A dynamic development of systems based on renewable energy sources such as biomass, water, wind, heat from inside the Earth and sunbeams has recently occurred in the whole world. This thesis is related to the purest and the least onerous for environment source of energy which is undoubtedly the energy that comes directly from the solar radiation. In this article the solar energy application is presented, taking into account its impact on the environment and financial costs of developing solar techniques. The installation of alternative energy sources are entitled to grants and credits, which reduces the investment costs. Ecological effects, although immeasurable, are significant and definitely testify in favor of the solar system.

  14. Solar Eclipse Computer API: Planning Ahead for August 2017

    Science.gov (United States)

    Bartlett, Jennifer L.; Chizek Frouard, Malynda; Lesniak, Michael V.; Bell, Steve

    2016-01-01

    With the total solar eclipse of 2017 August 21 over the continental United States approaching, the U.S. Naval Observatory (USNO) on-line Solar Eclipse Computer can now be accessed via an application programming interface (API). This flexible interface returns local circumstances for any solar eclipse in JavaScript Object Notation (JSON) that can be incorporated into third-party Web sites or applications. For a given year, it can also return a list of solar eclipses that can be used to build a more specific request for local circumstances. Over the course of a particular eclipse as viewed from a specific site, several events may be visible: the beginning and ending of the eclipse (first and fourth contacts), the beginning and ending of totality (second and third contacts), the moment of maximum eclipse, sunrise, or sunset. For each of these events, the USNO Solar Eclipse Computer reports the time, Sun's altitude and azimuth, and the event's position and vertex angles. The computer also reports the duration of the total phase, the duration of the eclipse, the magnitude of the eclipse, and the percent of the Sun obscured for a particular eclipse site. On-line documentation for using the API-enabled Solar Eclipse Computer, including sample calls, is available (http://aa.usno.navy.mil/data/docs/api.php). The same Web page also describes how to reach the Complete Sun and Moon Data for One Day, Phases of the Moon, Day and Night Across the Earth, and Apparent Disk of a Solar System Object services using API calls.For those who prefer using a traditional data input form, local circumstances can still be requested that way at http://aa.usno.navy.mil/data/docs/SolarEclipses.php. In addition, the 2017 August 21 Solar Eclipse Resource page (http://aa.usno.navy.mil/data/docs/Eclipse2017.php) consolidates all of the USNO resources for this event, including a Google Map view of the eclipse track designed by Her Majesty's Nautical Almanac Office (HMNAO). Looking further ahead, a

  15. Estimating Externalities of Hydro Fuel Cycles, Report 6

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-12-01

    There are three major objectives of this hydropower study: (1) to implement the methodological concepts that were developed in the background document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles and, by so doing, to demonstrate their application to the hydroelectric fuel cycle (different fuel cycles have unique characteristics that need to be addressed in different ways); (2) to develop, given the time and resources, the best range of estimates of externalities associated with hydroelectric projects, using two benchmark projects at two reference sites in the US; and (3) to assess the state of the information that is available to support the estimation of externalities associated with the hydroelectric fuel cycle and, by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The main consideration in defining these objectives was a desire to have more information about externalities and a better method for estimating them. As set forth in the agreement between the US and the EC, the study is explicitly and intentionally not directed at any one audience. This study is about a methodology for estimating externalities. It is not about how to use estimates of externalities in a particular policy context.

  16. Renewable energy worldwide outlooks: solar energy

    International Nuclear Information System (INIS)

    Darnell, J.R.

    1994-01-01

    Solar energy yield is weak because it is very diffuse. The solar energy depends on the weather. The collectors need the beam radiation. Wavelength is important for some applications that include not only the visible spectrum but also infrared and ultraviolet radiation. The areas of the greatest future population growth are high on solar energy resources. We have different types of conversion systems where energy can be converted from solar to electric or thermal energy. Photovoltaic cells are made of silicone or gallium arsenide, this latter for the space use. For the solar energy applications there is a storage problem: electric batteries or superconducting magnets. Today, the highest use of solar energy is in the low temperature thermal category with over 90% of the world contribution from this energy. The penetration of solar energy will be higher in rural areas than in urban regions. But there are technical, institutional, economic constraints. In spite of that the use of solar energy would be increasing and will go on to increase thereafter. The decreasing costs over time are a real phenomenon and there is a broad public support for increased use of that energy. 15 figs

  17. Gasification of oil shale by solar energy

    International Nuclear Information System (INIS)

    Ingel, Gil

    1992-04-01

    Gasification of oil shales followed by catalytic reforming can yield synthetic gas, which is easily transportable and may be used as a heat source or for producing liquid fuels. The aim of the present work was to study the gasification of oil shales by solar radiation, as a mean of combining these two energy resources. Such a combination results in maximizing the extractable fuel from the shale, as well as enabling us to store solar energy in a chemical bond. In this research special attention was focused upon the question of the possible enhancement of the gasification by direct solar irradiation of the solid carbonaceous feed stock. The oil shale served here as a model feedstock foe other resources such as coal, heavy fuels or biomass all of which can be gasified in the same manner. The experiments were performed at the Weizman institute's solar central receiver, using solar concentrated flux as an energy source for the gasification. The original contributions of this work are : 1) Experimental evidence is presented that concentrated sunlight can be used effectively to carry out highly endothermic chemical reactions in solid particles, which in turn forms an essential element in the open-loop solar chemical heat pipe; 2) The solar-driven gasification of oil shales can be executed with good conversion efficiencies, as well as high synthesis gas yields; 3)There was found substantial increase in deliverable energy compared to the conventional retorting of oil shales, and considerable reduction in the resulting spent shale. 5) A detailed computer model that incorporates all the principal optical and thermal components of the solar concentrator and the chemical reactor has been developed and compared favorably against experimental data. (author)

  18. Solar PV resource for higher penetration through a combined spatial aggregation with wind

    CSIR Research Space (South Africa)

    Bischof-Niemz, ST

    2016-06-01

    Full Text Available between wind and solar PV and how these would be reflected in the power system. The benefits of spatial distribution of renewables are well understood, but the impact of the combined spatial aggregation of wind and solar PV is central to the design...

  19. Proceedings of the Canadian Solar Buildings Conference : the 31. annual conference of the Solar Energy Society of Canada Inc. and the 1. Canadian Solar Buildings Research Network conference

    International Nuclear Information System (INIS)

    Athienitis, A.; Charron, R.; Karava, P.; Stylianou, M.; Tzempelikos, A.

    2006-01-01

    The first conference organized by the newly established Canadian Solar Buildings Research Network (SBRN) was held in conjunction with the thirty-first annual conference of the Solar Energy Society of Canada Inc (SESCI). The conference was attended by top researchers from 10 Canadian Universities to promote innovative research and development in solar energy applications and to advance the awareness of solar energy in Canada. It featured special events such as trade shows, photovoltaic workshops, a course in ESP-r simulation, tours of solar houses and other events focused on the economic, environmental and socio-economic benefits of solar technology, including the potential to reduce greenhouse gas emissions. SBRN was founded on the premise that university researchers should focus on solar energy applications for buildings. Several presentations proposed action plans to accelerate the implementation of solar energy through the use of innovative building technologies and sustainable energy policies. Other major issues of interest were also discussed, including the development of the net-zero energy solar home and grid-connection issues. The sessions of the conference were entitled: solar thermal systems; solar electricity; building integrated photovoltaic systems; design issues and tools; integrating PV and solar thermal in buildings; daylighting and solar radiation modeling; fenestration and shading; PV manufacturing and solar electricity resources. The proceedings featured 41 refereed papers and 13 poster presentations, all of which have been catalogued separately for inclusion in this database. refs., tabs., figs

  20. Research and development for solar thermal energy system. Research on advanced solar component; Taiyonetsu energy system no kenkyu kaihatsu. Kiki no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T; Doi, T; Takashima, T; Ando, Y; Masuda, T; Fujii, T [Electrotechnical Laboratory, Tsukuba (Japan)

    1994-12-01

    Described herein are the results of the FY1994 research program for research on advanced solar components as part of research and development of solar thermal energy. The catalyst for liquid-film reactions is prepared, and the flask tests are conducted as the preliminary experiments for development of the reactor in which 2-propanol is fallen in liquid film over the catalyst dispersed to accelerate its decomposition. It is decomposable when fallen in liquid film even in the presence of 35% of acetone. The catalyst of ruthenium carried by activated coal is used to produce 2-propanol under an exothermic condition from acetone and hydrogen. Diisopropyl ether and 4-methyl-2-pentanone are produced as by-products, when the reactor tube is kept at 140 to 200{degree}C at the external wall, diminishing as temperature is increased. There is a temperature differential of 20 to 30{degree}C in the reactor tube between the center axis and external wall. 3 figs.

  1. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination.

    Science.gov (United States)

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J; Durrant, James R; McCulloch, Iain

    2018-05-25

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm -2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  2. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya

    2018-05-21

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  3. Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

    KAUST Repository

    Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J.; Durrant, James R.; McCulloch, Iain

    2018-01-01

    Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.

  4. The enhanced efficiency of graphene-silicon solar cells by electric field doping.

    Science.gov (United States)

    Yu, Xuegong; Yang, Lifei; Lv, Qingmin; Xu, Mingsheng; Chen, Hongzheng; Yang, Deren

    2015-04-28

    The graphene-silicon (Gr-Si) Schottky junction solar cell has been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the low Gr-Si Schottky barrier height largely limits the power conversion efficiency of Gr-Si solar cells. Here, we demonstrate that electric field doping can be used to tune the work function of a Gr film and therefore improve the photovoltaic performance of the Gr-Si solar cell effectively. The electric field doping effects can be achieved either by connecting the Gr-Si solar cell to an external power supply or by polarizing a ferroelectric polymer layer integrated in the Gr-Si solar cell. Exploration of both of the device architecture designs showed that the power conversion efficiency of Gr-Si solar cells is more than twice of the control Gr-Si solar cells. Our study opens a new avenue for improving the performance of Gr-Si solar cells.

  5. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Technology for obtaining of solar elements based on heterostructure basis

    International Nuclear Information System (INIS)

    Camalova, A.Q.; Aliyeva, A.K.; Zeynalova, S.M.; Latifova, N.A.

    2013-01-01

    As it is known the level of energy sources usage reflects the level of development of civilization and was accepted by all as main factor. Currently, there are mainly oil, coal and natural gas are used as raw material in traditional energy, which leads to formation of environmental problems. They are not endless reserves of traditional energy sources and there is a danger of their extinction in the near future. For that reason, recently, the use of wind, solar, thermal waters and some other natural resources rapidly increased in many countries. The most important place among these natural resources belongs to solar energy. Thus, the amount of solar energy coming into the earth is much more than the amount of energy of oil, gas, coal and uranium reserves in the world taken together. At present the annual production of solar components exceeds 500 MW in the world. Photoelectric stations are silent and do not waste harmful products to the environment. The majority of modern solar cells are made on the basis of a single p-n junction

  7. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations

    International Nuclear Information System (INIS)

    Closas, Alvar; Rap, Edwin

    2017-01-01

    The increasing demand for solar-powered irrigation systems in agriculture has spurred a race for projects as it potentially offers a cost-effective and sustainable energy solution to off-grid farmers while helping food production and sustaining livelihoods. As a result, countries such as Morocco and Yemen have been promoting this technology for farmers and national plans with variable finance and subsidy schemes like in India have been put forward. By focusing on the application of solar photovoltaic (PV) pumping systems in groundwater-fed agriculture, this paper highlights the need to further study the impacts, opportunities and limitations of this technology within the Water-Energy-Food (WEF) nexus. It shows how most policies and projects promoting solar-based groundwater pumping for irrigation through subsidies and other incentives overlook the real financial and economic costs of this solution as well as the availability of water resources and the potential negative impacts on the environment caused by groundwater over-abstraction. There is a need to monitor groundwater abstraction, targeting subsidies and improving the knowledge and monitoring of resource use. Failing to address these issues could lead to further groundwater depletion, which could threaten the sustainability of this technology and dependent livelihoods in the future. - Highlights: • Solar pumping projects require assessing environmental and financial sustainability. • Subsidies for solar pumping need to be tied to groundwater pumping regulations. • Solar irrigation projects need to consider groundwater availability and depletion. • Data and monitoring are needed to improve water resource impact assessments.

  8. A Raster Based Approach To Solar Pressure Modeling

    Science.gov (United States)

    Wright, Theodore

    2014-01-01

    The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. Which components are being lit depends on the orientation of the craft with respect to the Sun as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun.To determine solar pressure in the presence overlapping components, a 3D model can be used to determine which components are illuminated. A view (image) of the model as seen from the Sun shows the only contributors to solar pressure. This image can be decomposed into pixels, each of which can be treated as a non-overlapping flat plate as far as solar pressure calculations are concerned. The sums of the pressures and moments on these plates approximate the solar pressure and moments on the entire vehicle.The image rasterization technique can also be used to compute other spacecraft attributes that are dependent on attitude and geometry, including solar array power generation capability and free molecular flow drag.

  9. Solar energy: an environment friendly reliable and sustainable source

    International Nuclear Information System (INIS)

    Siddique, M.A.; Akhtar, W.

    2011-01-01

    The rapid enhancement in consumption of fossil fuels in order to meet the day-to day increasing energy requirements has blown a danger sign for all nations. Global warming effect has compelled researchers to discover other techniques of energy generation instead of traditional ways in order to reduce adverse effects on global terrain. Renewable energy resources have got attention of global entrepreneurs due to their long lasting availability and environment friendliness. Solar technology is finding increased application in both domestic and military application. This paper discusses the ideas behind the art of design of solar cells and their historical developments. It also covers the kind of techniques/ methodologies used for solar energy conversion into electrical energy with comparison between different renewable technologies and solar technology. This paper gives the brief review of world energy resources and their consumption v/s Solar energy production percentage. Researchers in the field of energy generation have impressed by the Prodigious results of Renewable Energies. Today's most of the high ranked international universities of developed countries in collaboration with government/ industries have been carrying on advance researches in the field of renewable technologies. (author)

  10. Externalities of energy. Swedish implementation of the ExternE methodology

    International Nuclear Information System (INIS)

    Nilsson, Maans; Gullberg, M.

    1998-01-01

    The growing interest for developing economic instruments for efficient environmental policies has opened up a large area of multi-disciplinary research. ExternE is an example of this research, combining disciplines such as engineering, ecology, immunology and economics expertise to create new knowledge about how environmental pressures from energy production affect our nature and society. The ExternE Project aims to identify and, as far as possible quantify the externalities of energy production in Europe. The Stockholm Environment Institute has carried out a preliminary aggregation: -Coal Fuel Cycle: centred around Vaesteraas Kraftvaermeverk, Vaesteraas. This is the largest co-generation plant in Sweden, with four blocks and a maximum co-generation output of 520 MW electricity and 950 MW heat. The analysis is carried out on boiler B4. -Biomass Fuel Cycle: centred around Haendeloeverket, Norrkoeping. This plant predominately burns forestry residues, but a variety of fuels are combusted. Haendeloeverket has an installed capacity of 100 MW electricity and 375 MW heat, in a total of three boilers and two back-pressure turbines. The analysis is carried out on boiler P13. -Hydro Fuel Cycle: Klippens Kraftstation, Storuman. Built in 1990-1994, it is the youngest hydro power station in Sweden. It has been designed and built with significant efforts to account for and protect environmental values. Installed capacity is 28 MW. The environmental impact assessment from the construction of this plant is carried out, but the evaluation is still not finalized. The preliminary aggregation aimed to test whether ExternE results could be used to make estimates for the entire Swedish electricity production system. Hence, national results as well as results from other partner countries in ExternE has been applied

  11. Human resource management and learning for innovation: pharmaceuticals in Mexico

    OpenAIRE

    Santiago-Rodriguez, Fernando

    2010-01-01

    This paper investigates the influence of human resource management on learning from internal and external sources of knowledge. Learning for innovation is a key ingredient of catching-up processes. The analysis builds on survey data about pharmaceutical firms in Mexico. Results show that the influence of human resource management is contingent on the knowledge flows and innovation goals pursued by the firm. Practices such as training-- particularly from external partners; and remuneration for...

  12. Texas Solar Collaboration DOE Rooftop Solar Challenge City of Houston Project Summary

    Energy Technology Data Exchange (ETDEWEB)

    Ronk, Jennifer [Houston Advanced Research Center, TX (United States)

    2013-02-14

    The City of Houston is committed to achieving a sustainable solar infrastructure. In 2008, Houston was named a United States Department of Energy (DOE) Solar America City. As a Solar America City, Houston teamed with the Houston Advanced Research Center (HARC), Sandia National Laboratory (Sandia), industry, and academia, to implement the Solar Houston Initiative and prepare the Solar Houston Plan. The Solar Houston initiative was focused on identifying and overcoming barriers associated with establishing a solar infrastructure that is incorporated into the City of Houston’s overall energy plan. A broad group of Houston area stakeholders, facilitated by HARC, came together to develop a comprehensive solar plan that went beyond technology to address barriers and establish demonstrations, public outreach, education programs and other activities. The plan included proposed scopes of work in four program areas: policies, solar integration, public outreach, and education. Through the support of the DOE SunShot Rooftop Solar Challenge (RSC) grant to the Texas Collaboration (San Antonio, Austin, and Hosuton), Houston has been able to implement several of the recommendations of the Solar Houston Plan. Specific recommendations that this project was able to support include; Working with the other Texas Solar America Cities (San Antonio and Austin), to harmonize permitting and inspection processes to simplify for installers and lower soft costs of installation; Participating in state level solar policy groups such as the Texas Renewable Energy Industries Association (TRIEA); Continued coordination with the local transmission and distribution utility (CenterPoint) and retail electric providers (REP); Identification of opportunities to improve permitting and interconnection; Providing training on PV systems to City inspectors; Educating the public by continuing outreach, training, and workshops, particularly using the the Green Building Resources Center; Evaluating methods of

  13. GLOBAL IMPACT OF SOLAR ENERGY, CASE STUDY - GERMANY

    Directory of Open Access Journals (Sweden)

    Gheorghe Caralicea Marculescu

    2014-02-01

    Full Text Available Renewable energy is a socially and politically defined category of energy sources. Renewable energy is generally defined as energy that comes from resources which are continually replenished on a human timescale such as sunlight, wind, rain, tides, waves and geothermal heat. About 16% of global final energy consumption comes from renewable resources, with 10% of all energy from traditional biomass, mainly used for heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels accounted for another 3% and are growing rapidly. This paper seeks is aimed at presenting the impact solar energy could have on a world level given the finitude, reachability and ever increasing prices of fossil fuels. As a case study we will present the solar energy industry in Germany emphasizing the advantages and disadvantages this form of energy has in this country and worldwide.

  14. Environmental externalities and renewables: A policy perspective

    International Nuclear Information System (INIS)

    Sanghi, A.K.

    1992-01-01

    New York state electric utilities are required to incorporate the consideration of environmental externality costs in their bidding programs for new capacity. A natural extension of this policy would be to consider environmental externality costs in the state's implementation of federal regulations under the Public Utilities Regulatory Policies Act (PURPA). A more direct but more politically difficult approach would be the use of environmental taxes. These two approaches are discussed for more fully incorporating environmental externalities in New York's energy planning process. Under PURPA, utilities have a general obligation to purchase energy from interconnected qualifying facilities on the basis of long-run avoided cost (LRAC) estimates. The New York State Public Service Commission is currently updating the LRAC estimates, which do not account for the costs of complying with the 1990 amendments of the Clean Air Act (CAA) or for environmental externality costs associated with underlying generation sources. Environmental externality LRACs are estimated based on SO 2 , NO x , and CO 2 emissions; estimates of CAA compliance are relatively small in comparison. The use of taxes to reduce emissions by making pollution more expensive than abatement is analyzed, with reference to both general revenue and trust fund types of tax mechanisms. The ways the two mechanisms affect development of wind power resources is illustrated to provide further insight into the correct application of environmental externalities in energy planning. 8 refs., 3 figs., 2 tabs

  15. Fuzzy attitude control of solar sail via linear matrix inequalities

    Science.gov (United States)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  16. Dental hygiene student experiences in external placements in Australia.

    Science.gov (United States)

    Taylor, Jane A; Hayes, Melanie J; Wallace, Linda

    2012-05-01

    While placements in external locations are being increasingly used in dental education globally, few studies have explored the student learning experience at such placements. The purpose of this study was to investigate student experiences while on external placement in a baccalaureate dental hygiene program. A self-reporting questionnaire was distributed to final-year dental hygiene students (n=77) at the University of Newcastle, Australia, in 2010. The questionnaire included questions regarding the type of placement, experiences offered, supervision, resources available, and lasting impressions. Responding students were generally positive about their external placement experience and indicated that the majority of facilities provided them with the opportunity to provide direct patient care and perform clinical tasks typical of a practicing hygienist. However, there was a statistically significant difference in their opinions about discipline-focused and community placements. Students indicated that their external placement experience provided opportunities to learn more about time and patient management, including hands-on experience with specific clinical tasks. Ongoing evaluations are necessary to ensure that external placements meet both student needs and intended learning outcomes within dental hygiene programs.

  17. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  18. Some applications of solar energy in Thailand. Research report No. 61

    Energy Technology Data Exchange (ETDEWEB)

    Htun, M N; Aftab, M P; Ramachandran, P N

    1976-06-01

    Solar energy for process heat is identified as the application with potential for widescale use in rural areas rather than urban centres of Thailand. Three applications of solar energy, namely distillation, drying, and cooking are investigated. The units for the study are designed with low cost, flexibility and durability as the aim. The production efficiency of a conventional solar still is improved by the use of internal or external mirrors. To improve the production and efficiency of a solar still, a suspension of activated carbon particles is introduced into the still. However, the most significant improvement in efficiency and production occurs when the solar still is filled and operated with a static bed of burnt rice husk. The solar dryer, drying tapioca chips can reduce moisture content of around 71% down to 14% within 8 hours of operation. The solar dryer performs more efficiently and effectively than open floor drying. The solar cooker is inconvenient to use and operate and the potential for widescale use is concluded to be remote unless social habits change and the cooker made more comfortable to utilize.

  19. Characterization of a Bifacial Photovoltaic Panel Integrated with External Diffuse and Semimirror Type Reflectors

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Silicon wafer accounts for almost one-half the cost of a photovoltaic (PV panel. A bifacial silicon solar cell is attractive due to its potential of enhancing power generation from the same silicon wafer in comparison with a conventional monofacial solar cell. The bifacial PV cell is able to capture solar radiation by back surface. This ability requires a suitable reflector appropriately oriented and separated from the cell’s rear surface. In order to optimize the bifacial solar cell performance with respect to an external back surface reflector, diffuse and semimirror reflectors were investigated at various angles and separations from the back surface. A simple bifacial solar panel, consisting of four monocrystalline Si solar cells, was designed and built. Reflection from the rear surface was provided by an extended semimirror and a white-painted diffuse reflector. Maximum power generation was observed at 30° with respect to ground for the semimirror reflector and 10° for diffuse reflector at an optimized reflector-panel separation of 115 mm. Output power enhancement of 20% and 15% from semimirror and diffuse reflectors, respectively, were observed. This loss from diffuse reflector is attributed to scattering of light beyond the rear surface capture cross-section of the bifacial solar panel.

  20. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  1. The external sector of the Serbian economy

    Directory of Open Access Journals (Sweden)

    Ristanović Vladimir

    2016-01-01

    Full Text Available The aim of this paper is to show the external sector of the Serbian economy, its features and peculiarities, as well as anomalies that afflicted it for years. In the analysis, data acquired from the Statistical Office of the Republic of Serbia will be used, as well as the official international methodology. The text will include the analysis of the structure of the external sector, market share, competitive position of Serbian economy and export products according to sectors of the economy and factor intensity. Since 2000, the structure of production and exports of the Serbian economy shows low comparative advantages and competitive position throughout the world. Unfavorable structure of the sectors, departments and the product groups affected the deepening of external imbalances and high foreign trade deficit. Exports of technology of predominantly low intensity, resources, and labor-intensive products, common for Serbian economy, represent no guarantee of economic growth in the long term. The causes of external imbalances should be sought in the absence of adequate export strategy, as well as in high speed of liberalization of foreign trade flows and exchange rate policy.

  2. Advanced Cloud Forecasting for Solar Energy’s Impact on Grid Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Solar energy production is subject to variability in the solar resource – clouds and aerosols will reduce the available solar irradiance and inhibit power production. The fact that solar irradiance can vary by large amounts at small timescales and in an unpredictable way means that power utilities are reluctant to assign to their solar plants a large portion of future energy demand – the needed power might be unavailable, forcing the utility to make costly adjustments to its daily portfolio. The availability and predictability of solar radiation therefore represent important research topics for increasing the power produced by renewable sources.

  3. How externalities impact an evaluation of strategies to prevent antimicrobial resistance in health care organizations

    Directory of Open Access Journals (Sweden)

    Jenine R. Leal

    2017-06-01

    Full Text Available Abstract Background The rates of antimicrobial-resistant organisms (ARO continue to increase for both hospitalized and community patients. Few resources have been allocated to reduce the spread of resistance on global, national and local levels, in part because the broader economic impact of antimicrobial resistance (i.e. the externality is not fully considered when determining how much to invest to prevent AROs, including strategies to contain antimicrobial resistance, such as antimicrobial stewardship programs. To determine how best to measure and incorporate the impact of externalities associated with the antimicrobial resistance when making resource allocation decisions aimed to reduce antimicrobial resistance within healthcare facilities, we reviewed the literature to identify publications which 1 described the externalities of antimicrobial resistance, 2 described approaches to quantifying the externalities associated with antimicrobial resistance or 3 described macro-level policy options to consider the impact of externalities. Medline was reviewed to identify published studies up to September 2016. Main body An externality is a cost or a benefit associated with one person’s activity that impacts others who did not choose to incur that cost or benefit. We did not identify a well-accepted method of accurately quantifying the externality associated with antimicrobial resistance. We did identify three main methods that have gained popularity to try to take into account the externalities of antimicrobial resistance, including regulation, charges or taxes on the use of antimicrobials, and the right to trade permits or licenses for antimicrobial use. To our knowledge, regulating use of antimicrobials is the only strategy currently being used by health care systems to reduce antimicrobial use, and thereby reduce AROs. To justify expenditures on programs that reduce AROs (i.e. to formally incorporate the impact of the negative externality of

  4. Renewable energy resources and their role in the energy balance of the country

    International Nuclear Information System (INIS)

    Ivanov, P.; Trifonova, L.

    2001-01-01

    The role of the renewable energy sources in the energy production sector is discussed. The main features of solar, wind and biomass energy are reviewed. Studies for Bulgaria show a total solar radiation above 1600 kWh/m 2 for the Southern regions. The assessment of the solar resources, made by the DOE gives about 170 000 TWh/y for the whole territory. The economically advantageous resources for passive heating are 10.6 TWh till 2020. For the same period the utilization of 0.92 TWh solar energy is possible. Solar installations with surface about 14 000 m 2 are currently in operation. 54% of them are in the tourism sphere and only 8% are in industry (due to some economical difficulties about 44% of the industrial installations are shut down). On the base of processing of the data from more that 100 meteorological stations on the country territory, a spatial assessment of the resources has been done. For the whole territory the wind potential is estimated to about 15800 GW. Theoretical average annual wind resources at 10 km above the surface are 125 000 TWh. There are several areas with wind velocity 5-6 m/s which are suitable for wind energy production. The energy resources of biomass for the country are large - around 35.5 TWh. Under the programmes 'Country Study Project' and PHARE, different scenarii for the renewable energy source utilization till 2020 are developed. Estimation for the possibilities for wider application of the renewable sources in the market are done

  5. Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Coimbra, Carlos F. M. [Univ. of California, San Diego, CA (United States

    2016-02-25

    In this project we address multiple resource integration challenges associated with increasing levels of solar penetration that arise from the variability and uncertainty in solar irradiance. We will model the SMUD service region as its own balancing region, and develop an integrated, real-time operational tool that takes solar-load forecast uncertainties into consideration and commits optimal energy resources and reserves for intra-hour and intra-day decisions. The primary objectives of this effort are to reduce power system operation cost by committing appropriate amount of energy resources and reserves, as well as to provide operators a prediction of the generation fleet’s behavior in real time for realistic PV penetration scenarios. The proposed methodology includes the following steps: clustering analysis on the expected solar variability per region for the SMUD system, Day-ahead (DA) and real-time (RT) load forecasts for the entire service areas, 1-year of intra-hour CPR forecasts for cluster centers, 1-year of smart re-forecasting CPR forecasts in real-time for determination of irreducible errors, and uncertainty quantification for integrated solar-load for both distributed and central stations (selected locations within service region) PV generation.

  6. External costs of nuclear-generated electricity

    International Nuclear Information System (INIS)

    Rotaru, I.; Glodeanu, F.; Popescu, D.; Andrei, V.

    2004-01-01

    in market prices, such as security of supply, cost stability and broad economic impacts on employment and balance of trade. If such externalities would be internalized, the effect would be positive for nuclear energy in Romania. In conclusion, like other energy sources, nuclear energy has risks and benefits that need to be fully recognized and assessed to evaluate its external costs. Both internalized (direct) costs and externalities vary from country to country, and from technology to technology. For fossil fuels and biomass, external costs may be of the same order of magnitude as direct cost. Nuclear electricity, solar photovoltaic and wind power have external costs at least one order of magnitude lower than the direct cost. Beyond the competitive generation costs of existing nuclear power plants in most markets, benefits of nuclear power, that are not reflected currently in prices, include: security of supply, cost stability and the quasi absence of atmospheric emissions of greenhouse gases, other pollutant gases and particulates. The capital and operating costs of nuclear power plants and fuel cycle facilities already internalize a major portion of the potential external costs, and these are reflected in the prices paid by consumers of nuclear-generated electricity. The internalization of external costs for all electricity generating technologies will help nuclear energy to be more competitive. (authors)

  7. Marketing Human Resource Development.

    Science.gov (United States)

    Frank, Eric, Ed.

    1994-01-01

    Describes three human resource development activities: training, education, and development. Explains marketing from the practitioners's viewpoint in terms of customer orientation; external and internal marketing; and market analysis, research, strategy, and mix. Shows how to design, develop, and implement strategic marketing plans and identify…

  8. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment......The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  9. Status and outlook of solar energy use in Pakistan

    International Nuclear Information System (INIS)

    Mirza, U.K.

    2003-01-01

    Pakistan is an energy deficient country, where a large fraction of the population still does not have access to modern day energy services such as electricity. This is due to very limited fossil fuel resources and poor economy, which restrains the import of fossil fuels on a large scale. To overcome energy shortage, Pakistan needs to develop its indigenous energy resources like hydropower, solar and wind. Pakistan lies in an area of one of the highest solar insolation in the world. This vast potential can be exploited to produce electricity, which could be provided to off-grid communities in the northern hilly area and the southern and western deserts. Applications other than electricity production such as solar water heaters and solar cookers also have vast applications. All this will help in both reducing the import of fossil fuels and dependency of people on fuel wood, which in turn will provide some respite for the dwindling forest reserves of Pakistan. Accordingly, the status and outlook of solar energy use in Pakistan is discussed in this paper. In addition, the role of R and D organizations in the promotion of solar energy technologies in Pakistan is also presented including a description of some proposed projects. It is concluded that the current infrastructure has not been able to advance the status of solar energy of Pakistan. Significant efforts are needed to effectively utilize this cheap renewable energy source. (author)

  10. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K; Maelkki, H; Wihersaari, M; Pirilae, P [VTT Energy, Espoo (Finland); Hongisto, M [Imatran Voima Oy, Vantaa (Finland); Siitonen, S [Ekono Energy Ltd, Espoo (Finland); Johansson, M [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  11. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  12. ExternE National Implementation Finland

    International Nuclear Information System (INIS)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P.; Hongisto, M.; Siitonen, S.; Johansson, M.

    1999-01-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  13. Solar emergy evaluation for Chinese economy

    International Nuclear Information System (INIS)

    Yang, Z.F.; Jiang, M.M.; Chen, B.; Zhou, J.B.; Chen, G.Q.; Li, S.C.

    2010-01-01

    A unified evaluation integrating various forms of energy sources and natural resources, products and services, and imports and exports is carried out systematically at the national scale for the booming Chinese economy 1978-2005, based on the ecological measure of solar emergy. The development of the economy is shown heavily dependent on the consumption of nonrenewable natural resources. Of the total resources use, the indigenous resources contribute the most, along with the increasing imports of nonrenewable resources. The development of the Chinese economy is characterized with the recovery stage during 1978-1981, transformation stage during 1981-1991, steady growth stage during 1991-2000, and accelerated increase stage after 2000, with specific distinctive systems indications.

  14. Midmarket Solar Policies in the United States: A Guide for Midsized Solar Customers

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Liu, Chang [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Shivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-09-01

    The midscale market for solar photovoltaics (PV) has not experienced the same high growth rate as residential- or utility-scale market segments in the past five years when solar PV deployment increased rapidly. Midscale solar can be defined as behind-the-meter solar PV between 50 kilowatts and 2 megawatts adopted by multi-housing residential, commercial, industrial, non-profit, and other entities. A number of challenges face the midscale segment, including difficulties in contracting, mismatch between tenant lease and PV financing terms, high transaction costs relative to project sizes, and inefficiencies in matching prospective projects with capital. The changing policy landscape across U.S. states provides both opportunities and challenges to midmarket solar. Some states, such as California, are expanding system capacity limits for policies such as net metering, thus enabling a wider range of customers to benefit from excess generation. A number of states and utilities are making changes to rate design to introduce new or higher user fees for solar customers or reduced tariffs for net metering, which decrease the value of solar generation. An understanding of these policies relative to project feasibility and economics is important for prospective customers to make informed decisions to adopt solar PV. This guide complements existing solar policy resources to help potential customers navigate through the policy landscape in order to make informed decisions for their solar investment. The first part of this guide introduces the key solar policies necessary for policy-based decision-making, which involves using knowledge of a solar policy to improve project economics and efficiency. Policies that could result in policy-based decisions include interconnection standards, net metering, user fees, incentives, and third-party ownership policies. The goal of this section is to equip prospective customers and project developers with the tools necessary to understand and

  15. Solar energy systems: Sustainable or not? Environmental effects of materials of solar systems with Eco-Quantum: the break even point

    International Nuclear Information System (INIS)

    Knapen, M.; Anink, D.; Donze, G.

    2000-01-01

    Solar systems seem a sustainable way of providing energy. But are nowadays PV-systems with materials like heavy metals sustainable? Is PV really environmentally sound with the actual efficiency? And what about solar collectors? This paper provides the answers and indicates improvement options for solar systems to make them more overall sustainable in the future. With Eco-Quantum, a simulation tool for analysing the environmental performance of buildings, the overall environmental profit of buildings with PV-systems and solar collectors is shown. It calculates the environmental effects during the entire life cycle of a complete building ('cradle to grave'). This includes the impact of energy and water use, maintenance during use phase, differences in durability of parts or construction needs, like adhesives and nails. The basis of Eco-Quantum is environmental life cycle assessment (LCA). IEA BCS Annex 31 indicated Eco-Quantum as one of the most sophisticated tools to calculate environment al performance of a build ing. The results of Eco-Quantum are the environmental indicators: Exhaustion of resources; Emissions; Energy and Waste. Options like PV and solar collectors are investigated in a reference building. On the one hand the energy during use is reduced by the options. On the other hand the environmental effects because of materials exhaustion of resources and emissions during production is increased as a consequence of additional material use. (au)

  16. Customer expectations of the Canadian solar energy industry : a client's decision process and support needs

    International Nuclear Information System (INIS)

    Benson, P.

    2004-01-01

    This paper presents a consumer's account of his experiences with the solar industry. It indicates that while information on solar technology in Canada is plentiful, with many reliable resources on the Internet and from Natural Resources Canada, many local and province-wide organizations associated with the traditional energy market show little to no interest in solar technology. After contacting the building department in his municipality, the author discovered that the region had no knowledge of any local activity involving solar energy systems. Several suggestions are made to the solar industry to remedy these problems, such as providing favourable financing schemes, greater pro-activity in marketing and a larger presence in the community, as well as engaging directly with local businesses as possible distributors, installers or representatives

  17. Regional Externalities

    NARCIS (Netherlands)

    Heijman, W.J.M.

    2007-01-01

    The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities

  18. Inclined solar chimney for power production

    International Nuclear Information System (INIS)

    Panse, S.V.; Jadhav, A.S.; Gudekar, A.S.; Joshi, J.B.

    2011-01-01

    Highlights: → Solar energy harnessing using inclined face of high mountains as solar chimney. → Solar chimneys with structural stability, ease of construction and lower cost. → Mathematical model developed, using complete (mechanical and thermal) energy balance. → Can harness wind power also, as wind velocities at mountain top add to power output. → Air temperature and velocity increase, as air rises in inclined chimney. - Abstract: The present concept of solar chimney is a tall vertical chimney constructed at the center of a large area, which is the collector. This creates questions about stability and economic viability of the chimney and also demands elaborate engineering techniques for constructing a tall chimney. We suggest geometry of 'Inclined Solar Chimney' (ISC), which is constructed along the face of a high rising mountain, on which maximum solar insolation is incident throughout the year. The chimney and the collector get merged here. This makes the structure stable, cost effective and easy for construction. A mathematical model has been developed considering the total energy balance. It predicts the temperature and velocity and kinetic power of the emerging air draft for some chosen values of other parameters. The model also shows the proportion in which absorbed solar energy is divided into different forms, and hence predicts the dependence of kinetic of emerging air draft upon dimensions of the chimney and properties of materials used. Further, it is shown that external winds enhance the kinetic power of the emerging air. Thus ISC can also harness the wind energy, available at the top of the mountain.

  19. Luminescence of solar cells with a-Si:H/c-Si heterojunctions

    Science.gov (United States)

    Zhigunov, D. M.; Il'in, A. S.; Forsh, P. A.; Bobyl', A. V.; Verbitskii, V. N.; Terukov, E. I.; Kashkarov, P. K.

    2017-05-01

    We have studied the electroluminescence (EL) and photoluminescence (PL) of solar cells containing a-Si:H/c-Si heterojunctions. It is established that both the EL and PL properties of these cells are determined by the radiative recombination of nonequilibrium carriers in crystalline silicon (c-Si). The external EL energy yield (efficiency) of solar cells with a-Si:H/c-Si heterojunctions at room temperature amounts to 2.1% and exceeds the value reached in silicon diode structures. This large EL efficiency can be explained by good passivation of the surface of crystalline silicon and the corresponding increase in lifetime of minority carrier s in these solar cells.

  20. The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices

    KAUST Repository

    Kramer, Illan J.; Sargent, Edward H.

    2014-01-01

    CQD solar cell performance. For active materials such as CQD films where 1/α, where alpha is the absorption coefficient, is of the same order as the free carrier extraction length, external quantum efficiency (EQE) measurements have proved useful

  1. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  2. Atlantic Meridional Overturning Circulation response to idealized external forcing

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Latif, M. [Leibniz-Institut fuer Meereswissenschaften an der Universitaet Kiel, Kiel (Germany)

    2012-10-15

    The response of the Atlantic Meridional Overturning Circulation (AMOC) to idealized external (solar) forcing is studied in terms of the internal (unforced) AMOC modes with the Kiel Climate Model (KCM), a coupled atmosphere-ocean-sea ice general circulation model. The statistical investigation of KCM's internal AMOC variability obtained from a multi-millennial control run yields three distinct modes: a multi-decadal mode with a period of about 60 years, a quasi-centennial mode with a period of about 100 years and a multi-centennial mode with a period of about 300-400 years. Most variance is explained by the multi-centennial mode, and the least by the quasi-centennial mode. The solar constant varies sinusoidally with two different periods (100 and 60 years) in forced runs with KCM. The AMOC response to the external forcing is rather complex and nonlinear. It involves strong changes in the frequency structure of the variability. While the control run depicts multi-timescale behavior, the AMOC variability in the experiment with 100 year forcing period is channeled into a relatively narrow band centered near the forcing period. It is the quasi-centennial AMOC mode with a period of just under 100 years which is excited, although it is heavily damped in the control run. Thus, the quasi-centennial mode retains its period which does not correspond exactly to the forcing period. Surprisingly, the quasi-centennial mode is also most strongly excited when the forcing period is set to 60 years, the period of the multi-decadal mode which is rather prominent in the control run. It is largely the spatial structure of the forcing rather than its period that determines which of the three internal AMOC modes is excited. The results suggest that we need to understand the full modal structure of the internal AMOC variability in order to understand the circulation's response to external forcing. This could be a challenge for climate models: we cannot necessarily expect that the

  3. Barium: An Efficient Cathode Layer for Bulk-heterojunction Solar Cells

    Science.gov (United States)

    Gupta, Vinay; Kyaw, Aung Ko Ko; Wang, Dong Hwan; Chand, Suresh; Bazan, Guillermo C.; Heeger, Alan J.

    2013-01-01

    We report Barium (Ba) cathode layer for bulk-heterojunction solar cells which enhanced the fill factor (FF) of p-DTS(FBTTh2)2/PC71BM BHJ solar cell up to 75.1%, one of the highest value reported for an organic solar cell. The external quantum efficiency exceeds 80%. Analysis of recombination mechanisms using the current-voltage (J–V) characteristics at various light intensities in the BHJ solar cell layer reveals that Ba prevents trap assisted Shockley-Read-Hall (SRH) recombination at the interface and with different thicknesses of the Ba, the recombination shifts towards bimolecular from monomolecular. Moreover, Ba increases shunt resistance and decreases the series resistance significantly. This results in an increase in the charge collection probability leading to high FF. This work identifies a new cathode interlayer which outclasses the all the reported interlayers in increasing FF leading to high power conversion efficiency and have significant implications in improving the performance of BHJ solar cells. PMID:23752562

  4. Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)

    Science.gov (United States)

    Liu, J.; Wang, B.

    2009-12-01

    The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for

  5. High spatial resolution infrared camera as ISS external experiment

    Science.gov (United States)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  6. COMPARATIVE EVALUATION OF THE INFLUENCING EFFECTS OF GEOMAGNETIC SOLAR STORMS ON EARTHQUAKES IN ANATOLIAN PENINSULA

    Directory of Open Access Journals (Sweden)

    Yesugey Sadik Cengiz

    2009-07-01

    Full Text Available Earthquakes are tectonic events that take place within the fractures of the earth's crust, namely faults. Above certain scale, earthquakes can result in widespread fatalities and substantial financial loss. In addition to the movement of tectonic plates relative to each other, it is widely discussed that there are other external influences originate outside earth that can trigger earthquakes. These influences are called "triggering effects". The purpose of this article is to present a statistical view to elaborate if the solar geomagnetic storms trigger earthquakes.As a model, the research focuses on the Anatolian peninsula, presenting 41 years of historical data on magnetic storms and earthquakes collated from national and international resources. As a result of the comparative assessment of the data, it is concluded that the geomagnetic storms do not trigger earthquakes.

  7. Colocation opportunities for large solar infrastructures and agriculture in drylands

    International Nuclear Information System (INIS)

    Ravi, Sujith; Macknick, Jordan; Lobell, David; Field, Christopher; Ganesan, Karthik; Jain, Rishabh; Elchinger, Michael; Stoltenberg, Blaise

    2016-01-01

    Highlights: • We explored the potential to colocate solar installations and agriculture. • Water use at solar installations are similar to amounts required for desert plants. • Co-located systems are economically viable in some areas. • Colocation can maximize land and water use efficiency in drylands. - Abstract: Solar energy installations in arid and semi-arid regions are rapidly increasing due to technological advances and policy support. Although solar energy provides several benefits such as reduction of greenhouse gases, reclamation of degraded land, and improved quality of life in developing countries, the deployment of large-scale renewable energy infrastructure may negatively impact land and water resources. Meeting the ever-expanding energy demand with limited land and water resources in the context of increasing demand for alternative uses such as agricultural and domestic consumption is a major challenge. The goal of this study was to explore opportunities to colocate solar infrastructures and agricultural crops to maximize the efficiency of land and water use. We investigated the energy inputs/outputs, water use, greenhouse gas emissions, and economics of solar installations in northwestern India in comparison to aloe vera cultivation, another widely promoted and economically important land use in these systems. The life cycle analyses show that the colocated systems are economically viable in some rural areas and may provide opportunities for rural electrification and stimulate economic growth. The water inputs for cleaning solar panels are similar to amounts required for annual aloe productivity, suggesting the possibility of integrating the two systems to maximize land and water use efficiency. A life cycle analysis of a hypothetical colocation indicated higher returns per m"3 of water used than either system alone. The northwestern region of India has experienced high population growth in the past decade, creating additional demand for land

  8. Externalities - an analysis using the EU ExternE-results

    International Nuclear Information System (INIS)

    2003-10-01

    The EU project ExternE quantified the externalities for the different energy technologies. In this work, the ExternE results are used in a MARKAL-analysis for the Nordic countries. The analysis does not go into detail, but gives some interesting indications: The external costs are not fully covered in the Nordic energy systems, the present taxes and charges are not high enough. The emissions from the energy systems would be strongly reduced, if taxes/environmental charges were set at the level ExternE calculate. The emissions from power production would be reduced most. Renewable energy sources and natural gas dominate the energy systems in the ExternE case

  9. Determining the energy performance of manually controlled solar shades: A stochastic model based co-simulation analysis

    International Nuclear Information System (INIS)

    Yao, Jian

    2014-01-01

    Highlights: • Driving factor for adjustment of manually controlled solar shades was determined. • A stochastic model for manual solar shades was constructed using Markov method. • Co-simulation with Energyplus was carried out in BCVTB. • External shading even manually controlled should be used prior to LOW-E windows. • Previous studies on manual solar shades may overestimate energy savings. - Abstract: Solar shading devices play a significant role in reducing building energy consumption and maintaining a comfortable indoor condition. In this paper, a typical office building with internal roller shades in hot summer and cold winter zone was selected to determine the driving factor of control behavior of manual solar shades. Solar radiation was determined as the major factor in driving solar shading adjustment based on field measurements and logit analysis and then a stochastic model for manually adjusted solar shades was constructed by using Markov method. This model was used in BCVTB for further co-simulation with Energyplus to determine the impact of the control behavior of solar shades on energy performance. The results show that manually adjusted solar shades, whatever located inside or outside, have a relatively high energy saving performance than clear-pane windows while only external shades perform better than regularly used LOW-E windows. Simulation also indicates that using an ideal assumption of solar shade adjustment as most studies do in building simulation may lead to an overestimation of energy saving by about 16–30%. There is a need to improve occupants’ actions on shades to more effectively respond to outdoor conditions in order to lower energy consumption, and this improvement can be easily achieved by using simple strategies as a guide to control manual solar shades

  10. ExternE: Externalities of energy Vol. 1. Summary

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1995-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase 1 was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes is underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  11. ExternE: Externalities of energy Vol. 2. Methodology

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Watkiss, P.

    1995-01-01

    This report describes the methodology used by the ExternE Project of the European Commission (DGXII) JOULE Programme for assessment of the external costs of energy. It is one of a series of reports describing analysis of nuclear, fossil and renewable fuel cycles for assessment of the externalities associated with electricity generation. Part I of the report deals with analysis of impacts, and Part II with the economic valuation of those impacts. Analysis is conducted on a marginal basis, to allow the effect of an incremental investment in a given technology to be quantified. Attention has been paid to the specificity of results with respect to the location of fuel cycle activities, the precise technologies used, and the type and source of fuel. The main advantages of this detailed approach are as follows: It takes full and proper account of the variability of impacts that might result from different power projects; It is more transparent than analysis based on hypothetically 'representative' cases for each of the different fuel cycles; It provides a framework for consistent comparison between fuel cycles. A wide variety of impacts have been considered. These include the effects of air pollution on the natural and human environment, consequences of accidents in the workplace, impacts of noise and visual intrusion on amenity, and the effects of climate change arising from the release of greenhouse gases. Wherever possible we have used the 'impact pathway' or 'damage function' approach to follow the analysis from identification of burdens (e.g. emissions) through to impact assessment and then valuation in monetary terms. This has required a detailed knowledge of the technologies involved, pollutant dispersion, analysis of effects on human and environmental health, and economics. In view of this the project brought together a multi-disciplinary team with experts from many European countries and the USA. The spatial and temporal ranges considered in the analysis are

  12. Entrepreneurship as re-sourcing

    DEFF Research Database (Denmark)

    Korsgaard, Steffen; Anderson, Alistair; Gaddefors, Johan

    Objectives The purpose of this paper is to re-examine the concept of entrepreneurship in light of the current financial and environmental crisis and its socio-spatial impact. Building on Hudson’s analysis of production in late-capitalist societies, we identify problems inherent in the dominant...... of grounding in material reality, lacking emphasis on environmental externalities and an impoverished conceptualization of spatial relations. Comparing this analysis with the dominant opportunistic image of the entrepreneur, leads us to formulate a critique of this image. In formulating an alternative we build...... The paper presents a “new image” of entrepreneurship as re-sourcing. The concept of re-sourcing emphasizes the dual meaning of the word resource as both a stock of supply and strategy or action adopted in adverse circumstances. Re-sourcing thus signifies a shift in focus from opportunities to resources...

  13. The background of external γ radiation in the proportional counters in SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.

    2003-01-01

    The influence of external γ radiation on the process of 71 Ge-decay counting in proportional counters in SAGE experiment of solar neutrino flux measurement is examined. One determines the systematic error of SAGE result, connected with radon decays inside the air volume surrounding the counters, and the background counting rate of proportional counters from γ radiation of passive and active shield [ru

  14. Personal resources and support when regaining the ability to work: an interview study with Exhaustion Disorder patients.

    Science.gov (United States)

    Norlund, Sofia; Fjellman-Wiklund, Anncristine; Nordin, Maria; Stenlund, Therese; Ahlgren, Christina

    2013-06-01

    The aim of the study was to explore experiences and thoughts in the process of returning to work in employed patients with Exhaustion Disorder. Twelve patients with Exhaustion Disorder (burnout) who had been referred to a Stress Rehabilitation Clinic were interviewed. All patients were employed but a majority was on full or part-time sick leave. Grounded Theory was used as the qualitative method. A core category, regaining the ability to work, was developed. Alongside, two categories, internal resources and the external support system, were experienced as being important to the process. The internal resources were expressed through three key features (sub-categories), perceived validation, insights and adaptive coping abilities. The external support system was diverse and described by the sub-categories practical/structural and/or emotional support. Four external support actors were identified; the workplace, health care, the Social Insurance Agency, and the union. The supervisor was described as the most important external actor. Internal and external resources are intertwined in the process of regaining the ability to work. The internal resources and external support can directly increase the probability to regain the ability to work. Moreover, these resources can affect each other and thus indirectly have an effect on the process.

  15. Scientific Team Effectiveness and the External CEO: A Study of Biotechnology University Spin-Offs

    Science.gov (United States)

    van der Steen, Marianne; Englis, Paula Danskin; Englis, Basil G.

    2013-01-01

    This paper presents an empirical exploration of the effectiveness of scientific teams and the role of an external CEO in the spin-off formation process. The paper contributes to the literature by focusing on the role of the experienced or "external" entrepreneur (their commercial resources and capabilities) in the early phase of spin-off…

  16. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  17. Preface to the SPECIAL ISSUE: Excitonic Solar Cells(II)

    Institute of Scientific and Technical Information of China (English)

    Jianjun Tian; Meicheng Li; Kaibo Zheng

    2016-01-01

    Among all the excitonic solar cells(ESCs)including dyesensitized solar cells(DSSCs),quantum solar cells(QDSCs),perovskites solar cells(PSCs),and organic photovoltaics(OPVs),PSCs attracted enormous research attention in the past 7 years and attained the highest power conversion efficiency(PCE)of over 20%with the biggest progress,from 3.8%to over 22.1%in 7 years.However,one can easily realize the fact that such a rapid progress achieved in PSCs was made possible is largely based on the fundamental knowledge,experimental skills,and characterization facilities obtained and accumulated through the multi-decade long endeavor in the study of other excitonic solar cells.Even though PSCs have attractedmuch research human resource and funding,the study on other excitonic solar cells has never stopped,and such persistent efforts

  18. Analysis of the changing Solar Radiation Angle on Hainan Island

    Directory of Open Access Journals (Sweden)

    Ge Zhiwu

    2017-01-01

    Full Text Available As the only tropical provinces in China, Hainan province has advantageous geographical location, and abundant solar energy resources. But because of Local ideas and habits, especially the lack of theoretical research on local solar resources, development and application of solar energy in Hainan is almost blank. In this paper, we studied the variation regularity of sunlight angle on Hainan tropical island, analyzed the revolution and rotation of the earth, and the change rule of sunlight angle caused by the sun’s movement between the tropic of cancer and the tropic of capricorn, deduced the change rule of sunlight angle in the spring equinox, the autumnal equinox, summer solstice and winter solstice day, and got the movement rules of solar elevation angle throughout the year. Theoretic analysis is consistent with field measurement results. These rules are of importance and can effectively guide the local People’s daily life and production, such as the reasonable layout of the buildings, floor distance between different heights of buildings, the direction of the lighting windows of tall buildings, installation angle of photovoltaic panels, and other similar solar energy absorbing and conversion equipment.

  19. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    Science.gov (United States)

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  20. Combining Human Resource and Stakeholder Management Perspectives

    DEFF Research Database (Denmark)

    Ravazzani, Silvia; Mormino, Sara

    2015-01-01

    This paper explores collaborative learning activities involving HR and external stakeholders that organizations decide to plan and implement in order to obtain benefits in terms of knowledge sharing, stakeholder understanding and value creation. The increasing uncertainty and multiplicity of comp...... and corporate learning in a stakeholder-oriented perspective can play a strategic role in supporting business strategy, providing organizations the resources to meet internal and external needs (Wilson, 2005) and to interconnect with their value network.......This paper explores collaborative learning activities involving HR and external stakeholders that organizations decide to plan and implement in order to obtain benefits in terms of knowledge sharing, stakeholder understanding and value creation. The increasing uncertainty and multiplicity...... of competitive pressures and stakeholder demands (Harrison, St. John, 1996) require organizations, and in particular HR, to take on a more strategic role aimed to build new capability and support the overarching business strategy (Ulrich, Beatty 2001). This study draws on Strategic Human Resource Management...

  1. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  2. The Complexity of Solar and Geomagnetic Indices

    Science.gov (United States)

    Pesnell, W. Dean

    2017-08-01

    How far in advance can the sunspot number be predicted with any degree of confidence? Solar cycle predictions are needed to plan long-term space missions. Fleets of satellites circle the Earth collecting science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Statistical and timeseries analyses of the sunspot number are often used to predict solar activity. These methods have not been completely successful as the solar dynamo changes over time and one cycle's sunspots are not a faithful predictor of the next cycle's activity. In some ways, using these techniques is similar to asking whether the stock market can be predicted. It has been shown that the Dow Jones Industrial Average (DJIA) can be more accurately predicted during periods when it obeys certain statistical properties than at other times. The Hurst exponent is one such way to partition the data. Another measure of the complexity of a timeseries is the fractal dimension. We can use these measures of complexity to compare the sunspot number with other solar and geomagnetic indices. Our concentration is on how trends are removed by the various techniques, either internally or externally. Comparisons of the statistical properties of the various solar indices may guide us in understanding how the dynamo manifests in the various indices and the Sun.

  3. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  4. Solar Probe: Humanity's First Visit to a Star

    Science.gov (United States)

    Hassler, D. M.; Solar Probe Science; Technology Definition Team

    Solar Probe will experience first hand the processes and conditions in the solar atmosphere that ultimately impact our planet and shape the harsh solar system environment It will be humanity s first visit to a star and will explore a previously inaccessible region of the inner heliosphere The 2003 Space Science Enterprise Strategy called for study of a Solar Probe to fly through the solar atmosphere to answer fundamental questions that can be answered in no other way The mission received highest priority in the National Academy of Sciences decadal research strategy in solar and space physics in 2002 Significant advances have been made in the areas of solar and solar wind science instrument technology mission resources and the mission environment since the previous Solar Probe Science Definition Team reports of 1989 1995 and 1999 The 2004-05 Solar Probe Science and Technology Definition Team STDT recently completed a detailed study of the Solar Probe Mission based on an earliest launch date of October 2014 The report and its Executive Summary were published by NASA in September 2005 and can be found at the website http solarprobe gsfc nasa gov This talk provides an overview of the Solar Probe mission and a summary of the efforts of the STDT

  5. Simulated Aging of Spacecraft External Materials on Orbit

    Science.gov (United States)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  6. Application and development of solar energy in building industry and its prospects in China

    International Nuclear Information System (INIS)

    Li Zhisheng; Zhang Guoqiang; Li Dongmei; Zhou Jin; Li Lijuan; Li Lixin

    2007-01-01

    China is the second largest country in energy consumption. More and more energy demand pressures cause the Chinese government to review its economy and energy policies in order to support the sustainable development. In China, the building sector amounts to 27.8% total energy consumption, which is only behind the industry sector. China has abundant solar energy resource, which is extensively applied to buildings. Therefore, solar energy utilization in buildings has become one of the most important issues to help China optimize the energy proportion, increasing energy efficiency and protecting the environment. Solar energy resource and its district distribution in China are introduced in detail in this paper, and the representative solar energy application to the building sector is highlighted as well. The solar energy utilization obstacles, especially policy disadvantages in building sector in China, are reviewed. Moreover, the application prospects of solar energy in building sector are presented in combination with the China economic and household industry growth

  7. External perforated window Solar Screens: The effect of screen depth and perforation ratio on energy performance in extreme desert environments

    KAUST Repository

    Sherif, A.; El-Zafarany, A.; Arafa, R.

    2012-01-01

    In hot arid desert environments, the solar radiation passing through windows increases the cooling loads and the energy consumption of buildings. Shading of windows can reduce these loads. Unlike the woven solar screens, wooden solar screens have a

  8. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  9. Advanced Cloud Forecasting for Solar Energy's Impact on Grid Modernization

    International Nuclear Information System (INIS)

    Werth, D.; Nichols, R.

    2017-01-01

    Solar energy production is subject to variability in the solar resource - clouds and aerosols will reduce the available solar irradiance and inhibit power production. The fact that solar irradiance can vary by large amounts at small timescales and in an unpredictable way means that power utilities are reluctant to assign to their solar plants a large portion of future energy demand - the needed power might be unavailable, forcing the utility to make costly adjustments to its daily portfolio. The availability and predictability of solar radiation therefore represent important research topics for increasing the power produced by renewable sources.

  10. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  11. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu Qiao

    2018-01-01

    Full Text Available Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  12. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Sieverts Nielsen, P [eds.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs.

  13. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs

  14. Inventory of the solar thermal and photovoltaic energy potential in the Ardennes district

    International Nuclear Information System (INIS)

    Gal, Henri-Louis

    2010-03-01

    Based on the use of cartographic tool, the objective of this study was to assess the potential production of solar thermal and solar photovoltaic systems, social-economic data, regulatory data, and environmental, heritage-related, and urban constraints, and natural risks. For each type of installation, the possible reachable potential has been assessed while taking these constraints, building typology (housing, industrial, heritage, and so on), building orientation, project construction dynamics into account. The report analyses solar resource, housing characteristics, building typology, regulatory constraints related to the protection of the built environment, exploitation constraints (shade), building orientation constraints. It presents an assessment of net resources for both sectors, an assessment of plausible production potentials by 2030. It also presents and discusses environmental (avoided emissions) and financial indicators related to both solar sectors

  15. Experimental study and optimization of a solar still

    Energy Technology Data Exchange (ETDEWEB)

    Menguy, G; Chassagne, G; Sfeir, A; Saab, J

    1976-01-01

    The aim of this investigation was to study the influence of different parameters on the operation of a solar still for production of distilled water. These parameters are essentially classified in two categories: external parameters such as solar radiation, ambient temperatures and wind speed; internal parameters such as thermal insulation, water film thickness and the color of the side walls. The experiments were carried out on two identical stills. The effects of the different parameters were investigated by comparing the output of the two stills under different experimental conditions. This study resulted in the development of a simple inexpensive still which can readily be put in practical use in the area.

  16. Solar Development on Contaminated and Disturbed Lands

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lee, Courtney [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    Land classified as contaminated and disturbed across the United States has the potential to host developments of utility-scale solar power. This report examines the prospect of developing utility- and commercial-scale concentrated solar power (CSP) and solar photovoltaics (PV) technologies on degraded and environmentally contaminated lands. The potential for solar development on contaminated anddisturbed lands was assessed, and for the largest and highest solar resource sites, the economic impacts and feasibility were evaluated. Developing solar power on contaminated and disturbed lands can help create jobs and revitalize local and state economies, and selecting these sites over greenfield sites can potentially have permitting and environmental mitigation advantages. The U.S.Department of Energy (DOE) SunShot goals call for 632 GW of PV and 83 GW of CSP to be deployed by 2050. Conservative land-use estimates of this study (10 acres per megawatt) show that there are disturbed and environmentally contaminated lands throughout the country that could be suitable for utility-scale solar power, and, that there is sufficient land area to meet SunShot solar deployment goals. The purpose of this assessment is to improve the understanding of these sites and facilitate solar developers' selection of contaminated and disturbed sites for development.

  17. External Benefit Evaluation of Renewable Energy Power in China for Sustainability

    Directory of Open Access Journals (Sweden)

    Huiru Zhao

    2015-04-01

    Full Text Available China’s renewable energy power has developed rapidly in recent years. Evaluating the external benefits of renewable energy power can provide a reference for the Chinese government to set diverse development goals and to implement differentiated supporting policies for different renewable energy power types, which can promote their sustainable development. In this paper, a hybrid MCDM method was applied to evaluate the external benefits of China’s renewable energy power. Firstly, the impacts of renewable energy power accessing the power grid for multiple stakeholders in the electric power system were analyzed. Secondly, the external benefit evaluation index system for renewable energy power was built from the economic, social and environmental factors, based on the concept of sustainability. Then, the basic theory of the hybrid MCDM method employed in this paper was introduced in two parts: the superiority linguistic ratings and entropy weighting method for index weight determination and the fuzzy grey relation analysis for ranking alternatives. Finally, the external benefits of wind power, solar PV power and biomass power were evaluated. Taking a regional electric power system as an example, the results show that PV power has the greatest external benefit, followed by wind power and biomass power. Therefore, more policies supporting PV power should be put in place to promote the harmonious and sustainable development of the whole renewable energy power industry.

  18. Solar radiation as a forest management tool: a primer of principles and application

    Science.gov (United States)

    Howard G. Halverson; James L. Smith

    1979-01-01

    Forests are products of solar radiation use. The sun also drives the hydrologic cycle on forested watersheds. Some basic concepts of climatology and solar radiation are summarized in including earth-sun relations, polar tilt, solar energy, terrestrial energy, energy balance, and local energy. An example shows how these principles can be applied in resource management....

  19. THE EFFECT OF MAGNETIC FIELD ON THE EFFICIENCY OF A SILICON SOLAR CELL UNDER AN INTENSE LIGHT CONCENTRATION

    Directory of Open Access Journals (Sweden)

    Zoungrana Martial

    2017-06-01

    Full Text Available This work put in evidence, magnetic field effect the electrical parameters of a silicon solar cell illuminated by an intense light concentration: external load electric power, conversion efficiency, fill factor, external optimal charge load. Due to the high photogeneration of carrier in intense light illumination mode, in addition of magnetic field, we took into account the carrier gradient electric field in the base of the solar cell. Taking into account this electric field and the applied magnetic field in our model led to new analytical expressions of the continuity equation, the photocurrent and the photovoltage.

  20. Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.

  1. Solar field control for desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Roca, Lidia [Convenio Universidad de Almeria, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain); Berenguel, Manuel [Universidad de Almeria, Dpto. Lenguajes y Computacion, Ctra. Sacramento s/n, 04120 Almeria (Spain); Yebra, Luis; Alarcon-Padilla, Diego C. [CIEMAT, Plataforma Solar de Almeria, Ctra. Senes s/n, 04200 Tabernas, Almeria (Spain)

    2008-09-15

    This paper presents the development and application of a feedback linearization control strategy for a solar collector field supplying process heat to a multi-effect seawater distillation plant. Since one objective is to use as much as possible the solar resource, control techniques can be used to produce the maximum heat process in the solar field. The main purpose of the controller presented in this paper is to manipulate the water flow rate to maintain an outlet-inlet temperature gradient in the collectors, thereby ensuring continuous process heating, or in other words, continuous production of fresh water in spite of disturbances. The dynamic behaviour of this solar field was approximated by a simplified lumped-parameters nonlinear model based on differential equations, validated with real data and used in the feedback linearization control design. Experimental results in the seawater desalination plant at the Plataforma Solar de Almeria (Spain) show good agreement of the model and real data despite the approximations included. Moreover, by using feedback linearization control it is possible to track a constant gradient temperature reference in the solar field with good results. (author)

  2. Solar activity monitoring and forecasting capabilities at Big Bear Solar Observatory

    Directory of Open Access Journals (Sweden)

    P. T. Gallagher

    2002-07-01

    Full Text Available The availability of full-disk, high-resolution Ha images from Big Bear Solar Observatory (USA, Kanzelhöhe Solar Observatory (Austria, and Yunnan Astronomical Observatory (China allows for the continual monitoring of solar activity with unprecedented spatial and temporal resolution. Typically, this Global Ha Network (GHN provides almost uninterrupted Ha images with a cadence of 1 min and an image scale of 1'' per pixel.  Every hour, GHN images are transferred to the web-based BBSO Active Region Monitor (ARM; www.bbso.njit.edu/arm, which includes the most recent EUV, continuum, and magnetogram data from the Solar and Heliospheric Observatory, together with magnetograms from the Global Oscillation Network Group. ARM also includes a variety of active region properties from the National Oceanic and Atmospheric Administration’s Space Environment Center, such as up-to-date active region positions, GOES 5-min X-ray data, and flare identification. Stokes I, V, Q, and U images are available from the recently operational BBSO Digital Vector Magnetograph and the Vector Magnetograph at the Huairou Solar Observing Station of Beijing Observatory. Vector magnetograms provide complete information on the photospheric magnetic field, and allow for magnetic flux gradients, electric currents, and shear forces to be calculated: these measurements are extremely sensitive to conditions resulting in flaring activity. Furthermore, we have developed a Flare Prediction System which estimates the probability for each region to produce C-, M-, or X-class flares based on nearly eight years of NOAA data from cycle 22. This, in addition to BBSO’s daily solar activity reports, has proven a useful resource for activity forecasting.Key words. Solar physics, astronomy and astrophysics (flares and mass ejections; instruments and techniques; photosphere and chromosphere

  3. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  4. Bioenergy: a sustainable resource for rural population

    International Nuclear Information System (INIS)

    Gehlawat, J.K.

    2000-01-01

    Bio energy is a renewable resource. It is a product of the abundant solar energy. The plant kingdom collects solar energy by photosynthesis and stores it as biomass. This is a big source of energy that sustains the mankind in many ways-food, fuel, fibre and several others. The non-food biomass like agro-waste and forest residues already constitute a large component of the traditional energy sources of most rural population the world over. A scientific study and proper planning are required for an optimum use of this abundant renewable bio energy (biomass). This paper discusses various options to evolve workable technologies for an efficient use of biomass as a sustainable energy resource for rural areas where it is mostly produced. An integrated strategy is proposed. (author)

  5. Pricing of Water Resources With Depletable Externality: The Effects of Pollution Charges

    Science.gov (United States)

    Kitabatake, Yoshifusa

    1990-04-01

    With an abstraction of a real-world situation, the paper views water resources as a depletable capital asset which yields a stream of services such as water supply and the assimilation of pollution discharge. The concept of the concave or convex water resource depletion function is then introduced and applied to a general two-sector, three-factor model. The main theoretical contribution is to prove that when the water resource depletion function is a concave rather than a convex function of pollution, it is more likely that gross regional income will increase with a higher pollution charge policy. The concavity of the function is meant to imply that with an increase in pollution released, the ability of supplying water at a certain minimum quality level diminishes faster and faster. A numerical example is also provided.

  6. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  7. Finding social optima in congestion games with positive externalities

    NARCIS (Netherlands)

    de Keijzer, B.; Schäfer, G.

    2012-01-01

    We consider a variant of congestion games where every player i expresses for each resource e and player j a positive externality, i.e., a value for being on e together with player j. Rather than adopting a game-theoretic perspective, we take an optimization point of view and consider the problem of

  8. Active solar distillation - A detailed review

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, K.; Pitchandi, P. [Department of Mechanical Engineering, Tamilnadu College of Engineering, Coimbatore 641659, Tamilnadu (India); Arjunan, T.V. [Department of Automobile Engineering, PSG College of Technology, Coimbatore 641004, Tamilnadu (India); Senthilkumar, P. [Department of Mechanical Engineering, KSR College of Engineering, Tiruchengode 637215, Tamilnadu (India)

    2010-08-15

    All over the world, access to potable water to the people are narrowing down day by day. Most of the human diseases are due to polluted or non-purified water resources. Even today, under developed countries and developing countries face a huge water scarcity because of unplanned mechanism and pollution created by manmade activities. Water purification without affecting the ecosystem is the need of the hour. In this context, many conventional and non-conventional techniques have been developed for purification of saline water. Among these, solar distillation proves to be both economical and eco-friendly technique particularly in rural areas. Many active distillation systems have been developed to overcome the problem of lower distillate output in passive solar stills. This article provides a detailed review of different studies on active solar distillation system over the years. Thermal modelling was done for various types of active single slope solar distillation system. This review would also throw light on the scope for further research and recommendations in active solar distillation system. (author)

  9. The role of "asteroid taxis" at mastering of Solar system

    Science.gov (United States)

    Steklov, A. F.; Vidmachenko, A. P.

    2018-05-01

    At the present time, two main tendencies can be considered for the solar system to be habitable: 1) to do something with the objects of the solar system in order to make them suitable for life; and 2), it is necessary to make it so that the interplanetary space of the solar system also becomes suitable for life. We believe that it is better to combine these two trends. To this end, we must develop a methodology for constructing special settlements at asteroids and cometary nuclei. And then, it is necessary to build settlements - the "technospheres" - on the most diverse bodies in the Solar system: asteroids, cometary nuclei, satellites of planets and even on some planets. And, first of all, it is highly desirable to use the own resources of the listed objects. Such "technospheres" should be long-term settlements in interplanetary space and at planetoids. To save energy resources, it is necessary to use near-Earth asteroids enriched with water ice. To successfully implement these concepts, it is necessary at least by two orders of magnitude reduce the cost of such settlements.

  10. Johnston Avenue Solar Project

    Energy Technology Data Exchange (ETDEWEB)

    Schrayer, David [Isles, Inc., Trenton, NJ (United States)

    2017-08-22

    DOE awarded funds to support a demonstration project to illustrate how access to solar power and green roof systems could improve building performance and long-term outcomes for the building owner and multiple nonprofit tenants housed in the building. Since being placed in service the solar PV system has saved approximately $1,000 per month in energy costs. The green roof has added to this benefit by naturally cooling the building and has helped reduce local road flooding by retaining storm water. These elements have improved the quality of life in the low-income community in which the building is located by allowing social service organizations to focus more of their resources on programs and job creation.

  11. Western Energy Corridor -- Energy Resource Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Roberts; Michael Hagood

    2011-06-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  12. Western Energy Corridor -- Energy Resource Report

    International Nuclear Information System (INIS)

    Roberts, Leslie; Hagood, Michael

    2011-01-01

    The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

  13. Exploitation of humid air latent heat by means of solar assisted heat pumps operating below the dew point

    International Nuclear Information System (INIS)

    Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • The opportunity of humid air latent heat exploitation by DX-SAHP is investigated. • A set of experimental tests confirms this opportunity and quantifies it as relevant. • A parametric analysis is performed, via simulation, to deepen the subject. • The energy gain is relevant during both night and daytime. - Abstract: Nowadays, the exploitation of environmental exergy resources for heating purposes (solar energy, convection heat transfer from ambient air, moist air humidity condensation) by means of properly designed heat pump systems is a possible opportunity. In particular, the use of direct expansion solar assisted heat pumps (DX-SAHP) is investigated in this study, when a bare external plate (the solar collector) is kept at temperatures lower than the dew point temperature of ambient air, so that condensation takes place on it. The potential of this technology is settled and an instrumented prototype of a small DX-SAHP system is used to verify the actual performance of the system, in terms of specific thermal energy delivered to the user, efficiency and regulation capabilities. Results clearly show that the contribution of the condensation is significant (20%–30% of the total harvested energy) overnight or in cloudy days with very low or no solar irradiation, and must be taken into account in a system model devoted to describe the DX-SAHP behavior. During daytime, the percentage gain decreases but is still consistent. By investigating along these lines, the heat due to condensation harvested by the collector is found to be a function of the dew-point temperature alone.

  14. Solar receiver with integrated optics

    Science.gov (United States)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  15. Control and Modelling of Seawater Desalination Using Solar Technology

    Energy Technology Data Exchange (ETDEWEB)

    Roca, L.; Yebra, L. J.; Berenguel, M.; Alarcon, D. C.

    2006-07-01

    Desalination plants play a fundamental role in fighting the shortage of fresh water in places with plentiful seawater resources. This paper briefly describes a solar desalination system designed, erected and operated in the AQUASOL project at the Plataforma Solar de Almeria (PSA), consisting basically of a CPC (Compound Parabolic Concentrator) solar collector field, two water storage tanks, a multi-effect distillation plant (MED) and a Double Effect Absorption Heat Pump (DEAHP). These subsystems have been modeled to estimate system behaviour and develop control techniques for maintaining optimal operating conditions. (Author)

  16. Externalities of fuel cycles 'ExternE' project. Summary report

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1994-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase I was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes are underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  17. Northeast regional assessment study for solar electric options in the period 1980-2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-04-01

    Opportunities for demonstration and large scale deployment of solar electric facilities are identified and assessed. Technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation are defined. The following topics are covered: a description of the Northeast Region and its solar resources, central station applications, a dispersed user analysis, user viewpoints and institutional factors, and market potential for dispersed solar electric systems. (MHR)

  18. Video exams and the external examiners

    DEFF Research Database (Denmark)

    Qvist, Palle

    to the Master’s programme. The programme offers streamed videos in combination with other learning resources. Oral exams have been mediated with the help of Skype and later with Adobe Connect Professional. It has for all participants - students, examiners and external examiners – been both a challenge...... and an opportunity which has brought about new knowledge and experience. All students in the MPBL Master’s programme responded to a questionnaire [1] that they did not cheat or receive any help from outside. It was also shown that the more experience the respondents had with video exams, the more satisfied they were...... with the exams. Almost all respondents thought that video exams gave the external examiner the possibility to ensure that the demands were in accordance with the defined outcomes and see to that the exams were completed in accordance with the rules. This paper presents results from a questionnaire focusing...

  19. Analysis of Correlation Tendency between Wind and Solar from Various Spatio-temporal Perspectives

    Science.gov (United States)

    Wang, X.; Weihua, X.; Mei, Y.

    2017-12-01

    Analysis of correlation between wind resources and solar resources could explore their complementary features, enhance the utilization efficiency of renewable energy and further alleviate the carbon emission issues caused by the fossil energy. In this paper, we discuss the correlation between wind and solar from various spatio-temporal perspectives (from east to west, in terms of plain, plateau, hill, and mountain, from hourly to daily, ten days and monthly) with observed data and modeled data from NOAA (National Oceanic and Atmospheric Administration) and NERL (National Renewable Energy Laboratory). With investigation of wind speed time series and solar radiation time series (period: 10 years, resolution: 1h) of 72 stations located in various landform and distributed dispersedly in USA, the results show that the correlation coefficient, Kendall's rank correlation coefficient, changes negative to positive value from east coast to west coast of USA, and this phenomena become more obvious when the time scale of resolution increases from daily to ten days and monthly. Furthermore, considering the differences of landforms which influence the local meteorology the Kendall coefficients of diverse topographies are compared and it is found that the coefficients descend from mountain to hill, plateau and plain. However, no such evident tendencies could be found in daily scale. According to this research, it is proposed that the complementary feature of wind resources and solar resources in the east or in the mountain area of USA is conspicuous. Subsequent study would try to further verify this analysis by investigating the operation status of wind power station and solar power station.

  20. External Resources in Military Logistics – Theory and Implementation

    Directory of Open Access Journals (Sweden)

    Morong Stanislav

    2017-09-01

    Full Text Available The article focuses on the specific status of the Armed Forces in the implementation of outsourcing, as one of the cost-benefit optimization methods in military practice. The author points out the need for a comprehensive and strategic monitoring and estimation of the costs, as an elementary assumption of the effective use of public financial resources. Implications of projects implemented without adequate economic analysis are shown on the example of the services outsourcing in military logistics in the Armed Forces of the Slovak Republic.

  1. Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D. S.; Pilasky, S.

    1998-02-01

    The availability of information and data on the renewable energy resources (solar, wind, biomass, geothermal, and hydro) for renewable energy technologies is a critical element in the successful implementation of these technologies. This paper presents a comprehensive summary of published information on these resources for each of 1 8 Asia-Pacific Economic Cooperation (APEC) economies. In the introductory sections, a discussion of the quality and completeness of this information is presented, along with recommendations on steps that need to be taken to facilitate the further development and deployment of renewable energy technologies throughout the APEC region. These sections are then followed by economy-specific reviews, and a complete bibliography and summary description for each citation. The major results of this survey are that a basis for understanding renewable energy resources is currently available for essentially all the economies, although there is a significant need to apply improved and updated resource assessment techniques in most. For example, most wind resource assessments rely on data collected at national weather stations, which often results in underestimates of the true potential wind resource within an economy. As a second example, solar resource assessments in most economies rely on an analysis of very simple sunshine record data, which results in large uncertainties in accurately quantifying the resource. National surveys of biomass, geothermal, and hydro resources are often lacking; in most cases, resources for these technologies were discussed for site-specific studies only. Thus, the major recommendations in this paper are to: ( 1 ) upgrade current or install new wind and solar measurement systems at key 'benchmark' locations to provide accurate, representative information on these resources; (2) apply advanced wind and solar resource assessment tools that rely on data quality assessment procedures, the use of satellite data

  2. Substorm Occurrence and Intensity Associated With Three Types of Solar Wind Structure

    Science.gov (United States)

    Liou, Kan; Sotirelis, Thomas; Richardson, Ian

    2018-01-01

    This paper presents the results of a study of the characteristics of substorms that occurred during three distinct types of solar wind: coronal mass ejection (CME) associated, high-speed streams (HSS), and slow solar wind (SSW). A total number of 53,468 geomagnetic substorm onsets from 1983 to 2009 is used and sorted by the three solar wind types. It is found that the probability density function (PDF) of the intersubstorm time can be fitted by the combination of a dominant power law with an exponential cutoff component and a minor lognormal component, implying that substorms are associated with two distinctly different dynamical processes corresponding, perhaps, to the "externally driven" and "internally driven" processes, respectively. We compare substorm frequency and intensity associated with the three types of solar wind. It is found that the intersubstorm time is the longest during SSW and shortest during CME intervals. The averaged intersubstorm time for the internally driven substorms is 3.13, 3.15, and 7.96 h for CME, HSS, and SSW, respectively. The substorm intensity PDFs, as represented by the peak value of |SML| (the generalization of AL), can be fitted by two lognormal distribution functions. The averaged substorm intensity for either component is largest for CME (292 and 674 nT) and smallest for SSW (265 and 434 nT). We argue that the externally driven substorms are more intense than those driven internally. We conclude that the dynamical process of substorms is controlled mainly by the direct solar wind-magnetosphere coupling, whereas the internally driven process only plays a very modest minor role.

  3. Interfacing external quantum devices to a universal quantum computer.

    Directory of Open Access Journals (Sweden)

    Antonio A Lagana

    Full Text Available We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer.

  4. Where and when are the markets for solar heating in Canada?

    International Nuclear Information System (INIS)

    Swartman, R. K.

    1996-01-01

    The Canadian market for solar thermal equipment and solar photovoltaic systems was reviewed. A major improvement in market opportunities, especially for solar water heaters was expected to materialize within the next few years, based on the current interest shown by green communities, some of the utility companies, including Ontario Hydro, and individuals' concern for the environment. In their Solar 2000 initiative Natural Resources Canada also predicted significant increase in market opportunities. A tax incentive was recommended to encourage conversion to solar heating. Industry associations were exhorted to develop an ethical infrastructure to ensure a profitable and stable market, and to provide a solid foundation for consumer confidence. 5 refs

  5. Environmental external effects for wind power and coal

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Meyer, H J; Morthorst, P E [Risoe National Lab., Roskilde (Denmark). Systems Analysis Dept.

    1996-12-31

    This article summarises some of the results achieved in a project carried out in Denmark with the purpose to assess the environmental damages and the external costs in the production of energy. The project has especially handled renewable energy versus energy based on fossil fuels. The project has been a collaboration between the Technical University of Denmark and Riso National Laboratory. The research institutions have considered different energy production technologies in the project. The energy production technologies that have been considered by Risoe National Laboratory and will be reported and compared in this article are the following: (1) Wind power, (2) A coal-fired condensing plant. In the project the environmental damages are thus compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized. The following result applies in general to the applied technologies. Only the environmental externalities have been assessed in the project. Social and economical externalities, e.g. related to changes in employment or depletion of resources, are not included in the project. The cost concept is based on marginal damage cost, in principle taking as starting point the level of pollution that exists today. The methodology, which has been used in order to find and monetize the environmental externalities, consists of the different processes like Identification, quantification, Dose-response and Valuation

  6. Environmental external effects for wind power and coal

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E. [Risoe National Lab., Roskilde (Denmark). Systems Analysis Dept.

    1995-12-31

    This article summarises some of the results achieved in a project carried out in Denmark with the purpose to assess the environmental damages and the external costs in the production of energy. The project has especially handled renewable energy versus energy based on fossil fuels. The project has been a collaboration between the Technical University of Denmark and Riso National Laboratory. The research institutions have considered different energy production technologies in the project. The energy production technologies that have been considered by Risoe National Laboratory and will be reported and compared in this article are the following: (1) Wind power, (2) A coal-fired condensing plant. In the project the environmental damages are thus compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized. The following result applies in general to the applied technologies. Only the environmental externalities have been assessed in the project. Social and economical externalities, e.g. related to changes in employment or depletion of resources, are not included in the project. The cost concept is based on marginal damage cost, in principle taking as starting point the level of pollution that exists today. The methodology, which has been used in order to find and monetize the environmental externalities, consists of the different processes like Identification, quantification, Dose-response and Valuation

  7. Environmental external effects for wind power and coal

    International Nuclear Information System (INIS)

    Schleisner, L.; Meyer, H.J.; Morthorst, P.E.

    1995-01-01

    This article summarises some of the results achieved in a project carried out in Denmark with the purpose to assess the environmental damages and the external costs in the production of energy. The project has especially handled renewable energy versus energy based on fossil fuels. The project has been a collaboration between the Technical University of Denmark and Riso National Laboratory. The research institutions have considered different energy production technologies in the project. The energy production technologies that have been considered by Risoe National Laboratory and will be reported and compared in this article are the following: (1) Wind power, (2) A coal-fired condensing plant. In the project the environmental damages are thus compared, and externalities in the production of energy using renewable energy and fossil fuels are identified, estimated and monetized. The following result applies in general to the applied technologies. Only the environmental externalities have been assessed in the project. Social and economical externalities, e.g. related to changes in employment or depletion of resources, are not included in the project. The cost concept is based on marginal damage cost, in principle taking as starting point the level of pollution that exists today. The methodology, which has been used in order to find and monetize the environmental externalities, consists of the different processes like Identification, quantification, Dose-response and Valuation

  8. Resource analysis of the Chinese society 1980-2002 based on exergy-Part 2: Renewable energy sources and forest

    International Nuclear Information System (INIS)

    Chen, B.; Chen, G.Q.

    2007-01-01

    This second part is the continuation of the first part on fossil fuels and energy minerals. The major renewable energy sources and forest products entering the Chinese society from 1980 to 2002, including sunlight, wind power, tidal power, wave power, geothermal power and heating, biomass, hydroelectric resource and forestry products, are calculated and analyzed in detail in this paper. The solar exergy inputs from solar photovoltaics and solar collectors, including water heater, solar oven and solar building, are calculated and discussed. The development of the wind power plant is presented. Major tidal power plants, which are still working, are addressed. Wave power devices and plants are introduced. Geothermal resources, mainly for power generation and heating, associated with distribution, are depicted. The utilization of biomass, embracing firewood, straw and biogas, which served as the main obtainable local resources for private consumption and production in the rural areas, is illustrated. Development of hydroelectric resources as complement to scarce fossil fuels is represented, of which the small hydropower project adapted for rural areas is emphasized. Finally, forest products from timber forest and economic forest are presented, with the forestation, reproducing, tending areas and sum of odd forestation trees being manifested

  9. A framework for considering externalities in urban water asset management.

    Science.gov (United States)

    Marlow, David; Pearson, Leonie; Macdonald, Darla Hatton; Whitten, Stuart; Burn, Stewart

    2011-01-01

    Urban communities rely on a complex network of infrastructure assets to connect them to water resources. There is considerable capital investment required to maintain, upgrade and extend this infrastructure. As the remit of a water utility is broader than just financial considerations, infrastructure investment decisions must be made in light of environmental and societal issues. One way of facilitating this is to integrate consideration of externalities into decision making processes. This paper considers the concept of externalities from an asset management perspective. A case study is provided to show the practical implications to a water utility and asset managers. A framework for the inclusion of externalities in asset management decision making is also presented. The potential for application of the framework is highlighted through a brief consideration of its key elements.

  10. Trade misinvoicing, external debt and sustainable development: A Nigerian example

    Directory of Open Access Journals (Sweden)

    Collins C. Ngwakwe

    2015-06-01

    Full Text Available This paper evaluated how trade misinvoicing orchestrates external debt in Nigeria and its obstructive tendencies on Nigeria’s sustainable economic development. The paper is pertinent, given that Nigeria is among the top ten developing countries in the world who are victims of substantial illicit trade misinvoicing outflows. The methodological approach is a mix of descriptive analysis (using tables and graphs and a t-test of difference in means between trade misinvoicing outflow from Nigeria, external debt and official development assistance (OD in Nigeria for the period 2003 – 2012. Findings indicate that as trade misinvoicing outflow increased during the period 2003 -2012, Nigeria’s external debt increased yearly. Results from the statistical t-test showed that the mean difference in trade misinvoicing outflow is significantly greater than the mean differences in external debt and official development assistance received into Nigeria. This finding attests to the huge internal financial resources that Nigeria lost during the period 2003 - 2012 through illicit trade misinvoicing outflow. The analysis further disclosed that trade misinvoicing outflow has hampered Nigeria’s stride to sustainable economic development given the record increases in unemployment, poverty, lack of access to sanitation facilities, low percentage of qualified health staff to child birth and a widening income inequality as measured by GINI index. The paper concludes that the drainage of Nigeria’s internal financial resources through illicit trade misinvoicing has denied Nigeria the needed finance to enhance the actualisation of sustainable economic development. Recommendations are proffered to assist in halting trade misinvoicing outflow from Nigeria.

  11. Renewable Substitutability Index: Maximizing Renewable Resource Use in Buildings

    Directory of Open Access Journals (Sweden)

    Ravi S. Srinivasan

    2015-05-01

    Full Text Available In order to achieve a material and energy balance in buildings that is sustainable in the long run, there is an urgent need to assess the renewable and non-renewable resources used in the manufacturing process and to progressively replace non-renewable resources with renewables. Such progressive disinvestment in the non-renewable resources that may be substituted with renewable resources is referred to as “Renewable Substitutability” and if implemented, this process will lead to a paradigm shift in the way building materials are manufactured. This paper discusses the development of a Renewable Substitutability Index (RSI that is designed to maximize the use of renewable resources in a building and quantifies the substitution process using solar emergy (i.e., the solar equivalent joules required for any item. The RSI of a building or a building component, i.e., floor or wall systems, etc., is the ratio of the renewable resources used during construction, including replacement and maintenance, to the building’s maximum renewable emergy potential. RSI values range between 0 and 1.0. A higher RSI achieves a low-energy building strategy promoting a higher order of sustainability by optimizing the use of renewables over a building’s lifetime from formation-extraction-manufacturing to maintenance, operation, demolition, and recycle.

  12. Long term vision on the use of the renewable energies in Mexico: Solar energy. First Part: Evaluation of the Solar Resource in Mexico (Annexe 6-I in 'A vision of year 2030 on the use of the renewable energies in Mexico'); Vision a largo plazo sobre la utilizacion de las energias renovables en Mexico: Energia solar. Primera Parte: Evaluacion del Recurso Solar en Mexico (Anexo 6-I en 'Una vision al 2030 de la utilizacion de las energias renovables en Mexico')

    Energy Technology Data Exchange (ETDEWEB)

    Estrada Gasca, Claudio A; Arancibia Bulnes, Camilo A; Dorantes Rodriguez, Ruben; Islas Samperio, Jorge; Muhlia Velasquez, Agustin [Universidad Nacional Autonoma de Mexico (Mexico)

    2005-08-15

    The application of the solar energy requires an evaluation of the solar resource. It is understood by evaluation the determination of the amount of solar energy available to be used in an application; from the point of view of the present applications it is advisable to distinguish two: the direct solar radiation and the diffuse solar radiation, that conform what it is known as the global solar radiation, or hemispheric. All the solar collectors have capacity to use the direct radiation, their capacity to use diffuse radiation depends on the concentration factor of the radiation that characterizes them. Another distinction that can be done is the measurement of different parts from the spectrum. It is not simple to predict the value of the solar radiation in a site or given moment, this has implications in the design of solar facilities, which are constructed to operate during a large number of years. [Spanish] La aplicacion de la energia solar requiere una evaluacion del recurso solar. Se entiende por evaluacion a la determinacion de la cantidad de energia solar disponible para ser utilizada en una aplicacion; desde el punto de vista de las aplicaciones actuales conviene distinguir dos: la radiacion solar directa y la radiacion solar difusa, que conforman lo que se conoce como la radiacion solar global, o hemisferica. Todos los colectores solares tienen capacidad de utilizar la radiacion directa, su capacidad de usar radiacion difusa depende del factor de concentracion de la radiacion que los caracteriza. Otra distincion que se puede hacer es la medicion de diferentes partes del espectro. No es sencillo predecir el valor de la radiacion solar en un sitio o momento dado, esto tiene implicaciones en el diseno de instalaciones solares, las cuales se construyen para operar durante un numero grande de anos.

  13. Smart thermal grid with integration of distributed and centralized solar energy systems

    International Nuclear Information System (INIS)

    Yang, Libing; Entchev, Evgueniy; Rosato, Antonio; Sibilio, Sergio

    2017-01-01

    Smart thermal grids (STGs) are able to perform the same function as classical grids, but are developed in order to make better use of distributed, possibly intermittent, thermal energy resources and to provide the required energy when needed through efficient resources utilization and intelligent management. District heating (DH) plays a significant role in the implementation of future smart energy systems. To fulfil its role, DH technologies must be further developed to integrate renewable resources, create low-temperature networks, and consequently to make existing or new DH networks ready for integration into future STGs. Solar heating is a promising option for low-temperature DH systems. Thermal energy storage (TES) can make the availability of the energy supply match the demand. An integration of centralized seasonal and distributed short-term thermal storages would facilitate an efficient recovery of the solar energy. This study, through modelling and simulation, investigates the impacts of such integration on the overall performance of a community-level solar DH system. The performance analysis results show that the solar DH system with integration of distributed and centralized seasonal TESs improves system overall efficiency, and reduces DH network heat losses, primary energy consumption and greenhouse gas emissions, in comparison to the one without integration. - Highlights: • STG should be designed to store energy in the most efficient way at the most effective location. • Integration of centralized seasonal and distributed TESs in a solar DH system is proposed. • Performance of such integrated solar DH system is evaluated and compared to the one without. • The integration results in reduction of primary energy consumption and GHG emission. • The integration improves the overall efficiency of the total solar energy system.

  14. Effect of the Phosphorus Gettering on Si Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Hyomin Park

    2012-01-01

    Full Text Available To improve the efficiency of crystalline silicon solar cells, should be collected the excess carrier as much as possible. Therefore, minimizing the recombination both at the bulk and surface regions is important. Impurities make recombination sites and they are the major reason for recombination. Phosphorus (P gettering was introduced to reduce metal impurities in the bulk region of Si wafers and then to improve the efficiency of Si heterojunction solar cells fabricated on the wafers. Resistivity of wafers was measured by a four-point probe method. Fill factor of solar cells was measured by a solar simulator. Saturation current and ideality factor were calculated from a dark current density-voltage graph. External quantum efficiency was analyzed to assess the effect of P gettering on the performance of solar cells. Minority bulk lifetime measured by microwave photoconductance decay increases from 368.3 to 660.8 μs. Open-circuit voltage and short-circuit current density increase from 577 to 598 mV and 27.8 to 29.8 mA/cm2, respectively. The efficiency of solar cells increases from 11.9 to 13.4%. P gettering will be feasible to improve the efficiency of Si heterojunction solar cells fabricated on P-doped Si wafers.

  15. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  16. Power-system-wide analysis of the benefits of reserve provision from solar photovoltaics in South Africa

    CSIR Research Space (South Africa)

    Bischof-Niemz, T

    2016-06-01

    Full Text Available . However, South Africa has abundant solar resources and has seen a dramatic decline in solar PV tariffs over the past few years. The value of reserve provision to the system from solar PV was determined by simulating the South African power system...

  17. Theoretical and Experimental Study of Plasmonic Polymer Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Adam, Jost; Madsen, Morten

    The organic bulk hetero-junction solar cell has remarkable advantages such as low cost, mechanical flexibility and simple process techniques. Recently, low-band gap photoactive materials have obtained a significant attention due to their potential to absorb a wider range of the solar spectrum...... to attain higher power conversion efficiencies. Many low-band gap photoactive materials, however, still show a relatively low external quantum efficiency of less than 60% [1]. One possible approach to improve the device performance is to increase the light absorption in the active layer. This may, amongst...... other approaches, be achieved by using nano- or micro-structures that trap light at specific wavelengths [2], or by using the localized surface plasmon resonance effect of metal nanoparticles in the devices. In this work, we theoretically studied planar polymer solar cell based on finite-difference time...

  18. From Molecular Electronics to Solar Thermal Energy Storage

    DEFF Research Database (Denmark)

    Olsen, Stine Tetzschner

    The Sun's signicant resource potential provides a solution for the world's increasing energy demand in a sustainable and responsible manner. However, the intrinsic property of the on-o cycles of the solar irradiation, i.e. daynight, sunny-cloudy, and summer-winter, constitutes a signicant challenge...... for the utilization of solar energy. An eective technology for storing the solar energy is required. This thesis focuses on solar thermal energy storage in molecules, since it oers a very compact and eective storage method. The rst chapter after the introduction of the thesis, chapter two, introduces the fundamental...... properties of the molecule, i.e. the electronic behaviour of the molecule in dierent environments, which is a key property for investigations of solar energy storage. The main focus of the research is on the electron transport in the Coulomb blockade regime. The third chapter goes into the challenge...

  19. External costs of energy - do the answers match the questions? Looking back at 10 years of ExternE

    International Nuclear Information System (INIS)

    Krewitt, W.

    2002-01-01

    While the claim for 'getting prices right' is quite popular in conceptual policy papers, the implementation of appropriate internalisation strategies is still hampered by a lack of reliable external cost data. Great expectations were set into the ExternE project, a major research programme launched by the European Commission at the beginning of the 1990s to provide a scientific basis for the quantification of energy related externalities and to give guidance supporting the design of internalisation measures. After more than a decade of research, the ExternE label became a well recognised standard source for external cost data. Looking back into the ExternE history, the paper pursues how emerging new scientific insights and changing background assumptions affected external cost estimates and related recommendations to policy over time. Based on ExternE results, the usefulness and inherent limitations of external cost estimates for impact categories like climate change or nuclear waste disposal is discussed. The paper also gives examples on how external costs in spite of remaining uncertainties are successfully used to support environmental policy. (Author)

  20. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  1. Background of external γ radiation in the proportional counters of the SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.

    2003-01-01

    The effect of external γ radiation on the process of counting 71 Ge decays in the proportional counters of the SAGE experiment measuring the solar-neutrino flux is considered. The systematic uncertainty in the SAGE result due to radon decays inside the air volume surrounding the counters is estimated. The background counting rate in the proportional counters that is caused by γ radiation from the enclosing shield is also determined

  2. A Hybrid Multiple-Criteria Decision-Making Approach for Photovoltaic Solar Plant Location Selection

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2017-01-01

    Full Text Available Due to decaying fossil resource and increasing environmental consciousness, the demand of renewable energy resources is escalating these days. Photovoltaic solar energy is one of the most popular renewable energy resources in places where sunlight is abundant. The selection of a desirable location for constructing a photovoltaic solar plant is the first and one of the most important stages in the plant construction to provide a long-term energy production. In this paper, a comprehensive multiple-criteria decision-making model, which incorporates the interpretive structural modeling (ISM, fuzzy analytic network process (FANP and VIKOR (VlseKriterijumska OptimizacijaI Kompromisno Resenje in Serbian,meaning multi-criteria optimization and compromise solution, is proposed to select the most suitable photovoltaic solar plant location. The ISM is applied first to determine the interrelationships among the criteria and among the sub-criteria,andtheresults are used to construct a decision-making network. The FANP is applied next to solve the network and to calculate the importance weights of the sub-criteria. Finally, the VIKOR is adopted to determine the ranking of the photovoltaic solar plant locations. The proposed model is applied in a case study in evaluating photovoltaic solar plant locations in Taiwan. By applying the proposed model, decision makers can have a better thinking process and make more appropriate decisions justifiably.

  3. Design, construction, and measurement of a large solar powered thermoacoustic cooler

    Science.gov (United States)

    Chen, Reh-Lin

    2001-07-01

    A device based on harnessing concentrated solar power in combination with using thermoacoustic principles has been built, instrumented, and tested. Its acoustic power is generated by solar radiation and is subsequently used to pump heat from external loads. The direct conversion between thermal and mechanical energy without going through any electronic stage makes the mechanism simple. Construction of the solar collector is also rather unsophisticated. It was converted from a 10-ft satellite dish with aluminized Mylar glued on the surface. The thermoacoustic device was mounted on the dish with its engine's hot side positioned near the focus of the parabolic dish, about 1 meter above the center of the dish. A 2-dimensional solar tracking system was built, using two servo motors to position the dish at pre-calculated coordinates. The solar powered thermoacoustic cooler is intended to be used where solar power is abundant and electricity may not be available or reliable. The cooler provides cooling during solar availability. Cooling can be maintained by the latent heat of ice when solar power is unattainable. The device has achieved cooling although compromised by gas leakage and thermal losses and was not able to provide temperatures low enough to freeze water. Improvements of the device are expected through modifications suggested herein.

  4. Thermal energy storage for CSP (Concentrating Solar Power)

    Science.gov (United States)

    Py, Xavier; Sadiki, Najim; Olives, Régis; Goetz, Vincent; Falcoz, Quentin

    2017-07-01

    The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  5. Thermal energy storage for CSP (Concentrating Solar Power

    Directory of Open Access Journals (Sweden)

    Py Xavier

    2017-01-01

    Full Text Available The major advantage of concentrating solar power before photovoltaic is the possibility to store thermal energy at large scale allowing dispatchability. Then, only CSP solar power plants including thermal storage can be operated 24 h/day using exclusively the solar resource. Nevertheless, due to a too low availability in mined nitrate salts, the actual mature technology of the two tanks molten salts cannot be applied to achieve the expected international share in the power production for 2050. Then alternative storage materials are under studies such as natural rocks and recycled ceramics made from industrial wastes. The present paper is a review of those alternative approaches.

  6. Solar and Lighting Transmission through Complex Fenestration Systems of Office Buildings in a Warm and Dry Climate of Chile

    Directory of Open Access Journals (Sweden)

    Waldo Bustamante

    2014-05-01

    Full Text Available Overheating, glare, and high-energy demand are recurrent problems in office buildings in Santiago, Chile (33°27'S; 70°42'W during cooling periods. Santiago climate is warm and dry, with high solar radiation and temperature during most of the year. The objective of this paper is to evaluate the thermal and daylighting performance of office buildings transparent façades composed of three different complex fenestration systems (CFS. Each CFS contains a different external shading device (ESD: (1 external roller, (2 vertical undulated and perforated screens, and (3 tilted undulated and perforated screens. The study was carried out by in situ monitoring in three office buildings in Santiago, Chile. Buildings were selected from a database of 103 buildings, representing those constructed between 2005 and 2011 in the city. The monitoring consisted of measuring the short wave solar and daylighting transmission through fenestration systemsby means of pyranometers and luxometers, respectively. This paper shows measurements that were carried out during summer period. A good performance is observed in a building with the external roller system. This system—applied to a northwest façade—shows a regular and high solar and daylighting control of incoming solar radiation. The other two ESD systems evidence a general good performance. However, some deficiencies at certain times of the day were detected, suggesting a non-appropriated design.

  7. Reduction of solar photovoltaic resources due to air pollution in China.

    Science.gov (United States)

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  8. Disinfection of effluent of wastewater treated using solar energy (SODIS): evaluation of a solar concentrator device; Desinfeccao de efluentes com tratamento terciario utilizando energia solar (SODIS): avaliacao do uso do dispositivo para concentracao dos raios solares

    Energy Technology Data Exchange (ETDEWEB)

    Paterniani, Jose Euclides Stipp; Silva, Marcelo Jacomini Moreira da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica. Saneamento e Ambiente]. E-mail: pater@agr.unicamp.br

    2005-01-15

    Besides being an available natural resource, the solar energy is very applicable in places with few recourses and low money resources, because there aren't either the need of chemical products neither a huge cost (commercial materials can be reused). To make this job we re-used PET bottles half painted black with the variables: 1, 2, 4 and 6 hours of heat exposition and we also used a concentrator of rays of sunshine. The affluent control parameters were turbidity, apparent color, temperature, total coliforms and E. coli. These last three were evaluated before and after the disinfection process (effluent parameters). To assess the bacteria reactivation we kept the water in bottles for 24 hours, pretending a very common situation in Brazilian rural houses. We conclude that the use of the concentrator of rays of sunshine can reduce the heat exposition from 6 to 4 hours, without harm the SODIS efficiency. Using the concentrator of rays of sunshine for 6 hours we can obtain, besides SODIS, the process of solar pasteurization (SOPAS), which stops the re-growth of bacteria with a 70 deg C water temperature. We also observed that when the sky is cloudy the incidence of solar radiation and, therefore, the SODIS efficiency decrease, even if the water temperature is higher during the disinfection. Although, this factor doesn't mean a significant influence statistically. (author)

  9. Waiting for "Superleader": Leadership as Anti-Resource Discourse

    Science.gov (United States)

    Ehrensal, Patricia A. L.

    2015-01-01

    The purpose of this conceptual paper is to explore the constructs of school leadership that have gained primacy over the past 20 years. In doing so, I discuss how structures limit the role of the leader in school organisations has been overlooked, particularly ignoring the resource dependency of schools and the external control of resources they…

  10. Encyclopedia of the solar system

    CERN Document Server

    Weissman, Paul; Johnson, Torrence

    1998-01-01

    The Encyclopedia of the Solar System provides a series of comprehensive and authoritative articles written by more than 50 eminent planetary and space scientists. Each chapter is self-contained yet linked by cross-references to other related chapters. This beautifully designed book is a must for the library of professional astronomers and amateur star-gazers alike, in fact for anyone who wishes to understand the nature of our solar system.Key Features* Cross-referenced throughout for easy comprehension* Superbly illustrated with over 700 photos, drawings, and diagrams, including 36 color plates* Provides 40 thematically organized chapters by more than 50 eminent contributors* Convenient glossaries of technical terms introduce each chapter* Academic Press maintains a web site for the Encyclopedia at www.academicpress.com/solar; Author-recommended web resources for additional information, images, and research developments related to each chapter of this volume, are available here

  11. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general

  12. 76 FR 54483 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement and a Resource...

    Science.gov (United States)

    2011-09-01

    ... ROW application NVN-085801. The proposed solar energy project would consist of photovoltaic panels and... of Segregation for the Proposed First Solar South Project Near Primm in Clark County, NV AGENCY... Las Vegas Resource Management Plan (RMP) for a proposed solar energy project located on public lands...

  13. Making ''unconventional'' energy resources conventional

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, D A; Bresee, J C; Cooper, M J; Herwig, L O; Kintner, E E

    1977-01-01

    Three ''unconventional'' energy technologies - geothermal, solar and fusion - looked upon in the United States as possessing significant potential for the large scale production of energy. Both fusion and solar energy promise virtually inexhaustible supplies in the long term while geothermal resources offer a relatively near term prospect for more modest, but still significant, energy contributions. Realizing energy production from any of these technologies will require: (1) a great deal of scientific information and/or engineering development; (2) a significant effort to achieve and insure attractive economics; and (3) the development of adequate industrial capacity and technological infrastructure. Here the status of the United States Energy Research and Development Administration's technology development programs in geothermal, solar and fusion energy systems is reviewed. Recent advances in overcoming significant technological barriers are discussed and future directions are described. Special needs and unique opportunities for contributions to each technology are also set forth.

  14. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    Science.gov (United States)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  15. Efficiency limit of solar cells with index-near-zero photon management layers

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, A.P.

    2017-05-15

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer – a transparent index-near-zero (INZ) material – applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers – and their influence on solar cell current density, open circuit voltage, and power conversion efficiency – are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  16. Efficiency limit of solar cells with index-near-zero photon management layers

    International Nuclear Information System (INIS)

    Kirk, A.P.

    2017-01-01

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer – a transparent index-near-zero (INZ) material – applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers – and their influence on solar cell current density, open circuit voltage, and power conversion efficiency – are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  17. Efficiency limit of solar cells with index-near-zero photon management layers

    Science.gov (United States)

    Kirk, A. P.

    2017-05-01

    As single-junction solar cells saturate in efficiency, the topic of photon management has generated interest in the long running quest to exceed the Shockley-Queisser efficiency limit. While a mirror applied to the backside of a solar cell has proven its benefit as a photon management layer in record setting devices that fall within the Shockley-Queisser limit, it has been proposed that a new type of photon management layer - a transparent index-near-zero (INZ) material - applied to the top surface of a solar cell will allow it to finally exceed the Shockley-Queisser limit. INZ layers - and their influence on solar cell current density, open circuit voltage, and power conversion efficiency - are analyzed. By considering the principle of detailed balance, Snell's law, and the role that entropy plays, it is shown that INZ layers do not allow a solar cell to exceed the Shockley-Queisser efficiency limit. At best, a solar cell with an INZ layer would have the same Shockley-Queisser limiting efficiency as a conventional solar cell tracked under a direct solar spectrum (direct beam radiation only), yet would suffer diminished efficiency under a global solar spectrum (direct beam plus diffuse light) due to the presence of an external critical acceptance angle.

  18. Advantages using inlet stratification devices in solar domestic hot water storage tanks

    DEFF Research Database (Denmark)

    Dragsted, Janne; Furbo, Simon; Bava, Federico

    2017-01-01

    performances of two solar domestic hot water systems are presented. One system is a traditional high flow system with a heat exchanger spiral in the tank. The other system is a low flow system with an external heat exchanger and a newly developed inlet stratifier from EyeCular Technologies ApS installed......The thermal performance of a domestic hot water system is strongly affected by whether the storage tank is stratified or not. Thermal stratification can be built up in a solar storage tank if the heated water from the solar collectors enters the tank through an inlet stratifier.Measured thermal...... with the stratification device has a higher thermal performance compared to the system with the heat exchanger spiral inside the tank.The relative performance (defined as the ratio between the net utilized solar energy of the low flow system and the net utilized solar energy of the high flow system), is a function...

  19. The entropy problem of the decentralized solar and nuclear heat generation

    International Nuclear Information System (INIS)

    Seifritz, W.

    1984-01-01

    Parallel to the energy fluxes the entropy fluxes of decentralized hot-water systems based on solar collectors coupled with an electrical auxiliary heating installation are also deduced. As an important result the fact emerges that this kind of solar energy has to remain very restricted, not only for quantitative-energetic reasons, but also for entropy ones, and that a solar hot-water system will always have to rely on an energy system of low entropy. In contrast to this, the provision of heat for space heating sector with the help of the 'nuclear short-distance concept', which practically does not need any external energy, is not subject to these restrictions. This concept is introduced briefly, as well as the heat prices which presumably can be achieved by it. Concluding comments summarize the reasons once again that speak against the installation of a decentralized solar heat supply system. (orig.) [de

  20. Solar concentrator with integrated tracking and light delivery system with collimation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-06-09

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  1. Solar concentrator with integrated tracking and light delivery system with summation

    Science.gov (United States)

    Maxey, Lonnie Curt

    2015-05-05

    A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.

  2. Research and Development of solar cell frame. Study on solar cell array solid with building material-business building

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This is a NEDO annual report for 1985. A feasibility study was carried out from the viewpoints demanded both from the building material side and the solar cell. Evaluation from the technical, institutional, and economical viewpoints indicated the possibility of using a roof material solid with carbon-fiber-reinforced concrete and a curtain wall. The solar cell module was verified as a building material to be resistant against the external force, water, and heat. A problem left is how to enlarge the module. Integrated use of CFRC (Carbon Fiber Reinforced Concrete) and a cell of maximum size (1,240 x 700 mm), which is industrially available, can be expected. Present solar cell array can be utilized as a building material as it is for a curtain wall. Cost calculation of the CFRC solid roofing material indicates 276 yen/KWH for 15 years depreciation, 10 % residual value, and 8% annual interest, which is a little expensive, but this cost may be applicable to the use as a curtain wall.

  3. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  4. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  5. Microscopic Perspective on Photovoltaic Reciprocity in Ultrathin Solar Cells.

    Science.gov (United States)

    Aeberhard, Urs; Rau, Uwe

    2017-06-16

    The photovoltaic reciprocity theory relates the electroluminescence spectrum of a solar cell under applied bias to the external photovoltaic quantum efficiency of the device as measured at short circuit conditions. Its derivation is based on detailed balance relations between local absorption and emission rates in optically isotropic media with nondegenerate quasiequilibrium carrier distributions. In many cases, the dependence of density and spatial variation of electronic and optical device states on the point of operation is modest and the reciprocity relation holds. In nanostructure-based photovoltaic devices exploiting confined modes, however, the underlying assumptions are no longer justifiable. In the case of ultrathin absorber solar cells, the modification of the electronic structure with applied bias is significant due to the large variation of the built-in field. Straightforward use of the external quantum efficiency as measured at short circuit conditions in the photovoltaic reciprocity theory thus fails to reproduce the electroluminescence spectrum at large forward bias voltage. This failure is demonstrated here by numerical simulation of both spectral quantities at normal incidence and emission for an ultrathin GaAs p-i-n solar cell using an advanced quantum kinetic formalism based on nonequilibrium Green's functions of coupled photons and charge carriers. While coinciding with the semiclassical relations under the conditions of their validity, the theory provides a consistent microscopic relationship between absorption, emission, and charge carrier transport in photovoltaic devices at arbitrary operating conditions and for any shape of optical and electronic density of states.

  6. Geospatial Optimization of Siting Large-Scale Solar Projects

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Quinby, Ted [National Renewable Energy Lab. (NREL), Golden, CO (United States); Caulfield, Emmet [Stanford Univ., CA (United States); Gerritsen, Margot [Stanford Univ., CA (United States); Diffendorfer, Jay [U.S. Geological Survey, Boulder, CO (United States); Haines, Seth [U.S. Geological Survey, Boulder, CO (United States)

    2014-03-01

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  7. Balancing platform control and external contribution in third-party development: the boundary resources model

    DEFF Research Database (Denmark)

    Ghazawneh, Ahmad; Henfridsson, Ola

    2013-01-01

    Prior research documents the significance of using platform boundary resources (e.g. application programming interfaces) for cultivating platform ecosystems through third-party development. However, there are few, if any, theoretical accounts of this relationship. To this end, this paper proposes......-party development: self-resourcing, regulation-based securing, diversity resourcing and sovereignty securing. Our research extends and complements existing platform literature and contributes new knowledge about an alternative form of system development...

  8. External costs and taxes in heat supply systems

    International Nuclear Information System (INIS)

    Karlsson, Aasa; Gustavsson, Leif

    2003-01-01

    A systems approach was used to compare different heating systems from a consumer perspective. The whole energy system was considered from natural resources to the required energy services. District heating, electric heat pumps, electric boilers, natural-gas-, oil- or pellet-fired local boilers were considered when supplying heat to a detached house. The district heat production included wood-chip-fired and natural-gas-fired cogeneration plants. Electricity other than cogenerated electricity was produced in wood-chip- and natural-gas-fired stand-alone power plants. The analysis includes four tax scenarios, as well as the external cost of environmental and health damage arising from energy conversion emission based on the ExternE study of the European Commission. The most cost-efficient systems were the natural-gas and oil boiler systems, followed by the heat pump and district heating systems, when the external cost and taxes were excluded. When including the external costs of CO 2 emission, the wood-fuel-based systems were much more cost efficient than the fossil-fuel-based systems, also when CO 2 capture and storage were applied. The external costs are, however, highly uncertain. Taxes steer towards lowering energy use and lowering CO 2 emission if they are levied solely on all the fossil-fuel-related emission and fuel use in the systems. If consumer electricity and heat taxes are used, the taxes have an impact on the total cost, regardless of the fuel used, thereby benefiting fuel-based local heating systems. The heat pump systems were the least affected by taxes, due to their high energy efficiency. The electric boiler systems were the least cost-efficient systems, also when the external cost and taxes were included

  9. Profit-based conventional resource scheduling with renewable energy penetration

    Science.gov (United States)

    Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.

    2017-08-01

    Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.

  10. Sunspots Resource--From Ancient Cultures to Modern Research

    Science.gov (United States)

    Craig, N.

    2000-10-01

    Sunspots is a web-based lesson that was developed by the Science Education Gateway (SEGway) program with participants from the Exploratorium, a well known science Museum in San Francisco, UC Berkeley Space Sciences Laboratory, and teachers from several California schools. This space science resource allows 8-12 grade students to explore the nature of sunspots and the history of solar physics in its effort to understand their nature. Interviews with solar physicists and archeo-astronomers, historic images, cutting-edge NASA images, movies, and research results, as well as a student-centered sunspot research activity using NASA space science data defines this lesson. The sunspot resource is aligned with the NCTM and National Science Education Standards. It emphasizes inquiry-based methods and mathematical exercises through measurement, graphic data representation, analysis of NASA data, lastly, interpreting results and drawing conclusions. These resources have been successfully classroom tested in 4 middle schools in the San Francisco Unified School District as part of the 3-week Summer School Science curricula. Lessons learned from the Summer School 1999 will be explained. This resource includes teacher-friendly lesson plans, space science background material and student worksheets. There will be Sunspots lesson CD-ROM and printed version of the relevant classroom-ready materials and a teacher resource booklet available. Sunspot resource is brought to you by, The Science Education Gateway - SEGway - Project, and the HESSI satellite and NASA's Office of Space Science Sun-Earth Connection Education Forum.

  11. Solar fuels and chemicals system design study (ammonia/nitric acid production process). Volume 2. Conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1986-06-01

    As part of the Solar Central Receiver Fuels and Chemicals Program, Foster Wheeler Solar Development Corporation (FWSDC), under contract to Sandia National Laboratories-Livermore (SNLL), developed a conceptual design of a facility to produce ammonia and nitric acid using solar energy as the principal external source of process heat. In the selected process, ammonia is produced in an endothermic reaction within a steam methane (natural gas) reformer. The heat of reaction is provided by molten carbonate salt heated by both a solar central receiver and an exothermic ammonia-fired heater. After absorption by water, the product of the latter reaction is nitric acid.

  12. Web site lets solar scientists inform and inspire students

    Science.gov (United States)

    Hauck, Karin

    2012-07-01

    Where on the Web can a middle school girl ask a female solar scientist about solar storms, the course and behavior of charged solar particles, and the origin of the Sun's dynamo—and also find out what the scientist was like as a child, whether the scientist has tattoos or enjoys snowboarding, what she likes and dislikes about her career, and how she balances her energy for work and family life? These kinds of exchanges happen at Solar Week (http://www.solarweek.org; see Figure 1). Established in 2000, Solar Week is an online resource for middle and lower high school students about the science of the Sun, sponsored by the Center for Science Education at the Space Sciences Laboratory (CSE@SSL) at the University of California, Berkeley (UC Berkeley). The Web site's goals are to educate students about the Sun and solar physics and to encourage future careers in science—especially for girls. One way is by giving solar scientists the chance to be relatable role models, to answer students' questions, and to share their experiences in an online forum.

  13. Optimal offering strategy for a concentrating solar power plant

    International Nuclear Information System (INIS)

    Dominguez, R.; Baringo, L.; Conejo, A.J.

    2012-01-01

    Highlights: ► Concentrating solar power (CSP) plants are becoming economically viable. ► CSP production is positively correlated with the demand. ► CSP plants can be made dispatchable by using molten salt storage facilities. ► Integrating CSP plants in a market constitutes a relevant challenge. -- Abstract: This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices.

  14. The ExternE project: methodology, objectives and limitations

    International Nuclear Information System (INIS)

    Rabl, A.; Spadaro, J.V.

    2002-01-01

    This paper presents a summary of recent studies on external costs of energy systems, in particular the ExternE (External Costs of Energy) Project of the European Commission. To evaluate the impact and damage cost of a pollutant, one needs to carry out an impact pathway analysis; this involves the calculation of increased pollutant concentrations in all affected regions due to an incremental emission (e.g. μg/m 3 of particles, using models of atmospheric dispersion and chemistry), followed by the calculation of physical impacts (e.g. number of cases of asthma due to these particles, using a dose-response function). The entire so-called fuel chain (or fuel cycle) is evaluated and compared on the basis of delivered end use energy. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, NO x and SO x ) from the combustion of fossil fuels impose a heavy toll, in addition to the cost of global warming. The external costs are especially large for coal; even for 'good current technology' they may be comparable to the price of electricity. For natural gas the external costs are about a third to a half of coal. The external costs of nuclear are small compared to the price of electricity (at most a few %), and so are the external costs of most renewable energy systems. (authors)

  15. Energy resources

    CERN Document Server

    Simon, Andrew L

    1975-01-01

    Energy Resources mainly focuses on energy, including its definition, historical perspective, sources, utilization, and conservation. This text first explains what energy is and what its uses are. This book then explains coal, oil, and natural gas, which are some of the common energy sources used by various industries. Other energy sources such as wind, solar, geothermal, water, and nuclear energy sources are also tackled. This text also looks into fusion energy and techniques of energy conversion. This book concludes by explaining the energy allocation and utilization crisis. This publ

  16. Diabetes HealthSense: Resources for Living Well

    Medline Plus

    Full Text Available ... E-MAIL UPDATES External Link Disclaimer National Diabetes ... Diabetes HealthSense provides easy access to resources to help you live well and meet your goals—whether you have diabetes or are at risk ...

  17. See-Through Dye-Sensitized Solar Cells: Photonic Reflectors for Tandem and Building Integrated Photovoltaics

    KAUST Repository

    Heiniger, Leo-Philipp; O'Brien, Paul G.; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P.; Grä tzel, Michael; Ozin, Geoffrey A.; Té treault, Nicolas

    2013-01-01

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power

  18. Temperature of optimum generation in facilities of solar cold making use of the equation characteristic; Temperatura de generacion optima en instalaciones de frio solar haciendo uso de la ecuacion caracteristica

    Energy Technology Data Exchange (ETDEWEB)

    Leucona, A.; Ventas, R.; Venegas, M. del C.; Zacarias, A.; Salgado, R.

    2008-07-01

    Absorption machines show a similar response as a function of the external temperatures, which can be approximated by a single functional dependence of the named characteristic temperature. This equation and the normalization curve of the solar thermal collector field driving the chiller and some more approximations allow determining the driving temperature that maximizes the cooling power at any time. This results in a simple equation. It is offered for the design of solar cooling facilities and their control algorithms. Some results are offered and discussed. (Author)

  19. ENTERPRISE RESOURCE STRATEGIC PLANNING: TARGET CHOICE TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. S. Lankin

    2011-01-01

    Full Text Available Choice of the targets is one of most important elements of the resource planning system. Particular feature of the strategic planning is development of future alternatives for the enterprise. Main resource strategic planning cycle elements: examination of principal external and internal environment components; forming the company mission; development of long-term targets; concretization of the long-term targets through short-term aims; examination of strategies and final choice.

  20. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.