Bipolarons in one-dimensional extended Peierls-Hubbard models
Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona
2017-04-01
We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.
Competition between spin, charge, and bond waves in a Peierls-Hubbard model
International Nuclear Information System (INIS)
Venegas, P.A.; Henriquez, C.; Roessler, J.
1996-01-01
We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Appelquist, T.; Terning, J.
1994-01-01
An extended technicolor model is constructed. Quark and lepton masses, spontaneous CP violation, and precision electroweak measurements are discussed. Dynamical symmetry breaking is analyzed using the concept of the big MAC (most attractive channel)
Extended Rayleigh Damping Model
Directory of Open Access Journals (Sweden)
Naohiro Nakamura
2016-07-01
Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.
Axelrod Model with Extended Conservativeness
Dybiec, Bartłomiej
2012-11-01
Similarity of opinions and memory about recent interactions are two main factors determining likelihood of social contacts. Here, we explore the Axelrod model with an extended conservativeness which incorporates not only similarity between individuals but also a preference to the last source of accepted information. The additional preference given to the last source of information increases the initial decay of the number of ideas in the system, changes the character of the phase transition between homogeneous and heterogeneous final states and could increase the number of stable regions (clusters) in the final state.
Center for Extended Magnetohydrodynamics Modeling
Energy Technology Data Exchange (ETDEWEB)
Ramos, Jesus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-02-14
This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification of the numerical codes. This activity was funded for twelve years.
Modeling of extended defects in silicon
International Nuclear Information System (INIS)
Law, M.E.; Jones, K.S.; Earles, S.K.; Lilak, A.D.; Xu, J.W.
1997-01-01
Transient Enhanced Diffusion (TED) is one of the biggest modeling challenges present in predicting scaled technologies. Damage from implantation of dopant ions changes the diffusivities of the dopants and precipitates to form complex extended defects. Developing a quantitative model for the extended defect behavior during short time, low temperature anneals is a key to explaining TED. This paper reviews some of the modeling developments over the last several years, and discusses some of the challenges that remain to be addressed. Two examples of models compared to experimental work are presented and discussed
Extendable linearised adjustment model for deformation analysis
Hiddo Velsink
2015-01-01
Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices
Extendable linearised adjustment model for deformation analysis
Velsink, H.
2015-01-01
This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation
Consistent spectroscopy for a extended gauge model
International Nuclear Information System (INIS)
Oliveira Neto, G. de.
1990-11-01
The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)
Phase diagram of an extended Agassi model
García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.
2018-05-01
Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.
Extended Linear Models with Gaussian Priors
DEFF Research Database (Denmark)
Quinonero, Joaquin
2002-01-01
In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....
Extended Higgs sectors in radiative neutrino models
Directory of Open Access Journals (Sweden)
Oleg Antipin
2017-05-01
Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.
Exploring Social Structures in Extended Team Model
DEFF Research Database (Denmark)
Zahedi, Mansooreh; Ali Babar, Muhammad
2013-01-01
Extended Team Model (ETM) as a type of offshore outsourcing is increasingly becoming popular mode of Global Software Development (GSD). There is little knowledge about the social structures in ETM and their impact on collaboration. Within a large interdisciplinary project to develop the next...... generation of GSD technologies, we are exploring the role of social structures to support collaboration. This paper reports some details of our research design and initial findings about the mechanisms to support social structures and their impact on collaboration in an ETM....
Tunneling of self-trapped states and formation of a band
International Nuclear Information System (INIS)
Yonemitsu, K.
1993-12-01
Tunneling of a self-trapped kink and formation of a band are studied semi classically in the one-dimensional extended Peierls-Hubbard model near half filling, considering up to Gaussian fluctuations around imaginary-time-dependent periodic motion of electrons and phonons on the stationary phase of the action derived using Slater determinants. In the strong-coupling limit of both the Holstein and attractive Hubbard models, it reproduces analytically-known effective hopping of a single bipolaron because the tunneling involves only one in this limit. The method gives new results in other general cases and is easily applied to excited or more complex systems. 13 refs, 4 figs
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
International Nuclear Information System (INIS)
Sovinec, Carl R.
2008-01-01
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior - not unlike computational weather prediction - to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU-DIST software library for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD's performance by a factor of five in typical large nonlinear simulations, which has been publicized
Constraints based analysis of extended cybernetic models.
Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M
2015-11-01
The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
An Organization's Extended (Soft) Competencies Model
Rosas, João; Macedo, Patrícia; Camarinha-Matos, Luis M.
One of the steps usually undertaken in partnerships formation is the assessment of organizations’ competencies. Typically considered competencies of a functional or technical nature, which provide specific outcomes can be considered as hard competencies. Yet, the very act of collaboration has its specific requirements, for which the involved organizations must be apt to exercise other type of competencies that affect their own performance and the partnership success. These competencies are more of a behavioral nature, and can be named as soft-competencies. This research aims at addressing the effects of the soft competencies on the performance of the hard ones. An extended competencies model is thus proposed, allowing the construction of adjusted competencies profiles, in which the competency levels are adjusted dynamically according to the requirements of collaboration opportunities.
Extended equivalent dipole model for radiated emissions
Obiekezie, Chijioke S.
2016-01-01
This work is on the characterisation of radiated fields from electronic devices. An equivalent dipole approach is used. Previous work showed that this was an effective approach for single layer printed circuit boards where an infinite ground plane can be assumed. In this work, this approach is extended for the characterisation of more complex circuit boards or electronic systems.\\ud For complex electronic radiators with finite ground planes, the main challenge is characterising field diffract...
Micro dosimetry model. An extended version
International Nuclear Information System (INIS)
Vroegindewey, C.
1994-07-01
In an earlier study a relative simple mathematical model has been constructed to simulate the energy transfer on a cellular scale and thus gain insight in the fundamental processes of BNCT. Based on this work, a more realistic micro dosimetry model is developed. The new facets of the model are: the treatment of proton recoil, the calculation of the distribution of energy depositions, and the determination of the number of particles crossing the target nucleus subdivided in place of origin. Besides these extensions, new stopping power tables for the emitted particles are generated and biased Monte Carlo techniques are used to reduce computer time. (orig.)
A Novel Biped Pattern Generator Based on Extended ZMP and Extended Cart-Table Model
Directory of Open Access Journals (Sweden)
Guangbin Sun
2015-07-01
Full Text Available This paper focuses on planning patterns for biped walking on complex terrains. Two problems are solved: ZMP (zero moment point cannot be used on uneven terrain, and the conventional cart-table model does not allow vertical CM (centre of mass motion. For the ZMP definition problem, we propose the extended ZMP (EZMP concept as an extension of ZMP to uneven terrains. It can be used to judge dynamic balance on universal terrains. We achieve a deeper insight into the connection and difference between ZMP and EZMP by adding different constraints. For the model problem, we extend the cart-table model by using a dynamic constraint instead of constant height constraint, which results in a mathematically symmetric set of three equations. In this way, the vertical motion is enabled and the resultant equations are still linear. Based on the extended ZMP concept and extended cart-table model, a biped pattern generator using triple preview controllers is constructed and implemented simultaneously to three dimensions. Using the proposed pattern generator, the Atlas robot is simulated. The simulation results show the robot can walk stably on rather complex terrains by accurately tracking extended ZMP.
Extended nonabelian symmetries for free fermionic model
International Nuclear Information System (INIS)
Zaikov, R.P.
1993-08-01
The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs
Extending the prevalent consumer loyalty modelling
DEFF Research Database (Denmark)
Olsen, Svein Ottar; Tudoran, Ana Alina; Brunsø, Karen
2013-01-01
Purpose: This study addresses the role of habit strength in explaining loyalty behaviour. Design/methodology/approach: The study uses 2063 consumers’ data from a survey in Denmark and Spain, and multigroup structural equation modelling to analyse the data. The paper describes an approach employing...... the psychological meanings of the habit construct, such as automaticity, lack of awareness or very little conscious deliberation. Findings: The findings suggest that when habits start to develop and gain strength, less planning is involved, and that the loyalty behaviour sequence mainly occurs guided...... by automaticity and inertia. A new model with habit strength as a mediator between satisfaction and loyalty behaviour provides a substantial increase in explained variance in loyalty behaviour over the traditional model with intention as a mediator. Originality/value: This study contributes to the existent...
Extending Social Cognition Models of Health Behaviour
Abraham, Charles; Sheeran, Paschal; Henderson, Marion
2011-01-01
A cross-sectional study assessed the extent to which indices of social structure, including family socio-economic status (SES), social deprivation, gender and educational/lifestyle aspirations correlated with adolescent condom use and added to the predictive utility of a theory of planned behaviour model. Analyses of survey data from 824 sexually…
Modeling of PWR fuel at extended burnup
International Nuclear Information System (INIS)
Dias, Raphael Mejias
2016-01-01
This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)
Characterising and modelling extended conducted electromagnetic emission
CSIR Research Space (South Africa)
Grobler, Inus
2013-06-01
Full Text Available , such as common mode and differential mode separation, calibrated with an EMC ETS-Lindgren current probe. Good and workable model accuracies were achieved with the basic Step-Up and Step-Down circuits over the conducted emission frequency band and beyond...
Building metaphors and extending models of grief.
VandeCreek, L
1985-01-01
Persons in grief turn to metaphors as they seek to understand and express their experience. Metaphors illustrated in this article include "grief is a whirlwind," "grief is the Great Depression all over again" and "grief is gray, cloudy and rainy weather." Hospice personnel can enhance their bereavement efforts by identifying and cultivating the expression of personal metaphors from patients and families. Two metaphors have gained wide cultural acceptance and lie behind contemporary scientific explorations of grief. These are "grief is recovery from illness" (Bowlby and Parkes) and "death is the last stage of growth and grief is the adjustment reaction to this growth" (Kubler-Ross). These models have developed linear perspectives of grief but have neglected to study the fluctuating intensity of symptoms. Adopting Worden's four-part typology of grief, the author illustrates how the pie graph can be used to display this important aspect of the grief experience, thus enhancing these models.
Rare top quark decays in extended models
International Nuclear Information System (INIS)
Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.
2006-01-01
Flavor changing neutral currents (FCNC) decays t → H0 + c, t → Z + c, and H0 → t + c-bar are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed
Macroeconomic model of national economy development (extended
Directory of Open Access Journals (Sweden)
M. Diaconova
1997-08-01
Full Text Available The macroeconomic model offered in this paper describes complex functioning of national economy and can be used for forecasting of possible directions of its development depending on various economic policies. It is the extension of [2] and adaptation of [3]. With the purpose of determination of state policies influence in the field of taxes and exchange rate national economy is considered within the framework of three sectors: government, private and external world.
Top quark decays in extended models
International Nuclear Information System (INIS)
Gaitan, R.; Cabral-Rosetti, L.G.
2011-01-01
We evaluate the FCNC decays t → H 0 + c at tree-level and t → γ + c at one-loop level in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; in the first case, FCNC decays occurs at tree-level and they are only suppressed by the mixing between ordinary top and charm quarks. (author)
Extending Ansoff’s Strategic Diagnosis Model
Directory of Open Access Journals (Sweden)
Daniel Kipley
2012-01-01
Full Text Available Given the complex and disruptive open-ended dynamics in the current dynamic global environment, senior management recognizes the need for a formalized, consistent, and comprehensive framework to analyze the firm’s strategic posture. Modern assessment tools, such as H. Igor Ansoff’s seminal contributions to strategic diagnosis, primarily focused on identifying and enhancing the firm’s strategic performance potential through the analysis of the industry’s environmental turbulence level relative to the firm’s aggressiveness and responsiveness of capability. Other epistemic modeling techniques envisage Porter’s generic strategic positions, Strengths, Weaknesses, Opportunities, Threats (SWOT, and Resource-Based View as useful methodologies to aid in the planning process. All are complex and involve multiple managerial perspectives. Over the last two decades, attempts have been made to comprehensively classify the firm’s future competitive position. Most of these proposals utilized matrices to depict the position, such as the Boston Consulting Group, point positioning, and dispersed positioning. The GE/McKinsey later enhanced this typology by expanding to 3 × 3, contributing to management’s deeper understanding of the firm’s position. Both types of assessments, Ansoff’s strategic diagnosis and positional matrices, are invaluable strategic tools for firms. However, it could be argued that these positional analyses singularly reflect a blind spot in modeling the firm’s future strategic performance potential, as neither considers the interactions of the other. This article is conceptual and takes a different approach from earlier methodologies. Although conceptual, the article aims to present a robust model combining Ansoff’s strategic diagnosis with elements of the performance matrices to provide the management with an enriched capability to evaluate the firm’s current and future performance position.
Modeling of PWR fuel at extended burnup
Energy Technology Data Exchange (ETDEWEB)
Dias, Raphael M.; Silva, Antonio Teixeira, E-mail: rmdias@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)
Extending the enterprise evolution contextualisation model
de Vries, Marné; van der Merwe, Alta; Gerber, Aurona
2017-07-01
Enterprise engineering (EE) emerged as a new discipline to encourage comprehensive and consistent enterprise design. Since EE is multidisciplinary, various researchers study enterprises from different perspectives, which resulted in a plethora of applicable literature and terminology, but without shared meaning. Previous research specifically focused on the fragmentation of knowledge for designing and aligning the information and communication technology (ICT) subsystem of the enterprise in order to support the business organisation subsystem of the enterprise. As a solution for this fragmented landscape, a business-IT alignment model (BIAM) was developed inductively from existing business-IT alignment approaches. Since most of the existing alignment frameworks addressed the alignment between the ICT subsystem and the business organisation subsystem, BIAM also focused on the alignment between these two subsystems. Yet, the emerging EE discipline intends to address a broader scope of design, evident in the existing approaches that incorporate a broader scope of design/alignment/governance. A need was identified to address the knowledge fragmentation of the EE knowledge base by adapting BIAM to an enterprise evolution contextualisation model (EECM), to contextualise a broader set of approaches, as identified by Lapalme. The main contribution of this article is the incremental development and evaluation of EECM. We also present guiding indicators/prerequisites for applying EECM as a contextualisation tool.
Modeling of PWR fuel at extended burnup
International Nuclear Information System (INIS)
Dias, Raphael M.; Silva, Antonio Teixeira
2015-01-01
Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)
An Examination of Extended a-Rescaling Model
Institute of Scientific and Technical Information of China (English)
YAN Zhan-Yuan; DUAN Chun-Gui; HE Zhen-Min
2001-01-01
The extended x-rescaling model can explain the quark's nuclear effect very well. Weather it can also explain the gluon's nuclear effect should be investigated further. Associated J/ψ and γ production with large PT is a very clean channel to probe the gluon distribution in proton or nucleus. In this paper, using the extended x-rescaling model, the PT distribution of the nuclear effect factors of p + Fe → J/Ψ + γ+ X process is calculated and discussed. Comparing our theoretical results with the future experimental data, the extended x-rescaling model can be examined.``
Topics in dual models and extended solutions
International Nuclear Information System (INIS)
Roth, R.S.
1977-01-01
Two main topics are explored. The first deals with the infinities arising from the one loop planar string diagram of the standard dual model. It is shown that for the number of dimensions d = 25 or 26, these infinities lead to a renormalization of the slope of the Regge trajectories, in addition to a renormalization of the coupling constant. The second topic deals with the propagator for a confined particle (monopole) in a field theory. When summed to all orders, this propagator is altogether free of singularities in the finite momentum plane, and an attempt is made to illustrate this. The Bethe-Salpeter equation is examined and it is shown that ladder diagrams are not sufficient to obtain this result. However, in a nonrelativistic approximation confinement is obtained and all poles disappear
An Extended Model of Knowledge Governance
Karvalics, Laszlo Z.; Dalal, Nikunj
In current times, we are seeing the emergence of a new paradigm to describe, understand, and analyze the expanding "knowledge domain". This overarching framework - called knowledge governance - draws from and builds upon knowledge management and may be seen as a kind of meta-layer of knowledge management. The emerging knowledge governance approach deals with issues that lie at the intersection of organization and knowledge processes. Knowledge governance has two main interpretation levels in the literature: the company- (micro-) and the national (macro-) level. We propose a three-layer model instead of the previous two-layer version, adding a layer of "global" knowledge governance. Analyzing and separating the main issues in this way, we can re-formulate the focus of knowledge governance research and practice in all layers.
Polaron as the extended particle model
International Nuclear Information System (INIS)
Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.
1977-01-01
The polaron (a moving electron with concomitant lattice distortion) mass and energy are calculated. The problem of finding the Green function in the polaron model is solved. A number of the simplest approximations corresponding to the approximation in the picture of straight-line paths is considered. The case of strong coupling requires more detailed study of the particle motion in the effective field, caused by the significant polarization of vacuum near the particle. As a consequence, a more complex approximation of functional integrals is required. A variation method is used in this case. The bound state of a polaron interacting not only with photons, but also with some external classical field is investigated as well. A classical potential is considered as an example
Developing and Extending a Cyberinfrastructure Model
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Rosio
2007-11-13
Increasingly, research and education institutions are realizing the strategic value and challenge of deploying and supporting institutional cyberinfrastructure (CI). Cyberinfrastructure is composed of high performance computing systems, massive storage systems, visualization systems, and advanced networks to interconnect the components within and across institutions and research communities. CI also includes the professionals with expertise in scientific application and algorithm development and parallel systems operation. Unlike ?regular? IT infrastructure, the manner in which the components are configured and skills to do so are highly specific and specialized. Planning and coordinating these assets is a fundamental step toward enhancing an institution?s research competitiveness and return on personnel, technology, and facilities investments. Coordinated deployment of CI assets has implications across the institution. Consider the VC for Research whose new faculty in the Life Sciences are now asking for simulation systems rather than wet labs, or the Provost who lost another faculty candidate to a peer institution that offered computational support for research, or the VC for Administration who has seen a spike in power and cooling demands from many of the labs and office spaces being converted to house systems. These are just some of the issues that research institutions are wrestling with as research becomes increasingly computational, data-intensive and interdisciplinary. This bulletin will discuss these issues and will present an approach for developing a cyberinfrastructure model that was successfully developed at one institution and then deployed across institutions.
Quantifying the levitation picture of extended states in lattice models
Pereira, Ana. L. C.; Schulz, P. A.
2002-01-01
The behavior of extended states is quantitatively analyzed for two-dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the quantum Hall phase diagrams may be disorder dependent.
Building and testing models with extended Higgs sectors
Ivanov, Igor P.
2017-07-01
Models with non-minimal Higgs sectors represent a mainstream direction in theoretical exploration of physics opportunities beyond the Standard Model. Extended scalar sectors help alleviate difficulties of the Standard Model and lead to a rich spectrum of characteristic collider signatures and astroparticle consequences. In this review, we introduce the reader to the world of extended Higgs sectors. Not pretending to exhaustively cover the entire body of literature, we walk through a selection of the most popular examples: the two- and multi-Higgs-doublet models, as well as singlet and triplet extensions. We will show how one typically builds models with extended Higgs sectors, describe the main goals and the challenges which arise on the way, and mention some methods to overcome them. We will also describe how such models can be tested, what are the key observables one focuses on, and illustrate the general strategy with a subjective selection of results.
Extended Hubbard models for ultracold atoms in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Juergensen, Ole
2015-06-05
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
An Extended Optimal Velocity Model with Consideration of Honk Effect
International Nuclear Information System (INIS)
Tang Tieqiao; Li Chuanyao; Huang Haijun; Shang Huayan
2010-01-01
Based on the OV (optimal velocity) model, we in this paper present an extended OV model with the consideration of the honk effect. The analytical and numerical results illustrate that the honk effect can improve the velocity and flow of uniform flow but that the increments are relevant to the density. (interdisciplinary physics and related areas of science and technology)
Extended Hubbard models for ultracold atoms in optical lattices
International Nuclear Information System (INIS)
Juergensen, Ole
2015-01-01
In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.
An Alternative Approach to the Extended Drude Model
Gantzler, N. J.; Dordevic, S. V.
2018-05-01
The original Drude model, proposed over a hundred years ago, is still used today for the analysis of optical properties of solids. Within this model, both the plasma frequency and quasiparticle scattering rate are constant, which makes the model rather inflexible. In order to circumvent this problem, the so-called extended Drude model was proposed, which allowed for the frequency dependence of both the quasiparticle scattering rate and the effective mass. In this work we will explore an alternative approach to the extended Drude model. Here, one also assumes that the quasiparticle scattering rate is frequency dependent; however, instead of the effective mass, the plasma frequency becomes frequency-dependent. This alternative model is applied to the high Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 92 K, and the results are compared and contrasted with the ones obtained from the conventional extended Drude model. The results point to several advantages of this alternative approach to the extended Drude model.
Statistical model of stress corrosion cracking based on extended
Indian Academy of Sciences (India)
The mechanism of stress corrosion cracking (SCC) has been discussed for decades. Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the variational principle under approximately supposed thermal equilibrium. In that model the functionals are expressed with extended forms of ...
Extending product modeling methods for integrated product development
DEFF Research Database (Denmark)
Bonev, Martin; Wörösch, Michael; Hauksdóttir, Dagný
2013-01-01
Despite great efforts within the modeling domain, the majority of methods often address the uncommon design situation of an original product development. However, studies illustrate that development tasks are predominantly related to redesigning, improving, and extending already existing products...... and PVM methods, in a presented Product Requirement Development model some of the individual drawbacks of each method could be overcome. Based on the UML standard, the model enables the representation of complex hierarchical relationships in a generic product model. At the same time it uses matrix....... Updated design requirements have then to be made explicit and mapped against the existing product architecture. In this paper, existing methods are adapted and extended through linking updated requirements to suitable product models. By combining several established modeling techniques, such as the DSM...
Coleman-Weinberg phase transition in extended Higgs models
International Nuclear Information System (INIS)
Sher, M.
1996-01-01
In Coleman-Weinberg symmetry breaking, all dimensionful parameters vanish and the symmetry is broken by loop corrections. Before Coleman-Weinberg symmetry breaking in the standard model was experimentally ruled out, it had already been excluded on cosmological grounds. In this Brief Report, the cosmological analysis is carried out for Coleman-Weinberg models with extended Higgs sectors, which are not experimentally ruled out, and general constraints on such models are given. copyright 1996 The American Physical Society
An extended geometric criterion for chaos in the Dicke model
International Nuclear Information System (INIS)
Li Jiangdan; Zhang Suying
2010-01-01
We extend HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion for chaotic motion to Hamiltonian systems of weak coupling of potential and momenta by defining the 'mean unstable ratio'. We discuss the Dicke model of an unstable Hamiltonian system in detail and show that our results are in good agreement with that of the computation of Lyapunov characteristic exponents.
The Extended Parallel Process Model: Illuminating the Gaps in Research
Popova, Lucy
2012-01-01
This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…
Ground state phase diagram of extended attractive Hubbard model
International Nuclear Information System (INIS)
Robaszkiewicz, S.; Chao, K.A.; Micnas, R.
1980-08-01
The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)
Extended Cellular Automata Models of Particles and Space-Time
Beedle, Michael
2005-04-01
Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.
An extended chain Ising model and its Glauber dynamics
International Nuclear Information System (INIS)
Zhao Xing-Yu; Fan Xiao-Hui; Huang Yi-Neng; Huang Xin-Ru
2012-01-01
It was first proposed that an extended chain Ising (ECI) model contains the Ising chain model, single spin double-well potentials and a pure phonon heat bath of a specific energy exchange with the spins. The extension method is easy to apply to high dimensional cases. Then the single spin-flip probability (rate) of the ECI model is deduced based on the Boltzmann principle and general statistical principles of independent events and the model is simplified to an extended chain Glauber—Ising (ECGI) model. Moreover, the relaxation dynamics of the ECGI model were simulated by the Monte Carlo method and a comparison with the predictions of the special chain Glauber—Ising (SCGI) model was presented. It was found that the results of the two models are consistent with each other when the Ising chain length is large enough and temperature is relative low, which is the most valuable case of the model applications. These show that the ECI model will provide a firm physical base for the widely used single spin-flip rate proposed by Glauber and a possible route to obtain the single spin-flip rate of other form and even the multi-spin-flip rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Exotic superconducting states in the extended attractive Hubbard model.
Nayak, Swagatam; Kumar, Sanjeev
2018-04-04
We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.
Low-energy limit of the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)
2018-01-15
The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)
Dynamical quantum phase transitions in extended transverse Ising models
Bhattacharjee, Sourav; Dutta, Amit
2018-04-01
We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.
The extended RBAC model based on grid computing
Institute of Scientific and Technical Information of China (English)
CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan
2006-01-01
This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.
Constructing Multidatabase Collections Using Extended ODMG Object Model
Directory of Open Access Journals (Sweden)
Adrian Skehill Mark Roantree
1999-11-01
Full Text Available Collections are an important feature in database systems. They provide us with the ability to group objects of interest together, and then to manipulate them in the required fashion. The OASIS project is focused on the construction a multidatabase prototype which uses the ODMG model and a canonical model. As part of this work we have extended the base model to provide a more powerful collection mechanism, and to permit the construction of a federated collection, a collection of heterogenous objects taken from distributed data sources
Non-Fermi liquid behaviour in an extended Anderson model
International Nuclear Information System (INIS)
Liu Yuliang; Su Zhaobin; Yu Lu.
1996-08-01
An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs
Model Calibration of Exciter and PSS Using Extended Kalman Filter
Energy Technology Data Exchange (ETDEWEB)
Kalsi, Karanjit; Du, Pengwei; Huang, Zhenyu
2012-07-26
Power system modeling and controls continue to become more complex with the advent of smart grid technologies and large-scale deployment of renewable energy resources. As demonstrated in recent studies, inaccurate system models could lead to large-scale blackouts, thereby motivating the need for model calibration. Current methods of model calibration rely on manual tuning based on engineering experience, are time consuming and could yield inaccurate parameter estimates. In this paper, the Extended Kalman Filter (EKF) is used as a tool to calibrate exciter and Power System Stabilizer (PSS) models of a particular type of machine in the Western Electricity Coordinating Council (WECC). The EKF-based parameter estimation is a recursive prediction-correction process which uses the mismatch between simulation and measurement to adjust the model parameters at every time step. Numerical simulations using actual field test data demonstrate the effectiveness of the proposed approach in calibrating the parameters.
Extended cox regression model: The choice of timefunction
Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu
2017-07-01
Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.
Magnetization plateaux in an extended Shastry-Sutherland model
International Nuclear Information System (INIS)
Schmidt, Kai Phillip; Dorier, Julien; Mila, Frederic
2009-01-01
We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu 2 (BO 3 ) 2 .
Multistate modelling extended by behavioural rules: An application to migration.
Klabunde, Anna; Zinn, Sabine; Willekens, Frans; Leuchter, Matthias
2017-10-01
We propose to extend demographic multistate models by adding a behavioural element: behavioural rules explain intentions and thus transitions. Our framework is inspired by the Theory of Planned Behaviour. We exemplify our approach with a model of migration from Senegal to France. Model parameters are determined using empirical data where available. Parameters for which no empirical correspondence exists are determined by calibration. Age- and period-specific migration rates are used for model validation. Our approach adds to the toolkit of demographic projection by allowing for shocks and social influence, which alter behaviour in non-linear ways, while sticking to the general framework of multistate modelling. Our simulations yield that higher income growth in Senegal leads to higher emigration rates in the medium term, while a decrease in fertility yields lower emigration rates.
Phenomenological comparison of models with extended Higgs sectors
International Nuclear Information System (INIS)
Muehlleitner, Margarete
2017-01-01
Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.
Phenomenological comparison of models with extended Higgs sectors
Energy Technology Data Exchange (ETDEWEB)
Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-03-22
Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.
Modeling of heavy metal salt solubility using the Extended UNIQUAC model
DEFF Research Database (Denmark)
Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter
2002-01-01
Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
Higgs detectability in the extended supersymmetric standard model
International Nuclear Information System (INIS)
Kamoshita, Jun-ichi
1995-01-01
Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)
Extended Smoluchowski models for interpreting relaxation phenomena in liquids
International Nuclear Information System (INIS)
Polimeno, A.; Frezzato, D.; Saielli, G.; Moro, G.J.; Nordio, P.L.
1998-01-01
Interpretation of the dynamical behaviour of single molecules or collective modes in liquids has been increasingly centered, in the last decade, on complex liquid systems, including ionic solutions, polymeric liquids, supercooled fluids and liquid crystals. This has been made necessary by the need of interpreting dynamical data obtained by advanced experiments, like optical Kerr effect, time dependent fluorescence shift experiments, two-dimensional Fourier-transform and high field electron spin resonance and scattering experiments like quasi-elastic neutron scattering. This communication is centered on the definition, treatment and application of several extended stochastic models, which have proved to be very effective tools for interpreting and rationalizing complex relaxation phenomena in liquids structures. First, applications of standard Fokker-Planck equations for the orientational relaxation of molecules in isotropic and ordered liquid phase are reviewed. In particular attention will be focused on the interpretation of neutron scattering in nematics. Next, an extended stochastic model is used to interpret time-domain resolved fluorescence emission experiments. A two-body stochastic model allows the theoretical interpretation of dynamical Stokes shift effects in fluorescence emission spectra, performed on probes in isotropic and ordered polar phases. Finally, for the case of isotropic fluids made of small rigid molecules, a very detailed model is considered, which includes as basic ingredients a Fokker-Planck description of the molecular vibrational motion and the slow diffusive motion of a persistent cage structure together with the decay processes related to the changing structure of the cage. (author)
OSeMOSYS Energy Modeling Using an Extended UTOPIA Model
Lavigne, Denis
2017-01-01
The OSeMOSYS project offers open-access energy modeling to a wide audience. Its relative simplicity makes it appealing for academic research and governmental organizations to study the impacts of policy decisions on an energy system in the context of possibly severe greenhouse gases emissions limitations. OSeMOSYS is a tool that enhances the…
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling
Directory of Open Access Journals (Sweden)
Miguel Aguilera
2016-09-01
Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.
Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E
2016-01-01
The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We
Extending Primitive Spatial Data Models to Include Semantics
Reitsma, F.; Batcheller, J.
2009-04-01
Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.
Extended nonnegative tensor factorisation models for musical sound source separation.
FitzGerald, Derry; Cranitch, Matt; Coyle, Eugene
2008-01-01
Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.
Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation
Directory of Open Access Journals (Sweden)
Derry FitzGerald
2008-01-01
Full Text Available Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.
Extending cavitation models to subcooled and superheated nozzle flow
International Nuclear Information System (INIS)
Schmidt, D.P.; Corradini, M.L.
1997-01-01
Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)
Extending SME to Handle Large-Scale Cognitive Modeling.
Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre
2017-07-01
Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.
Conformal standard model with an extended scalar sector
Energy Technology Data Exchange (ETDEWEB)
Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)
2015-10-26
We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.
Extended particle model with quark confinement and charmonium spectroscopy
International Nuclear Information System (INIS)
Hasenfratz, Peter; Kuti, Julius; Szalay, A.S.
Extended particle like vector gluon bubbles /bags/ are introduced which are stabilized against free expansion by a surface tension of volume tension. Since quraks are coupled to the gluon field, they are confined to the inside of the gluon bag without any further mechanism. Only color singlet gluon bags are allowed. Nonlinear boundary conditions are not imposed on the quark field in the model. A massless abelian gauge confined by a surface tension is first considered; in a four-dimensional relativistic picture the surface of the gauge field bubble appears as a tube with a three dimensional surface. As a first application, the model is used to study bound states of heavy charmed quarks (charmonium). Similar to the Born-Oppenheimer approximation in molecular physics, heavy charmed quarks are treated as nonrelativistic in their motion whereas the gluon bag and light quarks (u,d,s) are treated in an adiabatic approximation
Properties of hybrid stars in an extended MIT bag model
International Nuclear Information System (INIS)
Bao Tmurbagan; Liu Guangzhou; Zhu Mingfeng
2009-01-01
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(ρ) decreases with baryon density ρ; this decrement makes the strange quark matter become more energetically favorable than ever; which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii. (authors)
Analysis of the phase structure in extended Higgs models
Energy Technology Data Exchange (ETDEWEB)
Seniuch, M.
2006-07-07
We study the generation of the baryon asymmetry in the context of electroweak baryogenesis in two different extensions of the Standard Model. First, we consider an effective theory, in which the Standard Model is augmented by an additional dimension-six Higgs operator. The effects of new physics beyond a cut-off scale are parameterized by this operator. The second model is the two-Higgs-doublet model, whose particle spectrum is extended by two further neutral and two charged heavy Higgs bosons. In both cases we focus on the properties of the electroweak phase transition, especially on its strength and the profile of the nucleating bubbles. After reviewing some general aspects of the electroweak phase transition and baryogenesis we derive the respective thermal effective potentials to one-loop order. We systematically study the parameter spaces, using numerical methods, and compute the strength of the phase transition and the wall thickness as a function of the Higgs masses. We find a strong first order transition for a light Higgs state with a mass up to about 200 GeV. In case of the dimension-six model the cut-off scale has to stay between 500 and 850 GeV, in the two-Higgs-doublet model one needs at least one heavy Higgs mass of 300 GeV. The wall thickness varies for both theories in the range roughly from two to fifteen, in units of the inverse critical temperature. We also estimate the size of the electron and neutron electric dipole moments, since new sources of CP violation give rise to them. In wide ranges of the parameter space we are not in conflict with the experimental bounds. Finally the baryon asymmetry, which is predicted by these models, is related to the Higgs mass and the other appropriate input parameters. In both models the measured baryon asymmetry can be achieved for natural values of the model parameters. (orig.)
Modelling grain growth in the framework of Rational Extended Thermodynamics
International Nuclear Information System (INIS)
Kertsch, Lukas; Helm, Dirk
2016-01-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena. (paper)
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Modelling grain growth in the framework of Rational Extended Thermodynamics
Kertsch, Lukas; Helm, Dirk
2016-05-01
Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.
Specification and Aggregation Errors in Environmentally Extended Input-Output Models
Bouwmeester, Maaike C.; Oosterhaven, Jan
This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result
Ising tricriticality in the extended Hubbard model with bond dimerization
Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).
A multifluid model extended for strong temperature nonequilibrium
Energy Technology Data Exchange (ETDEWEB)
Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-08-08
We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.
Extended timescale atomistic modeling of crack tip behavior in aluminum
International Nuclear Information System (INIS)
Baker, K L; Warner, D H
2012-01-01
Traditional molecular dynamics (MD) simulations are limited not only by their spatial domain, but also by the time domain that they can examine. Considering that many of the events associated with plasticity are thermally activated, and thus rare at atomic timescales, the limited time domain of traditional MD simulations can present a significant challenge when trying to realistically model the mechanical behavior of materials. A wide variety of approaches have been developed to address the timescale challenge, each having their own strengths and weaknesses dependent upon the specific application. Here, we have simultaneously applied three distinct approaches to model crack tip behavior in aluminum at timescales well beyond those accessible to traditional MD simulation. Specifically, we combine concurrent multiscale modeling (to reduce the degrees of freedom in the system), parallel replica dynamics (to parallelize the simulations in time) and hyperdynamics (to accelerate the exploration of phase space). Overall, the simulations (1) provide new insight into atomic-scale crack tip behavior at more typical timescales and (2) illuminate the potential of common extended timescale techniques to enable atomic-scale modeling of fracture processes at typical experimental timescales. (paper)
"Let's Move" campaign: applying the extended parallel process model.
Batchelder, Alicia; Matusitz, Jonathan
2014-01-01
This article examines Michelle Obama's health campaign, "Let's Move," through the lens of the extended parallel process model (EPPM). "Let's Move" aims to reduce the childhood obesity epidemic in the United States. Developed by Kim Witte, EPPM rests on the premise that people's attitudes can be changed when fear is exploited as a factor of persuasion. Fear appeals work best (a) when a person feels a concern about the issue or situation, and (b) when he or she believes to have the capability of dealing with that issue or situation. Overall, the analysis found that "Let's Move" is based on past health campaigns that have been successful. An important element of the campaign is the use of fear appeals (as it is postulated by EPPM). For example, part of the campaign's strategies is to explain the severity of the diseases associated with obesity. By looking at the steps of EPPM, readers can also understand the strengths and weaknesses of "Let's Move."
Fidelity study of superconductivity in extended Hubbard models
Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.
2015-07-01
The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.
Extended Group Contribution Model for Polyfunctional Phase Equilibria
DEFF Research Database (Denmark)
Abildskov, Jens
of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design......-liquid equilibria from data on binary mixtures, composed of structurally simple molecules with a single functional group. More complex is the situation with mixtures composed of structurally more complicated molecules or molecules with more than one functional group. The UNIFAC method is extended to handle...
Baryon and meson phenomenology in the extended Linear Sigma Model
Energy Technology Data Exchange (ETDEWEB)
Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)
2014-07-01
The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.
Phenomenological study of extended seesaw model for light sterile neutrino
International Nuclear Information System (INIS)
Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani
2017-01-01
We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .
Very light Higgs bosons in extended models at the LHC
International Nuclear Information System (INIS)
Belyaev, Alexander; Guedes, Renato; Santos, Rui; Moretti, Stefano
2010-01-01
The Large Electron-Positron (LEP) collider experiments have constrained the mass of the standard model (SM) Higgs boson to be above 114.4 GeV. This bound applies to all extensions of the SM where the coupling of a Higgs boson to the Z boson and also the Higgs decay profile do not differ much from the SM one. However, in scenarios with extended Higgs sectors, this coupling can be made very small by a suitable choice of the parameters of the model. In such cases, the lightest CP-even Higgs boson mass can in turn be made very small. Such a very light Higgs state, with a mass of the order of the Z boson one or even smaller, could have escaped detection at LEP. In this work we perform a detailed parton level study on the feasibility of the detection of such a very light Higgs particle at the Large Hadron Collider (LHC) in the production process pp→hj→τ + τ - j, where j is a resolved jet. We conclude that there are several models where such a Higgs state could be detected at the LHC with early data.
Extended Jiles-Atherton model for modelling the magnetic characteristics of isotropic materials
International Nuclear Information System (INIS)
Szewczyk, Roman; Bienkowski, Adam; Salach, Jacek
2008-01-01
This paper presents the idea of the extension of the Jiles-Atherton model applied for modelling of the magnetic characteristics of Mn-Zn, as well as Ni-Zn ferrites. The presented extension of the model takes into account changes of the parameter k during the magnetisation process, what is physically judged. The extended Jiles-Atherton model gives novel possibility of modelling the hysteresis loops of isotropic materials. For one set of the extended model parameters, a good agreement between experimental data and modelled hysteresis loops is observed, for different values of maximal magnetising field. As a result, the extended Jiles-Atherton model presented in the paper may be applied for both technical applications and fundamental research, focused on understanding the physical aspects of the magnetisation process of anisotropic soft magnetic materials
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of
Phenomenological study of extended seesaw model for light sterile neutrino
Energy Technology Data Exchange (ETDEWEB)
Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)
2017-03-14
We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.
Disorder structure of free-flow and global jams in the extended BML model
International Nuclear Information System (INIS)
Zhao Xiaomei; Xie Dongfan; Jia Bin; Jiang Rui; Gao Ziyou
2011-01-01
The original BML model is extended by introducing extended sites, which can hold several vehicles at each time-step. Unexpectedly, the flow in the extended model sharply transits from free-flow to global jams, but the transition is not one-order in original BML model. And congestion in the extended model appears more easily. This can ascribe to the mixture of vehicles from different directions in one site, leading to the drop-off of the capacity of the site. Furthermore, the typical configuration of free flowing and global jams in the extended models is disorder, different from the regular structure in the original model.
Streamflow data assimilation in SWAT model using Extended Kalman Filter
Sun, Leqiang; Nistor, Ioan; Seidou, Ousmane
2015-12-01
The Extended Kalman Filter (EKF) is coupled with the Soil and Water Assessment Tools (SWAT) model in the streamflow assimilation of the upstream Senegal River in West Africa. Given the large number of distributed variables in SWAT, only the average watershed scale variables are included in the state vector and the Hydrological Response Unit (HRU) scale variables are updated with the a posteriori/a priori ratio of their watershed scale counterparts. The Jacobian matrix is calculated numerically by perturbing the state variables. Both the soil moisture and CN2 are significantly updated in the wet season, yet they have opposite update patterns. A case study for a large flood forecast shows that for up to seven days, the streamflow forecast is moderately improved using the EKF-subsequent open loop scheme but significantly improved with a newly designed quasi-error update scheme. The former has better performances in the flood rising period while the latter has better performances in the recession period. For both schemes, the streamflow forecast is improved more significantly when the lead time is shorter.
The one-dimensional extended Bose–Hubbard model
Indian Academy of Sciences (India)
Unknown
method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.
Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2017-01-01
Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....
Modeling of carbon dioxide absorption by aqueous ammonia solutions using the Extended UNIQUAC model
DEFF Research Database (Denmark)
Darde, Victor Camille Alfred; van Well, Willy J. M.; Stenby, Erling Halfdan
2010-01-01
An upgraded version of the Extended UNIQUAC thermodynamic model for the carbon dioxide-ammonia-water system has been developed, based on the original version proposed by Thomsen and Rasmussen. The original model was valid in the temperature range 0-110°C, the pressure range 0-10 MPa...... properties of carbon dioxide and ammonia to supercritical conditions....
Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han
2014-01-01
Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.
Hazard identification by extended multilevel flow modelling with function roles
DEFF Research Database (Denmark)
Wu, Jing; Zhang, Laibin; Jørgensen, Sten Bay
2014-01-01
) is extended with functi on roles to complete HAZOP studies in principle. A graphical MFM editor, which is combined with the reasoning engine (MFM Workbench) developed by DTU is applied to automate HAZOP studies. The method is proposed to suppor t the ‘brain-storming’ sessions in traditional HAZOP analysis...
Creating a Generic Extended Enterprise Management Model using GERAM
DEFF Research Database (Denmark)
Larsen, Lars Bjørn; Kaas-Pedersen, Carsten; Vesterager, Johan
1998-01-01
The two main themes of the Globeman21 (Global Manufacturing in the 21st century) project are product life cycle management and extended enterprise management. This article focus on the later of these subjects and an illustration of the concept is given together with a discussion of the concept...
An extended rational thermodynamics model for surface excess fluxes
Sagis, L.M.C.
2012-01-01
In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal
DEFF Research Database (Denmark)
Jørgensen, Peter Løchte
Extended Nelson-Siegel models are widely used by e.g. practitioners and central banks to estimate current term structures of riskless zero-coupon interest rates, whereas other models such as the extended Vasicek model (a.k.a. the Hull-White model) are popular for pricing interest rate derivatives....... This paper establishes theoretical consistency between these two types of models by showing how to specify the extended Vasicek model such that its implied initial term structure curve precisely matches a given extended Nelson-Siegel specification. That is, we show how to reconcile the two classes of models...
Theories of extended objects and composite models of particles
International Nuclear Information System (INIS)
Barut, A.O.
1992-05-01
The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab
Cold light dark matter in extended seesaw models
Boulebnane, Sami; Heeck, Julian; Nguyen, Anne; Teresi, Daniele
2018-04-01
We present a thorough discussion of light dark matter produced via freeze-in in two-body decays A→ B DM . If A and B are quasi-degenerate, the dark matter particle has a cold spectrum even for keV masses. We show this explicitly by calculating the transfer function that encodes the impact on structure formation. As examples for this setup we study extended seesaw mechanisms with a spontaneously broken global U(1) symmetry, such as the inverse seesaw. The keV-scale pseudo-Goldstone dark matter particle is then naturally produced cold by the decays of the quasi-degenerate right-handed neutrinos.
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2015-01-01
A Thermodynamic model that can predict the behavior of the gas sweetening process over the applicable conditions is of vital importance in industry. In this work, Extended UNIQUAC model parameters optimized for the CO2-MDEA-H2O system are presented. Different types of experimental data consisting...... model accurately represents thermodynamic and thermal properties of the studied systems. The model parameters are valid in the temperature range from -15 to 200 °C, MDEA mass% of 5-75 and CO2 partial pressure of 0-6161.5 kPa....
Extending enterprise architecture modelling with business goals and requirements
Engelsman, W.; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten J.
The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling
An extended dual search space model of scientific discovery learning
van Joolingen, Wouter; de Jong, Anthonius J.M.
1997-01-01
This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS
Faraway, Julian J
2005-01-01
Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...
General Friction Model Extended by the Effect of Strain Hardening
DEFF Research Database (Denmark)
Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels
2016-01-01
An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...
Extending enterprise architecture modelling with business goals and requirements
Engelsman, Wilco; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten
2011-02-01
The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling techniques for EA focus on the products, services, processes and applications of an enterprise. In addition, techniques may be provided to describe structured requirements lists and use cases. Little support is available however for modelling the underlying motivation of EAs in terms of stakeholder concerns and the high-level goals that address these concerns. This article describes a language that supports the modelling of this motivation. The definition of the language is based on existing work on high-level goal and requirements modelling and is aligned with an existing standard for enterprise modelling: the ArchiMate language. Furthermore, the article illustrates how EA can benefit from analysis techniques from the requirements engineering domain.
Students Working Online for Group Projects: A Test of an Extended Theory of Planned Behaviour Model
Cheng, Eddie W. L.
2017-01-01
This study examined an extended theory of planned behaviour (TPB) model that specified factors affecting students' intentions to collaborate online for group work. Past behaviour, past experience and actual behavioural control were incorporated in the extended TPB model. The mediating roles of attitudes, subjective norms and perceived behavioural…
Thermodynamic admissibility of the extended Pom-Pom model for branched polymers
Soulages, J.; Hütter, M.; Öttinger, H.C.
2006-01-01
The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M.
Extending a configuration model to find communities in complex networks
International Nuclear Information System (INIS)
Jin, Di; Hu, Qinghua; He, Dongxiao; Yang, Bo; Baquero, Carlos
2013-01-01
Discovery of communities in complex networks is a fundamental data analysis task in various domains. Generative models are a promising class of techniques for identifying modular properties from networks, which has been actively discussed recently. However, most of them cannot preserve the degree sequence of networks, which will distort the community detection results. Rather than using a blockmodel as most current works do, here we generalize a configuration model, namely, a null model of modularity, to solve this problem. Towards decomposing and combining sub-graphs according to the soft community memberships, our model incorporates the ability to describe community structures, something the original model does not have. Also, it has the property, as with the original model, that it fixes the expected degree sequence to be the same as that of the observed network. We combine both the community property and degree sequence preserving into a single unified model, which gives better community results compared with other models. Thereafter, we learn the model using a technique of nonnegative matrix factorization and determine the number of communities by applying consensus clustering. We test this approach both on synthetic benchmarks and on real-world networks, and compare it with two similar methods. The experimental results demonstrate the superior performance of our method over competing methods in detecting both disjoint and overlapping communities. (paper)
Hyperstate matrix models : extending demographic state spaces to higher dimensions
Roth, G.; Caswell, H.
2016-01-01
1. Demographic models describe population dynamics in terms of the movement of individuals among states (e.g. size, age, developmental stage, parity, frailty, physiological condition). Matrix population models originally classified individuals by a single characteristic. This was enlarged to two
Model-based segmentation and classification of trajectories (Extended abstract)
Alewijnse, S.P.A.; Buchin, K.; Buchin, M.; Sijben, S.; Westenberg, M.A.
2014-01-01
We present efficient algorithms for segmenting and classifying a trajectory based on a parameterized movement model like the Brownian bridge movement model. Segmentation is the problem of subdividing a trajectory into parts such that each art is homogeneous in its movement characteristics. We
An extended gravity model with substitution applied to international trade
Bikker, J.A.|info:eu-repo/dai/nl/06912261X
The traditional gravity model has been applied many times to international trade flows, especially in order to analyze trade creation and trade diversion. However, there are two fundamental objections to the model: it cannot describe substitutions between flows and it lacks a cogent theoretical
A 'theory of everything'? [Extending the Standard Model
International Nuclear Information System (INIS)
Ross, G.G.
1993-01-01
The Standard Model provides us with an amazingly successful theory of the strong, weak and electromagnetic interactions. Despite this, many physicists believe it represents only a step towards understanding the ultimate ''theory of everything''. In this article we describe why the Standard Model is thought to be incomplete and some of the suggestions for its extension. (Author)
Efficient Modelling and Generation of Markov Automata (extended version)
Timmer, Mark; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette
2012-01-01
This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the
Analytic investigation of extended Heitler-Matthews model
Energy Technology Data Exchange (ETDEWEB)
Grimm, Stefan; Veberic, Darko; Engel, Ralph [KIT, IKP (Germany)
2016-07-01
Many features of extensive air showers are qualitatively well described by the Heitler cascade model and its extensions. The core of a shower is given by hadrons that interact with air nuclei. After each interaction some of these hadrons decay and feed the electromagnetic shower component. The most important parameters of such hadronic interactions are inelasticity, multiplicity, and the ratio of charged vs. neutral particles. However, in analytic considerations approximations are needed to include the characteristics of hadron production. We discuss extensions of the simple cascade model by analytic description of air showers by cascade models which include also the elasticity, and derive the number of produced muons. In a second step we apply this model to calculate the dependence of the shower center of gravity on model parameters. The depth of the center of gravity is closely related to that of the shower maximum, which is a commonly-used composition-sensitive observable.
Semi-continuous and multigroup models in extended kinetic theory
International Nuclear Information System (INIS)
Koller, W.
2000-01-01
The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)
DEFF Research Database (Denmark)
Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj
2009-01-01
The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...
Extending the Modelling Framework for Gas-Particle Systems
DEFF Research Database (Denmark)
Rosendahl, Lasse Aistrup
, with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...
Modelling heavy-ion energy deposition in extended media
International Nuclear Information System (INIS)
Mishustin, I.; Pshenichnov, I.; Greiner, W.; Mishustin, I.; Pshenichnov, I.
2010-01-01
We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)
Modelling heavy-ion energy deposition in extended media
Energy Technology Data Exchange (ETDEWEB)
Mishustin, I.; Pshenichnov, I.; Greiner, W. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, Frankfurt am Main (Germany); Mishustin, I. [Kurchatov Institute, Russian Research Center, Moscow (Russian Federation); Pshenichnov, I. [Institute for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)
2010-10-15
We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)
Modern elementary particle physics explaining and extending the standard model
Kane, Gordon
2017-01-01
This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.
Quark-flavour phenomenology of models with extended gauge symmetries
International Nuclear Information System (INIS)
Carlucci, Maria Valentina
2013-01-01
Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of
Model for extended Pati-Salam gauge symmetry
International Nuclear Information System (INIS)
Foot, R.; Lew, H.; Volkas, R.R.
1990-11-01
The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs
Extended model of restricted beam for FSO links
Poliak, Juraj; Wilfert, Otakar
2012-10-01
Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.
Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus
2013-01-01
Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599
Generative probabilistic models extend the scope of inferential structure determination
DEFF Research Database (Denmark)
Olsson, Simon; Boomsma, Wouter; Frellsen, Jes
2011-01-01
demonstrate that the use of generative probabilistic models instead of physical forcefields in the Bayesian formalism is not only conceptually attractive, but also improves precision and efficiency. Our results open new vistas for the use of sophisticated probabilistic models of biomolecular structure......Conventional methods for protein structure determination from NMR data rely on the ad hoc combination of physical forcefields and experimental data, along with heuristic determination of free parameters such as weight of experimental data relative to a physical forcefield. Recently, a theoretically...
Extending MBI Model using ITIL and COBIT Processes
Directory of Open Access Journals (Sweden)
Sona Karkoskova
2015-10-01
Full Text Available Most organizations today operate in a highly complex and competitive business environment and need to be able to react to rapidly changing market conditions. IT management frameworks are widely used to provide effective support for business objectives through aligning IT with business and optimizing the use of IT resources. In this paper we analyze three IT management frameworks (ITIL, COBIT and MBI with the objective to identify the relationships between these frameworks, and mapping ITIL and COBIT processes to MBI tasks. As a result of this analysis we propose extensions to the MBI model to incorporate IT Performance Management and a Capability Maturity Model.
Elementary particles, dark matter candidate and new extended standard model
Hwang, Jaekwang
2017-01-01
Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.
Searches for Neutral Higgs Bosons in Extended Models
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2004-01-01
Searches for neutral Higgs bosons produced at LEP in association with Z bosons, in pairs and in the Yukawa process are presented in this paper. Higgs boson decays into b quarks, tau leptons, or other Higgs bosons are considered, giving rise to four-b, four-b+jets, six-b and four-tau final states, as well as mixed modes with b quarks and tau leptons. The whole mass domain kinematically accessible at LEP in these topologies is searched. The analysed data set covers both the LEP1 and LEP2 energy ranges and exploits most of the luminosity recorded by the DELPHI experiment. No convincing evidence for a signal is found, and results are presented in the form of mass-dependent upper bounds on coupling factors (in units of model-independent reference cross-sections) for all processes, allowing interpretation of the data in a large class of models.
Non-leptonic decays in an extended chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)
2012-10-23
We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.
International Nuclear Information System (INIS)
Creutz, M.
1976-01-01
After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation
On extended liability in a model of adverse selection
Dieter Balkenborg
2004-01-01
We consider a model where a judgment-proof firm needs finance to realize a project. This project might cause an environmental hazard with a probability that is the private knowledge of the firm. Thus there is asymmetric information with respect to the environmental riskiness of the project. We consider the implications of a simple joint and strict liability rule on the lender and the firm where, in case of a damage, the lender is responsible for that part of the liability which the judgment-p...
On Extending Temporal Models in Timed Influence Networks
2009-06-01
among variables in a system. A situation where the impact of a variable takes some time to reach the affected variable(s) cannot be modeled by either of...A1 A4 [h11(1) = 0.99, h11(0) = -0.99] [h12(1) = 0.90, h12 (0) = 0] [ h13 (1) = 0, h13 (0) = -0.90] [h14(1) =- 0.90, h14(0...the corresponding )( 1 11 xh and )( 2 12 xh . The posterior probability of B captures the impact of an affecting event on B and can be plotted as a
Extending PSA models including ageing and asset management - 15291
International Nuclear Information System (INIS)
Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.
2015-01-01
This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed
The Action of Chain Extenders in Nylon-6, PET, and Model Compounds
Loontjens, T.; Pauwels, K.; Derks, F.; Neilen, M.; Sham, C.K.; Serné, M.
1997-01-01
The action of two complementary chain extenders is studied in model systems as well as in poly(ethylene terephthalate) (PET) and nylon–6. Chain extenders are low molecular weight compounds that can be used to increase the molecular weight of polymers in a short time. The reaction must preferably be
Minimal representations of supersymmetry and 1D N-extended σ-models
International Nuclear Information System (INIS)
Toppan, Francesco
2008-01-01
We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)
Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih
2012-01-01
Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…
Jones, Valerie M.; Rensink, Arend; Brinksma, Hendrik
2005-01-01
Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing
Top quark decays with flavor violation in extended models
International Nuclear Information System (INIS)
Aranda, J I; Gómez, D E; Ramírez-Zavaleta, F; Tututi, E S; Cortés-Maldonado, I
2016-01-01
We analyze the top quark decays t → cg and t → cγ mediated by a new neutral gauge boson, identified as Z', in the context of the sequential Z model. We focus our attention on the corresponding branching ratios, which are a function of the Z' boson mass. The study range is taken from 2 TeV to 6 TeV, which is compatible with the resonant region of the dileptonic channel reported by ATLAS and CMS Collaborations. Finally, our preliminary results tell us that the branching ratios of t → cg and t → cγ processes can be of the order of 10 -11 and 10 -13 , respectively. (paper)
EXTENDE MODEL OF COMPETITIVITY THROUG APPLICATION OF NEW APPROACH DIRECTIVES
Directory of Open Access Journals (Sweden)
Slavko Arsovski
2009-03-01
Full Text Available The basic subject of this work is the model of new approach impact on quality and safety products, and competency of our companies. This work represents real hypothesis on the basis of expert's experiences, in regard to that the infrastructure with using new approach directives wasn't examined until now, it isn't known which product or industry of Serbia is related to directives of the new approach and CE mark, and it is not known which are effects of the use of the CE mark. This work should indicate existing quality reserves and product's safety, the level of possible competency improvement and increasing the profit by discharging new approach directive requires.
Topological superconductivity in the extended Kitaev-Heisenberg model
Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.
2018-01-01
We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.
Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable
Elhorst, J. Paul
2001-01-01
This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the
Extended Mixed-Efects Item Response Models with the MH-RM Algorithm
Chalmers, R. Philip
2015-01-01
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…
Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination
Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael
2014-05-01
The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural ``prototypes'' shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.
Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.
Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe
2009-06-01
The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.
Model-based safety analysis of a control system using Simulink and Simscape extended models
Directory of Open Access Journals (Sweden)
Shao Nian
2017-01-01
Full Text Available The aircraft or system safety assessment process is an integral part of the overall aircraft development cycle. It is usually characterized by a very high timely and financial effort and can become a critical design driver in certain cases. Therefore, an increasing demand of effective methods to assist the safety assessment process arises within the aerospace community. One approach is the utilization of model-based technology, which is already well-established in the system development, for safety assessment purposes. This paper mainly describes a new tool for Model-Based Safety Analysis. A formal model for an example system is generated and enriched with extended models. Then, system safety analyses are performed on the model with the assistance of automation tools and compared to the results of a manual analysis. The objective of this paper is to improve the increasingly complex aircraft systems development process. This paper develops a new model-based analysis tool in Simulink/Simscape environment.
MILES extended : Stellar population synthesis models from the optical to the infrared
Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.
We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical
Djordjević, Tijana; Radović, Ivan; Despoja, Vito; Lyon, Keenan; Borka, Duško; Mišković, Zoran L
2018-01-01
We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene given in the local, i.e., frequency-dependent form derived by both a two-dimensional, two-fluid extended hydrodynamic (eHD) model and an ab initio method. We compare the results for the real and imaginary parts of the optical conductivity in graphene obtained by these two methods. The calculated probability density is directly compared with the EEL spectra from three independent experiments and we find very good agreement, especially in the case of the eHD model. Furthermore, we point out that the subtraction of the zero-loss peak from the experimental EEL spectra has a strong influence on the analytical model for the EEL spectroscopy data. Copyright © 2017 Elsevier B.V. All rights reserved.
Default risk modeling beyond the first-passage approximation: Extended Black-Cox model
Katz, Yuri A.; Shokhirev, Nikolai V.
2010-07-01
We develop a generalization of the Black-Cox structural model of default risk. The extended model captures uncertainty related to firm’s ability to avoid default even if company’s liabilities momentarily exceeding its assets. Diffusion in a linear potential with the radiation boundary condition is used to mimic a company’s default process. The exact solution of the corresponding Fokker-Planck equation allows for derivation of analytical expressions for the cumulative probability of default and the relevant hazard rate. Obtained closed formulas fit well the historical data on global corporate defaults and demonstrate the split behavior of credit spreads for bonds of companies in different categories of speculative-grade ratings with varying time to maturity. Introduction of the finite rate of default at the boundary improves valuation of credit risk for short time horizons, which is the key advantage of the proposed model. We also consider the influence of uncertainty in the initial distance to the default barrier on the outcome of the model and demonstrate that this additional source of incomplete information may be responsible for nonzero credit spreads for bonds with very short time to maturity.
Directory of Open Access Journals (Sweden)
Yi Tang
2017-11-01
Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.
Inference and testing on the boundary in extended constant conditional correlation GARCH models
DEFF Research Database (Denmark)
Pedersen, Rasmus Søndergaard
2017-01-01
We consider inference and testing in extended constant conditional correlation GARCH models in the case where the true parameter vector is a boundary point of the parameter space. This is of particular importance when testing for volatility spillovers in the model. The large-sample properties...
3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups
Scalfani, Vincent F.; Vaid, Thomas P.
2014-01-01
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…
2D Modeling and Classification of Extended Objects in a Network of HRR Radars
Fasoula, A.
2011-01-01
In this thesis, the modeling of extended objects with low-dimensional representations of their 2D geometry is addressed. The ultimate objective is the classification of the objects using libraries of such compact 2D object models that are much smaller than in the state-of-the-art classification
Determining the inventory impact of extended-shelf-life platelets with a network simulation model.
Blake, John T
2017-12-01
The regulatory shelf life for platelets (PLTs) in many jurisdictions is 5 days. PLT shelf life can be extended to 7 days with an enhanced bacterial detection algorithm. Enhanced testing, however, comes at a cost, which may be offset by reductions in wastage due to longer shelf life. This article describes a method for estimating systemwide reductions in PLT outdates after PLT shelf life is extended. A simulation was used to evaluate the impact of an extended PLT shelf life within a national blood network. A network model of the Canadian Blood Services PLT supply chain was built and validated. PLT shelf life was extended from 5 days to 6, 7, and 8 days and runs were completed to determine the impact on outdates. Results suggest that, in general, a 16.3% reduction in PLT wastage can be expected with each additional day that PLT shelf life is extended. Both suppliers and hospitals will experience fewer outdating units, but wastage will decrease at a faster rate at hospitals. No effect was seen by blood group, but there was some evidence that supplier site characteristics influences both the number of units wasted and the site's ability to benefit from extended-shelf-life PLTs. Extended-shelf-life PLTs will reduce wastage within a blood supply chain. At 7 days, an improvement of 38% reduction in wastage can be expected with outdates being equally distributed between suppliers and hospital customers. © 2017 AABB.
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
A Multistep Extending Truncation Method towards Model Construction of Infinite-State Markov Chains
Directory of Open Access Journals (Sweden)
Kemin Wang
2014-01-01
Full Text Available The model checking of Infinite-State Continuous Time Markov Chains will inevitably encounter the state explosion problem when constructing the CTMCs model; our method is to get a truncated model of the infinite one; to get a sufficient truncated model to meet the model checking of Continuous Stochastic Logic based system properties, we propose a multistep extending advanced truncation method towards model construction of CTMCs and implement it in the INFAMY model checker; the experiment results show that our method is effective.
The renormalizability and the asymptotically free behaviour of the extended Wess-Zumino models
International Nuclear Information System (INIS)
Ha Huy Bang; Hoang Ngoc Long.
1989-09-01
By using the path integral method for superfields the Ward identities and the Callan-Symanzik equations for the extended Wess-Zumino models are derived. From these the renormalizability and the asymptotically behaviour of all the extended Wess-Zumino models in d = 2,4 (mod 8)-dimensional space-time are studied. In particular, we will come to the conclusion that the supersymmetric Ward identities together with the broken chiral Ward identities imply that a single wave function renormalization is sufficient to renormalize the theory and that the theory is not asymptotically free. (author). 16 refs
One-dimensional extended Bose-Hubbard model with a confining potential: a DMRG analysis
Energy Technology Data Exchange (ETDEWEB)
Urba, Laura; Lundh, Emil; Rosengren, Anders [Condensed Matter Theory, Department of Theoretical Physics, KTH, AlbaNova University Center, SE-106 91 Stockholm (Sweden)
2006-12-28
The extended Bose-Hubbard model in a quadratic trap potential is studied using a finite-size density-matrix renormalization group method (DMRG). We compute the boson density profiles, the local compressibility and the hopping correlation functions. We observe the phase separation induced by the trap in all the quantities studied and conclude that the local density approximation is valid in the extended Bose-Hubbard model. From the plateaus obtained in the local compressibility it was possible to obtain the phase diagram of the homogeneous system which is in agreement with previous results.
Modeling of VSC-Based Power Systems in The Extended Harmonic Domain
DEFF Research Database (Denmark)
Esparza, Miguel; Segundo-Ramirez, Juan; Kwon, Jun Bum
2017-01-01
Averaged modeling is a commonly used approach used to obtain mathematical representations of VSC-based systems. However, essential characteristics mainly related to the modulation process and the harmonic distortion of the signals are not able to be accurately captured and analyzed. The extended ...... on simulations and experimental case studies. The obtained results show that the resulting EHD models are accurate and reliable, while the memory and computation time are improved with the proposed model order reductions....
Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran
2016-01-01
The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…
Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.
Dosdall, Derek J; Sweeney, James D
2008-08-01
Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.
A novel model for extending international co-operation in science and education
de Boer, S.J.; Ji-zehn, Q.
2004-01-01
Journal of Zhejiang University SCIENCE (ISSN 1009-3095, Monthly) 2004 Vol. 5 No. 3 p.358-364 --------------------------------------------------------------------------------A novel model for extending international co-operation in science and educationDE BOER Sirp J.1, QIU Ji-zhen 2(1International
Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee
We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach,
Stall Recovery in a Centrifuge-Based Flight Simulator With an Extended Aerodynamic Model
Ledegang, W.D.; Groen, E.L.
2015-01-01
We investigated the performance of 12 airline pilots in recovering from an asymmetrical stall in a flight simulator featuring an extended aerodynamic model of a transport-category aircraft, and a centrifuge-based motion platform capable of generating enhanced buffet motion and g-cueing. All pilots
Fear Control an Danger Control: A Test of the Extended Parallel Process Model (EPPM).
Witte, Kim
1994-01-01
Explores cognitive and emotional mechanisms underlying success and failure of fear appeals in context of AIDS prevention. Offers general support for Extended Parallel Process Model. Suggests that cognitions lead to fear appeal success (attitude, intention, or behavior changes) via danger control processes, whereas the emotion fear leads to fear…
An Inconvenient Truth: An Application of the Extended Parallel Process Model
Goodall, Catherine E.; Roberto, Anthony J.
2008-01-01
"An Inconvenient Truth" is an Academy Award-winning documentary about global warming presented by Al Gore. This documentary is appropriate for a lesson on fear appeals and the extended parallel process model (EPPM). The EPPM is concerned with the effects of perceived threat and efficacy on behavior change. Perceived threat is composed of an…
Competing recombinant technologies for environmental innovation: Extending Arthur's model of lock-in
Zeppini, P.; van den Bergh, J.C.J.M.
2011-01-01
This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.
Competing recombinant technologies for environmental innovation: extending Arthur’s model of lock-in
Zeppini, P.; van den Bergh, J.C.J.M.
2010-01-01
This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of Arthur (1989). This allows us to evaluate if and how an economy locked into a dirty technology can be unlocked and move towards the
Zeppini, P.; Bergh, van den J.C.J.M.
2011-01-01
This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.
International Nuclear Information System (INIS)
Santangelo, E.M.
1983-01-01
The asymmetry seen in beam-dump experiments done in CERN, between ν sub(e)/ν sup(-) sub(e) and ν sub(μ)/ν sup(-) sub(μ), is discussed using the Glashow-Salam-Weinberg model with extended Higgs sector. (L.C.) [pt
Invariance of an Extended Technology Acceptance Model Across Gender and Age Group
Ahmad, Tunku Badariah Tunku; Madarsha, Kamal Basha; Zainuddin, Ahmad Marzuki; Ismail, Nik Ahmad Hisham; Khairani, Ahmad Zamri; Nordin, Mohamad Sahari
2011-01-01
In this study, we examined the likelihood of a TAME (extended technology acceptance model), in which the interrelationships among computer self-efficacy, perceived usefulness, intention to use and self-reported use of computer-mediated technology were tested. In addition, the gender- and age-invariant of its causal structure were evaluated. The…
Perrault, Evan K.; Clark, Scott K.
2018-01-01
Purpose: A planet that can no longer sustain life is a frightening thought--and one that is often present in mass media messages. Therefore, this study aims to test the components of a classic fear appeal theory, the extended parallel process model (EPPM) and to determine how well its constructs predict sustainability behavioral intentions. This…
Zant, W.
In this paper a method is developed to calculate a wealth variable accounting for the existence of the basic old-age provisions in The Netherlands (AOW). In line with Feldstein's extended life-cycle model, consumption functions with (gross) social security wealth are estimated for The Netherlands
Van Stee, Stephanie K; Yang, Qinghua
2017-10-30
This study applied the comprehensive model of information seeking (CMIS) to online cancer information and extended the model by incorporating an exogenous variable: interest in online health information exchange with health providers. A nationally representative sample from the Health Information National Trends Survey 4 Cycle 4 was analyzed to examine the extended CMIS in predicting online cancer information seeking. Findings from a structural equation model supported most of the hypotheses derived from the CMIS, as well as the extension of the model related to interest in online health information exchange. In particular, socioeconomic status, beliefs, and interest in online health information exchange predicted utility. Utility, in turn, predicted online cancer information seeking, as did information-carrier characteristics. An unexpected but important finding from the study was the significant, direct relationship between cancer worry and online cancer information seeking. Theoretical and practical implications are discussed.
Zhou, Tong; Chen, Dong; Liu, Weining
2018-03-01
Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.
Jitomirskaya, S.; Marx, C. A.
2012-11-01
We show how to extend (and with what limitations) Avila's global theory of analytic SL(2,C) cocycles to families of cocycles with singularities. This allows us to develop a strategy to determine the Lyapunov exponent for the extended Harper's model, for all values of parameters and all irrational frequencies. In particular, this includes the self-dual regime for which even heuristic results did not previously exist in physics literature. The extension of Avila's global theory is also shown to imply continuous behavior of the LE on the space of analytic {M_2({C})}-cocycles. This includes rational approximation of the frequency, which so far has not been available.
Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems
Directory of Open Access Journals (Sweden)
Bambang Riyanto
2005-11-01
Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.
Hermann, Frank; Ehrig, Hartmut; Orejas, Fernando; Ulrike, Golas
2010-01-01
Triple Graph Grammars (TGGs) are a well-established concept for the specification of model transformations. In previous work we have formalized and analyzed already crucial properties of model transformations like termination, correctness and completeness, but functional behaviour - especially local confluence - is missing up to now. In order to close this gap we generate forward translation rules, which extend standard forward rules by translation attributes keeping track of the elements whi...
International Nuclear Information System (INIS)
Seyler, C. E.; Martin, M. R.
2011-01-01
It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.
International Nuclear Information System (INIS)
Marinak, M.
1990-02-01
The problem of deducing χ e from measurements of the propagation of a monopole heatpulse is considered. An extended diffusive model, which takes into account perturbed sources and sinks is extended to the case of a monopole heat input. χ e is expressed as a function of two observables, the heat pulse velocity and the radial damping rate. Two simple expressions valid for two different ranges of the radius of the poloidal waist of the beam power profile are given. The expressions are valid in the heat pulse measurement region, extending radially 0.05a beyond the beam power waist to near 0.6a. The inferred χ e is a local value, not an average value of the radial χ e profile. 7 refs., 6 figs., 1 tab
A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract
Directory of Open Access Journals (Sweden)
Quang Dung Pham
2009-10-01
Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.
Extended Lipkin-type models with residual proton-neutron interaction
International Nuclear Information System (INIS)
Stoica, S.
1999-01-01
Extended Lipkin-Meshkov-Glick (LMG) models for testing the Random Phase Approximation (RPA) and proton-neutron Random Phase Approximation (pnRPA) methods are developed taking into account explicitly the proton and neutron degrees of freedom. First, an extended LMG model for testing RPA is developed. The proton and neutron Hamiltonians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included. Exact solutions in a SU(2) x SU(2) basis as well as the RPA solutions for the energy spectrum of the model Hamiltonian are obtained. Then, the behaviour of the first collective excited state is studied as a function of the interaction parameters of the model using the exact and RPA methods. Secondly, an extended LMG model for testing pnRPA method is developed. Besides the proton and neutron single particle terms two types of residual proton-neutron interactions, one simulating a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian, so that the model is exactly solvable in an isospin SU(2) x SU(2) basis. The exact and pnRPA spectra of the model Hamiltonian are calculated as a function of the model parameters and compared to each other. Furthermore, charge-changing operators simulating a nuclear beta decay and their action on eigenfunctions of the model Hamiltonian are defined, and transition amplitude of them are calculated using exact and pnRPA wave functions. The best agreement between the exact RPA-type calculations for spectra and transitions, was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state was employed and when both kinds of residual interactions (i.e. like- and unlike-particle two-body interactions) are included in the model Hamiltonians. (author)
An extended continuum model considering optimal velocity change with memory and numerical tests
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
Compact extended model for doppler broadening of neutron absorption resonances in solids
International Nuclear Information System (INIS)
Villanueva, A. J; Granada, J.R
2009-01-01
We present a simplified compact model for calculating Doppler broadening of neutron absorption resonances in an incoherent Debye solid. Our model extends the effective temperature gas model to cover the whole range of energies and temperatures, and reduces the information of the dynamical system to a minimum content compatible with a much better accuracy of the calculation. This model is thus capable of replacing the existing algorithm in standard codes for resonance cross sections preparation aimed at neutron and reactor physics calculations. The model is applied to the 238 U 6.671 eV effective broadened cross section. We also show how this model can be used for thermometry in an improved fashion compared to the effective temperature gas model. Experimental data of the same resonance at low and high temperatures are also shown and the performances of each model are put to the test on this basis. [es
Faes, Luca; Nollo, Giandomenico
2010-11-01
The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.
Extended behavioural modelling of FET and lattice-mismatched HEMT devices
Khawam, Yahya; Albasha, Lutfi
2017-07-01
This study presents an improved large signal model that can be used for high electron mobility transistors (HEMTs) and field effect transistors using measurement-based behavioural modelling techniques. The steps for accurate large and small signal modelling for transistor are also discussed. The proposed DC model is based on the Fager model since it compensates between the number of model's parameters and accuracy. The objective is to increase the accuracy of the drain-source current model with respect to any change in gate or drain voltages. Also, the objective is to extend the improved DC model to account for soft breakdown and kink effect found in some variants of HEMT devices. A hybrid Newton's-Genetic algorithm is used in order to determine the unknown parameters in the developed model. In addition to accurate modelling of a transistor's DC characteristics, the complete large signal model is modelled using multi-bias s-parameter measurements. The way that the complete model is performed is by using a hybrid multi-objective optimisation technique (Non-dominated Sorting Genetic Algorithm II) and local minimum search (multivariable Newton's method) for parasitic elements extraction. Finally, the results of DC modelling and multi-bias s-parameters modelling are presented, and three-device modelling recommendations are discussed.
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
Model-Based Engine Control Architecture with an Extended Kalman Filter
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Extending the 4I Organizational Learning Model: Information Sources, Foraging Processes and Tools
Directory of Open Access Journals (Sweden)
Tracy A. Jenkin
2013-08-01
Full Text Available The continued importance of organizational learning has recently led to several calls for further developing the theory. This article addresses these calls by extending Crossan, Lane and White’s (1999 4I model to include a fifth process, information foraging, and a fourth level, the tool. The resulting 5I organizational learning model can be generalized to a number of learning contexts, especially those that involve understanding and making sense of data and information. Given the need for organizations to both innovate and increase productivity, and the volumes of data and information that are available to support both, the 5I model addresses an important organizational issue.
Extended wave-packet model to calculate energy-loss moments of protons in matter
Archubi, C. D.; Arista, N. R.
2017-12-01
In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.
An extended car-following model considering random safety distance with different probabilities
Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi
2018-02-01
Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.
Murthy, D N Prabhakar
2014-01-01
Serving to unify the existing literature on extended warranties, maintenance service contracts and lease contracts, this book also presents a unique perspective on the topic focussed on cost analysis and decision-making from the perspectives of the parties involved. Using a game theoretic approach together with mathematical modelling, results are presented in an integrated manner with key topics that require further research highlighted in order to serve as a starting point for researchers (engineers and statisticians) who are interested in doing further work in these areas. Designed to assist practitioners (managers, engineers, applied statisticians) who are involved with extended warranties, maintenance service contracts and lease contracts, the book provides them with the models and techniques needed for proper cost analysis and effective decision-making. The book is also suitable for use as a reference text in industrial engineering, applied statistics, operations research and management.
International Nuclear Information System (INIS)
Rebour, V.; Georgescu, G.; Leteinturier, D.; Raimond, E.; La Rovere, S.; Bernadara, P.; Vasseur, D.; Brinkman, H.; Groudev, P.; Ivanov, I.; Turschmann, M.; Sperbeck, S.; Potempski, S.; Hirata, K.; Kumar, Manorma
2016-01-01
This report provides a review of existing practices to model and implement external flooding hazards in existing level 1 PSA. The objective is to identify good practices on the modelling of initiating events (internal and external hazards) with a perspective of development of extended PSA and implementation of external events modelling in extended L1 PSA, its limitations/difficulties as far as possible. The views presented in this report are based on the ASAMPSA-E partners' experience and available publications. The report includes discussions on the following issues: - how to structure a L1 PSA for external flooding events, - information needed from geosciences in terms of hazards modelling and to build relevant modelling for PSA, - how to define and model the impact of each flooding event on SSCs with distinction between the flooding protective structures and devices and the effect of protection failures on other SSCs, - how to identify and model the common cause failures in one reactor or between several reactors, - how to apply HRA methodology for external flooding events, - how to credit additional emergency response (post-Fukushima measures like mobile equipment), - how to address the specific issues of L2 PSA, - how to perform and present risk quantification. (authors)
A modeling method of semiconductor fabrication flows with extended knowledge hybrid Petri nets
Institute of Scientific and Technical Information of China (English)
Zhou Binghai; Jiang Shuyu; Wang Shijin; Wu bin
2008-01-01
A modeling method of extended knowledge hybrid Petri nets (EKHPNs), incorporating object-oriented methods into hybrid Petri nets (HPNs), was presented and used for the representation and modeling of semiconductor wafer fabrication flows. To model the discrete and continuous parts of a complex semiconductor wafer fabrication flow, the HPNs were introduced into the EKHPNs. Object-oriented methods were combined into the EKHPNs for coping with the complexity of the fabrication flow. Knowledge annotations were introduced to solve input and output conflicts of the EKHPNs.Finally, to demonstrate the validity of the EKHPN method, a real semiconductor wafer fabrication case was used to illustrate the modeling procedure. The modeling results indicate that the proposed method can be used to model a complex semiconductor wafer fabrication flow expediently.
Soneson, Joshua E
2017-04-01
Wide-angle parabolic models are commonly used in geophysics and underwater acoustics but have seen little application in medical ultrasound. Here, a wide-angle model for continuous-wave high-intensity ultrasound beams is derived, which approximates the diffraction process more accurately than the commonly used Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation without increasing implementation complexity or computing time. A method for preventing the high spatial frequencies often present in source boundary conditions from corrupting the solution is presented. Simulations of shallowly focused axisymmetric beams using both the wide-angle and standard parabolic models are compared to assess the accuracy with which they model diffraction effects. The wide-angle model proposed here offers improved focusing accuracy and less error throughout the computational domain than the standard parabolic model, offering a facile method for extending the utility of existing KZK codes.
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
Hamlin, Nathaniel; Seyler, Charles
2017-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes
Directory of Open Access Journals (Sweden)
Petr KOŇAŘÍK
2009-06-01
Full Text Available Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cylinder. Presented paper deal with development of extended form of analytic linear model of single piston rod hydraulic cylinder which respects different action piston areas and volumes inside of chambers of hydraulic cylinder and also two different input flows of hydraulic cylinder. In extended model are also considered possibilities of different dead volumes in hoses and intake parts of hydraulic cylinder. Dead volume has impact on damping of hydraulic cylinder. Because the system of hydraulic cylinder is generally presented as a integrative system with inertia of second order: eq , we can than obtain time constants and damping of hydraulic cylinder for each of analytic form model. The model has arisen for needs of model fractionation on two parts. Part of behaviour of chamber A and part of behaviour of chamber B of cylinder. It was created for the reason of analysis and synthesis of control parameters of regulation circuit of multivalve control concept of hydraulic drive with separately controlled chamber A and B which could be then used for.
International Nuclear Information System (INIS)
Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang
2016-01-01
We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.
Energy Technology Data Exchange (ETDEWEB)
Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)
2016-05-25
We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.
International Nuclear Information System (INIS)
Gershgorin, B.; Harlim, J.; Majda, A.J.
2010-01-01
The filtering and predictive skill for turbulent signals is often limited by the lack of information about the true dynamics of the system and by our inability to resolve the assumed dynamics with sufficiently high resolution using the current computing power. The standard approach is to use a simple yet rich family of constant parameters to account for model errors through parameterization. This approach can have significant skill by fitting the parameters to some statistical feature of the true signal; however in the context of real-time prediction, such a strategy performs poorly when intermittent transitions to instability occur. Alternatively, we need a set of dynamic parameters. One strategy for estimating parameters on the fly is a stochastic parameter estimation through partial observations of the true signal. In this paper, we extend our newly developed stochastic parameter estimation strategy, the Stochastic Parameterization Extended Kalman Filter (SPEKF), to filtering sparsely observed spatially extended turbulent systems which exhibit abrupt stability transition from time to time despite a stable average behavior. For our primary numerical example, we consider a turbulent system of externally forced barotropic Rossby waves with instability introduced through intermittent negative damping. We find high filtering skill of SPEKF applied to this toy model even in the case of very sparse observations (with only 15 out of the 105 grid points observed) and with unspecified external forcing and damping. Additive and multiplicative bias corrections are used to learn the unknown features of the true dynamics from observations. We also present a comprehensive study of predictive skill in the one-mode context including the robustness toward variation of stochastic parameters, imperfect initial conditions and finite ensemble effect. Furthermore, the proposed stochastic parameter estimation scheme applied to the same spatially extended Rossby wave system demonstrates
An advanced BLT-humanized mouse model for extended HIV-1 cure studies.
Lavender, Kerry J; Pace, Craig; Sutter, Kathrin; Messer, Ronald J; Pouncey, Dakota L; Cummins, Nathan W; Natesampillai, Sekar; Zheng, Jim; Goldsmith, Joshua; Widera, Marek; Van Dis, Erik S; Phillips, Katie; Race, Brent; Dittmer, Ulf; Kukolj, George; Hasenkrug, Kim J
2018-01-02
Although bone marrow, liver, thymus (BLT)-humanized mice provide a robust model for HIV-1 infection and enable evaluation of cure strategies dependent on endogenous immune responses, most mice develop graft versus host disease (GVHD), limiting their utility for extended HIV cure studies. This study aimed to: evaluate the GVHD-resistant C57 black 6 (C57BL/6) recombination activating gene 2 (Rag2)γcCD47 triple knockout (TKO)-BLT mouse as a model to establish HIV-1 latency. Determine whether TKO-BLT mice could be maintained on antiretroviral therapy (ART) for extended periods of time. Assess the rapidity of viral rebound following therapy interruption. TKO-BLT mice were HIV-1 infected, treated with various ART regimens over extended periods of time and assayed for viral rebound following therapy interruption. Daily subcutaneous injection and oral ART-mediated suppression of HIV-1 infection was tested at various doses in TKO-BLT mice. Mice were monitored for suppression of viremia and cellular HIV-1 RNA and DNA prior to and following therapy interruption. Mice remained healthy for 45 weeks posthumanization and could be treated with ART for up to 18 weeks. Viremia was suppressed to less than 200 copies/ml in the majority of mice with significant reductions in cellular HIV-1 RNA and DNA. Treatment interruption resulted in rapid viral recrudescence. HIV-1 latency can be maintained in TKO-BLT mice over extended periods on ART and rapid viral rebound occurs following therapy removal. The additional 15-18 weeks of healthy longevity compared with other BLT models provides sufficient time to examine the decay kinetics of the latent reservoir as well as observe delays in recrudescence in HIV-1 cure studies.
Pattanayak, Sujata; Mohanty, U. C.
2018-06-01
The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.
Teo, Timothy
2016-01-01
The aim of this study is to examine the factors that influenced the use of Facebook among university students. Using an extended technology acceptance model (TAM) with emotional attachment (EA) as an external variable, a sample of 498 students from a public-funded Thailand university were surveyed on their responses to five variables hypothesized…
Standard model extended by a heavy singlet: Linear vs. nonlinear EFT
Energy Technology Data Exchange (ETDEWEB)
Buchalla, G., E-mail: gerhard.buchalla@lmu.de; Catà, O.; Celis, A.; Krause, C.
2017-04-15
We consider the Standard Model extended by a heavy scalar singlet in different regions of parameter space and construct the appropriate low-energy effective field theories up to first nontrivial order. This top-down exercise in effective field theory is meant primarily to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. We discuss power-counting aspects and the transition between both effective theories on the basis of the model, confirming in all cases the rules and procedures derived in previous works from a bottom-up approach.
Momentum Distribution Functions in a One-Dimensional Extended Periodic Anderson Model
Directory of Open Access Journals (Sweden)
I. Hagymási
2015-01-01
Full Text Available We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, Ucf, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, the f electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value of Ucf the f electrons become again localized together with the conduction electrons. In the less than half-filled case, we observe that Ucf causes strong correlations between the f electrons in the mixed valence regime.
Cosmological models with a hybrid scale factor in an extended gravity theory
Mishra, B.; Tripathy, S. K.; Tarai, Sankarsan
2018-03-01
A general formalism to investigate Bianchi type V Ih universes is developed in an extended theory of gravity. A minimally coupled geometry and matter field is considered with a rescaled function of f(R,T) substituted in place of the Ricci scalar R in the geometrical action. Dynamical aspects of the models are discussed by using a hybrid scale factor (HSF) that behaves as power law in an initial epoch and as an exponential form at late epoch. The power law behavior and the exponential behavior appear as two extreme cases of the present model.
Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities
International Nuclear Information System (INIS)
Vecchia, P. di; Ferrara, S.; Girardello, L.
1985-01-01
Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)
eGSM: A extended Sky Model of Diffuse Radio Emission
Kim, Doyeon; Liu, Adrian; Switzer, Eric
2018-01-01
Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.
Validating and extending the three process model of alertness in airline operations.
Directory of Open Access Journals (Sweden)
Michael Ingre
Full Text Available Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS. The present study sought to validate the inner workings of one such model, Three Process Model (TPM, on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C, with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications.
Validating and extending the three process model of alertness in airline operations.
Ingre, Michael; Van Leeuwen, Wessel; Klemets, Tomas; Ullvetter, Christer; Hough, Stephen; Kecklund, Göran; Karlsson, David; Åkerstedt, Torbjörn
2014-01-01
Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS). The present study sought to validate the inner workings of one such model, Three Process Model (TPM), on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad) and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C), with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications.
Schmettow, Martin; Schnittker, Raphaela; Schraagen, Jan Maarten
2017-05-01
This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences and derive performance measures. Secondly, a prevailing focus on cross-sectional validation studies, ignoring the issues of learnability and training. The U.S. Federal Drug and Food Administration's recent proposal for a validation testing protocol for medical devices is then extended to address these shortcomings: (1) a novel process measure 'normative path deviations' is introduced that is useful for both quantitative and qualitative usability studies and (2) a longitudinal, completely within-subject study design is presented that assesses learnability, training effects and allows analysis of diversity of users. A reference regression model is introduced to analyze data from this and similar studies, drawing upon generalized linear mixed-effects models and a Bayesian estimation approach. The extended protocol is implemented and demonstrated in a study comparing a novel syringe infusion pump prototype to an existing design with a sample of 25 healthcare professionals. Strong performance differences between designs were observed with a variety of usability measures, as well as varying training-on-the-job effects. We discuss our findings with regard to validation testing guidelines, reflect on the extensions and discuss the perspectives they add to the validation process. Copyright © 2017 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Zhang, Fan; Wu, Xiao; Shen, Jiong
2017-01-01
Highlights: • A novel ESOFMPC is proposed based on the combination of ESO and stable MPC. • The improved ESO can overcome unknown disturbances on any channel of MIMO system. • Nonlinearity and disturbance of boiler-turbine unit can be handled simultaneously. - Abstract: The regulation of ultra-supercritical (USC) boiler-turbine unit in large-scale power plants is vulnerable to various unknown disturbances, meanwhile, the internal nonlinearity makes it a challenging task for wide range load tracking. To overcome these two issues simultaneously, an extended state observer based fuzzy model predictive control is proposed for the USC boiler-turbine unit. Firstly, the fuzzy model of a 1000-MW coal-fired USC boiler-turbine unit is established through the nonlinearity analysis. Then a fuzzy stable model predictive controller is devised on the fuzzy model using output cost function for the purpose of wide range load tracking. An improved linear extended state observer, which can estimate plant behavior variations and unknown disturbances regardless of the direct feedthrough characteristic of the system, is synthesized with the predictive controller to enhance its disturbance rejection property. Closed-loop stability of the overall control system is guaranteed. Simulation results on a 1000-MW USC boiler-turbine unit model demonstrate the effectiveness of the proposed approach.
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2011-01-01
resistivity and the absorber thickness on the difference between the two surface reaction models are examined and discussed. For a porous absorber backed by a rigid surface, the local reaction models give errors of less than 10% if the thickness exceeds 120 mm for a flow resistivity of 5000 Nm-4s. As the flow...... incidence acoustical characteristics of typical building elements made of porous materials assuming extended and local reaction. For each surface reaction, five well-established wave propagation models, the Delany-Bazley, Miki, Beranek, Allard-Champoux, and Biot model, are employed. Effects of the flow...... resistivity doubles, a decrease in the required thickness by 25 mm is observed to achieve the same amount of error. For an absorber backed by an air gap, the thickness ratio between the material and air cavity is important. If the absorber thickness is approximately 40% of the cavity depth, the local reaction...
Charge-changing transitions in an extended Lipkin-type model
International Nuclear Information System (INIS)
Mihut, I.; Stoica, S.; Suhonen, J.
1997-01-01
Charge-changing transition are considered in an extended Lipkin-Meshkov-Glick (LMG) model taking into account explicitly the proton and neutron degrees of freedom. The proton and neutron Hamiltonians are taken to be of the LMG form and in addition, a residual proton-neutron interaction is included. Model charge-changing operators and their action on eigenfunctions of the model Hamiltonian are defined. Transition amplitudes of these operators are calculated using exact eigenfunctions and then the RPA approximation. The best agreement between the two kinds of calculations was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state, is employed and when the proton-neutron residual interaction besides the proton-proton and neutron-neutron residual interactions is taken into account in the model Hamiltonian
Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model
Energy Technology Data Exchange (ETDEWEB)
Meloni, Davide [Dipartimento di Matematica e Fisica, Università di Roma Tre,Via della Vasca Navale 84, 00146 Rome (Italy); Ohlsson, Tommy; Riad, Stella [Department of Physics, School of Engineering Sciences,KTH Royal Institute of Technology - AlbaNova University Center,Roslagstullsbacken 21, 106 91 Stockholm (Sweden)
2017-03-08
We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10{sub H}, 120{sub H}, and 126{sub H} representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M{sub I}. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10{sub H} and 126{sub H} representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.
The low-energy constants of the extended linear sigma model
Energy Technology Data Exchange (ETDEWEB)
Divotgey, Florian; Giacosa, Francesco; Kovacs, Peter; Rischke, Dirk H. [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany)
2016-07-01
The low-energy dynamics of Quantum Chromodynamics (QCD) is fully determined by the interactions of the (pseudo-) Nambu-Goldstone bosons of spontaneous chiral symmetry breaking, i.e., for two quark flavors, the pions. Pion dynamics is described by the low-energy effective theory of QCD, chiral perturbation theory (ChPT), which is based on the nonlinear realization of chiral symmetry. An alternative description is provided by the Linear Sigma Model, where chiral symmetry is linearly realized. An extended version of this model, the so-called extended Linear Sigma Model (eLSM) was recently developed which incorporates all J{sup P}=0{sup ±}, 1{sup ±} anti qq mesons up to 2 GeV in mass. A fit of the coupling constants of this model to experimentally measured masses and decay widths has a surprisingly good quality. In this talk, it is demonstrated that the low-energy limit of the eLSM, obtained by integrating out all fields which are heavier than the pions, assumes the same form as ChPT. Moreover, the low-energy constants (LECs) of the eLSM agree with those of ChPT.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.
Extended MHD modeling of nonlinear instabilities in fusion and space plasmas
Energy Technology Data Exchange (ETDEWEB)
Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States)
2017-11-15
A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements of the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.
Directory of Open Access Journals (Sweden)
Wenjun Huang
2017-01-01
Full Text Available Mechanical extending limit in horizontal drilling means the maximum horizontal extending length of a horizontal well under certain ground and down-hole mechanical constraint conditions. Around this concept, the constrained optimization model of mechanical extending limits is built and simplified analytical results for pick-up and slack-off operations are deduced. The horizontal extending limits for kinds of tubular strings under different drilling parameters are calculated and drawn. To improve extending limits, an optimal design model of drill strings is built and applied to a case study. The results indicate that horizontal extending limits are underestimated a lot when the effects of friction force on critical helical buckling loads are neglected. Horizontal extending limits firstly increase and tend to stable values with vertical depths. Horizontal extending limits increase faster but finally become smaller with the increase of horizontal pushing forces for tubular strings of smaller modulus-weight ratio. Sliding slack-off is the main limit operation and high axial friction is the main constraint factor constraining horizontal extending limits. A sophisticated installation of multiple tubular strings can greatly inhibit helical buckling and increase horizontal extending limits. The optimal design model is called only once to obtain design results, which greatly increases the calculation efficiency.
A 3-Factor Model Relating Communication to Risk Mitigation of Extended Information System Failover
Directory of Open Access Journals (Sweden)
Athanasios Podaras
2015-06-01
Full Text Available This paper aims to analyse the relation between timely and effective communication and risk mitigation of late recovery after an unexpected information system outage in enterprises. An unforeseen information system failure in modern enterprise units, may result to significant operational and financial damage. In such a critical incident, effective communication between the team leaders and the recovery team involved, can minimize or even eliminate this negative impact. An extended information system outage can be perceived as a time deviation from the Maximum Accepted Outage (ΜΑΟ timeframe, proposed by the business continuity management, according to the value of which dependent business functions may be interrupted without any serious effects to the company. The paper examines the relation between 3 basic factors and the efficient communication between team members. The factors are: timely information distribution, staff availability and network availability. Through the current paper, the author proposes a risk analysis model, based on the Composite Risk Index theory of Risk Management, which can significantly diminish the possibility of an extended information system outage, as well as calculate the extended time required to recover a system when the aforementioned factors emerge in their worst form. The precise calculation of recovery time can be achieved via the execution of business continuity tests which include scenarios, according to which an unexpected system outage coexists with delayed information distribution as well as low staff and network availability.
Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria.
Qian, Minxian; Liu, Zuojun; Peng, Linyuan; Tang, Xiaolong; Meng, Fanbiao; Ao, Ying; Zhou, Mingyan; Wang, Ming; Cao, Xinyue; Qin, Baoming; Wang, Zimei; Zhou, Zhongjun; Wang, Guangming; Gao, Zhengliang; Xu, Jun; Liu, Baohua
2018-05-02
DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans , but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature aging features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases. © 2018, Qian et al.
The administration of renoprotective agents extends warm ischemia in a rat model.
Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael
2013-03-01
Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.
Correlation effects of third-order perturbation in the extended Hubbard model
International Nuclear Information System (INIS)
Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.
1989-01-01
Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.
1996-01-01
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data
Abril, Eulàlia P.; Szczypka, Glen; Emery, Sherry L.
2017-01-01
This study seeks to analyze fear control responses to the 2012 Tips from Former Smokers campaign using the Extended Parallel Process Model (EPPM). The goal is to examine the occurrence of ancillary fear control responses, like humor. In order to explore individuals’ responses in an organic setting, we use Twitter data—tweets—collected via the Firehose. Content analysis of relevant fear control tweets (N = 14,281) validated the existence of boomerang responses within the EPPM: denial, defensive avoidance, and reactance. More importantly, results showed that humor tweets were not only a significant occurrence but constituted the majority of fear control responses. PMID:29527092
GRGM900C: A Degree 900 Lunar Gravity Model from GRAIL Primary and Extended Mission Data
Lemoine, Frank G.; Goossens, Sander; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Bryant, D. Loomis; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.;
2014-01-01
We have derived a gravity field solution in spherical harmonics to degree and order 900, GRGM900C, from the tracking data of the Gravity Recovery and Interior Laboratory (GRAIL) Primary (1 March to 29 May 2012) and Extended Missions (30 August to 14 December 2012). A power law constraint of 3.6 × 10(exp -4)/l(exp 2) was applied only for degree l greater than 600. The model produces global correlations of gravity, and gravity predicted from lunar topography of greater than or equal to 0.98 through degree 638. The model's degree strength varies from a minimum of 575-675 over the central nearside and farside to 900 over the polar regions. The model fits the Extended Mission Ka-Band Range Rate data through 17 November 2012 at 0.13 micrometers/s RMS, whereas the last month of Ka-Band Range-Rate data obtained from altitudes of 2-10 km fit at 0.98 micrometers/s RMS, indicating that there is still signal inherent in the tracking data beyond degree 900.
An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds
Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia
2018-02-01
The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.
Nonlinear analysis of an extended traffic flow model in ITS environment
Energy Technology Data Exchange (ETDEWEB)
Yu Lei [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)], E-mail: yuleijk@126.com; Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)
2008-05-15
An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one.
Nonlinear analysis of an extended traffic flow model in ITS environment
International Nuclear Information System (INIS)
Yu Lei; Shi Zhongke
2008-01-01
An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Energy Technology Data Exchange (ETDEWEB)
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
An extended CFD model to predict the pumping curve in low pressure plasma etch chamber
Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu
2014-12-01
Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
EXTENDING THE DEEP PACKET INSPECTION MODEL TO THE GCC/MENA REGION
Directory of Open Access Journals (Sweden)
Alfred H. Miller
2013-12-01
Full Text Available This study seeks to explore extending the technology acceptance model (DPAM from a 2011 quantitative study—Modeling Intention to Use Deep Packet Inspection Technology in the United Arab Emirates, to the cyber security practitioner community of the Gulf Cooperation Council (GCC and greater Middle East North Africa (MENA Region. Analysis of regression between independent variable model factors of computer self efficacy, attitude toward ICT, perceived usefulness of ecommerce, intention to use ecommerce, societal trust and Internet filtration toward the dependent variable intention to use deep packet inspection, to determine parsimony, using confirmatory factor analysis (CFA, multinomial regression to assess correlation of independent and dependent variables, and assessment of the cross-suitability of DPAM across the MENA/GCC states through a MANOVA assessment. A qualitative component of the instrument enables collection of data about specific hardware and software deployed for deep packet inspection and cyber security systems.
Albaugh, Alex; Head-Gordon, Teresa; Niklasson, Anders M N
2018-02-13
Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods provide a framework for fast iteration-free simulations of models that normally require expensive electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized ground state of an approximate "shadow" potential which approximates the true reference potential. While the requirements for such shadow potentials are well understood, constructing such potentials in practice has previously been ad hoc, and in this work, we present a systematic development of XLBOMD shadow potentials that match the reference potential to any order. We also introduce a framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-order integration, a combination that was not previously possible. These developments are demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
Extended soft wall model with background related to features of QCD thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Zoellner, R.; Kaempfer, B. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, Dresden (Germany)
2017-06-15
The soft wall model is extended to accommodate at the same time i) approximately linear ρ meson Regge trajectories at zero temperature T, ii) various options for the thermodynamics with reference to QCD (cross-over or second-order transition or first-order transition at T{sub c}), and iii) the appearance of vector meson states at T
Directory of Open Access Journals (Sweden)
P.-L. Blelly
2005-02-01
Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F_{2} layer reached as much as 10^{12}m^{-3}, which is unusual for a winter and moderate solar activity (F_{10.7}=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm^{-1} and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.
Directory of Open Access Journals (Sweden)
P.-L. Blelly
2005-02-01
Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.
An Extended Non-Lane-Based Optimal Velocity Model with Dynamic Collaboration
Directory of Open Access Journals (Sweden)
Zhipeng Li
2013-01-01
Full Text Available Incorporating the effects of the lane width in traffic, in this paper, we propose a dynamical model based on the strategy of three-vehicle cooperation driving. We obtain the smoother acceleration distribution in the new model through considering the dynamic collaboration with the nearest preceding vehicle and the nearest following vehicle. It is proved that the stability of the new model is greatly improved compared to the early non-lane-based car following model by using the linear stability theory. We find that when the parameter of lateral separation distance is identified, the amplitude of traffic congestion decreases with increasing the strength of dynamic collaboration in the simulation experiments. In addition, we apply the new extended model to simulate the motions of cars starting from a traffic signal and the dissipating of the traffic congestion; it is found that our new model can predict realistic delay time and kinematic wave speed and obtained a faster dissipation speed of traffic congestion than the traffic flow model without considering the dynamic collaboration.
An extended five-stream model for diffusion of ion-implanted dopants in monocrystalline silicon
International Nuclear Information System (INIS)
Khina, B.B.
2007-01-01
Low-energy high-dose ion implantation of different dopants (P, Sb, As, B and others) into monocrystalline silicon with subsequent thermal annealing is used for the formation of ultra-shallow p-n junctions in modern VLSI circuit technology. During annealing, dopant activation and diffusion in silicon takes place. The experimentally observed phenomenon of transient enhanced diffusion (TED), which is typically ascribed to the interaction of diffusing species with non-equilibrium point defects accumulated in silicon due to ion damage, and formation of small clusters and extended defects, hinders further down scaling of p-n junctions in VLSI circuits. TED is currently a subject of extensive experimental and theoretical investigation in many binary and multicomponent systems. However, the state-of-the-art mathematical models of dopant diffusion, which are based on the so-called 'five-stream' approach, and modern TCAD software packages such as SUPREM-4 (by Silvaco Data Systems, Ltd.) that implement these models encounter severe difficulties in describing TED. Solving the intricate problem of TED suppression and development of novel regimes of ion implantation and rapid thermal annealing is impossible without elaboration of new mathematical models and computer simulation of this complex phenomenon. In this work, an extended five-stream model for diffusion in silicon is developed which takes into account all possible charge states of point defects (vacancies and silicon self-interstitials) and diffusing pairs 'dopant atom-vacancy' and 'dopant atom-silicon self-interstitial'. The model includes the drift terms for differently charged point defects and pairs in the internal electric field and the kinetics of interaction between unlike 'species' (generation and annihilation of pairs and annihilation of point defects). Expressions for diffusion coefficients and numerous sink/source terms that appear in the non-linear, non-steady-state reaction-diffusion equations are derived
International Nuclear Information System (INIS)
Ramos-Méndez, J; Faddegon, B; Perl, J; Schümann, J; Paganetti, H; Shin, J
2015-01-01
The aim of this work was to develop a framework for modeling organ effects within TOPAS (TOol for PArticle Simulation), a wrapper of the Geant4 Monte Carlo toolkit that facilitates particle therapy simulation. The DICOM interface for TOPAS was extended to permit contour input, used to assign voxels to organs. The following dose response models were implemented: The Lyman–Kutcher–Burman model, the critical element model, the population based critical volume model, the parallel-serial model, a sigmoid-based model of Niemierko for normal tissue complication probability and tumor control probability (TCP), and a Poisson-based model for TCP. The framework allows easy manipulation of the parameters of these models and the implementation of other models.As part of the verification, results for the parallel-serial and Poisson model for x-ray irradiation of a water phantom were compared to data from the AAPM Task Group 166. When using the task group dose-volume histograms (DVHs), results were found to be sensitive to the number of points in the DVH, with differences up to 2.4%, some of which are attributable to differences between the implemented models. New results are given with the point spacing specified. When using Monte Carlo calculations with TOPAS, despite the relatively good match to the published DVH’s, differences up to 9% were found for the parallel-serial model (for a maximum DVH difference of 2%) and up to 0.5% for the Poisson model (for a maximum DVH difference of 0.5%). However, differences of 74.5% (in Rectangle1), 34.8% (in PTV) and 52.1% (in Triangle) for the critical element, critical volume and the sigmoid-based models were found respectively.We propose a new benchmark for verification of organ effect models in proton therapy. The benchmark consists of customized structures in the spread out Bragg peak plateau, normal tissue, tumor, penumbra and in the distal region. The DVH’s, DVH point spacing, and results of the organ effect models are
Extended Cann Model for Behavioral Modeling of Envelope Tracking Power Amplifiers
DEFF Research Database (Denmark)
Tafuri, Felice Francesco; Larsen, Torben
2013-01-01
This paper deals with behavioral modeling of power amplifiers (PAs) for envelope tracking (ET) applications. In such a scenario, the power supply modulation brings in several additional challenges for the system design and, similarly, it becomes more difficult to obtain an accurate and general PA...... by the ET operation. The model performance is tested modeling data-sets acquired from an ET test bench including a commercial RFMD PA and an envelope modulator designed using a commercial IC from TI....
Akman, Ibrahim; Turhan, Cigdem
2017-01-01
This study aims to explore the users' behaviour and acceptance of social media for learning in higher educational institutions with the help of the extended Technology Acceptance Model (TAM). TAM has been extended to investigate how ethical and security awareness of users affect the actual usage of social learning applications. For this purpose, a…
Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas
International Nuclear Information System (INIS)
Inoue, H.; Yamoto, S.; Hatayama, A.; Homma, Y.
2016-01-01
Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Extended numerical modeling of impurity neoclassical transport in tokamak edge plasmas
Energy Technology Data Exchange (ETDEWEB)
Inoue, H.; Yamoto, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Homma, Y. [Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama (Japan); Research Fellow of Japan Society for the Promotion of Science, Tokyo (Japan)
2016-08-15
Understanding of impurity transport in tokamaks is an important issue in order to reduce the impurity contamination in fusion core plasmas. Recently, a new kinetic numerical scheme of impurity classical/neoclassical transport has been developed. This numerical scheme makes it possible to include classical self-diffusion (CL SD), classical inward pinch (CL IWP), and classical temperature screening effect (CL TSE) of impurity ions. However, impurity neoclassical transport has been modeled only in the case where background plasmas are in the Pfirsch-Schluter (PS) regime. The purpose of this study is to extend our previous model to wider range of collisionality regimes, i.e., not only the PS regime, but also the plateau regime. As in the previous study, a kinetic model with Binary Collision Monte-Carlo Model (BMC) has been adopted. We focus on the modeling of the neoclassical self-diffusion (NC SD) and the neoclassical inward pinch (NC IWP). In order to simulate the neoclassical transport with the BCM, velocity distribution of background plasma ions has been modeled as a deformed Maxwell distribution which includes plasma density gradient. Some test simulations have been done. As for NC SD of impurity ions, our scheme reproduces the dependence on the collisionality parameter in wide range of collisionality regime. As for NC IWP, in cases where test impurity ions and background ions are in the PS and plateau regimes, parameter dependences have been reproduced. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Top quark rare decays via loop-induced FCNC interactions in extended mirror fermion model
Hung, P. Q.; Lin, Yu-Xiang; Nugroho, Chrisna Setyo; Yuan, Tzu-Chiang
2018-02-01
Flavor changing neutral current (FCNC) interactions for a top quark t decays into Xq with X represents a neutral gauge or Higgs boson, and q a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10-4 from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process t → Zc for a wide range of parameter space with branching ratios varying from 10-6 to 10-8, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without R-parity, and extra dimension model.
Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain
Directory of Open Access Journals (Sweden)
Rajesh Elara Mohan
2008-01-01
Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.
2D edge plasma modeling extended up to the main chamber
Energy Technology Data Exchange (ETDEWEB)
Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)
2011-08-01
Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.
Hadronic decays of tau-leptons in the extended Nambu-Jona-Lasinio model
Energy Technology Data Exchange (ETDEWEB)
Kostunin, Dmitriy [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik (IKP); Volkov, Mikhail; Arbuzov, Andrey [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)
2013-07-01
Modern experiments have collected large statistics on tau-lepton decays and electron-positron annihilation into light hadrons. Therefore it is worthwhile to confront the experimental results with the corresponding theoretical predictions. The extended Nambu-Jona-Lasinio model is a good candidate for the theoretical description of these processes. Excited states of mesons in this version of the NJL model are described with the help of polynomial form-factors with minimal number of parameters. We worked out decays and cross-sections with ππ, ππ(1300), ωπ, ηπ, η'π, ηππ, η'ππ final states. Our calculations are in satisfactory agreement with the existing experimental results. Predictions for branching ratios of suppressed decays were obtained and compared with previous theoretical estimates.
Possible D(*) anti D(*) and B(*) anti B(*) molecular states in the extended constituent quark models
International Nuclear Information System (INIS)
Yang, You-Chang; Tan, Zhi-Yun; Ping, Jialun; Zong, Hong-Shi
2017-01-01
The possible neutral D (*) anti D (*) and B (*) anti B (*) molecular states are studied in the framework of the constituent quark models, which is extended by including the s-channel one-gluon exchange. Using different types of quark-quark potentials, we solve the four-body Schroedinger equation by means of the Gaussian expansion method. The bound states of D (*) anti D (*) with J PC = 1 ++ , 2 ++ and B (*) anti B (*) with J PC = 0 ++ , 1 +- , 1 ++ , 2 ++ are obtained. The molecular states D* anti D with J PC = 1 ++ and B* anti B with J PC = 1 +- are good candidates for X(3872) and Z 0 b (10610), respectively. The dependence of the results on the model parameters is also discussed. (orig.)
Modeling of extrinsic extended defect evolution in ion-implanted silicon upon thermal annealing
International Nuclear Information System (INIS)
Ortiz, C.J.; Cristiano, F.; Colombeau, B.; Claverie, A.; Cowern, N.E.B.
2004-01-01
A physically motivated model that accounts for the spatial and temporal evolution of extended defect distribution in ion-implanted Si is presented. Free physical parameters are extracted from experimental data and by means of a genetic algorithm (GA). Transmission electron microscopy (TEM) data and self-interstitial oversaturation measurements are combined in the same fitting procedure to eliminate unphysical solutions and find the optimum set of parameters. The calibration of parameters shows that binding energies of small self-interstitial clusters exhibit strong minima, as reported in other investigations. It is demonstrated that the calibrated model we propose is able to predict a wide variety of physical phenomena, from the oversaturation of self-interstitials via the mean-size distribution of {1 1 3} defects to the depth distribution of the density of the latter
DEFF Research Database (Denmark)
Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan
2015-01-01
Lithium-ion (Li-ion) batteries are found nowadays not only in portable/consumer electronics but also in more power demanding applications, such as stationary renewable energy storage, automotive and back-up power supply, because of their superior characteristics in comparison to other energy...... storage technologies. Nevertheless, prior to be used in any of the aforementioned application, a Li-ion battery cell must be intensively characterized and its behavior needs to be understood. This can be realized by performing extended laboratory characterization tests and developing Li-ion battery...... performance models. Furthermore, accurate performance models are necessary in order to analyze the behavior of the battery cell under different mission profiles, by simulation; thus, avoiding time and cost demanding real life tests. This paper presents the development and the parametrization of a performance...
Explaining the Higgs decays at the LHC with an extended electroweak model
International Nuclear Information System (INIS)
Alves, Alexandre; Ramirez Barreto, E.; Dias, A.G.; Pires, S.C.A. de; Rodrigues da Silva, P.S.; Queiroz, Farinaldo S.
2013-01-01
We show that the observed enhancement in the diphoton decays of the recently discovered new boson at the LHC, which we assume to be a Higgs boson, can be naturally explained by a new doublet of charged vector bosons from extended electroweak models with SU(3) C x SU(3) L x U(1) X symmetry. These models are also rather economical in explaining the measured signal strengths, within the current experimental errors, demanding fewer assumptions and less parameters tuning. Our results show a good agreement between the theoretical expected sensitivity to a 126-125 GeV Higgs boson, and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ * , WW * , bottom quarks, and tau leptons. (orig.)
Basak, Ecem; Gumussoy, Cigdem Altin; Calisir, Fethi
2015-01-01
This study aims at identifying the factors affecting the intention to use personal digital assistant (PDA) technology among physicians in Turkey using an extended Technology Acceptance Model (TAM). A structural equation-modeling approach was used to identify the variables that significantly affect the intention to use PDA technology. The data were collected from 339 physicians in Turkey. Results indicated that 71% of the physicians' intention to use PDA technology is explained by perceived usefulness and perceived ease of use. On comparing both, the perceived ease of use has the strongest effect, whereas the effect of perceived enjoyment on behavioral intention to use is found to be insignificant. This study concludes with the recommendations for managers and possible future research.
International Nuclear Information System (INIS)
Alzbutas, R.; Ostapchuk, S.; Borysiewicz, M.; Decker, K.; Kumar, Manorma; Haeggstroem, A.; Nitoi, M.; Groudev, P.; Parey, S.; Potempski, S.; Raimond, E.; Siklossy, T.
2016-01-01
The goal of this report is to provide guidance on practices to model Extreme Weather hazards and implement them in extended level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the End Users Workshop. This guidance is focusing on extreme weather hazards, namely: extreme wind, extreme temperature and snow pack. Other hazards, however, are considered in cases where they are correlated/ associated with the hazard under discussion. Guidance developed refers to existing guidance whenever possible. As it was recommended by end users this guidance covers questions of developing integrated and/or separated extreme weathers PSA models. (authors)
Directory of Open Access Journals (Sweden)
Yu Hsing
2009-12-01
Full Text Available Extending the open-economy loanable funds model, this paper finds that more government deficit as a percentage of GDP does not lead to a higher government bond yield. In addition, a higher real Treasury bill rate, a higher expected inflation rate, a higher EU government bond yield, or an expected depreciation of the euro against the U.S. dollar would increase Slovenia’s long-term interest rate. The negative coefficient of the percentage change in real GDP is insignificant at the10% level. Applying the standard closed-economy or open-economy loanable funds model without including the world interest rate and the expected exchange rate, we find similar conclusions except that the positive coefficient of the ratio of the net capital inflow to GDP has a wrong sign and is insignificant at the 10% level.
Decays of open charmed mesons in the extended Linear Sigma Model
Directory of Open Access Journals (Sweden)
Eshraim Walaa I.
2014-01-01
Full Text Available We enlarge the so-called extended linear Sigma model (eLSM by including the charm quark according to the global U(4r × U(4l chiral symmetry. In the eLSM, besides scalar and pseudoscalar mesons, also vector and axial-vector mesons are present. Almost all the parameters of the model were fixed in a previous study of mesons below 2 GeV. In the extension to the four-flavor case, only three additional parameters (all of them related to the bare mass of the charm quark appear.We compute the (OZI dominant strong decays of open charmed mesons. The results are compatible with the experimental data, although the theoretical uncertainties are still large.
Excited scalar and pseudoscalar mesons in the extended linear sigma model
Energy Technology Data Exchange (ETDEWEB)
Parganlija, Denis [Technische Universitaet Wien, Institut fuer Theoretische Physik, Vienna (Austria); Giacosa, Francesco [Jan Kochanowski University, Institute of Physics, Kielce (Poland); Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany)
2017-07-15
We present an in-depth study of masses and decays of excited scalar and pseudoscalar anti qq states in the Extended Linear Sigma Model (eLSM). The model also contains ground-state scalar, pseudoscalar, vector and axial-vector mesons. The main objective is to study the consequences of the hypothesis that the f{sub 0}(1790) resonance, observed a decade ago by the BES Collaboration and recently by LHCb, represents an excited scalar quarkonium. In addition we also analyse the possibility that the new a{sub 0}(1950) resonance, observed recently by BABAR, may also be an excited scalar state. Both hypotheses receive justification in our approach although there appears to be some tension between the simultaneous interpretation of f{sub 0}(1790)/a{sub 0}(1950) and pseudoscalar mesons η(1295), π(1300), η(1440) and K(1460) as excited anti qq states. (orig.)
Knezek, Gerald; Christensen, Rhonda
2016-01-01
An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…
DEFF Research Database (Denmark)
Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj
2015-01-01
Aqueous MDEA is the most commonly used solvent for H2S removal from natural gas. A reliable thermodynamic model is required for the proper design of natural gas sweetening processes. In this study, a rigorous thermodynamic model is developed to represent properties of the H2S-MDEA-H2O ternary...
Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models
International Nuclear Information System (INIS)
Moore, S.R.
1985-01-01
The author analyzed the mass shifts for models with a more complicated Higgs sector. He uses the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. The author has considered the 2-doublet, n-doublet, triplet and doublet-triplet models. He has found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. If the author uses the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, it is found that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. The author has found that when the radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in this predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector
Extended behavioural device modelling and circuit simulation with Qucs-S
Brinson, M. E.; Kuznetsov, V.
2018-03-01
Current trends in circuit simulation suggest a growing interest in open source software that allows access to more than one simulation engine while simultaneously supporting schematic drawing tools, behavioural Verilog-A and XSPICE component modelling, and output data post-processing. This article introduces a number of new features recently implemented in the 'Quite universal circuit simulator - SPICE variant' (Qucs-S), including structure and fundamental schematic capture algorithms, at the same time highlighting their use in behavioural semiconductor device modelling. Particular importance is placed on the interaction between Qucs-S schematics, equation-defined devices, SPICE B behavioural sources and hardware description language (HDL) scripts. The multi-simulator version of Qucs is a freely available tool that offers extended modelling and simulation features compared to those provided by legacy circuit simulators. The performance of a number of Qucs-S modelling extensions are demonstrated with a GaN HEMT compact device model and data obtained from tests using the Qucs-S/Ngspice/Xyce Â©/SPICE OPUS multi-engine circuit simulator.
An extended systematic mapping study about the scalability of i* Models
Directory of Open Access Journals (Sweden)
Paulo Lima
2016-12-01
Full Text Available i* models have been used for requirements specification in many domains, such as healthcare, telecommunication, and air traffic control. Managing the scalability and the complexity of such models is an important challenge in Requirements Engineering (RE. Scalability is also one of the most intractable issues in the design of visual notations in general: a well-known problem with visual representations is that they do not scale well. This issue has led us to investigate scalability in i* models and its variants by means of a systematic mapping study. This paper is an extended version of a previous paper on the scalability of i* including papers indicated by specialists. Moreover, we also discuss the challenges and open issues regarding scalability of i* models and its variants. A total of 126 papers were analyzed in order to understand: how the RE community perceives scalability; and which proposals have considered this topic. We found that scalability issues are indeed perceived as relevant and that further work is still required, even though many potential solutions have already been proposed. This study can be a starting point for researchers aiming to further advance the treatment of scalability in i* models.
Extended Hamiltonian formalism of the pure space-like axial gauge Schwinger model
International Nuclear Information System (INIS)
Nakawaki, Yuji; Mccartor, Gary
2001-01-01
We demonstrate that pure space-like axial gauge quantizations of gauge fields can be constructed in ways that are free from infrared divergences. To do so, we must extend the Hamiltonian formalism to include residual gauge fields. We construct an operator solution and an extended Hamiltonian of the pure space-like axial gauge Schwinger model. We begin by constructing an axial gauge formation in auxiliary coordinates, x μ =(x + , x - ), where x + =x 0 sinθ + x 1 cosθ, x - =x 0 cosθ - x 1 sinθ, and we take A=A 0 cosθ + A 1 sin θ=0 as the gauge fixing condition. In the region 0 - as the evolution parameter and construct a traditional canonical formulation of the temporal gauge Schwinger model in which residual gauge fields dependent only on x + are static canonical variables. Then we extrapolate the temporal gauge operator solution into the axial region, π / 4 + is taken as the evolution parameter. In the axial region we find that we have to take the representation of the residual gauge fields realizing the Mandelstam-Leibbrandt prescription in order for the infrared divergences resulting from (∂) -1 to be canceled by corresponding ones resulting from the inverse of the hyperbolic Laplace operator. We overcome the difficulty of constructing the Hamiltonian for the residual gauge fields by employing McCartor and Robertson's method, which gives us a term integrated over x - =constant. Finally, by taking the limit θ→π / 2 - 0, we obtain an operator solution and the Hamiltonian of the axial gauge (Coulomb gauge) Schwinger model in ordinary coordinates. That solution includes auxiliary fields, and the representation space is of indefinite metric, providing further evidence that 'physical' gauges are no more physical than 'unphysical' gauges. (author)
Stuparu, Dana; Bachmann, Daniel; Bogaard, Tom; Twigt, Daniel; Verkade, Jan; de Bruijn, Karin; de Leeuw, Annemargreet
2017-04-01
Flood forecasts, warning and emergency response are important components in flood risk management. Most flood forecasting systems use models to translate weather predictions to forecasted discharges or water levels. However, this information is often not sufficient for real time decisions. A sound understanding of the reliability of embankments and flood dynamics is needed to react timely and reduce the negative effects of the flood. Where are the weak points in the dike system? When, how much and where the water will flow? When and where is the greatest impact expected? Model-based flood impact forecasting tries to answer these questions by adding new dimensions to the existing forecasting systems by providing forecasted information about: (a) the dike strength during the event (reliability), (b) the flood extent in case of an overflow or a dike failure (flood spread) and (c) the assets at risk (impacts). This work presents three study-cases in which such a set-up is applied. Special features are highlighted. Forecasting of dike strength. The first study-case focusses on the forecast of dike strength in the Netherlands for the river Rhine branches Waal, Nederrijn and IJssel. A so-called reliability transformation is used to translate the predicted water levels at selected dike sections into failure probabilities during a flood event. The reliability of a dike section is defined by fragility curves - a summary of the dike strength conditional to the water level. The reliability information enhances the emergency management and inspections of embankments. Ensemble forecasting. The second study-case shows the setup of a flood impact forecasting system in Dumfries, Scotland. The existing forecasting system is extended with a 2D flood spreading model in combination with the Delft-FIAT impact model. Ensemble forecasts are used to make use of the uncertainty in the precipitation forecasts, which is useful to quantify the certainty of a forecasted flood event. From global
Higgs-boson contributions to gauge-boson mass shifts in extended electroweak models
International Nuclear Information System (INIS)
Moore, S.R.
1985-10-01
In the minimal standard model, the difference between the tree-level and one-loop-corrected predictions for the gauge-boson masses, known as the mass shifts, are of the order of 4%. The dominant contribution is from light-fermion loops. The Higgs-dependent terms are small, even if the Higgs boson is heavy. We have analyzed the mass shifts for models with a more complicated Higgs sector. We use the on-shell renormalization scheme, in which the parameters of the theory are the physical masses and couplings. We have considered the 2-doublet, n-doublet, triplet and doublet-triplet models. We have found that the Z-boson mass prediction has a strong dependence on the charged-Higgs mass. In the limit that the charged Higgs is much heavier than the gauge bosons, the Higgs-dependent terms become significant, and may even cancel the light-fermion terms. In the models with a Higgs triplet, there is also a strong dependence on the neutral-Higgs masses, although this contribution tends to be suppressed in realistic models. The W-boson mass shift does not have a strong Higgs dependence. If we use the Z mass as input in determining the parameters of the theory, a scenario which will become attractive as the mass of the Z is accurately measured in the next few years, we find that the W-boson mass shift exhibits the same sort of behavior, differing from the minimal model for the case of the charged Higgs being heavy. We have found that when radiative corrections are taken into account, models with extended Higgs sectors may differ significantly from the minimal standard model in their predictions for the gauge-boson masses. Thus, an accurate measurement of the masses will help shed light on the structure of the Higgs sector. 68 refs
International Nuclear Information System (INIS)
Namsrai, Kh.; Nyamtseren, N.
1994-09-01
A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory
2015-03-01
The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety
Zachar, István; Fedor, Anna; Szathmáry, Eörs
2011-01-01
The simulation of complex biochemical systems, consisting of intertwined subsystems, is a challenging task in computational biology. The complex biochemical organization of the cell is effectively modeled by the minimal cell model called chemoton, proposed by Gánti. Since the chemoton is a system consisting of a large but fixed number of interacting molecular species, it can effectively be implemented in a process algebra-based language such as the BlenX programming language. The stochastic model behaves comparably to previous continuous deterministic models of the chemoton. Additionally to the well-known chemoton, we also implemented an extended version with two competing template cycles. The new insight from our study is that the coupling of reactions in the chemoton ensures that these templates coexist providing an alternative solution to Eigen's paradox. Our technical innovation involves the introduction of a two-state switch to control cell growth and division, thus providing an example for hybrid methods in BlenX. Further developments to the BlenX language are suggested in the Appendix. PMID:21818258
Zachar, István; Fedor, Anna; Szathmáry, Eörs
2011-01-01
The simulation of complex biochemical systems, consisting of intertwined subsystems, is a challenging task in computational biology. The complex biochemical organization of the cell is effectively modeled by the minimal cell model called chemoton, proposed by Gánti. Since the chemoton is a system consisting of a large but fixed number of interacting molecular species, it can effectively be implemented in a process algebra-based language such as the BlenX programming language. The stochastic model behaves comparably to previous continuous deterministic models of the chemoton. Additionally to the well-known chemoton, we also implemented an extended version with two competing template cycles. The new insight from our study is that the coupling of reactions in the chemoton ensures that these templates coexist providing an alternative solution to Eigen's paradox. Our technical innovation involves the introduction of a two-state switch to control cell growth and division, thus providing an example for hybrid methods in BlenX. Further developments to the BlenX language are suggested in the Appendix.
Directory of Open Access Journals (Sweden)
István Zachar
Full Text Available The simulation of complex biochemical systems, consisting of intertwined subsystems, is a challenging task in computational biology. The complex biochemical organization of the cell is effectively modeled by the minimal cell model called chemoton, proposed by Gánti. Since the chemoton is a system consisting of a large but fixed number of interacting molecular species, it can effectively be implemented in a process algebra-based language such as the BlenX programming language. The stochastic model behaves comparably to previous continuous deterministic models of the chemoton. Additionally to the well-known chemoton, we also implemented an extended version with two competing template cycles. The new insight from our study is that the coupling of reactions in the chemoton ensures that these templates coexist providing an alternative solution to Eigen's paradox. Our technical innovation involves the introduction of a two-state switch to control cell growth and division, thus providing an example for hybrid methods in BlenX. Further developments to the BlenX language are suggested in the Appendix.
International Nuclear Information System (INIS)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-01
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
An extended model for ultrasonic-based enhanced oil recovery with experimental validation.
Mohsin, Mohammed; Meribout, Mahmoud
2015-03-01
This paper suggests a new ultrasonic-based enhanced oil recovery (EOR) model for application in oil field reservoirs. The model is modular and consists of an acoustic module and a heat transfer module, where the heat distribution is updated when the temperature rise exceeds 1 °C. The model also considers the main EOR parameters which includes both the geophysical (i.e., porosity, permeability, temperature rise, and fluid viscosity) and acoustical (e.g., acoustic penetration and pressure distribution in various fluids and mediums) properties of the wells. Extended experiments were performed using powerful ultrasonic waves which were applied for different kind of oils & oil saturated core samples. The corresponding results showed a good matching with those obtained from simulations, validating the suggested model to some extent. Hence, a good recovery rate of around 88.2% of original oil in place (OOIP) was obtained after 30 min of continuous generation of ultrasonic waves. This leads to consider the ultrasonic-based EOR as another tangible solution for EOR. This claim is supported further by considering several injection wells where the simulation results indicate that with four (4) injection wells; the recovery rate may increase up-to 96.7% of OOIP. This leads to claim the high potential of ultrasonic-based EOR as compared to the conventional methods. Following this study, the paper also proposes a large scale ultrasonic-based EOR hardware system for installation in oil fields. Copyright © 2014 Elsevier B.V. All rights reserved.
Higgs-Yukawa model with higher dimension operators via extended mean field theory
Akerlund, Oscar
2016-01-01
Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.
An extended car-following model to describe connected traffic dynamics under cyberattacks
Wang, Pengcheng; Yu, Guizhen; Wu, Xinkai; Qin, Hongmao; Wang, Yunpeng
2018-04-01
In this paper, the impacts of the potential cyberattacks on vehicles are modeled through an extended car-following model. To better understand the mechanism of traffic disturbance under cyberattacks, the linear and nonlinear stability analysis are conducted respectively. Particularly, linear stability analysis is performed to obtain different neutral stability conditions with various parameters; and nonlinear stability analysis is carried out by using reductive perturbation method to derive the soliton solution of the modified Korteweg de Vries equation (mKdV) near the critical point, which is used to draw coexisting stability lines. Furthermore, by applying linear and nonlinear stability analysis, traffic flow state can be divided into three states, i.e., stable, metastable and unstable states which are useful to describe shockwave dynamics and driving behaviors under cyberattacks. The theoretical results show that the proposed car-following model is capable of successfully describing the car-following behavior of connected vehicles with cyberattacks. Finally, numerical simulation using real values has confirmed the validity of theoretical analysis. The results further demonstrate our model can be used to help avoid collisions and relieve traffic congestion with cybersecurity threats.
Directory of Open Access Journals (Sweden)
Audrey Huong
2014-05-01
Full Text Available This work presents the use of extended Modified Lambert Beer (MLB model for accurate and continuous monitoring of percent blood carboxyhemoglobin (COHb (SCO and oxyhemoglobin (OxyHb saturation (SO2 via a fitting procedure. This quantification technique is based on the absorption characteristics of hemoglobin derivatives in the wavelength range of 520–600 nm to give the best estimates of the required parameters. A comparison of the performance of the developed model and MLB law is made using attenuation data from Monte Carlo simulations for a two-layered skin model. The results revealed a lower mean absolute error of 0.4% in the values estimated by the developed model as compared to 10% that is given by the MLB law. This study showed that the discussed approach is able to provide consistent and accurate measurement of blood SO2 and SCO across different skin pigmentations suggesting that it may potentially be used as an alternative means for clinical diagnosis of carbon monoxide (CO poisoning.
Extended Kinship in the United States: Competing Models and the Case of La Familia Chicana.
Sena-Rivera, Jaime
1979-01-01
Extended kinship among Chicanos is explored through intensive open-ended interviews with four cases of three generations of Mexican-descent families. "La familia chicana" is posited as a modified extended or kin-integrated family extending over time and space from Mexico at the turn of the century to present day industrial America. (Author)
Modeling, planning and XiO R CMS validation of TBI treatment (extended SSD 400 cm)
International Nuclear Information System (INIS)
Teijeiro, A.; Pereira, L.; Moral, F. del; Vazquez, J.; Lopez Medina, A.; Meal, A.; Andrade Alvarez, B.; Salgado Fernandez, M.; Munoz, V.
2011-01-01
The whole body irradiation (TBI) is a radiotherapy technique previously used a bone marrow transplant and for certain blood diseases, in which a patient is irradiated to extended distance (SSD from 350 to 400). The aim of the TBI is to kill tumor cells in the receiver and prevent rejection of transplanted bone marrow. The dose is prescribed at the midpoint of the abdomen around the navel wing. The most planners not permit the treatment of patients with a much higher SSD to 100 cm, also using the table LUT with spoiler to increase skin dose should be taken into account This requires measurements and checks ad hoc if you use a planner, because modeling is not optimized a priori for an SSD of 400 cm.
International Nuclear Information System (INIS)
Shi-Jian, Cang; Zeng-Qiang, Chen; Wen-Juan, Wu
2009-01-01
This paper presents a non-autonomous hyper-chaotic system, which is formed by adding a periodic driving signal to a four-dimensional chaotic model extended from the Lorenz system. The resulting non-autonomous hyper-chaotic system can display any dynamic behaviour among the periodic orbits, intermittency, chaos and hyper-chaos by controlling the frequency of the periodic signal. The phenomenon has been well demonstrated by numerical simulations, bifurcation analysis and electronic circuit realization. Moreover, the system is concrete evidence for the presence of Pomeau–Manneville Type-I intermittency and crisis-induced intermittency. The emergence of a different type of intermittency is similarly subjected to the frequency of periodic forcing. By statistical analysis, power scaling laws consisting in different intermittency are obtained for the lifetime in the laminar state between burst states
Quantum critical phase and Lifshitz transition in an extended periodic Anderson model
International Nuclear Information System (INIS)
Laad, M S; Koley, S; Taraphder, A
2012-01-01
We study the quantum phase transition in f-electron systems as a quantum Lifshitz transition driven by selective-Mott localization in a realistic extended Anderson lattice model. Using dynamical mean-field theory (DMFT), we find that a quantum critical phase with anomalous ω/T scaling separates a heavy Landau-Fermi liquid from ordered phase(s). This non-Fermi liquid state arises from a lattice orthogonality catastrophe originating from orbital-selective Mott localization. Fermi surface reconstruction occurs via the interplay between and penetration of the Green function zeros to the poles, leading to violation of Luttinger’s theorem in the strange metal. We show how this naturally leads to scale-invariant responses in transport. Thus, our work represents a specific DMFT realization of the hidden-FL and FL* theories, and holds promise for the study of ‘strange’ metal phases in quantum matter. (fast track communication)
Modeling the behavior of metallic fast reactor fuels during extended transients
International Nuclear Information System (INIS)
Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.
1993-01-01
Passive safety features in metal-fueled reactors utilizing the Integral Fast Reactor (IFR) fuel system make it possible to avoid core damage for extended time periods even when automatic scram system fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this intermediate time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements. (orig.)
An Extended Multi-Zone Model for the MCG-6-30-15 Warm Absorber
Morales, R.; Fabian, A. C.; Reynolds, C. S.
2000-01-01
The variable warm absorber seen with ASCA in the X-ray spectrum of MCG 6-30-15 shows complex time behaviour in which the optical depth of O VIII anticorrelates with the flux whereas that of O VII is unchanging. The explanation in terms of a two zone absorber has since been challenged by BeppoSAX observations. These present a more complicated behaviour for the O VII edge. The explanation we offer for both ASCA and BeppoSAX observations requires a very simple photoionization model together with the presence of a third, intermediate, zone and a period of very low luminosity. In practice warm absorbers are likely to be extended, multi-zone regions of which only part causes directly observable absorption edges at any given time depending on the value of the luminosity.
University staff adoption of iPads: An empirical study using an extended TAM model
Directory of Open Access Journals (Sweden)
Michael Steven Lane
2014-11-01
Full Text Available This research examined key factors influencing adoption of iPads by university staff. An online survey collected quantitative data to test hypothesised relationships in an extended TAM model. The findings show that university staff consider iPads easy to use and useful, with a high level of compatibility with their work. Social status had no influence on their attitude to using an iPad. However older university staff and university staff with no previous experience in using a similar technology such as an iPhone or smartphone found iPads less easy to use. Furthermore, a lack of formal end user ICT support impacted negatively on the use of iPads.
Neutrino masses and flavor mixing in the extended double Seesaw model with two texture zeros
International Nuclear Information System (INIS)
Hu, Li-Jun; Dulat, Sayipjamal; Ablat, Abduleziz
2011-01-01
We study the light neutrino mass matrix in the extended double Seesaw model (EDSM), and as a result we get its general form. Also we demonstrate that conventional type-I and double seesaw mechanisms can be regarded as two special cases. We analyze the structure of the 9 x 9 neutrino mass matrix in this scenario, and surprisingly we find that EDSM will degenerate to a conventional type-I seesaw mechanism when M R = M S M μ -1 M S T holds exactly. Considering two simple ansaetze in two texture zeros for its 3 x 3 submatrices, we calculate the neutrino masses and flavor mixing angles, in which the θ 13 is a nonzero large angle. (orig.)
New particle-hole symmetries and the extended interacting boson model
De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M
1998-01-01
We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.
Modeling the behavior of metallic fast reactor fuels during extended transients
International Nuclear Information System (INIS)
Kramer, J.M.; Liu, Y.Y.; Billone, M.C.; Tsai, H.C.
1992-01-01
Passive safety features in the metal-fueled Integral Fast Reactor (IFR) make it possible to avoid core damage for extended time periods even when automatic scram systems fail to operate or heat removal systems are severely degraded. The time scale for these transients are intermediate between those that have traditionally been analyzed in fast reactor safety assessments and those of normal operation. Consequently, it has been necessary to validate models and computer codes (FPIN2 and LIFE-METAL) for application to this time regime. Results from out-of-reactor Whole Pin Furnace tests are being used for this purpose. Pretest predictions for tests FM-1 through FM-6 have been performed and calculations have been compared with the experimental measurements
Off-site interaction effect in the Extended Hubbard Model with the SCRPA method
International Nuclear Information System (INIS)
Harir, S; Bennai, M; Boughaleb, Y
2007-01-01
The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion
EVALUATION OF E-MAIL USAGE BY EXTENDED TECHNOLOGY ACCEPTANCE MODEL
Directory of Open Access Journals (Sweden)
Savaş Mutlu
2013-01-01
Full Text Available This study is performed to evaluate E-mail usage by Extended Technology Acceptance Model (TAM2 and to test the moderation effects of Espoused National Cultural Values between Subjective Norm (SN and E-mail usage Behavioral Intention (BI/Perceived Usefulness (PU. Survey was conducted in Adana Branches of an important Turkish State-Run Bank including 151 participants who have E-mail access for work purposes. As the results of the study; PU and Perceived Ease Of Use (PEOU have positive effects on BI, PEOU and SN both effect PU, Femininity (F shows positive moderating effect on the relationship between SN and PU as well as the relation between SN and BI, Collectivism (C shows positive moderation effect between SN and PU, moderation effect of SN on PU is higher for people who have higher tolerance to uncertainty.
Video Game Acceptance: A Meta-Analysis of the Extended Technology Acceptance Model.
Wang, Xiaohui; Goh, Dion Hoe-Lian
2017-11-01
The current study systematically reviews and summarizes the existing literature of game acceptance, identifies the core determinants, and evaluates the strength of the relationships in the extended technology acceptance model. Moreover, this study segments video games into two categories: hedonic and utilitarian and examines player acceptance of these two types separately. Through a meta-analysis of 50 articles, we find that perceived ease of use (PEOU), perceived usefulness (PU), and perceived enjoyment (PE) significantly associate with attitude and behavioral intention. PE is the dominant predictor of hedonic game acceptance, while PEOU and PU are the main determinants of utilitarian game acceptance. Furthermore, we find that respondent type and game platform are significant moderators. Findings of this study provide critical insights into the phenomenon of game acceptance and suggest directions for future research.
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.
1997-01-01
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data
The (0+,1+) heavy meson multiplet in an extended NJL model
International Nuclear Information System (INIS)
Ebert, T.; Feldmann, T.; Friedrich, R.; Reinhardt, H.
1994-09-01
In this letter we reconsider the previously given description of heavy mesons with a bosonized extended NJL model that combines heavy quark and chiral symmetry. In that work the naive gradient expansion of the quark determinant was used, which satisfactorily works in the light sector but does not adequately describe the heavy (0 + , 1 + ) mesons. By investigating the exact momentum dependence of the quark loop we demonstrate that the naive gradient expansion in the heavy sector is not the right method to treat the unphysical q anti q-thresholds which would be absent in confining theories. We propose a modified gradient expansion which adequately extrapolates from the low-momentum region beyond threshold. This expansion gives a satisfactory description even of the (0 + , 1 + ) heavy mesons whose masses are significantly above threshold. (orig.)
Magnetic Chern bands and triplon Hall effect in an extended Shastry-Sutherland model
Malki, M.; Schmidt, K. P.
2017-05-01
We study topological properties of one-triplon bands in an extended Shastry-Sutherland model relevant for the frustrated quantum magnet SrCu2(BO3)2 . To this end perturbative continuous unitary transformations are applied about the isolated dimer limit allowing us to calculate the one-triplon dispersion up to high order in various couplings including intra- and interdimer Dzyaloshinskii-Moriya interactions and a general uniform magnetic field. We determine the Berry curvature and the Chern number of the different one-triplon bands. We demonstrate the occurrence of Chern numbers ±1 and ±2 for the case that two components of the magnetic field are finite. Finally, we also calculate the triplon Hall effect arising at finite temperatures.
Process simulation of CO2 capture with aqueous ammonia using the Extended UNIQUAC model
DEFF Research Database (Denmark)
Darde, Victor Camille Alfred; Maribo-Mogensen, Bjørn; van Well, Willy J.M.
2012-01-01
of the process is necessary.In this work, the performance of the carbon dioxide capture process using aqueous ammonia has been analyzed by process simulation. The Extended UNIQUAC thermodynamic model available for the CO2–NH3–H2O system has been implemented in the commercial simulator Aspen Plus®1 by using...... dioxide at low temperature (2–10°C). The low temperature limits the vaporization of ammonia in the absorber and entails precipitation of ammonium carbonate compounds, thereby allowing high loadings of CO2. The process has thereby good perspectives. However, a scientific understanding and evaluation......The use of aqueous ammonia is a promising option to capture carbon dioxide from power plants thanks to the potential low heat requirement during the carbon dioxide desorption compared to monoethanolamine (MEA) based process. The patented Chilled Ammonia Process developed by Alstom absorbs carbon...
International Nuclear Information System (INIS)
Guendelman, E.
2004-01-01
Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat
A Footprint Family extended MRIO model to support Europe's transition to a One Planet Economy.
Galli, Alessandro; Weinzettel, Jan; Cranston, Gemma; Ercin, Ertug
2013-09-01
Currently, the European economy is using nearly three times the ecological assets that are locally available. This situation cannot be sustained indefinitely. Tools are needed that can help reverse the unsustainable trend. In 2010, an EC funded One Planet Economy Network: Europe (OPEN:EU) project was launched to develop the evidence and innovative practical tools that will allow policy-makers and civil society to identify policy interventions to transform Europe into a One Planet Economy, by 2050. Building on the premise that no indicator alone is able to comprehensively monitor (progress towards) sustainability, the project has drawn on the Ecological, Carbon and Water Footprints to define a Footprint Family suite of indicators, to track human pressure on the planet. An environmentally-extended multi-regional input-output (MRIO) model has then been developed to group the Footprint Family under a common framework and combine the indicators in the family with national economic accounts and trade statistics. Although unable to monitor the full spectrum of human pressures, once grouped within the MRIO model, the Footprint Family is able to assess the appropriation of ecological assets, GHG emissions as well as freshwater consumption and pollution associated with consumption of specific products and services within a specified country. Using MRIO models within the context of Footprint analyses also enables the Footprint Family to take into account full production chains with technologies specific to country of origin. Copyright © 2012 Elsevier B.V. All rights reserved.
Excitation function of elastic $pp$ scattering from a unitarily extended Bialas-Bzdak model
Nemes, F.; Csanád, M.
2015-01-01
The Bialas-Bzdak model of elastic proton-proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic $pp$ scattering not only at the lower ISR energies but also at $\\sqrt{s}=$7~TeV in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton-proton scattering is predicted for the future LHC energies of $\\sqrt{s}=$13, 14, 15~TeV and also to 28~TeV. A non-trivial, significantly non-exponential feature of the differential cross-section of elastic proton-proton scattering is analyzed and the excitation function of the non-exponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small ...
Szczęsna, Agnieszka; Pruszowski, Przemysław
2016-01-01
Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.
Hilpert, Markus; Rasmuson, Anna; Johnson, William
2017-04-01
Transport of colloids in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their down-gradient translation relative to colloids in bulk fluid. Near surface fluid domain colloids may re-enter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via strong primary minimum interactions, or they may move along a grain-to-grain contact to the near surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization onto grain surfaces. Colloid movement is described by a sequence of trials in a series of unit cells, and the binomial distribution is used to calculate the probabilities of each possible sequence. Pore-scale simulations provide mechanistically-determined likelihoods and timescales associated with the above pore-scale colloid mass transfer processes, whereas the network-scale model employs pore and grain topology to determine probabilities of transfer from up-gradient bulk and near-surface fluid domains to down-gradient bulk and near-surface fluid domains. Inter-grain transport of colloids in the near surface fluid domain can cause extended tailing.
Neutron star moment-of-inertia in the extended Zimanyi-Moszkowski model
Miyazaki, K
2006-01-01
We revisit the extended Zimanyi-Moszkowski (EZM) model of dense neutron star (NS) core matter. In contrast to our previous work we treat the vector potentials of baryons on an equal footing with the effective masses, and solve a set of 6 equations to determine the three independent effective masses and vector potentials and a set of 2 equations to determine the conditions of beta-equilibrated NS matter, simultaneously. According to an expectation that the precisely measurable moment-of-inertia of J0737-3039A will impose a significant constraint on the nuclear equation-of-state (EOS), it is calculated using the two sets of hyperon coupling constants, EZM-SU6 and EZM-P, derived from the SU(6) symmetry and the empirical data of hypernuclei. We find I_{45}=1.23 and 1.64 that are close to the values in the EOSs of "APR" and "MS1" calculated by Morrison et al., while their mass-radius relations are rather different from the EZM models. The uniqueness of the EZM model is! also apparent in the correlation map between...
Rong, Ying; Wen, Huiying
2018-05-01
In this paper, the appearing probability of truck is introduced and an extended car-following model is presented to analyze the traffic flow based on the consideration of driver's characteristics, under honk environment. The stability condition of this proposed model is obtained through linear stability analysis. In order to study the evolution properties of traffic wave near the critical point, the mKdV equation is derived by the reductive perturbation method. The results show that the traffic flow will become more disorder for the larger appearing probability of truck. Besides, the appearance of leading truck affects not only the stability of traffic flow, but also the effect of other aspects on traffic flow, such as: driver's reaction and honk effect. The effects of them on traffic flow are closely correlated with the appearing probability of truck. Finally, the numerical simulations under the periodic boundary condition are carried out to verify the proposed model. And they are consistent with the theoretical findings.
Directory of Open Access Journals (Sweden)
Xi Wu
2008-01-01
Full Text Available A mathematical model of a cracked rotor and an asymmetric rotor with two disks representing a turbine and a generator is utilized to study the vibrations due to imbalance and side load. Nonlinearities typically related with a “breathing” crack are included using a Mayes steering function. Numerical simulations demonstrate how the variations of rotor parameters affect the vibration response and the effect of coupling between torsional and lateral modes. Bode, spectrum, and orbit plots are used to show the differences between the vibration signatures associated with cracked shafts versus asymmetric shafts. Results show how nonlinear lateral-torsional coupling shifts the resonance peaks in the torsional vibration response for cracked shafts and asymmetric rotors. The resonance peaks shift depending on the ratio of the lateral-to-torsional natural frequencies with the peak responses occurring at noninteger values of the lateral natural frequency. When the general nonlinear models used in this study are constrained to reduce to linear torsional vibration, the peak responses occur at commonly reported integer ratios. Full spectrum analyses of the X and Y vibrations reveal distinct vibration characteristics of both cracked and asymmetric rotors including reverse vibration components. Critical speeds and vibration orders predicted using the models presented herein include and extend diagnostic indicators commonly reported.
Extended partially conserved axial-vector current hypothesis and model-dependent results
International Nuclear Information System (INIS)
Dominguez, C.A.
1977-01-01
The corrections to Goldberger-Treiman relations for ΔS = 0 and vertical-bardeltaSvertical-bar = 1 β decays (Δ/sub π/and Δ/sub K/, respectively) are estimated from a Veneziano-type model for three-point functions. The effect of unitarizing the model is also discussed, and it turns out that Δ/sub π/and Δ/sub K/ are almost insensitive to a variation in the widths of the pseudoscalar-meson daughters. Moreover, the predictions for Δ/sub π/and Δ/sub K/ are in close agreement with experiment. Finally, on-mass-shell extrapolation factors for chiral anomalies in eta → γγ and eta → π + π - γ are also derived, and agreement with experiment is found without the need for invoking eta-eta' mixing. In summary, the model discussed here seems to be a suitable implementation of the recently proposed extended partially conserved axial-vector current hypothesis
A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM
Directory of Open Access Journals (Sweden)
Jianjun Ni
2014-01-01
Full Text Available Robot simultaneous localization and mapping (SLAM problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.
Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method
Energy Technology Data Exchange (ETDEWEB)
Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.; Peco, Christian
2016-09-01
As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to
Melas, Christos D; Zampetakis, Leonidas A; Dimopoulou, Anastasia; Moustakis, Vassilis
2011-08-01
Recent empirical research has utilized the Technology Acceptance Model (TAM) to advance the understanding of doctors' and nurses' technology acceptance in the workplace. However, the majority of the reported studies are either qualitative in nature or use small convenience samples of medical staff. Additionally, in very few studies moderators are either used or assessed despite their importance in TAM based research. The present study focuses on the application of TAM in order to explain the intention to use clinical information systems, in a random sample of 604 medical staff (534 physicians) working in 14 hospitals in Greece. We introduce physicians' specialty as a moderator in TAM and test medical staff's information and communication technology (ICT) knowledge and ICT feature demands, as external variables. The results show that TAM predicts a substantial proportion of the intention to use clinical information systems. Findings make a contribution to the literature by replicating, explaining and advancing the TAM, whereas theory is benefited by the addition of external variables and medical specialty as a moderator. Recommendations for further research are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.
2015-01-01
In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...
Energy Technology Data Exchange (ETDEWEB)
Cruz-Dombriz, Álvaro de la; Dunsby, Peter K.S.; Luongo, Orlando; Reverberi, Lorenzo, E-mail: alvaro.delacruzdombriz@uct.ac.za, E-mail: peter.dunsby@uct.ac.za, E-mail: luongo@na.infn.it, E-mail: lorenzo.reverberi@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2016-12-01
The onset of dark energy domination depends on the particular gravitational theory driving the cosmic evolution. Model independent techniques are crucial to test the both the present ΛCDM cosmological paradigm and alternative theories, making the least possible number of assumptions about the Universe. In this paper we investigate whether cosmography is able to distinguish between different gravitational theories, by determining bounds on model parameters for three different extensions of General Relativity, namely quintessence, F (Τ) and f ( R ) gravitational theories. We expand each class of theories in powers of redshift z around the present time, making no additional assumptions. This procedure is an extension of previous work and can be seen as the most general approach for testing extended theories of gravity through the use of cosmography. In the case of F (Τ) and f ( R ) theories, we show that some assumptions on model parameters often made in previous works are superfluous or even unjustified. We use data from the Union 2.1 supernovae catalogue, baryonic acoustic oscillation data and H ( z ) differential age compilations, which probe cosmology on different scales of the cosmological evolution. We perform a Monte Carlo analysis using a Metropolis-Hastings algorithm with a Gelman-Rubin convergence criterion, reporting 1-σ and 2-σ confidence levels. To do so, we perform two distinct fits, assuming only data within z < 1 first and then without limitations in redshift. We obtain the corresponding numerical intervals in which coefficients span, and find that the data is compatible the ΛCDM limit of all three theories at the 1-σ level, while still compatible with quite a large portion of parameter space. We compare our results to the truncated ΛCDM paradigm, demonstrating that our bounds divert from the expectations of previous works, showing that the permitted regions of coefficients are significantly modified and in general widened with respect to
Study of a 30-M Boom For Solar Sail-Craft: Model Extendibility and Control Strategy
Keel, Leehyun
2005-01-01
Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the
The attentional drift-diffusion model extends to simple purchasing decisions.
Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio
2012-01-01
How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions.
The attentional drift-diffusion model extends to simple purchasing decisions
Directory of Open Access Journals (Sweden)
Ian eKrajbich
2012-06-01
Full Text Available How do we make simple purchasing decisions (e.g., whether or not to buy a product ata given price? Previous work has shown that the Attentional-Drift-Diffusion-Model (aDDMcan provide accurate descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. However, the computational processes used to make purchasing decisions are unknown. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices.This suggests that the brain uses similar computational processes in these varied decision situations.
The neutralino sector in the U(1)-extended supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Choi, S.Y. [Chonbuk National Univ., Jeonju (Korea). Dept. of Physics and RIPC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Haber, H.E. [California Univ., Santa Cruz, CA (United States). SCIPP; Kalinowski, J. [Warsaw Univ. (Poland). Inst. of Theoretical Physics; Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[California Univ., Santa Cruz, CA (United States). SCIPP
2006-12-15
Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e{sup +}e{sup -} colliders are also discussed. (orig.)
Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee
2015-09-01
We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach, 2004). Based on two proposed functions of social identity performance (Klein, Spears, & Reicher, 2007), we distinguished between the efficacy of collective action at consolidating the identity of a protest movement and its efficacy at achieving social change (political efficacy). We expected identity consolidation efficacy to positively predict collective action tendencies directly and indirectly via political efficacy. We also expected collective action tendencies to be positively predicted by moral outrage and by sympathy in response to disadvantaged outgroup's suffering. These hypotheses were supported in two surveys examining intentions to protest for Palestine in Britain (Study 1), and intentions to attend the June 4th vigil in Hong Kong to commemorate the Tiananmen massacre among a sample of Hong Kong citizens (Study 2). The contributions of these findings to research on the dual pathway model of collective action and the different functions of collective action are discussed. © 2014 The British Psychological Society.
Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model
Markowich, Peter A.; Titi, Edriss S; Trabelsi, Saber
2016-01-01
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy's law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm. © 2016 IOP Publishing Ltd & London Mathematical Society.
Davis, Alan K; Arterberry, Brooke J; Bonar, Erin E; Bohnert, Kipling M; Walton, Maureen A
2018-03-01
We evaluated an extended model of motivation for consuming marijuana by combining motivational theory and the dualistic model of passion. An online sample of 524 young, frequent marijuana consumers (M age = 24; 88% male; M past-30-days =21; Mode=31; 50% used 25-31 days) self-administered several questionnaires including the Marijuana-Harmonious and Obsessive Passion Scale and the Marijuana Motives Measure. Intercorrelations among the obsessive and harmonious passion and motives subscales were small-to-medium. A canonical correlation analysis revealed that obsessive passion was significantly positively associated with coping and conformity motives, while controlling for marijuana use, other motives, and harmonious passion scores. Additionally, harmonious passion was significantly positively associated with expansion, social, enhancement, and coping motives, while controlling for marijuana use and obsessive passion scores. A second canonical correlation analysis revealed that, when motive and passion subscales were included as independent predictors of recent marijuana use and related consequences, high obsessive passion and coping motives emerged as significant predictors of recent use and related consequences. Moreover, high harmonious passion and using less for conformity motives emerged as significant predictors of recent marijuana use. These results demonstrate that passion is related to, but not a proxy for, previously established motives for marijuana use and that, when examined simultaneously, both types of passion predict recent consumption but appear to differentiate whether one will experience use-related consequences. Researchers and clinicians could evaluate whether addressing obsessive passion and coping motives reduces or ameliorates negative outcomes associated with consumption.
International Nuclear Information System (INIS)
Loussaief, Abdelkader
2007-01-01
In this work we extend the use of multipole moments expansion to the case of inner radiation fields. A series expansion of the photon flux was established. The main advantage of this approach is that it offers the opportunity to treat both inner and external radiation field cases. We determined the expression of the inner multipole moments in both spherical harmonics and in cartesian coordinates. As an application we applied the analytical model to a radiation facility used for small target irradiation. Theoretical, experimental and simulation studies were performed, in air and in a product, and good agreement was reached.Conventional dose distribution study for gamma irradiation facility involves the use of isodose maps. The establishment of these maps requires the measurement of the absorbed dose in many points, which makes the task expensive experimentally and very long by simulation. However, a lack of points of measurement can distort the dose distribution cartography. To overcome these problems, we present in this paper a mathematical method to describe the dose distribution in air. This method is based on the multipole expansion in spherical harmonics of the photon flux emitted by the gamma source. The determination of the multipole coefficients of this development allows the modeling of the radiation field around the gamma source. (Author)
Resolving the AFBb puzzle in an extra dimensional model with an extended gauge structure
International Nuclear Information System (INIS)
Djouadi, Abdelhak; Moreau, Gregory; Richard, Francois
2006-10-01
It is notorious that, contrary to all other precision electroweak data, the forward-backward asymmetry for b quarks A FB b measured in Z decays at LEP1 is nearly three standard deviations away from the predicted value in the Standard Model; significant deviations also occur in measurements of the asymmetry off the Z pole. We show that these discrepancies can be resolved in a variant of the Randall-Sundrum extra- dimensional model in which the gauge structure is extended to SU(2) L xSU(2) R xU(1) X to allow for relatively light Kaluza-Klein excitations of the gauge bosons. In this scenario, the fermions are localized differently along the extra dimension, in order to generate the fermion mass hierarchies, so that the electroweak interactions for the heavy third generation fermions are naturally different from the light fermion ones. We show that the mixing between the Z boson with the Kaluza-Klein excitations allows to explain the A FB b anomaly without affecting (and even improving) the agreement of the other precision observables, including the Z → bb-bar partial decay width, with experimental data. Some implications of this scenario for the ILC are summarized. (authors)
Directory of Open Access Journals (Sweden)
Suzhi Xiao
2016-04-01
Full Text Available In order to acquire an accurate three-dimensional (3D measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the ’phase to 3D coordinates transformation’ are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Xiao, Suzhi; Tao, Wei; Zhao, Hui
2016-04-28
In order to acquire an accurate three-dimensional (3D) measurement, the traditional fringe projection technique applies complex and laborious procedures to compensate for the errors that exist in the vision system. However, the error sources in the vision system are very complex, such as lens distortion, lens defocus, and fringe pattern nonsinusoidality. Some errors cannot even be explained or rendered with clear expressions and are difficult to compensate directly as a result. In this paper, an approach is proposed that avoids the complex and laborious compensation procedure for error sources but still promises accurate 3D measurement. It is realized by the mathematical model extension technique. The parameters of the extended mathematical model for the 'phase to 3D coordinates transformation' are derived using the least-squares parameter estimation algorithm. In addition, a phase-coding method based on a frequency analysis is proposed for the absolute phase map retrieval to spatially isolated objects. The results demonstrate the validity and the accuracy of the proposed flexible fringe projection vision system on spatially continuous and discontinuous objects for 3D measurement.
Development of Extended Period Pressure-Dependent Demand Water Distribution Models
Energy Technology Data Exchange (ETDEWEB)
Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-20
Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.
Directory of Open Access Journals (Sweden)
Siu Hing Lo
2014-02-01
Full Text Available From a corporate social responsibility perspective, there are many reasons to promote teleconference use as an alternative to business travel. The present study examines psychosocial and organizational factors relevant to teleconference use. We tested an extended Theory of Planned Behavior model of teleconference use among office workers of four organizations. Results indicate that intention was the strongest direct predictor of teleconference use. Habit and perceived norm, in turn, were the strongest predictors of intention to use teleconference. In contrast, attitude was only weakly predictive and perceived control not predictive at all of intention to use teleconference. We also examined how this model was influenced by the organizational context by comparing organizations from two different regions, and organizations from the private vs. the public sector. Most teleconference-related beliefs differed between regions and organizational sectors. The relevance of specific attitudinal and normative beliefs to the overall attitude and perceived norm also differed between organizational sectors. Implications for practice and future research are discussed.
Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model
Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber
2016-04-01
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.
Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model
Markowich, Peter A.
2016-03-09
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy\\'s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm. © 2016 IOP Publishing Ltd & London Mathematical Society.
Fabac, Robert; Radošević, Danijel; Magdalenić, Ivan
2014-01-01
When considering strategic games from the conceptual perspective that focuses on the questions of participants' decision-making rationality, the very issues of modelling and simulation are rarely discussed. The well-known Rational Pigs matrix game has been relatively intensively analyzed in terms of reassessment of the logic of two players involved in asymmetric situations as gluttons that differ significantly by their attributes. This paper presents a successful attempt of using autogenerator for creating the framework of the game, including the predefined scenarios and corresponding payoffs. Autogenerator offers flexibility concerning the specification of game parameters, which consist of variations in the number of simultaneous players and their features and game objects and their attributes as well as some general game characteristics. In the proposed approach the model of autogenerator was upgraded so as to enable program specification updates. For the purpose of treatment of more complex strategic scenarios, we created the Rational Pigs Game Extended (RPGE), in which the introduction of a third glutton entails significant structural changes. In addition, due to the existence of particular attributes of the new player, "the tramp," one equilibrium point from the original game is destabilized which has an influence on the decision-making of rational players.
Extending the radial diffusion model of Falthammar to non-dipole background field
Energy Technology Data Exchange (ETDEWEB)
Cunningham, Gregory Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-26
A model for radial diffusion caused by electromagnetic disturbances was published by Falthammar (1965) using a two-parameter model of the disturbance perturbing a background dipole magnetic field. Schulz and Lanzerotti (1974) extended this model by recognizing the two parameter perturbation as the leading (non--dipole) terms of the Mead Williams magnetic field model. They emphasized that the magnetic perturbation in such a model induces an electric ield that can be calculated from the motion of field lines on which the particles are ‘frozen’. Roederer and Zhang (2014) describe how the field lines on which the particles are frozen can be calculated by tracing the unperturbed field lines from the minimum-B location to the ionospheric footpoint, and then tracing the perturbed field (which shares the same ionospheric footpoint due to the frozen -in condition) from the ionospheric footpoint back to a perturbed minimum B location. The instantaneous change n Roederer L*, dL*/dt, can then be computed as the product (dL*/dphi)*(dphi/dt). dL*/Dphi is linearly dependent on the perturbation parameters (to first order) and is obtained by computing the drift across L*-labeled perturbed field lines, while dphi/dt is related to the bounce-averaged gradient-curvature drift velocity. The advantage of assuming a dipole background magnetic field, as in these previous studies, is that the instantaneous dL*/dt can be computed analytically (with some approximations), as can the DLL that results from integrating dL*/dt over time and computing the expected value of (dL*)^2. The approach can also be applied to complex background magnetic field models like T89 or TS04, on top of which the small perturbations are added, but an analytical solution is not possible and so a numerical solution must be implemented. In this talk, I discuss our progress in implementing a numerical solution to the calculation of DL*L* using arbitrary background field models with simple electromagnetic
Prediction of L70 lumen maintenance and chromaticity for LEDs using extended Kalman filter models
Energy Technology Data Exchange (ETDEWEB)
Lall, Pradeep; Wei, Junchao; Davis, Lynn
2013-09-30
Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life
Hilpert, Markus; Rasmuson, Anna; Johnson, William P.
2017-07-01
Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.
Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.
Morrison, Ian S; Gowanlock, Michael G
2015-08-01
Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.
International Nuclear Information System (INIS)
Schanck, Dalton D.
2010-01-01
Final technical report for research performed by Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Extended MHD Modeling, DE-FC02-06ER54870, for the period 7/1/06 to 2/15/08. Principal results for this period are: 1. Development of a model for computational modeling for the primitive form of the extended MMD equations. This was reported as Phys. Plasmas 13, 058103 (2006). 2. Comparison between the NIMROD and M3D codes for simulation of the nonlinear sawtooth crash in the CDXU tokamak. This was reported in Phys. Plasmas 14, 056105 (2006). 3. Demonstration of 2-fluid and gyroviscous stabilization of interchange modes using computational extended MHD models. This was reported in Phys. Rev. Letters 101, 085005 (2008). Each of these publications is attached as an Appendix of this report. They should be consulted for technical details.
Wu, Xiaoyu; Gao, Yuan
2011-01-01
This paper applies the extended technology acceptance model (exTAM) in information systems research to the use of clickers in student learning. The technology acceptance model (TAM) posits that perceived ease of use and perceived usefulness of technology influence users' attitudes toward using and intention to use technology. Research subsequent…
International Nuclear Information System (INIS)
Zhang, Jun; Merced, Emmanuelle; Sepúlveda, Nelson; Tan, Xiaobo
2014-01-01
Vanadium dioxide (VO 2 ), a promising multifunctional smart material, has shown strong promise in microactuation, memory, and optical applications. During thermally induced insulator-to-metal phase transition of VO 2 , the changes of its electrical, mechanical, and optical properties demonstrate pronounced, complex hysteresis with respect to the temperature, which presents a challenge in the utilization of this material. In this paper, an extended generalized Prandtl–Ishlinskii model is proposed to model the hysteresis in VO 2 , where a nonlinear memoryless function is introduced to improve its modeling capability. A novel inverse compensation algorithm for this hysteresis model is developed based on fixed-point iteration with which the convergence conditions of the algorithm are derived. The proposed approach is shown to be effective for modeling and compensating the asymmetric and non-monotonic hysteresis with saturation between the curvature output and the temperature input of a VO 2 -coated microactuator, as well as the asymmetric hysteresis with partial saturation between the resistance output and the temperature input of a VO 2 film. (paper)
E-COCOMO: The Extended COst Constructive MOdel for Cleanroom Software Engineering
Directory of Open Access Journals (Sweden)
Hitesh KUMAR SHARMA
2014-02-01
Full Text Available Mistakes create rework. Rework takes time and increases costs. The traditional software engineering methodology defines the ratio of Design:Code:Test as 40:20:40. As we can easily see that 40% time and efforts are used in testing phase in traditional approach, that means we have to perform rework again if we found some bugs in testing phase. This rework is being performed after Design and code phase. This rework will increase the cost exponentially. The cleanroom software engineering methodology controls the exponential growth in cost by removing this rework. It says that "do the work correct in first attempt and move to next phase after getting the proof of correctness". This new approach minimized the rework and reduces the cost in the exponential ratio. Due to the removal of testing phase, the COCOMO (COst COnstructive MOdel used for the traditional engineering is not directly applicable in cleanroom software engineering. The traditional cost drivers used for traditional COCOMO needs to be revised. We have proposed the Extended version of COCOMO (i.e. E-COCOMO in which we have incorporated some new cost drivers. This paper explains the proposed E-COCOMO and the detailed description of proposed new cost driver.
Extended vector meson dominance model for the baryon octet electromagnetic form factors
International Nuclear Information System (INIS)
Williams, R.A.; Puckett-Truman, C.
1996-01-01
An unresolved issue in the present understanding of nucleon structure is the effect of hidden strangeness on electromagnetic observables such as G n E (q 2 ). Previously, we have shown that G n E (q 2 ) is sensitive to small φNN couplings. A complementary approach for understanding effects due to strangeness content and the Okubo-Zweig-Iizuka (OZI) rule is to investigate the electromagnetic structure of hyperons. We apply Sakurai close-quote s universality limit of the SU(3) F symmetry relations and a prescription based on the OZI rule to calculate the electromagnetic form factors of the baryon octet states (p,n,Λ,Σ + ,Σ 0 ,Σ - ,Ξ 0 ,Ξ - ) within the framework of an extended vector meson dominance model. To provide additional motivation for experimental investigation, we discuss the possibility of extracting the ratio G M Λ (q 2 )/G M ΣΛ (q 2 ) from the Λ/Σ polarization ratio in kaon electroproduction experiments. copyright 1996 The American Physical Society
International Nuclear Information System (INIS)
Hofer, Werner A
2012-01-01
In a recent paper we introduced a model of extended electrons, which is fully compatible with quantum mechanics in the formulation of Schrödinger. However, it contradicts the current interpretation of electrons as point-particles. Here, we show by a statistical analysis of high-resolution scanning tunneling microscopy (STM) experiments, that the interpretation of electrons as point particles and, consequently, the interpretation of the density of electron charge as a statistical quantity will lead to a conflict with the Heisenberg uncertainty principle. Given the precision in these experiments we find that the uncertainty principle would be violated by close to two orders of magnitude, if this interpretation were correct. We are thus forced to conclude that the density of electron charge is a physically real, i.e. in principle precisely measurable quantity, as derived in a recent paper. Experimental evidence to the contrary, in particular high-energy scattering experiments, is briefly discussed. The finding is expected to have wide implications in condensed matter physics, chemistry, and biology, scientific disciplines which are based on the properties and interactions of electrons.
Mass media in health promotion: an analysis using an extended information-processing model.
Flay, B R; DiTecco, D; Schlegel, R P
1980-01-01
The information-processing model of the attitude and behavior change process was critically examined and extended from six to 12 levels for a better analysis of change due to mass media campaigns. Findings from social psychology and communications research, and from evaluations of mass media health promotion programs, were reviewed to determine how source, message, channel, receiver, and destination variables affect each of the levels of change of major interest (knowledge, beliefs, attitudes, intentions and behavior). Factors found to most likely induce permanent attitude and behavior change (most important in health promotion) were: presentation and repetition over long time periods, via multiple sources, at different times (including "prime" or high-exposure times), by multiple sources, in novel and involving ways, with appeals to multiple motives, development of social support, and provisions of appropriate behavioral skills, alternatives, and reinforcement (preferably in ways that get the active participation of the audience). Suggestions for evaluation of mass media programs that take account of this complexity were advanced.
From localized to extended states in a time-dependent quantum model
International Nuclear Information System (INIS)
Jose, J.V.
1986-01-01
The problem of a particle inside a rigid box with one of the walls oscillating periodically in time is studied quantum mechanically. In the classical limit, this model was introduced by Fermi in the context of cosmic ray physics. The classical solutions can go from being quasiperiodic to chaotic, as a function of the amplitude of the wall oscillation. In the quantum case, the authors calculate the spectral properties of the corresponding evolution operator, i.e.: the quasi-energy eigenvalues and eigenvectors. The specific form of the wall oscillation, e.g. iota(t) = √ 1 + 2δabsolute value of t, with absolute value of t ≤ 1/2, and iota(t + 1) = iota(t), is essential to the solutions presented here. It is found that as h increases with δ fixed, the nearest neighbor separation between quasi-energy eigenvalues changes from showing no energy level repulsion to energy level repulsion. This transition, from Poisson-like statistics to Gaussian-Orthogonal-Ensemble-like statistics is tested by looking at the distribution of quasi-energy level nearest neighbor separations and the Δ/sub e/(L) statistics. these results are also correlated to a transition between localized to extended states in energy space. The possible relevance of the results presented here to experiments in quasi-one-dimensional atoms is also discussed
An exact solution to the extended Hubbard model in 2D for finite size system
Harir, S.; Bennai, M.; Boughaleb, Y.
2008-08-01
An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.
Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis.
Liu, Kevin X; Edwards, Benjamin; Lee, Sheena; Finelli, Mattéa J; Davies, Ben; Davies, Kay E; Oliver, Peter L
2015-05-01
Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1(G93A) mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1(G93A) mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Potocki, J K; Tharp, H S
1993-01-01
The success of treating cancerous tissue with heat depends on the temperature elevation, the amount of tissue elevated to that temperature, and the length of time that the tissue temperature is elevated. In clinical situations the temperature of most of the treated tissue volume is unknown, because only a small number of temperature sensors can be inserted into the tissue. A state space model based on a finite difference approximation of the bioheat transfer equation (BHTE) is developed for identification purposes. A full-order extended Kalman filter (EKF) is designed to estimate both the unknown blood perfusion parameters and the temperature at unmeasured locations. Two reduced-order estimators are designed as computationally less intensive alternatives to the full-order EKF. Simulation results show that the success of the estimation scheme depends strongly on the number and location of the temperature sensors. Superior results occur when a temperature sensor exists in each unknown blood perfusion zone, and the number of sensors is at least as large as the number of unknown perfusion zones. Unacceptable results occur when there are more unknown perfusion parameters than temperature sensors, or when the sensors are placed in locations that do not sample the unknown perfusion information.
Prediction of Adequate Prenatal Care Utilization Based on the Extended Parallel Process Model.
Hajian, Sepideh; Imani, Fatemeh; Riazi, Hedyeh; Salmani, Fatemeh
2017-10-01
Pregnancy complications are one of the major public health concerns. One of the main causes of preventable complications is the absence of or inadequate provision of prenatal care. The present study was conducted to investigate whether Extended Parallel Process Model's constructs can predict the utilization of prenatal care services. The present longitudinal prospective study was conducted on 192 pregnant women selected through the multi-stage sampling of health facilities in Qeshm, Hormozgan province, from April to June 2015. Participants were followed up from the first half of pregnancy until their childbirth to assess adequate or inadequate/non-utilization of prenatal care services. Data were collected using the structured Risk Behavior Diagnosis Scale. The analysis of the data was carried out in SPSS-22 using one-way ANOVA, linear regression and logistic regression analysis. The level of significance was set at 0.05. Totally, 178 pregnant women with a mean age of 25.31±5.42 completed the study. Perceived self-efficacy (OR=25.23; Pprenatal care. Husband's occupation in the labor market (OR=0.43; P=0.02), unwanted pregnancy (OR=0.352; Pcare for the minors or elderly at home (OR=0.35; P=0.045) were associated with lower odds of receiving prenatal care. The model showed that when perceived efficacy of the prenatal care services overcame the perceived threat, the likelihood of prenatal care usage will increase. This study identified some modifiable factors associated with prenatal care usage by women, providing key targets for appropriate clinical interventions.
Extended Hamiltonian formalism of the pure space-like axial gauge Schwinger model. II
International Nuclear Information System (INIS)
Nakawaki, Yuji; McCartor, Gary
2004-01-01
Canonical methods are not sufficient to properly quantize space-like axial gauges. In this paper, we obtain guiding principles that allow for the construction of an extended Hamiltonian formalism for pure space-like axial gauge fields. To do so, we clarify the general role that residual gauge fields play in the space-like axial gauge Schwinger model. In all the calculations, we fix the gauge using the rule n·A=0, where n is a space-like constant vector, and we refer to its direction as x - . Then, to begin with, we construct a formulation in which the quantization surface is space-like but not parallel to the direction of n. The quantization surface has a parameter that allows us to rotate it, but when we do so, we keep the gauge fixing direction fixed. In that formulation, we can use canonical methods. We bosonize the model to simplify the investigation. We find that the inverse differentiation, (∂ - ) -1 , is ill-defined whatever quantization coordinates we use, as long as the direction of n is space-like. We find that the physical part of the dipole ghost field includes infrared divergences. However, we also find that if we introduce residual gauge fields in such as way that the dipole ghost field satisfies the canonical commutation relations, then the residual gauge fields are determined so as to regularize the infrared divergences contained in the physical part. The propagators then take the form prescribed by Mandelstam and Leibbrandt. We make use of these properties to develop guiding principles that allow us to construct consistent operator solutions in the pure space-like case, in which the quantization surface is parallel to the direction of n, and canonical methods do not suffice. (author)
Rosa, Regis Goulart; Tonietto, Tulio Frederico; da Silva, Daiana Barbosa; Gutierres, Franciele Aparecida; Ascoli, Aline Maria; Madeira, Laura Cordeiro; Rutzen, William; Falavigna, Maicon; Robinson, Caroline Cabral; Salluh, Jorge Ibrain; Cavalcanti, Alexandre Biasi; Azevedo, Luciano Cesar; Cremonese, Rafael Viegas; Haack, Tarissa Ribeiro; Eugênio, Cláudia Severgnini; Dornelles, Aline; Bessel, Marina; Teles, José Mario Meira; Skrobik, Yoanna; Teixeira, Cassiano
2017-10-01
To evaluate the effect of an extended visitation model compared with a restricted visitation model on the occurrence of delirium among ICU patients. Prospective single-center before and after study. Thirty-one-bed medical-surgical ICU. All patients greater than or equal to 18 years old with expected length of stay greater than or equal to 24 hours consecutively admitted to the ICU from May 2015 to November 2015. Change of visitation policy from a restricted visitation model (4.5 hr/d) to an extended visitation model (12 hr/d). Two hundred eighty-six patients were enrolled (141 restricted visitation model, 145 extended visitation model). The primary outcome was the cumulative incidence of delirium, assessed bid using the confusion assessment method for the ICU. Predefined secondary outcomes included duration of delirium/coma; any ICU-acquired infection; ICU-acquired bloodstream infection, pneumonia, and urinary tract infection; all-cause ICU mortality; and length of ICU stay. The median duration of visits increased from 133 minutes (interquartile range, 97.7-162.0) in restricted visitation model to 245 minutes (interquartile range, 175.0-272.0) in extended visitation model (p < 0.001). Fourteen patients (9.6%) developed delirium in extended visitation model compared with 29 (20.5%) in restricted visitation model (adjusted relative risk, 0.50; 95% CI, 0.26-0.95). In comparison with restricted visitation model patients, extended visitation model patients had shorter length of delirium/coma (1.5 d [interquartile range, 1.0-3.0] vs 3.0 d [interquartile range, 2.5-5.0]; p = 0.03) and ICU stay (3.0 d [interquartile range, 2.0-4.0] vs 4.0 d [interquartile range, 2.0-6.0]; p = 0.04). The rate of ICU-acquired infections and all-cause ICU mortality did not differ significantly between the two study groups. In this medical-surgical ICU, an extended visitation model was associated with reduced occurrence of delirium and shorter length of delirium/coma and ICU stay.
Chen, Dong; Sun, Dihua; Zhao, Min; Zhou, Tong; Cheng, Senlin
2018-07-01
In fact, driving process is a typical cyber physical process which couples tightly the cyber factor of traffic information with the physical components of the vehicles. Meanwhile, the drivers have situation awareness in driving process, which is not only ascribed to the current traffic states, but also extrapolates the changing trend. In this paper, an extended car-following model is proposed to account for drivers' situation awareness. The stability criterion of the proposed model is derived via linear stability analysis. The results show that the stable region of proposed model will be enlarged on the phase diagram compared with previous models. By employing the reductive perturbation method, the modified Korteweg de Vries (mKdV) equation is obtained. The kink-antikink soliton of mKdV equation reveals theoretically the evolution of traffic jams. Numerical simulations are conducted to verify the analytical results. Two typical traffic Scenarios are investigated. The simulation results demonstrate that drivers' situation awareness plays a key role in traffic flow oscillations and the congestion transition.
Modelling of thermoelectric generator with heat pipe assist for range extender application
Brito, F. P.; Martins, Jorge; Gonçalves, L. M.; Sousa, R.
2011-01-01
Recent trends towards electrification of vehicles favour the adoption of waste energy recovery into electricity. Battery-only Electric Vehicles (BEV) need a very large energy storage system so the use of a Range Extender (RE) may allow a significant downsizing of these bulky components. The Internal Combustion Engines (ICE) have two major discarded energy fluxes, engine cooling and exhaust gas. In Extended Range Electric Vehicles (EREV) and hybrids the potential for heat conversion into elect...
Yakup, Mahire; Abliz, Wayit; Sereno, Joan; Perea, Manuel
2015-12-01
One basic feature of the Arabic script is its semicursive style: some letters are connected to the next, but others are not, as in the Uyghur word [see text]/ya xʃi/ ("good"). None of the current orthographic coding schemes in models of visual-word recognition, which were created for the Roman script, assign a differential role to the coding of within letter "chunks" and between letter "chunks" in words in the Arabic script. To examine how letter identity/position is coded at the earliest stages of word processing in the Arabic script, we conducted 2 masked priming lexical decision experiments in Uyghur, an agglutinative Turkic language. The target word was preceded by an identical prime, by a transposed-letter nonword prime (that either kept the ligation pattern or did not), or by a 2-letter replacement nonword prime. Transposed-letter primes were as effective as identity primes when the letter transposition in the prime kept the same ligation pattern as the target word (e.g., [see text]/inta_jin/-/itna_jin/), but not when the transposed-letter prime didn't keep the ligation pattern (e.g., [see text]/so_w_ʁa_t/-/so_ʁw_a_t/). Furthermore, replacement-letter primes were more effective when they kept the ligation pattern of the target word than when they did not (e.g., [see text]/so_d_ʧa_t/-/so_w_ʁa_t/ faster than [see text]/so_ʧd_a_t/-/so_w_ʁa_t/). We examined how input coding schemes could be extended to deal with the intricacies of semicursive scripts. (c) 2015 APA, all rights reserved).
Infrared absorption spectra of various doping states in cuprate superconductors
International Nuclear Information System (INIS)
Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.
1992-01-01
Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs
Energy Technology Data Exchange (ETDEWEB)
Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)
2015-11-21
Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.
International Nuclear Information System (INIS)
Su, Chun; Wang, Xiaolin
2016-01-01
In practice, customers can decide whether to buy an extended warranty or not, at the time of item sale or at the end of the basic warranty. In this paper, by taking into account the moments of customers purchasing two-dimensional extended warranty, the optimization of imperfect preventive maintenance for repairable items is investigated from the manufacturer's perspective. A two-dimensional preventive maintenance strategy is proposed, under which the item is preventively maintained according to a specified age interval or usage interval, whichever occurs first. It is highlighted that when the extended warranty is purchased upon the expiration of the basic warranty, the manufacturer faces a two-stage preventive maintenance optimization problem. Moreover, in the second stage, the possibility of reducing the servicing cost over the extended warranty period is explored by classifying customers on the basis of their usage rates and then providing them with customized preventive maintenance programs. Numerical examples show that offering customized preventive maintenance programs can reduce the manufacturer's warranty cost, while a larger saving in warranty cost comes from encouraging customers to buy the extended warranty at the time of item sale. - Highlights: • A two-dimensional PM strategy is investigated. • Imperfect PM strategy is optimized by considering both two-dimensional BW and EW. • Customers are categorized based on their usage rates throughout the BW period. • Servicing cost of the EW is reduced by offering customized PM programs. • Customers buying the EW at the time of sale is preferred for the manufacturer.
International Nuclear Information System (INIS)
1998-01-01
This report provides a description of the experiments chosen, an overview of the codes used by participants in the exercise, and the improvements implemented as a consequence of FUMEX. A commentary is given regarding the various aspects of fuel behavior tested and a detailed quantitative comparison is made between experimental data and code predictions. The report concludes with a discussion of the main findings of the exercise, the identified improvements and shortcomings in codes and modelling, and outstanding technical issues that require further attention
DEFF Research Database (Denmark)
Carrara-Augustenborg, Claudia
2012-01-01
There is no consensus yet regarding a conceptualization of consciousness able to accommodate all the features of such complex phenomenon. Different theoretical and empirical models lend strength to both the occurrence of a non-accessible informational broadcast, and to the mobilization of specific...... brain areas responsible for the emergence of the individual´s explicit and variable access to given segments of such broadcast. Rather than advocating one model over others, this chapter proposes to broaden the conceptualization of consciousness by letting it embrace both mechanisms. Within...... such extended framework, I propose conceptual and functional distinctions between consciousness (global broadcast of information), awareness (individual´s ability to access the content of such broadcast) and unconsciousness (focally isolated neural activations). My hypothesis is that a demarcation in terms...
Extending the Lunar Mapping and Modeling Portal - New Capabilities and New Worlds
Day, B. H.; Law, E.; Arevalo, E.; Bui, B.; Chang, G.; Dodge, K.; Kim, R. M.; Malhotra, S.; Sadaqathullah, S.
2015-12-01
NASA's Lunar Mapping and Modeling Portal (LMMP) provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions (http://lmmp.nasa.gov). During the past year, the capabilities and data served by LMMP have been significantly expanded. New interfaces are providing improved ways to access and visualize data. Many of the recent enhancements to LMMP have been specifically in response to the requirements of NASA's proposed Resource Prospector lunar rover, and as such, provide an excellent example of the application of LMMP to mission planning. At the request of NASA's Science Mission Directorate, LMMP's technology and capabilities are now being extended to additional planetary bodies. New portals for Vesta and Mars are the first of these new products to be released. On March 31, 2015, the LMMP team released Vesta Trek (http://vestatrek.jpl.nasa.gov), a web-based application applying LMMP technology to visualizations of the asteroid Vesta. Data gathered from multiple instruments aboard Dawn have been compiled into Vesta Trek's user-friendly set of tools, enabling users to study the asteroid's features. With an initial release on July 1, 2015, Mars Trek replicates the functionality of Vesta Trek for the surface of Mars. While the entire surface of Mars is covered, higher levels of resolution and greater numbers of data products are provided for special areas of interest. Early releases focus on past, current, and future robotic sites of operation. Future releases will add many new data products and analysis tools as Mars Trek has been selected for use in site selection for the Mars 2020 rover and in identifying potential human landing sites on Mars. Other destinations will follow soon. The user community is invited to provide suggestions and requests as the development team continues to expand the capabilities of LMMP
ANALISIS BELANJA ONLINE MELALUI SMARTPHONE DENGAN MENGGUNAKAN EXTENDED TECHNOLOGY ACCEPTANCE MODEL
Directory of Open Access Journals (Sweden)
Nining Heriyanti
2016-04-01
appropriate marketing strategies to take advantage of both the perpetrator marketing of new marketing channels, namely smart phones as shopping online media. Originality of this research is specifically discusses online shopping on one device, especially smart phones are still rare. Keyword:Online shopping, extended technology acceptance model
DEFF Research Database (Denmark)
Garcia, Ada V.; Thomsen, Kaj; Stenby, Erling Halfdan
2005-01-01
Pressure parameters are added to the Extended UNIQUAC model presented by Thomsen and Rasmussen (1999). The improved model has been used for correlation and prediction of solid-liquid equilibrium (SLE) of scaling minerals (CaSO4, CaSO4·2H2O, BaSO4 and SrSO4) at temperatures up to 300°C and pressur...
Schmettow, M.; Schnittker, R.; Schraagen, J.M.
2017-01-01
This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences
Performance Modelling of Automatic Identification System with Extended Field of View
DEFF Research Database (Denmark)
Lauersen, Troels; Mortensen, Hans Peter; Pedersen, Nikolaj Bisgaard
2010-01-01
This paper deals with AIS (Automatic Identification System) behavior, to investigate the severity of packet collisions in an extended field of view (FOV). This is an important issue for satellite-based AIS, and the main goal is a feasibility study to find out to what extent an increased FOV...
PIXIE3D: An efficient, fully implicit, parallel, 3D extended MHD code for fusion plasma modeling
International Nuclear Information System (INIS)
Chacon, L.
2007-01-01
PIXIE3D is a modern, parallel, state-of-the-art extended MHD code that employs fully implicit methods for efficiency and accuracy. It features a general geometry formulation, and is therefore suitable for the study of many magnetic fusion configurations of interest. PIXIE3D advances the state of the art in extended MHD modeling in two fundamental ways. Firstly, it employs a novel conservative finite volume scheme which is remarkably robust and stable, and demands very small physical and/or numerical dissipation. This is a fundamental requirement when one wants to study fusion plasmas with realistic conductivities. Secondly, PIXIE3D features fully-implicit time stepping, employing Newton-Krylov methods for inverting the associated nonlinear systems. These methods have been shown to be scalable and efficient when preconditioned properly. Novel preconditioned ideas (so-called physics based), which were prototypes in the context of reduced MHD, have been adapted for 3D primitive-variable resistive MHD in PIXIE3D, and are currently being extended to Hall MHD. PIXIE3D is fully parallel, employing PETSc for parallelism. PIXIE3D has been thoroughly benchmarked against linear theory and against other available extended MHD codes on nonlinear test problems (such as the GEM reconnection challenge). We are currently in the process of extending such comparisons to fusion-relevant problems in realistic geometries. In this talk, we will describe both the spatial discretization approach and the preconditioning strategy employed for extended MHD in PIXIE3D. We will report on recent benchmarking studies between PIXIE3D and other 3D extended MHD codes, and will demonstrate its usefulness in a variety of fusion-relevant configurations such as Tokamaks and Reversed Field Pinches. (Author)
International Nuclear Information System (INIS)
Kunasz, P.B.; Hummer, D.G.; Mihalas, D.
1975-01-01
Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models
Jerrold E. Winandy
2000-01-01
One of the most, if not the most, efficient methods of extending our existing forest resource is to prolong the service life of wood currently in-service by using those existing structures to meet our future needs (Hamilton and Winandy 1998). It is currently estimated that over 7 x 109 m3 (3 trillion bd. ft) of wood is currently in service within the United States of...
Extended icosahedral structures
Jaric, Marko V
1989-01-01
Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra
DEFF Research Database (Denmark)
Kovalovszki, Adam; Alvarado-Morales, Merlin; Fotidis, Ioannis
2017-01-01
Detailed simulation of anaerobic digestion (AD) requires complex mathematical models and the optimization of numerous model parameters. By performing a systematic methodology and identifying parameters with the highest impact on process variables in a well-established AD model, its applicability...... was extended to various co-digestion scenarios. More specifically, the application of the step-by-step methodology led to the estimation of a general and reduced set of parameters, for the simulation of scenarios where either manure or wastewater were co-digested with different organic substrates. Validation...... experimental data quite well, indicating that it offers a reliable reference point for future simulations of anaerobic co-digestion scenarios....
Directory of Open Access Journals (Sweden)
Xiaoxia Yang
Full Text Available A previously presented physiologically-based pharmacokinetic model for immediate release (IR methylphenidate (MPH was extended to characterize the pharmacokinetic behaviors of oral extended release (ER MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations.
Energy Technology Data Exchange (ETDEWEB)
Aymard, François; Gulminelli, Francesca [CNRS and ENSICAEN, UMR6534, LPC, 14050 Caen cédex (France); Margueron, Jérôme [Institut de Physique Nucléaire de Lyon, Université Claude Bernard Lyon 1, IN2P3-CNRS, F-69622 Villeurbanne Cedex (France)
2015-02-24
A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.
International Nuclear Information System (INIS)
Gao Yonghua; He Mingzhong; Duan Chungui
2003-01-01
The authors present an x rescaling parameters' formula for partons in the extended x rescaling model, where we have established the connection between the rescaling parameter and the mean binding energy. Using x rescaling parameters obtained by the x rescaling parameters' formula, we calculate the average nucleon structure function ratio of DIS process in l-A (Al, Ca, Pb) collision to l-C collision respectively. The result is in good agreement with experimental data
AKMAN, İbrahim; TURHAN, Çiğdem
2014-01-01
The growing popularity of the social networking siteshas presented new options for the development of learning and teachingenvironments to provide informal learning. In this study, the usage of socialnetworking sites for the purpose of learning and teaching has been analyzedusing the extended Theory of Reasoned Action (TRA) model. A survey has beenconducted to analyze the behavior in regard to the acceptance of social mediafor learning and teaching and the results were systematically analyzed...
Kamonthip Maichum; Surakiat Parichatnon; Ke-Chung Peng
2016-01-01
Green products are among the widely used products worldwide due to their environmental benefits. However, information on the consumers’ purchase intention towards green products in developing countries, such as Thailand, is lacking. This study aims to investigate Thai consumers who are aged over 18 years, and whose base education is high school, on purchase intention for green products by using an extended framework of the theory of planned behavior (TPB). We derived and examined the model th...
International Nuclear Information System (INIS)
Hiroshi Ogawa; Akiko Kitajima; Hisashi Tanaka; Tohru Kawamoto
2015-01-01
Adsorption property of granulated Prussian blue adsorbent on radioactive cesium was evaluated for efficient decontamination in Fukushima area. The adsorbent was found to show an inflective adsorption isotherm, which was expressed by extended Langmuir formula with three adsorption sites. Adsorption speeds of each site were evaluated by time-dependent batch experiment. The simulation using derived parameters and one-dimensional adsorption model successfully reproduced the experimental data of cesium decontamination by small and large columns. (author)
High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data
Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2014-01-01
We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.
Modeling and measurements of XRD spectra of extended solids under high pressure
Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.
2017-06-01
We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.
Lemkul, Justin A; Roux, Benoît; van der Spoel, David; MacKerell, Alexander D
2015-07-15
Explicit treatment of electronic polarization in empirical force fields used for molecular dynamics simulations represents an important advancement in simulation methodology. A straightforward means of treating electronic polarization in these simulations is the inclusion of Drude oscillators, which are auxiliary, charge-carrying particles bonded to the cores of atoms in the system. The additional degrees of freedom make these simulations more computationally expensive relative to simulations using traditional fixed-charge (additive) force fields. Thus, efficient tools are needed for conducting these simulations. Here, we present the implementation of highly scalable algorithms in the GROMACS simulation package that allow for the simulation of polarizable systems using extended Lagrangian dynamics with a dual Nosé-Hoover thermostat as well as simulations using a full self-consistent field treatment of polarization. The performance of systems of varying size is evaluated, showing that the present code parallelizes efficiently and is the fastest implementation of the extended Lagrangian methods currently available for simulations using the Drude polarizable force field. © 2015 Wiley Periodicals, Inc.
Alden, Kieran; Timmis, Jon; Andrews, Paul S; Veiga-Fernandes, Henrique; Coles, Mark
2017-01-01
Through integrating real time imaging, computational modelling, and statistical analysis approaches, previous work has suggested that the induction of and response to cell adhesion factors is the key initiating pathway in early lymphoid tissue development, in contrast to the previously accepted view that the process is triggered by chemokine mediated cell recruitment. These model derived hypotheses were developed using spartan, an open-source sensitivity analysis toolkit designed to establish and understand the relationship between a computational model and the biological system that model captures. Here, we extend the functionality available in spartan to permit the production of statistical analyses that contrast the behavior exhibited by a computational model at various simulated time-points, enabling a temporal analysis that could suggest whether the influence of biological mechanisms changes over time. We exemplify this extended functionality by using the computational model of lymphoid tissue development as a time-lapse tool. By generating results at twelve- hour intervals, we show how the extensions to spartan have been used to suggest that lymphoid tissue development could be biphasic, and predict the time-point when a switch in the influence of biological mechanisms might occur.
Energy Technology Data Exchange (ETDEWEB)
Agudelo, P.A.; Hoyos, C.D.; Webster, P.J.; Curry, J.A. [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States)
2009-05-15
The extended-range forecast skill of the ECMWF operational forecast model is evaluated during tropical intraseasonal oscillation (ISO) events in the Indo-West Pacific warm pool. The experiment consists of ensemble extended serial forecasts including winter and summer ISO cases. The forecasts are compared with the ERA-40 analyses. The analysis focuses on understanding the origin of forecast errors by studying the vertical structure of relevant dynamical and moist convective features associated with the ISO. The useful forecast time scale for circulation anomalies is in average 13 days during winter compared to 7-8 days during summer. The forecast skill is not stationary and presents evidence of a flow-dependent nature, with states of the coupled system corresponding to long-lived convective envelopes associated with the ISO for which the skill is always low regardless of the starting date of the forecast. The model is not able to forecast skillfully the generation of specific humidity anomalies and results indicate that the convective processes in the model are associated with the erosion of the ISO forecast skill in the model. Circulation-associated anomalies are forecast better than moist convective associated anomalies. The model tends to generate a more stable atmosphere, limiting the model's capability to reproduce deep convective events, resulting in smaller humidity and circulation anomalies in the forecasts compared to those in ERA-40. (orig.)
Tavasszy, L.; Davydenko, I.; Ruijgrok, K.
2009-01-01
The integration of Spatial Equilibrium models and Freight transport network models is important to produce consistent scenarios for future freight transport demand. At various spatial scales, we see the changes in production, trade, logistics networking and transportation, being driven by
Marković, V. M.; Čupić, Ž.; Ivanović, A.; Kolar-Anić, Lj.
2011-12-01
Stoichiometric network analysis (SNA) represents a powerful mathematical tool for stability analysis of complex stoichiometric networks. Recently, the important improvement of the method has been made, according to which instability relations can be entirely expressed via reaction rates, instead of thus far used, in general case undefined, current rates. Such an improved SNA methodology was applied to the determination of exact instability conditions of the extended model of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrinological system, whose hormone concentrations exert complex oscillatory evolution. For emergence of oscillations, the Hopf bifurcation condition was utilized. Instability relations predicted by SNA showed good correlation with numerical simulation data of the HPA axis model.
International Nuclear Information System (INIS)
Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry
2015-01-01
For many applications of repairable systems, the minimal repair assumption, which leads to nonhomogeneous Poisson processes (NHPP), is not adequate. We review and study two extensions of the NHPP, the dynamic NHPP and the heterogeneous NHPP. Both extensions are motivated by specific aspects of potential applications. It has long been known, however, that the two paradigms are essentially indistinguishable in an analysis of failure data. We investigate the connection between the two approaches for extending NHPP models, both theoretically and numerically in a data example and a simulation study. - Highlights: • Review of dynamic extension of a minimal repair model (LEYP), introduced by Le Gat. • Derivation of likelihood function and comparison to NHPP model with heterogeneity. • Likelihood functions and conditional intensities are similar for the models. • ML estimation is considered for both models using a power law baseline. • A simulation study illustrates and confirms findings of the theoretical study
The MFA ground states for the extended Bose-Hubbard model with a three-body constraint
Panov, Yu. D.; Moskvin, A. S.; Vasinovich, E. V.; Konev, V. V.
2018-05-01
We address the intensively studied extended bosonic Hubbard model (EBHM) with truncation of the on-site Hilbert space to the three lowest occupation states n = 0 , 1 , 2 in frames of the S = 1 pseudospin formalism. Similar model was recently proposed to describe the charge degree of freedom in a model high-T c cuprate with the on-site Hilbert space reduced to the three effective valence centers, nominally Cu1+;2+;3+. With small corrections the model becomes equivalent to a strongly anisotropic S = 1 quantum magnet in an external magnetic field. We have applied a generalized mean-field approach and quantum Monte-Carlo technique for the model 2D S = 1 system with a two-particle transport to find the ground state phase with its evolution under deviation from half-filling.
Wang, Zidong; Liu, Xiaohui; Liu, Yurong; Liang, Jinling; Vinciotti, Veronica
2009-01-01
In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.
An approach for optimally extending mathematical models of signaling networks using omics data.
Bianconi, Fortunato; Patiti, Federico; Baldelli, Elisa; Crino, Lucio; Valigi, Paolo
2015-01-01
Mathematical modeling is a key process in Systems Biology and the use of computational tools such as Cytoscape for omics data processing, need to be integrated in the modeling activity. In this paper we propose a new methodology for modeling signaling networks by combining ordinary differential equation models and a gene recommender system, GeneMANIA. We started from existing models, that are stored in the BioModels database, and we generated a query to use as input for the GeneMANIA algorithm. The output of the recommender system was then led back to the kinetic reactions that were finally added to the starting model. We applied the proposed methodology to EGFR-IGF1R signal transduction network, which plays an important role in translational oncology and cancer therapy of non small cell lung cancer.
El Gharamti, Mohamad; Hoteit, Ibrahim
2014-01-01
The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.
El Gharamti, Mohamad
2014-02-01
The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.
DEFF Research Database (Denmark)
Krueger, Joel; Szanto, Thomas
2016-01-01
beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences...
Extending existing structural identifiability analysis methods to mixed-effects models.
Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D
2018-01-01
The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Yang Yang
2011-01-01
Full Text Available We propose a general continuous-time risk model with a constant interest rate. In this model, claims arrive according to an arbitrary counting process, while their sizes have dominantly varying tails and fulfill an extended negative dependence structure. We obtain an asymptotic formula for the finite-time ruin probability, which extends a corresponding result of Wang (2008.
A COMPARISON OF BASIC AND EXTENDED MARKOWITZ MODEL ON CROATIAN CAPITAL MARKET
Bruna Škarica; Zrinka Lukač
2012-01-01
Markowitz' mean - variance model for portfolio selection, first introduced in H.M. Markowitz' 1952 article, is one of the best known models in finance. However, the Markowitz model is based on many assumptions about financial markets and investors, which do not coincide with the real world. One of these assumptions is that there are no taxes or transaction costs, when in reality all financial products are subject to both taxes and transaction costs – such as brokerage fees. In this pape...
An extended two-lane car-following model accounting for inter-vehicle communication
Ou, Hui; Tang, Tie-Qiao
2018-04-01
In this paper, we develop a novel car-following model with inter-vehicle communication to explore each vehicle's movement in a two-lane traffic system when an incident occurs on a lane. The numerical results show that the proposed model can perfectly describe each vehicle's motion when an incident occurs, i.e., no collision occurs while the classical full velocity difference (FVD) model produces collision on each lane, which shows the proposed model is more reasonable. The above results can help drivers to reasonably adjust their driving behaviors when an incident occurs in a two-lane traffic system.
Toward an extended-geostrophic Euler-Poincare model for mesoscale oceanographic flow
Energy Technology Data Exchange (ETDEWEB)
Allen, J.S.; Newberger, P.A. [Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Holm, D.D. [Los Alamos National Lab., NM (United States)
1998-07-01
The authors consider the motion of a rotating, continuously stratified fluid governed by the hydrostatic primitive equations (PE). An approximate Hamiltonian (L1) model for small Rossby number {var_epsilon} is derived for application to mesoscale oceanographic flow problems. Numerical experiments involving a baroclinically unstable oceanic jet are utilized to assess the accuracy of the L1 model compared to the PE and to other approximate models, such as the quasigeostrophic (QG) and the geostrophic momentum (GM) equations. The results of the numerical experiments for moderate Rossby number flow show that the L1 model gives accurate solutions with errors substantially smaller than QG or GM.
Garikapati, Hasini; Verhoosel, Clemens V.; van Brummelen, Harald; Diez, Pedro; Papadrakakis, M.; Papadopoulos, V.; Stefanou, G.; Plevris, V.
2016-01-01
Hydraulic fracturing is a process that is surrounded by uncertainty, as available data on e.g. rock formations is scant and available models are still rudimentary. In this contribution sensitivity analysis is carried out as first step in studying the uncertainties in the model. This is done to
Irreversible prey diapause as an optimal strategy of a physiologically extended Lotka-Volterra model
Staňková, K.; Abate, A.; Sabelis, M.W.
2013-01-01
We propose an optimal control framework to describe intra-seasonal predator-prey interactions, which are characterized by a continuous-time dynamical model comprising predator and prey density, as well as the energy budget of the prey over the length of a season. The model includes a time-dependent
On-the-fly confluence detection for statistical model checking (extended version)
Hartmanns, Arnd; Timmer, Mark
Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the
Extending the E-Z Reader Model of Eye Movement Control to Chinese Readers
Rayner, Keith; Li, Xingshan; Pollatsek, Alexander
2007-01-01
Chinese readers' eye movements were simulated in the context of the E-Z Reader model, which was developed to account for the eye movements of readers of English. Despite obvious differences between English and Chinese, the model did a fairly good job of simulating the eye movements of Chinese readers. The successful simulation suggests that the…
Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili
2015-10-01
The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.
A COMPARISON OF BASIC AND EXTENDED MARKOWITZ MODEL ON CROATIAN CAPITAL MARKET
Directory of Open Access Journals (Sweden)
Bruna Škarica
2012-12-01
Full Text Available Markowitz' mean - variance model for portfolio selection, first introduced in H.M. Markowitz' 1952 article, is one of the best known models in finance. However, the Markowitz model is based on many assumptions about financial markets and investors, which do not coincide with the real world. One of these assumptions is that there are no taxes or transaction costs, when in reality all financial products are subject to both taxes and transaction costs – such as brokerage fees. In this paper, we consider an extension of the standard portfolio problem which includes transaction costs that arise when constructing an investment portfolio. Finally, we compare both the extension of the Markowitz' model, including transaction costs, and the basic model on the example of the Croatian capital market.
Energy Technology Data Exchange (ETDEWEB)
Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India); Das, Rudra Narayan [Drug Theoretics and Cheminformatics Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032 (India)
2010-11-15
Aldehydes are a toxic class of chemicals causing severe health hazards. In this background, quantitative structure-toxicity relationship (QSTR) models have been developed in the present study using Extended Topochemical Atom (ETA) indices for a large group of 77 aromatic aldehydes for their acute toxicity against the protozoan ciliate Tetrahymena pyriformis. The ETA models have been compared with those developed using various non-ETA topological indices. Attempt was also made to include the n-octanol/water partition coefficient (log K{sub o/w}) as an additional descriptor considering the importance of hydrophobicity in toxicity prediction. Thirty different models were developed using different chemometric tools. All the models have been validated using internal validation and external validation techniques. The statistical quality of the ETA models was found to be comparable to that of the non-ETA models. The ETA models have shown the important effects of steric bulk, lipophilicity, presence of electronegative atom containing substituents and functionality of the aldehydic oxygen to the toxicity of the aldehydes. The best ETA model (without using log K{sub o/w}) shows encouraging statistical quality (Q{sub int}{sup 2}=0.709,Q{sub ext}{sup 2}=0.744). It is interesting to note that some of the topological models reported here are better in statistical quality than previously reported models using quantum chemical descriptors.
International Nuclear Information System (INIS)
Truong, Dinh Quang; Ahn, Kyoung Kwan
2014-01-01
An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique. (paper)
Blind prediction exercise on modeling of PHWR fuel at extended burnup
International Nuclear Information System (INIS)
Sah, D.N.; Viswanathan, U.K.; Viswanadham, C.S.; Unnikrishnan, K.; Rath, B.N.
2008-01-01
A blind prediction exercise was organised on Indian Pressurised Heavy Water Reactor (PHWR) fuel to investigate the predictive capability of existing codes for their application at extended burnup and to identify areas of improvement. The blind problem for this exercise was based on a PHWR fuel bundle irradiated in Kakrapar Atomic Power Station-I (KAPS-I) up to about 15 000 MWd/tU and subjected to detailed post-irradiation examination (PIE) in the hot cells facility at BARC. Eleven computer codes from seven countries participated in this exercise. The participants provided blind predictions of fuel temperature, fission gas release, internal gas pressure and other performance parameters for the fuel pins. The predictions were compared with the experimental PIE data which included fuel temperature derived from fuel restructuring, fission gas release measured by fuel pin puncturing, internal gas pressure in pin, cladding oxidation and fuel microstructural data. The details of the blind problem and an analysis of the results of blind predictions by the codes vis-a-vis measured data are provided in this paper
Directory of Open Access Journals (Sweden)
Charreire Hélène
2011-01-01
Full Text Available Abstract Background There is growing interest in the study of the relationships between individual health-related behaviours (e.g. food intake and physical activity and measurements of spatial accessibility to the associated facilities (e.g. food outlets and sport facilities. The aim of this study is to propose measurements of spatial accessibility to facilities on the regional scale, using aggregated data. We first used a potential accessibility model that partly makes it possible to overcome the limitations of the most frequently used indices such as the count of opportunities within a given neighbourhood. We then propose an extended model in order to take into account both home and work-based accessibility for a commuting population. Results Potential accessibility estimation provides a very different picture of the accessibility levels experienced by the population than the more classical "number of opportunities per census tract" index. The extended model for commuters increases the overall accessibility levels but this increase differs according to the urbanisation level. Strongest increases are observed in some rural municipalities with initial low accessibility levels. Distance to major urban poles seems to play an essential role. Conclusions Accessibility is a multi-dimensional concept that should integrate some aspects of travel behaviour. Our work supports the evidence that the choice of appropriate accessibility indices including both residential and non-residential environmental features is necessary. Such models have potential implications for providing relevant information to policy-makers in the field of public health.
Directory of Open Access Journals (Sweden)
Jan Havenga
2012-11-01
Full Text Available This paper highlights the first attempt by researchers at Stellenbosch University to model freight flows between and for 17 countries in sub-Saharan Africa (SSA. The model will be informed by and linked to the South African surface Freight Demand Model (FDM given these dimensions. By analysing and collating available datasets and developing a freight flow model, a better understanding of freight movements between countries can be obtained and then used for long-term planning efforts. A simple methodology is envisaged that will entail a high-level corridor classification that links a major district in the country with a similar district in another country. Existing trade data will be used to corroborate new base-year economic demand and supply volumetric data that will be generated from social accounting matrices for each country. The trade data will also provide initial flow dynamics between countries that will be refined according to the new volumes. The model can then generate commodity-level corridor flows between SSA countries, and between SSA countries and the rest of the world, as well as intra-country rural and metropolitan flows, using a gravity-based modelling approach. This article outlines efforts to harmonise trade data between the 17 countries identified, as well as between these countries and the rest of the world as a first step towards developing a freight demand model for sub-Saharan Africa.
Applying an MVC Framework for The System Development Life Cycle with Waterfall Model Extended
Hardyanto, W.; Purwinarko, A.; Sujito, F.; Masturi; Alighiri, D.
2017-04-01
This paper describes the extension of the waterfall model using MVC architectural pattern for software development. The waterfall model is the based model of the most widely used in software development, yet there are still many problems in it. The general issue usually happens on data changes that cause the delays on the process itself. On the other hand, the security factor on the software as well as one of the major problems. This study uses PHP programming language for implementation. Although this model can be implemented in several programming languages with the same concept. This study is based on MVC architecture so that it can improve the performance of both software development and maintenance, especially concerning security, validation, database access, and routing.
The Lanchester square-law model extended to a (2,2) conflict
Colegrave, R. K.; Hyde, J. M.
1993-01-01
A natural extension of the Lanchester (1,1) square-law model is the (M,N) linear model in which M forces oppose N forces with constant attrition rates. The (2,2) model is treated from both direct and inverse viewpoints. The inverse problem means that the model is to be fitted to a minimum number of observed force levels, i.e. the attrition rates are to be found from the initial force levels together with the levels observed at two subsequent times. An approach based on Hamiltonian dynamics has enabled the authors to derive a procedure for solving the inverse problem, which is readily computerized. Conflicts in which participants unexpectedly rally or weaken must be excluded.
Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase II
National Aeronautics and Space Administration — The innovation in this project is model-based design (MBD) tools for predicting the performance and useful life of commercial-off-the-shelf (COTS) components and...
Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase I
National Aeronautics and Space Administration — The innovation in this Phase I project is to prove the feasibility of using model-based design (MBD) tools to predict the performance and useful life of...
CSIR Research Space (South Africa)
Cooper, Antony K
2011-07-01
Full Text Available , Information and Computational Viewpoints of the Reference Model for Open Distributed Processing (RM-ODP). We identified six stakeholders: Policy Maker, Producer, Provider, Broker, Value-added Reseller and End User. The Internet has spawned the development...
Stability Analysis for an Extended Model of the Hypothalamus-Pituitary-Thyroid Axis
Beata Jackowska-Zduniak
2016-01-01
We formulate and analyze a mathematical model describing dynamics of the hypothalamus-pituitary-thyroid homoeostatic mechanism in endocrine system. We introduce to this system two types of couplings and delay. In our model, feedback controls the secretion of thyroid hormones and delay reflects time lags required for transportation of the hormones. The influence of delayed feedback on the stability behaviour of the system is discussed. Analytical results are illustrated by...
Development and empirical exploration of an extended model of intragroup conflict
Hjertø, Kjell B.; Kuvaas, Bård
2009-01-01
Dette er post-print av artikkelen publisert i International Journal of Conflict Management Purpose - The purpose of this study was to develop and empirically explore a model of four intragroup conflict types (the 4IC model), consisting of an emotional person, a cognitive task, an emotional task, and a cognitive person conflict. The two first conflict types are similar to existing conceptualizations, whereas the two latter represent new dimensions of group conflict. Design/m...
An extended continuum model accounting for the driver's timid and aggressive attributions
International Nuclear Information System (INIS)
Cheng, Rongjun; Ge, Hongxia; Wang, Jufeng
2017-01-01
Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV–Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption. - Highlights: • A new continuum model is developed with the consideration of the driver's timid and aggressive behaviors simultaneously. • Applying the linear stability theory, the new model's linear stability is obtained. • Through nonlinear analysis, the KdV–Burgers equation is derived. • The energy consumption for this model is studied.
Lovelady, D. C.; Harper, H. M.; Brodsky, I. E.; Rabson, D. A.
2006-05-01
The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72 Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based.
International Nuclear Information System (INIS)
Lovelady, D C; Harper, H M; Brodsky, I E; Rabson, D A
2006-01-01
The variety of magnetic phases observed in rare-earth heterostructures at low temperatures (Jehan et al 1993 Phys. Rev. B 48 5594-606), such as Ho/Y, may be elucidated by an ANNNI-like model Hamiltonian. In previous work modelling bulk Ho (Seno, Rabson and Yeomans 1993 J. Phys. A: Math. Gen. 26 4887-905), such a Hamiltonian with a one-dimensional parameter space produced a single multiphase point. In contrast, the parameter space of the heterostructure model is three dimensional, and instead of an isolated multiphase point, we find two-dimensional multiphase regions. In an example of Villain's 'order from disorder' (Villain, Bidaux, Carton and Conte 1980 J. Physique 41 1263-72; Pimpinelli, Uimin and Villain 1991 J. Phys.: Condens. Matter 3 4693-719), an infinitesimal temperature breaks the ground-state degeneracy. In first order of a low-temperature expansion, we find that the degeneracy is broken everywhere in a multiphase region except on a line. A segment of the line appears to remain multiphase to all orders in a low-temperature expansion when the number L of magnetic layers between non-magnetic spacers is 4 but not for other values of L. For L = 4, the hierarchy of phases more closely resembles that in the ANNNI model than in the bulk six-state clock model on which the present model is based
Energy Technology Data Exchange (ETDEWEB)
Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DeVoto, Douglas J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-01
Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (less than 200 degrees Celcius). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. We present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed. In this paper, we outline the procedures for obtaining the J-integral/thermal cycle values in a computational model and report on the possible advantage of using these values as modeling parameters in a predictive lifetime model.
An extended continuum model accounting for the driver's timid and aggressive attributions
Energy Technology Data Exchange (ETDEWEB)
Cheng, Rongjun; Ge, Hongxia [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 210096 (China); National Traffic Management Engineering and Technology Research Centre Ningbo University Sub-centre, Ningbo 315211 (China); Wang, Jufeng, E-mail: wjf@nit.zju.edu.cn [Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 (China)
2017-04-18
Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV–Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption. - Highlights: • A new continuum model is developed with the consideration of the driver's timid and aggressive behaviors simultaneously. • Applying the linear stability theory, the new model's linear stability is obtained. • Through nonlinear analysis, the KdV–Burgers equation is derived. • The energy consumption for this model is studied.
An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles
Bossard, J. A.; Peck, R. E.; Schmidt, D. K.
1993-01-01
The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.
Extended two-fluid model for simulating magneto-rheological fluid flows
International Nuclear Information System (INIS)
Shivaram, A C
2011-01-01
The current practice of designing magneto-rheological (MR) fluid-based devices is, to a large extent, based on simple phenomenological models like the Bingham model. Though useful for initial force or torque estimation and sizing, these models lack the capability to predict performance degradation due to changes in the particle volume fraction distribution. The present work demonstrates the use of the two-fluid model for predicting the particle volume fraction distribution inside a device in the absence of a field and proposes a novel modeling scheme which can simulate the fluid flow in the presence of a field. This modeling scheme can be used to (a) visualize flow patterns inside a device under various operating conditions, (b) predict the spatial distribution of particles inside a device after multiple operating cycles, (c) assist in estimating the extent of performance degradation due to non-uniform particle distribution and (d) enable testing of various design strategies to mitigate such performance issues using simulations. This is illustrated through numerical examples of a few case studies of typical MR device configurations
Directory of Open Access Journals (Sweden)
Shine Pintor Siolemba Patiro
2016-01-01
Full Text Available This correlational study explored the psychological antecedents of Indonesian bodybuilders’ intentions to use anabolic–androgenic steroids (AAS, based on the Theory of Planned Behavior (TPB. The purpose of this research was to identify factors that influence an Indonesian bodybuilder’s intention to use AAS and offer a better understanding of AAS use behavior based on the extended Theory of Planned Behavior (TPB. The three predictor variables of (1 attitude, (2 subjective norms, and (3 perceived behavioral control accounted for the variation in the outcome measure of the intention to reuse the AAS. Likewise, (1 attitude and (2 intention accounted for of the variation in the outcome measure of the reuse of AAS. This research combined two methods which are qualitative and quantitative. The respondents who were used in this research are professional bodybuilders located in Jakarta, Bandung, Surabaya, and Yogyakarta. The result of this research shows that the attitude of bodybuilders in using AAS tends to have values that are adopted by themselves. The result of this research differs from Bagozzi et al (1989 who stated that attitude influenced behavior directly as a nonpurposeful reaction or indirectly through intention as an aimed response. The result of this research clearly shows that attitude can influence behavior directly as a purposeful reaction, because the bodybuilders consume AAS to achieve a particular purpose and it is strengthened by achievement value in themselves. This research suggests also that attitude and subjective norms are not causally independent. They appear to reflect similar beliefs and to influence each other. These results differ from Titah and Barki (2009, as suggested by Chang (1998 and Aarts et al. (1998, who stated that a person whose positive subjective norms move them toward overt behavior, it will lead to a positive attitude toward the behavior. Future research directions are suggested regarding several areas
Extended release local anesthetic agents in a postoperative arthritic pain model.
Ickowicz, Diana E; Golovanevski, Ludmila; Haze, Amir; Domb, Abraham J; Weiniger, Carolyn F
2014-01-01
Local anesthetics play an important role in postoperative pain management in orthopedic joint procedures. The aim of this study was to determine the effect of an intraoperative extra-articular injection of poly(DL-lactic acid co castor oil 3:7), p(DLLA:CO) 3:7 loaded with 15% bupivacaine, for postoperative analgesia following knee arthroplasty. Prolonged release local anesthetic formulation was synthesized by mixing p(DLLA:CO) 3:7 with bupivacaine base. Under anesthesia, the knee joint of Sprague-Dawley rats was exposed, a hole drilled in the femoral trochlea. 0.2 mL of either 15% polymer-bupivacaine formulation or plain bupivacaine (control) was injected locally and compared with a nonsurgery control group. Mechanical hyperalgesia was determined by counting the vocalizations and leg withdrawal after joint squeezing. Behavioral assessments over a day postoperative period revealed a reduction in rearing and ambulation in an open-field apparatus in animals of both experimental groups compared with the nonsurgery control. The vocalizations during the hyperalgesia test increased compared with the control at 24 h. At 48 h, 3.667 ± 0.5138, p = 0.0076 vocalizations were recorded for the plain bupivacaine group versus 1.417 ± 0.5138, p < 0.0001 in the 15% polymer-bupivacaine formulation. Bupivacaine encapsulated in p(DLLA:CO) 3:7 extended the duration of the analgesia compared with plain drug in rats and could represent effective postoperative analgesic in orthopedic joint procedures. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
The μ3 model of acids and bases: extending the Lewis theory to intermetallics.
Stacey, Timothy E; Fredrickson, Daniel C
2012-04-02
A central challenge in the design of new metallic materials is the elucidation of the chemical factors underlying the structures of intermetallic compounds. Analogies to molecular bonding phenomena, such as the Zintl concept, have proven very productive in approaching this goal. In this Article, we extend a foundational concept of molecular chemistry to intermetallics: the Lewis theory of acids and bases. The connection is developed through the method of moments, as applied to DFT-calibrated Hückel calculations. We begin by illustrating that the third and fourth moments (μ(3) and μ(4)) of the electronic density of states (DOS) distribution tune the properties of a pseudogap. μ(3) controls the balance of states above and below the DOS minimum, with μ(4) then determining the minimum's depth. In this way, μ(3) predicts an ideal occupancy for the DOS distribution. The μ(3)-ideal electron count is used to forge a link between the reactivity of transition metals toward intermetallic phase formation, and that of Lewis acids and bases toward adduct formation. This is accomplished through a moments-based definition of acidity which classifies systems that are electron-poor relative to the μ(3)-ideal as μ(3)-acidic, and those that are electron-rich as μ(3)-basic. The reaction of μ(3) acids and bases, whether in the formation of a Lewis acid/base adduct or an intermetallic phase, tends to neutralize the μ(3) acidity or basicity of the reactants. This μ(3)-neutralization is traced to the influence of electronegativity differences at heteroatomic contacts on the projected DOS curves of the atoms involved. The role of μ(3)-acid/base interactions in intermetallic phases is demonstrated through the examination of 23 binary phases forming between 3d metals, the stability range of the CsCl type, and structural trends within the Ti-Ni system.
Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan
2017-06-01
Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.
International Nuclear Information System (INIS)
Simatos, A.
2010-01-01
This work extends the applicability of local models for ductile fracture to large crack growth modelization for ductile tearing. This is done inserting a cohesive zone model whose constitutive law is identified in order to be consistent with the local model. The consistency is obtained through the cohesive law incremental construction which ensures the equivalence of the energy and of the mechanical response of the models. The extension of the applicability domain of the local modelization is enabled via the XFEM framework which allows for maintaining the mechanical energy during the crack extension step. This method permits also to introduce the cohesive zone model during the calculation without regards to the mesh of the structure for its maximal tensile stress. To apply the XFEM to ductile tearing, this method is extended to non linear problems (Updated Lagrangian Formulation, large scale yield plasticity). The cohesive zone model grows when the criterion defined in term of porosity, tested at the front of the cohesive crack front, is verified. The cohesive zone growth criterion is determined in order to model most of the damaging phase with the local model to ensure that the modelization takes into account the triaxiality ratio history accurately. The proposed method is applied to the Rousselier local model for ductile fracture in the XFEM framework of Cast3M, the FE software of the CEA. (author) [fr
Extending Participatory Sensing to Personal Exposure Using Microscopic Land Use Regression Models
Directory of Open Access Journals (Sweden)
Luc Dekoninck
2017-05-01
Full Text Available Personal exposure is sensitive to the personal features and behavior of the individual, and including interpersonal variability will improve the health and quality of life evaluations. Participatory sensing assesses the spatial and temporal variability of environmental indicators and is used to quantify this interpersonal variability. Transferring the participatory sensing information to a specific study population is a basic requirement for epidemiological studies in the near future. We propose a methodology to reduce the void between participatory sensing and health research. Instantaneous microscopic land-use regression modeling (µLUR is an innovative approach. Data science techniques extract the activity-specific and route-sensitive spatiotemporal variability from the data. A data workflow to prepare and apply µLUR models to any mobile population is presented. The µLUR technique and data workflow are illustrated with models for exposure to traffic related Black Carbon. The example µLURs are available for three micro-environments; bicycle, in-vehicle, and indoor. Instantaneous noise assessments supply instantaneous traffic information to the µLURs. The activity specific models are combined into an instantaneous personal exposure model for Black Carbon. An independent external validation reached a correlation of 0.65. The µLURs can be applied to simulated behavioral patterns of individuals in epidemiological cohorts for advanced health and policy research.
Twist map, the extended Frenkel-Kontorova model and the devil's staircase
International Nuclear Information System (INIS)
Aubry, S.
1982-01-01
Exact results obtained on the discrete Frenkel Kontorova (FK) model and its extensions during the past few years are reviewed. These models are associated with area preserving twist maps of the cylinder (or a part of it) onto itself. The theorems obtained for the FK model thus yields new theorems for the twist maps. The exact structure of the ground-states which are either commensurate or incommensurate and assert the existence of elementary discommensurations under certain necessary and sufficient conditions is described. Necessary conditions for the trajectories to represent metastable configurations, which can be chaotic, are given. The existence of a finite Peierl Nabarro barrier for elementary discommensurations is connected with a property of non-integrability of the twist map. The existence of KAM tori corresponds to undefectible incommensurate ground-states and a theorem is given which asserts that when the phenon spectrum of an incommensurate ground-state exhibits a finite gap, then the corresponding trajectory is dense on a Cantor set with zero measure length. These theorems, when applied to the initial FK model, allows one to prove the existence of the transition by breaking of analyticity for the incommensurate structures when the parameter which describes the discrepancy of the model to the integrable limit varies. Finally, we describe a theorem proving the existence of a devil's staircase for the variation curve of the atomic mean distance versus a chemical potential, for certain properties of the twist map which are generally satisfied
Extended probit mortality model for zooplankton against transient change of PCO(2).
Sato, Toru; Watanabe, Yuji; Toyota, Koji; Ishizaka, Joji
2005-09-01
The direct injection of CO(2) in the deep ocean is a promising way to mitigate global warming. One of the uncertainties in this method, however, is its impact on marine organisms in the near field. Since the concentration of CO(2), which organisms experience in the ocean, changes with time, it is required to develop a biological impact model for the organisms against the unsteady change of CO(2) concentration. In general, the LC(50) concept is widely applied for testing a toxic agent for the acute mortality. Here, we regard the probit-transformed mortality as a linear function not only of the concentration of CO(2) but also of exposure time. A simple mathematical transform of the function gives a damage-accumulation mortality model for zooplankton. In this article, this model was validated by the mortality test of Metamphiascopsis hirsutus against the transient change of CO(2) concentration.
Brewe, Eric; Traxler, Adrienne; de la Garza, Jorge; Kramer, Laird H.
2013-12-01
We report on a multiyear study of student attitudes measured with the Colorado Learning Attitudes about Science Survey in calculus-based introductory physics taught with the Modeling Instruction curriculum. We find that five of six instructors and eight of nine sections using Modeling Instruction showed significantly improved attitudes from pre- to postcourse. Cohen’s d effect sizes range from 0.08 to 0.95 for individual instructors. The average effect was d=0.45, with a 95% confidence interval of (0.26-0.64). These results build on previously published results showing positive shifts in attitudes from Modeling Instruction classes. We interpret these data in light of other published positive attitudinal shifts and explore mechanistic explanations for similarities and differences with other published positive shifts.
Directory of Open Access Journals (Sweden)
Eric Brewe
2013-10-01
Full Text Available We report on a multiyear study of student attitudes measured with the Colorado Learning Attitudes about Science Survey in calculus-based introductory physics taught with the Modeling Instruction curriculum. We find that five of six instructors and eight of nine sections using Modeling Instruction showed significantly improved attitudes from pre- to postcourse. Cohen’s d effect sizes range from 0.08 to 0.95 for individual instructors. The average effect was d=0.45, with a 95% confidence interval of (0.26–0.64. These results build on previously published results showing positive shifts in attitudes from Modeling Instruction classes. We interpret these data in light of other published positive attitudinal shifts and explore mechanistic explanations for similarities and differences with other published positive shifts.
Langfred, Claus W; Moye, Neta A
2004-12-01
A model explaining the relationship between task autonomy and performance is proposed that incorporates 3 different causal mechanisms. The performance benefits of task autonomy may be realized by increased motivation (motivational mechanisms), by capitalization of information asymmetries (informational mechanisms), or by better alignment with task and organizational structures (structural mechanisms). Further, it is proposed that these performance benefits are moderated by a variety of variables ranging from individual traits to organizational design. This model may provide a means for accounting for the sometimes inconsistent findings in the empirical literature exploring the relationship between autonomy and performance. The model also offers guidance in the search for additional boundary conditions as well as prescriptive guidelines for the allocation of autonomy in practice. 2004 APA, all rights reserved
Enhancing rural connectivity through an extended internet cafés business models
DEFF Research Database (Denmark)
Williams, Idongesit; Gyaase, Patrick Ohemeng Kwadwo; Falch, Morten
2013-01-01
This paper discusses the potentials of an adaptation of the Internet café business model adopted for Internet access in African cities to improve rural Internet access through a partnership between the public and private sectors. The rural areas in most developing countries e lack of Internet...... are replicated in the rural areas. . A study is carried out in Ghana, where the market players in the Internet café operations to ascertain the potential viability of public –private partnership in the provisioning of internet access in the rural areas in Ghana. A new business model in the form of Public Private...... connectivity due to commercial unviability of such investment by the private sector alone.. The modernization theory is used to support the concept that the availability of Internet services in rural can be catalyzed if an Adaptation of the Internet cafés business model incorporating the public participation...
Wave dynamics in an extended macroscopic traffic flow model with periodic boundaries
Wang, Yu-Qing; Chu, Xing-Jian; Zhou, Chao-Fan; Yan, Bo-Wen; Jia, Bin; Fang, Chen-Hao
2018-06-01
Motivated by the previous traffic flow model considering the real-time traffic state, a modified macroscopic traffic flow model is established. The periodic boundary condition is applied to the car-following model. Besides, the traffic state factor R is defined in order to correct the real traffic conditions in a more reasonable way. It is a key step that we introduce the relaxation time as a density-dependent function and provide corresponding evolvement of traffic flow. Three different typical initial densities, namely the high density, the medium one and the low one, are intensively investigated. It can be found that the hysteresis loop exists in the proposed periodic-boundary system. Furthermore, the linear and nonlinear stability analyses are performed in order to test the robustness of the system.
International Nuclear Information System (INIS)
Chizhov, M. V.; Bednyakov, V. A.
2016-01-01
The gauge coupling unification can be achieved at a unification scale around 5×10"1"3 GeV if the Standard Model scalar sector is extended with extra Higgs-like doublets. The relevant new scalar degrees of freedom in the form of chiral Z* and W* vector bosons might “be visible” already at about 700 GeV. Their eventual preferred coupling to the heavy quarks explains the non observation of these bosons in the first LHC run and provides promising expectation for the second LHC run.
Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model
Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun
2017-09-01
The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.
International Nuclear Information System (INIS)
Brancus, I.M.; Rebel, H.; Wentz, J.; Corcalciuc, V.
1989-11-01
The original sum-rule model worked out by Wilczynski et al. and successfully used for a global description of complete and incomplete fusion reactions has been extended by a term accounting for dissipative processes of the dinuclear system on its way to fusion. When applying to light and heavy ion collisions with various targets at energies in the transitional region, the new term proves to be rather essential for reproducing the element distributions of the fragments emitted from rather asymmetric systems. (orig.) [de
International Nuclear Information System (INIS)
Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu
2007-01-01
We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu-Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the ω 2 interaction to either produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach
Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models.
Directory of Open Access Journals (Sweden)
Saman Mohammadi
Full Text Available In this study, we compared, for the first time, the release of a 432 kDa prostaglandin F2a analogue drug, Latanoprost, from commercially available contact lenses using in vitro models with corneal epithelial cells. Conventional polyHEMA-based and silicone hydrogel soft contact lenses were soaked in drug solution (131 μg = ml solution in phosphate buffered saline. The drug release from the contact lens material and its diffusion through three in vitro models was studied. The three in vitro models consisted of a polyethylene terephthalate (PET membrane without corneal epithelial cells, a PET membrane with a monolayer of human corneal epithelial cells (HCEC, and a PET membrane with stratified HCEC. In the cell-based in vitro corneal epithelium models, a zero order release was obtained with the silicone hydrogel materials (linear for the duration of the experiment whereby, after 48 hours, between 4 to 6 μg of latanoprost (an amount well within the range of the prescribed daily dose for glaucoma patients was released. In the absence of cells, a significantly lower amount of drug, between 0.3 to 0.5 μg, was released, (p <0:001. The difference observed in release from the hydrogel lens materials in the presence and absence of cells emphasizes the importance of using an in vitro corneal model that is more representative of the physiological conditions in the eye to more adequately characterize ophthalmic drug delivery materials. Our results demonstrate how in vitro models with corneal epithelial cells may allow better prediction of in vivo release. It also highlights the potential of drug-soaked silicone hydrogel contact lens materials for drug delivery purposes.
Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models
Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.
2015-12-01
Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.
Extending pure luminosity evolution models into the mid-infrared, far-infrared and submillimetre
Hill, Michael D.; Shanks, Tom
2011-07-01
Simple pure luminosity evolution (PLE) models, in which galaxies brighten at high redshift due to increased star formation rates (SFRs), are known to provide a good fit to the colours and number counts of galaxies throughout the optical and near-infrared. We show that optically defined PLE models, where dust reradiates absorbed optical light into infrared spectra composed of local galaxy templates, fit galaxy counts and colours out to 8 μm and to at least z≈ 2.5. At 24-70 μm, the model is able to reproduce the observed source counts with reasonable success if 16 per cent of spiral galaxies show an excess in mid-IR flux due to a warmer dust component and a higher SFR, in line with observations of local starburst galaxies. There remains an underprediction of the number of faint-flux, high-z sources at 24 μm, so we explore how the evolution may be altered to correct this. At 160 μm and longer wavelengths, the model fails, with our model of normal galaxies accounting for only a few percent of sources in these bands. However, we show that a PLE model of obscured AGN, which we have previously shown to give a good fit to observations at 850 μm, also provides a reasonable fit to the Herschel/BLAST number counts and redshift distributions at 250-500 μm. In the context of a ΛCDM cosmology, an AGN contribution at 250-870 μm would remove the need to invoke a top-heavy IMF for high-redshift starburst galaxies.
An extended car-following model at un-signalized intersections under V2V communication environment
Wang, Tao; Li, Peng
2018-01-01
An extended car-following model is proposed in this paper to analyze the impacts of V2V (vehicle to vehicle) communication on the micro driving behavior at the un-signalized intersection. A four-leg un-signalized intersection with twelve streams (left-turn, through movement, and right turn from each leg) is used. The effect of the guidance strategy on the reduction of the rate of stops and total delay is explored by comparing the proposed model and the traditional FVD car-following model. The numerical results illustrate that potential conflicts between vehicles can be predicted and some stops can be avoided by decelerating in advance. The driving comfort and traffic efficiency can be improved accordingly. More benefits could be obtained under the long communication range, low to medium traffic density, and simple traffic pattern conditions. PMID:29425243
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
Energy Technology Data Exchange (ETDEWEB)
Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
Directory of Open Access Journals (Sweden)
Ines Baccouche
2017-05-01
Full Text Available Accurate modeling of the nonlinear relationship between the open circuit voltage (OCV and the state of charge (SOC is required for adaptive SOC estimation during the lithium-ion (Li-ion battery operation. Online SOC estimation should meet several constraints, such as the computational cost, the number of parameters, as well as the accuracy of the model. In this paper, these challenges are considered by proposing an improved simplified and accurate OCV model of a nickel manganese cobalt (NMC Li-ion battery, based on an empirical analytical characterization approach. In fact, composed of double exponential and simple quadratic functions containing only five parameters, the proposed model accurately follows the experimental curve with a minor fitting error of 1 mV. The model is also valid at a wide temperature range and takes into account the voltage hysteresis of the OCV. Using this model in SOC estimation by the extended Kalman filter (EKF contributes to minimizing the execution time and to reducing the SOC estimation error to only 3% compared to other existing models where the estimation error is about 5%. Experiments are also performed to prove that the proposed OCV model incorporated in the EKF estimator exhibits good reliability and precision under various loading profiles and temperatures.
Directory of Open Access Journals (Sweden)
Renbin Liu
2014-01-01
some important reliability indices are derived, such as availability, failure frequency, mean vacation period, mean renewal cycle, mean startup period, and replacement frequency. Finally, a production line controlled by two cold-standby computers is modeled to present numerical illustration and its optimal part-time job policy at a maximum profit.
Extended TAM Model: Impacts of Convenience on Acceptance and Use of Moodle
Hsu, Hsiao-hui; Chang, Yu-ying
2013-01-01
The increasing online access to courses, programs, and information has shifted the control and responsibility of learning process from instructors to learners. Learners' perceptions of and attitudes toward e-learning constitute a critical factor to the success of such system. The purpose of this study is to take TAM (technology acceptance model)…
Park, Eunil; Kim, Ki Joon
2013-01-01
Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
Extending Geographic Weights of Evidence Models for Use in Location Based Services
Sonwalkar, Mukul Dinkar
2012-01-01
This dissertation addresses the use and modeling of spatio-temporal data for the purposes of providing applications for location based services. One of the major issues in dealing with spatio-temporal data for location based services is the availability and sparseness of such data. Other than the hardware costs associated with collecting movement…
Extending the reach of strong-coupling: an iterative technique for Hamiltonian lattice models
International Nuclear Information System (INIS)
Alberty, J.; Greensite, J.; Patkos, A.
1983-12-01
The authors propose an iterative method for doing lattice strong-coupling-like calculations in a range of medium to weak couplings. The method is a modified Lanczos scheme, with greatly improved convergence properties. The technique is tested on the Mathieu equation and on a Hamiltonian finite-chain XY model, with excellent results. (Auth.)
OpenMx: An Open Source Extended Structural Equation Modeling Framework
Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John
2011-01-01
OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…
Extending the Ally Model of Social Justice to Social Work Pedagogy
Gibson, Priscilla Ann
2014-01-01
Social work students, regardless of their multiple social identities in oppressed and oppressor groups, are called upon to take action against social injustice. This conceptual article introduces the Ally Model of social justice and its alignment with social work values and goals and recommends it to social work educators as a pedagogical tool to…
Teeroovengadum, Viraiyan; Heeraman, Nabeel; Jugurnath, Bhavish
2017-01-01
This study assesses the determinants of ICT adoption by educators in the teaching and learning process in the context of a developing country, Mauritius. A hierarchical regression analysis is used, to firstly determine the incremental effects of factors from the technology acceptance model (TAM) while controlling for demographic variables such as…
Extending the Challenge-Hindrance Model of Occupational Stress: The Role of Appraisal
Webster, Jennica R.; Beehr, Terry A.; Love, Kevin
2011-01-01
Interest regarding the challenge-hindrance occupational stress model has increased in recent years, however its theoretical foundation has not been tested. Drawing from the transactional theory of stress, this study tests the assumptions made in past research (1) that workload and responsibility are appraised as challenges and role ambiguity and…
The Python Project: A Unique Model for Extending Research Opportunities to Undergraduate Students
Harvey, Pamela A.; Wall, Christopher; Luckey, Stephen W.; Langer, Stephen; Leinwand, Leslie A.
2014-01-01
Undergraduate science education curricula are traditionally composed of didactic instruction with a small number of laboratory courses that provide introductory training in research techniques. Research on learning methodologies suggests this model is relatively ineffective, whereas participation in independent research projects promotes enhanced…
Extending comprehensive models of the Earth's magnetic field with Orsted and CHAMP data
DEFF Research Database (Denmark)
Sabaka, T.J.; Olsen, Nils; Purucker, M.E.
2004-01-01
are coestimated in a comprehensive approach, intriguing north-south features typically filtered out with other methods are being discovered in the lithospheric representation of the model, such as the S Atlantic spreading ridge and Andean subduction zone lineations. In addition, this lithospheric field exhibits...
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
Energy Technology Data Exchange (ETDEWEB)
Camera, Stefano; Diaferio, Antonaldo [Dipartimento di Fisica Generale ' ' A. Avogadro' ' , Università di Torino, via P. Giuria 1, 10125 Torino (Italy); Cardone, Vincenzo F., E-mail: camera@ph.unito.it, E-mail: diaferio@ph.unito.it, E-mail: winnyenodrac@gmail.com [Dipartimento di Scienze e Tecnologie per l' Ambiente e il Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (Italy)
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r{sub c}, the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼
Testing a phenomenologically extended DGP model with upcoming weak lensing surveys
International Nuclear Information System (INIS)
Camera, Stefano; Diaferio, Antonaldo; Cardone, Vincenzo F.
2011-01-01
A phenomenological extension of the well-known brane-world cosmology of Dvali, Gabadadze and Porrati (eDGP) has recently been proposed. In this model, a cosmological-constant-like term is explicitly present as a non-vanishing tension σ on the brane, and an extra parameter α tunes the cross-over scale r c , the scale at which higher dimensional gravity effects become non negligible. Since the Hubble parameter in this cosmology reproduces the same ΛCDM expansion history, we study how upcoming weak lensing surveys, such as Euclid and DES (Dark Energy Survey), can confirm or rule out this class of models. We perform Monte Carlo Markov Chain simulations to determine the parameters of the model, using Type Ia Supernovæ, H(z) data, Gamma Ray Bursts and Baryon Acoustic Oscillations. We also fit the power spectrum of the temperature anisotropies of the Cosmic Microwave Background to obtain the correct normalisation for the density perturbation power spectrum. Then, we compute the matter and the cosmic shear power spectra, both in the linear and non-linear régimes. The latter is calculated with the two different approaches of Hu and Sawicki (2007) (HS) and Khoury and Wyman (2009) (KW). With the eDGP parameters coming from the Markov Chains, KW reproduces the ΛCDM matter power spectrum at both linear and non-linear scales and the ΛCDM and eDGP shear signals are degenerate. This result does not hold with the HS prescription. Indeed, Euclid can distinguish the eDGP model from ΛCDM because their expected power spectra roughly differ by the 3σ uncertainty in the angular scale range 700∼< l∼<3000; on the contrary, the two models differ at most by the 1σ uncertainty over the range 500∼< l∼<3000 in the DES experiment and they are virtually indistinguishable
International Nuclear Information System (INIS)
2002-06-01
The workshop identified a set of critical issues for the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) to address in preparing for future reviews of license applications, which have subsequently been considered in preparing this synthesis. Structure for organising expert participation: A structure for organising expert participation in future reviews is proposed based on clearinghouses for (1) regulatory application and context, (2) engineered barrier systems, (3) geosphere, (4) biosphere, and (5) performance assessment integration and calculations. As part of their work, these clearinghouses could identify key issues that need to be resolved prior to future reviews. Performance assessment strategy and review context: Future reviews will be conducted in the context of regulations based on risk criteria; this leads to a need to review the methods used in probabilistic risk assessment, as well as the underlying process models. A plan is needed for accomplishing both aims. Despite the probabilistic framework, a need is anticipated for targeted, deterministic calculations to check particular assumptions. Priorities and ambition level for reviews: SKI's and SSI's resources can be more efficiently utilised by an early review of SKB's safety case, so that if necessary the authorities can make an early start on evaluating topics that are of primary significance to the safety case. As a guide to planning for allocation of effort in future reviews, this workshop produced a preliminary ranking of technical issues, on a scale from 'non-controversial' to 'requiring independent modelling,' Analysis of repository system and scenarios: Systems analysis tools including features/events/processes encyclopaedias, process-influence diagrams, and assessment-model flowcharts should be used as review tools, to check the processes and influences considered in SKB's analyses, and to evaluate the comprehensiveness of the scenarios that are
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-06-01
The workshop identified a set of critical issues for the Swedish Nuclear Power Inspectorate (SKI) and the Swedish Radiation Protection Authority (SSI) to address in preparing for future reviews of license applications, which have subsequently been considered in preparing this synthesis. Structure for organising expert participation: A structure for organising expert participation in future reviews is proposed based on clearinghouses for (1) regulatory application and context, (2) engineered barrier systems, (3) geosphere, (4) biosphere, and (5) performance assessment integration and calculations. As part of their work, these clearinghouses could identify key issues that need to be resolved prior to future reviews. Performance assessment strategy and review context: Future reviews will be conducted in the context of regulations based on risk criteria; this leads to a need to review the methods used in probabilistic risk assessment, as well as the underlying process models. A plan is needed for accomplishing both aims. Despite the probabilistic framework, a need is anticipated for targeted, deterministic calculations to check particular assumptions. Priorities and ambition level for reviews: SKI's and SSI's resources can be more efficiently utilised by an early review of SKB's safety case, so that if necessary the authorities can make an early start on evaluating topics that are of primary significance to the safety case. As a guide to planning for allocation of effort in future reviews, this workshop produced a preliminary ranking of technical issues, on a scale from 'non-controversial' to 'requiring independent modelling,' Analysis of repository system and scenarios: Systems analysis tools including features/events/processes encyclopaedias, process-influence diagrams, and assessment-model flowcharts should be used as review tools, to check the processes and influences considered in SKB's analyses, and to evaluate the comprehensiveness of the scenarios that are
Extending simulation modeling to activity-based costing for clinical procedures.
Glick, N D; Blackmore, C C; Zelman, W N
2000-04-01
A simulation model was developed to measure costs in an Emergency Department setting for patients presenting with possible cervical-spine injury who needed radiological imaging. Simulation, a tool widely used to account for process variability but typically focused on utilization and throughput analysis, is being introduced here as a realistic means to perform an activity-based-costing (ABC) analysis, because traditional ABC methods have difficulty coping with process variation in healthcare. Though the study model has a very specific application, it can be generalized to other settings simply by changing the input parameters. In essence, simulation was found to be an accurate and viable means to conduct an ABC analysis; in fact, the output provides more complete information than could be achieved through other conventional analyses, which gives management more leverage with which to negotiate contractual reimbursements.
Directory of Open Access Journals (Sweden)
Mohamd Hakkak
2013-11-01
Full Text Available The rapid diffusion of the Internet has radically changed the delivery channels applied by the financial services industry. The aim of this study is to identify the influencing factors that encourage customers to adopt online banking in Khorramabad. The research constructs are developed based on the technology acceptance model (TAM and incorporates some extra important control variables. The model is empirically verified to study the factors influencing the online banking adoption behavior of 210 customers of Tejarat Banks in Khorramabad. The findings of the study suggest that the quality of the internet connection, the awareness of online banking and its benefits, the social influence and computer self-efficacy have significant impacts on the perceived usefulness (PU and perceived ease of use (PEOU of online banking acceptance. Trust and resistance to change also have significant impact on the attitude towards the likelihood of adopting online banking.
Extended Analytic Linear Model of Hydraulic Cylinder With Respect Different Piston Areas and Volumes
Petr KOŇAŘÍK
2009-01-01
Standard analytic linear model of hydraulic cylinder usually comes from assumptions of identical action piston areas on both sides of hydraulic cylinder (double piston rod) and suitable operation point, which is usually chosen in the middle of piston. By reason of that volumes inside of cylinder are than same. Moreover for control of that arrangement of hydraulic cylinder, usually controlled by 4/3 servovalve, the same mount of flows comes in and comes out to each of chambers of hydraulic cyl...
Le Pogam, Carole; Patel, Satyananda; Gorombei, Petra; Guerenne, Laura; Krief, Patricia; Omidvar, Nader; Tekin, Nilgun; Bernasconi, Elena; Sicre, Flore; Schlageter, Marie-Helene; Chopin, Martine; Noguera, Maria-Elena; West, Robert; Abu, Ansu; Mathews, Vikram; Pla, Marika; Fenaux, Pierre; Chomienne, Christine; Padua, Rose Ann
2015-10-20
We have previously shown that a specific promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) DNA vaccine combined with all-trans retinoic acid (ATRA) increases the number of long term survivors with enhanced immune responses in a mouse model of acute promyelocytic leukemia (APL). This study reports the efficacy of a non-specific DNA vaccine, pVAX14Flipper (pVAX14), in both APL and high risk myelodysplastic syndrome (HR-MDS) models. PVAX14 is comprised of novel immunogenic DNA sequences inserted into the pVAX1 therapeutic plasmid. APL mice treated with pVAX14 combined with ATRA had increased survival comparable to that obtained with a specific PML-RARA vaccine. Moreover, the survival advantage correlated with decreased PML-RARA transcript levels and increase in anti-RARA antibody production. In HR-MDS mice, pVAX14 significantly improved survival and reduced biomarkers of leukemic transformation such as phosphorylated mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1. In both preclinical models, pVAX14 vaccine significantly increased interferon gamma (IFNγ) production, memory T-cells (memT), reduced the number of colony forming units (CFU) and increased expression of the adapter molecule signalling to NF-κB, MyD88. These results demonstrate the adjuvant properties of pVAX14 providing thus new approaches to improve clinical outcome in two different models of myeloid malignancies, which may have potential for a broader applicability in other cancers.
International Nuclear Information System (INIS)
Wu, Xin-yang; Wu, Xiao-Yue
2015-01-01
Phased Mission Systems (PMS) have several phases with different success criteria. Generally, traditional analytical methods need to make some assumptions when they are applied for reliability evaluation and analysis of complex PMS, for example, the components are non-repairable or components are not subjected to common cause failures (CCF). However, the evaluation and analysis results may be inapplicable when the assumptions do not agree with practical situation. In this article, we propose an extended object-oriented Petri net (EOOPN) model for mission reliability simulation of repairable PMS with CCFs. Based on object-oriented Petri net (OOPN), EOOPN defines four reusable sub-models to depict PMS at system, phase, or component levels respectively, logic transitions to depict complex components reliability logics in a more readable form, and broadcast place to transmit shared information among components synchronously. After extension, EOOPN could deal with repairable PMS with both external and internal CCFs conveniently. The mission reliability modelling, simulation and analysis using EOOPN are illustrated by a PMS example. The results demonstrate that the proposed EOOPN model is effective. - Highlights: • EOOPN model was effective in reliability simulation for repairable PMS with CCFs. • EOOPN had modular and hierarchical structure. • New elements of EOOPN made the modelling process more convenient and friendlier. • EOOPN had better model reusability and readability than other PNs
International Nuclear Information System (INIS)
Moura, Fernando S; Aya, Julio C C; Lima, Raul G; Fleury, Agenor T
2008-01-01
One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on contour electrical potential measurements caused by an imposed electrical current distribution into the boundary. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, it is observed poor tracking ability of the Extended Kalman Filter (EKF). An analytically developed evolution model is not feasible at this moment. The present work investigates the possibility of identifying the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model is identified using the history of resistivity distribution obtained by a sensitivity matrix based algorithm. To numerically identify the linear evolution model, it is used the Ibrahim Time Domain Method, normally used to identify the transition matrix on structural dynamics. The investigation was performed by numerical simulations of a time varying domain with the addition of noise. Numerical dificulties to compute the transition matrix were solved using a Tikhonov regularization. The EKF numerical simulations suggest that the tracking ability is significantly improved.
An extended optimal replacement model for a deteriorating system with inspections
International Nuclear Information System (INIS)
Sheu, Shey-Huei; Tsai, Hsin-Nan; Wang, Fu-Kwun; Zhang, Zhe George
2015-01-01
This study considers a generalized replacement model for a deteriorating system in which failures can only be detected by inspection. The system is assumed to have two types of failures and is replaced at the occurrence of the Nth type I failure (minor failure), or the first type II failure (catastrophic failure), or at working age T, whichever occurs first. The probability of a type I or type II failure depends on the number of type I failures since the previous replacement. Such a system can be repaired after a type I failure, but is deteriorating stochastically. That is, the operating intervals are decreasing stochastically, whereas the durations of the repairs are increasing stochastically. Based on these assumptions, we determine the expected net cost rate and discuss various special cases of the model. Finally, we develop a computational algorithm for finding the optimal policy and present a numerical example to show the properties of the proposed model. - Highlight: • Replacement policy for system subject two types of failures or the system's working age. • Failures detected by inspections. • Decreasing operating times and increasing repair times. • Derive a cost function. • Determine the cost minimization policy
Directory of Open Access Journals (Sweden)
Andreas Hackl
2016-12-01
Full Text Available Developing functions for advanced driver assistance systems requires very accurate tyre models, especially for the simulation of transient conditions. In the past, parametrisation of a given tyre model based on measurement data showed shortcomings, and the globally optimal solution obtained did not appear to be plausible. In this article, an optimisation strategy is presented, which is able to find plausible and physically feasible solutions by detecting many local outcomes. The firefly algorithm mimics the natural behaviour of fireflies, which use a kind of flashing light to communicate with other members. An algorithm simulating the intensity of the light of a single firefly, diminishing with increasing distances, is implicitly able to detect local solutions on its way to the best solution in the search space. This implicit clustering feature is stressed by an additional explicit clustering step, where local solutions are stored and terminally processed to obtain a large number of possible solutions. The enhanced firefly algorithm will be first applied to the well-known Rastrigin functions and then to the tyre parametrisation problem. It is shown that the firefly algorithm is qualified to find a high number of optimisation solutions, which is required for plausible parametrisation for the given tyre model.
Extended sudden approximation model for high-energy nucleon removal reactions
Energy Technology Data Exchange (ETDEWEB)
Carstoiu, F.; Sauvan, E.; Orr, N.A. [Caen Univ., Lab. de Physique Corpusculaire, Institut des Sciences de la Matiere et du Rayonnement, IN2P3-CNRS ISMRA, 14 (France); Carstoiu, F. [IFIN-HH, Bucharest-Magurele (Romania); Bonaccorso, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)
2004-04-01
A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of {sup 17}C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising from limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored. (authors)
Extended sudden approximation model for high-energy nucleon removal reactions
International Nuclear Information System (INIS)
Carstoiu, F.; Sauvan, E.; Orr, N.A.; Carstoiu, F.; Bonaccorso, A.
2004-04-01
A model based on the sudden approximation has been developed to describe high energy single nucleon removal reactions. Within this approach, which takes as its starting point the formalism of Hansen, the nucleon-removal cross section and the full 3-dimensional momentum distributions of the core fragments including absorption, diffraction, Coulomb and nuclear-Coulomb interference amplitudes, have been calculated. The Coulomb breakup has been treated to all orders for the dipole interaction. The model has been compared to experimental data for a range of light, neutron-rich psd-shell nuclei. Good agreement was found for both the inclusive cross sections and momentum distributions. In the case of 17 C, comparison is also made with the results of calculations using the transfer-to-the-continuum model. The calculated 3-dimensional momentum distributions exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction for s-wave states, whilst no such effect is apparent for d-waves. Incomplete detection of transverse momenta arising from limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with significant s-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal momentum distributions attributed to diffractive dissociation are also explored. (authors)
Verification of extended model of goal directed behavior applied on aggression
Directory of Open Access Journals (Sweden)
Katarína Vasková
2016-01-01
Full Text Available The study was aimed to verify Model of Goal Directed Behavior (EMGB by Perugini and Bagozzi (2001 applied on aggression by Richetin, Richardson and Boykin (2011. Two different studies were performed. Firstly original form of model was verified. In the second study, modification of EMGB through new conceptualization of scale of perceived behavioral control was executed. The research sample consisted together from 385 students of University of P.J. Šafárik and High school in Košice (182 respondents (78 men, 104 women with average age 20,84 years and standard deviation 1,94, who were involved in first study and 203 students (49 men and 154 women, with average age 19,71 and standard deviation 1,99 participated in second study who were administrated questionnaire by Richetin et al. (2011 and Richardson Conflict Response Questionnaire (Richardson & Green, 2006. Expectancy of comparable relationships between particular factors of EMGB in comparison to its published original version was verified. Data were analyzed by structural equation modeling. In first study was shown insufficient fit of EMGB model. There were hypothesized two main sources of problems. At first, weak relationship between attitudes and behavioral desire was shown. Following statistical procedures confirmed its direct impact on intention, what is in correspondence with another studies (see Leone, Perugini & Ercolani, 2004, Perugini & Bagozzi, 2001, Richetin et al., 2011. Second source of problems was identified in factor named perceived behavioral control. Difficulties from our point of view lied in conceptualization of the term and its subsequent measurement. In the second study was involved new conceptualization of control. It corresponded with Baumeister´s understanding of selfcontrol as asserting control over one´s emotions, thoughts and behavior. After this modification sufficient fit of EMGB was shown. Besides this, factor of self-control was the strongest predictor of
Directory of Open Access Journals (Sweden)
Justin M Calabrese
Full Text Available It is well known that parasites are often highly aggregated on their hosts such that relatively few individuals host the large majority of parasites. When the parasites are vectors of infectious disease, a key consequence of this aggregation can be increased disease transmission rates. The cause of this aggregation, however, is much less clear, especially for parasites such as arthropod vectors, which generally spend only a short time on their hosts. Regression-based analyses of ticks on various hosts have focused almost exclusively on identifying the intrinsic host characteristics associated with large burdens, but these efforts have had mixed results; most host traits examined have some small influence, but none are key. An alternative approach, the Poisson-gamma mixture distribution, has often been used to describe aggregated parasite distributions in a range of host/macroparasite systems, but lacks a clear mechanistic basis. Here, we extend this framework by linking it to a general model of parasite accumulation. Then, focusing on blacklegged ticks (Ixodes scapularis on mice (Peromyscus leucopus, we fit the extended model to the best currently available larval tick burden datasets via hierarchical Bayesian methods, and use it to explore the relative contributions of intrinsic and extrinsic factors on observed tick burdens. Our results suggest that simple bad luck-inhabiting a home range with high vector density-may play a much larger role in determining parasite burdens than is currently appreciated.
Murata, Atsuo; Fukunaga, Daichi
2018-04-01
This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.
How Sommerfeld extended Bohr's model of the atom (1913-1916)
Eckert, Michael
2014-04-01
Sommerfeld's extension of Bohr's atomic model was motivated by the quest for a theory of the Zeeman and Stark effects. The crucial idea was that a spectral line is made up of coinciding frequencies which are decomposed in an applied field. In October 1914 Johannes Stark had published the results of his experimental investigation on the splitting of spectral lines in hydrogen (Balmer lines) in electric fields, which showed that the frequency of each Balmer line becomes decomposed into a multiplet of frequencies. The number of lines in such a decomposition grows with the index of the line in the Balmer series. Sommerfeld concluded from this observation that the quantization in Bohr's model had to be altered in order to allow for such decompositions. He outlined this idea in a lecture in winter 1914/15, but did not publish it. The First World War further delayed its elaboration. When Bohr published new results in autumn 1915, Sommerfeld finally developed his theory in a provisional form in two memoirs which he presented in December 1915 and January 1916 to the Bavarian Academy of Science. In July 1916 he published the refined version in the Annalen der Physik. The focus here is on the preliminary Academy memoirs whose rudimentary form is better suited for a historical approach to Sommerfeld's atomic theory than the finished Annalen-paper. This introductory essay reconstructs the historical context (mainly based on Sommerfeld's correspondence). It will become clear that the extension of Bohr's model did not emerge in a singular stroke of genius but resulted from an evolving process.
An extended OpenSim knee model for analysis of strains of connective tissues.
Marieswaran, M; Sikidar, Arnab; Goel, Anu; Joshi, Deepak; Kalyanasundaram, Dinesh
2018-04-17
OpenSim musculoskeletal models provide an accurate simulation environment that eases limitations of in vivo and in vitro studies. In this work, a biomechanical knee model was formulated with femoral articular cartilages and menisci along with 25 connective tissue bundles representing ligaments and capsules. The strain patterns of the connective tissues in the presence of femoral articular cartilage and menisci in the OpenSim knee model was probed in a first of its kind study. The effect of knee flexion (0°-120°), knee rotation (- 40° to 30°) and knee adduction (- 15° to 15°) on the anterior cruciate, posterior cruciate, medial collateral, lateral collateral ligaments and other connective tissues were studied by passive simulation. Further, a new parameter for assessment of strain namely, the differential inter-bundle strain of the connective tissues were analyzed to provide new insights for injury kinematics. ACL, PCL, LCL and PL was observed to follow a parabolic strain pattern during flexion while MCL represented linear strain patterns. All connective tissues showed non-symmetric parabolic strain variation during rotation. During adduction, the strain variation was linear for the knee bundles except for FL, PFL and TL. Strains higher than 0.1 were observed in most of the bundles during lateral rotation followed by abduction, medial rotation and adduction. In the case of flexion, highest strains were observed in aACL and aPCL. A combination of strains at a flexion of 0° with medial rotation of 30° or a flexion of 80° with rotation of 30° are evaluated as rupture-prone kinematics.
The Water-Induced Linear Reduction Gas Diffusivity Model Extended to Three Pore Regions
DEFF Research Database (Denmark)
Chamindu, T. K. K. Deepagoda; de Jonge, Lis Wollesen; Kawamoto, Ken
2015-01-01
. Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...... gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip...
Clayton, Deborah A; Griffith, Christopher J
2008-04-01
The main aim of this study was to determine the factors which influence caterers' hand hygiene practices using social cognitive theory. One hundred and fifteen food handlers from 29 catering businesses were observed carrying out 31,050 food preparation actions in their workplace. Caterers subsequently completed the Hand Hygiene Instrument (HHI), which ascertained attitudes towards hand hygiene using constructs from the Theory of Planned Behaviour (TPB) and the Health Belief Model. The TPB provided a useful framework for understanding caterers' implementation of hand hygiene practices, explaining 34% of the variance in hand hygiene malpractices (p behavioural control and intention (p food safety culture.
Cascading Gravity Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension
de Rham, Claudia; Hofmann, Stefan; Khoury, Justin; Pujolas, Oriol; Redi, Michele; Tolley, Andrew J
2008-01-01
We present a higher codimension generalization of the DGP scenario which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law `cascades' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.
Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension
International Nuclear Information System (INIS)
Rham, Claudia de; Dvali, Gia; Hofmann, Stefan; Khoury, Justin; Tolley, Andrew J.; Pujolas, Oriol; Redi, Michele
2008-01-01
We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law ''cascades'' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales
Extended Kalman filtering for model-based sensor fusion in robotics
International Nuclear Information System (INIS)
Fujii, Yuji; Wehe, D.K.; Lee, J.C.
1990-01-01
Remote surveillance and maintenance in advanced nuclear power plants will benefit from the increased utilization of mobile robotic systems. For these robotic systems to function most effectively in hazardous environments, they should be able to make decisions and take necessary actions with minimal human supervision. To accomplish this, the robot must be able to construct an accurate model of the power plant environment from diverse sensory data and a priori maps. In this paper, the authors demonstrate how a recursive parameter estimation technique known as Kalman filtering can integrate noisy data from various sensors to construct a consistent representation of the sensed environment
Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael
2017-10-01
We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected
Crowell, Sheila E; Beauchaine, Theodore P; Linehan, Marsha M
2009-05-01
Over the past several decades, research has focused increasingly on developmental precursors to psychological disorders that were previously assumed to emerge only in adulthood. This change in focus follows from the recognition that complex transactions between biological vulnerabilities and psychosocial risk factors shape emotional and behavioral development beginning at conception. To date, however, empirical research on the development of borderline personality is extremely limited. Indeed, in the decade since M. M. Linehan initially proposed a biosocial model of the development of borderline personality disorder, there have been few attempts to test the model among at-risk youth. In this review, diverse literatures are reviewed that can inform understanding of the ontogenesis of borderline pathology, and testable hypotheses are proposed to guide future research with at-risk children and adolescents. One probable pathway is identified that leads to borderline personality disorder; it begins with early vulnerability, expressed initially as impulsivity and followed by heightened emotional sensitivity. These vulnerabilities are potentiated across development by environmental risk factors that give rise to more extreme emotional, behavioral, and cognitive dysregulation. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Nonminimal quartic inflation in classically conformal U(1 ) X extended standard model
Oda, Satsuki; Okada, Nobuchika; Raut, Digesh; Takahashi, Dai-suke
2018-03-01
We propose quartic inflation with nonminimal gravitational coupling in the context of the classically conformal U(1 ) X extension of the standard model (SM). In this model, the U(1 ) X gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, by which the U(1 ) X gauge boson (Z' boson) and the right-handed Majorana neutrinos acquire their masses. We consider their masses in the range of O (10 GeV )-O (10 TeV ) , which are accessible to high-energy collider experiments. The radiative U(1 ) X gauge symmetry breaking also generates a negative mass squared for the SM Higgs doublet, and the electroweak symmetry breaking occurs subsequently. We identify the U(1 ) X Higgs field with inflaton and calculate the inflationary predictions. Because of the Coleman-Weinberg mechanism, the inflaton quartic coupling during inflation, which determines the inflationary predictions, is correlated to the U(1 ) X gauge coupling. With this correlation, we investigate complementarities between the inflationary predictions and the current constraint from the Z' boson resonance search at the LHC Run 2 as well as the prospect of the search for the Z' boson and the right-handed neutrinos at the future collider experiments.
Elastodynamic models for extending GTD to penumbra and finite size flaws
International Nuclear Information System (INIS)
Djakou, A Kamta; Darmon, M; Potel, C
2016-01-01
The scattering of elastic waves from an obstacle is of great interest in ultrasonic Non Destructive Evaluation (NDE). There exist two main scattering phenomena: specular reflection and diffraction. This paper is especially focused on possible improvements of the Geometrical Theory of Diffraction (GTD), one classical method used for modelling diffraction from scatterer edges. GTD notably presents two important drawbacks: it is theoretically valid for a canonical infinite edge and not for a finite one and presents discontinuities around the direction of specular reflection. In order to address the first drawback, a 3D hybrid method using both GTD and Huygens secondary sources has been developed to deal with finite flaws. ITD (Incremental Theory of Diffraction), a method developed in electromagnetism, has also been developed in elastodynamics to deal with small flaws. Experimental validation of these methods has been performed. As to the second drawback, a GTD uniform correction, the UTD (Uniform Theory of Diffraction) has been developed in the view of designing a generic model able to correctly simulate both specular reflection and diffraction. A comparison has been done between UTD numerical results and UAT (Uniform Asymptotic Theory of Diffraction) which is another uniform solution of GTD. (paper)
Extended Hubbard model for mesoscopic transport in donor arrays in silicon
Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran
2017-12-01
Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.
Energy Technology Data Exchange (ETDEWEB)
Amer, E., E-mail: eynas.amer@ltu.se [Lulea University of Technology, Department of Applied Physics and Mechanical Engineering, SE-971 87 Lulea (Sweden); Gren, P.; Kaplan, A.F.H.; Sjoedahl, M. [Lulea University of Technology, Department of Applied Physics and Mechanical Engineering, SE-971 87 Lulea (Sweden)
2009-08-15
Pulsed digital holographic interferometry has been used to study the effect of the laser spot diameter on the shock wave generated in the ablation process of an Nd:YAG laser pulse on a Zn target under atmospheric pressure. For different laser spot diameters and time delays, the propagation of the expanding vapour and of the shock wave were recorded by intensity maps calculated using the recorded digital holograms. From the latter, the phase maps, the refractive index and the density field can be derived. A model was developed that approaches the density distribution, in particular the ellipsoidal expansion characteristics. The induced shock wave has an ellipsoid shape that approaches a sphere for decreasing spot diameter. The ellipsoidal shock waves have almost the same centre offset towards the laser beam and the same aspect ratio for different time steps. The model facilitates the derivation of the particle velocity field. The method provides valuable quantitative results that are discussed, in particular in comparison with the simpler point source explosion theory.
Mitochondrial-Targeted Catalase: Extended Longevity and the Roles in Various Disease Models.
Dai, D-F; Chiao, Y-A; Martin, G M; Marcinek, D J; Basisty, N; Quarles, E K; Rabinovitch, P S
2017-01-01
The free-radical theory of aging was proposed more than 50 years ago. As one of the most popular mechanisms explaining the aging process, it has been extensively studied in several model organisms. However, the results remain controversial. The mitochondrial version of free-radical theory of aging proposes that mitochondria are both the primary sources of reactive oxygen species (ROS) and the primary targets of ROS-induced damage. One critical ROS is hydrogen peroxide, which is naturally degraded by catalase in peroxisomes or glutathione peroxidase within mitochondria. Our laboratory developed mice-overexpressing catalase targeted to mitochondria (mCAT), peroxisomes (pCAT), or the nucleus (nCAT) in order to investigate the role of hydrogen peroxide in different subcellular compartments in aging and age-related diseases. The mCAT mice have demonstrated the largest effects on life span and healthspan extension. This chapter will discuss the mCAT phenotype and review studies using mCAT to investigate the roles of mitochondrial oxidative stresses in various disease models, including metabolic syndrome and atherosclerosis, cardiac aging, heart failure, skeletal muscle pathology, sensory defect, neurodegenerative diseases, and cancer. As ROS has been increasingly recognized as essential signaling molecules that may be beneficial in hormesis, stress response and immunity, the potential pleiotropic, or adverse effects of mCAT are also discussed. Finally, the development of small-molecule mitochondrial-targeted therapeutic approaches is reviewed. © 2017 Elsevier Inc. All rights reserved.
Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up
International Nuclear Information System (INIS)
El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.
2004-01-01
Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented
Crowell, Sheila E.; Beauchaine, Theodore P.; Linehan, Marsha M.
2009-01-01
Over the past several decades, research has focused increasingly on developmental precursors to psychological disorders that were previously assumed to emerge only in adulthood. This change in focus follows from the recognition that complex transactions between biological vulnerabilities and psychosocial risk factors shape emotional and behavioral development beginning at conception. To date, however, empirical research on the development of borderline personality is extremely limited. Indeed, in the decade since M. M. Linehan initially proposed a biosocial model of the development of borderline personality disorder, there have been few attempts to test the model among at-risk youth. In this review, diverse literatures are reviewed that can inform understanding of the ontogenesis of borderline pathology, and testable hypotheses are proposed to guide future research with at-risk children and adolescents. One probable pathway is identified that leads to borderline personality disorder; it begins with early vulnerability, expressed initially as impulsivity and followed by heightened emotional sensitivity. These vulnerabilities are potentiated across development by environmental risk factors that give rise to more extreme emotional, behavioral, and cognitive dysregulation. PMID:19379027
International Nuclear Information System (INIS)
Chen, M.; Chen, J.; Sun, F.
2010-01-01
Agriculture related pollution has attracted the attention of policy makers as well as scientists in China as its contribution to water impairment has increased, and quantitative information at the national and regional levels is being sought to support decision making. However, traditional approaches are either time-consuming, expensive (e.g. national surveys) or oversimplified and crude (e.g. coefficient methods). Therefore, this study proposed an extended substance flow analysis (SFA) framework to estimate nutrient releases from agricultural and rural activities in China by depicting the nutrient flows in Chinese agro-ecosystems. The six-step process proposed herein includes: (a) system definition; (b) model development; (c) database development; (d) model validation; (e) results interpretation; and (f) uncertainty analysis. The developed Eubolism (Elementary Unit based nutrient Balance mOdeLIng in agro-ecoSysteM) model combined a nutrient balance module with an emission inventory module to quantify the nutrient flows in the agro-ecosystem. The model was validated and then applied to estimate the total agricultural nutrient loads, identify the contribution of different agricultural and rural activities and different land use types to the total loads, and analyze the spatial pattern of agricultural nutrient emissions in China. These results could provide an entire picture of agricultural pollution at the national level and be used to support policy making. Furthermore, uncertainties associated with the structure of the elementary units, spatial resolution, and inputs/parameters were also analyzed to evaluate the robustness of the model results.
Zhang, Shaofeng; Li, Xiaojun; Zhu, Zuchao
2018-06-01
Thermodynamic effects on cryogenic cavitating flow is important to the accuracy of numerical simulations mainly because cryogenic fluids are thermo-sensitive, and the vapour saturation pressure is strongly dependent on the local temperature. The present study analyses the thermal cavitating flows in liquid nitrogen around a 2D hydrofoil. Thermal effects were considered using the RNG k-ε turbulence model with a modified turbulent eddy viscosity and the mass transfer homogenous cavitation model coupled with energy equation. In the cavitation model process, the saturated vapour pressure is modified based on the Clausius-Clapron equation. The convection heat transfer approach is also considered to extend the Zwart-Gerber-Belamri model. The predicted pressure and temperature inside the cavity under cryogenic conditions show that the modified Zwart-Gerber-Belamri model is in agreement with the experimental data of Hord et al. in NASA, especially in the thermal field. The thermal effect significantly affects the cavitation dynamics during phase-change process, which could delay or suppress the occurrence and development of cavitation behaviour. Based on the modified Zwart-Gerber-Belamri model proposed in this paper, better prediction of the cryogenic cavitation is attainable.
Directory of Open Access Journals (Sweden)
I. Hoteit
2003-01-01
Full Text Available A singular evolutive extended Kalman (SEEK filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM, while the physical forcing is described by the Princeton Ocean Model (POM. In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs. The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior. Key words. Oceanography: general (ocean prediction; numerical modelling – Oceanography: biological and chemical (ecosystems and ecology
Directory of Open Access Journals (Sweden)
Hongjie Wu
2013-01-01
Full Text Available State of charge (SOC is a critical factor to guarantee that a battery system is operating in a safe and reliable manner. Many uncertainties and noises, such as fluctuating current, sensor measurement accuracy and bias, temperature effects, calibration errors or even sensor failure, etc. pose a challenge to the accurate estimation of SOC in real applications. This paper adds two contributions to the existing literature. First, the auto regressive exogenous (ARX model is proposed here to simulate the battery nonlinear dynamics. Due to its discrete form and ease of implemention, this straightforward approach could be more suitable for real applications. Second, its order selection principle and parameter identification method is illustrated in detail in this paper. The hybrid pulse power characterization (HPPC cycles are implemented on the 60AH LiFePO4 battery module for the model identification and validation. Based on the proposed ARX model, SOC estimation is pursued using the extended Kalman filter. Evaluation of the adaptability of the battery models and robustness of the SOC estimation algorithm are also verified. The results indicate that the SOC estimation method using the Kalman filter based on the ARX model shows great performance. It increases the model output voltage accuracy, thereby having the potential to be used in real applications, such as EVs and HEVs.
Directory of Open Access Journals (Sweden)
Moussab eBennehar
2015-12-01
Full Text Available This paper deals with a new control scheme for Parallel Kinematic Manipulators (PKMs based on the L1 adaptive control theory. The original L1 adaptive controller is extended by including an adaptive loop based on the dynamics of the PKM. The additional model-based term is in charge of the compensation of the modeled nonlinear dynamics in the aim of improving the tracking performance. Moreover, the proposed controller is enhanced to reduce the internal forces, which may appear in the case of Redundantly Actuated PKMs (RA-PKMs. The generated control inputs are first regulated through a projection mechanism that reduces the antagonistic internal forces, before being applied to the manipulator. To validate the proposed controller and to show its effectiveness, real-time experiments are conducted on a new four degrees-of-freedom (4-DOFs RA-PKM developed in our laboratory.
Directory of Open Access Journals (Sweden)
Hsing Yu
2010-01-01
Full Text Available Extending the open-economy loanable funds model, this paper finds that more government borrowing as a percent of GDP leads to a higher government bond yield, that a higher real money market rate, a higher expected inflation rate, a higher EU government bond yield, or a decrease in the Slovak nominal effective exchange rate would increase the Slovak government bond yield, and that the positive coefficient of the percent change in real GDP is insignificant at the 10% level. When the standard closedeconomy or open-economy loanable funds model is considered, except that the positive coefficient of the ratio of the net capital inflow to GDP is insignificant at the 10% level, other results are similar.
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhen, E-mail: liu-zhen@sjtu.edu.cn; Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn
2017-02-15
We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.
Directory of Open Access Journals (Sweden)
Zhen Liu
2017-02-01
Full Text Available We extend some two Higgs doublet models, where the Yukawa couplings for the charged fermion mass generation only involve one Higgs doublet, by two singlet scalars respectively carrying a singly electric charge and a doubly electric charge. The doublet and singlet scalars together can mediate a two-loop diagram to generate a tiny Majorana mass matrix of the standard model neutrinos. Remarkably, the structure of the neutrino mass matrix is fully determined by the symmetric Yukawa couplings of the doubly charged scalar to the right-handed leptons. Meanwhile, a one-loop induced neutrinoless double beta decay can arrive at a testable level even if the electron neutrino has an extremely small Majorana mass. We also study other experimental constraints and implications including some rare processes and Higgs phenomenology.
Extending a Consensus-based Fuzzy Ordered Weighting Average (FOWA Model in New Water Quality Indices
Directory of Open Access Journals (Sweden)
Mohammad Ali Baghapour
2017-07-01
Full Text Available In developing a specific WQI (Water Quality Index, many water quality parameters are involved with different levels of importance. The impact of experts’ different opinions and viewpoints, current risks affecting their opinions, and plurality of the involved parameters double the significance of the issue. Hence, the current study tries to apply a consensus-based FOWA (Fuzzy Ordered Weighting Average model as one of the most powerful and well-known Multi Criteria Decision Making (MCDM techniques to determine the importance of the used parameters in the development of such WQIs which is shown with an example. This operator has provided the capability of modeling the risks in decision-making through applying the optimistic degree of stakeholders and their power coupled with the use of fuzzy numbers. Totally, 22 water quality parameters for drinking purposes are considered in this study. To determine the weight of each parameter, the viewpoints of 4 decision-making groups of experts are taken into account. After determining the final weights, to validate the use of each parameter in a potential WQI, consensus degrees of both the decision makers and the parameters are calculated. All calculations are carried out by using the expertise software called Group Fuzzy Decision Making (GFDM. The highest and the lowest weight values, 0.999 and 0.073 respectively, are related to Hg and temperature. Regarding the type of consumption that is drinking, the parameters’ weights and ranks are consistent with their health impacts. Moreover, the decision makers’ highest and lowest consensus degrees were 0.9905 and 0.9669, respectively. Among the water quality parameters, temperature (with consensus degree of 0.9972 and Pb (with consensus degree of 0.9665, received the highest and lowest agreement from the decision making group. This study indicates that the weight of parameters in determining water quality largely depends on the experts’ opinions and
Extending a Consensus-based Fuzzy Ordered Weighting Average (FOWA Model in New Water Quality Indices
Directory of Open Access Journals (Sweden)
Mohammad Ali Baghapour
2017-07-01
Full Text Available In developing a specific WQI (Water Quality Index, many quality parameters are involved with different levels of importance. The impact of experts’ different opinions and viewpoints, current risks affecting their opinions, and plurality of the involved parameters double the significance of the issue. Hence, the current study tries to apply a consensus-based FOWA (Fuzzy Ordered Weighting Average model as one of the most powerful and well-known Multi-Criteria Decision- Making (MCDM techniques to determine the importance of the used parameters in the development of such WQIs which is shown with an example. This operator has provided the capability of modeling the risks in decision-making through applying the optimistic degree of stakeholders and their power coupled with the use of fuzzy numbers. Totally, 22 water quality parameters for drinking purposes were considered in this study. To determine the weight of each parameter, the viewpoints of 4 decision-making groups of experts were taken into account. After determining the final weights, to validate the use of each parameter in a potential WQI, consensus degrees of both the decision makers and the parameters are calculated. The highest and the lowest weight values, 0.999 and 0.073 respectively, were related to Hg and temperature. Regarding the type of consumption that was drinking, the parameters’ weights and ranks were consistent with their health impacts. Moreover, the decision makers’ highest and lowest consensus degrees were 0.9905 and 0.9669, respectively. Among the water quality parameters, temperature (with consensus degree of 0.9972 and Pb (with consensus degree of 0.9665, received the highest and lowest agreement with the decision-making group. This study indicated that the weight of parameters in determining water quality largely depends on the experts’ opinions and approaches. Moreover, using the FOWA model provides results accurate and closer- to-reality on the significance of
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P
2017-06-13
We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.
International Nuclear Information System (INIS)
Keles, Dogan; Genoese, Massimo; Möst, Dominik; Fichtner, Wolf
2012-01-01
This paper evaluates different financial price and time series models, such as mean reversion, autoregressive moving average (ARMA), integrated ARMA (ARIMA) and general autoregressive conditional heteroscedasticity (GARCH) process, usually applied for electricity price simulations. However, as these models are developed to describe the stochastic behaviour of electricity prices, they are extended by a separate data treatment for the deterministic components (trend, daily, weekly and annual cycles) of electricity spot prices. Furthermore price jumps are considered and implemented within a regime-switching model. Since 2008 market design allows for negative prices at the European Energy Exchange, which also occurred for several hours in the last years. Up to now, only a few financial and time series approaches exist, which are able to capture negative prices. This paper presents a new approach incorporating negative prices. The evaluation of the different approaches presented points out that the mean reversion and the ARMA models deliver the lowest mean root square error between simulated and historical electricity spot prices gained from the European Energy Exchange. These models posses also lower mean average errors than GARCH models. Hence, they are more suitable to simulate well-fitting price paths. Furthermore it is shown that the daily structure of historical price curves is better captured applying ARMA or ARIMA processes instead of mean-reversion or GARCH models. Another important outcome of the paper is that the regime-switching approach and the consideration of negative prices via the new proposed approach lead to a significant improvement of the electricity price simulation. - Highlights: ► Considering negative prices improves the results of time-series and financial models for electricity prices. ► Regime-switching approach captures the jumps and base prices quite well. ► Removing and separate modelling of deterministic annual, weekly and daily
Müller, Ingo
1993-01-01
Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...
Quantum criticality and first-order transitions in the extended periodic Anderson model
Hagymási, I.; Itai, K.; Sólyom, J.
2013-03-01
We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.
An Extended Technology Acceptance Model for Mobile Social Gaming Service Popularity Analysis
Directory of Open Access Journals (Sweden)
Hui Chen
2017-01-01
Full Text Available The games industry has been growing prosperously with the development of information technology. Recently, with further advances in social networks and mobile services, playing mobile social gaming has gradually changed our daily life in terms of social connection and leisure time spending. What are the determinant factors which affect users intention to play such games? Therefore in this research we present an empirical study on WeChat, China’s most popular mobile social network, and apply a technology acceptance model (TAM to study the reasons beneath the popularity of games in mobile social networks. Furthermore, factors from social and mobile perspective are incorporated into the conventional TAM and their influence and relationships are studied. Experimental study on accumulated online survey data reveals several interesting findings and it is believed that this research offers the researchers in the community further insight in analysing the current popularity and future potential of mobile social games.