Magnetic response to applied electrostatic field in external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)
2014-04-15
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)
Photovoltaic dependence of photorefractive grating on the externally applied dc electric field
Maurya, M. K.; Yadav, R. A.
2013-04-01
Photovoltaic dependence of photorefractive grating (i.e., space-charge field and phase-shift of the index grating) on the externally applied dc electric field in photovoltaic-photorefractive materials has been investigated. The influence of photovoltaic field (EPhN), diffusion field and carrier concentration ratio r (donor/acceptor impurity concentration ratio) on the space-charge field (SCF) and phase-shift of the index grating in the presence and absence of the externally applied dc electric field have also been studied in details. Our results show that, for a given value of EPhN and r, the magnitude of the SCF and phase-shift of the index grating can be enhanced significantly by employing the lower dc electric field (EONphotovoltaic-photorefractive crystal and higher value of diffusion field (EDN>40). Such an enhancement in the magnitude of the SCF and phase-shift of the index grating are responsible for the strongest beam coupling in photovoltaic-photorefractive materials. This sufficiently strong beam coupling increases the two-beam coupling gain that may be exceed the absorption and reflection losses of the photovoltaic-photorefractive sample, and optical amplification can occur. The higher value of optical amplification in photovoltaic-photorefractive sample is required for the every applications of photorefractive effect so that technology based on the photorefractive effect such as holographic storage devices, optical information processing, acousto-optic tunable filters, gyro-sensors, optical modulators, optical switches, photorefractive-photovoltaic solitons, biomedical applications, and frequency converters could be improved.
Laser generated hot electron transport in an externally applied magnetic field
International Nuclear Information System (INIS)
Burnett, N.H.; Enright, G.D.
1986-01-01
The authors have investigated the effect of an externally applied DC magnetic field on the generation and transport of hot electrons in CO/sub 2/ laser irradiation of cylindrical targets. The targets used in these studies were 6.3 mm diameter metal rods through which a pulsed current was driven from an external capacitor. Magnetic fields up to 150 kgauss were produced at the target surface. The CO/sub 2/ laser was focused with an f/5 lens resulting in a laser intensity of ≅3 x 10/sup 14/ W/cm/sup 2/ in a 100 μm diameter focal spot. The effect of the external magnetic field on the generation and inward transport of superhot (≥ 100 keV) electrons was studied. Principal diagnostics included a six channel hard x-ray spectrometer, a high energy x-ray pinhole camera, a LiF Laue x-ray spectrograph and a Ross-filtered (W-Ta) pair of x-ray detectors. The latter two diagnostics were designed to detect Au Kα /sub emission at 68.2 keV
International Nuclear Information System (INIS)
Gedik, Engin; Recebli, Ziyaddin; Kurt, Hueseyin; Kecebas, Ali
2012-01-01
The unsteady viscous incompressible and electrically conducting of two-phase fluid flow in circular pipes with external magnetic and electrical field is considered in this present study. Effects of both uniform transverse external magnetic and electrical fields applied perpendicular to the fluid and each other on the two-phase (solid/liquid) unsteady flow is investigated numerically. While iron powders are being used as the first phase of two-phase fluid, pure water was used as the second phase. The system of the derived governing equations, which are based on the Navier-Stokes equations including Maxwell equations, are solved numerically by using Pdex4 function on the Matlab for both phases. The originality of this study is that, in addition to magnetic field, the effect of electrical field on two-phase unsteady fluids is being examined. The magnetic field which is applied on flow decreases the velocity of both phases, whereas the electrical field applied along with magnetic field acted to increase and decrease the velocity values depending on the direction of electrical field. Electrical field alone did not display any impact on two-phase flow. On the other hand, analytical and numerical results are compared and favorable agreements have been obtained. (authors)
International Nuclear Information System (INIS)
Cabral, Leonardo Ribeiro Eulalio; Aguiar, Jose Albino Oliveira de
2002-01-01
Full text: The study of the electromagnetic response of high-T c superconductors is essential for future technological applications. Such materials are hard type II superconductors, where the mixed state (a state characterized by quantized normal flux tubes - also called vortices - immersed in a superconductor phase) occupies most of the phase diagram. Therefore, the electromagnetic properties are dictated by the vortex dynamics in these materials. One has also to consider the presence of structural defects and thermal effects, which turn the vortex dynamics very complex. These difficulties may be overcome throughout a macroscopic description, also known as continuum approximation, of the electromagnetic fields in superconductors, obtained from critical state models and constitutive relations E = E(j) and H = H(B) (where E is the electric field generated by moving vortices, j the current density, B the induction - related to the local density of vortices - and H the reversible magnetic field that is in equilibrium with B). In superconductors with negligible demagnetization factors, such as long cylinders and bars with applied magnetic fields and/or currents along their longer dimensions, the Meissner state and the flux penetration is quite well understood. However, the actual specimen shape plays an important role on the electromagnetic behavior of superconductors. Numerical methods are often employed, since such cases are hard to treat analytically. In this work we studied the electromagnetic response of superconductors with various shapes. The Meissner state is obtained for thin curved strips and long cylinders with arbitrary cross-section, in perpendicular field and with applied currents. The flux penetration is numerically calculated for thin curved strips for the Bean (j c =const.) and the Kim (j c (B) = j c0 /(1 + βB)) models. (author)
Optical properties of the Tietz-Hua quantum well under the applied external fields
Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Duque, C. A.; Sökmen, I.
2017-12-01
In this study, the effects of the electric and magnetic fields as well as structure parameter- γ on the total absorption coefficient, including linear and third order nonlinear absorption coefficients for the optical transitions between any two subband in the Tietz-Hua quantum well have been investigated. The optical transitions were investigated by using the density matrix formalism and the perturbation expansion method. The Tietz-Hua quantum well becomes narrower (wider) when the γ - structure parameter increases (decreases) and so the energies of the bound states will be functions of this parameter. Therefore, we can provide the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric and magnetic fields as well as the structure parameters and these results can be used to adjust and control the optical properties of the Tietz-Hua quantum well.
International Nuclear Information System (INIS)
Hernandez, O.
1997-01-01
We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil's staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of δ(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the 'X-rays' structural model is found more harmonic than the 'neutron' one. Under electric field applied along the vector b axis, we confirm that commensurate phases with δ = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a 'complete' Devil's air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between 'coexisting' phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results contradict
Tian, Xiaoqing; Xu, Jianbin; Wang, Xiaomu
2010-09-09
The band gap opening of bilayer graphene with one side surface adsorption of F4-TCNQ is reported. F4-TCNQ doped bilayer graphene shows p-type semiconductor characteristics. With a F4-TCNQ concentration of 1.3 x 10(-10) mol/cm(2), the charge transfer between each F4-TCNQ molecule and graphene is 0.45e, and the built-in electric field, E(bi), between the graphene layers could reach 0.070 V/A. The charge transfer and band gap opening of the F4-TCNQ-doped graphene can be further modulated by an externally applied electric field (E(ext)). At 0.077 V/A, the gap opening at the Dirac point (K), DeltaE(K) = 306 meV, and the band gap, E(g) = 253 meV, are around 71% and 49% larger than those of the pristine bilayer under the same E(ext).
Directory of Open Access Journals (Sweden)
TIAN Jialei
2015-11-01
Full Text Available By using the ground as the boundary, Molodensky problem usually gets the solution in form of series. Higher order terms reflect the correction between a smooth surface and the ground boundary. Application difficulties arise from not only computational complexity and stability maintenance, but also data-intensiveness. Therefore, in this paper, starting from the application of external gravity disturbance, Green formula is used on digital terrain surface. In the case of ignoring the influence of horizontal component of the integral, the expression formula of external disturbance potential determined by boundary value consisted of ground gravity anomalies and height anomaly difference are obtained, whose kernel function is reciprocal of distance and Poisson core respectively. With this method, there is no need of continuation of ground data. And kernel function is concise, and suitable for the stochastic computation of external disturbing gravity field.
Energy Technology Data Exchange (ETDEWEB)
Kohandani, R; Kaatuzian, H [Photonics Research Laboratory, Electrical Engineering Department, AmirKabir University of Technology, Hafez Ave., Tehran (Iran, Islamic Republic of)
2015-01-31
We report a theoretical study of optical properties of AlGaAs/GaAs multiple quantum-well (MQW), slow-light devices based on excitonic population oscillations under applied external magnetic and electric fields using an analytical model for complex dielectric constant of Wannier excitons in fractional dimension. The results are shown for quantum wells (QWs) of different width. The significant characteristics of the exciton in QWs such as exciton energy and exciton oscillator strength (EOS) can be varied by application of external magnetic and electric fields. It is found that a higher bandwidth and an appropriate slow-down factor (SDF) can be achieved by changing the QW width during the fabrication process and by applying magnetic and electric fields during device functioning, respectively. It is shown that a SDF of 10{sup 5} is obtained at best. (slowing of light)
Directory of Open Access Journals (Sweden)
Mohamed Bechir Ben Hamida
2015-10-01
Full Text Available The aim of this paper is to evaluate the magnitude of the external magnetic field to be applied to a horizontal mercury discharge lamp such that the Lorentz forces counterbalance buoyancy forces and the hot region of the arc remains centered inside the lamp with the variation of six parameters of the lamp such as the external temperature of the lamp, envelope thickness, convective loss, Interelectrodeslength, pressure and current supply pointing to the influence of the parameters to the compensating magnetic field value. To achieve this objective, a commercial numerical software “Comsol Multiphysics” is used to implement the model that solves the equations of mass, energy and momentum for laminar compressible flow combined with the Laplace equation for the plasma in a three dimensional.
Quantized fields in external field. Pt. 2
International Nuclear Information System (INIS)
Bellissard, J.
1976-01-01
The case of a charged scalar field is considered first. The existence of the corresponding Green's functions is proved. For weak fields, as well as pure electric or scalar external fields, the Bogoliubov S-operator is shown to be unitary, covariant, causal up-to-a-phase. These results are generalised to a class of higher spin quantized fields, 'nicely' coupled to external fields, which includes the Dirac theory, and in the case of minimal and magnetic dipole coupling, the spin one Petiau-Duffin-Kemmer theory. (orig.) [de
International Nuclear Information System (INIS)
Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus
2012-01-01
Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.
Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng
2017-02-15
Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (E b ) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the E b can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm -1 electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H 2 molecule when no strain or E-field is applied; however, the absorption increases to five H 2 molecules under 15% biaxial strain and six H 2 molecules under both 15% biaxial strain combined with a 5.14 V nm -1 E-field. The average adsorption energies for H 2 of BN-(Na-mH 2 ) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H 2 ) 4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H 2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.
Crystal growth under external electric fields
International Nuclear Information System (INIS)
Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo
2014-01-01
This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal
Crystal growth under external electric fields
Energy Technology Data Exchange (ETDEWEB)
Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)
2014-10-06
This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.
International Nuclear Information System (INIS)
Spencer, R.L.
1990-01-01
A high-frequency oscillating electric field can change the properties of diocotron modes in non-neutral plasmas. The effect depends crucially on the azimuthal mode number, m, of the applied field. For m=0,±1 there is no effect, and for applied standing waves there is also no effect. But if the applied field has the form of a traveling wave with |m|≥2, the frequency of stable diocotron modes can be modified and for |m|≥3, the l=2 instability of hollow density profiles can be stabilized. The analytic results are verified with a nonlinear fluid simulation of an infinitely long non-neutral plasma
Wu, Tao; Li, Hua
2017-08-09
In this study, a model was multiphysically developed for the simulation of the phase transition of physical hydrogels between liquid solution and solid gel states, subject to an electro-chemo-mechanically coupled field, with the effect of the mobile ionic species in the solution. The present model consists of the governing equations for the equilibrium of forces and the conservation of mass, Maxwell's equations, and an evolution equation for the interface. Based on the second law of thermodynamics, the constitutive equations are formulated from the energy viewpoint, including a novel formulation of free energy with the effect of crosslink density. The present model may be reduced to Suo's non-equilibrium thermodynamic theory if the interface is ignored when only a single phase exists. It may also be reduced to Dolbow's model for gel-gel phase transition when the electric field is ignored. Therefore, the present model becomes more generalized since it is able to represent both the bulk phase and the interface behaviors, and the mechanical field is simultaneously coupled with both the electric and chemical fields. In the first case study, the system at equilibrium state was numerically investigated for analysis of the influences of the electrical and chemical potentials as well as the mechanical pressure externally imposed on the boundary of the system domain. The second case study presents a spherically symmetrical solution-gel phase transition at non-equilibrium states, with the emphasis on the evolution of both the interface and electrochemical potentials.
Relaxed plasmas in external magnetic fields
International Nuclear Information System (INIS)
Spies, G.O.; Li, J.
1991-08-01
The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)
2013-07-01
The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.
Plasmon instability under four external fields
International Nuclear Information System (INIS)
Pereira, R.B.; Fonseca, A.L.A.; Nunes, O.A.C.
1998-01-01
The plasmon instability in a laboratory produced plasma in the presence of four external fields, namely two laser fields, one strong magnetic field and one static electric field, is discussed. The method of unitary transformations is used to transform the problem of electron motion under the four external fields to that of an electron in the presence only of crossed electric and magnetic fields. A kinetic equation for the plasmon population is derived from which the damping (amplification) rate is calculated. We found that the joint action of the four fields results in a relatively larger amplification rate for some values of the static electric field in contrast to the case where no electric field is present. It was also found that the plasmon growth rate favors plasmon wave vectors in an extremely narrow band i.e., the plasmon instability in four external fields is a very selective mechanism for plasmon excitation. (author)
Quantum theory of relativistic charged particles in external fields
International Nuclear Information System (INIS)
Ruijsenaars, S.N.M.
1976-01-01
A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields
Atomic excitation and recombination in external fields
International Nuclear Information System (INIS)
Nayfeh, M.H.; Clark, C.W.
1985-01-01
This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination
Superconducting Sphere in an External Magnetic Field Revisited
Sazonov, Sergey N.
2013-01-01
The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…
Quantization in presence of external soliton fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)
Plasma cluster acceleration by means of external magnetic fields
International Nuclear Information System (INIS)
Kracik, J.; Maloch, J.; Sobra, K.
1975-01-01
The electromagnetic shock tubes are used not only for shock wave creation and study but also for pulse plasma acceleration. By applying the rail acceleration the external magnetic field perpendicular to the plasma cluster velocity can be increased. In the present work is theoretically and experimentally confirmed the external magnetic field influence on the plasma cluster acceleration when the 'snow plough' model is used. (Auth.)
Charged particles in external electromagnetic fields
International Nuclear Information System (INIS)
Giovannini, N.P.D.
1976-01-01
The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential
Coherent polarization driven by external electromagnetic fields
International Nuclear Information System (INIS)
Apostol, M.; Ganciu, M.
2010-01-01
The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.
Jacobson, Jerry; Sherlag, Benjamin
2015-09-01
A new holistic paradigm is proposed for slowing our genomic-based biological clocks (e.g. regulation of telomere length), and decreasing heat energy exigencies for maintenance of physiologic homeostasis. Aging is considered the result of a progressive slow burn in small volumes of tissues with increase in the quantum entropic states; producing desiccation, microscopic scarring, and disruption of cooperative coherent states. Based upon piezoelectricity, i.e. photon-phonon transductions, physiologic PicoTesla range magnetic fields may decrease the production of excessive heat energy through target specific, bio molecular resonant interactions, renormalization of intrinsic electromagnetic tissue profiles, and autonomic modulation. Prospectively, we hypothesize that deleterious effects of physical trauma, immunogenic microbiological agents, stress, and anxiety may be ameliorated. A particle-wave equation is cited to ascertain magnetic field parameters for application to the whole organism thereby achieving desired homeostasis; secondary to restoration of structure and function on quantum levels. We hypothesize that it is at the atomic level that physical events shape the flow of signals and the transmission of energy in bio molecular systems. References are made to experimental data indicating the aspecific efficacy of non-ionizing physiologic magnetic field profiles for treatment of various pathologic states. Copyright © 2015 Elsevier Ltd. All rights reserved.
Laser ablation of titanium in liquid in external electric field
Energy Technology Data Exchange (ETDEWEB)
Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)
2015-09-01
Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.
Polaron scattering by an external field
International Nuclear Information System (INIS)
Kochetov, E.A.
1980-01-01
The problem of polaron scattering by an external field is studied. The problem is solved using the stationary scattering theory formalism based on two operators: the G Green function operator and the T scattering operator. The dependence of the scattering amplitude on the quasi particle structure is studied. The variation approach is used for estimation of the ground energy level
Spherical tokamak without external toroidal fields
International Nuclear Information System (INIS)
Kaw, P.K.; Avinash, K.; Srinivasan, R.
2001-01-01
A spherical tokamak design without external toroidal field coils is proposed. The tokamak is surrounded by a spheromak shell carrying requisite force free currents to produce the toroidal field in the core. Such equilibria are constructed and it is indicated that these equilibria are likely to have robust ideal and resistive stability. The advantage of this scheme in terms of a reduced ohmic dissipation is pointed out. (author)
Dielectric permittivity of a plasma in an external electric field
International Nuclear Information System (INIS)
Schweigert, V.A.
2001-01-01
The ion contribution to the dielectric function of a plasma in an external electric field is determined by applying a kinetic approach to the ions in a parent gas in which the main mechanism for ion scattering is resonant charge exchange. The ion scattering frequency is assumed to be constant
Quantized fields in interaction with external fields. Pt. 1
International Nuclear Information System (INIS)
Bellissard, J.
1975-01-01
We consider a massive, charged, scalar quantized field interacting with an external classical field. Guided by renormalized perturbation theory we show that whenever the integral equations defining the Feynman or retarded or advanced interaction kernel possess non perturbative solutions, there exists an S-operator which satisfies, up to a phase, the axioms of Bogoliubov, and is given for small external fields by a power series which converges on coherent states. Furthermore this construction is shown to be equivalent to the one based on the Yang-Kaellen-Feldman equation. This is a consequence of the relations between chronological and retarded Green's functions which are described in detail. (orig.) [de
Fluorescence excitation studies of molecular photoionization in external electric fields
International Nuclear Information System (INIS)
Poliakoff, E.D.; Dehmer, J.L.; Parr, A.C.; Leroi, G.E.
1985-01-01
Using molecular nitrogen as an example, we show that fluorescence excitation spectroscopy can be used to measure partial photoionization cross sections of free molecules in external electric fields. The production of the N 2 + (B 2 Σ/sub u/ + ) state was studied and the threshold for this process was found to shift linearly with the square root of the applied field. This behavior is compared with the hydrogenic case and with previously studied systems
Effect of External Electric Field Stress on Gliadin Protein Conformation
Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya
2013-01-01
A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...
EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields
Löwen, Hartmut
2012-11-01
Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the
Applied physics of external radiation exposure dosimetry and radiation protection
Antoni, Rodolphe
2017-01-01
This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...
Lepton-photon interactions in external background fields
Energy Technology Data Exchange (ETDEWEB)
Akal, Ibrahim [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany); Moortgat-Pick, Gudrid [II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)
2016-07-01
We investigate lepton-photon interactions in a class of generalized external background fields with periodic plane-wave character. Considering the full interaction with the background, S-matrix elements are calculated exactly. We apply those general expressions to interaction schemes like Compton scattering in specific field configurations, as for instance provided in modern laser facilities, or in high intense regions of future linear colliders. Results are extended to the case of frontal colliding high-energy field photons with leptons such that new insights beyond the usual soft terms become accessible.
Photoabsorption of atomic hydrogen in an external DC electric field
International Nuclear Information System (INIS)
Gailitis, Modris; Gailitis, Agris
1996-01-01
An analytical approach is presented which aids the computation of the photoabsorption spectrum of atomic hydrogen in a weak external DC electric field. Separation constants in the parabolic frame and one of the normalization factors are evaluated by the Telnov algorithm. For matrix elements the series expansion after powers of parabolic coordinates is used. An enhanced precision arithmetic is applied to extract the second normalization factor from the power expansion. The results agree with those from the previous calculations and experiment. (Author)
Spinning relativistic particles in external fields
International Nuclear Information System (INIS)
Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B
2000-01-01
The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)
Thermodynamic properties of open noncritical string in external electromagnetic field
International Nuclear Information System (INIS)
Lichtzier, I.M.; Odintsov, S.D.; Bytsenko, A.A.
1991-01-01
We investigate the thermodynamics of open noncritical string (charged and neutral) in an external constant magnetic field. The free energy and Hagedorn temperature are calculated. It is shown that Hagedorn temperature is the same as in the absence of constant magnetic field. We present also the expressions for the free energy and Hagedorn temperature of the neutral open noncritical string in an external constant electromagnetic field. In this case Hagedorn temperature depends on the external electric field. (author)
International Nuclear Information System (INIS)
Kanuch, T.; Miglierini, M.; Greneche, J.-M.; Skorvanek, I.; Schaaf, P.
2006-01-01
External magnetic fields are known to modify microstructure of materials during their solidification and/or crystallisation. In an external magnetic field strong particle to particle interactions lead to a highly anisotropic microstructure. If the alloy is in ferromagnetic state, stronger particle magnetization - external field interactions and also particle-to-particle couplings are expected. To reveal the magnetic texture, originally amorphous precursors of Fe 76 Mo 8 Cu 1 B 15 were annealed at 510 grad C and 550 grad C in an external longitudinal and transverse magnetic field of 0.025 T and 0.8 T, respectively. Magnetic measurements were applied to follow the changes of saturation magnetization and coercive force. Moessbauer experiments were performed at room and liquid nitrogen temperature to provide an information about orientation of with respect to an external magnetic field. The obtained results were compared with those achieved on zero field annealed samples. We can conclude that such a low external magnetic fields applied during crystallisation cause no significant changes in the magnetic microstructural anisotropy. Afterwards, magneto-optical Kerr effect (MOKE) was applied to investigate possible changes at the surface of the ribbon as a function of annealing temperature and applied magnetic field. We observed combination of uniaxial anisotropy, which originates from the shape anisotropy, and four-fold anisotropy, which is a contribution from crystallites of nanometre size embedded in the residual amorphous matrix. We expect more pronounced effects on cobalt substituted (Fe1 -x Co x ) 76 Mo 8 Cu 1 B 15 alloy. (authors)
Possible effects of external electrical fields on the corrosion of copper in bentonite
Energy Technology Data Exchange (ETDEWEB)
Taxen, Claes (Swerea KIMAB (Sweden))
2011-12-15
External potentials that develop across a repository may interact with the copper canister. A study was undertaken to investigate the potential corrosion effects of voltage differences in a repository. A set of experiments was performed to study the tendency of copper in bentonite to corrode under influence of an externally applied electrical field. A model study was made to estimate possible corrosion effects of an external electrical field on a full-scale canister in the KBS-3 concept. The interaction between the repository represented by a copper canister in bentonite, and an external electrical field is illustrated with an example
The external field dependence of the BCS critical temperature
DEFF Research Database (Denmark)
Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert
2016-01-01
We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...
The U(1) Higgs model in an external electromagnetic field
International Nuclear Information System (INIS)
Damgaard, P.H.; Heller, U.M.
1988-01-01
An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)
Schwinger terms from external field problems
Ekstrand, Christian
1999-01-01
The current algebra for second quantized chiral fermions in an external eld contains Schwinger terms. These are studied in two di erent ways. Both are non-perturbative and valid for arbitrary odd dimension of the physical space, although explicit expressions are only given for lower dimensions. The thesis is an introductory text to the four appended research papers. In the rst two papers, Schwinger terms are studied by realizing gauge transformations as linear operators acting on sections of the bundle of Fock spaces parametrized byvector potentials. Bosons and fermions are mixed in a Z2-graded fashion. Charged particles are considered in the rst paper and neutral particles in the second. In the the third and the fourth paper, Schwinger terms are identi ed with cocycles obtained from the family index theorem for a manifold with boundary. A generating form for the covariant anomaly and Schwinger term is obtained in the third paper. The rst three papers consider Yang-Mills while the fourth (in cooperation with Jouko Mickelsson) also includes gravitation. Key words: Schwinger terms, external anomaly, Z2-grading, index theory. eld problems, higher dimensions, chiral iii iv Preface This thesis will be about Schwinger terms. It is terms that appear in equal time commutators of currents in quantum eld theory. As a mathematical physicist I nd it hard to write a thesis about this subject. Both the physical and mathematical aspects should preferably be covered. Ihavedecided to focus on some of the mathematical tools that the Schwinger term and the closely related chiral anomaly have in common. This is part of what I have learned during the years 1994{1999 as a graduate student attheRoyal Institute of Technology. The following conventions and assumptions will be made throughout the thesis: All manifolds are assumed to be second countable and Hausdor . They are assumed to be paracompact whenever a partition of unity argument is needed. In nite-dimensional manifolds are also
Applying environmental externalities to US Clean Coal Technologies for Asia
International Nuclear Information System (INIS)
Szpunar, C.B.; Gillette, J.L.
1993-01-01
The United States is well positioned to play an expanding role in meeting the energy technology demands of the Asian Pacific Basin, including Indonesia, Thailand, and the Republic of China (ROC-Taiwan). The US Department of Energy Clean Coal Technology (CCT) Demonstration Program provides a proving ground for innovative coal-related technologies that can be applied domestically and abroad. These innovative US CCTs are expected to satisfy increasingly stringent environmental requirements while substantially improving power generation efficiencies. They should also provide distinct advantages over conventional pulverized coal-fired combustors. Finally, they are expected to be competitive with other energy options currently being considered in the region. This paper presents potential technology scenarios for Indonesia, Thailand, and the ROC-Taiwan and considers an environmental cost-benefit approach employing a newly developed method of applying environmental externalities. Results suggest that the economic benefits from increased emission control can indeed be quantified and used in cost-benefit comparisons, and that US CCTs can be very cost effective in reducing emissions
Quantum electrodynamics in strong external fields
International Nuclear Information System (INIS)
Mueller, B.; Rafelski, J.; Kirsch, J.
1981-05-01
We review the theoretical description of quantum electrodynamics in the presence of strong and supercritical fields. In particular, the process of the spontaneous vacuum decay accompanied by the observable positron emission in heavy ion collisions is described. Emphasis is put on the proper formulation of many-body aspects in the framework of quantum field theory. The extension of the theory to the description of Bose fields and many-body effects is presented, and the Klein paradox is resolved. Some implications of the theoretical methods developed here are presented concerning non-abelian gauge theories and the quark confinement puzzle. (orig.)
External magnetic field configurations for EXTRAP
International Nuclear Information System (INIS)
Bonnevier, B.
1982-08-01
The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)
Green functions in an external electric field
International Nuclear Information System (INIS)
Gavrilov, S.P.; Gitman, D.M.; Shvartsman, Sh.M.
1979-01-01
In the framework of scalar quantum electrodynamics, when vacuum is unstable as to the birth of electron-positron couples, calculated have been Green functions for the case of stable homogeneous electric field. By summing corresponding solutions of the Klein-Gordon equation of the Green function are obtained in the form of contour integrals according to the proper time. Operation representations of all the calculated Green functions in the mentioned field are presented
Separation of the Magnetic Field into External and Internal Parts
DEFF Research Database (Denmark)
Olsen, Nils; Glassmeier, K.-H.; Jia, X.
2010-01-01
The magnetic field of a planet or a planetary moon contains contributions from a variety of sources in the environment of the body (external sources) and its interior (internal sources). This chapter describes different methods that have been developed for the separation of external and internal...
Effect of external magnetic field on locking range of spintronic feedback nano oscillator
Directory of Open Access Journals (Sweden)
Hanuman Singh
2018-05-01
Full Text Available In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3 multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.
Two-stream instability for a light ion beam-plasma system with external magnetic field
International Nuclear Information System (INIS)
Okada, T.; Tazawa, H.
1992-12-01
For inertial confinement fusion, a focused light ion beam (LIB) is required to propagate stably through a chamber to a target. We have pointed out that the applied external magnetic field is important for LIB propagation. To investigate the influence of the external magnetic field on the LIB propagation, we analysed the electrostatic dispersion relation of magnetized light ion beam-plasma system. The particle in-cell (PIC) simulation results are presented for a light ion beam-plasma system with external magnetic field. (author)
Effect of external magnetic field on locking range of spintronic feedback nano oscillator
Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2018-05-01
In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.
Surface states in an external electric field
International Nuclear Information System (INIS)
Steslicka, M.
1975-10-01
Under conditions typical for field ion microscopy, true surface states can exist. Their shift towards higher energies can be quite significant and, moreover, additional surface levels at still higher energies can appear. The latter can play an important role in the process of tunneling of image gas electrons into surface states
On the relativistic particle dynamics in external gravitational fields
International Nuclear Information System (INIS)
Kuz'menkov, L.S.; Naumov, N.D.
1977-01-01
On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields
Calculations in external fields in quantum chromodynamics
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vairshtejn, A.I.; Zakharov, V.I.
1983-01-01
The technique of calculation of operator expansion coefficients is reviewed. The main emphasis is put on gluon operators which appear in expansion of n-point functions induced by colourless quark currents. Two convenient schemes are discussed in detail: the abstract operator method and the method based on the Fock-Schwinger gauge for the vacuum gluon field. A large number of instructive examples important from the point of view of physical applications is considered
Energy Technology Data Exchange (ETDEWEB)
Hernandez, O
1997-11-17
We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil`s staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of {delta}(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the `X-rays` structural model is found more harmonic than the `neutron` one. Under electric field applied along the vector b axis, we confirm that commensurate phases with {delta} = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a `complete` Devil`s air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between `coexisting` phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
Polarization of the vacuum by a stochastic external field
International Nuclear Information System (INIS)
Krive, I.V.; Pastur, L.A.; Rozhavskii, A.S.
1988-01-01
The effect of disorder, realized in the form of a fluctuating extra mass term, on the bosonic vacuum and fermionic vacuum of models of quantum field theory is studied. A method is developed for calculating the mean effective potential in the stochastic external field. For a model of interacting scalar and fermion fields in (3+1)-dimensional space-time it is shown that random fluctuations of the mass lead to an increase of the equilibrium mean scalar field in the system
Problems of quantum electrodynamics with external field creating pairs
International Nuclear Information System (INIS)
Fradkin, E.S.; Gitman, D.M.
1979-11-01
This paper is a preliminary version of a review of the results obtained by the authors and their collaborators which mainly concern problems of quantum electrodynamics with the pair-creating external field. In this paper the Furry picture is constructed for quantum electrodynamics with the pair-creating external field. It is shown, that various Green functions in the external field arise in the theory in a natural way. Special features of usage of the unitarity conditions for calculating the total probabilities of transitions are discussed. Perturbation theory for determining the mean electromagnetic field is constructed. Effective Lagrangians for pair-creating fields are built. One of the possible ways to introduce external field in quantum electrodynamics is considered. All the Green functions arising in the theory suggested are calculated for a constant field and a plane wave field. For the case of the electric field the total probability of creation of pairs from the vacuum accompanied by the photon irradiation and the total probability of transition from a single-electron state accompanied by the photon irradiation and creation of pairs are obtained by using the formulated rules for calculating the total probabilities of transitions. (author)
QCD Sum Rule External Field Approach and Vacuum Susceptibilities
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; CHANG Chao-His; WANG Fan; ZHAO En-Guang
2002-01-01
Based on QCD sum rule three-point and two-point external field formulas respectively, the vector vacuumsusceptibilities are calculated at the mean-field level in the framework of the global color symmetry model. It is shownthat the above two approaches of determination of the vector vacuum susceptibility may lead to different results. Thereason of this contradiction is discussed.
External Mask Based Depth and Light Field Camera
2013-12-08
External mask based depth and light field camera Dikpal Reddy NVIDIA Research Santa Clara, CA dikpalr@nvidia.com Jiamin Bai University of California...passive depth acquisition technology is illustrated by the emergence of light field camera companies like Lytro [1], Raytrix [2] and Pelican Imaging
Confinement of laser plasma expansion with strong external magnetic field
Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian
2018-05-01
The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.
The Effect of External Magnetic Field on Dielectric Permeability of Multiphase Ferrofluids
Dotsenko, O. A.; Pavlova, A. A.; Dotsenko, V. S.
2018-03-01
Nowadays, ferrofluids are applied in various fields of science and technology, namely space, medicine, geology, biology, automobile production, etc. In order to investigate the feasibility of applying ferrofluids in magnetic field sensors, the paper presents research into the influence of the external magnetic field on dielectric permeability of ferrofluids comprising magnetite nanopowder, multiwall carbon nanotubes, propanetriol and deionized water. The real and imaginary parts of the dielectric permeability change respectively by 3.7 and 0.5% when applying the magnetic field parallel to the electric. The findings suggest that the considered ferrofluid can be used as a magnetic level gauge or in design of variable capacitors.
Modeling external constraints: Applying expert systems to nuclear plants
International Nuclear Information System (INIS)
Beck, C.E.; Behera, A.K.
1993-01-01
Artificial Intelligence (AI) applications in nuclear plants have received much attention over the past decade. Specific applications that have been addressed include development of models and knowledge-bases, plant maintenance, operations, procedural guidance, risk assessment, and design tools. This paper examines the issue of external constraints, with a focus on the use of Al and expert systems as design tools. It also provides several suggested methods for addressing these constraints within the Al framework. These methods include a State Matrix scheme, a layered structure for the knowledge base, and application of the dynamic parameter concept
On Ising - Onsager problem in external magnetic field
International Nuclear Information System (INIS)
Kochmanski, M.S.
1997-01-01
In this paper a new approach to solving the Ising - Onsager problem in external magnetic field is investigated. The expression for free energy on one Ising spin in external field both for the two dimensional and three dimensional Ising model with interaction of the nearest neighbors are derived. The representations of free energy being expressed by multidimensional integrals of Gauss type with the appropriate dimensionality are shown. Possibility of calculating the integrals and the critical indices on the base of the derived representations for free energy is investigated
Momentum dependence in pair production by an external field
Asakawa, M.
1992-08-01
The transverse and the longitudinal momentum dependences of the pair production under an adiabatically exerted uniform abelian external field are calculated with their importance in models for the production of quark-gluon plasma in ultrarelativistic heavy ion collisions in mind. The importance of the initial condition is revealed. We show that superposition of acceleration by the external field and barrier penetration is reflected in the longitudinal momentum dependence. The peculiar nature of the boost invariant system which is expected to be approximately realized in ultrarelativistic nuclear collisions is pointed out.
Momentum dependence in pair production by an external field
International Nuclear Information System (INIS)
Asakawa, M.
1992-01-01
The transverse and the longitudinal momentum dependences of the pair production under an adiabatically exerted uniform abelian external field are calculated with their importance in models for the production of quark-gluon plasma in ultrarelativistic heavy ion collisions in mind. The importance of the initial condition is revealed. We show that superposition of acceleration by the external field and barrier penetration is reflected in the longitudinal momentum dependence. The peculiar nature of the boost invariant system which is expected to be approximately realized in ultrarelativistic nuclear collisions is pointed out. (orig.)
Dirac bound states of anharmonic oscillator in external fields
International Nuclear Information System (INIS)
Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.
2014-01-01
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method
On the axial anomalies in external tensor fields
International Nuclear Information System (INIS)
Khudaverdyan, O.M.; Mkrtchyan, R.L.; Zurabyan, L.A.
1985-01-01
Computation of the axial anomaly for Dirac fermions in external tensor fields is studied. The sequence of the supersymmetric one-dimensional models is presented. Their supercharges are equal, after quantization, to Dirac operators in external tensor fields, and the density of Witten's partition function gives the anomaly. It is shown that action in the corresponding path integral differs from the classical one. Gaussian approximation gives the anomaly only in the case of third-rank tensor with zero exterior derivative and in that case anomaly is calculated in all dimensions. The interpretation of that field as the torsion of gravitational field and also connection with the results of Witten and Alvarez-Gaume and Atiyah-Singer index theorem are discussed
Energy Technology Data Exchange (ETDEWEB)
Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics
1976-03-22
By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.
Superconductive magnetic energy storage (SMES) external fields and safety considerations
International Nuclear Information System (INIS)
Polk, C.; Boom, R.W.; Eyssa, Y.M.
1992-01-01
This paper addresses preferred SMES configurations and the external magnetic fields which they generate. Possible biological effects of fields are reviewed briefly. It is proposed that SMES units be fenced at the 10 gauss (1 mT) level to keep unrestricted areas safe, even for persons with cardiac pacemakers. For a full size 5000 MWh (1.8 x 10 13 J) SMES the magnetic field decreases to 10 gauss at a radial distance of 2 km from the center of the coil. Other considerations related to the environmental impact of large SMES magnetic fields are discussed briefly
Quantum description of the Brownian movement in an external field
International Nuclear Information System (INIS)
Svin'in, I.R.
1976-01-01
The Schroedinger equation for brownian motion in an external field is obtained on the basis of the classical Langevin equation. The specific features of the approach proposed are illustrated by the example of the brownian motion of the quantum oscillator. The influence of the fluctuations on the various physical quantities is considered
Correlation effects in the Ising model in an external field
International Nuclear Information System (INIS)
Borges, H.E.; Silva, P.R.
1983-01-01
The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt
Internal and external Field of View: computer games and cybersickness
Vries, S.C. de; Bos, J.E.; Emmerik, M.L. van; Groen, E.L.
2007-01-01
In an experiment with a computer game environment, we studied the effect of Field-of-View (FOV) on cybersickness. In particular, we examined the effect of differences between the internal FOV (IFOV, the FOV which the graphics generator is using to render its images) and the external FOV (EFOV, the
Quantization of fermions in external soliton fields and index calculation
International Nuclear Information System (INIS)
Grosse, H.
1986-01-01
We review recent results on the quantization of fermions in external fields, discuss equivalent and inequivalent representations of the canonical anticommutation relations, indicate how the requirement of implementability of gauge transformations leads to quantization conditions, determine the algebra of charges, identify the Schwinger term and remark finally how one may calculate a ground state charge. (Author)
Holographic gratings in photorefractive polymers without external electric field
DEFF Research Database (Denmark)
Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben
1997-01-01
Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...
A relativistic colored spinning particle in an external color field
International Nuclear Information System (INIS)
Heinz, U.
1984-01-01
I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)
Decadal period external magnetic field variations determined via eigenanalysis
DEFF Research Database (Denmark)
Shore, R. M.; Whaler, K. A.; Macmillan, S.
2016-01-01
to a full solar cycle. Our analysis focuses on geomagnetically quiet days and middle to low latitudes. We use the climatological eigenanalysis technique called empirical orthogonal functions (EOFs), which allows us to identify discrete spatiotemporal patterns with no a priori specification of their geometry...... mean external field distribution. Separate patterns of semiannual and solar-cycle-length periods appear to stem from the amplitude modulations of spatially fixed background fields....
Radiative decay of coupled states in an external dc field
International Nuclear Information System (INIS)
Pal'chikov, V.; Sokolov, Y.; Yakovlev, V.
2001-01-01
This paper examines two theoretical aspects of the interference of atomic states in hydrogen which comes from the application of an external electric field F to the 2s metastable state. The radiative corrections to the Bethe-Lamb formula and anisotropy contribution to the angular distribution, which arises from interference between electric-field-induced E1-radiation and forbidden M1-radiation, are analysed
Radiative decay of coupled states in an external dc field
Energy Technology Data Exchange (ETDEWEB)
Pal' chikov, V. [National Research Inst. for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Mendeleevo, Moscow Region (Russian Federation); Sokolov, Y. [Kurchatov Inst., Russian Research Centre, Moscow (Russian Federation); Yakovlev, V. [Moscow Engineering Physics Inst., Moscow (Russian Federation)
2001-07-01
This paper examines two theoretical aspects of the interference of atomic states in hydrogen which comes from the application of an external electric field F to the 2s metastable state. The radiative corrections to the Bethe-Lamb formula and anisotropy contribution to the angular distribution, which arises from interference between electric-field-induced E1-radiation and forbidden M1-radiation, are analysed.
Increased particle confinement with the use of external dc bias field in the CTX spheromak
International Nuclear Information System (INIS)
Barnes, C.W.; Hoida, H.W.; Henins, I.; Fernandez, J.C.; Jarboe, T.R.; Marklin, G.J.
1985-01-01
Spheromaks are formed in a mesh flux conserver in the presence of an external dc bias field. The spheromaks remain stable to tilt instabilities with ratios of bias-to-spheromak flux of up to 47 +- 7%. Normally applied bias flux puts the spheromak separatrix inside the metal mesh and improves the particle confinement
Field Evaluation of the System Identification Approach for Tension Estimation of External Tendons
Directory of Open Access Journals (Sweden)
Myung-Hyun Noh
2015-01-01
Full Text Available Various types of external tendons are considered to verify the applicability of tension estimation method based on the finite element model with system identification technique. The proposed method is applied to estimate the tension of benchmark numerical example, model structure, and field structure. The numerical and experimental results show that the existing methods such as taut string theory and linear regression method show large error in the estimated tension when the condition of external tendon is different with the basic assumption used during the derivation of relationship between tension and natural frequency. However, the proposed method gives reasonable results for all of the considered external tendons in this study. Furthermore, the proposed method can evaluate the accuracy of estimated tension indirectly by comparing the measured and calculated natural frequencies. Therefore, the proposed method can be effectively used for field application of various types of external tendons.
Photoproduction of gravitons and dilatons in an external electromagnetic field
International Nuclear Information System (INIS)
Le Khac Huong; Hoang Ngoc Long.
1990-07-01
An attempt is made to present experimental predictions of the Kaluza-Klein based models. We consider the creation of gravitons and dilatons by photons in an external electromagnetic field, namely in the electric field of a flat condenser and in the static magnetic field. The relation between the cross sections of these two processes is given. A numerical evaluation shows that in the present technical scenario the creation of high frequency gravitons and dilatons may be indirectly observable. (author). 10 refs, 2 figs
Toroidal plasma reactor with low external magnetic field
International Nuclear Information System (INIS)
Beklemishev, A.D.; Khayrutdinov, R.R.; Petviashvili, V.I.; Tajima, T.; Gordin, V.A.; Tajima, T.
1991-01-01
A toroidal pinch configuration with safety factor q < 0.5 decreasing from the center to periphery without field reversal is proposed. This is capable of containing high pressure plasma with only small toroidal external magnetic field. Sufficient conditions for magnetohydrodynamic stability are fulfilled in this configuration. The stability is studied by constructing the Lyapunov functional and investigating its extrema both analytically and numerically. Comparison of the Lyapunov stability conditions with the conventional linear theory is carried out. Stable configurations are found with average β near 15%, with magnetic field associated mainly with plasma current. The β value calculated with the external magnetic field can be over 100%. Fast charged particles produced by fusion reactions are asymmetrically confined by the poloidal magnetic field (and due to the lack of strong toroidal field). They thus generate a current in the noncentral part of plasma to reinforce the poloidal field. This current drive can sustain the monotonic decrease of q with radius. 20 refs., 9 figs
International Nuclear Information System (INIS)
Lobashev, A.A.; Mostepanenko, V.M.
1993-01-01
Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up
Floating and flying ferrofluid bridges induced by external magnetic fields
Ma, Rongchao; Zhou, Yixin; Liu, Jing
2015-04-01
A ferrofluid is a mixture that exhibits both magnetism and fluidity. This merit enables the ferrofluid to be used in a wide variety of areas. Here we show that a floating ferrofluid bridge can be induced between two separated boards under a balanced external magnetic field generated by two magnets, while a flying ferrofluid bridge can be induced under an unbalanced external magnetic field generated by only one magnet. The mechanisms of the ferrofluid bridges were discussed and the corresponding mathematical equations were also established to describe the interacting magnetic force between the ferro particles inside the ferrofluid. This work answered a basic question that, except for the well-known floating water bridges that are related to electricity, one can also build up a liquid bridge that is related to magnetism.
Elliptic annular Josephson tunnel junctions in an external magnetic field: the statics
DEFF Research Database (Denmark)
Monaco, Roberto; Granata, Carmine; Vettoliere, Antonio
2015-01-01
We have investigated the static properties of one-dimensional planar Josephson tunnel junctions (JTJs) in the most general case of elliptic annuli. We have analyzed the dependence of the critical current in the presence of an external magnetic field applied either in the junction plane...... symmetric electrodes a transverse magnetic field is equivalent to an in-plane field applied in the direction of the current flow. Varying the ellipse eccentricity we reproduce all known results for linear and ring-shaped JTJs. Experimental data on high-quality Nb/Al-AlOx/Nb elliptic annular junctions...
Pair creation by an external non-Abelian field
International Nuclear Information System (INIS)
Hamil, B; Chetouani, L
2014-01-01
The problem of the creation of particle pairs of spin 0 and 1/2 from the vacuum by an external field of a non-Abelian type plane wave on the light cone is considered following the approach of Schwinger. Using simple shifts and only by an algebraic calculation, it is shown that with this form of interaction, there is no creation of particles. (paper)
Plasma coating of nanoparticles in the presence of an external electric field
Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein
2018-04-01
Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.
Radical polarization in double switching of external magnetic field
International Nuclear Information System (INIS)
Lukzen, N.N.; Morozov, V.A.; Sagdeev, R.Z.
1999-01-01
Theoretical treatment of radical spin evolution under the action of double switching of external magnetic field is proposed. Account is taken of evolution of the radical spin state during laser pulse which generates paramagnetic particles. It is shown that the most effective beats in the nuclear magnetization of diamagnetic products of recombination occur upon the jump into zero magnetic field after laser pulse. The phase of observed beats bears information about the type of the initial radical polarization. The frequency of the beats is determined by radical hyperfine structure. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Study on the plasma diode in the external magnetic field
International Nuclear Information System (INIS)
Korenev, S.A.
1981-01-01
The experimental investigations of plasma diode with cathode plasma formation on the basis of an incomplete charge over dielectric surface in the external longitudinal magnetic field with the intensity of Hsub(z) up to 2000 Oe are presented. It is demonstrated that at the 150-250 keV diode voltage and the current density of up to 300 A/cm 2 the homogeneity of the current density over transverse cross section is preserved up to the cell size of metallic grid onto cathode with the change of the magnetic field up to 2000 Oe [ru
Dynamical Mean Field Approximation Applied to Quantum Field Theory
Akerlund, Oscar; Georges, Antoine; Werner, Philipp
2013-12-04
We apply the Dynamical Mean Field (DMFT) approximation to the real, scalar phi^4 quantum field theory. By comparing to lattice Monte Carlo calculations, perturbation theory and standard mean field theory, we test the quality of the approximation in two, three, four and five dimensions. The quantities considered in these tests are the critical coupling for the transition to the ordered phase and the associated critical exponents nu and beta. We also map out the phase diagram in four dimensions. In two and three dimensions, DMFT incorrectly predicts a first order phase transition for all bare quartic couplings, which is problematic, because the second order nature of the phase transition of lattice phi^4-theory is crucial for taking the continuum limit. Nevertheless, by extrapolating the behaviour away from the phase transition, one can obtain critical couplings and critical exponents. They differ from those of mean field theory and are much closer to the correct values. In four dimensions the transition is sec...
Periodical plasma structures controlled by external magnetic field
Schweigert, I. V.; Keidar, M.
2017-11-01
The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.
International Nuclear Information System (INIS)
Efremova, S.A.; Tsarevskij, S.L.
1997-01-01
Magnetic field distribution in a unit cell of the Abrikosov vortex lattice near the surface of monoaxial anisotropic type-ii superconductors in inclined external magnetic field has been found in the framework of London model for the cases when the symmetry axis is perpendicular and parallel to the superconductor surface interface. Distribution of local magnetic field as a function of the distance from the superconductor interface surface and external field inclination angle has been obtained. Using high-Tc superconductor Y-Ba-Cu-O by way of examples, it has been shown that the study of local magnetic field distribution function, depending on external magnetic field inclination angle towards the superconductor symmetry axis and towards the superconductor surface, can provide important data on anisotropic properties of the superconductor [ru
Dynamics of molecular superrotors in an external magnetic field
Korobenko, Aleksey; Milner, Valery
2015-08-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin-rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation.
Probe branes thermalization in external electric and magnetic fields
International Nuclear Information System (INIS)
Ali-Akbari, M.; Ebrahim, H.; Rezaei, Z.
2014-01-01
We study thermalization on rotating probe branes in AdS 5 ×S 5 background in the presence of constant external electric and magnetic fields. In the AdS/CFT framework this corresponds to thermalization in the flavour sector in field theory. The horizon appears on the worldvolume of the probe brane due to its rotation in one of the sphere directions. For both electric and magnetic fields the behaviour of the temperature is independent of the probe brane dimension. We also study the open string metric and the fluctuations of the probe brane in such a set-up. We show that the temperatures obtained from open string metric and observed by the fluctuations are larger than the one calculated from the induced metric
Dynamics of molecular superrotors in an external magnetic field
International Nuclear Information System (INIS)
Korobenko, Aleksey; Milner, Valery
2015-01-01
We excite diatomic oxygen and nitrogen to high rotational states with an optical centrifuge and study their dynamics in an external magnetic field. Ion imaging is employed to directly visualize, and follow in time, the rotation plane of the molecular superrotors. The two different mechanisms of interaction between the magnetic field and the molecular angular momentum in paramagnetic oxygen and non-magnetic nitrogen lead to qualitatively different behaviour. In nitrogen, we observe the precession of the molecular angular momentum around the field vector. In oxygen, strong spin–rotation coupling results in faster and richer dynamics, encompassing the splitting of the rotation plane into three separate components. As the centrifuged molecules evolve with no significant dispersion of the molecular wave function, the observed magnetic interaction presents an efficient mechanism for controlling the plane of molecular rotation. (paper)
Frants, E. A.; Ganchenko, G. S.; Shelistov, V. S.; Amiroudine, S.; Demekhin, E. A.
2018-02-01
Electrokinetics and the movement of charge-selective micro-granules in an electrolyte solution under the influence of an external electric field are investigated theoretically. Straightforward perturbation analysis is applied to a thin electric double layer and a weak external field, while a numerical solution is used for moderate electric fields. The asymptotic solution enables the determination of the salt concentration, electric charge distribution, and electro-osmotic velocity fields. It may also be used to obtain a simple analytical formula for the electrophoretic velocity in the case of quasi-equilibrium electrophoresis (electrophoresis of the first kind). This formula differs from the famous Helmholtz-Smoluchowski relation, which applies to dielectric microparticles, but not to ion-selective granules. Numerical calculations are used to validate the derived formula for weak external electric fields, but for moderate fields, nonlinear effects lead to a significant increase in electrophoretic mobility and to a transition from quasi-equilibrium electrophoresis of the first kind to nonequilibrium electrophoresis of the second kind. Theoretical results are successfully compared with experimental data.
International Nuclear Information System (INIS)
Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.
2010-01-01
Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.
Relativistic covariant wave equations and acausality in external fields
International Nuclear Information System (INIS)
Pijlgroms, R.B.J.
1980-01-01
The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)
Soliton emission stimulated by sound wave or external field
International Nuclear Information System (INIS)
Malomed, B.A.
1987-01-01
Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated
Approximate representations of propagators in an external field
International Nuclear Information System (INIS)
Fried, H.M.
1979-01-01
A method of forming approximate representations for propagators with external field dependence is suggested and discussed in the context of potential scattering. An integro-differential equation in D+1 variables, where D represents the dimensionality of Euclidian space-time, is replaced by a Volterra equation in one variable. Approximate solutions to the latter provide a generalization of the Bloch-Nordsieck representation, containing the effects of all powers of hard-potential interactions, each modified by a characteristic soft-potential dependence [fr
Two interacting spins in external fields. Four-level systems
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G.; Baldiotti, M.C.; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Levin, A.D. [Dexter Research Center (United States)
2007-04-15
In the present article, we consider the so-called two-spin equation that describes four-level quantum systems. Recently, these systems attract attention due to their relation to the problem of quantum computation. We study general properties of the two-spin equation and show that the problem for certain external backgrounds can be identified with the problem of one spin in an appropriate background. This allows one to generate a number of exact solutions for two-spin equations on the basis of already known exact solutions of the one-spin equation. Besides, we present some exact solutions for the two-spin equation with an external background different for each spin but having the same direction. We study the eigenvalue problem for a time-independent spin interaction and a time-independent external background. A possible analogue of the Rabi problem for the two-spin equation is defined. We present its exact solution and demonstrate the existence of magnetic resonances in two specific frequencies, one of them coinciding with the Rabi frequency, and the other depending on the rotating field magnitude. The resonance that corresponds to the second frequency is suppressed with respect to the first one. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Phase separation in fluids exposed to spatially periodic external fields.
Vink, R L C; Archer, A J
2012-03-01
When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.
On charged particle equilibrium violation in external photon fields.
Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo
2012-03-01
In a recent paper by Bouchard et al. [Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al. [Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k(Q(pcsr),Q) (f(pcsr),f(ref) )) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.
On charged particle equilibrium violation in external photon fields
International Nuclear Information System (INIS)
Bouchard, Hugo; Seuntjens, Jan; Palmans, Hugo
2012-01-01
Purpose: In a recent paper by Bouchard et al.[Med. Phys. 36(10), 4654-4663 (2009)], a theoretical model of quality correction factors for idealistic so-called plan-class specific reference (PCSR) fields was proposed. The reasoning was founded on the definition of PCSR fields made earlier by Alfonso et al.[Med. Phys. 35(11), 5179-5186 (2008)], requiring the beam to achieve charged particle equilibrium (CPE), in a time-averaged sense, in the reference medium. The relation obtained by Bouchard et al. was derived using Fano's theorem (1954) which states that if CPE is established in a given medium, the dose is independent of point-to-point density variations. A potential misconception on the achievability of the condition required by Fano (1954) might be responsible for false practical conclusions, both in the definition of PCSR fields as well as the theoretical model of quality correction factor. Methods: In this paper, the practical achievability of CPE in external beams is treated in detail. The fact that this condition is not achievable in single or composite deliveries is illustrated by an intuitive method and is also formally demonstrated. Conclusions: Fano's theorem is not applicable in external beam radiation dosimetry without (virtually) removing attenuation effects, and therefore, the relation conditionally defined by Bouchard et al. (2009) cannot be valid in practice. A definition of PCSR fields in the recent formalism for nonstandard beams proposed by Alfonso et al. (2008) should be modified, revising the criterion of CPE condition. The authors propose reconsidering the terminology used to describe standard and nonstandard beams. The authors argue that quality correction factors of intensity modulated radiation therapy PCSR fields (i.e., k Q pcsr ,Q f pcsr ,f ref ) could be unity under ideal conditions, but it is concluded that further investigation is necessary to confirm that hypothesis.
The study of the dynamics of erythrocytes under the influence of an external electric field
Mamaeva, Sargylana N.; Maksimov, Georgy V.; Antonov, Stepan R.
2017-11-01
A mathematical model is considered for the determination of the surface charge of an erythrocyte with its shape approximated by a surface of revolution of the second order, and the investigation of the dynamics of erythrocytes under the influence of an external electric field. In the first part of this work, the electrical surface charge of the erythrocyte of the patient was calculated with the assumption that the change in the shape and size of the red blood cells leads to stabilization of the electric field, providing a normal electrostatic repulsion. In the second part of the work, the research results of dynamics of changes in the morphology of erythrocytes under the influence of an external electric field depending on the values of their surface charge and resistance of blood plasma is presented. In the course of the work, the dependence of the surface charge of red blood cells from their shape and size is presented. The determination of the relationship between the value of the charge field and the surface of erythrocytes in norm and in pathology is shown. The dependence of the velocity of the erythrocytes on the characteristics of the external electric field, surface charge of the erythrocyte and properties of the medium is obtained. The results of this study can be applied indirectly to diagnose diseases and to develop recommendations for experimental studies of hemodynamics under the influence of various external physical factors.
Stable magnetization of iron filled carbon nanotube MFM probes in external magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Wolny, Franziska; Weissker, Uhland; Muehl, Thomas; Lutz, Matthias U; Mueller, Christian; Leonhardt, Albrecht; Buechner, Bernd, E-mail: f.wolny@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)
2010-01-01
We present results on the application of an iron filled carbon nanotube (Fe-CNT) as a probe for magnetic force microscopy (MFM) in an external magnetic field. If an external field is applied parallel to the sample surface, conventional ferromagnetically coated MFM probes often have the disadvantage that the magnetization of the coating turns towards the direction of the applied field. Then it is difficult to distinguish the effect of the external field on the sample from those on the MFM probe. The Fe-CNT MFM probe has a large shape anisotropy due to the high aspect ratio of the enclosed iron nanowire. Thanks to this the direction of the magnetization stays mainly oriented along the long nanotube axis in in-plane fields up to our experimental limit of 250 mT. Thus, the quality of the MFM images remains unchanged. Apart from this, it is shown that Fe-CNT MFM probe yields a very good magnetic resolution of about 25 nm due to the small diameter of the iron filling.
The effect of external magnetic field changing on the correlated quantum dot dynamics
Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.
2018-06-01
The non-stationary response of local magnetic moment to abrupt switching "on" and "off" of external magnetic field was studied for a single-level quantum dot (QD) coupled to a reservoir. We found that transient processes look different for the shallow and deep localized energy level. It was demonstrated that for deep energy level the relaxation rates of the local magnetic moment strongly differ in the case of magnetic field switching "on" or "off". Obtained results can be applied in the area of dynamic memory devices stabilization in the presence of magnetic field.
Particle Production under External Fields and Its Applications
Energy Technology Data Exchange (ETDEWEB)
Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States)
2014-01-01
The thesis presents studies of vacuum pair productions and its applications in early universe cosmology and high energy astrophysics. Vacuum often becomes unstable and spontaneously decays into pairs of particles in rapidly expanding universes or under strong external electromagnetic fields. Theoretically, spontaneous pair productions due to such non-trivial backgrounds of spacetimes or electromagnetic fields are well-understood. However, the effect of particle productions has not been observed so far because of experiemtal difficulties in obtaining large curvatures of space-times or strong electric fields. Although it may be impossible to observe the pair productions directly via laboratory experiments, there are still powerful sources of space-time curvatures or electric fields in cosmology and astrophysics, which result in observations. In Part I, we explore the inflationary models in early universe utilizing pair productions through gravity. We study observable signatures on the cosmic microwave background, such as isocurvature perturbations and non-Gaussianities, generated from the particle production of WIMPzillas and axions during or after inflation. In Part II, we investigate the electron-positron pair production in the magnetosphere of pulsars whose electromagnetic fields are expected to close to or even greater than the pair production threshold. In particular, we demonstrate that the pair production may be responsible for giant pulses from the Crab pulsar.
Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2015-11-28
We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.
Integral of notion for a quantum Sutherland-Calogero system in the external field
International Nuclear Information System (INIS)
Meshcheryakov, D.V.; Tverskoj, V.B.
2000-01-01
The Sutherland-Calogero three-particle system in the external field is considered. The formula for ordering non-commutating variables in the motion integrals is proposed. The motion integrals are obtained in an obvious form. The problem on analytical evidence of the system complete integration by arbitrary N remains open. The formula, proposed in this paper for ordering non-commutating variables in the I n , may be applied by conducting the total evidence [ru
Foucault imaging and small-angle electron diffraction in controlled external magnetic fields.
Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Ishii, Yui; Mori, Shigeo
2016-12-01
We report a method for acquiring Foucault images and small-angle electron diffraction patterns in external magnetic fields using a conventional transmission electron microscope without any modification. In the electron optical system that we have constructed, external magnetic fields parallel to the optical axis can be controlled using the objective lens pole piece under weak excitation conditions in the Foucault mode and the diffraction mode. We observe two ferromagnetic perovskite-type manganese oxides, La 0.7 Sr 0.3 MnO 3 (LSMO) and Nd 0.5 Sr 0.5 MnO 3 , in order to visualize magnetic domains and their magnetic responses to external magnetic fields. In rhombohedral-structured LSMO, pinning of magnetic domain walls at crystallographic twin boundaries was found to have a strong influence on the generation of new magnetic domains in external applied magnetic fields. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Basak, Tista; Basak, Tushima
2018-02-01
In this paper, we demonstrate that the optical properties of finite-sized graphene quantum dots can be effectively controlled by doping it with different types of charge carriers (electron/hole). In addition, the role played by a suitably directed external electric field on the optical absorption of charge-doped graphene quantum dots have also been elucidated. The computations have been performed on diamond-shaped graphene quantum dot (DQD) within the framework of the Pariser-Parr-Pople (PPP) model Hamiltonian, which takes into account long-range Coulomb interactions. Our results reveal that the energy band-gap increases when the DQD is doped with holes while it decreases on doping it with electrons. Further, the optical absorption spectra of DQD exhibits red/blue-shift on doping with electrons/holes. Our computations also indicate that the application of external transverse electric field results in a substantial blue-shift of the optical spectrum for charge-doped DQD. However, it is observed that the influence of charge-doping is more prominent in tuning the optical properties of finite-sized graphene quantum dots as compared to externally applied electric field. Thus, tailoring the optical properties of finite-sized graphene quantum dots by manipulative doping with charge carriers and suitably aligned external electric field can greatly enhance its potential application in designing nano-photonic devices.
Structural stability of interaction networks against negative external fields
Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.
2018-04-01
We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.
Research on the effect of the external magnetic field in the joule balance at NIM
Xu, Jinxin; You, Qiang; Li, Zhengkun; Bai, Yang; Lu, Yunfeng; Zhang, Zhonghua; He, Qing
2018-06-01
The first determination of the Planck constant with the second generation of the joule balance, NIM-2, was completed in 2017 with an uncertainty of 2.4 × 10‑7. Due to the movement of the magnet during the measurement process, the effect of the external field is a critical problem in NIM-2. At present, the electromagnet system is used in NIM-2. By taking the average of the results with positive and negative exciting currents, the uncertainty from the external field is reduced to 1.7 × 10‑7, which is still the largest source in the uncertainty budget as all the other items are less than 1 × 10‑7. In the near future, a permanent magnet system will be applied in NIM-2 and the main field cannot be reversed. Although the coupling of the external magnetic field in the permanent magnet system is about 40 times less than that in the electromagnet system, further reduction of this effect is still required in the permanent magnet system. In this paper, the effect of the external field is analyzed in both an electromagnet system and a permanent magnet system based on simulations and experiments. Then, the methods of magnetic shielding and compensation coils are proposed and simulated in the permanent magnet system. The results show that it may be possible to reduce the uncertainty of the external field to less than 2 × 10‑8 in the permanent magnet system by employing the two methods.
Effect of externally applied periodic force on ion acoustic waves in superthermal plasmas
Chowdhury, Snigdha; Mandi, Laxmikanta; Chatterjee, Prasanta
2018-04-01
Ion acoustic solitary waves in superthermal plasmas are investigated in the presence of trapped electrons. The reductive perturbation technique is employed to obtain a forced Korteweg-de Vries-like Schamel equation. An analytical solution is obtained in the presence of externally applied force. The effect of the external applied periodic force is also observed. The effect of the spectral index (κ), the strength ( f 0 ) , and the frequency ( ω ) on the amplitude and width of the solitary wave is obtained. The result may be useful in laboratory plasma as well as space environments.
Effects of external magnetic field on biodistribution of nanoparticles: A histological study
Energy Technology Data Exchange (ETDEWEB)
Wu, Tony [Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Hua, M.-Y. [Department of Chemical and Material Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan (China); Chen Jyhping [Department of Chemical and Material Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan (China); Wei, K.-C. [Department of Neurosurgery, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Chang, Y.-J. [Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, 199 Tung-Hwa N Rd, Taipei, Taiwan (China); Jou, M.-J. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)]. E-mail: yhma@mail.cgu.edu.tw
2007-04-15
This study investigates the effect of external magnetic fields on the biodistribution of nanoparticles (NP). A NdFeB magnet of 2.4 kG was externally applied over the left femoral artery or right kidney. The 250 nm dextran-coated Fe{sub 3}O{sub 4} NP was injected via tail vein in healthy rats, and organs were taken 1 or 24 h later. Prussian blue stain revealed that NP were more rapidly retained in the liver and spleen than in the lungs. NP aggregation observed in the kidney and femoral artery after application of external magnets was time dependent. Hollow organs such as the intestine, colon, and urinary bladder retained little NP.
Effects of external magnetic field on biodistribution of nanoparticles: A histological study
International Nuclear Information System (INIS)
Wu, Tony; Hua, M.-Y.; Chen Jyhping; Wei, K.-C.; Jung, S.-M.; Chang, Y.-J.; Jou, M.-J.; Ma, Y.-H.
2007-01-01
This study investigates the effect of external magnetic fields on the biodistribution of nanoparticles (NP). A NdFeB magnet of 2.4 kG was externally applied over the left femoral artery or right kidney. The 250 nm dextran-coated Fe 3 O 4 NP was injected via tail vein in healthy rats, and organs were taken 1 or 24 h later. Prussian blue stain revealed that NP were more rapidly retained in the liver and spleen than in the lungs. NP aggregation observed in the kidney and femoral artery after application of external magnets was time dependent. Hollow organs such as the intestine, colon, and urinary bladder retained little NP
Interfacing external sensors with Android smartphones through near field communication
International Nuclear Information System (INIS)
Leikanger, Tore; Häkkinen, Juha; Schuss, Christian
2017-01-01
In this paper, we present and evaluate a new approach to communicate with inter-integrated circuit (I2C) enabled circuits such as sensors over near field communication (NFC). The NFC-to-I2C interface was designed using a non-standard NFC command to control the I2C bus directly from a smartphone, which was controlling both, the read and write operations on the I2C bus. The NFC-to-I2C interface was reporting back the data bytes on the bus to the smartphone when the transaction was completed successfully. The proposed system was tested experimentally, both, with write and read requests to a commercial microcontroller featuring a hardware I2C port, as well as reading a commercial I2C enabled humidity and temperature sensor. We present experimental results of the system which show that our approach enables an easy interface between smartphones and external sensors. Interfacing external sensors is useful and beneficial for smartphone users, especially, if certain types of sensors are not available on smartphones. (paper)
Influence of external resonant magnetic perturbation field on edge plasma of small tokamak HYBTOK-II
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Suzuki, Y.; Ohno, N. [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Okamoto, M. [Ishikawa National College of Technology, Kitachujo, Tsubata-cho, Kahoku-gun, Ishikawa 929-0392 (Japan); Kikuchi, Y. [University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakakibara, S.; Watanabe, K.; Takemura, Y. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)
2015-08-15
Radial profile of externally applied resonant magnetic perturbation (RMP) field with mode numbers of m = 6 and n = 2 in a small tokamak device HYBTOK-II have been investigated using a magnetic probe array, which is able to measure the radial profile of magnetic field perturbation induced by applying RMP. Results of RMP penetration into the plasma show that the RMP decreased toward the plasma center, while they were amplified around the resonant surface with a safety factor q = 3 due to the formation of magnetic islands. This suggests that RMP fields for controlling edge plasmas may trigger some kind of MHD instabilities. In addition, simulation results, based on a linearized four-field model, which agrees with the experimental ones, indicates that the penetration and amplification process of RMP strongly depend on a Doppler-shifted frequency between the RMP and plasma rotation.
Energy Technology Data Exchange (ETDEWEB)
Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)
2011-11-01
Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively
International Nuclear Information System (INIS)
Ben-Yoav, Hadar; Amzel, Tal; Sternheim, Marek; Belkin, Shimshon; Rubin, Adi; Shacham-Diamand, Yosi; Freeman, Amihay
2011-01-01
Highlights: → We present an electrochemical whole-cell biochip that can apply electric fields. → We examine the integration of cells on a biochip using electrophoretic deposition. → The effect of electric fields on the whole-cell biosensor has been demonstrated. → Relatively short DC electric pulse improves the performance of whole-cell biosensors. → Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that
Relativistic Killingbeck energy states under external magnetic fields
International Nuclear Information System (INIS)
Eshghi, M.; Mehraban, H.; Ikhdair, S.M.
2016-01-01
We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)
Gauge invariance of a particle in an external magnetic field
International Nuclear Information System (INIS)
Ekstein, H.
1978-12-01
In the accepted theory of a nonrelativistic particle in an external field, as well as in the Dirac equation, the canonical momentum p plays a strangely elusive role: contrary to the position q, it has no physical interpretation, yet it is a member of the algebra of observables; nor does it have a well-defined meaning as a translation generator. This paper proposes an observation procedure for p which entails a definite choice for the vector potential A: the radiation gauge divergence of A=0. The canonical momentum, so defined operationally, is shown to be the image of the generator of space translations, in the sense of presymmetry, as the position q is the image of the generator of Galilei boosts in nonrelativistic theories
Relativistic Killingbeck energy states under external magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Eshghi, M. [Islamic Azad University, Researchers and Elite Club, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Mehraban, H. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of); Ikhdair, S.M. [An-Najah National University, Department of Physics, Faculty of Science, Nablus, West Bank, Palestine (Country Unknown); Near East University, Department of Electrical Engineering, Nicosia, Northern Cyprus (Turkey)
2016-07-15
We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)
Additional external electromagnetic fields for laser microprocessing of metals.
Schütz, V; Bischoff, K; Brief, S; Koch, J; Suttmann, O; Overmeyer, L
2016-11-14
Ultra-short pulsed laser processing is a potent tool for microstructuring of a lot of materials. At certain laser parameters, particular periodical and/or quasi-periodical µm-size surface structures evolve apparently during processing. With extended plasmonics theory, it is possible to predict the structure formation, and a systematic technology can be derived to alter the surface for laser processing. In this work, we have demonstrated the modification of the laser processing with applying tailored dynamic surface electro-magnetic fields. Possible improvement in applications is seen in the fields of process efficiency of laser ablation and a superior control of the surface topography.
Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field
International Nuclear Information System (INIS)
Vagin, Dmitry V.; Polyakov, Oleg P.
2008-01-01
Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems
Energy Technology Data Exchange (ETDEWEB)
Ehsani, M.H., E-mail: Ehsani@semnan.ac.ir [Thin Film Laboratory, Faculty of Physics, Semnan University (Iran, Islamic Republic of); Mehrabad, M. Jalali [Thin Film Laboratory, Faculty of Physics, Semnan University (Iran, Islamic Republic of); Kameli, P. [Department of Physics, Isfahan University of technology, Isfahan 8415683111 (Iran, Islamic Republic of)
2016-11-01
In this work, the external magnetic field effects on growth condition during deposition processes of the Co thin films were studied. Two specimens of Co films with different condition (with and without external magnetic field) were synthesized by pulsed laser deposition method. Structural and magnetic properties of the Co thin films were systematically studied, using atomic force microscope analysis and magnetization measurement, respectively. During the deposition processes, the external applied magnetic field had been provided by a permanent magnet. The experimental results show that the external magnetic field enables one to tune the magnetic properties of the deposited thin films. To clarify this effect, using Multi-Physics COMSOL simulation environment, a study of vapor flux by applied magnetic field during deposition were performed. Comparison between experimental data and output data of the simulation show promising accommodation and approve the existence of a strong correlation between the structural and magnetic properties of the specimens, and deposition rate of Co thin films. - Graphical abstract: Simulation results of the cobalt particles tracing sputtered from the source to substrate with an external magnetic field. Convergence of the particles flux (left) and also the spiral motion of the cobalt particles (right) increase dramatically as they approach the substrate and NdFe35 magnet. - Highlights: • The external magnetic field effects on growth condition during deposition processes of the Co thin films were studied. • Structural and magnetic properties of the Co thin films were systematically studied, using atomic force microscope analysis and magnetization measurement, respectively. • The experimental results show that the external magnetic field enables one to tune the magnetic properties of the deposited thin films. • To clarify this effect, using Multi-Physics COMSOL simulation environment, a study of vapor flux by applied magnetic field
On the interaction between the external magnetic field and nanofluid inside a vertical square duct
Directory of Open Access Journals (Sweden)
Kashif Ali
2015-10-01
Full Text Available In this paper, we numerically study how the external magnetic field influences the flow and thermal characteristics of nanofluid inside a vertical square duct. The flow is considered to be laminar and hydrodynamically as well as thermally developed, whereas the thermal boundary condition of constant heat flux per unit axial length with constant peripheral temperature at any cross section, is assumed. The governing equations are solved using the spectral method and the finite difference method. Excellent comparison is noted in the numerical results given by the two methods but the spectral method is found to be superior in terms of both efficiency and accuracy. We have noted that the flow reversal due to high Raleigh number may be controlled by applying an external magnetic field of suitable strength. Moreover, the Nusselt number is found to be almost a linear function of the nanoparticle volume fraction parameter, for different values of the Raleigh number and the magnetic parameter.
International Nuclear Information System (INIS)
Zahnd, G.; Pham, V.T.; Marty, A.; Jamet, M.; Beigné, C.; Notin, L.; Vergnaud, C.; Rortais, F.; Vila, L.; Attané, J.-P.
2016-01-01
We study domain wall injection in 100 nm wide NiFe nanowires, followed by domain wall propagation and pinning on 50 nm wide constrictions. The injection is performed using local and external magnetic fields. Using several nucleation pad geometries, we show that at these small dimensions the use of an external field only does not allow obtaining a reproducible injection/pinning process. However, the use of an additional local field, created by an Oersted line, allows to nucleate a reversed domain at zero external applied field. Then, an external field of 5 mT enables the domain wall to propagate far from the Oersted line, and the pinning occurs reproducibly. We also show that notwithstanding the reproducibility of the pinning process, the depinning field is found to be stochastic, following a bimodal distribution. Using micromagnetic simulation we link two different DW configurations, vortex and transverse, to the two typical depinning fields. - Highlights: • Magnetic domain wall introduction and pinning in Permalloy nanowires with 50 nm wide constrictions. • Magnetic domain nucleation at zero external applied field. • Bimodal distribution of the domain wall configuration in the constriction.
Energy Technology Data Exchange (ETDEWEB)
Shi, Wenwu; Wang, Zhiguo, E-mail: zgwang@uestc.edu.cn; Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [University of Electronic Science and Technology of China, School of Physical Electronics, Center for Public Security Information and Equipment Integration Technology (China)
2016-11-15
Effects of an external transverse electric field on the adsorption and diffusion of Li atoms on the single-walled carbon nanotubes (CNTs) were investigated using density functional theory. Results showed that the adsorption energy was significantly enhanced by applying the electric field. As the external electric field was increased from 0.0 to 0.6 V/Å, the adsorption energies were decreased from −1.37 to −2.31, −1.32 to −2.46, and −1.33 to −2.63 eV for the Li atoms adsorbed on (6,6), (8,8), and (10,10) CNTs, respectively. Meanwhile, the diffusion barriers of the Li atoms on the CNTs were also decreased as the external electric field was applied. When the external electric field was increased from 0.0 to 0.6 V/Å, the energy barriers were decreased from 0.42, 0.40, and 0.39 eV to 0.20, 0.17, and 0.15 eV for Li diffusion in the (6,6), (8,8), and (10,10) CNTs, respectively. The results proved that an external electric field can be applied to enhance the adsorption and diffusion of Li atoms on the CNTs (used as the anode) for lithium ion batteries.
International Nuclear Information System (INIS)
Shi, Wenwu; Wang, Zhiguo; Fu, Y.Q.
2016-01-01
Effects of an external transverse electric field on the adsorption and diffusion of Li atoms on the single-walled carbon nanotubes (CNTs) were investigated using density functional theory. Results showed that the adsorption energy was significantly enhanced by applying the electric field. As the external electric field was increased from 0.0 to 0.6 V/Å, the adsorption energies were decreased from −1.37 to −2.31, −1.32 to −2.46, and −1.33 to −2.63 eV for the Li atoms adsorbed on (6,6), (8,8), and (10,10) CNTs, respectively. Meanwhile, the diffusion barriers of the Li atoms on the CNTs were also decreased as the external electric field was applied. When the external electric field was increased from 0.0 to 0.6 V/Å, the energy barriers were decreased from 0.42, 0.40, and 0.39 eV to 0.20, 0.17, and 0.15 eV for Li diffusion in the (6,6), (8,8), and (10,10) CNTs, respectively. The results proved that an external electric field can be applied to enhance the adsorption and diffusion of Li atoms on the CNTs (used as the anode) for lithium ion batteries.
Energy Technology Data Exchange (ETDEWEB)
Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Popp, J., E-mail: jana.popp@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany); Borin, D.Yu., E-mail: dmitry.borin@tu-dresden.de [Technische Universität Dresden, Magnetofluiddynamics, Measuring and Automation Technology, D-01062 Dresden (Germany); Stepanov, G.V., E-mail: gstepanov@mail.ru [State Institute of Chemistry and Technology of Organoelement Compounds, 105118 Moscow (Russian Federation); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technische Universität Ilmenau, Faculty of Mechanical Engineering, Technical Mechanics Group, D-98693 Ilmenau (Germany)
2017-06-01
The development of sensor systems with a complex adaptive regulation of the operating sensitivity and behaviour is an actual scientific and technical challenge. Smart materials like magneto-sensitive elastomers (MSE) are seen as one potential solution for this problem, since their mechanical properties may be controlled by external magnetic fields. The present paper deals with the investigation of elastic and damping properties of MSE containing magnetically soft particles under the influence of a uniform magnetic field. Based on the measurement of the first eigenfrequency of free bending vibrations of a fixed beam, the effective Young's modulus is evaluated theoretically and also numerically using Finite Element Method. It is shown that this parameter, as well as the first eigenfrequency of the beam, increases monotonically with the magnitude of the applied magnetic field. The results are aimed to develop an acceleration sensor with adaptive magnetically controllable sensitivity range for the detection of external mechanical stimuli of the environment. - Highlights: • The motion behaviour of magneto-sensitive elastomers (MSE) with magnetically soft particles is investigated. • The first eigenfrequency of free bending vibrations of an MSE beam can be controlled by a uniform magnetic field. • Based on the experimental results, the effective Young's modulus of the system is evaluated theoretically and numerically. • The Young's modulus increases monotonically with the magnitude of the applied magnetic field. • The controlled mechanical compliance of MSE may be used for development of sensor systems with adaptive sensitivity range.
Edge-Localized mode control and transport generated by externally applied magnetic perturbations
International Nuclear Information System (INIS)
Joseph, I.
2012-01-01
This article reviews the subject of edge localized mode (ELM) control using externally applied magnetic perturbations and proposes theoretical mechanisms that may be responsible for the induced transport changes. The first question that must be addressed is: what is the structure of magnetic field within the plasma? Although initial hypotheses focused on the possibility of the creation of a region of stochastic field lines at the tokamak edge, drift magnetohydrodynamics theory predicts that magnetic reconnection is strongly suppressed over the region of the pedestal with steep gradients and fast perpendicular rotation. Reconnection can only occur near the location where the perpendicular electron velocity vanishes, and hence the electron impedance nearly vanishes, or near the foot of the pedestal, where the plasma is sufficiently cold and resistive. The next question that must be addressed is: which processes are responsible for the observed transport changes, nonlinearity, turbulence, or stochasticity? Over the pedestal region where ions and electrons rotate in opposite directions relative to the perturbation, the quasilinear Lorentz force decelerates the electron fluid and accelerates the ion fluid. The quasilinear magnetic flutter flux is proportional to the force and produces an outward convective transport that can be significant. Over the pedestal region where the E x B flow and the electrons rotate in opposite directions relative to the perturbation, magnetic islands with a width on the order of the ion gyroradius can directly radiate drift waves. In addition, the combination of quasilinear electron transport and ion viscous transport can lead to a large net particle flux. Since there are many transport mechanisms that may be active simultaneously, it is important to determine which physical mechanisms are responsible for ELM control and to predict the scaling to future devices (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
External injection systems applied in modern cyclotrons designed and manufactured in NIIEFA
International Nuclear Information System (INIS)
Bogdanov, P.V.; Vasilchenko, I.N.; Veresov, O.L.; Gavrish, Yu.N.; Grigorenko, S.V.; Zuev, Yu.V.; Kozienko, M.T.; Mudrolyubov, V.G.; Strokach, A.P.; Tsygankov, S.S.
2012-01-01
The main parameters and design features of the external injection systems applied in modern cyclotrons designed and manufactured in NIIEFA and intended for production of radionuclides for medicine are presented. The use of these external injection systems instead of a traditional internal source allows the current of the accelerated beam to be significantly increased and the in-leakage of the working gas to the acceleration chamber to be reduced, which results in reduced beam losses in the process of acceleration and lower equipment activation.
Effects of external field on elastic electron-ion collision in a plasma
International Nuclear Information System (INIS)
Na, Sang-Chul; Jung, Young-Dae
2008-01-01
The field effects on elastic electron-ion collision are investigated in a plasma with the presence of the external field. The eikonal method and effective interaction potential including the far-field term caused by the external field is employed to obtain the eikonal phase shift and eikonal cross section as functions of the field strength, external frequency, impact parameter, collision energy, thermal energy and Debye length. The result shows that the effect of the external field on the eikonal cross section is given by the second-order eikonal phase. In addition, the external field effects suppress the eikonal cross section as well as eikonal phase for the elastic electron-ion collision. The eikonal phase and cross section are found to be increased with an increase of the frequency of the external field. It is also shown that the eikonal cross section increases with an increase of the thermal energy and Debye length.
Moving antiphase boundaries using an external electric field
Energy Technology Data Exchange (ETDEWEB)
Vaideeswaran, Kaushik, E-mail: kaushik.vaideeswaran@alumni.epfl.ch; Shapovalov, Konstantin; Yudin, Petr V.; Setter, Nava [Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Tagantsev, Alexander K. [Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne (Switzerland); Ferroics Laboratory, Ioffe Physical Technical Institute, 194021 St. Petersburg (Russian Federation)
2015-11-09
Antiphase boundaries (APBs) are unique domain walls that may demonstrate switchable polarization in otherwise non-ferroelectric materials such as SrTiO{sub 3} and PbZrO{sub 3}. The current study explores the possibility of displacing such domain walls at the nanoscale. We suggest the possibility of manipulating APBs using the inhomogeneous electric field of an Atomic Force Microscopy (AFM) tip with an applied voltage placed in their proximity. The displacement is studied as a function of applied voltage, film thickness, and initial separation of the AFM tip from the APB. It is established, for example, that for films with thickness of 15 nm, an APB may be attracted under the tip with a voltage of 25 V from initial separation of 30 nm. We have also demonstrated that the displacement is appreciably retained after the voltage is removed, rendering it favorable for potential applications.
The effect of an external electric field on the growth of incongruent-melting material
Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi
2005-02-01
The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.
Effects of external radiation fields on line emission—application to star-forming regions
Energy Technology Data Exchange (ETDEWEB)
Chatzikos, Marios; Ferland, G. J. [University of Kentucky, Lexington, KY 40506 (United States); Williams, R. J. R. [AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom); Porter, Ryan [Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, GA 30602-2451 (United States); Van Hoof, P. A. M., E-mail: mchatzikos@gmail.com [Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Uccle (Belgium)
2013-12-20
A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.
Excitonic magnet in external field: Complex order parameter and spin currents
Geffroy, D.; Hariki, A.; Kuneš, J.
2018-04-01
We investigate spin-triplet exciton condensation in the two-orbital Hubbard model close to half-filling by means of dynamical mean-field theory. Employing an impurity solver that handles complex off-diagonal hybridization functions, we study the behavior of excitonic condensate in stoichiometric and doped systems subject to external magnetic field. We find a general tendency of the triplet order parameter to lie perpendicular with the applied field and identify exceptions from this rule. For solutions exhibiting k -odd spin textures, we discuss the Bloch theorem, which, in the absence of spin-orbit coupling, forbids the appearance of spontaneous net spin current. We demonstrate that the Bloch theorem is not obeyed by the dynamical mean-field theory.
Environmental externalities: Applying the concept to Asian coal-based power generation
Energy Technology Data Exchange (ETDEWEB)
Szpunar, C.B.; Gillette, J.L.
1993-03-01
This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.
Environmental externalities: Applying the concept to Asian coal-based power generation
International Nuclear Information System (INIS)
Szpunar, C.B.; Gillette, J.L.
1993-03-01
This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies
The dynamics of coupled atom and field assisted by continuous external pumping
International Nuclear Information System (INIS)
Burlak, G.; Hernandez, J.A.; Starostenko, O.
2006-01-01
The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)
The dynamics of coupled atom and field assisted by continuous external pumping
Energy Technology Data Exchange (ETDEWEB)
Burlak, G.; Hernandez, J.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma de Morelos, Cuernavaca, Morelos (Mexico); Starostenko, O. [Departamento de Fisica, Electronica, Sistemas y Mecatronica, Universidad de las Americas, 72820 Puebla (Mexico)
2006-07-01
The dynamics of a coupled system comprising a two-level atom and cavity field assisted by a continuous external classical field (driving Jaynes-Cummings model) is studied. When the initial field is prepared in a coherent state, the dynamics strongly depends on the algebraic sum of both fields. If this sum is zero (the compensative case) in the system, only the vacuum Rabi oscillations occur. The results with dissipation and external field detuning from the cavity field are also discussed. (Author)
Stabilisation of ballooning modes in torsatrons with an externally applied toroidal current
International Nuclear Information System (INIS)
Cooper, W.A.
1996-01-01
It has been found that ideal ballooning modes can impose very restrictive volume average β limits in torsatrons much below the typical values close to 5% that are required to be economically realisable as reactor systems and it has been shown that externally applied toroidal currents that are peaked can destabilise the Mercier criterion in this type of configuration. We will show here that if the applied currents are hollow, they can stabilise the ballooning modes without triggering Mercier instabilities and as a result raise the limiting β* from 2% to 5%. (author) 3 figs., 10 refs
Extension of Gibbs-Duhem equation including influences of external fields
Guangze, Han; Jianjia, Meng
2018-03-01
Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
International Nuclear Information System (INIS)
Garcia-Munoz, M; Rodriguez-Ramos, M; Äkäslompolo, S; De Marne, P; Dunne, M G; Dux, R; Fietz, S; Fuchs, C; Geiger, B; Herrmann, A; Hoelzl, M; Kurzan, B; McDermott, R M; Strumberger, E; Evans, T E; Ferraro, N M; Pace, D C; Lazanyi, N; Nocente, M; Shinohara, K
2013-01-01
Phase-space time-resolved measurements of fast-ion losses induced by edge localized modes (ELMs) and ELM mitigation coils have been obtained in the ASDEX Upgrade tokamak by means of multiple fast-ion loss detectors (FILDs). Filament-like bursts of fast-ion losses are measured during ELMs by several FILDs at different toroidal and poloidal positions. Externally applied magnetic perturbations (MPs) have little effect on plasma profiles, including fast-ions, in high collisionality plasmas with mitigated ELMs. A strong impact on plasma density, rotation and fast-ions is observed, however, in low density/collisionality and q 95 plasmas with externally applied MPs. During the mitigation/suppression of type-I ELMs by externally applied MPs, the large fast-ion bursts observed during ELMs are replaced by a steady loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection (NBI) prompt loss signal without MPs. Multiple FILD measurements at different positions, indicate that the fast-ion losses due to static 3D fields are localized on certain parts of the first wall rather than being toroidally/poloidally homogeneously distributed. Measured fast-ion losses show a broad energy and pitch-angle range and are typically on banana orbits that explore the entire pedestal/scrape-off-layer (SOL). Infra-red measurements are used to estimate the heat load associated with the MP-induced fast-ion losses. The heat load on the FILD detector head and surrounding wall can be up to six times higher with MPs than without 3D fields. When 3D fields are applied and density pump-out is observed, an enhancement of the fast-ion content in the plasma is typically measured by fast-ion D-alpha (FIDA) spectroscopy. The lower density during the MP phase also leads to a deeper beam deposition with an inward radial displacement of ≈2 cm in the maximum of the beam emission. Orbit simulations are used to test different models for 3D
Earth's external magnetic fields at low orbital altitudes
Klumpar, D. M.
1990-01-01
Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.
Particle separation by external fields on periodic surfaces
International Nuclear Information System (INIS)
Sancho, J M; Khoury, M; Lindenberg, K; Lacasta, A M
2005-01-01
Particles moving on perfect periodic surfaces under the influence of external forces may move along directions that deviate from that of the force. We briefly recall previous results for transport of particles on surfaces with periodic traps or periodic obstacles driven by a constant external force, and present new results for particles moving in a harmonic periodic potential. The sorting properties are explored as a function of a number of control parameters, specifically the friction, force amplitude and direction, temperature, and lattice constants
Droplet manipulation by an external electric field for crystalline film growth.
Komino, Takeshi; Kuwabara, Hirokazu; Ikeda, Masaaki; Yahiro, Masayuki; Takimiya, Kazuo; Adachi, Chihaya
2013-07-30
Combining droplet manipulation by the application of an electric field with inkjet printing is proposed as a unique technique to control the surface wettability of substrates for solution-processed organic field-effect transistors (FETs). With the use of this technique, uniform thin films of 2,7-dioctyl[1]benzothieno[2,3,-b][1]benzothiopene (C8-BTBT) could be fabricated on the channels of FET substrates without self-assembled monolayer treatment. High-speed camera observation revealed that the crystals formed at the solid/liquid interface. The coverage of the crystals on the channels depended on the ac frequency of the external electric field applied during film formation, leading to a wide variation in the carrier transport of the films. The highest hole mobility of 0.03 cm(2) V(-1) s(-1) was obtained when the coverage was maximized with an ac frequency of 1 kHz.
Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron
Directory of Open Access Journals (Sweden)
C. P. Chui
2014-03-01
Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.
Low energy constituent quark and pion effective couplings in a weak external magnetic field
Braghin, Fábio L.
2018-03-01
An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.
An interacting instanton and anti-instanton system under external color magnetic fields
International Nuclear Information System (INIS)
Wakano, M.
1980-01-01
The equilibrium configurations for the instanton and anti-instanton system of the SU(2) gauge field under constant external color magnetic fields are studied by applying the statistical mechanics method. The vacuum has a stabel equilibrium state in the case where the interaction between pseudoparticles is partly considered through the local gauge field in determining the mean dipole moment of instantons. It is shown, however, that there exists no equilibrium state, either stable or unstable, when the dipolar interaction with a particular instanton-size-dependent cutoff is taken into account directly by the second virial coefficient. To analyze this discrepancy a more general cutoff is introduced and the density of instantons is determined for equilibrium states with vanishing external fields, when the cutoff parameter is varied. Above a certain cutoff length there exist two branches of equilibrium configurations with high or low instanton densities, while below it no equilibrium state is obtained. It is shown that we have a critical cutoff length near but slightly larger than the above value and that the equilibrium states on the lower density branch corresponding to cutoff lengths larger than this critical value are stable, while all remaining equilibrium states are unstable. (orig.)
International Nuclear Information System (INIS)
Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas
2013-01-01
Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role
International Nuclear Information System (INIS)
Strelniker, Yakov M.; Bergman, David J.; Fleger, Yafit; Rosenbluh, Michael; Voznesenskaya, Anna O.; Vinogradov, Alexey P.; Lagarkov, Andrey N.
2010-01-01
The light transmission through metallic films with different types of nano-structures was studied both theoretically and experimentally. It is shown that the positions of the surface plasmon resonances depend on nano-structural details. Those can be changed from sample to sample or in given sample by applying an external dc electric or magnetic field. The dependence of transmission spectrum on the shape of holes (inclusions) and external fields can be used for manipulation of the light transmission, as well as the polarization of the transmitted light and other optical properties, by external field. Two complementary situations are considered: a metal film with dielectric holes and a dielectric film with metallic islands. A new analytical asymptotic approach for calculation of the optical properties of such plasmonic systems is developed.
International Nuclear Information System (INIS)
Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin
2011-01-01
Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2013-04-01
A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.
Energy Technology Data Exchange (ETDEWEB)
Savel' ev, S., E-mail: S.Saveliev@lboro.ac.uk [Department of Physics, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Zagoskin, A.M. [Department of Physics, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Omelyanchouk, A.N. [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); B. Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov (Ukraine); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2010-10-05
Imagine that you have several sets of two coupled qubits, but you do not know the parameters of their Hamitonians. How to determine these without resorting to the usual spectroscopy approach to the problem? Based on numerical modeling, we show that all the parameters of a system of two coupled qubits can be determined by applying to it an external classical noise and analyzing the Fourier spectrum of the elements of the system's density matrix. In particular, the interlevel spacings as well as the strength and sign of the qubit-qubit coupling can be determined this way.
External-field shifts in precision spectroscopy of hydrogen molecular ions
Energy Technology Data Exchange (ETDEWEB)
Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [INRNE, Bulgarian Academy of Sciences (Bulgaria); Korobov, Vladimir [Joint Institute for Nuclear Research (Russian Federation); Schiller, Stephan [Heinrich-Heine-Universitat Dusseldorf, Institut fur Experimentalphysik (Germany)
2015-08-15
The Effective Hamiltonian of the hydrogen molecular ions is a convenient tool for the evaluation of the shift of the energy levels of the ro-vibrational states and the frequencies of the transitions between them, due to external electric and magnetic fields. Using the Effective Hamiltonian, composite frequencies of suppressed susceptibility to external fields are constructed.
On quantum electrodynamics in an external gravitational field. Part 2. Discussion of the effects
International Nuclear Information System (INIS)
Lotze, K.H.
1978-01-01
The S matrix constructed in Part I of this work is evaluated for processes which it includes. Some of them are discussed in more detail: pair creation and scattering in an external gravitational field, pair creation by a photon and creation of an electron-positron pair and a photon in an external gravitational field. (author)
Duality in the U(1) Higgs model with an external field
International Nuclear Information System (INIS)
Damgaard, P.H.
1988-07-01
An external electromagnetic field is coupled to the lattice U(1) Higgs model in a Villain form. Duality transformations are then used to express the partition function in terms of an effective Lagrangian of topological excitations and their couplings to the external field. Consequences for the phase diagram are derived. (orig.)
External field as the functional of inhomogeneous density and the density matrix functional approach
Bobrov, V.B.; Trigger, S.A.; Vlasov, Y.P.
2012-01-01
Based on the Hohenberg-Kohn lemma and the hypotheses of the density functional existence for the external-field potential, it is shown that the strict result of the density functional theory is the equation of the external-field potential as the density functional. This result leads to the
Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields
Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.
1996-01-01
The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...
Oscillator representation method in the theory of a hydrogen atom in an external field
International Nuclear Information System (INIS)
Dinejkhan, M.
1996-01-01
The Wick-ordering method called the Oscillator representation in the non-relativistic Schroedinger equation is proposed to calculate the energy spectrum for spherically symmetric and axially symmetric potentials allowing the existence of a bound state. In particular, the method is applied to calculate the energy spectrum of (2s)-states of a hydrogen atom in a uniform magnetic field of an arbitrary strength. In the perturbation (external field) approximation, the energy spectrum of the so-called quadratic and spherical quadratic Zeeman problem and the problem of a hydrogen atom in a generalized van der Waals potential is calculated analytically. The results of the zeroth approximation of oscillator representation are in good agreement with the exact values. 31 refs., 3 tabs
Decoupling of the hyperfine interactions in /sup 12/B ions by the external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, K; Tanihata, I; Kogo, S; Tanaka, M [Osaka Univ., Toyonaka (Japan). Faculty of Science
1976-11-01
It is known that product nuclei /sup 12/B (Isup(..pi..) = 1/sup +/, Tsub(1/2) = 20 ms) by the /sup 11/B(d,p)/sup 12/B reaction are sizably oriented if one selects recoil nuclei at the incident deuteron energy and the recoil angle thetasub(R). The hyperfine interactions in recoil ions in flight in free space affect the nuclear orientation. In this experiment, the nuclear orientation in the recoil ions implanted into a stopper were measured as a function of strength of a static magnetic field applied in normal to the reaction plane. A thin single crystal of magnesium was used as the recoil stopper, of which the hexagonal c-axis was set in parallel to the external field.
Encaged molecules in external electric fields: A molecular "tug-of-war"
Gurav, Nalini D.; Gejji, Shridhar P.; Bartolotti, Libero J.; Pathak, Rajeev K.
2016-08-01
Response of polar molecules CH3OH and H2O2 and a non-polar molecule, CO2, as "guests" encapsulated in the dodecahedral water cage (H2O)20 "host," to an external, perturbative electric field is investigated theoretically. We employ the hybrid density-functionals M06-2X and ωB97X-D incorporating the effects of damped dispersion, in conjunction with the maug-cc-pVTZ basis set, amenable for a hydrogen bonding description. While the host cluster (cage) tends to confine the embedded guest molecule through cooperative hydrogen bonding, the applied electric field tends to rupture the cluster-composite by stretching it; these two competitive effects leading to a molecular "tug-of-war." The composite remains stable up to a maximal sustainable threshold electric field, beyond which, concomitant with the vanishing of the HOMO-LUMO gap, the field wins over and the cluster breaks down. The electric-field effects are gauged in terms of the changes in the molecular geometry of the confined species, interaction energy, molecular electrostatic potential surfaces, and frequency shifts of characteristic normal vibrations in the IR regime. Interestingly, beyond the characteristic threshold electric field, the labile, distorted host cluster fragmentizes, and the guest molecule still tethered to a remnant fragment, an effect attributed to the underlying hydrogen-bonded networks.
Directory of Open Access Journals (Sweden)
K. Usha
2016-09-01
Full Text Available This paper evaluates the change in metabolic energy required to maintain the signalling activity of neurons in the presence of an external electric field. We have analysed the Hodgkin–Huxley type conductance based fast spiking neuron model as electrical circuit by changing the frequency and amplitude of the applied electric field. The study has shown that, the presence of electric field increases the membrane potential, electrical energy supply and metabolic energy consumption. As the amplitude of applied electric field increases by keeping a constant frequency, the membrane potential increases and consequently the electrical energy supply and metabolic energy consumption increases. On increasing the frequency of the applied field, the peak value of membrane potential after depolarization gradually decreases as a result electrical energy supply decreases which results in a lower rate of hydrolysis of ATP molecules.
Influence of External Magnetic Fields on Tunneling of Spin-1 Bose Condensate
International Nuclear Information System (INIS)
Yu Zhaoxian; Jiao Zhiyong; Sun Jinzuo
2005-01-01
In this letter, we have studied the influence of the external magnetic fields on tunneling of the spin-1 Bose condensate. We find that the population transfer between spin-0 and spin-±1 exhibits the step structure under the external cosinusoidal magnetic field and a combination of static and cosinusoidal one, respectively. Compared with the longitudinal component of the external magnetic field, the smaller the transverse component of the magnetic field is, the larger the time scale of exhibiting the step structure does. The tunneling current may exhibit periodically oscillation behavior when the ratio of the transverse component of the magnetic field is smaller than that of the longitudinal component, otherwise it exhibits a damply oscillating behavior. This means that the dynamical spin localization can be adjusted by the external magnetic fields.
Electromagnetic-gravitational conversion cross sections in external electromagnetic fields
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.
1994-09-01
The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs
Effect of external fields in Axelrod's model of social dynamics
Peres, Lucas R.; Fontanari, José F.
2012-09-01
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Dose estimation in embryo or fetus in external fields
International Nuclear Information System (INIS)
Gregori, Beatriz N.
2001-01-01
The embryo or the fetus can be irradiated as result of radiological procedures of diagnosis of therapy in where the beam effects directly on the same one or in tissues or peripherical organs. Some authors have suggested that in the first stages of the pregnancy the dose in ovaries can be the good estimated of the dose in embryo or fetus. In advanced conditions of the development, probably also in the early stage, is more appropriated to specify the dose in the embryo or fetus equal of the uterus. The dose in the uterus is a good estimated so much for external irradiation as for radionuclides incorporation
Two interacting spins in external fields and application to quantum computation
International Nuclear Information System (INIS)
Baldiotti, M.C.; Gitman, D.M.; Bagrov, V.G.
2009-01-01
We study the four-level system given by two quantum dots immersed in a time-dependent magnetic field, which are coupled to each other by an effective Heisenberg-type interaction. We describe the construction of the corresponding evolution operator in a special case of different time-dependent parallel external magnetic fields. We find a relation between the external field and the effective interaction function. The obtained results are used to analyze the theoretical implementation of a universal quantum gate
Energy Technology Data Exchange (ETDEWEB)
Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik
1975-01-01
Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.
Relations between focusing power of space-charge lenses and external electromagnetic fields
International Nuclear Information System (INIS)
Yu Qingchang; Qiu Hong; Huang Jiachang
1991-01-01
Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed
Stable solitary waves in super dense plasmas at external magnetic fields
Ghaani, Azam; Javidan, Kurosh; Sarbishaei, Mohsen
2015-07-01
Propagation of localized waves in a Fermi-Dirac distributed super dense matter at the presence of strong external magnetic fields is studied using the reductive perturbation method. We have shown that stable solitons can be created in such non-relativistic fluids in the presence of an external magnetic field. Such solitary waves are governed by the Zakharov-Kuznetsov (ZK) equation. Properties of solitonic solutions are studied in media with different values of background mass density and strength of magnetic field.
International Nuclear Information System (INIS)
Baryshevskii, V.G.; Skadorov, V.V.
1986-01-01
A dynamical theory is developed of the Moessbauer radiation diffraction by crystals being subjected to an variable external field action. Equations describing the dynamical diffraction by nonstationary crystals are obtained. It is shown that the resonant interaction between Moessbauer radiation and shift field induced in the crystal by a variable external field giving rise to an effective conversion of the incident wave into a wave with changed frequency. (author)
Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field
Directory of Open Access Journals (Sweden)
Pei-Kun Yang
2013-07-01
Full Text Available To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes.
Laterally coupled circular quantum dots under applied electric field
Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-03-01
The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.
Streamwise-body-force-model for rapid simulation combining internal and external flow fields
Directory of Open Access Journals (Sweden)
Cui Rong
2016-10-01
Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.
Effect of an external electric field on the propagation velocity of premixed flames
Sánchez-Sanz, Mario
2015-01-01
© 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved. There have been many experimental investigations into the ability of electric fields to enhance combustion by acting upon ion species present in flames [1]. In this work, we examine this phenomenon using a one-dimensional model of a lean premixed flame under the influence of a longitudinal electric field. We expand upon prior two-step chain-branching reaction laminar models with reactions to model the creation and consumption of both a positively-charged radical species and free electrons. Also included are the electromotive force in the conservation equation for ion species and the electrostatic form of the Maxwell equations in order to resolve ion transport by externally applied and internally induced electric fields. The numerical solution of these equations allows us to compute changes in flame speed due to electric fields. Further, the variation of key kinetic and transport parameters modifies the electrical sensitivity of the flame. From changes in flame speed and reactant profiles we are able to gain novel, valuable insight into how and why combustion can be controlled by electric fields.
Oscillations and Stability of Plasma in an External High-Frequency Electric Field
International Nuclear Information System (INIS)
Aliev, Ju.M.; Gorbunov, L.M.; Silin, V.P.; Uotson, H.
1966-01-01
A theory is developed for the oscillations and stability of plasma in a strong external HF electric field. The kinetic equation with self-congruent reciprocity is linearized for weak deviations from the ground state. Since the latter depends on an external HF field, the linearized equation obtained has coefficients with a periodic time dependence. From this equation and also from Maxwell's equations there is derived a dispersion equation for plasma oscillations that represents the zero value of the infinite order determinant, and that is solved both for external field frequencies considerably exceeding the electron Langmuir frequency and for frequencies that are less. The external HF field changes the oscillation branches in a plasma without an external field, and also leads to a new low-frequency oscillation branch. Movement of particles in the HF field gives spatial dispersion. If the frequency of the field exceeds the election Langmuir frequency, the plasma oscillations are stable. At frequencies less than this level there occurs a build-up of low-frequency oscillations. Here the maximum of the build-up occurs when the external field frequencies approach the electron Langmuir frequency and is equal to the product of the Langmuir frequency and the one-third power of the electron-ion mass ratio. Away from the resonance, -the increment of build-up has the same order of magnitude as the ion Langmuir frequency. An external magnetic field increases the number of possible natural plasma oscillations and thereby increases the possibility of resonance with the external HF field. Allowance for the thermal motion of the particles enables one to determine the attenuation of the oscillations in question. Expressions for the decrements are derived. The effect of the external HF field on a plasma in which there are beams is also discussed. An HF field has a destabilizing effect on a system of this kind, since on the one hand there can be a build-up of fresh, low
Energy Technology Data Exchange (ETDEWEB)
Li, Mengqi; Li, Dongqing, E-mail: dongqing@mme.uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada)
2016-05-15
Janus droplets with two opposite faces of different physical or chemical properties have great potentials in many fields. This paper reports a new method for making Janus droplets by covering one side of the droplet with charged nanoparticles in an externally applied DC electric field. In this paper, aluminum oxide nanoparticles on micro-sized and macro-sized oil droplets were studied. In order to control the surface area covered by the nanoparticles on the oil droplets, the effects of the concentration of nanoparticle suspension, the droplet size as well as the strength of electric field on the final accumulation area of the nanoparticles are studied.Graphical abstract.
Pair production by a constant external field in noncommutative QED
International Nuclear Information System (INIS)
Chair, N.; Sheikh-Jabbari, M.M.
2000-09-01
In this paper we study QED on the noncommutative space in the constant electro-magnetic field background. Using the explicit solutions of the noncommutative version of Dirac equation in such background, we show that there are well-defined in and out-going asymptotic states and also there is a causal Green's function. We calculate the pair production rate in this case. We show that at tree level noncommutativity will not change the pair production and the threshold electric field. We also calculate the pair production rate considering the first loop corrections. In this case we show that the threshold electric field is decreased by the noncommutativity effects. (author)
International Nuclear Information System (INIS)
Zhang Fen; Ding Huan-Da; Duan Chao; Tong Chao-Hui; Zhao Shuang-Liang
2017-01-01
Langevin dynamics simulations have been performed to investigate the response of bi-disperse and strong polyacid chains grafted on an electrode to electric fields generated by opposite surface charges on the polyelectrolyte (PE)-grafted electrode and a second parallel electrode. Simulation results clearly show that, under a negative external electric field, the longer grafted PE chains are more strongly stretched than the shorter ones in terms of the relative change in their respective brush heights. Whereas under a positive external electric field, the grafted shorter chains collapse more significantly than the longer ones. It was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The effects of smeared and discrete charge distributions of grafted PE chains on the response of PE brushes to external electric fields were also examined. (paper)
Dipole nano-laser: the effect of an external electric field
Energy Technology Data Exchange (ETDEWEB)
Ghannam, T, E-mail: gtalal@hotmail.co [KAIN Institute for Nano-Technology, King Saud University, PO Box 2454, Riyadh 11451 (Saudi Arabia)
2010-08-14
Using the Langevin formalism we study the effects an external electromagnetic field induces in a system made of a pumped two-level system (TLS) and a metallic nano-particle (NP) that interact together via their near-fields. The surface plasmons of the NP greatly enhance the scattered light. With the absence of the external EM field the spectral width of the scattered light is broader than that of the system, covering almost the entire optical range. However, with the inclusion the external EM field, a reduction in the spectral width of the scattered light of order of 10-50 times below that of the system is observed for certain parameter regimes.This system exhibits also bistability in the population difference of the TLS with the external field acting as an order parameter, but only for certain values of the noise quanta.
Constant external fields in gauge theory and the spin 0, 1/2, 1 path integrals
International Nuclear Information System (INIS)
Reuter, M.; Schmidt, M.G.
1996-10-01
We investigate the usefulness of the ''string-inspired technique'' for gauge theory calculations in a constant external field background. Our approach is based on Strassler's worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super-) Green's functions incorporating external fields as well as internal propagators. The worldline path integral representation of the gluon loop is reexamined in detail. We calculate the two-loop effective actions induced for a constant external field by a scalar and spinor loop, and the corresponding one-loop effective action in the gluon loop case. (orig.)
Moessbauer study of LaFeAsO and F-doped superconductors in external magnetic fields
International Nuclear Information System (INIS)
Kitao, S; Kobayashi, Y; Higashitaniguchi, S; Kurokuzu, M; Saito, M; Seto, M; Mitsui, T; Kamihara, Y; Hirano, M; Hosono, H
2010-01-01
The iron-based F-doped superconductors LaFeAsO 1-x F x with a transition temperature of 24 K (for x = 0.07) and 26 K (x = 0.11) and its parent material LaFeAsO were studied using 57 Fe Moessbauer spectroscopy. Further investigation was carried out by applying external magnetic fields. F-doped superconductors showed a singlet pattern with no magnetic splitting throughout the temperature range from 4.2 to 298 K. On the other hand, magnetically-split spectra were observed in the parent LaFeAsO below the Neel temperature of about 140 K. The internal magnetic field reached 5.3 T at 4.2 K. The external magnetic fields up to 14 T were applied to the singlet phases, F-doped superconductors and the parent LaFeAsO above the Neel temperature. The induced magnetically-split spectra showed the internal magnetic fields with the comparable value to the applied fields. This fact confirmed that these singlet phases have the paramagnetic feature. The magnetic fields were also applied to the magnetically-ordered phase of LaFeAsO below the Neel temperature. The evolution of the spectra depending on the external magnetic fields was clearly explained by a model with two sublattice spins of the powdered antiferromagnet. This fact confirmed the magnetically-ordered phase is an antiferromagnet. The spin-flop field was also estimated by the model as about 26 T.
External field characterization using CHAMP satellite data for ...
Indian Academy of Sciences (India)
The electrical conductivity of the subsurface can be investigated ... the field components have greater power in dusk ... Figure 3. Rotational transformation from GSM to SM frame. ..... second generation of the GFZ reference internal magnetic.
Linear spin-zero quantum fields in external gravitational and scalar fields
International Nuclear Information System (INIS)
Kay, B.S.
1977-10-01
Mathematically rigorous results are given on the quantization of the covariant Klein-Gordon field with an external stationary scalar interaction in a stationary curved space-time. It is shown how, following Segal, Weinless etc., the problem reduces to finding a ''one-particle structure'' for the corresponding classical system. The main result is an existence theorem for such a one-particle structure for a precisely specified class of stationary space-times. Byproducts of our approach are (1)a discussion of when the equal-time hypersurfaces in a given stationary space-time are Cauchy; (2)a proof that when a one-particle structure exists it is unique a result of general interest for the quantization of linear systems; (3)a modification and extension of the methods of Chernoff [3] for proving the essential self-adjointness of ceratin partial differential operators
Linear spin-zero quantum fields in external gravitational and scalar fields
International Nuclear Information System (INIS)
Kay, B.S.
1977-11-01
A general formalism for quantizing the covariant Klein Gordon equation in an arbitrary globally hyperbolic space-time is presented. It is argued that much of the conceptual confusion surrounding ''quantum field theory in curved space-time'' has been caused by the misapplication of a quantization procedure (the single representation formalism) which is really only suitable for quantizing stationary systems. Drawing on a close analogy with time-dependent external field problems in flat space-time, it is argued for the introduction of a new quantization procedure: the many vacuum formalism which accommodates non-stationary situations. In the many vacuum formalism, a whole family of different representations of the field algebra plays a role and dynamics is necessarily described in terms of isomorphisms between different algebras rather than automorphisms of a single algebra. It is shown how this many vacuum approach gives physically sensible results in the flat space-time case. In the curved space-time case, corresponding well defined formalism is obtained relying on rigorous results established in I. A principal feature is that a different vacuum state is obtained for each choice of Cauchy surface together with a choice of lapse and shift functions on that surface. Several questions-mathematical and interpretational- raised by the scheme are discussed
Classical relativistic equations for particles with spin moving in external fields
Dam, H. van; Ruijgrok, Th.W.
1980-01-01
We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the
Step-wise potential development across the lipid bilayer under external electric fields
Majhi, Amit Kumar
2018-04-01
Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-01-15
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.
Flux quantization and quantum mechanics on Riemann surfaces in an external magnetic field
International Nuclear Information System (INIS)
Bolte, J.; Steiner, F.
1990-10-01
We investigate the possibility to apply an external constant magnetic field to a quantum mechanical system consisting of a particle moving on a compact or non-compact two-dimensional manifold of constant negative Gaussian curvature and of finite volume. For the motion on compact Riemann surfaces we find that a consistent formulation is only possible if the magnetic flux is quantized, as it is proportional to the (integrated) first Chern class of a certain complex line bundle over the manifold. In the case of non-compact surfaces of finite volume we obtain the striking result that the magnetic flux has to vanish identically due to the theorem that any holomorphic line bundle over a non-compact Riemann surface is holomorphically trivial. (orig.)
Effects of an external magnetic field in pulsed laser deposition
García, T.; de Posada, E.; Villagrán, M.; Ll, J. L. Sánchez; Bartolo-Pérez, P.; Peña, J. L.
2008-12-01
Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe 12O 19 target with and without the presence of a nonhomogeneous magnetic field of μ0H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.
Dirac vacuum: Acceleration and external-field effects
International Nuclear Information System (INIS)
Jauregui, R.; Torres, M.; Hacyan, S.
1991-01-01
The quantization of the massive spin-1/2 field in Rindler coordinates is considered, including the effects of a background magnetic field. We calculate the expectation values of conserved quantities such as the stress-energy tensor, current density, and spin distribution, as detected by an accelerated observer. The ratio of the energy and particle densities is given by a Fermi-Dirac distribution, but the spectrum of these quantities takes in general a complicated form that cannot be simply interpreted as a thermal spectrum. For the free-particle case the spectrum of the energy-stress tensor has a Fermi-Dirac form only in the massless limit. In the presence of the magnetic field the Dirac vacuum is magnetized and exhibits plasmalike properties
Effects of an external magnetic field in pulsed laser deposition
Energy Technology Data Exchange (ETDEWEB)
Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)
2008-12-30
Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.
International Nuclear Information System (INIS)
Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.
1987-01-01
A generating functional for expectation values is found for QED at a finite temperature with an external field which destroys the stability of the vacuum. The equations for connected Green functions and the effective action for the mean field are written out. Their representation is obtained in the form of an integral over the proper time for the Green function taking into account temperature effects in a constant uniform field. By means of this representation the polarization operator for the mean field in an external constant uniform field has been calculated
International Nuclear Information System (INIS)
Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.
1987-01-01
A functional generating expectation values is obtained for QED at a finite temperature in presence of an external field violating the vacuum stability. Equations for connected Green's functions and the effective action for the mean field are derived. The Green function is obtained as an integral with respect of the proper time; the representation takes into account temperature effects in a constant homogeneous field. The polarization operator for the mean field in an external constant homogeneous field is calculated by means of the integral representation
Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field
Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli
2017-08-01
Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.
Gauge-independent decoherence models for solids in external fields
Wismer, Michael S.; Yakovlev, Vladislav S.
2018-04-01
We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.
Periodical plasma structures controlled by external magnetic field
Schweigert, I. V.; Keidar, M.
2017-06-01
The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.
International Nuclear Information System (INIS)
Treushnikov, E.N.
2000-01-01
The problem of the theoretical description of X-ray diffraction from ideal mosaic crystals under the effect of various external fields has been formulated. Electric, magnetic, electromagnetic, and acoustic perturbations are considered. The atomic displacements in crystals under the effect of external fields and the types of the corresponding diffraction patterns are analyzed for various types of perturbations. The crystal classes are determined in which atomic displacements can be recorded experimentally. Diffraction patterns formed under the effect of various external factors are considered on the basis of the derived dependence of the structure factor on the characteristics of an applied force field
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
Fluctuations in collisional plasma in the presence of an external electric field
International Nuclear Information System (INIS)
Momot, A. I.; Zagorodny, A. G.
2011-01-01
The theory of large-scale fluctuations in a plasma is used to calculate the correlations functions of electron and ion density with regard to particle collisions described within the Bhatnagar-Gross-Krook (BGK) model and the presence of a constant external electric field. The changes of plasma particle distribution functions due to an external electric field and their influence on the plasma dielectric response are taken into account. The dispersion relations for longitudinal waves in such a plasma are studied in details. It is shown that external electric field can lead to the ion-acoustic wave instability and anomalous growth of the fluctuation level. Detailed numerical studies of the general relations for electron number density fluctuations are performed and the effect of external electric field on the fluctuation spectra is studied.
Effect of external electric field on Cyclodextrin-Alcohol adducts: A ...
Indian Academy of Sciences (India)
solid state with organic molecules through host-guest interactions with unique ... for separation of compounds and extraction processes.2. CDs are very attractive ... of external electric field on hydrogen adsorption over activated carbon sepa-.
Conversion of photons into spinless particles in periodic external electromagnetic field
International Nuclear Information System (INIS)
Hoang Ngoc Long; Dang Van Soa
1996-08-01
The conversion of photons into axions and dilatons in a periodic external electromagnetic field, namely in the TE 10 mode, are considered in detail. The differential cross sections are given. (author). 16 refs
Stability properties of a toroidal z-pinch in an external magnetic multipole field
International Nuclear Information System (INIS)
Eriksson, H.G.
1987-01-01
MHD stability of m=1, axisymmetric, external modes of a toroidal z-pinch immersed in an external multipole field (Extrap configuration) is studied. The description includes the effects of a weak toroidicity, a non-circular plasma cross-section and the influence of induced currents in the external conductors. It is found that the non-circularity of the plasma cross-section always has a destabilizing effect but that the m=1 mode can be stabilized by the external feedback if the non-circularity is small. (author)
External field induced switching of tunneling current in the coupled quantum dots
Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.
2014-01-01
We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations. It was found that tuning of the external field frequency induces fast multiple tunneling current switching and leads to the negative tunneling conductivity. Special role of multi-electrons states was demonstrated. Moreover we revealed conditions for bistable behavior of the tunneling curre...
Anisotropic temperature relaxation of plasmas in an external magnetic field
International Nuclear Information System (INIS)
Hassan, M.H.A.
1977-01-01
The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)
Energy Technology Data Exchange (ETDEWEB)
Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L. [Russian Academy of Sciences, Topchiev Institute of Petrochemical Synthesis (Russian Federation)
2017-01-15
The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.
International Nuclear Information System (INIS)
Lebedev, Yu. A.; Krashevskaya, G. V.; Tatarinov, A. V.; Titov, A. Yu.; Epshtein, I. L.
2017-01-01
The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.
Coupled electron/photon transport in static external magnetic fields
International Nuclear Information System (INIS)
Halbleib, J.A. Sr.; Vandevender, W.H.
A model is presented which describes coupled electron/photon transport in the presence of static magnetic fields of arbitrary spatial dependence. The method combines state-of-the-art condensed-history electron collisional Monte Carlo and single-scattering photon Monte Carlo, including electron energy-loss straggling and the production and transport of all generations of secondaries, with numerical field integration via the best available variable-step-size Runge-Kutta-Fehlberg or variable-order/variable-step-size Adams PECE differential equation solvers. A three-dimensional cartesian system is employed in the description of particle trajectories. Although the present model is limited to multilayer material configurations, extension to more complex material geometries should not be difficult. Among the more important options are (1) a feature which permits the neglect of field effects in regions where transport is collision dominated and (2) a method for describing the transport in variable-density media where electron energies and material densities are sufficiently low that the density effect on electronic stopping powers may be neglected. (U.S.)
Numerical simulation of a backward-facing step flow in a microchannel with external electric field
Directory of Open Access Journals (Sweden)
Qing-He Yao
2015-03-01
Full Text Available A backward-facing step flow in the microchannel with external electric field was investigated numerically by a high-order accuracy upwind compact difference scheme in this work. The Poisson–Boltzmann and Navier–Stokes equations were computed by the high-order scheme, and the results confirmed the ability of the new solver in simulation of micro-scale electric double layer effects. The flow fields were displayed for different Reynolds numbers; the positions of the vortex saddle point of model with external electric field and model without external electric field were compared. The average velocity increases linearly with the electric field intensity; however, the Joule heating effects cannot be neglected when the electric field intensity increases to a certain level.
Futera, Zdenek; English, Niall J.
2017-07-01
The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.
Measurement of dipole-moment in atomic transitions under strong external magnetic field
International Nuclear Information System (INIS)
Nittoh, Koichi; Kuwako, Akira; Ikehara, Tadashi; Yoshida, Tadashi; Watanabe, Takasi; Yoguchi, Itaru; Suzuki, Kazuhiro.
1996-01-01
Obtaining an accurate value of the electric dipole moment μ is essential in the fields of laser application technologies. A direct way of measuring the electric dipole moment μ is to observe the Rabi-oscillation which manifests itself in the coherent photo-excitation behavior of atoms. In the case of the elements which have large angular momenta, identifying the Rabi-oscillation in their excitation behavior becomes rather difficult. We proposed an accurate and straightforward method of determining the electric-dipole moment μ between multi-fold degenerate levels. The point is to remove the degeneracy by applying an external magnetic field with the aid of the Zeeman effect and, then, to realize a degeneration free coherent excitation. As a result, we can observe the Rabi-oscillations explicitly in the excitation υs. laser-fluence curves. The present method provides a reliable basis of experimental determination of μ. As an example, we applied the present method to a transition to 0-17,362 cm -1 level in uranium and obtained the value μ=0.86±0.06 (Debye). (author)
Polyakov loop fluctuations in the presence of external fields
Lo, Pok Man; Szymański, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2018-06-01
We study the implications of the spontaneous and explicit Z(3) center symmetry breaking for the Polyakov loop susceptibilities. To this end, ratios of the susceptibilities of the real and imaginary parts, as well as of the modulus of the Polyakov loop are computed within an effective model using a color group integration scheme. We show that the essential features of the lattice QCD results of these ratios can be successfully captured by the effective approach. Furthermore we discuss a novel scaling relation in one of these ratios involving the explicit breaking field, volume, and temperature.
κ-deformed Dirac oscillator in an external magnetic field
Chargui, Y.; Dhahbi, A.; Cherif, B.
2018-04-01
We study the solutions of the (2 + 1)-dimensional κ-deformed Dirac oscillator in the presence of a constant transverse magnetic field. We demonstrate how the deformation parameter affects the energy eigenvalues of the system and the corresponding eigenfunctions. Our findings suggest that this system could be used to detect experimentally the effect of the deformation. We also show that the hidden supersymmetry of the non-deformed system reduces to a hidden pseudo-supersymmetry having the same algebraic structure as a result of the κ-deformation.
Properties of color-flavor locked strange quark matter in an external strong magnetic field
Institute of Scientific and Technical Information of China (English)
崔帅帅; 彭光雄; 陆振烟; 彭程; 徐建峰
2015-01-01
The properties of color-flavor locked strange quark matter in an external strong magnetic field are investigated in a quark model with density-dependent quark masses. Parameters are determined by stability arguments. It is found that the minimum energy per baryon of the color-flavor locked (MCFL) matter decreases with increasing magnetic-field strength in a certain range, which makes MCFL matter more stable than other phases within a proper magnitude of the external magnetic field. However, if the energy of the field itself is added, the total energy per baryon will increase.
Particle-in-cell simulations of plasma opening switch with external magnetic field
International Nuclear Information System (INIS)
Chen Yulan; Zeng Zhengzhong; Sun Fengju
2003-01-01
Fully electromagnetic particle-in-cell simulations are performed to study the effects of an external magnetic field on coaxial plasma opening switch (POS). The simulation results show that POS opening performance can be significantly improved only when external longitudinal magnetic field coils are placed at the cathode side, and an additional azimuthal magnetic field is effective whether the central electrode is of positive or negative polarity. Voltage multiplication coefficient K rises with the additional magnetic field increasing till the electron current is completely magnetically insulated during the opening of POS
Jin, Jingyu; Song, Dongxing; Geng, Jiafeng; Jing, Dengwei
2018-02-01
Ferrofluids can exhibit the anisotropic thermodynamic properties under magnetic fields. The dynamic optical properties of ferrofluids in the presence of magnetic fields are of particular interest due to their potential application as various optical devices. Although time-dependent light scattering by ferrofluids have been extensively studied, the effect of wavelength of incident light have been rarely considered. Here, for the first time, we investigated both the time- and wavelength-dependent light scattering in water based ferrofluids containing Fe3O4 nanoparticles under an external magnetic field. The field-induced response behavior of the prepared ferrofluid samples was determined and verified first by thermal conductivity measurement and numerical simulation. Double-beam UV-Vis spectrophotometer was employed to record the temporal evolution of transmitted intensity of incident light of various wavelengths passing through the ferrofluid sample and propagating parallel to the applied field. As expected, the light intensity decreases to a certain value right after the field is turned on due to the thermal fluctuation induced disorder inside the flexible particle chains. Then the light intensity further decreases with time until the appearance of a minimum at time τ0 followed by an inversed increase before finally reaches equilibrium at a particular time. More importantly, the characteristic inversion time τ0 was found to follow a power law increase with the wavelength of incident light (τ0 ∼ λα, where α = 2.07). A quantitative explanation for the wavelength dependence of characteristic time was proposed based on the finite-difference time-domain (FDTD) method. The simulation results are in good agreement with our experimental observations. The time-dependent light scattering in ferrofluids under different incident wavelengths was rationalized by considering both the coarsening process of the particle chains and the occurrence of resonance within the
External electric field driving the ultra-low thermal conductivity of silicene.
Qin, Guangzhao; Qin, Zhenzhen; Yue, Sheng-Ying; Yan, Qing-Bo; Hu, Ming
2017-06-01
The manipulation of thermal transport is in increasing demand as heat transfer plays a critical role in a wide range of practical applications, such as efficient heat dissipation in nanoelectronics and heat conduction hindering in solid-state thermoelectrics. It is well established that the thermal transport in semiconductors and insulators (phonons) can be effectively modulated by structure engineering or materials processing. However, almost all the existing approaches involve altering the original atomic structure of materials, which would be hindered due to either irreversible structure change or limited tunability of thermal conductivity. Motivated by the inherent relationship between phonon behavior and interatomic electrostatic interaction, we comprehensively investigate the effect of external electric field, a widely used gating technique in modern electronics, on the lattice thermal conductivity (κ). Taking two-dimensional silicon (silicene) as a model, we demonstrate that by applying an electric field (E z = 0.5 V Å -1 ) the κ of silicene can be reduced to a record low value of 0.091 W m -1 K -1 , which is more than two orders of magnitude lower than that without an electric field (19.21 W m -1 K -1 ) and is even comparable to that of the best thermal insulation materials. Fundamental insights are gained from observing the electronic structures. With an electric field applied, due to the screened potential resulting from the redistributed charge density, the interactions between silicon atoms are renormalized, leading to phonon renormalization and the modulation of phonon anharmonicity through electron-phonon coupling. Our study paves the way for robustly tuning phonon transport in materials without altering the atomic structure, and would have significant impact on emerging applications, such as thermal management, nanoelectronics and thermoelectrics.
SIMULATION OF SYNCHRONIZATION OF NONLINEAR OSCILLATORS BY THE EXTERNAL FIELD
Directory of Open Access Journals (Sweden)
V. M. Kuklin
2017-05-01
Full Text Available In this paper, the self-consistent model was considered, consisting of a system of oscillators, the coupling between them was assumed to be integral (due to the fields formed as a result of their co-radiation. With the help of this model, the features of synchronization by waves of finite amplitude of a system of oscillators were refined, the initial phase values of which are random. The effect of nonlinearity, in particular, due to the change in the mass of the oscillator due to relativistic effects, was taken into account. It was shown that the nonlinearity does not violate the nature of the energy exchange between the wave and the oscillator system, leading only to a slight decrease in the efficiency of such an exchange.
International Nuclear Information System (INIS)
Girka, V O; Puzyrkov, S Yu; Shpagina, V O; Shpagina, L O
2012-01-01
The application of an external alternating electric field in the range of ion cyclotron frequencies is a well-known method for the excitation of surface electromagnetic waves. The present paper is devoted to the development of a kinetic theory of parametric excitation of these eigenwaves propagating across an external steady magnetic field along the plasma boundary at the second harmonic of the ion cyclotron frequency. Unlike previous papers on this subject, parametric excitation of surface ion cyclotron X-modes is studied here under the condition of non-monochromaticity of an external alternating electric field. Non-monochromaticity of the external alternating electric field is modeled by the superposition of two uniform and monochromatic electric fields with different amplitudes and frequencies. The nonlinear boundary condition is formulated for a tangential magnetic field of the studied surface waves. An infinite set of equations for the harmonics of a tangential electric field is solved using the approximation of the wave packet consisting of the main harmonic and two nearest satellite harmonics. Two different regimes of instability have been considered. If one of the applied generators has an operation frequency that is close to the ion cyclotron frequency, then changing the amplitude of the second generator allows one to enhance the growth rate of the parametric instability or to diminish it. But if the operation frequencies of the both generators are not close to the ion cyclotron frequency, then changing the amplitudes of their fields allows one to decrease the growth rate of the instability and even to suppress its development. The problem is studied both analytically and numerically.
Vibrations of a molecule in an external force field.
Okabayashi, Norio; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J
2018-05-01
The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.
Phase-Field simulation of phase decomposition in Fe-Cr-Co alloy under an external magnetic field
Koyama, Toshiyuki; Onodera, Hidehiro
2004-07-01
Phase decomposition during isothermal aging of a Fe-Cr-Co ternary alloy under an external magnetic field is simulated based on the phase-field method. In this simulation, since the Gibbs energy available from the thermodynamic CALPHAD database of the equilibrium phase diagram is employed as a chemical free energy, the present calculation provides the quantitative microstructure changes directly linked to the phase diagram. The simulated microstructure evolution demonstrates that the lamella like microstructure elongated along the external magnetic field is evolved with the progress of aging. The morphological and temporal developments of the simulated microstructures are in good agreement with experimental results that have been obtained for this alloy system.
Radiation effects on relativistic electrons in strong external fields
International Nuclear Information System (INIS)
Iqbal, Khalid
2013-01-01
The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.
Green functions for an electron in an external electromagnetic field
International Nuclear Information System (INIS)
Khokhlov, I.A.
1982-01-01
New representations permitting to considerably simplify their calculation have been obtained for the Green functions of electron. These representations are based on an idea, used in the quantum electrodynamics formulation in variables of a zero plane, of writing down the Dirac field operator psi through its part psisub((-)). It is shown that T product of psi and psi + operators can be expressed through T product of their parts psisub((-)) and psisub((-))sup(+). At that, if the anticommutator of the operators psisub((-)) and psisub((-))sup(+) satisfies the initial condition, the operations of the chronological ordering of the operator product psi(-) and psisub((-))sup(+) with respect to variable x 0 and variable u 0 playing a part of time in the formulation of the zero plane (Pu 0 product) coincide. In correspondence with this fact all the Green functions of electron can be expressed depending on the convenience of concrete calculations through vacuum averages of either from T product or from Pu 0 product of psisub((-)) and psisub((-))sup(+) operators only [ru
Plasma oscillations in a stationary external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ciulli, S [Joint Institute for Nuclear Research, Dubna, Moscow (USSR); Micu, M [Institute of Atomic Physics, Bucharest (Romania)
1958-07-01
The stationary distribution function as well as the small deviations from the stationary state of a gas discharge using the Boltzmann equation is studied as a basis for the calculations. The stationary problem which is discussed corresponds to plasma with cylindrical symmetry. It leads to a Maxwell velocity distribution and to a spatial distribution function which has the asymptotic form 1/r{sup 4}. The plasma perturbations are estimated by the deviations of the first order moments from their Maxwell values. A homogeneous system of differential equations is derived for the Fourier amplitudes of the magnetic field and their asymptotic form is studied. The dispersion relation is obtained by joining smoothly a solution regular at the origin with the regular asymptotic one.A number of idealizations and approximations have been made in the present analysis which limit the utility of the formulae obtained. For example, if the collision term is included in the Boltzmann equation additional quantities appear in the final results, i.e., viscosity, thermal and electrical conductivity, etc. Furthermore, the finite dimensions of linear discharge tubes or the toroidal form of some discharges strongly modify the present results. Taking into account these additional effects, exact solutions are to be obtained numerically for different values of the experimental parameters.
International Nuclear Information System (INIS)
De Los Santos Valladares, L.; Reeve, R.M.; Mitrelias, T.; Langford, R.M.; Barnes, C.H.W.; Bustamante Dominguez, A.; Aguiar, J. Albino; Majima, Y.
2013-01-01
In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C 8 H 18 S 2 ), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution. (author)
Energy Technology Data Exchange (ETDEWEB)
De Los Santos Valladares, L.; Reeve, R.M.; Mitrelias, T.; Langford, R.M.; Barnes, C.H.W., E-mail: luis_d_v@hotmail.com [Cavendish Laboratory, Department of Physics, University of Cambridge Materials and Structures Laboratory (United Kingdom); Bustamante Dominguez, A. [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Lima (Peru); Aguiar, J. Albino [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Fisica; Azuma, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, Midori-ku, Yokohama (Japan); Majima, Y. [CREST, Japan Science and Technology Agency (JST), Midori-ku, Yokohama (Japan)
2013-08-15
In this work, we report the mechanical reorientation of thiolated ferromagnetic microspheres bridging a pair of gold electrodes under an external magnetic field. When an external magnetic field (7 kG) is applied during the measurement of the current-voltage characteristics of a carboxyl ferromagnetic microsphere (4 μm diameter) attached to two gold electrodes by self-assembled monolayers (SAMs) of octane dithiol (C{sub 8}H{sub 18}S{sub 2}), the current signal is distorted. Rather than due to magnetoresistance, this effect is caused by a mechanical reorientation of the ferromagnetic sphere, which alters the number of SAMs between the sphere and the electrodes and therefore affects conduction. To study the physical reorientation of the ferromagnetic particles, we measure their hysteresis loops while suspended in a liquid solution. (author)
Energy Technology Data Exchange (ETDEWEB)
Szpunar, C.B.; Gillette, J.L.
1993-03-01
This report examines the concept of environmental externality. It discusses various factors -- the atmospheric transformations, relationship of point-source emissions to ambient air quality, dose-response relationships, applicable cause-and-effect principles, and risk and valuation research -- that are considered by a number of state utilities when they apply the environmental externality concept to energy resource planning. It describes a methodology developed by Argonne National Laboratory for general use in resource planning, in combination with traditional methods that consider the cost of electricity production. Finally, it shows how the methodology can be applied in Indonesia, Thailand, and Taiwan to potential coal-fired power plant projects that will make use of clean coal technologies.
Extensional flow of nematic liquid crystal with an applied electric field
CUMMINGS, L. J.; LOW, J.; MYERS, T. G.
2013-01-01
Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified 'Trouton ratio'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.
Extensional flow of nematic liquid crystal with an applied electric field
CUMMINGS, L. J.
2013-10-17
Systematic asymptotic methods are used to formulate a model for the extensional flow of a thin sheet of nematic liquid crystal. With no external body forces applied, the model is found to be equivalent to the so-called Trouton model for Newtonian sheets (and fibres), albeit with a modified \\'Trouton ratio\\'. However, with a symmetry-breaking electric field gradient applied, behaviour deviates from the Newtonian case, and the sheet can undergo finite-time breakup if a suitable destabilizing field is applied. Some simple exact solutions are presented to illustrate the results in certain idealized limits, as well as sample numerical results to the full model equations. Copyright © Cambridge University Press 2013.
International Nuclear Information System (INIS)
Restrepo, R.L.; Giraldo, E.; Miranda, G.L.; Ospina, W.; Duque, C.A.
2009-01-01
The combined effects of the hydrostatic pressure and in-growth direction applied electric field on the binding energy of hydrogenic shallow-donor impurity states in parallel-coupled-GaAs-Ga 1-x Al x As-quantum-well wires are calculated using a variational procedure within the effective-mass and parabolic-band approximations. Results are obtained for several dimensions of the structure, shallow-donor impurity positions, hydrostatic pressure, and applied electric field. Our results suggest that external inputs such us hydrostatic pressure and in-growth direction electric field are two useful tools in order to modify the binding energy of a donor impurity in parallel-coupled-quantum-well wires.
International Nuclear Information System (INIS)
Shapiro, B.Y.
1992-01-01
The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)
Controlling three-dimensional vortices using multiple and moving external fields
Das, Nirmali Prabha; Dutta, Sumana
2017-08-01
Spirals or scroll wave activities in cardiac tissues are the cause of lethal arrhythmias. The external control of these waves is thus of prime interest to scientists and physicians. In this article, we demonstrate the spatial control of scroll waves by using external electric fields and thermal gradients in experiments with the Belousov-Zhabotinsky reaction. We show that a scroll ring can be made to trace cyclic trajectories under a rotating electric field. Application of a thermal gradient in addition to the electric field deflects the motion and changes the nature of the trajectory. Our experimental results are analyzed and corroborated by numerical simulations based on an excitable reaction diffusion model.
Owens, Alec; Yachmenev, Andrey
2018-03-01
In this paper, a general variational approach for computing the rovibrational dynamics of polyatomic molecules in the presence of external electric fields is presented. Highly accurate, full-dimensional variational calculations provide a basis of field-free rovibrational states for evaluating the rovibrational matrix elements of high-rank Cartesian tensor operators and for solving the time-dependent Schrödinger equation. The effect of the external electric field is treated as a multipole moment expansion truncated at the second hyperpolarizability interaction term. Our fully numerical and computationally efficient method has been implemented in a new program, RichMol, which can simulate the effects of multiple external fields of arbitrary strength, polarization, pulse shape, and duration. Illustrative calculations of two-color orientation and rotational excitation with an optical centrifuge of NH3 are discussed.
Hubbard pair cluster in the external fields. Studies of the magnetic properties
Balcerzak, T.; Szałowski, K.
2018-06-01
The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.
Quantum effects in external fields determined by potentials with point-like support
International Nuclear Information System (INIS)
Mamev, S.G.; Trunov, N.N.
1982-01-01
Exact expressions are obtained for the vacuum expectation values of the energy-momentum tensor of a scalar field in external potentials of the delta-function type. The conditions for the onset of the vacuum instability are found and the properties of the resulting condensate are studied. Particle production in the field of a nonstationary delta potential is studied
Processes of arbitrary order in quantum electrodynamics with a pair-creating external field
International Nuclear Information System (INIS)
Gitman, D.M.
1977-01-01
Dyson's perturbation theory analogue for quantum electrodynamical processes with arbitrary initial and final states in an external field creating pairs is discussed. The interaction with the field is taken into account exactly. The possibility of using Feynman diagrams, together with modified correspondence rules, for the representation of the above mentioned processes is demonstrated. (author)
International Nuclear Information System (INIS)
Goncalves, Bruno; Dias Junior, Mario Marcio
2013-01-01
Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S μ . The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S 0 is constant and is the unique non-vanishing term of S μ . This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)
Energy Technology Data Exchange (ETDEWEB)
Huang, Wung-Hong; Du, Yi-Hsien [Department of Physics, National Cheng Kung University,No. 1, University Road, Tainan City 701, Taiwan (China)
2017-02-07
We apply the transformation of mixing azimuthal and internal coordinate or mixing time and internal coordinate to a stack of N black M-branes to find the Melvin spacetime of a stack of N black D-branes with magnetic or electric flux in string theory, after the Kaluza-Klein reduction. We slightly extend previous formulas to investigate the external magnetic and electric effects on the butterfly effect and holographic mutual information. It shows that the Melvin fields do not modify the scrambling time and will enhance the mutual information. In addition, we also T-dualize and twist a stack of N black D-branes to find a Melvin Universe supported by the flux of the NSNS b-field, which describes a non-comutative spacetime. It also shows that the spatial noncommutativity does not modify the scrambling time and will enhance the mutual information. We also study the corrected mutual information in the backreaction geometry due to the shock wave in our three model spacetimes.
International Nuclear Information System (INIS)
Liu Guozhi
2003-01-01
The energy spectrum of the electron beam generated by low-impedance diode and the influence of external magnetic field on the impedance of diode are studied numerically in this paper. The results show that the beam generated by the diode has an energy spread, even with constant applied voltage. Additionally, external magnetic field has great but reverse influence on the impedance of low-impedance diode, which is, according to the author's analysis, the result of the change of the electron's track due to external magnetic field. If the beam current is less than the critical one for self-pinch, the impedance will be constant with the variation of external magnetic field
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
Energy Technology Data Exchange (ETDEWEB)
Wu, Xufen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, 230026 (China); Wang, Yougang [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Feix, Martin [CNRS, UMR 7095 and UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Zhao, HongSheng, E-mail: xufenwu@ustc.edu.cn [School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom)
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.
Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire
International Nuclear Information System (INIS)
Maiti, Santanu K.
2015-01-01
In the present work, the possibility of regulating local magnetic field in a quantum ring is investigated theoretically. The ring is coupled to a quantum wire and subjected to an in-plane electric field. Under a finite bias voltage across the wire a net circulating current is established in the ring which produces a strong magnetic field at its centre. This magnetic field can be tuned externally in a wide range by regulating the in-plane electric field, and thus, our present system can be utilized to control magnetic field at a specific region. The feasibility of this quantum system in designing spin-based quantum devices is also analyzed
International Nuclear Information System (INIS)
Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu
2016-01-01
Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)
Study of Dynamic Membrane Behavior in Applied DC Electric Field
Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad
2017-11-01
Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.
Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field
International Nuclear Information System (INIS)
Mostepanenko, V.M.; Sokolov, I.Yu.
1988-01-01
Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained
International Nuclear Information System (INIS)
Harrington, J.F.; Birchall, D.J.
2007-04-01
In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m 3 and 1.61 Mg/m 3 was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor α ranged from 0.86 and 0.92. Data exhibited a general trend of increasing α with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen, suggesting some
Energy Technology Data Exchange (ETDEWEB)
Harrington, J.F.; Birchall, D.J. [British Geological Survey, Chemical and Biological Hazards Programme, Kingsley Dunham Centre (United Kingdom)
2007-04-15
In the current Swedish repository design concept, composite copper and steel canisters containing spent nuclear fuel will be placed in large diameter disposal boreholes drilled into the floor of the repository tunnels. The space around each canister will be filled with pre-compacted bentonite which over time will draw in the surrounding ground water and swell, closing up any construction joints. However, for the purposes of performance assessment, it is necessary to consider the effect of glacial loading of a future repository and its impact on the mechanical behaviour of the bentonite, in particular, the sensitivity of total stress to changes in porewater pressure (backpressure). Two experimental histories have been undertaken using a custom-designed constant volume and radial flow (CVRF) apparatus. In both tests backpressure was varied in a number of incremental and decremental cycles while total stress, porewater pressure and volumetric flow rate were continuously monitored. The swelling pressure of the buffer clay at dry densities of 1.8 Mg/m{sup 3} and 1.61 Mg/m{sup 3} was determined to be around 5.5 MPa and 7.2 MPa respectively. For initial ascending porewater pressure histories the average proportionality factor {alpha} ranged from 0.86 and 0.92. Data exhibited a general trend of increasing {alpha} with increasing backpressure. In test Mx80-11 this was supported by analysis of the water inflow data which indicated a reduction in system compressibility. Asymptotic values of porewater pressure within the clay are in good agreement with externally applied backpressure values. Inspection of data provides no evidence for the development of hydraulic thresholds within the clay, subject to the boundary conditions of this test geometry. Analysis of the stress data demonstrates significant hysteresis between ascending and descending porewater pressure histories. The amount of hysteresis appears to be linked to the magnitude of the backpressure applied to the specimen
Self-assembly of colloidal bands driven by a periodic external field
Energy Technology Data Exchange (ETDEWEB)
Nunes, André S.; Araújo, Nuno A. M., E-mail: nmaraujo@fc.ul.pt; Telo da Gama, Margarida M. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa (Portugal)
2016-01-21
We study the formation of bands of colloidal particles driven by periodic external fields. Using Brownian dynamics, we determine the dependence of the band width on the strength of the particle interactions and on the intensity and periodicity of the field. We also investigate the switching (field-on) dynamics and the relaxation times as a function of the system parameters. The observed scaling relations were analyzed using a simple dynamic density-functional theory of fluids.
Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming
2018-03-01
Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.
Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys
Degmová, J.; Sitek, J.
2010-07-01
Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.
Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)
2015-03-01
We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.
Problems of an external field in non-Abelian gauge theory
International Nuclear Information System (INIS)
Gavrilov, S.P.; Gitman, D.M.
1992-01-01
In the Abelian gauge field theory QED the principal problems connected with an external field are the problems of exact keeping of an external field in a perturbation theory and appearing in this case the peculiarities of the theory such as the instability of the vacuum and so on. There is the problem of an external field introduction or its interpretation side by side with this problem in Non-Abelian gauge theory. The solution of both these problems in Non-Abelian theory can be considered by analogy with QED. In the present paper, the authors discuss on the example of the spontaneously broken SU(2) x U(1) electroweak theory both the problems of an external field introduction and the problem of exact keeping of this field in the perturbation theory. The Langrangian of this theory in covariant gauge is chosen in the BRST invariant form. In spite of concrete character of the theory studied, the method can be extended to any gauge theory
New foundations for applied electromagnetics the spatial structure of fields
Mikki, Said
2016-01-01
This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.
DEFF Research Database (Denmark)
Moretto, T.; Vennerstrøm, Susanne; Olsen, Nils
2006-01-01
simulated external contributions relevant for internal field modeling. These have proven very valuable for the design and planning of the up-coming multi-satellite Swarm mission. In addition, a real event simulation was carried out for a moderately active time interval when observations from the Orsted...... it consistently underestimates the dayside region 2 currents and overestimates the horizontal ionospheric closure currents in the dayside polar cap. Furthermore, with this example we illustrate the great benefit of utilizing the global model for the interpretation of Swarm external field observations and......, likewise, the potential of using Swarm measurements to test and improve the global model....
Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields
International Nuclear Information System (INIS)
Yu Zhaoxian; Jiao Zhiyong
2004-01-01
In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior
Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields
Yu, Zhao-xian; Jiao, Zhi-yong
2003-01-01
In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...
Energy Technology Data Exchange (ETDEWEB)
Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)
2014-10-06
X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.
Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field
Energy Technology Data Exchange (ETDEWEB)
Kaur, Sumandeep; Srivastava, Sunita; Tankeshwar, K. [Department of Physics, Panjab University, Chandigarh-160014 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India 151001 (India)
2016-05-23
We report the electronic properties of electrically gated heterostructures of black and blue phosphorene with graphene. The heterostructure of blue phosphorene with graphene is energetically more favorable than black phospherene/graphene. However, both are bonded by weak interlayer interactions. Graphene induces the Dirac cone character in both heterostructure which shows tunabilities with external electric field. It is found that Dirac cone get shifted depending on the polarity of external electric field that results into the so called self induced p-type or n-type doping effect. These features have importance in the fabrication of nano-electronic devices based on the phosphorene/graphene heterostructures.
Applying field mapping refractive beam shapers to improve holographic techniques
Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim
2012-03-01
Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.
Improvement of the density limit with an external helical field on JFT-2M tokamak
International Nuclear Information System (INIS)
Tamai, H.; Shoji, T.; Nagashima, K.; Miura, Y.; Yamauchi, T.; Ogawa, H.; Kawashima, H.; Matsuda, T.; Mori, M.; Ida, K.; Ohdachi, S.
1995-01-01
The density limit is increased by the application of an external helical field in the JFT-2M tokamak. The effect of the magnetic stochasticity due to the external field is investigated to study the mechanism of the improved density limit related to the edge plasma behaviour. The improvement is correlated with the retardation of the increase in the plasma inductance. At the improved density limit, local radiation loss is modified by the helical field, in which that from the vicinity of separatrix X-point is remarkably reduced, while that from outboard edge is slightly increased. The formation of a positive radial electric field at the plasma edge is also observed in the presence of the helical field. ((orig.))
WEYKAMP, CW; PENDERS, TJ; MUSKIET, FAJ; VANDERSLIK, W
Stable lyophilized ethylenediaminetetra-acetic acid (EDTA)-blood haemolysates were applied in an external quality assurance programme (SKZL, The Netherlands) for glycohaemoglobin assays in 101 laboratories using 12 methods. The mean intralaboratory day-to-day coefficient of variation (CV),
Energy Technology Data Exchange (ETDEWEB)
Cao, Derang; Zhu, Zengtai; Feng, Hongmei; Pan, Lining; Cheng, Xiaohong; Wang, Zhenkun [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Qingfang, E-mail: liuqf@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2016-10-15
FeCo films were prepared by a simple and convenient electrodeposition method. An external magnetic field was applied to the film to induce magnetic anisotropy during deposition. Comparing with the previous work, the angle between the direction of applied magnetic field and film plane is changed from in-plane to out-plane. The influence of the applied magnetic field on magnetic properties was investigated. As a result, it can be found that the in-plane anisotropy is driven by the in-plane component of the magnetic field applied during growth. In addition, the result can also be confirmed by the dynamic magnetic anisotropy of the film obtained by vector network analyzer ferromagnetic resonance technique. - Highlights: • FeCo films were prepared by electrodeposition method. • An external magnetic field was applied to induce anisotropy during deposition. • The direction of applied magnetic field is changed from in-plane to out-plane. • The magnetic properties of films were investigated by vector network analyzer. • The in-plane anisotropy is driven by the in-plane component of the field.
Deflection modeling of permanent magnet spherical chains in the presence of external magnetic fields
Energy Technology Data Exchange (ETDEWEB)
O' Donoghue, Kilian, E-mail: kilianod@rennes.ucc.ie; Cantillon-Murphy, Pádraig, E-mail: padraig@alum.mit.edu
2013-10-15
This work examines the interaction of permanently magnetised spheres in the presence of external magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in 4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields, neglecting gravitational effects, with good agreement between the theoretical model and experimental results. This spherical chain structure could be used as an end effector for catheters as a deflection mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation around tight corners in endoluminal minimally invasive clinical applications. - Highlights: • We model the interaction of magnetic spheres with uniform external fields. • Analytical models are presented for two spheres interacting with an external field. • Numerical methods are used to model the interaction of N spheres in chain formations. • These models are tested experimentally. • We report good agreement between experiment and theory.
Influence of periodic external fields in multiagent models with language dynamics
Palombi, Filippo; Ferriani, Stefano; Toti, Simona
2017-12-01
We investigate large-scale effects induced by external fields, phenomenologically interpreted as mass media, in multiagent models evolving with the microscopic dynamics of the binary naming game. In particular, we show that a single external field, broadcasting information at regular time intervals, can reverse the majority opinion of the population, provided the frequency and the effectiveness of the sent messages lie above well-defined thresholds. We study the phase structure of the model in the mean field approximation and in numerical simulations with several network topologies. We also investigate the influence on the agent dynamics of two competing external fields, periodically broadcasting different messages. In finite regions of the parameter space we observe periodic equilibrium states in which the average opinion densities are reversed with respect to naive expectations. Such equilibria occur in two cases: (i) when the frequencies of the competing messages are different but close to each other; (ii) when the frequencies are equal and the relative time shift of the messages does not exceed half a period. We interpret the observed phenomena as a result of the interplay between the external fields and the internal dynamics of the agents and conclude that, depending on the model parameters, the naming game is consistent with scenarios of first- or second-mover advantage (to borrow an expression from the jargon of business strategy).
International Nuclear Information System (INIS)
Bojko, V.S.; Lazareva, M.B.; Starodubov, Ya.D.; Chernyj, O.V.; Gorbatenko, V.M.
1992-01-01
The effect of external magnetic fields on the stress at which the critical current starts to degrade (the degradation threshold σ 0 e ) under mechanical loads in superconducting Nb-Ti alloys is studied and a possible mechanism of realization of the effect observed is proposed.It is assumed that additional stresses on the transformation dislocation from the external magnetic fields are beneficial for the growth of martensite inclusions whose superconducting parameters (critical current density j k and critical temperature T k ) are lower then those in the initial material.The degradation threshold is studied experimentally in external magnetic fields H up to 7 T.The linear dependence σ 0 e (H) is observed.It is shown that external magnetic fields play an important role in the critical current degradation at the starting stages of deformation.This fact supports the assumption that the degradation of superconducting parameters under loading are due to the phenomenon of superelasticity,i.e. a reversible load-induced change in the martensite inclusions sizes rather than the reversible mechanical twinning.The results obtained are thought to be important to estimating superconducting solenoid stability in a wide range of magnetic fields
Deflection modeling of permanent magnet spherical chains in the presence of external magnetic fields
International Nuclear Information System (INIS)
O'Donoghue, Kilian; Cantillon-Murphy, Pádraig
2013-01-01
This work examines the interaction of permanently magnetised spheres in the presence of external magnetic fields at the millimetre scale. Static chain formation and deflection models are described for N spheres in the presence of an external magnetic field. Analytical models are presented for the two sphere case by neglecting the effects of magnetocrystalline anisotropy while details of a numerical approach to solve a chain of N spheres are shown. The model is experimentally validated using chain deflections in 4.5 mm diameter spheres in groups of 2, 3 and 4 magnets in the presence of uniform magnetic fields, neglecting gravitational effects, with good agreement between the theoretical model and experimental results. This spherical chain structure could be used as an end effector for catheters as a deflection mechanism for magnetic guidance. The spherical point contacts result in large deflections for navigation around tight corners in endoluminal minimally invasive clinical applications. - Highlights: • We model the interaction of magnetic spheres with uniform external fields. • Analytical models are presented for two spheres interacting with an external field. • Numerical methods are used to model the interaction of N spheres in chain formations. • These models are tested experimentally. • We report good agreement between experiment and theory
Influence of external 3D magnetic fields on helical equilibrium and plasma flow in RFX-mod
International Nuclear Information System (INIS)
Piovesan, P; Bonfiglio, D; Bonomo, F; Cappello, S; Carraro, L; Cavazzana, R; Gobbin, M; Marrelli, L; Martin, P; Martines, E; Momo, B; Piron, L; Puiatti, M E; Soppelsa, A; Valisa, M; Zanca, P; Zaniol, B
2011-01-01
A spontaneous transition to a helical equilibrium with an electron internal transport barrier is observed in RFX-mod as the plasma current is raised above 1 MA (Lorenzini R et al 2009 Nature Phys. 5 570). The helical magnetic equilibrium can be controlled with external three-dimensional (3D) magnetic fields applied by 192 active coils, providing proper helical boundary conditions either rotating or static. The persistence of the helical equilibrium is strongly increased in this way. A slight reduction in the energy confinement time of about 15% is observed, likely due to the increased plasma-wall interaction associated with the finite radial magnetic field imposed at the edge. A global helical flow develops in these states and is expected to play a role in the helical self-organization. In particular, its shear may contribute to the ITB formation and is observed to increase with the externally applied radial field. The possible origins of this flow, from nonlinear visco-resistive magnetohydrodynamic (MHD) and/or ambipolar electric fields, will be discussed.
Structural and morphological changes in P3HT thin film transistors applying an electric field
Energy Technology Data Exchange (ETDEWEB)
Tiwari, Deepak Kumar; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany); Flesch, Heinz; Resel, Roland [University of Siegen (Germany); Graz University of Technology (Austria)
2010-07-01
We report on electric field dependent crystalline structure and morphological changes of drop casting and spin coated poly(3-hexylthiophene) (P3HT) thin films. In order to probe the morphological changes induced by an applied electric field the samples were covered with thin source/drain electrodes separated by a small channel of 2 mm width. A series of x-ray reflectivity, X-ray grazing incidence out-of-plane and in-plane scans have been performed as function of the applied electric voltage. The (100) peak shows a decrease in intensity with increase of the applied electric field. This might be caused by Joule heating and the creation of current induced defects in the P3HT film. On other hand the (020) peak intensity shows much stronger changes with applied field. Considering the *-* stacking direction the measured effect can be directly related to a change in the electric transport. The observed changes in structure are reversible and the current-voltage cycle can be repeated several times. For X-ray reflectivity major changes have been found close to critical angle of total external reflection indicating the film becomes less dense and increases in surface roughness with increase of the voltage. This change in surface behaviour could be confirmed by in-situ AFM measurements.
DEFF Research Database (Denmark)
Olsen, Nils; Sabaka, T.J.; Lowes, F.
2005-01-01
When deriving spherical harmonic models of the Earth's magnetic field, low-degree external field contributions are traditionally considered by assuming that their expansion coefficient q(1)(0) varies linearly with the D-st-index, while induced contributions are considered assuming a constant ratio...... Q(1) of induced to external coefficients. A value of Q(1) = 0.27 was found from Magsat data and has been used by several authors when deriving recent field models from Orsted and CHAMP data. We describe a new approach that considers external and induced field based on a separation of D-st = E-st + I......-st into external (E-st) and induced (I-st) parts using a 1D model of mantle conductivity. The temporal behavior of q(1)(0) and of the corresponding induced coefficient are parameterized by E-st and I-st, respectively. In addition, we account for baseline-instabilities of D-st by estimating a value of q(1...
The influence of applied internal and external rotation on the pivot shift phenomenon.
Kopf, Sebastian; Musahl, Volker; Perka, Carsten; Kauert, Ralf; Hoburg, Arnd; Becker, Roland
2017-04-01
The pivot shift test is performed in different techniques and the rotation of the tibia seems to have a significant impact on the amount of the pivot shift phenomenon. It has been hypothesised that external rotation will increase the phenomenon due to less tension at the iliotibial band in knee extension. Twenty-four patients with unilateral anterior cruciate ligament insufficiency were included prospectively. The pivot shift test was performed bilaterally in internal and external tibial rotation under general anaesthesia. Knee motion was captured using a femoral and a tibial inertial sensor. The difference between positive and negative peak values in Euclidean norm of acceleration was calculated to evaluate the amount of the pivot shift phenomenon. The pivot shift phenomenon was significantly increased in patients with ACL insufficiency when the test was performed in external [mean 5.2 ms - 2 (95% CI 4.3-6.0)] compared to internal tibial rotation [mean 4.4 ms - 2 (95% CI 3.5-5.4)] (p = 0.002). In healthy, contralateral knees did not show any difference between external [mean 4.0 ms - 2 (95% CI 3.3-4.7)] and internal tibial rotation [mean 4.0 ms - 2 (95% CI 3.4-4.6)] (ns). The pivot shift phenomenon was increased with external rotation in ACL-insufficient knees, and therefore, one should perform the pivot shift test, rather, in external rotation to easily evoke the, sometimes difficult to detect, pivot shift phenomenon. I (diagnostic study).
Divertor experiments in a toroidal plasma, with E x B drift due to an applied radial electric field
International Nuclear Information System (INIS)
Strait, E.J.
1979-09-01
It is proposed that the E x B drift arising from an externally applied electric field could be used in a tokamak or other toroidal magnetic plasma confinement device to remove plasma and impurities from the region near the wall and reduce the amount of plasma striking the wall. This could either augment or replace a conventional magnetic field divertor. Among the possible advantages of this scheme are easy external control over the rate of removal of plasma, more rapid removal than the naturally occurring rate in a magnetic divertor, and simplification of construction if the magnetic divertor is eliminated. Results of several related experiments performed in the Wisconsin Levitated Octupole are presented
International Nuclear Information System (INIS)
Dittrich, W.; Bauhoff, W.
1981-01-01
It is re-examined the problem of spontaneous pair creation in an external magnetic field. In contrast to earlier findings, it is shown that pair production does not occur due to the anomalous magnetic moment interaction. However, pairs may be observed in a situation of thermodynamic equilibrium at finite temperatures. (author)
Some remarks on spinor particle pair creation in alternating homogeneous external field
International Nuclear Information System (INIS)
Perelomov, A.M.
1975-01-01
It is shown that the dynamical symmetry group of the problem of spinor particle pair creation in alternating homogeneous external fields is the SO(5) group. The probability of pair creation is given by the modulus square of the matrix element of spinor representation of this group. (Auth.)
Implementability of gauge transformations and quantization of fermions in external fields
International Nuclear Information System (INIS)
Grosse, H.; Karner, G.
1986-01-01
Quantization of fermions in an external soliton field, leading to a representation of the CAR which is inequivalent to the representation connected to the massive Dirac operator, is studied. We determine classes of gauge and axial gauge transformations which can be unitarily implemented. In the latter case quantization conditions for gauge functions are obtained; integers entering can be interpreted as winding numbers. (Author)
DEFF Research Database (Denmark)
Popa, Paula Irina; Pivnenko, Sergey; Breinbjerg, Olav
2015-01-01
,J.M. Nielsen, O. Breinbjerg, 60 GHz Antenna Measurement Setup using a VNA without External Frequency Conversion,36th Annual Symposium of the Antenna Measurement Technique Association ,October 12-17,Tucson, Arizona, 2014]. In this work we extend the validation of this 60 GHz planar near-field (PNF) set...
The effect of internal and external fields of view on visually induced motion sickness
Bos, J.E.; Vries, S.C. de; Emmerik, M.L. van; Groen, E.L.
2010-01-01
Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between
Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field
Directory of Open Access Journals (Sweden)
Bugay А.N.
2015-01-01
Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.
Effect of an External Electric Field on Positronium Formation in Positron Spur
DEFF Research Database (Denmark)
Mogensen, O. E.
1975-01-01
The decrease of positronium (Ps) formation in condensed matter caused by the presence of an external electric field is discussed in terms of the spur reaction model of Ps formation. The rather few experimental results available are shown to be in good agreement with the predictions of the model...
Vacuum energy induced by an external magnetic field in a curved space
International Nuclear Information System (INIS)
Sitenko, Yu.A.; Rakityansky, D.G.
1998-01-01
The asymptotic expansion of the product of an operator raised to an arbitrary power and an exponential function of this operator is obtained. With the aid of this expansion, the density of vacuum energy induced by a static external magnetic field of an Abelian or a non-Abelian nature is expressed in terms of the DeWitt-Seeley-Gilkey coefficients
Nonlinear diffusion in the presence of a time-dependent external electric field
International Nuclear Information System (INIS)
Lima e Silva, T. de; Galvao, R.M.O.
1987-09-01
The influence of a time-dependent external electric field on the nonlinear diffusion process of weakly ionized plasmas is investigated. A new solution of the diffusion equation is obtained for the case when electron-ion collisions can be neglected. (author) [pt
New Cooperative Mechanisms of Low Energy Nuclear Reactions Using Superlow Energy External Fields
Gareev, F. A.; Zhidkova, I. E.
2005-01-01
We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.
International Nuclear Information System (INIS)
Aquino, V.M. de.
1987-01-01
We have analysed, within a semi classical approach, the influence of external electromagnetic field on phase transitions in gauge theories. The critical temperature was calculated for an Abelian case, scalar electrodynamics, and for an non Abelian case, the Weinberg Salam model. (author)
Spin polarization in high density quark matter under a strong external magnetic field
DEFF Research Database (Denmark)
Tsue, Yasuhiko; Da Providência, João; Providência, Constança
2016-01-01
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interact...
International Nuclear Information System (INIS)
Zhokhov, R.N.; Kolmakov, P. B.; Zhukovsky, V.Ch.; Klimenko, K.G.
2016-01-01
In the paper there have been studied Gross-Neveu model in (2+1)-dimensional space-time with one compactified dimension in presence of external magnetic field at finite temperature. Magnetic field is directed along the uncompactified dimension that is along the axis of the cylinder on which the system lives. Chiral symmetry breaking and corresponding phase structure of the model is investigated in the leading order of (1/N) expansion
Polarization operator in quantum electrodynamics with a pair-producing external field
International Nuclear Information System (INIS)
Barashev, V.P.; Shvartsman, Sh.M.; Shabad, A.E.
1986-01-01
Various radiative processes with one-photon initial state are treated in QED with pair-producing external field. It is shown that the probabilities of such processes are expressed in terms of two different polarization operators. For the case of a constant field the polarization operator which is expressed through the so-called causal Green electron function, is calculated. This operator has never been calculated previously. It enters the formula for probability of production of N arbitrary pairs by a photon
Nuclear β decay with a massive neutrino in an external electromagnetic field
International Nuclear Information System (INIS)
Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.
1986-01-01
Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim
2014-01-01
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
Brushed permanent magnet DC MLC motor operation in an external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)
2010-05-15
Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the
Brushed permanent magnet DC MLC motor operation in an external magnetic field.
Yun, J; St Aubin, J; Rathee, S; Fallone, B G
2010-05-01
Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of
Brushed permanent magnet DC MLC motor operation in an external magnetic field
International Nuclear Information System (INIS)
Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.
2010-01-01
Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance
Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan
2014-09-01
An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.
Solvent effects on ion-receptor interactions in the presence of an external electric field.
Novák, Martin; Foroutan-Nejad, Cina; Marek, Radek
2016-11-09
In this work we investigated the influence of an external electric field on the arrangement of the solvent shells around ions interacting with a carbon-based receptor. Our survey reveals that the mechanism of interaction between a monoatomic ion and a π-type ion receptor varies by the variation in the solvent polarity, the nature of the ion, and the strength of the external field. The characteristics of the ion-surface interaction in nonpolar solvents are similar to those observed in a vacuum. However, in water, we identified two mechanisms. Soft and polarizable ions preferentially interact with the π-receptor. In contrast, two bonded states were found for hard ions. A fully solvated ion, weakly interacting with the receptor at weak field, and a strong π-complex at the strong-field regime were identified. An abrupt variation in the potential energy surface (PES) associated with the rearrangement of the solvation shell on the surface of the receptor induced by an external field was observed both in implicit and explicit solvent environments. The electric field at which the solvation shell breaks is proportional to the hardness of the ion as has been suggested recently based on experimental observations.
Improving Keyhole Stability by External Magnetic Field in Full Penetration Laser Welding
Li, Min; Xu, Jiajun; Huang, Yu; Rong, Youmin
2018-05-01
An external magnetic field was used to improve the keyhole stability in full penetration laser welding 316L steel. The increase of magnetic field strength gave rise to a shorter flying time of the spatter, a weaker size and brightness of the spatter, and a larger spreading area of vapor plume. This suggested that the dynamic behavior of the keyhole was stabilized by the external magnetic field. In addition, a stronger magnetic field could result in a more homogeneous distribution of laser energy, which increased the width of the weld zone, and the height of the bottom weld zone from 381 μm (0 mT) to 605 μm (50 mT). Dendrite and cellular crystal near the weld center disappeared, and grain size was refined. The external magnetic field was beneficial to the keyhole stability and improved the joint quality, because the weld pool was stirred by a Lorentz force resulting from the coupling effect of the magnetic field and inner thermocurrent.
Langel, R. A.; Estes, R. H.
1983-01-01
Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.
Applied field test procedures on petroleum release sites
International Nuclear Information System (INIS)
Gilbert, G.; Nichols, L.
1995-01-01
The effective remediation of petroleum contaminated soils and ground water is a significant issue for Williams Pipe Line Co. (Williams): costing $6.8 million in 1994. It is in the best interest, then, for Williams to adopt approaches and apply technologies that will be both cost-effective and comply with regulations. Williams has found the use of soil vapor extraction (SVE) and air sparging (AS) field test procedures at the onset of a petroleum release investigation/remediation accomplish these goals. This paper focuses on the application of AS/SVE as the preferred technology to a specific type of remediation: refined petroleum products. In situ field tests are used prior to designing a full-scale remedial system to first validate or disprove initial assumptions on applicability of the technology. During the field test, remedial system design parameters are also collected to tailor the design and operation of a full-scale system to site specific conditions: minimizing cost and optimizing effectiveness. In situ field tests should be designed and operated to simulate as close as possible the operation of a full-scale remedial system. The procedures of an in situ field test will be presented. The results of numerous field tests and the associated costs will also be evaluated and compared to full-scale remedial systems and total project costs to demonstrate overall effectiveness. There are many advantages of As/SVE technologies over conventional fluid extraction or SVE systems alone. However, the primary advantage is the ability to simultaneously reduce volatile and biodegradable compound concentrations in the phreatic, capillary fringe, and unsaturated zones
International Nuclear Information System (INIS)
Naidis, G V; Walsh, J L
2013-01-01
Atmospheric pressure plasma jets provide a convenient and stable means to transport highly reactive plasma species beyond the confines of the plasma generating electrodes and into the ambient air; such characteristics make them an ideal tool for many emerging plasma processing applications. As the guided streamer exits the jet capillary, the application of an external electric field can significantly influence the dynamics of propagation, potentially providing a means to manipulate the transport of plasma species to a downstream substrate. In this paper the influence of positive and negative voltages pulses applied to an external electrode situated along the axis of streamer propagation is examined experimentally and computationally using a simplified 1.5D model. It is shown that application of a positive voltage pulse to the external electrode reduces the velocity of propagation of the cathode-directed streamer and the application of a negative voltage pulse increases the velocity of propagation. Further to this, the application of high positive voltages to the external electrodes effectively inhibits propagation and results in a significant decrease in the emission intensity from excited states populated by energetic electrons. The results obtained experimentally are compared and contrasted with those from the computational model to uncover the underlying physical mechanisms at play. (paper)
Sheykhi, A.; Abdollahzadeh, Z.
2018-03-01
We investigate the effects of an external magnetic field as well as exponential nonlinear electrodynamics on the properties of s-wave holographic superconductors. Our strategy for this study is the matching method, which is based on the match of the solutions near the horizon and on the boundary at some intermediate point. When the magnetic field is turned off, we obtain the critical temperature as well as the condensation operator and show that the critical exponent is still 1/2, which is the universal value in the mean field theory. Then, we turn on the magnetic field and obtain the critical magnetic field, B c , in order to study its behavior in terms of the temperature. Interestingly enough, we find that in the presence of exponential nonlinear electrodynamics, the critical temperature decreases, while the critical magnetic field increases compared to the Maxwell case. We also observe that the critical magnetic field increases with increasing the nonlinear parameter b.
International Nuclear Information System (INIS)
Ruebenbauer, K.; Sepiol, B.
1985-01-01
Diffraction of X-rays or neutrons can not be used to obtain details about the atomic vibrational anisotropy in the case of amorphous materials due to the lack of well-defined Bragg reflections. Moessbauer spectroscopy can yield some information in such cases, either via the Goldanskii-Karyagin effect or by applying a magnetic field, preferably along the beam axis. The latter method can be applied to the (preferably diamagnetic) samples exhibiting an electric quadrupole interaction (preferably non-axial) and the magnetic field should be chosen in such a way as to produce significant off-diagonal elements in the hyperfine hamiltonian. The external magnetic field method is capable of yielding much more information than the Goldanskii-Karyagin effect in most cases, provided sufficiently strong magnetic fields are available. Some examples of the 129 I Moessbauer spectra have been calculated to show the usefulness and sensitivity of the external magnetic field method. (orig.)
Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field
Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D.
2017-08-01
Topology optimization offers great opportunities to design permanent magnetic systems that have specific external field characteristics. Additive manufacturing of polymer-bonded magnets with an end-user 3D printer can be used to manufacture permanent magnets with structures that had been difficult or impossible to manufacture previously. This work combines these two powerful methods to design and manufacture permanent magnetic systems with specific properties. The topology optimization framework is simple, fast, and accurate. It can also be used for the reverse engineering of permanent magnets in order to find the topology from field measurements. Furthermore, a magnetic system that generates a linear external field above the magnet is presented. With a volume constraint, the amount of magnetic material can be minimized without losing performance. Simulations and measurements of the printed systems show very good agreement.
Dynamic characteristics of non-ideal plasmas in an external high frequency electric field
Energy Technology Data Exchange (ETDEWEB)
Adamyan, V M [Department of Theoretical Physics, I. I. Mechnikov Odessa National University, 65026 Odessa (Ukraine); Djuric, Z [Silvaco Data System, Silvaco Technology Centre, Compass Point, St. Ives PE27 5JL (United Kingdom); Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Sakan, N M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Tkachenko, I M [Department of Applied Mathematics, ETSII, Polytechnic University of Valencia, Camino de Vera s/n, Valencia 46022 (Spain)
2004-07-21
The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N{sub e}, and temperature, T, varied within the following limits: 10{sup 19} {<=} N{sub e} {<=} 10{sup 21} cm{sup -3} and 2 x 10{sup 4} {<=} T {<=} 10{sup 6} K, respectively. The external electric field frequency, f, varied in the range 3 GHz{<=} f {<=} 0.05{omicron}{sub p}, where {omicron}{sub p} is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications.
Dynamic characteristics of non-ideal plasmas in an external high frequency electric field
International Nuclear Information System (INIS)
Adamyan, V M; Djuric, Z; Mihajlov, A A; Sakan, N M; Tkachenko, I M
2004-01-01
The dynamic electric conductivity, dielectric permeability and refraction and reflection coefficients of a completely ionized gaseous plasma in a high frequency (HF) external electric field are calculated. These results are obtained within the self-consistent field approach developed earlier for the static conductivity determination. The plasma electron density, N e , and temperature, T, varied within the following limits: 10 19 ≤ N e ≤ 10 21 cm -3 and 2 x 10 4 ≤ T ≤ 10 6 K, respectively. The external electric field frequency, f, varied in the range 3 GHz≤ f ≤ 0.05ο p , where ο p is the circular plasma frequency. Thus, the upper limit for f is either in the microwave or in the far infrared frequency band. The final results are shown in a parameterized form, suitable for laboratory applications
The influence of an external magnetic axial field on the autocompression of a plasma column
International Nuclear Information System (INIS)
Zoler, D.
1979-01-01
The results of theoretical research on the autocompression of a plasma column under the influence of its own azimuthal field, in the presence of an external magnetic axial field are presented in this paper. Focussed plasma installations are important both for the fundamental researches which can be undertaken on great density and high temperature plasma and for their possible applications since they can be used as sources of neutrons, Roentgen radiations and to obtain heavy ions. The important parameters of plasma have been studied comparatively in the presence or absence of the external magnetic axial field by means of a method of numerical simulation of phenomena from focussed plasma in a complex MHD system taking into account the dissipative and transport phenomena. The numerical data used in chapter 5 are in agreement with the parameters of the experimental installation produced at IFTAR-Bucharest, which have been indicated to us by the members of the focussed plasma staff. (author)
Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.
2017-02-01
In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.
A shear-mode magnetoelectric heterostructure for harvesting external magnetic field energy
He, Wei; Zhang, Jitao; Lu, Yueran; Yang, Aichao; Qu, Chiwen; Yuan, Shuai
2017-03-01
In this paper, a magnetoelectric (ME) energy harvester is presented for scavenging external magnetic field energy. The proposed heterostructure consists of a Terfenol-D plate, a piezoelectric PZT5H plate, a NdFeB magnet, and two concentrators. The external magnetic field is concentrated to the Terfenol-D plate and the PZT5H plate working in shear-mode, which can potentially increase the magnetoelectric response. Experiments have been performed to verify the feasibility of the harvester. Under the magnetic field of 0.6 Oe, the device produces a RMS voltage of 0.53 V at the resonant frequency of 32.6 kHz. The corresponding output power reaches 44.96 μW across a 3.1 kΩ matching resistor.
International Nuclear Information System (INIS)
Zhao, Zixu; Pan, Qiyuan; Jing, Jiliang
2014-01-01
We employ the matching method to analytically investigate the holographic superconductors with Lifshitz scaling in an external magnetic field. We discuss systematically the restricted conditions for the matching method and find that this analytic method is not always powerful to explore the effect of external magnetic field on the holographic superconductors unless the matching point is chosen in an appropriate range and the dynamical exponent z satisfies the relation z=d−1 or z=d−2. From the analytic treatment, we observe that Lifshitz scaling can hinder the condensation to be formed, which can be used to back up the numerical results. Moreover, we study the effect of Lifshitz scaling on the upper critical magnetic field and reproduce the well-known relation obtained from Ginzburg–Landau theory
Collective modes of the Nambu--Jona-Lasinio model with an external U(1) gauge field
International Nuclear Information System (INIS)
Klevansky, S.P.; Jaenicke, J.; Lemmer, R.H.
1991-01-01
The effect of external color fields on the collective modes of the SU L (2)xSU R (2) chiral flavor version of the Nambu--Jona-Lasinio model is studied analytically in a U(1) approximation to the gauge fields. We show that the scalar and pseudoscalar modes respond differently to external chromomagnetic and -electric fields. In the former case, in which chiral asymmetry is enhanced, the modes remain well separated and vary slowly with the field, while in the latter case the scalar mode drops rapidly to become degenerate with the pseudoscalar mode in the chiral limit. In this regime, both modes are weakly coupled to quark matter, and the pseudoscalar pion mode in particular survives as a well-defined excitation as it enters the pair continuum. The Goldberger-Treiman relation, which is shown to hold in the presence of external fields, is responsible for this behavior. Chromoelectric and -magnetic polarizabilities are seen to be equal and opposite with absolute values β σ =2.0α s and β π =0.03α s for the scalar and pseudoscalar modes respectively
The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field
International Nuclear Information System (INIS)
Wu Dong-Lan; Tan Bin; Wan Hui-Jun; Xie An-Dong; Ding Da-Jun
2015-01-01
The geometric structures of an NH radical in different external electric fields are optimized by using the density functional B3P86/cc-PV5Z method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect. (paper)
Possibilities and conditions of applying PIXE analysis with external proton beam
International Nuclear Information System (INIS)
Potocek, V.
1989-01-01
The technical and methodological prerequisites are summed up for the use of the PIXE method with an external proton beam. The method is suitable for the preliminary analysis of unknown samples prior to the choice of the best suited analytical method, for the nondestructive analysis of rare samples such as unique works of art, of small amounts of materials which are difficult to access, etc., as well as for calibration and comparing analyses. As for the operators the application of the PIXE method with external proton beam assumes the availability of accelerator operating time, minimization of the length of exposure of the targets, optimization of parameters of the exciting beam and automation of the whole process. Attention is also devoted to technical provisions and organization of laboratory work. The design is described of an analytical unit using the PIXE method with external proton beam, and it is stated that the Van de Graaff accelerator at the Institute of Nuclear Physics in Rez near Prague could be used for the purpose. (Z.M.). 6 refs
Impacts Of External Price Shocks On Malaysian Macro Economy-An Applied General Equilibrium Analysis
Directory of Open Access Journals (Sweden)
Abul Quasem Al-Amin
2008-10-01
Full Text Available This paper examines the impacts of external price shocks in the Malaysian economy. There are three simulations are carried out with different degrees of external shocks using Malaysian Social Accounting Matrix (SAM and Computable General Equilibrium (CGE analysis. The model results indicate that the import price shocks, better known as external price shocks by 15% decreases the domestic production of building and construction sector by 25.87%, hotels, restaurants and entertainment sector by 12.04%, industry sector by 12.02%, agriculture sector by 11.01%, and electricity and gas sector by 9.55% from the baseline. On the import side, our simulation results illustrate that as a result of the import price shocks by 15%, imports decreases significantly in all sectors from base level. Among the scenarios, the largest negative impacts goes on industry sectors by 29.67% followed by building and construction sector by 22.42%, hotels, restaurants and entertainment sector by 19.45%, electricity and gas sector by 13.%, agriculture sector by 12.63% and other service sectors by 11.17%. However significant negative impact goes to the investment and fixed capital investment. It also causes the household income, household consumption and household savings down and increases the cost of livings in the economy results in downward social welfare.
International Nuclear Information System (INIS)
Fujita, D; Kitahara, M; Onishi, K; Sagisaka, K
2008-01-01
We have developed an ultrahigh vacuum scanning tunneling microscope with an in situ external stress application capability in order to determine the effects of stress and strain on surface atomistic structures. It is necessary to understand these effects because controlling them will be a key technology that will very likely be used in future nanometer-scale fabrication processes. We used our microscope to demonstrate atomic resolution imaging under external tensile stress and strain on the surfaces of wafers of Si(111) and Si(001). We also successfully observed domain redistribution induced by applying uniaxial stress at an elevated temperature on the surface of a wafer of vicinal Si(100). We confirmed that domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink. This suggests that it may be feasible to fabricate single domain surfaces in a process that controls surface stress and strain
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)
2017-01-15
This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates
The dust characteristics in the collisional plasma sheath at the presence of external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Shourkaei, Hossein Akbarian [AEOI, Tehran (Iran, Islamic Republic of). Plasma Physics Research Group
2015-05-15
The characteristics of dust in a plasma sheath are investigated in the presence of an external magnetic field and taking into account neutral collision forces. By using the fluid model, the continuity and momentum equations of ions and dusts are solved numerically with various magnitudes of collision force. In various magnitude and directions of the magnetic field, the electron and ion density distribution, ion flow velocity, electron potential have been calculated. It is shown that magnetic field has obvious effect on the plasma sheath and the collision force reduces the dust kinetic energy.
Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field
Energy Technology Data Exchange (ETDEWEB)
García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J. [E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Ruocco, A. [Universitá degli studi di Napoli Federico II, 80138 Napoli (Italy)
2016-01-15
Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.
Destruction of Spiral Wave Using External Electric Field Modulated by Logistic Map
International Nuclear Information System (INIS)
Ma Jun; Chen Yong; Jin Wuyin
2007-01-01
Evolution of spiral wave generated from the excitable media within the Barkley model is investigated. The external gradient electric field modulated by the logistic map is imposed on the media (along x- and y-axis). Drift and break up of spiral wave are observed when the amplitude of the electric field is modulated by the chaotic signal from the logistic map, and the whole system could become homogeneous finally and the relevant results are compared when the gradient electric field is modulated by the Lorenz or Roessler chaotic signal.
Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.
Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing
2016-08-22
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Social Networks and Externalities from Gift Exchange: Evidence from A Field Experiment.
Currie, Janet; Lin, Wanchuan; Meng, Juanjuan
2013-11-01
This paper asks whether gift exchange generates externalities for people outside of the bilateral relationship between the gift giver and recipient, and whether the nature of this relationship is affected by social networks. We examine this question in the context of a field experiment in urban Chinese hospital outpatient clinics. We first show that when patients give a small gift, doctors reciprocate with better service and a fewer unnecessary prescriptions of antibiotics. We then show that gift giving creates externalities for third parties. If two patients, A and B are perceived as unrelated, B receives worse care when A gives a gift. However, if A identifies B as a friend, then both A and B benefit from A's gift giving. Hence, we show that gift giving can create positive or negative externalities, depending on the giver's social distance to the third party.
Social Networks and Externalities from Gift Exchange: Evidence from A Field Experiment☆
Currie, Janet; Lin, Wanchuan; Meng, Juanjuan
2016-01-01
This paper asks whether gift exchange generates externalities for people outside of the bilateral relationship between the gift giver and recipient, and whether the nature of this relationship is affected by social networks. We examine this question in the context of a field experiment in urban Chinese hospital outpatient clinics. We first show that when patients give a small gift, doctors reciprocate with better service and a fewer unnecessary prescriptions of antibiotics. We then show that gift giving creates externalities for third parties. If two patients, A and B are perceived as unrelated, B receives worse care when A gives a gift. However, if A identifies B as a friend, then both A and B benefit from A’s gift giving. Hence, we show that gift giving can create positive or negative externalities, depending on the giver’s social distance to the third party. PMID:26949272
The virtual fields method applied to spalling tests on concrete
Directory of Open Access Journals (Sweden)
Forquin P.
2012-08-01
Full Text Available For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s−1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM. First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative ‘load cell’. This method applied to three spalling tests allowed to identify Young’s modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.
International Nuclear Information System (INIS)
Farnell, D J J; Zinke, R; Richter, J; Schulenburg, J
2009-01-01
We apply the coupled cluster method (CCM) in order to study the ground-state properties of the (unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the quantum Monte Carlo (QMC) method suffers from the 'sign problem'. Results for this model in the presence of magnetic field are rarer than those for the square-lattice system. Here we determine and solve the basic CCM equations by using the localized approximation scheme commonly referred to as the 'LSUBm' approximation scheme and we carry out high-order calculations by using intensive computational methods. We calculate the ground-state energy, the uniform susceptibility, the total (lattice) magnetization and the local (sublattice) magnetizations as a function of the magnetic field strength. Our results for the lattice magnetization of the square-lattice case compare well to the results from QMC approaches for all values of the applied external magnetic field. We find a value for the magnetic susceptibility of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our estimate for the range of the extent of the (M/M s =) 1/3 magnetization plateau for the triangular-lattice antiferromagnet is 1.37 SWT = 0.0794. Higher-order calculations are thus suggested for both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular lattice conclusively.
International Nuclear Information System (INIS)
Bramantya, M A; Sawada, T; Motozawa, M
2010-01-01
Ultrasonic propagation velocity in a magnetic fluid (MF) and magnetorheological fluid (MRF) changes with the application of an external magnetic field. The formation of clustering structures inside the MF and MRF clearly has an influence on the ultrasonic propagation velocity. Therefore, we propose a qualitative analysis of these structures by measuring properties of ultrasonic propagation. Since MF and MRF are opaque, non-contact inspection using the ultrasonic technique can be very useful for analyzing the inner structures of MF and MRF. In this study, we measured ultrasonic propagation velocity in a hydrocarbon-based MF and MRF precisely. Based on these results, the clustering structures of these fluids are analyzed experimentally in terms of elapsed time dependence and the effect of external magnetic field strength. The results reveal hysteresis and anisotropy in the ultrasonic propagation velocity. We also discuss differences of ultrasonic propagation velocity between MF and MRF.
Electron drag by solitons in superlattices in an external magnetic field
International Nuclear Information System (INIS)
Vyazovskii, M.V.; Syrodoev, G.A.
1996-01-01
The soliton-electric effect accompanying the propagation of an electromagnetic soliton along an axis of a superlattice in an external magnetic field directed along the magnetic field of the soliton is studied. It is assumed that the duration γ-1 of the soliton pulse is much shorter than the free flight time of an electron. It is shown that in the absence of a constant magnetic field the drag current varies as sin(αsech2γt) (α is a constant determined by the parameters of the superlattice). In the presence of a constant magnetic field of intensity H0>>Hs, where Hs is the amplitude of the soliton field, the drag current oscillates
Linear and nonlinear absorption coefficients of spherical quantum dot inside external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus, 68100 Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus, 42075 Konya (Turkey)
2017-04-01
We have calculated the wavefunctions and energy eigenvalues of spherical quantum dot with infinite potential barrier inside uniform magnetic field. In addition, we have investigated the magnetic field effect on optical transitions between Zeeman energy states. The results are expressed as a function of dot radius, incident photon energy and magnetic field strength. The results present that, in large dot radii, the external magnetic field affects strongly the optical transitions between Zeeman states. In the strong spatial confinement case, energy level is relatively insensitive to the magnetic field, and electron spatial confinement prevails over magnetic confinement. Also, while m varies from −1 to +1, the peak positions of the optical transitions shift toward higher energy (blueshift).
The effect of axial external magnetic field on tungsten inert gas welding of magnesium alloy
Li, Caixia; Zhang, Xiaofeng; Wang, Jing
2018-04-01
The influences of axial external magnetic field on the microstructure and mechanical property of the AZ31 magnesium (Mg) alloy joints were studied. The microstructure of Mg alloy joint consisted of the weld seam, heat affected zone and base metal zone. The average grain size of weld seam welded with magnetic field is 39 μm, which is 38% smaller than that of the joint welded with absence of magnetic field. And the microhardness of weld seam increases with the help of magnetic field treatment, owing to the coarse grain refinement. With coil current of 2.0A, the maximum mechanical property of joint increases 6.7% to 255 MPa over the specimen without magnetic field treatment. Furthermore, fracture location is near heat affected area and the fracture surface is characterized with ductile fracture.
External electric field effects on Schottky barrier at Gd3N@C80/Au interface
Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong
2017-08-01
The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.
International Nuclear Information System (INIS)
Yu-Yan, Shen; Xiao-Gang, Chen; Wei, Cui; Yan-Hua, Hao; Qian-Qian, Li
2009-01-01
This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field E a (1 + sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films
International Nuclear Information System (INIS)
Tarasenko, S.V.
1995-01-01
It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs
Classical limit of a quantum particle in an external Yang-Mills field
International Nuclear Information System (INIS)
Moschella, U.
1989-01-01
It is studied the classical limit of a quantum particle in an external non-abelian gauge field. It is shown that the unitary group describing the quantum fluctuations around any classic phase orbit has a classical limit when h tends to zero under very general conditions on the potentials. It is also proved the self-adjointness of the Hamilton's operator of the quantum theory for a large class of potentials. Some applications of the theory are finally exposed
Gareev, F. A.; Zhidkova, I. E.
2006-01-01
We proposed a new mechanism of LENR: cooperative processes in whole system - nuclei+atoms+condensed matter can occur at smaller threshold energies then corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution inner energy of whole system.
New cooperative mechanisms of low-energy nuclear reactions using super low-energy external field
International Nuclear Information System (INIS)
Gareev, F.A.; Zhidkova, I.E.
2006-01-01
We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system. (author)
New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field
Gareev, F. A.; Zhidkova, I. E.
We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.
International Nuclear Information System (INIS)
Giovannini, N.
1977-01-01
A complete description of the projective unitary/antiunitary representations of the general covariance group for a charged (relativistic) particle moving in an external (classical), e.m. field is given. This group was derived in a previous paper, independently of any equation of motion, on the basis of some simple physical assumptions. The physical consequences of these results are then discussed and it is shown how they open some new perspectives. (Auth.)
Lessons learned from applying external input to DOE policy decision making
International Nuclear Information System (INIS)
Imholz, R.M.; Hindman, T.B. Jr.; Brubaker, D.M.
1990-01-01
Our nation has entered an era in which the public is demanding clean up and restoration of its environment, understandable information, and participation in decision making. The US Department of Energy's (DOE's) culture, which grew out of the Atomic Energy Commission (AEC) culture of classification, compartmentalization, and strict-need-to-know dissemination of information, was in direct conflict with this demand for public involvement. The DOE recognized this and committed to changing their culture into one of openness and public involvement in decision making and policy direction. This paper reports that as a result, DOE created a number of external review groups, one of them being the State and Tribal Government Working Group (STGWG). The STGWG was created to review the first Environmental Restoration and Waste Management Five-Year Plan. The Five-Year Plan establishes an agenda for compliance and cleanup of DOE installations against which progress can be measured
Suppression of beam-excited electron waves by an externally applied RF signal
International Nuclear Information System (INIS)
Fukumasa, Osamu; Itatani, Ryohei
1980-11-01
Suppression of the beam-excited electron wave in a bounded system is investigated in connection with the beam distribution function. Wave suppression has two different processes depending on whether injected beams are reflected at the other end or not. In the absence of reflected beam electrons, deformation of the beam distribution function is observed in relation to the suppression of the electron wave. However, when beam electrons are reflected, the external wave suppresses the electron wave but distribution function shows no appreciable change. These experimental results show that nonlinear behaviors of beam electrons, namely behaviors of reflected beams, are quite important for wave suppression. By using the method of partial simulation, interaction between two waves in the bounded system including nonlinear motions of beam electrons is studied numerically. Qualitative agreement between experimental and numerical results is obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Correa, J.D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-09-01
A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field.
International Nuclear Information System (INIS)
Correa, J.D.; Mora-Ramos, M.E.; Duque, C.A.
2015-01-01
A study on the effects of an externally applied electric field on the linear optical absorption and relative refractive index change associated with transitions between off-center donor impurity states in laterally coupled quantum dot-ring system is reported. Electron states are calculated within the effective mass and parabolic band approximations by means of an exact diagonalization procedure. The states and the optical response in each case show significant sensitivity to the geometrical distribution of confining energies as well as to the strength of the applied field
International Nuclear Information System (INIS)
Herwig, Heinz; Schmandt, Bastian
2013-01-01
Internal and external flows are characterized by friction factors and drag coefficients, respectively. Their definitions are based on pressure drop and drag force and thus are very different in character. From a thermodynamics point of view in both cases dissipation occurs which can uniformly be related to the entropy generation in the flow field. Therefore we suggest to account for losses in the flow field by friction factors and drag coefficients that are based on the overall entropy generation due to the dissipation in the internal and external flow fields. This second law analysis (SLA) has been applied to internal flows in many studies already. Examples of this flow category are given together with new cases of external flows, also treated by the general SLA-approach. (paper)
External field-induced chaos in classical and quantum Hamiltonian systems
International Nuclear Information System (INIS)
Lin, W.C.
1986-01-01
Classical nonlinear nonintegrable systems exhibit dense sets of resonance zones in phase space. Global chaotic motion appears when neighboring resonance zones overlap. The chaotic motion signifies the destruction of a quasi constant of motion. The motion of a particle, trapped in one of the wells of a sinusoidal, potential driven by a monochromatic external field was studied. Global chaotic behavior sets in when the amplitude of the external field reaches a critical value. The particle then escapes the well. The critical values are found to be in good agreement with a resonance overlap criterion rather than a renormalization-group scheme. A similar system was then studied, but with the particle being confined in an infinite square well potential instead. A stochastic layer is found in the low-energy part of the phase space. The resonance zone structure is found to be in excellent agreement with predictions. The critical values for the onset of global chaotic behavior are found to be in excellent agreement with the renormalization group scheme. The quantum version of the second model above was then considered. In a similar fashion, the external field induces quantum resonance zones. The spectral statistics were computed, and a transition of statistics from Poissonian to Wigner-like was found as overlap of quantum resonances occurs. This also signifies the destruction of a quasi-constant of motion
Energy Technology Data Exchange (ETDEWEB)
Pradhan, B., E-mail: brunda@iopb.res.i [Govt. Science College, Malkangiri 764 048 (India); Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C., E-mail: gcr@iopb.res.i [Condensed Matter Physics Group P.G. Dept. of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)
2009-07-01
A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at +-(z+z{sub 1}) and +-(z-z{sub 1}). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.
International Nuclear Information System (INIS)
Pradhan, B.; Raj, B.K.; Rout, G.C.
2009-01-01
A theoretical model is addressed here to study the interplay of the superconductivity (SC) and the spin density wave (SDW) long range orders in underdoped region in the vicinity of on-set of superconductivity in presence of an external magnetic field. The order parameters are calculated by using Zubarev's technique of Green's functions and determined numerically self-consistently. The gap parameters are found to be strongly coupled to each other through their coupling constants. The interplay displays BCS type two gaps in the quasi-particle density of states (DOS) which resemble the tunneling conductance of STM experiments. The gap edges in the DOS appear at ±(z+z 1 ) and ±(z-z 1 ). The applied magnetic field further induces Zeeman splitting which is explained on the basis of spin-filter effect of tunneling experiment.
Electron Raman scattering in semiconductor quantum wire in an external magnetic field
International Nuclear Information System (INIS)
Betancourt-Riera, Ri; Nieto Jalil, J M; Riera, R; Betancourt-Riera, Re; Rosas, R
2008-01-01
The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement is calculated. We assume a single parabolic conduction band. The emission spectra for different scattering configurations and the selection rules for the processes are studied. Singularities in the spectra are found and interpreted. The electron Raman scattering studied here can be used to provide direct information about the electron band and subband structure of these confinement systems. The magnetic field distribution is considered constant with value B 0 inside the wire and zero outside
Quasi-static electric field in a cylindrical volume conductor induced by external coils.
Esselle, K P; Stuchly, M A
1994-02-01
An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.
Virtual particle-antiparticle pair formation by a scalar particle bound in an external Coulomb field
International Nuclear Information System (INIS)
Darewych, J.W.; Horbatsch, M.; Lev, B.I.; Shapoval, D.V.
1995-01-01
A Hamiltonian variational Fock-space method is used to describe scalar massive particles in an external Coulomb field with strength f=Zα. The use of an ansatz that includes a three-particle state in addition to a single-particle state built on the field-free vacuum enables one to highlight the role played by particle-antiparticle pair formation. Comparison is made with the Klein-Gordon equation in the Feshbach-Villars representation and it is shown explicitly how the virtual pair contribution corrects an O(f 5 ) deficiency present in the energy spectrum of the naive Schroedinger-type single-particle equation. ((orig.))
International Nuclear Information System (INIS)
Veryaskin, A.V.; Lapchinskij, V.G.; Nekrasov, V.I.; Rubakov, V.A.
1981-01-01
Behaviour of vacuum symmetry in the model of self-acting scalar field in the open and closed isotropic cosmological spaces is investigated. Considered are the cases with the mass squared of the scalar field m 2 >0, m 2 =0 and m 2 2 2 =0 at exponentially large scale factors the study of the problem on the behaviour of the symmetry requires exceeding the limits of the perturbation theory. The final behaviour of the vacuum symmetry in the open model at small radii depends on combined effect of all the external factors [ru
Fractional charges in external field problems and the inverse scattering method
International Nuclear Information System (INIS)
Grosse, H.; Opelt, G.
1986-01-01
Motivated by recent studies of the quantization of fermions interacting with external soliton fields, we construct all reflectionless potentials for the one-dimensional Dirac operator, which are solitons of coupled MKdV equations. The charge of the fermion field in presence of these solitons varies continuously. For the N-soliton solutions it becomes the sum of the charges of the individual problems. The questions of unitary equivalence of representations of the CAR as well as the implementability of gauge transformations are studied for specific examples. (Author)
Energy Technology Data Exchange (ETDEWEB)
Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)
1975-01-01
As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.
International Nuclear Information System (INIS)
Lennernaes, B.; Rikner, G.; Letocha, H.; Nilsson, S.
1995-01-01
The purpose of the present study was to identify factors of importance in the planning of external beam radiotherapy of prostatic adenocarcinoma. Seven patients with urogenital cancers were planned for external radiotherapy of the prostate. Four different techniques were used, viz. a 4-field box technique and four-, five- or six-field conformal therapy set-ups combined with three different margins (1-3 cm). The evaluations were based on the doses delivered to the rectum and the urinary bladder. A normal tissue complication probability (NTCP) was calculated for each plan using Lyman's dose volume reduction method. The most important factors that resulted in a decrease of the dose delivered to the rectum and the bladder were the use of conformal therapy and smaller margins. Conformal therapy seemed more important for the dose distribution in the urinary bladder. Five- and six-field set-ups were not significantly better than those with four fields. NTCP calculations were in accordance with the evaluation of the dose volume histograms. To conclude, four-field conformal therapy utilizing reduced margins improves the dose distribution to the rectum and the urinary bladder in the radiotherapy of prostatic adenocarcinoma. (orig.)
Coupling behaviors of graphene/SiO2/Si structure with external electric field
Onishi, Koichi; Kirimoto, Kenta; Sun, Yong
2017-02-01
A traveling electric field in surface acoustic wave was introduced into the graphene/SiO2/Si sample in the temperature range of 15 K to 300 K. The coupling behaviors between the sample and the electric field were analyzed using two parameters, the intensity attenuation and time delay of the traveling-wave. The attenuation originates from Joule heat of the moving carriers, and the delay of the traveling-wave was due to electrical resistances of the fixed charge and the moving carriers with low mobility in the sample. The attenuation of the external electric field was observed in both Si crystal and graphene films in the temperature range. A large attenuation around 190 K, which depends on the strength of external electric field, was confirmed for the Si crystal. But, no significant temperature and field dependences of the attenuation in the graphene films were detected. On the other hand, the delay of the traveling-wave due to ionic scattering at low temperature side was observed in the Si crystal, but cannot be detected in the films of the mono-, bi- and penta-layer graphene with high conductivities. Also, it was indicated in this study that skin depth of the graphene film was less than thickness of two graphene atomic layers in the temperature range.
e-e scattering in the presence of an external field
International Nuclear Information System (INIS)
Bergou, J.; Varro, S.; Fedorov, M.V.
1980-08-01
A nonrelativistic treatment is given of electron-electron scattering in the presence of a laser field. The field is accounted for by the external field approximation and is represented by a circularly polarized monochromatic plane-wave field. A simple analytic expression is derived for the transition amplitude which is shown to exhibit internal resonances as well as intensity dependent shifts. The former is the nonrelativistic limit of the resonant Moeller scattering predicted previously by Oleinik (1967a). The latter, however, appears is a higher order of v/c and is consequently negligible for very slow electrons. The differential cross section of the scattering is also given where the effect of the spin and symmetry is taken into account explicitly. The width of resonances is introduced phenomenologically but its connection with previous methods is established. Consideration is also given to the experimental conditions under which the effects may become observable. (author)
Macroscopic self-consistent model for external-reflection near-field microscopy
International Nuclear Information System (INIS)
Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.
1993-01-01
The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs
Topological phases of silicene and germanene in an external magnetic field: Quantitative results
Singh, Nirpendra; Schwingenschlö gl, Udo
2014-01-01
We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation of a small molecule analogue of a lithium ionomer in an external electric field
Energy Technology Data Exchange (ETDEWEB)
Waters, Sara M.; McCoy, John D., E-mail: mccoy@nmt.edu; Brown, Jonathan R. [Department of Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Frischknecht, Amalie L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)
2014-01-07
We have investigated the ion dynamics in lithium-neutralized 2-pentylheptanoic acid, a small molecule analogue of a precise poly(ethylene-co-acrylic acid) lithium ionomer. Atomistic molecular dynamics simulations were performed in an external electric field. The electric field causes alignment of the ionic aggregates along the field direction. The energetic response of the system to an imposed oscillating electric field for a wide range of frequencies was tracked by monitoring the coulombic contribution to the energy. The susceptibility found in this manner is a component of the dielectric susceptibility typically measured experimentally. A dynamic transition is found and the frequency associated with this transition varies with temperature in an Arrhenius manner. The transition is observed to be associated with rearrangements of the ionic aggregates.
Behaviour of the order parameter of the simple magnet in an external field
Directory of Open Access Journals (Sweden)
M.P.Kozlovskii
2005-01-01
Full Text Available The effect of a homogeneous external field on the three-dimensional uniaxial magnet behaviour near the critical point is investigated within the framework of the nonperturbative collective variables method using the ρ4 model. The research is carried out for the low-temperature region. The analytic explicit expressions for the free energy, average spin moment and susceptibility are obtained for weak and strong fields in comparison with the field value belonging to the pseudocritical line. The calculations are performed on the microscopic level without any adjusting parameters. It is established that the long-wave fluctuations of the order parameter play a crucial role in forming a crossover between the temperature-dependence and field-dependence critical behaviour of the system.
Topological phases of silicene and germanene in an external magnetic field: Quantitative results
Singh, Nirpendra
2014-03-17
We investigate the topological phases of silicene and germanene that arise due to the strong spin-orbit interaction in an external perpendicular magnetic field. Below and above a critical field of 10 T, respectively, we demonstrate for silicene under 3% tensile strain quantum spin Hall and quantum anomalous Hall phases. Not far above the critical field, and therefore in the experimentally accessible regime, we obtain an energy gap in the meV range, which shows that the quantum anomalous Hall phase can be realized experimentally in silicene, in contrast to graphene (tiny energy gap) and germanene (enormous field required). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Jeon, H.C.; Lee, S.J.; Kang, T.W.; Park, S.H.
2012-01-01
The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.
Energy Technology Data Exchange (ETDEWEB)
Jeon, H.C. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Lee, S.J., E-mail: leesj@dongguk.edu [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Kang, T.W. [Quantum-functional Semiconductor Research Center, Dongguk University, Seoul 100-715 (Korea, Republic of); Park, S.H. [Department of Electronics Engineering, Catholic University of Daegu, Kyeongbuk 712-702 (Korea, Republic of)
2012-05-15
The strain-induced piezoelectric polarization and the spontaneous polarization can be reduced effectively using the applied electric field in the CdZnO/ZnMgO quantum well (QW) structure with high Cd composition. That is, optical properties as a function of internal and external fields in the CdZnO/ZnMgO QW with various applied electric field result in the increased optical gain due to the fact that the QW potential profile is flattened as a result of the compensation of the internal field by the reverse field as confirmed. These results demonstrate that a high-performance optical device operation can be realized in CdZnO/MgZnO QW structures by reducing the droop phenomenon.
External Resistances Applied to MFC Affect Core Microbiome and Swine Manure Treatment Efficiencies
Vilajeliu-Pons, Anna; Bañeras, Lluis; Puig, Sebastià; Molognoni, Daniele; Vilà-Rovira, Albert; Hernández-del Amo, Elena; Balaguer, Maria D.; Colprim, Jesús
2016-01-01
Microbial fuel cells (MFCs) can be designed to combine water treatment with concomitant electricity production. Animal manure treatment has been poorly explored using MFCs, and its implementation at full-scale primarily relies on the bacterial distribution and activity within the treatment cell. This study reports the bacterial community changes at four positions within the anode of two almost identically operated MFCs fed swine manure. Changes in the microbiome structure are described according to the MFC fluid dynamics and the application of a maximum power point tracking system (MPPT) compared to a fixed resistance system (Ref-MFC). Both external resistance and cell hydrodynamics are thought to heavily influence MFC performance. The microbiome was characterised both quantitatively (qPCR) and qualitatively (454-pyrosequencing) by targeting bacterial 16S rRNA genes. The diversity of the microbial community in the MFC biofilm was reduced and differed from the influent swine manure. The adopted electric condition (MPPT vs fixed resistance) was more relevant than the fluid dynamics in shaping the MFC microbiome. MPPT control positively affected bacterial abundance and promoted the selection of putatively exoelectrogenic bacteria in the MFC core microbiome (Sedimentibacter sp. and gammaproteobacteria). These differences in the microbiome may be responsible for the two-fold increase in power production achieved by the MPPT-MFC compared to the Ref-MFC. PMID:27701451
International Nuclear Information System (INIS)
Rezaei, Gh.; Shojaeian Kish, S.; Avazpour, A.
2012-01-01
In this article effects of external electric and magnetic fields on the electromagnetically induced transparency of a hydrogenic impurity confined in a two-dimensional quantum dot are investigated. To do this the probe absorption, group velocity and refractive index of the medium in the presence of external electric and magnetic fields are discussed. It is found that, electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields. In comparison with atomic system, one may control the electromagnetically induced transparency and the group velocity of light in nano structures with the dot size and confinement potential.
Applied statistics for agriculture, veterinary, fishery, dairy and allied fields
Sahu, Pradip Kumar
2016-01-01
This book is aimed at a wide range of readers who lack confidence in the mathematical and statistical sciences, particularly in the fields of Agriculture, Veterinary, Fishery, Dairy and other related areas. Its goal is to present the subject of statistics and its useful tools in various disciplines in such a manner that, after reading the book, readers will be equipped to apply the statistical tools to extract otherwise hidden information from their data sets with confidence. Starting with the meaning of statistics, the book introduces measures of central tendency, dispersion, association, sampling methods, probability, inference, designs of experiments and many other subjects of interest in a step-by-step and lucid manner. The relevant theories are described in detail, followed by a broad range of real-world worked-out examples, solved either manually or with the help of statistical packages. In closing, the book also includes a chapter on which statistical packages to use, depending on the user’s respecti...
Non-linear spectral splitting of Rydberg sodium in external fields
International Nuclear Information System (INIS)
Gao Wei; Yang Hai-Feng; Cheng Hong; Zhang Shan-Shan; Liu Hong-Ping; Liu Dan-Feng
2015-01-01
We have studied highly excited sodium in various electric fields, parallel electric and magnetic fields, with one σ and π photon irradiation, and even in a magnetic field with a complex laser polarization configuration. The σ spectra shows a simple linear Stark effect with the applied electric field, while the π spectra exhibits a strong non-linear dependence on the electric field. The π transitions in parallel fields show a similar behavior to that in a pure electric field but the spectra get more smooth due to the magnetic field. The diamagnetic spectrum with laser polarization angles between 0 and π/2 proves that it can be reproduced by simple linear combination of π and σ components, indicating there is no interference between the π and σ channels. A full quantum calculation considering the quantum defects accounts for all the observations. The quantum defects, especially for the channel np, play an important role in the spectral profile. (paper)
International Nuclear Information System (INIS)
Fu Chuanji; Zhu Qinsheng; Wu Shaoyi
2010-01-01
Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external held. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external held. (general)
Energy Technology Data Exchange (ETDEWEB)
Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-06-07
We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Chuong V., E-mail: chuongnguyen11@gmail.com [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam); School of Mechanical Engineering, Le Quy Don Technical University, Ha Noi (Viet Nam); Hieu, Nguyen N. [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)
2016-04-01
In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS{sub 2}. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS{sub 2} when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS{sub 2} can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS{sub 2} in electronics and optoelectronics.
Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field
International Nuclear Information System (INIS)
Liu Guanghua; Li Ruoyan; Tian Guangshan
2012-01-01
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h c = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1. (paper)
Canonical field quantization in an external time-dependent gravitational field
International Nuclear Information System (INIS)
Il'yn, S.B.; Tagirov, E.A.
1975-01-01
The Green functions of the quantum scalar fiels interacting with gravitation of the homogeneous isotropic closed Universe are studied. They have been determined as an expectation value of the time-ordered product of two field operators in the cyclic states of various, in general, unitary-nonequivalent representations of canonical commutation relations. The reqularity properties of these functions are shown to be the same as of the Feynman propagator obtained for arbitrary Riemannian space-time only in the representations that from a class unitary equivalence
Furry picture for quantum electrodynamics with pair-creating external field
International Nuclear Information System (INIS)
Fradkin, E.S.
1981-01-01
The perturbation theory is constructed for QED, for which the interaction with the external pair-creating field is kept exactly. An explicit expression for the perturbation theory causal electron propagator is found. Special features of usage of the unitarity conditions for calculating the total probabilities of radiative processes in the case are discussed. Exact Green functions are introduced and the functional formulation is discussed. Perturbation theory for calculating the mean values of the Heisenberg operators, in particular, of the mean electromagnetic field is built in the case under consideration. Effective Lagrangian which generates the exact equation for the mean electromagnetic field is introduced. Functional representations for the generating functionals introduced in the paper are discussed. (author)
Research on external flow field of a car based on reverse engineering
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2013-01-01
We study the Heisenberg model in an external magnetic field on curved surfaces with rotational symmetry. The Euler-Lagrange static equations, derived from the Hamiltonian, lead to the inhomogeneous double sine-Gordon equation. Nonetheless, if the magnetic field is coupled to the metric elements of the surface, and consequently to its curvature, the homogeneous double sine-Gordon equation emerges and a 2π-soliton solution is obtained. In order to satisfy the self-dual equations, surface deformations are predicted to appear at the sector where the spin direction is opposite to the magnetic field. On the basis of the model, we find the characteristic length of the 2π-soliton for three specific rotationally symmetric surfaces: the cylinder, the catenoid, and the hyperboloid. On finite surfaces, such as the sphere, torus, and barrels, fractional 2π-solitons are predicted to appear. (author)
Influence of external fields and environment on the dynamics of a phase-qubit-resonator system
International Nuclear Information System (INIS)
Berman, G. P.; Chumak, A. A.
2011-01-01
We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive, -bath, and -qubit interaction. The renormalization of the resonator frequency caused by the qubit-resonator interaction is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during measurement time on the fidelity of a single-shot measurement is studied. The relation between fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state toward its stationary value is derived. The possibility of controlling this state by varying the amplitude and frequency of drive is shown.
Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field
Energy Technology Data Exchange (ETDEWEB)
Chen, Qiao, E-mail: cqhy1127@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Zhi-yong, E-mail: wzyong@cqut.edu.cn [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Xie, Zhong-Xiang [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China)
2013-08-15
We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann–Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.
Integral equation and simulation studies of a planar nematogenic liquid in crossed external fields
International Nuclear Information System (INIS)
Lado, F; Lomba, E; MartIn, C; Almarza, N G
2005-01-01
We study a fluid of nematogenic molecules with centres of mass constrained to lie in a plane but with axes free to rotate in any direction. An external disorienting field perpendicular to the plane along with a second orienting field in the plane induce an in-plane order-disorder transition. We analyse the behaviour of this simple biaxial model using a well-established generalization of molecular integral equation methods built upon specially tailored basis functions that maintain orthogonality in the presence of anisotropy. Computer simulation and integral equation calculations predict an isotropic-nematic transition at low temperatures in zero field and an in-plane transition at somewhat higher temperatures in the presence of the disorienting field. The oriented states obtained in the presence of both fields can subsequently be used as input to uncover in detail first the transition in the absence of the in-plane orienting field and finally the spontaneous transition in the absence of any field. According to the simulation, the transition apparently belongs to the Berezinskii-Kosterlitz-Thouless defect-mediated type, whereas the theory reproduces a weak first-order transition
Modulation of band gap by an applied electric field in BN-based heterostructures
Luo, M.; Xu, Y. E.; Zhang, Q. X.
2018-05-01
First-principles density functional theory (DFT) calculations are performed on the structural and electronic properties of the SiC/BN van der Waals (vdW) heterostructures under an external electric field (E-field). Our results reveal that the SiC/BN vdW heterostructure has a direct band gap of 2.41 eV in the raw. The results also imply that electrons are likely to transfer from BN to SiC monolayer due to the deeper potential of BN monolayer. It is also observed that, by applying an E-field, ranging from -0.50 to +0.65 V/Å, the band gap decreases from 2.41 eV to zero, which presents a parabola-like relationship around 0.0 V/Å. Through partial density of states (PDOS) plots, it is revealed that, p orbital of Si, C, B, and N atoms are responsible for the significant variations of band gap. These obtained results predict that, the electric field tunable band gap of the SiC/BN vdW heterostructures carries potential applications for nanoelectronics and spintronic device applications.
International Nuclear Information System (INIS)
Duque, C.M.; Morales, A.L.; Mora-Ramos, M.E.; Duque, C.A.
2013-01-01
The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks
Energy Technology Data Exchange (ETDEWEB)
Duque, C.M., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Morales, A.L. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)
2013-11-15
The linear and nonlinear optical absorption as well as the linear and nonlinear corrections to the refractive index are calculated in a disc shaped quantum dot under the effect of an external magnetic field and parabolic and inverse square confining potentials. The exact solutions for the two-dimensional motion of the conduction band electrons are used as the basis for a perturbation-theory treatment of the effect of a static applied electric field. In general terms, the variation of one of the different potential energy parameters – for a fixed configuration of the remaining ones – leads to either blueshifts or redshifts of the resonant peaks as well as to distinct rates of change for their amplitudes. -- Highlights: • Optical absorption and corrections to the refractive in quantum dots. • Electric and magnetic field and parabolic and inverse square potentials. • Perturbation-theory treatment of the effect of the electric field. • Induced blueshifts or redshifts of the resonant peaks are studied. • Evolution of rates of change for amplitudes of resonant peaks.
Energy Technology Data Exchange (ETDEWEB)
Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)
2011-08-17
Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.
Aspects of two-level systems under external time-dependent fields
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G.; Wreszinski, W.F. [Tomsk State University and Tomsk Institute of High Current Electronics (Russian Federation); Barata, J.C.A.; Gitman D.M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)]. E-mails: jbarata@fma.if.usp.br; gitman@fma.if.usp.br
2001-12-14
The dynamics of two-level systems in time-dependent backgrounds is under consideration. We present some new exact solutions in special backgrounds decaying in time. On the other hand, following ideas of Feynman et al, we discuss in detail the possibility of reducing the quantum dynamics to a classical Hamiltonian system. This, in particular, opens the possibility of directly applying powerful methods of classical mechanics (e.g. KAM methods) to study the quantum system. Following such an approach, we draw conclusions of relevance for 'quantum chaos' when the external background is periodic or quasi-periodic in time. (author)
Plattner, Alain; Simons, Frederik J.
2017-10-01
When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics
Two-electrons quantum dot in plasmas under the external fields
Bahar, M. K.; Soylu, A.
2018-02-01
In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.
Energy Technology Data Exchange (ETDEWEB)
Zhang Longcai [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)], E-mail: zhlcai2000@163.com; Wang Suyu; Wang Jiasu; Zheng Jun [Applied Superconductivity Laboratory, P.O. Box 152, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)
2007-12-01
Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.
Magnetic Spin Waves in CsNiF3 with an Applied Field
DEFF Research Database (Denmark)
Steiner, M.; Kjems, Jørgen
1977-01-01
The spin wave dispersion in the planar 1D ferromagnet CsNiF3 has been measured by inelastic neutron scattering in an external field. The spin wave linewidths are found to decrease with increasing field and become resolution-limited for H>10 kG at 4.2K. At high fields, H>10 kG, both energies...
Colored, spinning classical particle in an external non-Abelian gauge field
International Nuclear Information System (INIS)
Arodz, H.
1982-04-01
Classical non-relativistic equations of motion are derived for a colored, spinning point-like particle in an external SU(2) gauge field from Dirac equation. It is found that in addition to the classical spin and color spin vectors, S, I, it is necessary to introduce a new classical dynamical variable [Jsup(ab)], a,b = 1,2,3, describing a mixing of the spin and color. The constraint relations between [Jsup(ab)], S, I are also found. (Auth.)
Numerical study of two dimensional disordered systems in an external magnetic field
International Nuclear Information System (INIS)
Jana, Debnarayan
2000-01-01
We study here 2d tight-binding disordered model in an external magnetic field. By numerically diagonalizing the Hamiltonian, we characterize the eigenstates by Generalized Inverse Participation Ratio (GIPR). The properties of the eigenstates have been studied in case of random flux model as well as with the strength of disorder. Simple theoretical arguments are given in support of the numerical observation. Finally, we have also studied the multifractality of the eigenstates. All these study may shed light on the eigenstates in the center of the band in case of Integer Quantum Hall Effect (IQHE). (author)
Structurization of ferrofluids in the absence of an external magnetic field
International Nuclear Information System (INIS)
Zubarev, A. Yu.; Iskakova, L. Yu.
2013-01-01
Structural transformations in a model ferrofluid in the absence of an external magnetic field have been theoretically studied. The results agree with well-known laboratory experiments and computer simulations in showing that, if the concentration of particles and their magnetic interaction energy are below certain critical values, most particles form separate linear chains. If these parameters exceed the critical values, most particles concentrate so as to form branched network structures. The passage from chains to network has a continuous character rather than represents a discontinuous first-order phase transition.
Pala, M G; Baltazar, S; Martins, F; Hackens, B; Sellier, H; Ouisse, T; Bayot, V; Huant, S
2009-07-01
We study scanning gate microscopy (SGM) in open quantum rings obtained from buried semiconductor InGaAs/InAlAs heterostructures. By performing a theoretical analysis based on the Keldysh-Green function approach we interpret the radial fringes observed in experiments as the effect of randomly distributed charged defects. We associate SGM conductance images with the local density of states (LDOS) of the system. We show that such an association cannot be made with the current density distribution. By varying an external magnetic field we are able to reproduce recursive quasi-classical orbits in LDOS and conductance images, which bear the same periodicity as the Aharonov-Bohm effect.
Transverse kinetics of a charged drop in an external electric field
International Nuclear Information System (INIS)
Bondarenko, S.; Komoshvili, K.
2016-01-01
We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed
Transverse kinetics of a charged drop in an external electric field
Energy Technology Data Exchange (ETDEWEB)
Bondarenko, S.; Komoshvili, K. [Ariel University (Israel)
2016-01-22
We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed.
Sakai, Munetoshi; Kono, Hiroki; Nakajima, Akira; Sakai, Hideki; Abe, Masahiko; Fujishima, Akira
2010-02-02
On a superhydrophobic surface, the internal fluidity of water droplets with different volumes (15, 30 microL) and their horizontal motion in an external electric field were evaluated using particle image velocimetry (PIV). For driving of water droplets on a superhydrophobic coating between parallel electrodes, it was important to place them at appropriate positions. Droplets moved with slipping. Small droplets showed deformation that is more remarkable. Results show that the dielectrophoretic force induced the initial droplet motion and that the surface potential gradient drove the droplets after reaching the middle point between electrodes.
Structure and viscosity of a transformer oil-based ferrofluid under an external electric field
Energy Technology Data Exchange (ETDEWEB)
Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)
2017-06-01
Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.
Semantic Data And Visualization Techniques Applied To Geologic Field Mapping
Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.
2015-12-01
Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.
Directory of Open Access Journals (Sweden)
Jongyul Kim
2017-05-01
Full Text Available We propose a position control method for a helical magnetic robot (HMR that uses the rotating frequency of the external rotating magnetic field (ERMF to minimize the position fluctuation of the HMR caused by pulsatile flow in human blood vessels. We prototyped the HMR and conducted several experiments in pseudo blood vessel environments with a peristaltic pump. We experimentally obtained the relation between the flow rate and the rotating frequency of the ERMF required to make the HMR stationary in a given pulsatile flow. Then we approximated the pulsatile flow by Fourier series and applied the required ERMF rotating frequency to the HMR in real time. Our proposed position control method drastically reduced the position fluctuation of the HMR under pulsatile flow.
Optimisation of applied field pulses for microwave assisted magnetic recording
Directory of Open Access Journals (Sweden)
Simon John Greaves
2017-05-01
Full Text Available Grains in a recording medium experience field pulses from a write head during recording. In general, a short head field rise time and a square pulse shape have been viewed as optimal. This work investigates the optimum field pulse shape for microwave assisted magnetic recording on single layer and ECC media. A square pulse was found to give the best recording performance on single layer media, but an initially negative field pulse increasing at a constant rate was more suitable for ECC media.
International Nuclear Information System (INIS)
Wilms, D; Virnau, P; Binder, K; Deutschländer, S; Siems, U; Franzrahe, K; Henseler, P; Keim, P; Schwierz, N; Maret, G; Nielaba, P
2012-01-01
In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder. We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss the laser induced de-mixing for the three different possible couplings to the external potential. The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations. Due to misfits between multiples of the lattice parameter and the channel widths, a variety of ordered and disordered lattice structures have been observed. The resulting local lattice structures and defect probabilities are studied for various cross sections. The influence of a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior. Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal liquid. This work contains sections reviewing previous work by the authors as well as new, unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing regime in binary systems in external light fields, configurations for shear induced effects at structured walls, studies on the effect of confinement on the structures
Misra, N N; Martynenko, Alex; Chemat, Farid; Paniwnyk, Larysa; Barba, Francisco J; Jambrak, Anet Režek
2018-07-24
Interest in the development and adoption of nonthermal technologies is burgeoning within the food and bioprocess industry, the associated research community, and among the consumers. This is evident from not only the success of some innovative nonthermal technologies at industrial scale, but also from the increasing number of publications dealing with these topics, a growing demand for foods processed by nonthermal technologies and use of natural ingredients. A notable feature of the nonthermal technologies such as cold plasma, electrohydrodynamic processing, pulsed electric fields, and ultrasound is the involvement of external fields, either electric or sound. Therefore, it merits to study the fundamentals of these technologies and the associated phenomenon with a unified approach. In this review, we revisit the fundamental physical and chemical phenomena governing the selected technologies, highlight similarities, and contrasts, describe few successful applications, and finally, identify the gaps in research.
Energy Technology Data Exchange (ETDEWEB)
Gu Chen [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Alamgir, A K M [Faculty of Engineering, Yokohama National University, 75-9 Tokiwadai, Hodogaya-ku, Yokohama (Japan); Qu Timing [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)
2007-03-15
Ferromagnetic material was electroplated onto the surface of the Bi2223/Ag multi-filamentary tape and as a result changed the I{sub c}(B) characteristic of the tape correspondingly. A numerical simulation was used to investigate the influence of ferromagnetic shielding (FS) on the performance of the tape, in particular the I{sub c} behaviour under perpendicular external fields. Using finite element analysis, we are able to understand how FS alters the flux distribution within the superconductor region under any arbitrary shielding structure. The shielding width, thickness and nonlinear property of the ferromagnetic material were taken into account for the simulation. Finally, optimized shielding parameters in association with different operating fields were suggested and these values could be considered for the next run of experimental work.
International Nuclear Information System (INIS)
Gu Chen; Alamgir, A K M; Qu Timing; Han, Z
2007-01-01
Ferromagnetic material was electroplated onto the surface of the Bi2223/Ag multi-filamentary tape and as a result changed the I c (B) characteristic of the tape correspondingly. A numerical simulation was used to investigate the influence of ferromagnetic shielding (FS) on the performance of the tape, in particular the I c behaviour under perpendicular external fields. Using finite element analysis, we are able to understand how FS alters the flux distribution within the superconductor region under any arbitrary shielding structure. The shielding width, thickness and nonlinear property of the ferromagnetic material were taken into account for the simulation. Finally, optimized shielding parameters in association with different operating fields were suggested and these values could be considered for the next run of experimental work
Entangled plasmon generation in nonlinear spaser system under the action of external magnetic field
Gubin, M. Yu.; Shesterikov, A. V.; Karpov, S. N.; Prokhorov, A. V.
2018-02-01
The present paper theoretically investigates features of quantum dynamics for localized plasmons in three-particle or four-particle spaser systems consisting of metal nanoparticles and semiconductor quantum dots. In the framework of the mean field approximation, the conditions for the observation of stable stationary regimes for single-particle plasmons in spaser systems are revealed, and realization of these regimes is discussed. The strong dipole-dipole interaction between adjacent nanoparticles for the four-particle spaser system is investigated. We show that this interaction can lead to the decreasing of the autocorrelation function values for plasmons. The generation of entangled plasmons in a three-particle spaser system with nonlinear plasmon-exciton interaction is predicted. The use of an external magnetic field is proposed for control of the cross correlations between plasmons in the three-particle spaser system.
International Nuclear Information System (INIS)
Betancourt-Riera, Ri.; Nieto Jalil, J.M.; Betancourt-Riera, Re.; Riera, R.
2009-01-01
The differential cross-section for an electron Raman scattering process in a semiconductor quantum wire in the presence of an external magnetic field perpendicular to the plane of confinement regarding phonon-assisted transitions, is calculated. We assume single parabolic conduction band and present a description of the phonon modes of cylindrical structures embedded in another material using the Froehlich phonon interaction. To illustrate the theory we use a GaAs/Al 0.35 Ga 0.75 As system. The emission spectra are discussed for different scattering configurations and the selection rules for the processes are also studied. The magnetic field distribution is considered constant with value B 0 inside of the wire, and zero outside.
Heat kernel expansion for fermionic billiards in an external magnetic field
International Nuclear Information System (INIS)
Antoine, M.; Comtet, A.; Knecht, M.
1989-05-01
Using Seeley's heat kernel expansion, we compute the asymptotic density of states of the Dirac operator coupled to a magnetic field on a two dimensional manifold with boundary (fermionic billiard). Local boundary conditions compatible with vector current conservation depend on a free parameter α. It is shown that the perimeter correction identically vanishes for α = 0. In that case, the next order constant term is found to be proportional to the Euler characteristic of the manifold. These results are independent of the external magnetic field and of the shape of the billiard, provided the boundary is sufficiently smooth. For the flat circular billiard, the constant term is found to be - 1/12, in agreement with a numerical result by M.V. BERRY and R.J. MONDRAGON (1987)
Influence of external magnetic field on laser-induced gold nanoparticles fragmentation
International Nuclear Information System (INIS)
Serkov, A. A.; Rakov, I. I.; Simakin, A. V.; Kuzmin, P. G.; Shafeev, G. A.; Mikhailova, G. N.; Antonova, L. Kh.; Troitskii, A. V.; Kuzmin, G. P.
2016-01-01
Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction with magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.
Population and phase dynamics of F=1 spinor condensates in an external magnetic field
International Nuclear Information System (INIS)
Romano, D.R.; Passos, E.J.V. de
2004-01-01
We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability
A model of the response of GMR of metallic multilayers to external magnetic field
Directory of Open Access Journals (Sweden)
Uba J.I.
2015-12-01
Full Text Available It has not been possible to transform resistivity models in terms of magnetic field in order to account for variation of giant magnetoresistance (GMR with external magnetic field, which would have led to determination of material properties. This problem is approached mathematically via variation calculus to arrive at an exponential function that fits observed GMR values. Using this model in free electron approximation, the mean Fermi vector, susceptibility and total density of states of a number of metallic multilayers are determined from their reported GMR values. Susceptibility is found to depend on interface roughness and antiferromagnetic (AF coupling; thus, it gives qualitative measure of interface quality and AF coupling. Comparison of susceptibilities and GMRs of electrodeposited and ion beam sputtered Co/Cu structures shows that a rough interface suppresses GMR in the former but enhances it in the latter.
External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator
Niedra, Janis M.; Geng, Steven M.
2013-01-01
Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.
Modified electron acoustic field and energy applied to observation data
Energy Technology Data Exchange (ETDEWEB)
Abdelwahed, H. G., E-mail: hgomaa-eg@yahoo.com, E-mail: hgomaa-eg@mans.edu.eg [College of Science and Humanitarian Studies, Physics Department, Prince Sattam Bin Abdul Aziz University, Alkharj 11942 (Saudi Arabia); Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); El-Shewy, E. K. [Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2016-08-15
Improved electrostatic acoustic field and energy have been debated in vortex trapped hot electrons and fluid of cold electrons with pressure term plasmas. The perturbed higher-order modified-Korteweg-de Vries equation (PhomKdV) has been worked out. The effect of trapping and electron temperatures on the electro-field and energy properties in auroral plasmas has been inspected.
A Student Run Field Exercise in Applied Tourism Geography
De Bres, Karen; Coomansingh, Johnny
2006-01-01
The purpose of this paper is to discuss the field project and the field experiences of 60 undergraduates in a lower level geography course. Cumulative based learning was the main teaching technique. The Eisenhower Center, the Dickinson County Historical Society Museum, and Old Abilene Town, a renovated/reconstructed frontier town, were selected…
Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields
Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.
2018-05-01
If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.
Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure
Directory of Open Access Journals (Sweden)
Ariu G.
2016-01-01
Full Text Available This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs. The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.
Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure
Ariu, G.; Hamerton, I.; Ivanov, D.
2016-01-01
This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs). The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.
Tuning the energy gap of bilayer α-graphyne by applying strain and electric field
Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo
2016-02-01
Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Influence of external magnetic field on parameters of surface two-focus spin-wave ferromagnetic lens
International Nuclear Information System (INIS)
Reshetnyak, S.A.; Berezhinskij, A.S.
2012-01-01
The influence of external magnetic field on refraction of surface spin wave propagating through inhomogeneity created in the form of a lens, that is a biaxial ferromagnet placed into uniaxial ferromagnetic medium, is studied.
Guo, Q L; Liang, B L; Wang, Y; Deng, G Y; Jiang, Y H; Zhang, S H; Fu, G S; Simmonds, P J
2014-10-01
The propagation characteristics of a focused laser beam in a SBN:75 photorefractive crystal strongly depend on the signal-to-background intensity ratio (R=Is/Ib) under reverse external electric field. In the range 20>R>0.05, the laser beam shows enhanced self-defocusing behavior with increasing external electric field, while it shows self-focusing in the range 0.03>R>0.01. Spatial solitons are observed under a suitable reverse external electric field for R=0.025. A theoretical model is proposed to explain the experimental observations, which suggest a new type of soliton formation due to "enhancement" not "screening" of the external electrical field.
Hermance, J. F.
1985-01-01
The Earth's magnetic field at MAGSAT altitudes not only has contributions from the Earth's core and static magnetization in the lithosphere, but also from external electric current systems in the ionosphere and magnetosphere, along with induced electric currents flowing in the conducting earth. Hermance assessed these last two contributions; the external time-varying fields and their associated internal counter-parts which are electromagnetically induced. It is readily recognized that during periods of magnetic disturbance, external currents often contribute from 10's to 100's of nanoteslas (gammas) to observations of the Earth's field. Since static anomalies from lithospheric magnetization are of this same magnitude or less, these external source fields must be taken into account when attempting to delineate gross structural features in the crust.
International Nuclear Information System (INIS)
Nishikawa, H.; Torii, S.; Yuasa, K.
2005-01-01
This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested
Gravitomagnetic effects in conductor in applied magnetic field
International Nuclear Information System (INIS)
Ahmedov, B.J.; Karim, M.
1999-11-01
The electromagnetic measurements of general relativistic gravitomagnetic effects which can be performed within a conductor embedded in the space-time of slow rotating gravitational object in the presence of magnetic field are proposed. (author)
Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction
Solov'ev, A. A.
2013-09-01
We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.
Energy Technology Data Exchange (ETDEWEB)
Dabiri, Zohreh, E-mail: z.dabiri@stu.yazd.ac.ir [Physics Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Kazempour, Ali [Department of Physics, Payame Noor University, P.O. BOX 119395-3697, Tehran (Iran, Islamic Republic of); Nano Structured Coatings Institute of Yazd Payame Noor University, P.O. Code 89431-74559, Yazd (Iran, Islamic Republic of); Sadeghzadeh, Mohammad Ali [Physics Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)
2016-11-15
The strength of phonon anharmonicity is investigated in the framework of the Density Functional Perturbation Theory via an applied constant electric field. In contrast to routine approaches, we have employed the electric field as an effective probe to quest after the quasi-harmonic and anharmonic effects. Two typical tetrahedral semiconductors (diamond and silicon) have been selected to test the efficiency of this approach. In this scheme the applied field is responsible for establishing the perturbation and also inducing the anharmonicity in systems. The induced polarization is a result of changing the electronic density while ions are located at their ground state coordinates or at a specified strain. Employing this method, physical quantities of the semiconductors are calculated in presence of the electron–phonon interaction directly and, phonon–phonon interaction, indirectly. The present approach, which is in good agreement with previous theoretical and experimental studies, can be introduced as a benchmark to simply investigate the anharmonicity and pertinent consequences in materials.
International Nuclear Information System (INIS)
Gelis, Francois; Venugopalan, Raju
2006-01-01
We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory
Energy Technology Data Exchange (ETDEWEB)
Xu, Ling-Fang; Feng, Xing; Sun, Kang; Liang, Ze-Yu; Xu, Qian; Liang, Jia-Yu; Yang, Chang-Ping [Hubei University, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan (China)
2017-07-15
Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe{sub 2}O{sub 4}, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe{sub 2}O{sub 4} ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices. (orig.)
Raymond, C.; Hajj, G.
1994-01-01
We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.
Stevens, K. M.; Krim, J.
2015-03-01
We present here a quartz crystal microbalance study of two-phase gold nickel alloys whose internal granular properties are probed by exposure to a fluctuating external magnetic field. The work is motivated by prior studies demonstrating that granular two-phase materials exhibited lower friction and wear than solid solution alloys with identical compositions. In particular, we report a ``flexing'' effect which appears when an external magnetic field is applied, and is manifested as a decrease in the magnitude of oscillation amplitude that is synchronized with the applied field; the effect is not seen on the complimentary solid solution samples. The effect is consistent with internal interfacial friction between nickel and gold grains, indicating a degree of freedom which may decrease friction even in the absence of an external magnetic field. This is supported through analysis of energy dissipation in the system, using the Butterworth-Van Dyke equivalent circuit model. Data and interpretation are also presented that rule out alternate explanations such as giant magnetoresistance and/or other resistive phenomenon within the film. Funding provided by NSF DMR0805204. Thanks to L. Pan for sample preparation.
Levitation performance of YBCO bulk in different applied magnetic fields
International Nuclear Information System (INIS)
Liu, W.; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S.
2008-01-01
The maglev performance of bulk high-T c superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B z ), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems
Levitation performance of YBCO bulk in different applied magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)
2008-07-01
The maglev performance of bulk high-T{sub c} superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B{sub z}), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems.
Energy Technology Data Exchange (ETDEWEB)
Alqasem, Bilal, E-mail: bilalalqasem@yahoo.com; Yahya, Noorhana, E-mail: noorhana_yahya@petronas.com.my; Qureshi, Saima, E-mail: saima_qureshi_25@yahoo.com; Irfan, Muhammad, E-mail: irfan-mohammad@hotmail.com; Ur Rehman, Zia, E-mail: zia545@hotmail.com; Soleimani, Hassan, E-mail: hassan.soleimani@petronas.com.my
2017-03-15
Highlights: • External magnetic field was applied during syntheses of α-Fe{sub 2}O{sub 3} nanocatalyst. • α-Fe{sub 2}O{sub 3} nanocatalyst with enhanced magnetic properties was synthesized. • Effect of magnetic properties and morphology of α-Fe{sub 2}O{sub 3} on ammonia yield was tested. • α-Fe{sub 2}O{sub 3} nanowires with improved saturation magnetization created high ammonia yield. • A maximum green ammonia yield of 24.174 × 10{sup −3} mol h{sup −1} g cat{sup −1} was produced. - Abstract: Hematite nanocatalysts with improved magnetic properties were synthesized using electrical resistive heating under the presence of a magnetic field and a gaseous environment containing oxygen and nitrogen. The synthesis temperature was varied from 500–850 °C in the absence and presence of a static magnetic field of 0.25 T. VSM hysteresis results showed that there is a clear improve in the magnetic properties of the nanocatalysts when an external magnetic field was used during the synthesis. It also showed that the nanowires amongst other shapes hold the highest saturation magnetization value. The produced α-Fe{sub 2}O{sub 3} nanocatalysts were used for ammonia synthesis under an external magnetic field strength ranging between 0.4–2 T. Correspondingly, (24.174 mmol h{sup −1} g cat{sup −1}) ammonia was yielded by applying an external magnetic field of 1.2 T and using the α-Fe{sub 2}O{sub 3} nanowires synthesized at 700 °C with the highest saturation magnetization value of 189.43 emu/g.
Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field
Energy Technology Data Exchange (ETDEWEB)
Lopin, I. [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)
2017-10-01
We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative below the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i} ≈ 0–0.8, the cutoff lies in the range ω{sub c} ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
International Nuclear Information System (INIS)
Yu, Ilchenko M.; Yu, Gorobets O.; Bondar, I.A.; Gaponov, A.M.
2010-01-01
The effect of change of shape of a steel ball was revealed as a result of its etching in an aqueous solution of nitric acid under influence of an external magnetic field. The elongation of a ferromagnetic ball was observed along the direction of an external magnetic field while etching took place uniformly in all the directions without magnetic field application. The steel ball etching in a magnetic field is characterized by formation of three cylindrically symmetric regions with different etching rates and surface structures, divided from each other by clear borders (namely, the pole, equator and transition regions are formed). The non-monotone dependences of etching rate, surface structure of a sample and sample shape after etching on an external magnetic field are observed.
Applying Mean-Field Approximation to Continuous Time Markov Chains
Kolesnichenko, A.V.; Senni, Valerio; Pourranjabar, Alireza; Remke, A.K.I.; Stoelinga, M.I.A.
2014-01-01
The mean-field analysis technique is used to perform analysis of a system with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found
External field effects on diffusion and solidification derived from the free-volume model
Miller, R. I.; Ruff, R. C.
1975-01-01
Expressions for the diffusion coefficient and the solidification rate from the free-volume model of liquids developed by Turnbull and Cohen have been used to estimate the effects which microgravity and magnetic fields will have on these quantities. The mathematical formalism describing changes of the diffusion coefficient and the solidification rate is the same for both the microgravity and magnetic field cases, but the difference between the magnitudes of the two effects is quite large. The change in the two parameters is found to be less than .0001% for the microgravity case and on the order of 0.1 to 1.1% for the magnetic field case for four representative materials. The diffusion coefficient and the solidification rate are found to increase under the influence of an applied magnetic field, and this is in agreement with experimental observations.
Energy Technology Data Exchange (ETDEWEB)
Buenemann, D
1963-03-15
Some aspects of the theory of longitudinal and transversal waves in a collisionless nonrelativistic plasma are treated. A dispersion relation for multicomponent plasmas is derived from the linearized Boltzmann-Vlasov equation using the full set of Maxwell's equations without an external field. The velocity distributions of the plasma streams are assumed to be Maxwellian. For the particular case of two counterstreaming plasmas it is shown that there exists transversal instabilities for all counterstreaming velocities whereas the well known two stream instabilities only exist for velocities greater than a critical velocity. Exact solutions for the onset of the instabilities can be given. This kind of instability may occur for any nonisotropic velocity distribution in a collisionless plasma. (auth)
Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water
Directory of Open Access Journals (Sweden)
Spadaro Salvatore
2018-01-01
Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay
Response of SU(2) lattice gauge theory to a gauge invariant external field
International Nuclear Information System (INIS)
Goepfert, M.
1980-10-01
Topologically determined Z(2) variables in pure SU(2) lattice gauge theory are discussed. They count the number of 'vortex souls'. The expectation value of the corresponding Z(2) loop and the dependence of the string tension on an external field h coupled to them is calculated to lowest order in the high temperature expansion. The result is in agreement with the conjecture that the probability distribution of vortex souls determines the string tension. A different formula for the string tension is found in the two limiting cases 0 < /h/ << β << 1 and 0 < β << h << 1. This penomenon is traced to the effect of short range interactions of the vortex souls which are mediated by the other excitations in the theory. (orig.)
Ion acoustic solitary waves in a dusty plasma obliquely propagating to an external magnetic field
International Nuclear Information System (INIS)
Choi, Cheong Rim; Ryu, Chang-Mo; Lee, Nam C.; Lee, D.-Y.
2005-01-01
The nonlinear ion acoustic solitary wave in a magnetized dusty plasma, obliquely propagating to the embedding external magnetic field, is revisited. It is found that when the charge density of dust particles is high, the Sagdeev potential needs to be expanded up to δn 4 near n=1. In this case, it is shown that there could exist rarefactive ion acoustic solitary waves as well as the kink-type double layer solutions, in addition to the conventional hump-type ones found in the δn 3 expansion. The amplitude variations of ion acoustic solitary waves in a magnetized dusty plasma are also examined with respect to the change of the dust charge density and the wave directional angle
The effect of internal and external fields of view on visually induced motion sickness.
Bos, Jelte E; de Vries, Sjoerd C; van Emmerik, Martijn L; Groen, Eric L
2010-07-01
Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between iFOV and eFOV would lead to sickness. To that end we used a computer game environment with different iFOV and eFOV settings, and found the opposite effect. We speculate that the relative large differences between iFOV and eFOV used in this experiment caused the discrepancy, as may be explained by assuming an observer model controlling body motion. Copyright 2009 Elsevier Ltd. All rights reserved.
Collisional approach to dynamics of resonance atomic states in an external field
International Nuclear Information System (INIS)
Urnov, A.M.; Uskov, D.B.
1993-01-01
The following aspects of the dynamics of an atomic state in an external stationary field are assessed: (i) the rearrangement problem; (ii) the description of the appropriate final-channel wavefunctions; (iii) the analytical properties of the transition amplitude into the continuum. The rearrangement problem was solved by the introduction of the effective Hamiltonian, the eigenstates of which include both the initial state and final states ('modified states of continuum spectrum' MSCS) which describe the potential part of the exact wavefunction of the scattering problem. It is shown that the amplitude of decay and transition into MSCS as functions of time have an exact representation as a sum of resonance terms defined by a set of resonance states and the matrix elements of the shift R-matrix operator. (author)
Prevalence of information stored in arrays of magnetic nanowires against external fields
Ceballos, D.; Cisternas, E.; Vogel, E. E.; Allende, S.
2018-04-01
Arrays of magnetic nanowires in porous alumina can be used to store information inscribed on the system by orienting the magnetization of selected wires pointing in a desired direction, so symbols can be read as ferromagnetic sectors. However, this information is subject to aging and the stored information could be gradually lost. We investigate here two mechanisms proposed to improve the prevalence of the stored information: opposite ferromagnetic band at the center of the symbol and bi-segmented nanowires acting as two layers of nanowires storing the same information. Both mechanisms prove to increase resistance to the action of external magnetic fields for the case of Ni wires in a geometry compatible with actually grown nanowires. Advantages and disadvantages of these mechanisms are discussed.
Martensitic transformations in Ni-Mn-Ga system affected by external fields
International Nuclear Information System (INIS)
Chernenko, V.; Babii, O.; L'vov, V.; McCormick, P.G.
2000-01-01
The influence of hydrostatic pressure, uniaxial stress and magnetic field on the martensitic transformation temperatures for the ferromagnetic single crystalline Ni-Mn-Ga alloys is studied. It is shown that the experimental results are satisfactorily described by the Landau theory. Ni-Mn-Ga L2 1 -type ordered alloys exhibit a number of the first order and weak first order structural transformations in a ferromagnetic or paramagnetic parent phase depending on the alloy composition and being either thermally or stress activated. Most of these phase transformations are of the martensitic type, i.e., they are accompanied by the spontaneous elastic strains forming a multicomponent order parameter in the Landau expansion for the Gibbs potential. In this work we analyze the influence of the external fields (mechanical and magnetic) on the martensitic transformation (MT) from cubic parent phase (P) to five-layered martensitic one (5M-martensite) usually exhibited by the ferromagnetic ordered Ni-Mn-Ga alloys. In accordance with, we treat the 5M-martensite as a twinned tetragonal phase and, so, describe the experimental results in the framework of the theory of cubic-tetragonal MT. The original experimental data of high magnetic field influence on MT in near stoichiometric Ni 2 MnGa compound are presented to compare with the theoretical estimations. (orig.)
Laminar Natural Convection in Square Enclosure Under an Externally Evanescent Magnetic Field
International Nuclear Information System (INIS)
El Jery, Atef; Ben Brahim, Ammar; Magherbi, Mourad
2009-01-01
This paper numerically investigates the effect of an externally evanescent magnetic field on flow patterns and heat transfer of fluid in a square cavity. The horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept isothermal. A control volume finite element method is used to solve the conservation equations at Prandtl number of 0.71. The effect of constant Hartman number on Nusselt number was studied. Validation tests with existing data demonstrate the aptitude of the present method to produce accurate results. The effects of magnetic field inclination angle from 0 degree to 90 degree on streamlines distributions are shown for different values of Hartman number. For Grashof number equal to 10 5 , the values of relaxation time of the magnetic field are chosen, so that the Lorentz force acts only in the transient state of Nusselt number in natural convection. The Nusselt number was calculated for different values of the inverse relaxation time varying from 0 to + ∞. The magnitude and the number of oscillations of the Nusselt number were observed. It has been found that no oscillation was seen at relaxation time equal to 20
International Nuclear Information System (INIS)
Lennernaes, B.; Letocha, H.; Rikner, G.; Magnusson, A.; Nilsson, S.
1995-01-01
The purpose of this work was to study displacement error and internal movements of the prostate during external beam radiotherapy. Verification films in the frontal (n=194) and lateral (n=64) portals were investigated in 14 patients treated with radioactive 198 Au implants. Displacement errors of two implants were investigated. In seven patients, filling of the rectum and the bladder with contrast medium or isotonic saline was performed during CT investigation for planning purposes to detect movements of the prostate. Most (95%) of the displacement errors were less than 10 mm in the frontal portal and less than 15 mm in the lateral portals. No correlation to the patient's weight was found. The displacement errors were randomly distributed. The spatial relations between the implants were not altered during the treatments. Small movements of the prostate were observed. To conclude, the positioning system employed at present (laser) can be sufficient for the margins used (2 cm). In lateral portals, however, the system did not have the ability to detect a possible systematic displacement error from simulator to accelerator. The intention is to decrease the margins to 1 cm, which will necessitate a better positioning system. (orig.)
Rational modulation of neuronal processing with applied electric fields.
Bikson, Marom; Radman, Thomas; Datta, Abhishek
2006-01-01
Traditional approaches to electrical stimulation, using trains of supra-threshold pulses to trigger action potentials, may be replaced or augmented by using 'rational' sub-threshold stimulation protocols that incorporate knowledge of single neuron geometry, inhomogeneous tissue properties, and nervous system information coding. Sub-threshold stimulation, at intensities (well) below those sufficient to trigger action potentials, may none-the-less exert a profound effect on brain function through modulation of concomitant neuronal activity. For example, small DC fields may coherently polarize a network of neurons and thus modulate the simultaneous processing of afferent synaptic input as well as resulting changes in synaptic plasticity. Through 'activity-dependent plasticity', sub-threshold fields may allow specific targeting of pathological networks and are thus particularly suitable to overcome the poor anatomical focus of noninvasive (transcranial) electrical stimulation. Additional approaches to improve targeting in transcranial stimulation using novel electrode configurations are also introduced.
Makarov, Vladimir I; Khmelinskii, Igor
2016-01-01
We report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.
International Nuclear Information System (INIS)
Utari; Kusumandari; Purnama, B.; Mudasir; Abraha, K.
2016-01-01
We report here on the experimental results of the effect of external magnetic field on the current flow in plane surface of Fe(III)-porphyrin thin layer. The deposition of the Fe(III)- porphyrin thin layer was done by spin coating method. The I-V characteristics of film were measured by means of two point probes. The sample of layer number N = 4 was used to evaluate the magnetic effect on the electrical currents. The ohmic characteristics of the I-V film measurement were obtained. The current decreases when magnetic field is applied to the system and saturated current is obtained at a given magnetic field. Here, the decrease in the current can be attributed to the recombination of carrier charge under the magnetic field. In addition, the magnitude of the saturated current is found to increase with the increase in the voltage used. (paper)
Tales from the Field: Search Strategies Applied in Web Searching
Directory of Open Access Journals (Sweden)
Soohyung Joo
2010-08-01
Full Text Available In their web search processes users apply multiple types of search strategies, which consist of different search tactics. This paper identifies eight types of information search strategies with associated cases based on sequences of search tactics during the information search process. Thirty-one participants representing the general public were recruited for this study. Search logs and verbal protocols offered rich data for the identification of different types of search strategies. Based on the findings, the authors further discuss how to enhance web-based information retrieval (IR systems to support each type of search strategy.
Applying Bourdieu’s Field Theory to MLS Curricula Development
DEFF Research Database (Denmark)
Wien, Charlotte; Dorch, Bertil F.
the tasks in the library. The hypothesis is that the subject specialist previously found him or herself in the upper part of the compass, while the librarians would be placed in the lower part. Obviously, this created a field of tension between the subject specialists and the librarians. A useful tool...... for the power to decide exactly what is associated with power and what is not persist. With the upgrading of LIS the librarians have moved upwards on the vertical axis and thereby challenge the subject specialist’s position. At the same time developments within the academic world have brought about...
International Nuclear Information System (INIS)
Elizalde, E.; Gavrilov, S.P.; Shil'nov, Yu.I.
2000-01-01
A four-fermion model with additional higher-derivative terms is investigated in an external electromagnetic field. The effective potential in the leading order of large-N expansion is calculated in external constant magnetic and electric fields. It is shown that, in contrast to the former results concerning the universal character of 'magnetic catalysis' in dynamical symmetry breaking, in the present higher-derivative model the magnetic field restores chiral symmetry broken initially on the tree level. Numerical results describing a second-order phase transition that accompanies the symmetry restoration at the quantum level are presented. (author)
Directory of Open Access Journals (Sweden)
Radojević Vesna J.
2005-01-01
Full Text Available Multi-mode optical fiber with magnetic composite coating was investigated as an optical fiber sensor element (OFMSE for magnetic field sensing The composite coating was formed with dispersions of permanent magnet powder of Nd-Fe-B in poly (ethylene-co-vinyl acetate-EVA solutions in toluene. The influence of the applied external magnetic field on the change of intensity of the light signal propagate trough developed optical fibers sensor element was investigated. In this paper the influence of the content of magnetic powder in the composite coating on the optical propagation characteristics of optical fiber were particularly investigated.
International Nuclear Information System (INIS)
Schuhmacher, H.
2011-01-01
Workplace monitoring is a common procedure for determining measures for routine radiation protection in a particular working environment. For mixed radiation fields consisting of neutrons and photons, it is of increased importance because it contributes to the improved accuracy of individual monitoring. An example is the determination of field-specific correction factors, which can be applied to the readings of personal dosemeters. This paper explains the general problems associated with individual dosimetry of neutron radiation, and describes the various options for workplace monitoring. These options cover a range from the elaborate field characterisation using transport calculations or spectrometers to the simpler approach using area monitors. Examples are given for workplaces in nuclear industry, at particle accelerators and at flight altitudes. (authors)
Energy Technology Data Exchange (ETDEWEB)
Hassan, Ali Saif M [Department of Physics, University of Amran, Amran (Yemen); Lari, Behzad; Joag, Pramod S, E-mail: alisaif73@gmail.co, E-mail: behzadlari1979@yahoo.co, E-mail: pramod@physics.unipune.ac.i [Department of Physics, University of Pune, Pune 411007 (India)
2010-12-03
We investigate how thermal quantum discord (QD) and classical correlations (CC) of a two-qubit one-dimensional XX Heisenberg chain in thermal equilibrium depend on the temperature of the bath as well as on nonuniform external magnetic fields applied to two qubits and varied separately. We show that the behavior of QD differs in many unexpected ways from the thermal entanglement (EOF). For the nonuniform case (B{sub 1} = -B{sub 2}), we find that QD and CC are equal for all values of (B{sub 1} = -B{sub 2}) and for different temperatures. We show that, in this case, the thermal states of the system belong to a class of mixed states and satisfy certain conditions under which QD and CC are equal. The specification of this class and the corresponding conditions are completely general and apply to any quantum system in a state in this class satisfying these conditions. We further find that the relative contributions of QD and CC can be controlled easily by changing the relative magnitudes of B{sub 1} and B{sub 2}. Finally, we connect our results with the monogamy relations between the EOF, CC and the QD of two qubits and the environment.
Parallel computation of automatic differentiation applied to magnetic field calculations
International Nuclear Information System (INIS)
Hinkins, R.L.; Lawrence Berkeley Lab., CA
1994-09-01
The author presents a parallelization of an accelerator physics application to simulate magnetic field in three dimensions. The problem involves the evaluation of high order derivatives with respect to two variables of a multivariate function. Automatic differentiation software had been used with some success, but the computation time was prohibitive. The implementation runs on several platforms, including a network of workstations using PVM, a MasPar using MPFortran, and a CM-5 using CMFortran. A careful examination of the code led to several optimizations that improved its serial performance by a factor of 8.7. The parallelization produced further improvements, especially on the MasPar with a speedup factor of 620. As a result a problem that took six days on a SPARC 10/41 now runs in minutes on the MasPar, making it feasible for physicists at Lawrence Berkeley Laboratory to simulate larger magnets
Field nondestructive assay measurements as applied to process inventories
International Nuclear Information System (INIS)
Westsik, G.A.
1979-08-01
An annual process equipment holdup inventory measurement program for a plutonium processing plant was instituted by Rockwell Hanford Operations (Rockwell) at Richland, Washington. The inventories, performed in 1977 and 1978, were designed to improve plutonium accountability and control. The inventory method used field nondestructive assay (NDA) measurement techniques with portable electronics and sodium iodide detectors. Access to and movement of plutonium in work areas was curtailed during the inventory process using administrative controls. Comparison of the two annual inventories showed good reproducibility of results within the calculated error ranges. For items where no plutonium movement occurred and which contained greater than 20 grams plutonium, the average measurement difference between the two inventories was 22%. The procedures and equipment used and the operational experience from the inventories are described
The Dirac equation in external fields: Variable separation in Cartesian coordinates
International Nuclear Information System (INIS)
Shishkin, G.V.; Cabos, W.D.
1991-01-01
The method of separation of variables in the Dirac equation proposed in an earlier work by one of the present authors [J. Math. Phys. 30, 2132 (1989)] is developed for the complete set of interactions of the Dirac particle. The essence of the method consists of the separation of the first-order matrix differential operators that define the dependence of the Dirac bispinor on the related variables, but commutation of such operators with or between the operator of the equation is not assumed. This approach, which is perfectly justified in the presence of gravitational [Theor. Math. Phys. 70, 204 (1987)] or vector fields [J. Math. Phys. 30, 2132 (1989)], permits one to find all the possibilities of separation of variables in the Dirac equation in the case of the most general set of external fields. The complete set of interactions of the Dirac particle is determined by the symmetry group of equations, namely, viz. the SU(4) group. The interactions are scalar, vector, tensor, pseudovector and pseudoscalar. The analysis in this article is limited to Cartesian coordinates. The corresponding results for the general curvilinear coordinates will be presented in a future paper
ZONAL TOROIDAL HARMONIC EXPANSIONS OF EXTERNAL GRAVITATIONAL FIELDS FOR RING-LIKE OBJECTS
Energy Technology Data Exchange (ETDEWEB)
Fukushima, Toshio, E-mail: Toshio.Fukushima@nao.ac.jp [National Astronomical Observatory, Ohsawa, Mitaka, Tokyo 181-8588 (Japan)
2016-08-01
We present an expression of the external gravitational field of a general ring-like object with axial and plane symmetries such as oval toroids or annular disks with an arbitrary density distribution. The main term is the gravitational field of a uniform, infinitely thin ring representing the limit of zero radial width and zero vertical height of the object. The additional term is derived from a zonal toroidal harmonic expansion of a general solution of Laplace’s equation outside the Brillouin toroid of the object. The special functions required are the point value and the first-order derivative of the zonal toroidal harmonics of the first kind, namely, the Legendre function of the first kind of half integer degree and an argument that is not less than unity. We developed a recursive method to compute them from two pairs of seed values explicitly expressed by some complete elliptic integrals. Numerical experiments show that appropriately truncated expansions converge rapidly outside the Brillouin toroid. The truncated expansion can be evaluated so efficiently that, for an oval toroid with an exponentially damping density profile, it is 3000–10,000 times faster than the two-dimensional numerical quadrature. A group of the Fortran 90 programs required in the new method and their sample outputs are available electronically.
First-principles calculation of transport property in nano-devices under an external magnetic field
International Nuclear Information System (INIS)
Chen Jingzhe; Zhang Jin; Han Rushan
2008-01-01
The mesoscopic quantum interference phenomenon (QIP) can be observed and behaves as the oscillation of conductance in nano-devices when the external magnetic field changes. Excluding the factor of impurities or defects, specific QIP is determined by the sample geometry. We have improved a first-principles method based on the matrix Green's function and the density functional theory to simulate the transport behaviour of such systems under a magnetic field. We have studied two kinds of QIP: universal conductance fluctuation (UCF) and Aharonov–Bohm effect (A–B effect). We find that the amplitude of UCF is much smaller than the previous theoretical prediction. We have discussed the origin of difference and concluded that due to the failure of ergodic hypothesis, the ensemble statistics is not applicable, and the conductance fluctuation is determined by the flux-dependent density of states (DOSs). We have also studied the relation between the UCF and the structure of sample. For a specific structure, an atomic circle, the A–B effect is observed and the origin of the oscillation is also discussed
Flowing states and vortices in the classical XY model in an external field
International Nuclear Information System (INIS)
Homma, Shigeo; Aoki, Toshizumi; Takeno, Shozo.
1981-01-01
Uniformly flowing states and vortices in the classical XY model in an external field are studied. This is done by using a continuum approximation and by paying attention to particular solutions to nonlinear partial differential equations for two angles theta and phi of rotation of spins for which phi satisfies the Laplace equation. For these two states equations for theta have forms similar to that in the classical Ising model in a transverse field. The uniformly flowing states are therefore described by kink-type excitations identical to those in the two-dimensional Ising model. Phonon modes associated with the uniformly flowing states are also studied, which are similar to Bogoliubov phonons. Vortex solutions and vortex formation energy are studied in close similarity to the case of liquid He 4 . By comparing the energies of these two states, an expression for critical velocity is obtained. By making correspondence to the case of liquid He 4 , numerical values of the critical velocity and of the velocity of phonons around the uniformly flowing states are estimated. For the former the numerical value is in fair agreement with experimental data. (author)
A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ling, Junpu, E-mail: lingjunpu@163.com; Zhang, Jiande; He, Juntao; Jiang, Tao [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2014-02-15
A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity by increasing the radial dimension of the Ku-band device. With a 550 keV and 7.5 kA electron beam, a 1.25 GW microwave pulse at 12.08 GHz has been obtained in the simulation. The power conversion efficiency is about 30%.
Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK
Konstantinova, O. Tanaka
2017-03-01
High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.
International Nuclear Information System (INIS)
Takahashi, Masayuki; Ohnishi, Naofumi
2016-01-01
A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, Bunkyo-ku 113-8656 (Japan); Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)
2016-08-14
A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.
Conditional Random Fields for Pattern Recognition Applied to Structured Data
Directory of Open Access Journals (Sweden)
Tom Burr
2015-07-01
Full Text Available Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building or “natural” (such as a tree. Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X is difficult because features between parts of the model are often correlated. Therefore, conditional random fields (CRFs model structured data using the conditional distribution P(Y|X = x, without specifying a model for P(X, and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches in the output domain. Second, we identify research topics and present numerical examples.
International Nuclear Information System (INIS)
Jing, C.; Konecny, R.; Antipov, S.; Chang, C.; Gold, S. H.; Schoessow, P.; Kanareykin, A.; Gai, W.
2013-01-01
Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures in many accelerator applications
International Nuclear Information System (INIS)
Kartashov, I. N.; Kuzelev, M. V.
2014-01-01
Electromagnetic modes of a plasma waveguide with a nonsimply connected cross section in an external magnetic field are investigated. The existence of quasi-TEM modes in a finite-strength magnetic field is demonstrated. It is shown that, in the limits of infinitely strong and zero magnetic fields, this mode transforms into a true TEM mode. The possibility of excitation of such modes by an electron beam in the regime of the anomalous Doppler effect is analyzed
Colloidal dispersions in external fields: from equilibrium to non-equilibrium
Lowen, Hartmut
2010-03-01
Dispersions of colloidal particles are excellent model systems of classical statistical mechanics in order to understand the principles of self-organization processes. Using an external field (e.g. electric or magnetic field) the effective interaction between the colloidal particles can be tailored and the system can be brought into non-equilibrium in a controlled way. Glass formation after an ultrafast quench in a two-dimensional superparamagnetic binary colloidal mixture [1,2] will be discussed as well as lane [3,4,5,6,7] and band [8] formation in mixtures of charged suspensions and dusty plasmas driven by an electric field. [4pt] References:[0pt] [1] L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Lowen, Phys. Rev. Letters 102, 238301 (2009). [0pt] [2] L. Assoud, F. Ebert, P. Keim, R. Messina, G. Maret, H. Lowen, J. Phys.: Condensed Matter 21, 464114 (2009). [0pt] [3] J. Dzubiella, G. P. Hoffmann, H. Lowen, Phys. Rev. E 65, 021402 (1-8) (2002). [0pt] [4] M. E. Leunissen, C. G. Christova, A. P. Hynninen, C. P. Royall, A. I. Campbell, A. Imhof, M. Dijkstra, R. van Roij, A. van Blaaderen, Nature 437, 235 (2005). [0pt] [5] M. Rex, H. Lowen, Phys. Rev. E 75, 051402 (2007). [0pt] [6] M. Rex, C. P. Royall, A. van Blaaderen, H. Lowen, Lane formation in driven colloidal mixtures: is it continuous or discontinuous?, http://arxiv.org/abs/0812.0908 [0pt] [7] K. R. Sutterlin, A. Wysocki, A. V. Ivlev, C. Rath, H. M. Thomas, M. Rubin-Zuzic, W. J. Goedheer, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, O. F. Petrov, G. E. Morfill, H. Lowen, Phys. Rev. Letters 102, 085003 (2009). [0pt] [8] A. Wysocki, H. Lowen, Phys. Rev. E 79, 041408 (2009).
Energy Technology Data Exchange (ETDEWEB)
Motomura, Hideki; Oka, Kojiro; Sogabe, Toru; Jinno, Masafumi, E-mail: hmoto@mayu.ee.ehime-u.ac.jp [Department of Electrical and Electronic Engineering, Ehime University 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan)
2011-06-08
As the environmental awareness of people becomes stronger, the demand for mercury-free light sources also becomes stronger. The authors have been developing cold cathode fluorescent lamps in which xenon gas is filled as an ultraviolet radiator instead of mercury. Previously the authors reported the luminous flux enhancement method using a grounded auxiliary external electrode (AEE). In this paper, in order to improve the luminous flux much more, a positive voltage pulse which was synchronized to the main driving negative voltage pulse was applied to the AEE. As a result, the maximum input power increased under which the positive column did not constrict and the luminous flux improved by 70% at the xenon filling pressure of 6.7 kPa. It is proved that the positive voltage pulse application to the AEE with the amplitude of more than 2 kV expands the positive column in the radial direction. It is attributed to the phenomenon that the residual ions and electrons, which are generated by dielectric barrier discharge between the AEE and the anode during the falling edge of the negative pulse to the cathode, spread the discharge path from the anode towards the AEE during the cold cathode discharge mode. By increasing the xenon filling pressure, luminous efficacy was improved to 25 lm W{sup -1}.
International Nuclear Information System (INIS)
Mostrom, M.A.
1979-01-01
Coaxial transmission lines, used to transfer the high voltage pulse into the diode region of a relativistic electron beam generator, have been studied using the two-dimensional time-dependent fully relativistic and electromagnetic particle simulation code CCUBE. A simple theory of magnetic insulation that agrees well with simulation results for a straight cylindrical coax in a uniform external magnetic field is used to interpret the effects of anode--cathode shaping and nonuniform external magnetic fields. Loss of magnetic insulation appears to be minimized by satisfying two conditions: (1) the cathode surface should follow a flux surface of the external magnetic field; (2) the anode should then be shaped to insure that the magnetic insulation impedance, including transients, is always greater than the effective load impedance wherever there is an electron flow in the anode--cathode gap
International Nuclear Information System (INIS)
Vysotsky, V.S.; Takayasu, M.; Minervini, J.V.
1997-01-01
A new method has been developed to study Ramp Rate Limitation (RRL) phenomena. Samples of ITER-type cable-in-conduit (CICC) subcable were instrumented with local field sensors such as Hall probes and pick-up coils and then subjected to rapidly changing external magnetic field. The authors found that during fast field sweeps some discontinuous changes, or jumps occur in the local field. They believe that these jumps indicate a fast current redistribution processes inside CICC. Detailed information about local magnetic field jumps during changing field is presented. Possible origin of the jumps and their connection with RRL are discussed
International Nuclear Information System (INIS)
Guo, Xiaoyong; Ren, Xiaobin; Wang, Gangzhi; Peng, Jie
2014-01-01
We investigate the impact of a time-reversal invariant external field on the topological phases of a three-dimensional (3D) topological insulator. By taking the momentum k z as a parameter, we calculate the spin-Chern number analytically. It is shown that both the quantum spin Hall phase and the integer quantum Hall phase can be realized in our system. When the strength of the external field is varied, a series of topological phase transitions occurs with the closing of the energy gap or the spin-spectrum gap. In a tight-binding form, the surface modes are discussed numerically to confirm the analytically results. (paper)
International Nuclear Information System (INIS)
Afanas'ev, G.N.; Stepanovskij, Yu.P.
1994-01-01
We investigate how the choice of the magnetization distribution inside the sample affects its interaction with the external electromagnetic field. The strong selectivity to the time dependence of the external electromagnetic field arises for the particular magnetizations. This can be used for the storage and ciphering of information. We propose a time-dependent Aharonov-Bohm-like experiment in which the phase of the wave function is changed by the time-dependent vector magnetic potential. The arising time-dependent interference picture may be viewed as a new channel for the information transfer. 15 refs., 4 figs
International Nuclear Information System (INIS)
Rindani, S.D.
1989-03-01
A gauge-invariant theory of a massive spin-3/2 particle interaction with external electromagnetic and gravitational fields, obtained earlier by Kaluza-Klein reduction of a massless Rarita-Schwinger theory, is quantized using Dirac's procedure. The field anticommutators are found to be positive definite. The theory, which was earlier shown to be free from the classical Velo-Zwanziger problem of noncausal propagation modes, is thus also free from the problem of negative-norm states, a long-standing problem associated with massive spin-3/2 theories with external interaction. (author). 19 refs
PREFACE: Quantum Field Theory Under the Influence of External Conditions (QFEXT07)
Bordag, M.; Mostepanenko, V. M.
2008-04-01
This special issue contains papers reflecting talks presented at the 8th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT07), held on 17 21 September 2007, at Leipzig University. This workshop gathered 108 physicists and mathematicians working on problems which are focused on the following topics: •Casimir and van der Waals forces—progress in theory and new experiments, applications at micro- and nano-scale •Casimir effect—exact results, approximate methods and mathematical problems •Vacuum quantum effects in classical background fields—renormalization issues, singular backgrounds, applications to particle and high energy physics •Vacuum energy and gravity, vacuum energy in supersymmetric and noncommutative theories. This workshop is part of a series started in 1989 and 1992 in Leipzig by Dieter Robaschik, and continued in 1995, 1998 and 2001 in Leipzig by Michael Bordag. In 2003 this Workshop was organized by Kimball A Milton in Oklahoma, in 2005 by Emilio Elizalde in Barcelona and in 2007 it returned to Leipzig. The field of physics after which this series of workshops is named is remarkably broad. It stretches from experimental work on the measurement of dispersion forces between macroscopic bodies to quantum corrections in the presence of classical background fields. The underlying physical idea is that even in its ground state (vacuum) a quantum system responds to changes in its environment. The universality of this idea makes the field of its application so very broad. The most prominent manifestation of vacuum energy is the Casimir effect. This is, in its original formulation, the attraction between conducting planes due to the vacuum fluctuations of the electromagnetic field. In a sense, this is the long-range tail of the more general dispersion forces acting between macroscopic bodies. With the progress in nanotechnology, dispersion forces become of direct practical significance. On a more theoretical side
International Nuclear Information System (INIS)
Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T.B.
2015-01-01
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter
Energy Technology Data Exchange (ETDEWEB)
Pourmehran, O., E-mail: oveis87@yahoo.com; Rahimi-Gorji, M.; Gorji-Bandpy, M., E-mail: gorji@nit.ac.ir; Gorji, T.B.
2015-11-01
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T). - Highlights: • A realistic 3D geometry of human tracheobronchial airway based on CT scan image. • External non-uniform magnetic field applied to target the magnetic drug career. • Lagrangian particle tracking using discrete phase model applied. • The efficiency of deposition is dependent of magnetic number and particle diameter.
2011-09-07
... ENVIRONMENTAL PROTECTION AGENCY [EPA/100/J-11/001; FRL-9460-1] External Peer Review Meeting for... attend this peer review meeting as observers. Time will be set aside for observers to give brief oral... the draft document, EPA intends to consider the comments from the external peer review meeting along...
International Nuclear Information System (INIS)
Kondic, N.; Jacobs, A.; Ebert, D.
1983-01-01
In many fields one needs to know the spatial density distribution; two-phase systems are of particular importance. In particular, gas-liquid mixtures play a role in power generation, chemistry, bio-medicine etc. An intrusion into the measured system is frequently undesired or not permitted. Therefore, external, non-invasive instrumentation has definite advantages. Photon-energy discrimination methods, measuring scattered fluxes, can employ stationary equipment; they need partial collimation or only protective shielding. The results are achieved with a higher information/irradiation ratio than is the case with transmission methods. The utilization a mesh of isogonic lines (each of them being characterised by its particular scattering angle) has several advantages when compared with the mesh of straight lines (''pencil beams'') used in tomography. The ultimate experimental arrangement employing Compton scattering has fan/fan beam geometry, i.e., wide angle emitting and receiving of gammas. The direct result of the measurement is a ''scattergram'', i.e., countrate versus scattered energy spectrum. Besides representing the ''signature'' of a two- or three-dimensional density distribution, it also enables the reconstruction of local density values. The report outlines the necessary analysis and presents experimental proof of principle
Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.
2014-07-01
In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.
The IBM-5C stationary in source without an external magnetic field
International Nuclear Information System (INIS)
Kulygin, V.M.; Malakhov, N.P.; Panasenkov, A.A.; Pleshivtsev, N.V.; Romanov, V.I.; Semashko, N.N.; Seregin, V.S.; Chukhin, I.A.; Shmeleva, V.I.
1982-01-01
With the purpose of constructing efficient injectors of hydrogen fast atoms for plasma heating in magnetic traps problems arising in the course of creation of stationary high-current ion sources and specific methods of solution of these problems are considered. The design and characteristics of the YVM-50 stationary ion source without an external magnetic field intended for obtaining hydrogen ion beams with energy up to 40 keV, current 30 A and pulse duration over 2 sec. are described. Thermal regime of ion source direct heating cathode is considered. It is shown that the lanthanum hexaboride cathode at the temperature 1700 deg C ensures 30 A/cm 2 emission density radiating about 60 W/cm 2 . YBM-5c consists of a gas-discharge chamber (GDC) and ion-optical system (IOS). GDS is composed of a cathode unit, anode flange, casing, gas supply system, IOS consists of emission accelerating and earthed electrodes. At the discharge pulse duration less than 1 sec. current emission density attains 0,5 A/cm 2 which permits to extract from the ion source 30 A current beam. The ion source operation in complex with a high-voltage supply system has shown that one of the most important problems is reliability of high-voltage protection from break-downs and stability of modulators operation
Anomalous behavior of a confined two-dimensional electron within an external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Rosas, R; Riera R; Marin, J. L. [Universidad de Sonora, Hermosillo, Sonora (Mexico); Leon, H. [Instituto Superior Jose Antonio Echeverria, La Habana (Cuba)
2001-10-01
An anomalous diamagnetic behavior of a confined two-dimensional electron within an external magnetic field (perpendicular to the confining plane) is discussed in this letter. Although this finding is consistent with the pioneering work of Robnik, it has not been previously reported. When this effect occurs, the ratio between the typical length of spatial and magnetic confinement is an integer number. This property leads also to a quantization of the magnetic flux across the confining circle. The possible consequences of the peculiar behavior of the electron within such a structure are discussed. [Spanish] Se estudia una posible anomalia en las propiedades diamagneticas de un electron bidimensional confinado en presencia de un campo magnetico externo perpendicular al plano de confinamiento. Aunque los resultados obtenidos son consistentes con el trabajo pionero de Robnik, no han sido reportados anteriormente, a pesar de sus posibles aplicaciones, ya que cuando ocurre, el cociente entre la longitud magnetica y el tamano de la region de confinamiento es un numero entero, propiedad que establece una cuantizacion del flujo magnetico que atraviesa el circulo confinante. Se discuten las posibles consecuencias del comportamiento peculiar del electron en este tipo de estructura.
Linear response and correlation of a self-propelled particle in the presence of external fields
Caprini, Lorenzo; Marini Bettolo Marconi, Umberto; Vulpiani, Angelo
2018-03-01
We study the non-equilibrium properties of non interacting active Ornstein-Uhlenbeck particles (AOUP) subject to an external nonuniform field using a Fokker-Planck approach with a focus on the linear response and time-correlation functions. In particular, we compare different methods to compute these functions including the unified colored noise approximation (UCNA). The AOUP model, described by the position of the particle and the active force acting on it, is usually mapped into a Markovian process, describing the motion of a fictitious passive particle in terms of its position and velocity, where the effect of the activity is transferred into a position-dependent friction. We show that the form of the response function of the AOUP depends on whether we put the perturbation on the position and keep unperturbed the active force in the original variables or perturb the position and maintain unperturbed the velocity in the transformed variables. Indeed, as a result of the change of variables the perturbation on the position becomes a perturbation both on the position and on the fictitious velocity. We test these predictions by considering the response for three types of convex potentials: quadratic, quartic and double-well potential. Moreover, by comparing the response of the AOUP model with the corresponding response of the UCNA model we conclude that although the stationary properties are fairly well approximated by the UCNA, the non equilibrium properties are not, an effect which is not negligible when the persistence time is large.
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)
2017-10-15
A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)
Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji
2018-01-01
The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).
Study of deformation of droplet in external force field by using liquid-gas model of lattice-gas
International Nuclear Information System (INIS)
Ebihara, Ken-ichi; Watanabe, Tadashi
2000-10-01
The deformation of the droplet by the external force which is assumed to be gravity is studied by using the liquid-gas model of lattice-gas. Two types of liquid-gas models, one is the minimal model and the other is the maximal model, which are distinguished from each other by the added long-range interactions are used for the simulation of the droplet deformation. The difference of the droplet deformation between the maximal model and the minimal model was observed. While the droplet of the minimal model elongates in the direction of the external force, the droplet of the maximal model elongates in the perpendicular direction to the external force. Therefore the droplet deformation in the external force field of the maximal model is more similar to the droplet deformation which is observed in experiments than that of the minimal model. (author)
International Nuclear Information System (INIS)
Hramov, Alexander; Koronovskii, Alexey; Morozov, Mikhail; Mushtakov, Alexander
2008-01-01
In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [D.J. Sullivan, J.E. Walsh, E. Coutsias, in: V.L. Granatstein, I. Alexeff (Eds.), Virtual Cathode Oscillator (Vircator) Theory, in: High Power Microwave Sources, vol. 13, Artech House Microwave Library, 1987, Chapter 13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields
International Nuclear Information System (INIS)
Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.
2011-01-01
In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.
Phillips, Kaye; Müller-Clemm, Werner; Ysselstein, Margaretha; Sachs, Jonathan
2013-02-01
Including context in the measurement and evaluation of health in equity interventions is critical to understanding how events that occur in an intervention's environment might contribute to or impede its success. This study adapted and piloted a contextual validity assessment framework on a selection of health inequity-related programs funded by the Canadian Health Services Research Foundation (CHSRF) between 1998 and 2006. The two overarching objectives of this study were (1) to determine the relative amount and quality of attention given to conceptualizing, measuring and validating context within CHSRF funded research final reports related to health-inequity; and (2) to contribute evaluative evidence towards the incorporation of context into the assessment and measurement of health inequity interventions. The study found that of the 42/146 CHSRF programs and projects, judged to be related to health inequity 20 adequately reported on the conceptualization, measurement and validation of context. Amongst these health-inequity related project reports, greatest emphasis was placed on describing the socio-political and economical context over actually measuring and validating contextual evidence. Applying a contextual validity assessment framework was useful for distinguishing between the descriptive (conceptual) versus empirical (measurement and validation) inclusion of documented contextual evidence. Although contextual validity measurement frameworks needs further development, this study contributes insight into identifying funded research related to health inequities and preliminary criteria for assessing interventions targeted at specific populations and jurisdictions. This study also feeds a larger critical dialogue (albeit beyond the scope of this study) regarding the relevance and utility of using evaluative techniques for understanding how specific external conditions support or impede the successful implementation of health inequity interventions. Copyright
Suprapedi; Sardjono, P.; Muljadi; Djauhari, N. R.; Ramlan
2018-03-01
Research of fabricated bonded magnets NdFeB made from NdFeB flakes with variation of external magnetic field has been done. The materials preparation process begins with milling NdFeB flakes using High Energy Milling (HEM) for 60 minutes and mixing it with 5 wt % celuna binder and performing compaction to form pellet with a pressure of 40 Kgf/cm2 and then applying external magnetic field (0, 2000, 5000, 8000 and 11000 Gauss). The pellet samples were then dried using vacuum dryer with temperature of 100 °C for 1 hour. Characterization includes bulk density, measurement of magnetic properties with gauss meter, and Vibrating Sample Magnetometer (VSM). From the characterization results the best value was obtained on the external magnetic field orientation of 8000 to 11000 Gauss with a density value of 5.38 g/cm3, flux magnetic value of 465.9 – 467.1 Gauss, remanence value of 2.63–2.776 kGauss, and coercivity value of 1.905–1.925 kOe.
Wang, Xiayan; Wang, Shili; Veerappan, Vijaykumar; Byun, Chang Kyu; Nguyen, Han; Gendhar, Brina; Allen, Randy D.; Liu, Shaorong
2009-01-01
In this work, we demonstrate DNA separation and genotyping analysis in gel-free solutions using a nanocapillary under pressure-driven conditions without application of an external electric field. The nanocapillary is a ~50-cm-long and 500-nm-radius bare fused silica capillary. After a DNA sample is injected, the analytes are eluted out in a chromatographic separation format. The elution order of DNA molecules follows strictly with their sizes, with the longer DNA being eluted out faster than the shorter ones. High resolutions are obtained for both short (a few bases) and long (tens of thousands of base pairs) DNA fragments. Effects of key experimental parameters, such as eluent composition and elution pressure, on separation efficiency and resolution are investigated. We also apply this technique for DNA separations of real-world genotyping samples to demonstrate its feasibility in biological applications. PCR products (without any purification) amplified from Arabidopsis plant genomic DNA crude preparations are directly injected into the nanocapillary, and PCR-amplified DNA fragments are well resolved, allowing for unambiguous identification of samples from heterozygous and homozygous individuals. Since the capillaries used to conduct the separations are uncoated, column lifetime is virtually unlimited. The only material that is consumed in these assays is the eluent, and hence the operation cost is low. PMID:18500828
Removal of alum from Iron-Age wooden objects by an applied electric field
DEFF Research Database (Denmark)
Christensen, Iben Vernegren; Ottosen, Lisbeth M.; Jensen, Poul
2010-01-01
In this paper removal of potassium, sulfate and aluminum ions from waterlogged alum treated wood with the use of an applied electric field is described. An electric DC field was applied across the wood for 4-20 days. At the end of the experiments sulfate had moved as expected towards the anode...... was not obtained in the experiments reported here, but the high conductivity and the transport of the measured ions due to the electric field indicates that an applied electric field as a method for removal of alum and other unwanted ions from treated wooden objects warrants further investigation....
Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Simulation mechanisms of low energy nuclear reaction using super flow energy external fields
International Nuclear Information System (INIS)
Gareev, F.A.; Zhidkova, I.E.; ); Ratis, Yu.I.
2005-01-01
Full text: The review of possible stimulation mechanisms of the LENR (low energy nuclear reactions) is represented. We have concluded that transamination of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle and based on its different enhancement mechanisms of reaction rates are responsible for these processes. The excitation nd ionization of atom may play role as trigger for LERN. Investigation of this phenomenon requires knowledge of different branches if science: nuclear and atomic physics, chemistry and electrochemistry, condensed matter and solid state physics. The results of this research field can provide a new source of energy, substances and technologies. The puzzle of poor re-productivity of experimental data in due ti the fact LENR occurs in open systems and it is extremely sensitive to parameters of external fields and systems. Classical re-productivity principle should be reconsidered for LENR experiments. Poor re-productivity and unexpected results do not means that the experiment is wrong. Our main conclusion: LENR may be understand in terms of the modern theory without any violation of the basic physics. 2) Weak and electromagnetic interactions may show the strong influence of the surrounding conditions on the nuclear processes. 3) Universal resonance synchronization principle is a key issue to make a bridge between various scales of interactions and it is responsible for self-organization of hierarchical systems independent of substances, fields and interactions. We bring some arguments in favor of the mechanism - order based on order - declared by Schroedinger in fundamental problem of contemporary science. 4) The universal resonance synchronization principle became a fruitful interdisciplinary science of general laws of self-organized processes in different branches of physics because it is consequence of the energy conservation law and resonance
Energy Technology Data Exchange (ETDEWEB)
Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)
2014-07-07
The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.
International Nuclear Information System (INIS)
Ding, Baofu; Alameh, Kamal
2014-01-01
The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.
Takae, Kyohei; Onuki, Akira
2013-09-28
We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.
International Nuclear Information System (INIS)
Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng
2016-01-01
Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.
Energy Technology Data Exchange (ETDEWEB)
Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng
2016-10-15
Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.