WorldWideScience

Sample records for extended peierls-hubbard model

  1. Competition between spin, charge, and bond waves in a Peierls-Hubbard model

    International Nuclear Information System (INIS)

    Venegas, P.A.; Henriquez, C.; Roessler, J.

    1996-01-01

    We study a one-dimensional extended Peierls-Hubbard model coupled to intracell and intercell phonons for a half-filled band. The calculations are made using the Hartree-Fock and adiabatic approximations for arbitrary temperature. In addition to static spin, charge, and bond density waves, we predict intermediate phases that lack inversion symmetry, and phase transitions that reduce symmetry on increasing temperature. copyright 1996 The American Physical Society

  2. Bond-order wave phase of the extended Hubbard model: Electronic solitons, paramagnetism, and coupling to Peierls and Holstein phonons

    Science.gov (United States)

    Kumar, Manoranjan; Soos, Zoltán G.

    2010-10-01

    The bond-order wave (BOW) phase of the extended Hubbard model (EHM) in one dimension (1D) is characterized at intermediate correlation U=4t by exact treatment of N -site systems. Linear coupling to lattice (Peierls) phonons and molecular (Holstein) vibrations are treated in the adiabatic approximation. The molar magnetic susceptibility χM(T) is obtained directly up to N=10 . The goal is to find the consequences of a doubly degenerate ground state (gs) and finite magnetic gap Em in a regular array. Degenerate gs with broken inversion symmetry are constructed for finite N for a range of V near the charge-density-wave boundary at V≈2.18t where Em≈0.5t is large. The electronic amplitude B(V) of the BOW in the regular array is shown to mimic a tight-binding band with small effective dimerization δeff . Electronic spin and charge solitons are elementary excitations of the BOW phase and also resemble topological solitons with small δeff . Strong infrared intensity of coupled molecular vibrations in dimerized 1D systems is shown to extend to the regular BOW phase while its temperature dependence is related to spin solitons. The Peierls instability to dimerization has novel aspects for degenerate gs and substantial Em that suppresses thermal excitations. Finite Em implies exponentially small χM(T) at low temperature followed by an almost linear increase with T . The EHM with U=4t is representative of intermediate correlations in quasi-1D systems such as conjugated polymers or organic ion-radical and charge-transfer salts. The vibronic and thermal properties of correlated models with BOW phases are needed to identify possible physical realizations.

  3. Correlation mediated superconductivity in a Spin Peierls Phase of the Hubbard Model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    The author explores the consequences of a mapping of the Hubbard Hamiltonian with a view to finding possible superconducting phases. The transformation pairs up all the sites and is therefore a much more natural starting point for describing a 'Spin Peierls' transition, generating enhanced singlet correlations for this pairing, than it is for describing the 'Resonating Valence Bond' state. It is shown that in the less than half filling case, an effective non-linear hopping Hamiltonian is quite useful in describing half of the electrons. This effective Hamiltonian can show a form of superconducting instability when nearest neighbour hopping is introduced to stabilise it. This superconducting phase seems to be a very unlikely possibility for the standard Hubbard model. (author)

  4. Bipolarons in one-dimensional extended Peierls-Hubbard models

    Science.gov (United States)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  5. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  6. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  7. Ising tricriticality in the extended Hubbard model with bond dimerization

    Science.gov (United States)

    Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).

  8. Are spin-Peierls tendencies helping superconductivity?

    International Nuclear Information System (INIS)

    Tosatti, E.; Yu Lu.

    1988-03-01

    Using mappings between one-dimensional models, we argue in this note that any additional spin-lattice to the Hubbard model and the ensuing tendency towards spin-Peierls state is damaging, rather than favourable to the RVB-type superconductivity. (author). 10 refs

  9. Exotic superconducting states in the extended attractive Hubbard model.

    Science.gov (United States)

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-04

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  10. Fidelity study of superconductivity in extended Hubbard models

    Science.gov (United States)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  11. One-dimensional extended Bose-Hubbard model with a confining potential: a DMRG analysis

    Energy Technology Data Exchange (ETDEWEB)

    Urba, Laura; Lundh, Emil; Rosengren, Anders [Condensed Matter Theory, Department of Theoretical Physics, KTH, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2006-12-28

    The extended Bose-Hubbard model in a quadratic trap potential is studied using a finite-size density-matrix renormalization group method (DMRG). We compute the boson density profiles, the local compressibility and the hopping correlation functions. We observe the phase separation induced by the trap in all the quantities studied and conclude that the local density approximation is valid in the extended Bose-Hubbard model. From the plateaus obtained in the local compressibility it was possible to obtain the phase diagram of the homogeneous system which is in agreement with previous results.

  12. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  13. Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model

    Science.gov (United States)

    Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi

    2017-10-01

    We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al., link ext-link-type="uri" xlink:href="https://doi.org/10.1103/PhysRevLett.103.177402" xlink:type="simple">Phys. Rev. Lett. 103, 177402 (2009)link>]. As Δ increases, the spectral intensity of the 1D ionic extended Hubbard model rapidly deviates from that of the 1D AF Heisenberg model and it is clarified that this deviation is due to the neutral-ionic domain wall, an elementary excitation near the neutral-ionic transition point.

  14. Correlation effects of third-order perturbation in the extended Hubbard model

    International Nuclear Information System (INIS)

    Wei, G.Z.; Nie, H.Q.; Li, L.; Zhang, K.Y.

    1989-01-01

    Using the local approach, a third-order perturbation calculation has been performed to investigate the effects of intra-atomic electron correlation and electron and spin correlation between nearest neighbour sites in the extended Hubbard model. It was found that significant correction of the third order over the second order results and, in comparison with the results of the third-order perturbation where only the intra-atomic electron correlation is included, the influence of the electron and spin correlation between nearest neighbour sites on the correlation energy is non-negligible. 17 refs., 3 figs

  15. The Peierls argument for higher dimensional Ising models

    International Nuclear Information System (INIS)

    Bonati, Claudio

    2014-01-01

    The Peierls argument is a mathematically rigorous and intuitive method to show the presence of a non-vanishing spontaneous magnetization in some lattice models. This argument is typically explained for the D = 2 Ising model in a way which cannot be easily generalized to higher dimensions. The aim of this paper is to present an elementary discussion of the Peierls argument for the general D-dimensional Ising model. (paper)

  16. Extended Hubbard model for mesoscopic transport in donor arrays in silicon

    Science.gov (United States)

    Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran

    2017-12-01

    Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.

  17. Spin peierls instability against S-like anisotropic superconductivity in framework of the mean field RVB-Hubbard model

    International Nuclear Information System (INIS)

    Wrobel, P.; Jacak, L.

    1988-01-01

    It is shown theoretically that the superconducting transition in the framework of RVB mean field treatment in nearly half-filled band Hubbard model is substantially influenced by spin density wave instability. The reasonable SDW and SC ordering phase diagram for doped La 2 CuO 4 compounds is found

  18. Investigation of a four-body coupling in the one-dimensional extended Penson-Kolb-Hubbard model

    Science.gov (United States)

    Ding, Hanqin; Ma, Xiaojuan; Zhang, Jun

    2017-09-01

    The experimental advances in cold fermion gases motivates the investigation of a one-dimensional (1D) correlated electronic system by incorporating a four-body coupling. Using the low-energy field theory scheme and focusing on the weak-coupling regime, we extend the 1D Penson-Kolb-Hubbard (PKH) model at half filling. It is found that the additional four-body interaction may significantly modify the quantum phase diagram, favoring the presence of the superconducting phase even in the case of two-body repulsions.

  19. The Peierls model: Progress and limitations

    International Nuclear Information System (INIS)

    Schoeck, Gunther

    2005-01-01

    The basic features of the Peierls model are reviewed. The original model is based on the concept of balance of stresses in 1D and has serious limitations. These limitations can be overcome by a treatment as a variational problem on the energy level in 2D. The fundamental equations are given and applications to determine displacement profiles for dislocations and their dissociations are discussed. When the core misfit has a planar extension and the misfit energy in the glide plane - the γ-surface - is determined from ab initio methods, very reliable core configurations can be determined. For dislocations along close-packed lattice directions the misfit energy can be obtained by a summing procedure using Euler coordinates. When these dislocations are dissociated multiple equilibrium configurations with different splitting widths can exist, but the values of energy difference in between - the Peierls energy - are too small to be determined reliably, considering the simplifying assumptions of the model

  20. The MFA ground states for the extended Bose-Hubbard model with a three-body constraint

    Science.gov (United States)

    Panov, Yu. D.; Moskvin, A. S.; Vasinovich, E. V.; Konev, V. V.

    2018-05-01

    We address the intensively studied extended bosonic Hubbard model (EBHM) with truncation of the on-site Hilbert space to the three lowest occupation states n = 0 , 1 , 2 in frames of the S = 1 pseudospin formalism. Similar model was recently proposed to describe the charge degree of freedom in a model high-T c cuprate with the on-site Hilbert space reduced to the three effective valence centers, nominally Cu1+;2+;3+. With small corrections the model becomes equivalent to a strongly anisotropic S = 1 quantum magnet in an external magnetic field. We have applied a generalized mean-field approach and quantum Monte-Carlo technique for the model 2D S = 1 system with a two-particle transport to find the ground state phase with its evolution under deviation from half-filling.

  1. Off-site interaction effect in the Extended Hubbard Model with the SCRPA method

    International Nuclear Information System (INIS)

    Harir, S; Bennai, M; Boughaleb, Y

    2007-01-01

    The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion

  2. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    International Nuclear Information System (INIS)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-01

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters

  3. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves.

    Science.gov (United States)

    Hermes, Matthew R; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  4. Hubbard physics in the PAW GW approximation

    Energy Technology Data Exchange (ETDEWEB)

    Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P. [Theoretical Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC (Australia); Drumm, D. W. [Theoretical Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC (Australia); Casey, P. S. [CSIRO Manufacturing, Clayton, VIC (Australia)

    2016-06-28

    It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxide are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.

  5. Super-Hubbard models and applications

    International Nuclear Information System (INIS)

    Drummond, James M.; Feverati, Giovanni; Frappat, Luc; Ragoucy, Eric

    2007-01-01

    We construct XX- and Hubbard-like models based on unitary superalgebras gl(N/M) generalising Shastry's and Maassarani's approach of the algebraic case. We introduce the R-matrix of the gl(N/M) XX model and that of the Hubbard model defined by coupling two independent XX models. In both cases, we show that the R-matrices satisfy the Yang-Baxter equation, we derive the corresponding local Hamiltonian in the transfer matrix formalism and we determine the symmetry of the Hamiltonian. Explicit examples are worked out. In the cases of the gl(1/2) and gl(2/2) Hubbard models, a perturbative calculation at two loops a la Klein and Seitz is performed

  6. Interaction effect in the Kondo energy of the periodic Anderson-Hubbard model

    Science.gov (United States)

    Itai, K.; Fazekas, P.

    1996-07-01

    We extend the periodic Anderson model by switching on a Hubbard U for the conduction band. The nearly integral valent limit of the Anderson-Hubbard model is studied with the Gutzwiller variational method. The lattice Kondo energy shows U dependence both in the prefactor and the exponent. Switching on U reduces the Kondo scale, which can be understood to result from the blocking of hybridization. At half filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator. Our findings should be relevant for a number of correlated two-band models of recent interest.

  7. Phase competition in a one-dimensional three-orbital Hubbard-Holstein model

    Science.gov (United States)

    Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven

    2018-05-01

    We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.

  8. Superconducting correlations in the one-band Hubbard model with intermediate on-site and weak attractive intersite interactions

    International Nuclear Information System (INIS)

    Jain, K.P.; Ramakumar, R.; Chancey, C.C.

    1990-01-01

    In this paper, we analyze a simple extended Hubbard model with an intermediate on-site interaction (both repulsive and attractive) and a weak intersite attractive interaction. Following Hubbard decoupling approximations and introducing Hubbard subband operators, we obtain a generalized gap function for singlet s-wave pairing that explicitly depends on the Hubbard subband energies. For the on-site repulsive-interaction case, we find that the superconductivity is not destroyed in the intermediate-interaction regime, contrary to the prediction of a Hartree-Fock mean-field treatment. The essential consequence of the on-site repulsion is the formation of the Hubbard subbands separated by the Mott-Hubbard gap, and it is within these subbands that pairing induced by the intersite interaction occurs. For the attractive on-site interaction case, the on-site pairing amplitude is found to be proportional to the bandwidth, and the gap function has contributions from both on-site and intersite pairing. The relevance of the model to high-temperature superconductivity is discussed

  9. Mean-field results of the multiple-band extended Hubbard model for the square-planar CuO2 lattice

    International Nuclear Information System (INIS)

    Nimkar, S.; Sarma, D.D.; Krishnamurthy, H.R.; Ramasesha, S.

    1993-01-01

    We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO 2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J eff , the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T c materials arising from photoemission and neutron-scattering experiments

  10. Disordered spinor Bose-Hubbard model

    International Nuclear Information System (INIS)

    LaPcki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub

    2011-01-01

    We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.

  11. An exact solution to the extended Hubbard model in 2D for finite size system

    Science.gov (United States)

    Harir, S.; Bennai, M.; Boughaleb, Y.

    2008-08-01

    An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.

  12. An introduction to the Hubbard model

    International Nuclear Information System (INIS)

    Ercolessi, E.; Morandi, G.; Pieri, P.

    1997-01-01

    In these notes we review some of the basic features of the 2D Hubbard model, thought of as the appropriate model for the description of the Cu - O planes in the cuprate superconductors. We discuss breifly the weak-coupling regime of the model and, in the opposite limit, the mapping of the one band Hubbard model onto an AFM Heisenberg model at half filling and onto the t - J model below half filling. We discuss next Emery's three band model and its mapping onto the so-called ''spin-fermion'' model. Its continuum limit is discussed by making use of an adiabatic followed by a gradient expansion. We review briefly how the model maps onto a nonlinear sigma model and some of the features of the latter. (orig.)

  13. Hubbard physics in the symmetric half-filled periodic anderson-hubbard model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-05-01

    Two very different methods — exact diagonalization on finite chains and a variational method — are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied d sites ( gn d ) as a function of various parameters. In the absence of on-site Coulomb interaction ( U f ) between f electrons, the two methods yield similar results. The double occupancy of d levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite U f , while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value ( U {/d c }), which depends on U f and V.

  14. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  15. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  16. Enhanced pairing susceptibility in a photodoped two-orbital Hubbard model

    Science.gov (United States)

    Werner, Philipp; Strand, Hugo U. R.; Hoshino, Shintaro; Murakami, Yuta; Eckstein, Martin

    2018-04-01

    Local spin fluctuations provide the glue for orbital-singlet spin-triplet pairing in the doped Mott insulating regime of multiorbital Hubbard models. At large Hubbard repulsion U , the pairing susceptibility is nevertheless tiny because the pairing interaction cannot overcome the suppression of charge fluctuations. Using nonequilibrium dynamical mean field simulations of the two-orbital Hubbard model, we show that out of equilibrium the pairing susceptibility in this large-U regime can be strongly enhanced by creating a photoinduced population of the relevant charge states. This enhancement is supported by the long lifetime of photodoped charge carriers and a built-in cooling mechanism in multiorbital Hubbard systems.

  17. Optical Conductivity in a Two-Dimensional Extended Hubbard Model for an Organic Dirac Electron System α-(BEDT-TTF2I3

    Directory of Open Access Journals (Sweden)

    Daigo Ohki

    2018-03-01

    Full Text Available The optical conductivity in the charge order phase is calculated in the two-dimensional extended Hubbard model describing an organic Dirac electron system α -(BEDT-TTF 2 I 3 using the mean field theory and the Nakano-Kubo formula. Because the interband excitation is characteristic in a two-dimensional Dirac electron system, a peak structure is found above the charge order gap. It is shown that the peak structure originates from the Van Hove singularities of the conduction and valence bands, where those singularities are located at a saddle point between two Dirac cones in momentum space. The frequency of the peak structure exhibits drastic change in the vicinity of the charge order transition.

  18. Pressure Dependence of the Peierls Stress in Aluminum

    Science.gov (United States)

    Dang, Khanh; Spearot, Douglas

    2018-03-01

    The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.

  19. Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order

    Science.gov (United States)

    Yang, Chun; Feiguin, Adrian

    We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.

  20. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  1. Collective Kondo effect in the Anderson-Hubbard lattice

    Science.gov (United States)

    Fazekas, P.; Itai, K.

    1997-02-01

    The periodic Anderson model is extended by switching on a Hubbard U for the conduction electrons. We use the Gutzwiller variational method to study the nearly integral valent limit. The lattice Kondo energy contains the U-dependent chemical potential of the Hubbard subsystem in the exponent, and the correlation-induced band narrowing in the prefactor. Both effects tend to suppress the Kondo scale, which can be understood to result from the blocking of hybridization. At half-filling, we find a Brinkman-Rice-type transition from a Kondo insulator to a Mott insulator.

  2. Spin-spin correlations in the tt'-Hubbard model

    International Nuclear Information System (INIS)

    Husslein, T.; Newns, D.M.; Mattutis, H.G.; Pattnaik, P.C.; Morgenstern, I.; Singer, J.M.; Fettes, W.; Baur, C.

    1994-01-01

    We present calculations of the tt'-Hubbard model using Quantum Monte Carlo techniques. The parameters are chosen so that the van Hove Singularity in the density of states and the Fermi level coincide. We study the behaviour of the system with increasing Hubbard interaction U. Special emphasis is on the spin-spin correlation (SSC). Unusual behaviour for large U is observed there and in the momentum distribution function (n(q)). (orig.)

  3. Tunneling of self-trapped states and formation of a band

    International Nuclear Information System (INIS)

    Yonemitsu, K.

    1993-12-01

    Tunneling of a self-trapped kink and formation of a band are studied semi classically in the one-dimensional extended Peierls-Hubbard model near half filling, considering up to Gaussian fluctuations around imaginary-time-dependent periodic motion of electrons and phonons on the stationary phase of the action derived using Slater determinants. In the strong-coupling limit of both the Holstein and attractive Hubbard models, it reproduces analytically-known effective hopping of a single bipolaron because the tunneling involves only one in this limit. The method gives new results in other general cases and is easily applied to excited or more complex systems. 13 refs, 4 figs

  4. Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms

    Science.gov (United States)

    2008-11-01

    Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due

  5. Constrained nudged elastic band calculation of the Peierls barrier with atomic relaxations

    International Nuclear Information System (INIS)

    Gröger, R; Vitek, V

    2012-01-01

    We demonstrate that the straightforward application of the nudged elastic band (NEB) method does not determine the correct Peierls barrier of 1/2〈1 1 1〉 screw dislocations in bcc metals. Although this method guarantees that the states (images) of the system are distributed uniformly along the minimum energy path, it does not imply that the dislocation positions are distributed uniformly along this path. In fact, clustering of dislocation positions near potential minima occurs which leads to an overestimate of both the slope of the Peierls barrier and the Peierls stress. We propose a modification in which the NEB method is applied only to a small number of degrees of freedom that determine the position of the dislocation, while all other coordinates of atoms are relaxed by molecular statics as in any atomistic study. This modified NEB method with relaxations gives the Peierls barrier that increases smoothly with the dislocation position and the corresponding Peierls stress agrees well with that evaluated by the direct application of stress in the atomistic modeling of the dislocation glide. (paper)

  6. Mott metal-insulator transition in the doped Hubbard-Holstein model

    Science.gov (United States)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  7. Mott transition in the Hubbard model

    International Nuclear Information System (INIS)

    Shastry, B.S.

    1992-01-01

    In this article, the author discuss W. Kohn's criterion for a metal insulator transition, within the framework of a one-band Hubbard model. This and related ideas are applied to 1-dimensional Hubbard systems, and some interesting miscellaneous results discussed. The Jordan-Wigner transformation converting the two species of fermions to two species of hardcore bosons is performed in detail, and the extra phases arising from odd-even effects are explicitly derived. Bosons are shown to prefer zero flux (i.e., diamagnetism) and the corresponding happy fluxes: for the fermions identified. A curios result following from the interplay between orbital diamagnetism and spin polarization is highlighted. A spin-statistics like theorem, showing that the anticommutation relations between fermions of opposite spin are crucial to obtain the SU(2) invariance is pointed out

  8. Symmetry-breaking solutions of the Hubbard model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; )

    1998-10-01

    The problem of finding the ferromagnetic and antiferromagnetic ''broken symmetry'' solutions of the correlated lattice fermion models beyond the mean-field approximation has been investigated. The calculation of the quasiparticle excitation spectrum with damping for the single- and multi-orbital Hubbard model has been performed in the framework of the equation-of-motion method for two-time temperature Green's Functions within a non-perturbative approach. A unified scheme for the construction of Generalised Mean Fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of Dyson equation has been generalised in order to include the presence of the ''source fields''. The damping of quasiparticles, which reflects the interaction of the single-particle and collective degrees of freedom has been calculated. The ''broken symmetry'' dynamical solutions of the Hubbard model, which correspond to various types of itinerant antiferromagnetism have been discussed. This approach complements previous studies and clarifies the nature of the concepts of itinerant antiferromagnetism and ''spin-aligning field'' of correlated lattice fermions. (author)

  9. Optical conductivity of the Hubbard model

    International Nuclear Information System (INIS)

    Vicente Alvarez, J.J.; Balseiro, C.A.; Ceccatto, H.A.

    1996-07-01

    We study the response to a static electric field (charge stiffness) and the frequency-dependent conductivity of the Hubbard model in a resonant-valence-bond-type paramagnetic phase. This phase is described by means of a charge and spin rotational-invariant approach, based on a mixed fermion-boson representation of the original strongly correlated electrons. We found that the Mott transition at half filling is well described by the charge stiffness behaviour, and that the values for this quantity off half filling agree reasonably well with numerical results. Furthermore, for the frequency-dependent conductivity we trace back the origin of the band which appears inside the Hubbard gap to magnetic pair breaking. This points to a magnetic origin of midinfrared band in high-T c compounds, with no relation to superconductivity. (author). 12 refs, 2 tabs

  10. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    Science.gov (United States)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; Choi, Yongseong; Haskel, Daniel; Lee, Young S.

    2018-02-01

    The application of pressure reveals a rich phase diagram for the quantum S =1 /2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T =4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ˜6 GPa up to 215 K but possibly extends in temperature to above T =300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.

  11. Superconducting, magnetic, and charge correlations in the doped two-chain Hubbard model

    International Nuclear Information System (INIS)

    Asai, Y.

    1995-01-01

    We have studied the superconducting, magnetic, and charge correlation functions and the spin excitation spectrum in the doped two-chain Hubbard model by projector Monte Carlo and Lanczos diagonalization methods. The exponent of the interchain singlet superconducting correlation function, γ, is found to be close to 2.0 as long as two distinct noninteracting bands cross the Fermi level. Magnetic and charge correlation functions decay more rapidly than or as fast as the interchain singlet superconducting correlation function along the chains. The superconducting correlation in the doped two-chain Hubbard model is the most long-range correlation studied here. Implications of the results for the possible universality class of the doped two-chain Hubbard model are discussed

  12. Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W.

    Energy Technology Data Exchange (ETDEWEB)

    Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipated based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.

  13. The symmetry of the Hubbard model

    International Nuclear Information System (INIS)

    Grosse, H.

    1988-01-01

    The spectrum of the Hubbard model shows permanent degeneracy of levels with different symmetry, if one considers only symmetry operators independent of the coupling constant. This suggests the existence of symmetry operators which depend on the coupling constant. We find these highly nontrivial operators and show that they explain the degeneracies in the energy spectrum. 5 refs. (Author)

  14. Two site spin correlation function in Bethe-Peierls approximation for Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Roorkee Univ. (India). Dept. of Physics

    1976-07-01

    Two site spin correlation function for an Ising model above Curie temperature has been calculated by generalising Bethe-Peierls approximation. The results derived by a graphical method due to Englert are essentially the same as those obtained earlier by Elliott and Marshall, and Oguchi and Ono. The earlier results were obtained by a direct generalisation of the cluster method of Bethe, while these results are derived by retaining that class of diagrams , which is exact on Bethe lattice.

  15. Nonperturbative approach to the attractive Hubbard model

    International Nuclear Information System (INIS)

    Allen, S.; Tremblay, A.-M. S.

    2001-01-01

    A nonperturbative approach to the single-band attractive Hubbard model is presented in the general context of functional-derivative approaches to many-body theories. As in previous work on the repulsive model, the first step is based on a local-field-type ansatz, on enforcement of the Pauli principle and a number of crucial sumrules. The Mermin-Wagner theorem in two dimensions is automatically satisfied. At this level, two-particle self-consistency has been achieved. In the second step of the approximation, an improved expression for the self-energy is obtained by using the results of the first step in an exact expression for the self-energy, where the high- and low-frequency behaviors appear separately. The result is a cooperon-like formula. The required vertex corrections are included in this self-energy expression, as required by the absence of a Migdal theorem for this problem. Other approaches to the attractive Hubbard model are critically compared. Physical consequences of the present approach and agreement with Monte Carlo simulations are demonstrated in the accompanying paper (following this one)

  16. Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide

    Science.gov (United States)

    Cui, Chang-Xing; Kertesz, Miklos

    1990-06-01

    A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.

  17. Does a spin-Peierls system have one gap or two?

    International Nuclear Information System (INIS)

    Aien, Michel; Petitgrand, Daniel; Dhalenne, Guy; Revcolevschi, Alexandre

    2001-01-01

    We investigated the collective excitations of the spin-Peierls phase of CuGeO 3 by inelastic neutron scattering. We measured the dispersion curve of these excitations, with and without magnetic field. The main result is to show that there exists a second gap feature which separate the spin singlet-triplet excitation from a 'continuum' of excitation extending to relatively high energies. Moreover magnetic field produces a loss of intensity in the energy scan. (author)

  18. Cold Attractive Spin Polarized Fermi Lattice Gases and the Doped Positive U Hubbard Model

    International Nuclear Information System (INIS)

    Moreo, Adriana; Scalapino, D. J.

    2007-01-01

    Experiments on polarized fermion gases performed by trapping ultracold atoms in optical lattices allow the study of an attractive Hubbard model for which the strength of the on-site interaction is tuned by means of a Feshbach resonance. Using a well-known particle-hole transformation we discuss how results obtained for this system can be reinterpreted in the context of a doped repulsive Hubbard model. In particular, we show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state corresponds to the striped state of the two-dimensional doped positive U Hubbard model. We then use the results of numerical studies of the striped state to relate the periodicity of the FFLO state to the spin polarization. We also comment on the relationship of the d x 2 -y 2 superconducting phase of the doped 2D repulsive Hubbard model to a d-wave spin density wave state for the attractive case

  19. Ferromagnetism in the Hubbard-Hirsch model

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zhuravlev, M.E.

    1991-01-01

    In the Hubbard model U=∞ the energy lowering due to exchange interaction of electrons of opposite spin in states with opposite bonding character is taken into account. In the electron concentration range 0< n<1 nonmonotonous dependence m(n) analogous to Slater-Pauling curves has been obtained. The Curle temperature having nonmonotonous dependence on n, saturated magnetization, the temperature dependences of magnetization have been obtained. (orig.)

  20. Study of the two-dimensional Hubbard model at half-filling through constructive methods; Etude du modele de Hubbard bidimensionnel a demi remplissage par des methodes constructives

    Energy Technology Data Exchange (ETDEWEB)

    Afchain, St

    2005-02-15

    The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)

  1. Spectral properties near the Mott transition in the two-dimensional Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2013-03-01

    Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.

  2. Physical properties of the half-filled Hubbard model in infinite dimensions

    International Nuclear Information System (INIS)

    Georges, A.; Krauth, W.

    1993-01-01

    A detailed quantitative study of the physical properties of the infinite-dimensional Hubbard model at half filling is presented. The method makes use of an exact mapping onto a single-impurity model supplemented by a self-consistency condition. This coupled problem is solved numerically. Results for thermodynamic quantities (specific heat, entropy, . . .), one-particle spectral properties, and magnetic properties (response to a uniform magnetic field) are presented and discussed. The nature of the Mott-Hubbard metal-insulator transition found in this model is investigated. A numerical solution of the mean-field equations inside the antiferromagnetic phase is also reported

  3. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    Science.gov (United States)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  4. The Langevin method and Hubbard-like models

    International Nuclear Information System (INIS)

    Gross, M.; Hamber, H.

    1989-01-01

    The authors reexamine the difficulties associated with application of the Langevin method to numerical simulation of models with non-positive definite statistical weights, including the Hubbard model. They show how to avoid the violent crossing of the zeroes of the weight and how to move those nodes away from the real axis. However, it still appears necessary to keep track of the sign (or phase) of the weight

  5. Exchange and spin-fluctuation superconducting pairing in the strong correlation limit of the Hubbard model

    International Nuclear Information System (INIS)

    Plakida, N. M.; Anton, L.; Adam, S. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO); Adam, Gh. . Department of Theoretical Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, PO Box MG-6, RO-76900 Bucharest - Magurele; RO)

    2001-01-01

    A microscopical theory of superconductivity in the two-band singlet-hole Hubbard model, in the strong coupling limit in a paramagnetic state, is developed. The model Hamiltonian is obtained by projecting the p-d model to an asymmetric Hubbard model with the lower Hubbard subband occupied by one-hole Cu d-like states and the upper Hubbard subband occupied by two-hole p-d singlet states. The model requires two microscopical parameters only, the p-d hybridization parameter t and the charge-transfer gap Δ. It was previously shown to secure an appropriate description of the normal state properties of the high -T c cuprates. To treat rigorously the strong correlations, the Hubbard operator technique within the projection method for the Green function is used. The Dyson equation is derived. In the molecular field approximation, d-wave superconducting pairing of conventional hole (electron) pairs in one Hubbard subband is found, which is mediated by the exchange interaction given by the interband hopping, J ij = 4 (t ij ) 2 / Δ. The normal and anomalous components of the self-energy matrix are calculated in the self-consistent Born approximation for the electron-spin-fluctuation scattering mediated by kinematic interaction of the second order of the intraband hopping. The derived numerical and analytical solutions predict the occurrence of singlet d x 2 -y 2 -wave pairing both in the d-hole and singlet Hubbard subbands. The gap functions and T c are calculated for different hole concentrations. The exchange interaction is shown to be the most important pairing interaction in the Hubbard model in the strong correlation limit, while the spin-fluctuation coupling results only in a moderate enhancement of T c . The smaller weight of the latter comes from two specific features: its vanishing inside the Brillouin zone (BZ) along the lines, |k x | + |k y |=π pointing towards the hot spots and the existence of a small energy shell within which the pairing is effective. By

  6. Stripe order from the perspective of the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Devereaux, Thomas Peter

    2018-03-01

    A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large portion of the cuprate phase diagram.

  7. Magnon edge states in the hardcore- Bose-Hubbard model.

    Science.gov (United States)

    Owerre, S A

    2016-11-02

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.

  8. About long range pairing correlations in the Hubbard U-t-t' models

    International Nuclear Information System (INIS)

    Moreo, A.

    1991-01-01

    Using a quantum Monte Carlo method the authors measured pair correlation functions with different symmetries as a function of the filling, U/t and t'/t for the Hubbard and U-t-t' models. For the first time the Monte Carlo results are presented for U/t larger than the bandwidth 8t, away from half-filling. D-wave and extended S-wave pairing correlations are enhanced. D-wave pairing is stronger at half-filling but this behavior is reversed when the filling decreases. However, none of the eight pairing correlations that were studied increases as a function of lattice size, which makes the existence of long range superconducting order unlikely. (author). 10 refs.; 5 figs

  9. CDW fluctuations and the pseudogap in the single-particle conductivity of quasi-1D Peierls CDW systems: II.

    Science.gov (United States)

    Kupčić, I; Rukelj, Z; Barišić, S

    2014-05-14

    The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.

  10. Algebra of orthofermions and equivalence of their thermodynamics to the infinite U Hubbard model

    International Nuclear Information System (INIS)

    Kishore, R.; Mishra, A.K.

    2006-01-01

    The equivalence of thermodynamics of independent orthofermions to the infinite U Hubbard model, shown earlier for the one-dimensional infinite lattice, has been extended to a finite system of two lattice sites. Regarding the algebra of orthofermions, the algebraic expressions for the number operator for a given spin and the spin raising (lowering) operators in the form of infinite series are rearranged in such a way that the ith term, having the form of an infinite series, of the number (spin raising (lowering)) operator represents the number (spin raising (lowering)) operator at the ith lattice site

  11. The one-dimensional extended Bose–Hubbard model

    Indian Academy of Sciences (India)

    Unknown

    method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.

  12. Classical mapping for Hubbard operators: Application to the double-Anderson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Miller, William H. [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Levy, Tal J.; Rabani, Eran [School of Chemistry, The Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-05-28

    A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to be accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.

  13. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  14. Universal quantum computation by scattering in the Fermi–Hubbard model

    International Nuclear Information System (INIS)

    Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel

    2015-01-01

    The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)

  15. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Friederich, Simon

    2010-01-01

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  16. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Friederich, Simon

    2010-12-08

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  17. Methodes d'amas quantiques a temperature finie appliquees au modele de Hubbard

    Science.gov (United States)

    Plouffe, Dany

    Depuis leur decouverte dans les annees 80, les supraconducteurs a haute temperature critique ont suscite beaucoup d'interet en physique du solide. Comprendre l'origine des phases observees dans ces materiaux, telle la supraconductivite, est l'un des grands defis de la physique theorique du solide des 25 dernieres annees. L'un des mecanismes pressentis pour expliquer ces phenomenes est la forte interaction electron-electron. Le modele de Hubbard est l'un des modeles les plus simples pour tenir compte de ces interactions. Malgre la simplicite apparente de ce modele, certaines de ses caracteristiques, dont son diagramme de phase, ne sont toujours pas bien etablies, et ce malgre plusieurs avancements theoriques dans les dernieres annees. Cette etude se consacre a faire une analyse de methodes numeriques permettant de calculer diverses proprietes du modele de Hubbard en fonction de la temperature. Nous decrivons des methodes (la VCA et la CPT) qui permettent de calculer approximativement la fonction de Green a temperature finie sur un systeme infini a partir de la fonction de Green calculee sur un amas de taille finie. Pour calculer ces fonctions de Green, nous allons utiliser des methodes permettant de reduire considerablement les efforts numeriques necessaires pour les calculs des moyennes thermodynamiques, en reduisant considerablement l'espace des etats a considerer dans ces moyennes. Bien que cette etude vise d'abord a developper des methodes d'amas pour resoudre le modele de Hubbard a temperature finie de facon generale ainsi qu'a etudier les proprietes de base de ce modele, nous allons l'appliquer a des conditions qui s'approchent de supraconducteurs a haute temperature critique. Les methodes presentees dans cette etude permettent de tracer un diagramme de phase pour l'antiferromagnetisme et la supraconductivite qui presentent plusieurs similarites avec celui des supraconducteurs a haute temperature. Mots-cles : modele de Hubbard, thermodynamique

  18. Magnetic properties of three-dimensional Hubbard-sigma model

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.

    1989-11-01

    It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)

  19. A Riemann-Hilbert formulation for the finite temperature Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Cavaglià, Andrea [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); Cornagliotto, Martina [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy); DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Mattelliano, Massimo; Tateo, Roberto [Dipartimento di Fisica and INFN, Università di Torino,Via P. Giuria 1, 10125 Torino (Italy)

    2015-06-03

    Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.

  20. Study of the two-dimensional Hubbard model at half-filling through constructive methods

    International Nuclear Information System (INIS)

    Afchain, St.

    2005-02-01

    The Hubbard model is the simplest model to describe the behaviour of fermions on a network, it takes into account only fermion scattering and only interactions with other fermions located on the same site. Half-filling means that the total number of fermions is equal to half the number of sites. In the first chapter we show how we can pass trough successive approximations from a very general Hamiltonian to the Hubbard Hamiltonian. The second chapter is dedicated to the passage from the Hamiltonian formalism to the Grassmanian functional formalism. The main idea is to show that the correlation functions of the Hamiltonian approach can be described through fermionic functional integrals which implies the possibility of speaking of the model in terms of field theory. The chapter 3 deals with the main constructive techniques that allow the strict and consistent construction of models inside the frame of field theory. We show by proving the violation of a condition concerning self-energy, that the two-dimensional Hubbard model at half-filling has not the behaviour of a Fermi liquid in the Landau's interpretation. (A.C.)

  1. Theoretical and experimental estimates of the Peierls stress

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-03-01

    Full Text Available - sidered in its original derivation. It is argued that the conditions of each type of experiment determine whether the P-N or the H formula is appropriate. ? 2. THEORETICAL Peierls's original estimate was based on a simple cubic lattice... with elastic isotropy and Poisson's ratio v. The result was (T z 20p exp [-47r/( 1 - v)]. (1) This value is so small that a detailed discussion of its accuracy would be point- Nabarro (1947) corrected an algebraic error in Peierls's calculation...

  2. Stress dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in bcc metals

    International Nuclear Information System (INIS)

    Gröger, R.; Vitek, V.

    2013-01-01

    The recently formulated constrained nudged elastic band method with atomic relaxations (NEB + r) (Gröger R, Vitek V. Model Simul Mater Sci Eng 2012;20:035019) is used to investigate the dependence of the Peierls barrier of 1/2〈1 1 1〉 screw dislocations in body-centered cubic metals on non-glide stresses. These are the shear stresses parallel to the slip direction acting in the planes of the 〈1 1 1〉 zone different from the slip plane, and the shear stresses perpendicular to the slip direction. Both these shear stresses modify the structure of the dislocation core and thus alter both the Peierls barrier and the related Peierls stress. Understanding of this effect of loading is crucial for the development of mesoscopic models of thermally activated dislocation motion via formation and propagation of pairs of kinks. The Peierls stresses and related choices of the glide planes determined from the Peierls barriers agree with the results of molecular statics calculations (Gröger R, Bailey AG, Vitek V. Acta Mater 2008;56:5401), which demonstrates that the NEB + r method is a reliable tool for determining the variation in the Peierls barrier with the applied stress. However, such calculations are very time consuming, and it is shown here that an approximate approach of determining the stress dependence of the Peierls barrier (proposed in Gröger R, Vitek V. Acta Mater 2008;56:5426) can be used, combined with test calculations employing the NEB + r method

  3. Planar N = 4 gauge theory and the Hubbard model

    International Nuclear Information System (INIS)

    Rej, Adam; Serban, Didina; Staudacher, Matthias

    2006-01-01

    Recently it was established that a certain integrable long-range spin chain describes the dilatation operator of N = 4 gauge theory in the su(2) sector to at least three-loop order, while exhibiting BMN scaling to all orders in perturbation theory. Here we identify this spin chain as an approximation to an integrable short-ranged model of strongly correlated electrons: The Hubbard model

  4. Dynamical Vertex Approximation for the Hubbard Model

    Science.gov (United States)

    Toschi, Alessandro

    A full understanding of correlated electron systems in the physically relevant situations of three and two dimensions represents a challenge for the contemporary condensed matter theory. However, in the last years considerable progress has been achieved by means of increasingly more powerful quantum many-body algorithms, applied to the basic model for correlated electrons, the Hubbard Hamiltonian. Here, I will review the physics emerging from studies performed with the dynamical vertex approximation, which includes diagrammatic corrections to the local description of the dynamical mean field theory (DMFT). In particular, I will first discuss the phase diagram in three dimensions with a special focus on the commensurate and incommensurate magnetic phases, their (quantum) critical properties, and the impact of fluctuations on electronic lifetimes and spectral functions. In two dimensions, the effects of non-local fluctuations beyond DMFT grow enormously, determining the appearance of a low-temperature insulating behavior for all values of the interaction in the unfrustrated model: Here the prototypical features of the Mott-Hubbard metal-insulator transition, as well as the existence of magnetically ordered phases, are completely overwhelmed by antiferromagnetic fluctuations of exponentially large extension, in accordance with the Mermin-Wagner theorem. Eventually, by a fluctuation diagnostics analysis of cluster DMFT self-energies, the same magnetic fluctuations are identified as responsible for the pseudogap regime in the holed-doped frustrated case, with important implications for the theoretical modeling of the cuprate physics.

  5. Sir Rudolf Peierls Selected private and scientific correspondence

    CERN Document Server

    Lee, Sabine

    2007-01-01

    This edition of the private and scientific correspondence of Sir Rudolf Peierls gives a unique insight into the life and work of one of the greatest theoretical physicists of the 20th century. Rudolf Peierls' scientific work contributed to the early developments in quantum mechanics, and he is well known and much appreciated for his contributions to various disciplines, including solid state physics, nuclear physics, and particle physics. As an enthusiastic and devoted teacher, he passed on his knowledge and understanding and inspired the work of collaborators and students alike. As an effecti

  6. The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.

    Science.gov (United States)

    Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi

    2009-08-26

    The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.

  7. The Peierls stress of the moving 1/2{110} screw dislocation in Ta

    International Nuclear Information System (INIS)

    Liu Ruiping; Wang Shaofeng; Wu Xiaozhi

    2009-01-01

    The Peierls stress of the moving 1/2 {110} screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving 1/2 {110} screw dislocation in Ta is proposed to be planar.

  8. Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model

    International Nuclear Information System (INIS)

    Aprea, G.; Di Castro, C.; Grilli, M. . E-mail marco.grilli@roma1.infn.it; Lorenzana, J.

    2006-01-01

    We investigate the interplay between the electron-electron and the electron-phonon interaction in the Hubbard-Holstein model. We implement the flow-equation method to investigate within this model the effect of correlation on the electron-phonon effective coupling and, conversely, the effect of phonons in the effective electron-electron interaction. Using this technique we obtain analytical momentum-dependent expressions for the effective couplings and we study their behavior for different physical regimes. In agreement with other works on this subject, we find that the electron-electron attraction mediated by phonons in the presence of Hubbard repulsion is peaked at low transferred momenta. The role of the characteristic energies involved is also analyzed

  9. Fourier-accelerated Langevin simulation of the frustrated XY model and simulation of the spinless and spin one-half Hubbard model

    International Nuclear Information System (INIS)

    Scheinine, A.L.

    1992-01-01

    The frustrated XY model was studied on a lattice, primarily to test Fourier transform acceleration technique for a phase transition having more field structure than just spinwaves and vortices. Also, the spinless Hubbard model without hopping was simulated using continuous variables for the auxiliary field that mediates coupling between fermions. Finally, spin one-half Hubbard model was studied with a technique that sampled the fermion occupation configurations. The frustrated two-dimensional XY model was simulated using the Langevin equation with Fourier transform acceleration. Speedup due to Fourier acceleration was measured for frustration one-half at the transition temperature. The unfrustrated XY model was also studied. For the frustrated case, only long-distance spin correlation and the autocorrelation of the spin showed significant speedup. The frustrated case has Ising-like domains. It was found that Fourier acceleration speeds the evolution of spinwaves but has negligible effect on the Ising-like domains. In the Hubbard model, fermion determinant weight factor in the partition function changes sign, causing large statistical fluctuations of observables. A technique was found for sampling configuration space using continuous auxiliary fields, despite energy barriers where the fermion determinant changes sign. For two-dimensional spinless Hubbard model with no hopping, an exact solution was found for a 4 x 4 lattice; which could be compared to numerical simulations. The sign problem remained, and was found to be related to the sign problem encountered when a discrete variable is used for the auxiliary field. For spin one-half Hubbard model, a Monte Carlo simulation was done in which the fermion occupation configurations were varied. Rather than integrate-out the fermions and make a numerical estimate of the sum over the auxiliary field, the auxiliary field was integrated-out and a numerical estimate was made of the sum over fermion configurations

  10. Peierls' instability in a one-dimensional potentially metallic solid

    International Nuclear Information System (INIS)

    Valladares, A.A.; Cetina, E.A.; Sansores, L.E.

    1980-01-01

    The Peierls instability of one-dimensional potentially metallic lithium solid is investigated in the Hueckel and SCF approximations. In the Hueckel approximation Esub(F) is a monotonic increasing function of the displacement of every other atom of the lattice, whereas in the SCF approximation, where the filling of the bands is considered, Esub(F) shows the minimum predicted by Peierls. The energy gap (for the arrangement that minimizes Esub(F)) is 4.5 eV, indicating that this solid is an insulator. (author)

  11. High-field study of the spin-Peierls system CuGeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Regnault, L P [CEA Centre d` Etudes de Grenoble, 38 (France)

    1997-04-01

    The one-dimensional spin-1/2 Heisenberg antiferromagnetic system coupled to a three-dimensional phonon field undergoes a structural distortion below a finite temperature T{sub sp} (spin-Peierls transition) which induces the formation of a non-magnetic singlet ground-state and the opening of a gap in the excitation spectrum at the antiferromagnetic point. The recent discovery of the germanate CuGeO{sub 3} as a spin-Peierls system has considerably renewed the interest is this fascinating phenomenon. Inelastic neutron scattering and neutron diffraction have brought very quantitative pieces of information which can be directly compared to the predictions of the standard model. (author). 6 refs.

  12. DMFT+Σ approach to disordered Hubbard model

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Sadovskii, M. V.

    2016-01-01

    We briefly review the generalized dynamic mean-field theory DMFT+Σ applied to both repulsive and attractive disordered Hubbard models. We examine the general problem of metal–insulator transition and the phase diagram in the repulsive case, as well as the BCS–BEC crossover region of the attractive model, demonstrating a certain universality of single-electron properties under disordering in both models. We also discuss and compare the results for the density of states and dynamic conductivity in the repulsive and attractive cases and the generalized Anderson theorem behavior of the superconducting critical temperature in the disordered attractive case. A brief discussion of the behavior of Ginzburg–Landau coefficients under disordering in the BCS–BEC crossover region is also presented.

  13. Recent numerical results on the two dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E. (SISSA, Trieste (Italy))

    1989-12-01

    A new method for simulating strongly correlated fermionic systems, has been applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution. (orig.).

  14. Recent numerical results on the two dimensional Hubbard model

    International Nuclear Information System (INIS)

    Parola, A.; Sorella, S.; Baroni, S.; Car, R.; Parrinello, M.; Tosatti, E.

    1989-01-01

    This paper reports a new method for simulating strongly correlated fermionic systems applied to the study of the ground state properties of the 2D Hubbard model at various fillings. Comparison has been made with exact diagonalizations in the 4 x 4 lattices where very good agreement has been verified in all the correlation functions which have been studied: charge, magnetization and momentum distribution

  15. The theoretical investigations of the core structure and the Peierls stress of the 1/2{1 1 0} edge dislocation in Mo

    International Nuclear Information System (INIS)

    Liu Ruiping; Wang Shaofeng; Wang Rui; Jiao Jian

    2010-01-01

    By using the modified Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account, the core structure and the Peierls stress of the 1/2 {1 1 0} edge dislocation in molybdenum (Mo) have been investigated in the anisotropic elasticity approximation. The coefficient of the lattice discrete correction and the energy coefficient are all calculated in the anisotropic elasticity approximation. By considering the lattice discrete effect, the core width obtained from the modified P-N model is much wider than the results obtained from the P-N model. Because the Peierls stress of the 1/2 {1 1 0} edge dislocation in Mo moving with the rigid mechanism is smaller than that with the kink mechanism, therefore, through investigating the Peierls stress of the edge dislocation we obtained with the atomistic simulations, it can be indicated that when the external stress is loaded on the 1/2 {1 1 0} edge dislocation in Mo, the dislocation may move with the rigid mechanism rather than the kink mechanism or other mechanisms.

  16. Spin-Peierls instability and incommensurability in the XY model-Dynamical and thermodynamical properties

    International Nuclear Information System (INIS)

    Lima, R.A.T. de.

    1982-01-01

    Within the variational method in statistical mechanics, dynamical and thermodynamical properties of anharmonic crystal are discussed, in particular the thermal behavior of the crystalline expasion, phonons spectrum, specific heat and Debye-Weller factor (which satisfctorily describes the experimental data). Through the temperature dependent Green functions framework, dynamical and thermodynamical properties associated with the spin-Peierls transition in the magnetostrictive XY model (with one-dimensional magnetic interactions but structurally three-dimensional) are also discussed. Emphasis is given to the influence of an external magnetic field (along the z-axis) on the structural order parameter, phase diagram, specific heat, magnetization, magnetic susceptibility and phonons spectrun (acoustic and optic branches). Results are extended and new ons are exhibited such as: a) a structural Lifshitz point, which separates the uniform (U), dimerized (D) and modulated (M) phases in the T-H phase diagram; b) another special point is detected for high magnetic fields; c) the D-M first-order frontier and the metastability limits are obtained; d) for high elastic constants, fixed temperature and increasing magnetic field, the unusual sequence non uniform-uniform - non uniform-uniform is possible; e) the thermal dependence of the sound velocity presents a gap at the critical temperature. The present results have provided a quite satisfactory qualitative (and partially quantitative) description of the experiments on the TTF-BDT and MEM-(TCNQ) 2 ; this fact enables us to hope that several of our predictions indeed occur in nature. (Author) [pt

  17. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  18. Superconducting properties of the η-pairing state in the Penson-Kolb-Hubbard model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2004-01-01

    The Penson-Kolb-Hubbard model, i.e. the Hubbard model with the pair-hopping interaction J is studied. We focus on the properties of the superconducting state with the Cooper-pair center-of mass momentum q Q(η-phase). The transition into the η-phase, which is favorized by the repulsive J (J c |, dependent on band filling, on-site interaction U and band structure, and the system never exhibits standard BCS-like features. This is in obvious contrast with the properties of the isotropic s-wave state, stabilized by the attractive J and attractive U, which exhibit at T = 0 a smooth crossover from the BCS-like limit to that of tightly bound pairs with increasing pairing strength. (author)

  19. Infrared absorption spectra of various doping states in cuprate superconductors

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs

  20. Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian

    1988-01-01

    The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs

  1. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  2. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  3. Interaction between interstitial atoms and 1/2 (110) edge dislocations, and its influence on the Peierls stress

    International Nuclear Information System (INIS)

    de Hosson, J.T.M.

    1976-01-01

    The positions of the metal atoms around a 1 / 2 (111) (110) edge dislocation in Mo and W are calculated using the Wilson-Johnson potentials. The boundary conditions are given by anisotropic elasticity theory. After the lattices have been relaxed the potential energy of a He atom was calculated for a grid of positions within a block around the dislocation core, which extends over six planes in the (112) direction. The He-metal potential, also developed by Johnson and Wilson was used to calculate the position with maximum energy gain for a He atom. The binding energies of the He atom in the dislocated lattice for Mo and W were 1.55 eV and 1.53 eV, respectively. The second part of the investigation concerns the Peierls stresses for a 1 / 2 (111) (110) edge dislocation in α-Fe, with and without a carbon atom. The Peierls energy and stress are calculated for this slip-system based on the method originally used by Nabarro. The Peierls stresses (at zero absolute temperature) for the lattice with and without a carbon atom, are 0.006 μ and 0.009 μ, respectively. These calculations were carried out utilizing the Wilson-Johnson potential for the Fe-Fe interaction and the Johnson potential was used for the Fe-C interaction

  4. Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation

    Science.gov (United States)

    Wang, Shaofeng; Hu, Xiangsheng

    2018-05-01

    The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.

  5. Emulating the 1-dimensional Fermi-Hubbard model with superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Jan-Michael; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe (Germany)

    2016-07-01

    A chain of qubits with both ZZ and XX couplings is described by a Hamiltonian which coincides with the Fermi-Hubbard model in one dimension. The qubit system can thus be used to study the quantum properties of this model. We investigate the specific implementation of such an analog quantum simulator by a chain of tunable Transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive coupling.

  6. Relative and center-of-mass motion in the attractive Bose-Hubbard model

    DEFF Research Database (Denmark)

    Sørensen, Ole Søe; Gammelmark, Søren; Mølmer, Klaus

    2012-01-01

    We present first-principles numerical calculations for few-particle solutions of the attractive Bose-Hubbard model with periodic boundary conditions. We show that the low-energy many-body states found by numerical diagonalization can be written as translational superposition states of compact...

  7. Periodic Ground State Configurations in a One-Dimensional Hubbard Model of Statistical Mechanics

    International Nuclear Information System (INIS)

    Kipnis, M. M.

    2000-01-01

    This paper considers an averaging procedure for the description of a particles arrangement in a Hubbard model with antiferromagnetic interactions. The arrangements are described by the devil's staircase. Completeness of the staircase is proved

  8. Peierls 80th birthday symposium

    International Nuclear Information System (INIS)

    Dalitz, R.; Stinchcombe, R.

    1988-01-01

    This book includes some of the most important topics in recent developments in Theoretical Physics. Contents: An Astrophysical topic;Pattern Formation in Crystal Growth and In Related Phenomena, Heavy Ion Fusion Reactions, The Equation of State of Dense Nuclear Matter from Supernova Explosions and from Relativitistic Heavy Ion Collisions, New Developments of the Peierls-Greenwood Formula;The Origin of Skyrmions;Nuclear Weapons: their Invention and Control;Quarks and Gluons;String Theory

  9. Long-wavelength spin-effective actions for the infinite U Hubbard model

    Science.gov (United States)

    Braghin, Fábio L.

    2013-04-01

    The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.

  10. First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction

    Science.gov (United States)

    Schüler, M.; van Loon, E. G. C. P.; Katsnelson, M. I.; Wehling, T. O.

    2018-04-01

    While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction is arbitrarily small; otherwise, it is finite.

  11. Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model

    Science.gov (United States)

    Jia, C. J.; Moritz, B.; Chen, C.-C.; Shastry, B. Sriram; Devereaux, T. P.

    2011-09-01

    Extensive numerical studies have demonstrated that the two-dimensional single-band Hubbard model contains much of the key physics in cuprate high-temperature superconductors. However, there is no definitive proof that the Hubbard model truly possesses a superconducting ground state or, if it does, of how it depends on model parameters. To answer these longstanding questions, we study an extension of the Hubbard model including an infinite-range d-wave pair field term, which precipitates a superconducting state in the d-wave channel. Using exact diagonalization on 16-site square clusters, we study the evolution of the ground state as a function of the strength of the pairing term. This is achieved by monitoring the fidelity metric of the ground state, as well as determining the ratio between the two largest eigenvalues of the d-wave pair/spin/charge-density matrices. The calculations show a d-wave superconducting ground state in doped clusters bracketed by a strong antiferromagnetic state at half filling controlled by the Coulomb repulsion U and a weak short-range checkerboard charge ordered state at larger hole doping controlled by the next-nearest-neighbor hopping t'. We also demonstrate that negative t' plays an important role in facilitating d-wave superconductivity.

  12. Exact results and conjectures on the adiabatic Holstein-Hubbard model at large electron-phonon coupling

    International Nuclear Information System (INIS)

    Aubry, S.

    1993-01-01

    Principles and notations of the Holstein-Hubbard model in a magnetic field are first reviewed. Effects of the dimensionality, the lattice discreteness and the magnetic field on single polarons, are examined and the existence of many polarons and bipolarons structures at large electron-phonon coupling is discussed. Properties of bipolaronic and polaronic structures are examined together with the magnetic field effects on these structures. High Tc superconductivity resulting from the competition between the electron-phonon and Hubbard couplings is discussed. 7 figs., 18 refs

  13. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    International Nuclear Information System (INIS)

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-01

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature

  14. Penson-Kolb-Hubbard model: a renormalisation group study

    International Nuclear Information System (INIS)

    Bhattacharyya, Bibhas; Roy, G.K.

    1995-01-01

    The Penson-Kolb-Hubbard (PKH) model in one dimension (1d) by means of real space renormalisation group (RG) method for the half-filled band has been studied. Different phases are identified by studying the RG-flow pattern, the energy gap and different correlation functions. The phase diagram consists of four phases: a spin density wave (SDW), a strong coupling superconducting phase (SSC), a weak coupling superconducting phase (WSC) and a nearly metallic phase. For the negative value of the pair hopping amplitude introduced in this model it was found that the pair-pair correlation indicates a superconducting phase for which the centre-of-mass of the pairs move with a momentum π. (author). 7 refs., 4 figs

  15. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors

    Science.gov (United States)

    Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.

    2016-01-01

    The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355

  16. Magnetic properties of Hubbard-sigma model with three-dimensionality

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Tatara, Gen; Ichinose, Ikuo; Matsui, Tetsuo.

    1990-05-01

    It has been broadly accepted that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling and the spin-wave velocity with 'effective' ones determined by the concentration and the one-loop correction of hole fermions. Stationary-phase equations for the one-loop effective potential of S 2 model are analyzed. Based on them, various magnetic properties of the system, such as the behavior of Neel temperature, spin correlation length, staggered magnetization, specific heat and susceptibility as functions of anisotropic parameter, temperature, etc. are investigated in detail. The results show that our anisotropic field theory model with certain values of parameters gives a good description of the magnetic properties in both the ordered and the disordered phases indicated by experiments on La 2 CuO 4 . The part of the above results is supported by the renormalization-group analysis. In the doped case it is observed that the existence of holes destroys the long-range order and their hopping effect is large. (author)

  17. Single-particle properties of the Hubbard model in a novel three-pole approximation

    Science.gov (United States)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We study the 2D Hubbard model using the Composite Operator Method within a novel three-pole approximation. Motivated by the long-standing experimental puzzle of the single-particle properties of the underdoped cuprates, we include in the operatorial basis, together with the usual Hubbard operators, a field describing the electronic transitions dressed by the nearest-neighbor spin fluctuations, which play a crucial role in the unconventional behavior of the Fermi surface and of the electronic dispersion. Then, we adopt this approximation to study the single-particle properties in the strong coupling regime and find an unexpected behavior of the van Hove singularity that can be seen as a precursor of a pseudogap regime.

  18. Random-phase-approximation approach to optical and magnetic excitations in the two-dimensional multiband Hubbard model

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.

    1992-01-01

    As a convenient qualitative approach to strongly correlated electronic systems, an inhomogeneous Hartree-Fock plus random-phase approximation is applied to response functions for the two-dimensional multiband Hubbard model for cuprate superconductors. A comparison of the results with those obtained by exact diagonalization by Wagner, Hanke, and Scalapino [Phys. Rev. B 43, 10 517 (1991)] shows that overall structures in optical and magnetic particle-hole excitation spectra are well reproduced by this method. This approach is computationally simple, retains conceptual clarity, and can be calibrated by comparison with exact results on small systems. Most importantly, it is easily extended to larger systems and straightforward to incorporate additional terms in the Hamiltonian, such as electron-phonon interactions, which may play a crucial role in high-temperature superconductivity

  19. Moment approach for the attractive Hubbard model in two dimensions: superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Nunez, J.J.; Cordeiro, C.; Delfino, A. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. Using the moment of Nolting (Z. Phys. 225, 25 (1972) for the attractive Hubbard model in the superconducting phase, we have derived a set of three non-linear equations, the electron density, the superconducting order parameter, and the narrowing factor. Our starting point is the Ansatz that the diagonal spectral density is composed of three peaks while the off-diagonal spectral functional is composed of two. The third band, or upper Hubbard band, strongly renormalizes the other two, making the energy gap K dependent while the order parameter is pure s-wave. Our approach recuperates the BCS limit, weak coupling (U/t <<1) in a natural way. We solve these non-linear equations in a self-consistent way for intermediate coupling for U/t {approx} -4.0. Here we report the order parameter as function of temperature and compare it with the BCS result. (author)

  20. Slave-boson method for the Hubbard model: Resonating-valence-bond state and high-temperature superconductivity

    International Nuclear Information System (INIS)

    Kapitonov, V.S.

    1991-01-01

    This paper offers a formulation of mean-field theory for the Hubbard model that is different from the one developed in the work of Anderson. The modified slave-boson method is used. The advantage of the method is that it is not necessary to exclude doubly occupied sites by using the approximately canonical transformation. In the proposed theory, Cooper pairs and the energy gap are a result of the condensation of the slave Bose field that describes doubly occupied sites. Here, the modified slave-boson method is used to describe the metal-insulator and metal-superconductor phase transitions in the Hubbard model. Expressions are derived for the energy gap and phase-transition temperature

  1. Thermalization after an interaction quench in the Hubbard model.

    Science.gov (United States)

    Eckstein, Martin; Kollar, Marcus; Werner, Philipp

    2009-07-31

    We use nonequilibrium dynamical mean-field theory to study the time evolution of the fermionic Hubbard model after an interaction quench. Both in the weak-coupling and in the strong-coupling regime the system is trapped in quasistationary states on intermediate time scales. These two regimes are separated by a sharp crossover at U(c)dyn=0.8 in units of the bandwidth, where fast thermalization occurs. Our results indicate a dynamical phase transition which should be observable in experiments on trapped fermionic atoms.

  2. Fifty-year study of the Peierls-Nabarro stress

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1997-08-30

    Full Text Available , North-Holland, Amsterdam, 1979, pp. 33. [9] E. Orowan, in: Cyril Stanley Smith (Ed.), The Sorby Centennial Symposium on the History of Metallurgy, Gordon and Breach, New York, 1965, pp. 359. [lo] R.E. Peierls, in: A...

  3. Analysis of the dynamical cluster approximation for the Hubbard model

    OpenAIRE

    Aryanpour, K.; Hettler, M. H.; Jarrell, M.

    2002-01-01

    We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact ...

  4. Pairing tendencies in a two-orbital Hubbard model in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nocera, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Alvarez, Gonzalo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreo, A. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-31

    The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling JH / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.

  5. The classical trigonometric r-matrix for the quantum-deformed Hubbard chain

    Energy Technology Data Exchange (ETDEWEB)

    Beisert, Niklas, E-mail: nbeisert@aei.mpg.de [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2011-07-01

    The one-dimensional Hubbard model is an exceptional integrable spin chain which is apparently based on a deformation of the Yangian for the superalgebra gl(2|2). Here we investigate the quantum deformation of the Hubbard model in the classical limit. This leads to a novel classical r-matrix of trigonometric kind. We derive the corresponding one-parameter family of Lie bialgebras as a deformation of the affine gl(2|2) Kac-Moody superalgebra. In particular, we discuss the affine extension as well as discrete symmetries, and we scan for simpler limiting cases, such as the rational r-matrix for the undeformed Hubbard model.

  6. On the SU(2)× SU(2) symmetry in the Hubbard model

    Science.gov (United States)

    Jakubczyk, Dorota; Jakubczyk, Paweł

    2012-08-01

    We discuss the one-dimensional Hubbard model, on finite sites spin chain, in context of the action of the direct product of two unitary groups SU(2)× SU(2). The symmetry revealed by this group is applicable in the procedure of exact diagonalization of the Hubbard Hamiltonian. This result combined with the translational symmetry, given as the basis of wavelets of the appropriate Fourier transforms, provides, besides the energy, additional conserved quantities, which are presented in the case of a half-filled, four sites spin chain. Since we are dealing with four elementary excitations, two quasiparticles called "spinons", which carry spin, and two other called "holon" and "antyholon", which carry charge, the usual spin- SU(2) algebra for spinons and the so called pseudospin-SU(2) algebra for holons and antiholons, provide four additional quantum numbers.

  7. Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL

    2006-01-01

    Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.

  8. Mass-imbalanced ionic Hubbard chain

    Science.gov (United States)

    Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.

    2017-07-01

    A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U Uc they have different signs, and for U =Uc one gap parameter jumps from a positive to a negative value. The weakly first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system is reluctant to restore a symmetry that has been broken explicitly.

  9. Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage

    Science.gov (United States)

    Bergeron, Dominic

    Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient

  10. Alternating chain with Hubbard-type interactions: renormalization group analysis

    International Nuclear Information System (INIS)

    Buzatu, F. D.; Jackeli, G.

    1998-01-01

    A large amount of work has been devoted to the study of alternating chains for a better understanding of the high-T c superconductivity mechanism. The same phenomenon renewed the interest in the Hubbard model and in its one-dimensional extensions. In this work we investigate, using the Renormalization Group (RG) method, the effect of the Hubbard-type interactions on the ground-state properties of a chain with alternating on-site atomic energies. The one-particle Hamiltonian in the tight binding approximation corresponding to an alternating chain with two nonequivalent sites per unit cell can be diagonalized by a canonical transformation; one gets a two band model. The Hubbard-type interactions give rise to both intra- and inter-band couplings; however, if the gap between the two bands is sufficiently large and the system is more than half-filled, as for the CuO 3 chain occurring in high-T c superconductors, the last ones can be neglected in describing the low energy physics. We restrict our considerations to the Hubbard-type interactions (upper band) in the particular case of alternating on-site energies and equal hopping amplitudes. The standard RG analysis (second order) is done in terms of the g-constants describing the elementary processes of forward, backward and Umklapp scatterings: their expressions are obtained by evaluating the Hubbard-type interactions (upper band) at the Fermi points. Using the scaling to the exact soluble models Tomonaga-Luttinger and Luther-Emery, we can predict the low energy physics of our system. The ground-state phase diagrams in terms of the model parameters and at arbitrary band filling are determined, where four types of instabilities have been considered: Charge Density Waves (CDW), Spin Density Waves (SDW), Singlet Superconductivity (SS) and Triplet Superconductivity (TS). The 3/4-filled case in terms of some renormalized Hubbard constants is presented. The relevance of our analysis to the case of the undistorted 3/4-filled Cu

  11. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  12. Group theoretical classification of broken symmetry states of the two-fold degenerate Hubbard model on a triangular lattice

    International Nuclear Information System (INIS)

    Masago, Akira; Suzuki, Naoshi

    2001-01-01

    By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins

  13. Phase diagram of the Hubbard model with arbitrary band filling: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, Sergio A.; Cordoba Univ. Nacional; Tsallis, Constantino.

    1991-01-01

    The finite temperature phase diagram of the Hubbard model in d = 2 and d = 3 is calculated for arbitrary values of the parameter U/t and chemical potential μ using a quantum real space renormalization group. Evidence for a ferromagnetic phase at low temperatures is presented. (author). 15 refs., 5 figs

  14. On the Peierls Transition in a Periodic Potential

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; da Costa Carneiro, Kim

    1984-01-01

    The properties of a one-dimensional conductor in the presence of an external periodic potential VQ have been investigated. The low temperature gap is enhanced, the temperature dependence of the gap Δ(T) is smeared at TPF, the Peierls transition temperature in the absence of VQ, and hence there is...

  15. Towards an understanding of the large-U Hubbard model and a theory for high-temperature superconductors

    International Nuclear Information System (INIS)

    Hsu, T.C.T.

    1989-01-01

    This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to recent developments in the field, the author reviews experimental results. At the same time he introduces the holon-spinon model and comment on its successes and shortcomings. Using this heuristic model he then describes a holon pairing theory of superconductivity and list some experimental evidence for this interlayer coupling theory. The latter part of the thesis is devoted to projected fermion mean field theories. They are introduced by applying this theory and some recently developed computational techniques to anisotropic antiferromagnets. This scheme is shown to give quantitatively good results for the two dimensional square lattice Heisenberg AFM. The results have definite implications for a spinon theory of quantum antiferromagnets. Finally he studies flux phases and other variational prescriptions for obtaining low lying states of the Hubbard model

  16. Fermi surface of the one-dimensional Hubbard model. Finite-size effects

    Energy Technology Data Exchange (ETDEWEB)

    Bourbonnais, C.; Nelisse, H.; Reid, A.; Tremblay, A.M.S. (Dept. de Physique and Centre de Recherche en Physique du Solide (C.R.P.S.), Univ. de Sherbrooke, Quebec (Canada))

    1989-12-01

    The results reported here, using a standard numerical algorithm and a simple low temperature extrapolation, appear consistent with numerical results of Sorella et al. for the one-dimensional Hubbard model in the half-filled and quarter-filled band cases. However, it is argued that the discontinuity at the Fermi level found in the quarter-filled case is likely to come from the zero-temperature finite-size dependence of the quasiparticle weight Z, which is also discussed here. (orig.).

  17. Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution

    CERN Document Server

    Vallejo, E; Espinosa, J E

    2003-01-01

    A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)

  18. Rigorous derivation of the mean-field green functions of the two-band Hubbard model of superconductivity

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.

    2007-01-01

    The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T c superconductivity in cuprates rests on the Hubbard operator (HO) algebra. We show that, if we take into account the invariance to translations and spin reversal, the HO algebra results in invariance properties of several specific correlation functions. The use of these properties allows rigorous derivation and simplification of the expressions of the frequency matrix (FM) and of the generalized mean-field approximation (GMFA) Green functions (GFs) of the model. For the normal singlet hopping and anomalous exchange pairing correlation functions which enter the FM and GMFA-GFs, the use of spectral representations allows the identification and elimination of exponentially small quantities. This procedure secures the reduction of the correlation order to the GMFA-GF expressions

  19. Ferromagnetism in the Hubbard model: a modified perturbation theory

    International Nuclear Information System (INIS)

    Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.

    2005-01-01

    We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)

  20. Filling-driven Mott transition in SU(N ) Hubbard models

    Science.gov (United States)

    Lee, Seung-Sup B.; von Delft, Jan; Weichselbaum, Andreas

    2018-04-01

    We study the filling-driven Mott transition involving the metallic and paramagnetic insulating phases in SU (N ) Fermi-Hubbard models, using the dynamical mean-field theory and the numerical renormalization group as its impurity solver. The compressibility shows a striking temperature dependence: near the critical end-point temperature, it is strongly enhanced in the metallic phase close to the insulating phase. We demonstrate that this compressibility enhancement is associated with the thermal suppression of the quasiparticle peak in the local spectral functions. We also explain that the asymmetric shape of the quasiparticle peak originates from the asymmetry in the dynamics of the generalized doublons and holons.

  1. Exact diagonalization: the Bose-Hubbard model as an example

    International Nuclear Information System (INIS)

    Zhang, J M; Dong, R X

    2010-01-01

    We take the Bose-Hubbard model to illustrate exact diagonalization techniques in a pedagogical way. We follow the route of first generating all the basis vectors, then setting up the Hamiltonian matrix with respect to this basis and finally using the Lanczos algorithm to solve low lying eigenstates and eigenvalues. Emphasis is placed on how to enumerate all the basis vectors and how to use the hashing trick to set up the Hamiltonian matrix or matrices corresponding to other quantities. Although our route is not necessarily the most efficient one in practice, the techniques and ideas introduced are quite general and may find use in many other problems.

  2. Numerical calculation of spectral functions of the Bose-Hubbard model using bosonic dynamical mean-field theory

    Czech Academy of Sciences Publication Activity Database

    Panas, J.; Kauch, Anna; Kuneš, Jan; Vollhardt, D.; Byczuk, K.

    2015-01-01

    Roč. 92, č. 4 (2015), "045102-1"-"045102-9" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : Bose-Hubbard model * Bose-Einstein condensation * superfluidity Subject RIV: BE - Theoretical Physics Impact factor: 3.736, year: 2014

  3. Vortex-Peierls States in Optical Lattices

    International Nuclear Information System (INIS)

    Burkov, A.A.; Demler, Eugene

    2006-01-01

    We show that vortices, induced in cold atom superfluids in optical lattices, may order in a novel vortex-Peierls ground state. In such a state vortices do not form a simple lattice but arrange themselves in clusters, within which the vortices are partially delocalized, tunneling between classically degenerate configurations. We demonstrate that this exotic quantum many-body state is selected by an order-from-disorder mechanism for a special combination of the vortex filling and lattice geometry that has a macroscopic number of classically degenerate ground states

  4. Unified one-band Hubbard model for magnetic and electronic spectra of the parent compounds of cuprate superconductors

    Science.gov (United States)

    Dalla Piazza, B.; Mourigal, M.; Guarise, M.; Berger, H.; Schmitt, T.; Zhou, K. J.; Grioni, M.; Rønnow, H. M.

    2012-03-01

    Using low-energy projection of the one-band t-t'-t'' Hubbard model we derive an effective spin Hamiltonian and its spin-wave expansion to order 1/S. We fit the spin-wave dispersion of several parent compounds to the high-temperature superconducting cuprates La2CuO4, Sr2CuO2Cl2, and Bi2Sr2YCu2O8. Our accurate quantitative determination of the one-band Hubbard model parameters allows prediction and comparison to experimental results. Among those we discuss the two-magnon Raman peak line shape, the K-edge resonant inelastic x-ray scattering 500-meV peak, and the high-energy kink in the angle-resolved photoemission spectroscopy quasiparticle dispersion, also known as the waterfall feature.

  5. Hole-hole correlations in the U=∞ limit of the Hubbard model and the stability of the Nagaoka state

    International Nuclear Information System (INIS)

    Long, M.W.; Zotos, X.

    1993-01-01

    We use exact diagonalization in order to study the infinite-U limit of the two-dimensional Hubbard model. As well as looking at single-particle correlations, such as n kσ =left-angle c kσ † c kσ right-angle, we also study N-particle correlation functions, which compare the relative positions of all the particles in different models. In particular we study 16- and 18-site clusters and compare the charge correlations in the Hubbard model with those of spinless fermions and hard-core bosons. We find that although low densities of holes favor a ''locally ferromagnetic'' fermionic description, the correlations at larger densities resemble those of pure hard-core bosons surprisingly well

  6. Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  7. Intersite electron correlations in a Hubbard model on inhomogeneous lattices

    International Nuclear Information System (INIS)

    Takemori, Nayuta; Koga, Akihisa; Hafermann, Hartmut

    2016-01-01

    We study intersite electron correlations in the half-filled Hubbard model on square lattices with periodic and open boundary conditions by means of a real-space dual fermion approach. By calculating renormalization factors, we clarify that nearest-neighbor intersite correlations already significantly reduce the critical interaction. The Mott transition occurs at U/t ∼ 6.4, where U is the interaction strength and t is the hopping integral. This value is consistent with quantum Monte Carlo results. It shows the importance of short-range intersite correlations, which are taken into account in the framework of the real-space dual fermion approach. (paper)

  8. Edge-Corrected Mean-Field Hubbard Model: Principle and Applications in 2D Materials

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-05-01

    Full Text Available This work reviews the current progress of tight-binding methods and the recent edge-modified mean-field Hubbard model. Undercoordinated atoms (atoms not fully coordinated exist at a high rate in nanomaterials with their impact overlooked. A quantum theory was proposed to calculate electronic structure of nanomaterials by incorporating bond order-length-strength (BOLS correlation to mean-field Hubbard model, i.e., BOLS-HM. Consistency between the BOLS-HM calculation and density functional theory (DFT calculation on 2D materials verified that (i bond contractions and potential well depression occur at the edge of graphene, phosphorene, and antimonene nanoribbons; (ii the physical origin of the band gap opening of graphene, phosphorene, and antimonene nanoribbons lays in the enhancement of edge potentials and hopping integrals due to the shorter and stronger bonds between undercoordinated atoms; (iii the band gap of 2D material nanoribbons expand as the width decreases due to the increasing under-coordination effects of edges which modulates the conductive behaviors; and (iv non-bond electrons at the edges and atomic vacancies of 2D material accompanied with the broken bond contribute to the Dirac-Fermi polaron (DFP with a local magnetic moment.

  9. Magnetic resonance of native defects of spin-Peierls magnetics CuGeO3

    International Nuclear Information System (INIS)

    Smirnov, A.I.; Glazkov, V.N.; Leonyuk, L.I.; Vetkin, A.G.; Eremina, R.M.

    1998-01-01

    Magnetic resonance within 9-75 GHz frequency range and 1.2-25 K temperature range was studied in pure monocrystalline spin-Peierls CuGwO 3 . Splitting of the magnetic resonance line is observed within temperature range below 5 K. Analysis of magnetic resonance spectra at various directions of magnetic field and under various temperatures enables to set off EPR-signals of spin-Peierls phase defects with S=1/2 and defects with S=1 from these components; g-factor corresponding to these EPR signals is similar one and close to values typical for Cu 2+ ion [ru

  10. Pressure dependence of the Peierls transition in the quasi two-dimensional purple bronze KMo 6O 17

    Science.gov (United States)

    Rötger, A.; Beille, J.; Laurant, J. M.; Schlenker, C.

    1993-09-01

    The electrical resistivity and the lattice parameters have been studied as a function of pressure on the quasi-twodimensional purple bronze KMo 6O 17 which shows a Peierls transition towards a commensurate charge density wave state. The Peierls temperature is found to be first slightly decreased for pressures smaller than 6 kbar, then strongly increased above. This increase is associated to an anomalous contraction of the lattice parameters in the plane of the layers. The corresponding large increase of the compressibility above 16 kbar at 300 K is associated to the pretransitional regime of the Peierls transition as a function of pressure. These results are attributed mainly to an improved nesting of the Fermi surface under pressure.

  11. Phase diagram of 2D Hubbard model by simulated annealing mean field approximation

    International Nuclear Information System (INIS)

    Kato, Masaru; Kitagaki, Takashi

    1991-01-01

    In order to investigate the stable magnetic structure of the Hubbard model on a square lattice, we utilize the dynamical simulated annealing method which proposed by R. Car and M. Parrinello. Results of simulations on a 10 x 10 lattice system with 80 electrons under assumption of collinear magnetic structure that the most stable state is incommensurate spin density wave state with periodic domain wall. (orig.)

  12. Negative differential resistance in the Peierls insulating phases of TTF-TCNQ

    Science.gov (United States)

    Tonouchi, Daiki; Matsushita, Michio M.; Awaga, Kunio

    2017-07-01

    Negative differential resistance (NDR) was observed in the most well known organic conductor, TTF-TCNQ, in its low-temperature Peierls insulator phase below 53 K. The voltage-current (V -I ) characteristics below this temperature, measured by a four-probe method, exhibited unique NDR behavior, in which the d V /d I versus conductivity (σ) plots had the inflection points at the three σ values without depending on temperature. These σ values were found to coincide with the conductivities at the three transition temperatures (53, 49, and 38 K) for the formation of the charge-density waves in TTF-TCNQ. This suggests that the electronic structure of the Peierls insulating phase of TTF-TCNQ is governed by the total carrier density, which is determined by not only thermal excitation but also carrier injection.

  13. Variational cluster perturbation theory for Bose-Hubbard models

    International Nuclear Information System (INIS)

    Koller, W; Dupuis, N

    2006-01-01

    We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator-to-superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum-free of spurious gaps-despite the fact that it formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimensional dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed

  14. Progress towards localization in the attractive Hubbard model

    Science.gov (United States)

    Morong, W.; Xu, W.; Demarco, B.

    2017-04-01

    The interplay between fermionic superfluidity and disorder is a topic of long-standing interest that has recently come within reach of ultracold gas experiments. Outstanding questions include the fate of Cooper pairs in a localized superfluid and the effect of disorder on the superfluid transition temperature. We report progress on tackling this problem using a realization of the Hubbard model with attractive interactions. Our system consists of two spin states of fermionic potassium-40 trapped in a cubic optical lattice. Disorder is introduced using an optical speckle potential, and interactions are controlled via a Feshbach resonance. We study the binding and unbinding of Cooper pairs in this system using rf spectroscopy, changes in Tc by measuring the condensate fraction, and transport properties by observing the response to an applied impulse. We will discuss progress towards these measurements.

  15. Distinct solutions of infinite U Hubbard model through nested Bethe ansatz and Gutzwiller projection operator approach

    International Nuclear Information System (INIS)

    Mishra, A.K.; Kishore, R.

    2009-01-01

    The exact nested Bethe ansatz solution for the one dimensional (1-D) U infinity Hubbard model show that the state vectors are a product of spin-less fermion and spin wavefunctions, or an appropriate superposition of such factorized wavefunctions. The spin-less fermion component of the wavefunctions ensures no double occupancy at any site. It had been demonstrated that the nested Bethe ansatz wavefunctions in the U infinity limit obey orthofermi statistics. Gutzwiller projection operator formalism is the another well known technique employed to handle U infinity Hubbard model. In general, this approach does not lead to spin-less fermion wavefunctions. Therefore, the nested Bethe ansatz and Gutzwiller projection operator approach give rise to different kinds of the wavefunctions for the U infinity limit of 1-D Hubbard Hamiltonian. To compare the consequences of this dissimilarity in the wavefunctions, we have obtained the ground state energy of a finite system consisting of three particles on a four site closed chain. It is shown that in the nested Bethe ansatz implemented through orthofermion algebra, all the permissible 2 3 spin configurations are degenerate in the ground state. This eight fold degeneracy of the ground state is absent in the Gutzwiller projection operator approach. This finding becomes relevant in the context of known exact U infinity results, which require that all the energy levels are 2 N -fold degenerate for an N particle system.

  16. Quantum phase transition of light in the Rabi–Hubbard model

    International Nuclear Information System (INIS)

    Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E

    2013-01-01

    We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)

  17. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng, E-mail: yupeng@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-15

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  18. Core structure, dislocation energy and Peierls stress for 1/3112-bar 0 edge dislocations with (0001) and {11-bar 00} slip planes in α-Zr

    International Nuclear Information System (INIS)

    Voskoboinikov, R.E.; Osetsky, Yu.N.; Bacon, D.J.

    2005-01-01

    Atomic-scale simulations of edge dislocations of the 1/3112-bar 0(0001) and 1/3112-bar 0{11-bar 00} slip systems have been carried out using a Finnis-Sinclair-type interatomic potential for α-zirconium. The distribution of atomic displacements in the dislocation core shows that in this model the edge dislocation in the basal plane dissociates into two Shockley partials whereas the dislocation in the prism plane remains undissociated. The effective core radius and core energy are estimated, and dislocation response to increasing applied shear strain is investigated. The core properties and the critical stress for dislocation glide (Peierls stress) depend sensitively on whether the core extends or not

  19. Branner-Hubbard Motions and attracting dynamics

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Tan, Lei

    2006-01-01

    We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics.......We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics....

  20. Branner-Hubbard motions and attracting dynamics

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Tan, Lei

    We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics.......We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics....

  1. Breakdown of quasiparticle picture in the low-density limit of the 1D Hubbard model

    International Nuclear Information System (INIS)

    Qin Shaojin; Qian Tiezheng; Su Zhaobin

    1995-03-01

    Using the finite-size scaling of results obtained by exact diagonalization, we study the low-density limit of the one-dimensional Hubbard model. Calculating the quasiparticle weight, we demonstrate that for a given particle number N and system size L, there always exists a crossover point U c separating the Fermi-liquid (U c ) and non-Fermi-liquid (U > U c ) regimes (U is the Hubbard repulsion). We find that for a fixed N, U c is inversely proportional to L, keeping U c L/t constant (with t as the hopping integral), as L is large enough. It follows that in the low-density (in fact vanishing density) limit L → ∞, U c → 0, so the system is always in non-Fermi-liquid regime as long as U > 0. We show that our numerical results are consistent with the Bethe ansatz solution. (author). 11 refs, 3 figs

  2. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  3. Peierls transition with acoustic phonons and twist deformation in carbon nanotubes

    NARCIS (Netherlands)

    Figge, M. T.; Mostovoy, M. V.; Knöster, J.

    1999-01-01

    Submitted to: Phys. Rev. Lett. Abstract: We consider the Peierls instability due to the interaction of electrons with both acoustic and optical phonons. We suggest that such a transition takes place in carbon nanotubes with small radius. The topological excitations and the temperature dependence of

  4. Solitons in the Peierls condensate

    International Nuclear Information System (INIS)

    Horowitz, B.; Krumhansl, J.A.

    1983-05-01

    The electron-phonon system in one dimension is studied within the adiabatic (Hartree) and Hartree-Fock approximations. The equations of motion for the Peierls order parameter at zero temperature are derived from a microscopic Hamiltonian and an effective Lagrangian is constructed. Charged phase solitons describe systems whose electron density is at or near M fold commensurability with M >= 3. For M = 2 the order parameter is real in the adiabatic approximation, but becomes complex when both acoustic and optical phonons are coupled, or for a non-adiabatic theory. The latter is studied with Coulomb exchange force and phase solitons are derived. The soliton charge is 2/M for all M > = 2. When M = 4 the pinning potential can be anomalously low, in agreement with data on TaS 3 and similar compounds. (author)

  5. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.

    Science.gov (United States)

    Igoshev, P A; Timirgazin, M A; Gilmutdinov, V F; Arzhnikov, A K; Irkhin, V Yu

    2015-11-11

    The ground-state magnetic phase diagram is investigated within the single-band Hubbard model for square and different cubic lattices. The results of employing the generalized non-correlated mean-field (Hartree-Fock) approximation and generalized slave-boson approach by Kotliar and Ruckenstein with correlation effects included are compared. We take into account commensurate ferromagnetic, antiferromagnetic, and incommensurate (spiral) magnetic phases, as well as phase separation into magnetic phases of different types, which was often lacking in previous investigations. It is found that the spiral states and especially ferromagnetism are generally strongly suppressed up to non-realistically large Hubbard U by the correlation effects if nesting is absent and van Hove singularities are well away from the paramagnetic phase Fermi level. The magnetic phase separation plays an important role in the formation of magnetic states, the corresponding phase regions being especially wide in the vicinity of half-filling. The details of non-collinear and collinear magnetic ordering for different cubic lattices are discussed.

  6. Critical behavior near the Mott transition in the half-filled asymmetric Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Anh-Tuan, E-mail: hatuan@iop.vast.ac.vn [Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Le, Duc-Anh [Faculty of Physics, Hanoi National University of Education, Xuan Thuy 136, Cau Giay, Hanoi 10000 (Viet Nam)

    2016-03-15

    We study the half-filled asymmetric Hubbard model within the two-site dynamical mean field theory. At zero temperature, explicit expressions of the critical interaction U{sub c} for the Mott transition and the local self-energy are analytically derived. Critical behavior of the quasiparticle weights and the double occupancy are obtained analytically as functions of the on-site interaction U and the hopping asymmetry r. Our results are in good agreement with the ones obtained by much more sophisticated theory.

  7. Generalized Hubbard Hamiltonian: renormalization group approach

    International Nuclear Information System (INIS)

    Cannas, S.A.; Tamarit, F.A.; Tsallis, C.

    1991-01-01

    We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs

  8. L Ron Hubbard's science fiction quest against psychiatry.

    Science.gov (United States)

    Hirshbein, Laura

    2016-12-01

    Layfayette Ronald Hubbard (1911-1986) was a colourful and prolific American writer of science fiction in the 1930s and 1940s. During the time between his two decades of productivity and his return to science fiction in 1980, Hubbard founded the Church of Scientology. In addition to its controversial status as a religion and its troubling pattern of intimidation and litigation directed towards its foes, Scientology is well known as an organised opponent to psychiatry. This paper looks at Hubbard's science fiction work to help understand the evolution of Scientology's antipsychiatry stance, as well as the alternative to psychiatry offered by Hubbard. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. Rényi Entropies from Random Quenches in Atomic Hubbard and Spin Models

    Science.gov (United States)

    Elben, A.; Vermersch, B.; Dalmonte, M.; Cirac, J. I.; Zoller, P.

    2018-02-01

    We present a scheme for measuring Rényi entropies in generic atomic Hubbard and spin models using single copies of a quantum state and for partitions in arbitrary spatial dimensions. Our approach is based on the generation of random unitaries from random quenches, implemented using engineered time-dependent disorder potentials, and standard projective measurements, as realized by quantum gas microscopes. By analyzing the properties of the generated unitaries and the role of statistical errors, with respect to the size of the partition, we show that the protocol can be realized in existing quantum simulators and used to measure, for instance, area law scaling of entanglement in two-dimensional spin models or the entanglement growth in many-body localized systems.

  10. Breaking of SU(4) symmetry and interplay between strongly-correlated phases in the Hubbard model

    Czech Academy of Sciences Publication Activity Database

    Golubeva, A.; Sotnikov, A.; Cichy, A.; Kuneš, Jan; Hofstetter, W.

    2017-01-01

    Roč. 95, č. 12 (2017), s. 1-7, č. článku 125108. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : Hubbard model * SU(4) Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.836, year: 2016

  11. Peierls instability and superconductivity in substitutionally disordered pseudo one-dimensional conductors

    International Nuclear Information System (INIS)

    Zhang, L.

    1981-08-01

    With coherent potential approximation method the effect of the substitutional disorder in the pseudo one-dimensional conductors on the Peierls transition temperature (Tsub(p)) and superconductive transition temperature (Tsub(c)) has been calculated. The favourable condition for searching for somewhat high Tsub(c) superconductors in these systems has been discussed. (author)

  12. On Hubbard-Stratonovich transformations over hyperbolic domains

    International Nuclear Information System (INIS)

    Fyodorov, Yan V

    2005-01-01

    We discuss and prove the validity of the Hubbard-Stratonovich (HS) identities over hyperbolic domains which are used frequently in studies on disordered systems and random matrices. We also introduce a counterpart of the HS identity arising in disordered systems with 'chiral' symmetry. Apart from this we outline a way of deriving the nonlinear σ-model from the gauge-invariant Wegner k-orbital model avoiding the use of the HS transformations

  13. Valence-bond theory of linear Hubbard and Pariser-Parr-Pople models

    Science.gov (United States)

    Soos, Z. G.; Ramasesha, S.

    1984-05-01

    The ground and low-lying states of finite quantum-cell models with one state per site are obtained exactly through a real-space basis of valence-bond (VB) diagrams that explicitly conserve the total spin. Regular and alternating Hubbard and Pariser-Parr-Pople (PPP) chains and rings with Ne electrons on N(PPP models, but differ from mean-field results. Molecular PPP parameters describe well the excitations of finite polyenes, odd polyene ions, linear cyanine dyes, and slightly overestimate the absorption peaks in polyacetylene (CH)x. Molecular correlations contrast sharply with uncorrelated descriptions of topological solitons, which are modeled by regular polyene radicals and their ions for both wide and narrow alternation crossovers. Neutral solitons have no midgap absorption and negative spin densities, while the intensity of the in-gap excitation of charged solitons is not enhanced. The properties of correlated states in quantum-cell models with one valence state per site are discussed in the adiabatic limit for excited-state geometries and instabilities to dimerization.

  14. Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Nekrasov, I. A.; Sadovskii, M. V.

    2008-01-01

    The DOS, the dynamic (optical) conductivity, and the phase diagram of a strongly correlated and strongly disordered paramagnetic Anderson-Hubbard model are analyzed within the generalized dynamical mean field theory (DMFT + Σ approximation). Strong correlations are taken into account by the DMFT, and disorder is taken into account via an appropriate generalization of the self-consistent theory of localization. The DMFT effective single-impurity problem is solved by a numerical renormalization group (NRG); we consider the three-dimensional system with a semielliptic DOS. The correlated metal, Mott insulator, and correlated Anderson insulator phases are identified via the evolution of the DOS and dynamic conductivity, demonstrating both the Mott-Hubbard and Anderson metal-insulator transition and allowing the construction of the complete zero-temperature phase diagram of the Anderson-Hubbard model. Rather unusual is the possibility of a disorder-induced Mott insulator-to-metal transition

  15. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    Science.gov (United States)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  16. Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Directory of Open Access Journals (Sweden)

    Hieu Nguyen

    2011-01-01

    Full Text Available Abstract The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8 nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.

  17. Antiferromagnetic order in the Hubbard model on the Penrose lattice

    Science.gov (United States)

    Koga, Akihisa; Tsunetsugu, Hirokazu

    2017-12-01

    We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.

  18. High-accuracy energy formulas for the attractive two-site Bose-Hubbard model

    Science.gov (United States)

    Ermakov, Igor; Byrnes, Tim; Bogoliubov, Nikolay

    2018-02-01

    The attractive two-site Bose-Hubbard model is studied within the framework of the analytical solution obtained by the application of the quantum inverse scattering method. The structure of the ground and excited states is analyzed in terms of solutions of Bethe equations, and an approximate solution for the Bethe roots is given. This yields approximate formulas for the ground-state energy and for the first excited-state energy. The obtained formulas work with remarkable precision for a wide range of parameters of the model, and are confirmed numerically. An expansion of the Bethe state vectors into a Fock space is also provided for evaluation of expectation values, although this does not have accuracy similar to that of the energies.

  19. Collapse and revival in inter-band oscillations of a two-band Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Wimberger, Sandro [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 19, 69120 Heidelberg (Germany); Madronero, Javier, E-mail: ploetz@thphys.uni-heidelberg.d [Physik Department, Technische Universitaet Muenchen, James-Franck-Str. 1, 85748 Garching (Germany)

    2010-04-28

    We study the effect of a many-body interaction on inter-band oscillations in a two-band Bose-Hubbard model with an external Stark force. Weak and strong inter-band oscillations are observed, where the latter arise from a resonant coupling of the bands. These oscillations collapse and revive due to a weak two-body interaction between the atoms. Effective models for oscillations in and out of resonance are introduced that provide predictions for the system's behaviour, particularly for the time scales for the collapse and revival of the resonant inter-band oscillations. (fast track communication)

  20. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model

    Science.gov (United States)

    Sherman, A.

    2018-05-01

    The influence of spin and charge fluctuations on spectra of the two-dimensional fermionic Hubbard model is considered using the strong coupling diagram technique. Infinite sequences of diagrams containing ladder inserts, which describe the interaction of electrons with these fluctuations, are summed, and obtained equations are self-consistently solved for the ranges of Hubbard repulsions , temperatures and electron concentrations with t the intersite hopping constant. For all considered U the system exhibits a transition to the long-range antiferromagnetic order at . At the same time no indication of charge ordering is observed. Obtained solutions agree satisfactorily with results of other approaches and obey moments sum rules. In the considered region of the U-T plane, the curve separating metallic solutions passes from at the highest temperatures to U  =  2t at for half-filling. If only short-range fluctuations are allowed for the remaining part of this region is occupied by insulating solutions. Taking into account long-range fluctuations leads to strengthening of maxima tails, which transform a part of insulating solutions into bad-metal states. For low T, obtained results allow us to trace the gradual transition from the regime of strong correlations with the pronounced four-band structure and well-defined Mott gap for to the Slater regime of weak correlations with the spectral intensity having a dip along the boundary of the magnetic Brillouin zone due to an antiferromagnetic ordering for . For and doping leads to the occurrence of a pseudogap near the Fermi level, which is a consequence of the splitting out of a narrow band from a Hubbard subband. Obtained spectra feature waterfalls and Fermi arcs, which are similar to those observed in hole-doped cuprates.

  1. Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior

    Science.gov (United States)

    Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.

    2016-11-01

    We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.

  2. Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling

    International Nuclear Information System (INIS)

    Karchev, Naoum

    2013-01-01

    A one-band Hubbard model with hopping parameter t and Coulomb repulsion U is considered at half-filling. By means of the Schwinger bosons and slave fermions representation of the electron operators and integrating out the spin–singlet Fermi fields an effective Heisenberg model with antiferromagnetic exchange constant is obtained for vectors which identifies the local orientation of the spin of the itinerant electrons. The amplitude of the spin vectors is an effective spin of the itinerant electrons accounting for the fact that some sites, in the ground state, are doubly occupied or empty. Accounting adequately for the magnon–magnon interaction the Néel temperature is calculated. When the ratio t/U is small enough (t/U ≤0.09) the effective model describes a system of localized electrons. Increasing the ratio increases the density of doubly occupied states which in turn decreases the effective spin and Néel temperature. The phase diagram in the plane of temperature (T N )/U and parameter t/U is presented. The quantum critical point (T N =0) is reached at t/U =0.9. The magnons in the paramagnetic phase are studied and the contribution of the magnons’ fluctuations to the heat capacity is calculated. At the Néel temperature the heat capacity has a peak which is suppressed when the system approaches a quantum critical point. It is important to stress that, at half-filling, the ground state, determined by fermions, is antiferromagnetic. The magnon fluctuations drive the system to quantum criticality and when the effective spin is critically small these fluctuations suppress the magnetic order. -- Highlights: •Technique of calculation is introduced which permits us to study the magnons’ fluctuations. •Quantum critical point is obtained in the one-band 3D Hubbard model at half-filling. •The present analytical results supplement the numerical ones (see Fig. 7)

  3. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  4. Hubbard interaction in the arbitrary Chern number insulator: A mean-field study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Xiang, E-mail: wangyixiang@jiangnan.edu.cn [School of Science, Jiangnan University, Wuxi 214122 (China); Cao, Jie [College of Science, Hohai University, Nanjing 210098 (China)

    2017-05-10

    The low-dimensional electron gas owing topological property has attracted many interests recently. In this work, we study the influence of the electron-electron interaction on the arbitrary Chern number insulator. Using the mean-field method, we approximately solve the Hubbard model in the half-filling case and obtain the phase diagrams in different parametric spaces. We further verify the results by calculating the entanglement spectrum, which contains C chiral modes and corresponds to a real space partitioning. - Highlights: • In this work, we made a mean-field study of the Hubbard interaction in the arbitrary Chern number insulator. • We point out that how the Zeeman splitting, the local magnetization and the Hubbard interaction are intimately related. • The mean-field phase diagrams are obtained in different parametric spaces. • The Chern number phase is demonstrated by calculating the entanglement spectrum.

  5. The two-hole ground state of the Hubbard-Anderson model, approximated by a variational RVB-type wave function

    NARCIS (Netherlands)

    Traa, M.R.M.J.; Traa, M.R.M.J.; Caspers, W.J.; Caspers, W.J.; Banning, E.J.; Banning, E.J.

    1994-01-01

    In this paper the Hubbard-Anderson model on a square lattice with two holes is studied. The ground state (GS) is approximated by a variational RVB-type wave function. The holes interact by exchange of a localized spin excitation (SE), which is created or absorbed if a hole moves to a

  6. Hydrostatic-pressure and uniaxial-strain experiments for controlling the spin-Peierls transition

    International Nuclear Information System (INIS)

    Mito, Masaki; Deguchi, Hiroyuki; Fujita, Wataru; Kondo, Ryusuke; Kagoshima, Seiichi

    2010-01-01

    The spin-Peierls (SP) system is considered to be a quantum spin system strongly coupled with the lattice. We have succeeded in controlling SP transition by applying hydrostatic pressure and/or uniaxial strain. The observed phenomenon could be a typical example for understanding the SP transition based on the Hamiltonian. (author)

  7. Phase separation of superconducting phases in the Penson–Kolb–Hubbard model

    International Nuclear Information System (INIS)

    Kapcia, Konrad Jerzy; Czart, Wojciech Robert; Ptok, Andrzej

    2016-01-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson–Kolb–Hubbard model for two dimensional square lattice within Hartree–Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed. (author)

  8. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    Science.gov (United States)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  9. A rigorous proof of the Landau-Peierls formula and much more

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2012-01-01

    We present a rigorous mathematical treatment of the zero-field orbital magnetic susceptibility of a non-interacting Bloch electron gas, at fixed temperature and density, for both metals and semiconductors/insulators. In particular, we obtain the Landau-Peierls formula in the low temperature and d...... and density limit as conjectured by Kjeldaas and Kohn (Phys Rev 105:806–813, 1957)....

  10. Des proprietes de l'etat normal du modele de Hubbard bidimensionnel

    Science.gov (United States)

    Lemay, Francois

    Depuis leur decouverte, les etudes experimentales ont demontre que les supra-conducteurs a haute temperature ont une phase normale tres etrange. Les proprietes de ces materiaux ne sont pas bien decrites par la theorie du liquide de Fermi. Le modele de Hubbard bidimensionnel, bien qu'il ne soit pas encore resolu, est toujours considere comme un candidat pour expliquer la physique de ces composes. Dans cet ouvrage, nous mettons en evidence plusieurs proprietes electroniques du modele qui sont incompatibles avec l'existence de quasi-particules. Nous montrons notamment que la susceptibilite des electrons libres sur reseau contient des singularites logarithmiques qui influencent de facon determinante les proprietes de la self-energie a basse frequence. Ces singularites sont responsables de la destruction des quasi-particules. En l'absence de fluctuations antiferromagnetiques, elles sont aussi responsables de l'existence d'un petit pseudogap dans le poids spectral au niveau de Fermi. Les proprietes du modele sont egalement etudiees pour une surface de Fermi similaire a celle des supraconducteurs a haute temperature. Un parallele est etabli entre certaines caracteristiques du modele et celles de ces materiaux.

  11. Selfenergy effect on the magnetic ordering transition in the mono- and bilayer honeycomb Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Honerkamp, Carsten [Institute for Theoretical Solid State Physics, RWTH Aachen University (Germany); JARA - Fundamentals of Future Information Technology, Aachen (Germany)

    2017-11-15

    We investigate the impact of electron self-energy corrections on potential antiferromagnetic ordering instabilities in mono- and bilayer graphene, modeled by a Hubbard-type lattice model with onsite interactions among the electrons, using a self-consistent random phase approximation (RPA). In qualitative agreement with earlier studies we find that the electronic interactions cause non-Fermi liquid behavior at low energies. In self-consistent RPA, the transition scales for antiferromagnetic ordering are renormalized significantly by these self-energy effects, both for interaction-driven and temperature-driven cases. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Phase diagram of the disordered Bose-Hubbard model

    International Nuclear Information System (INIS)

    Gurarie, V.; Pollet, L.; Prokof'ev, N. V.; Svistunov, B. V.; Troyer, M.

    2009-01-01

    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet et al. [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.

  13. Luttinger and Hubbard sum rules: are they compatible?

    International Nuclear Information System (INIS)

    Matho, K.

    1992-01-01

    A so-called Hubbard sum rule determines the weight of a satellite in fermionic single-particle excitations with strong local repulsion (U→∞). Together with the Luttinger sum rule, this imposes two different energy scales on the remaining finite excitations. In the Hubbard chain, this has been identified microscopically as being due to a separation of spin and charge. (orig.)

  14. Emergent low-energy bound states in the two-orbital Hubbard model

    Science.gov (United States)

    Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.

    2018-03-01

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

  15. Ground-state and spectral properties of an asymmetric Hubbard ladder

    Science.gov (United States)

    Abdelwahab, Anas; Jeckelmann, Eric; Hohenadler, Martin

    2015-04-01

    We investigate a ladder system with two inequivalent legs, namely, a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density-matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wave numbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.

  16. Constrained Nudged Elastic Band calculation of the Peierls barrier with atomic relaxations

    Czech Academy of Sciences Publication Activity Database

    Gröger, Roman; Vitek, V.

    2012-01-01

    Roč. 20, č. 3 (2012), 035019 ISSN 0965-0393 R&D Projects: GA ČR GAP204/10/0255; GA MŠk(CZ) ED1.1.00/02.0068 Institutional research plan: CEZ:AV0Z20410507 Keywords : dislocation * Peierls barrier * Nudged Elastic Band Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.932, year: 2012

  17. Magnetic and superconducting competition within the Hubbard dimer. Exact solution

    International Nuclear Information System (INIS)

    Matlak, M.; Slomska, T.; Grabiec, B.

    2005-01-01

    We express the Hubbard dimer Hamiltonian H d =Σ 16 α=1 E α vertical stroke E α right angle left angle E α vertical stroke in the second quantization with the use of the Hubbard and spin operators. We consider the case of positive and negative U. We decompose the resulting Hamiltonian into several parts collecting all the terms belonging to the same energy level. Such a decomposition visualizes explicitly all intrinsic interactions competing together and deeply hidden in the original form of the dimer Hamiltonian. Among them are competitive ferromagnetic and antiferromagnetic interactions. There are also hopping terms present which describe Cooper pairs hopping between sites 1 and 2 with positive and negative coupling constants (similar as in Kulik-Pedan, Penson-Kolb models). We show that the competition between intrinsic interactions strongly depends on the model parameters and the averaged occupation number of electrons n element of [0, 4] resulting in different regimes of the model (as e.g. t-J model regime, etc.). (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Symmetry-projected variational approach to the one-dimensional Hubbard model

    International Nuclear Information System (INIS)

    Schmid, K.W.; Dahm, T.; Margueron, J.; Muether, H.

    2005-01-01

    We apply a variational method devised for the nuclear many-body problem to the one-dimensional Hubbard model with nearest neighbor hopping and periodic boundary conditions. The test wave function consist for each state out of a single Hartree-Fock determinant mixing all the sites (or momenta) as well as the spin projections of the electrons. Total spin and linear momentum are restored by projection methods before the variation. It is demonstrated that this approach reproduces the results of exact diagonalizations for half-filled N=12 and N=14 lattices not only for the energies and occupation numbers of the ground but also of the lowest excited states rather well. Furthermore, a system of ten electrons in an N=12 lattice is investigated and, finally, an N=30 lattice is studied. In addition to energies and occupation numbers we present the spectral functions computed with the help of the symmetry-projected wave functions as well

  19. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  20. Fermi hyper-netted chain theory on a lattice: The Hubbard model

    International Nuclear Information System (INIS)

    Wang, X.Q.; Wang, X.Q.G.; Fantoni, S.; Tosatti, E.; Yu Lu.

    1990-02-01

    We review a new lattice version of Fermi Hyper-Netted Chain method for the study of strongly interacting electrons. The ordinary paramagnetic and the spin density wave functions have been correlated with Jastrow-type and e-d correlations, and the corresponding FHNC equations for the pair distribution function, the one body density matrix and the staggered magnetization are discussed. Results for the 1D chain and 2D square lattice models are presented and compared with the available results obtained within Quantum Monte Carlo, variational Monte Carlo and exact diagonalization of a 4x4 Hubbard cluster. Particularly interesting are the strong effects of e-d correlations on E/Nt and on the momentum distribution as well as antiferromagnetic behavior away from half filling found in our FHNC calculations in agreement with other studies. (author). 35 refs, 8 figs, 2 tabs

  1. Dynamics of a quantum phase transition in the Bose-Hubbard model: Kibble-Zurek mechanism and beyond

    Science.gov (United States)

    Shimizu, Keita; Kuno, Yoshihito; Hirano, Takahiro; Ichinose, Ikuo

    2018-03-01

    In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mott insulator to the superfluid (SF) crossing a second-order phase transition. We first solve a time-dependent Schrödinger equation for the experimental setup recently done by Braun et al. [Proc. Natl. Acad. Sci. USA 112, 3641 (2015)] and show that the numerical and experimental results are in fairly good agreement. However, these results disagree with the Kibble-Zurek scaling. From our numerical study, we reveal a possible source of the discrepancy. Next, we calculate the critical exponents of the correlation length and vortex density in addition to the SF order parameter for a Kibble-Zurek protocol. We show that beside the "freeze" time t ̂, there exists another important time, teq, at which an oscillating behavior of the SF amplitude starts. From calculations of the exponents of the correlation length and vortex density with respect to a quench time τQ, we obtain a physical picture of a coarsening process. Finally, we study how the system evolves after the quench. We give a global picture of dynamics of the Bose-Hubbard model.

  2. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    International Nuclear Information System (INIS)

    Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.

    1989-01-01

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  3. Hubbard-U band-structure methods

    DEFF Research Database (Denmark)

    Albers, R.C.; Christensen, Niels Egede; Svane, Axel

    2009-01-01

    The last decade has seen a large increase in the number of electronic-structure calculations that involve adding a Hubbard term to the local-density approximation band-structure Hamiltonian. The Hubbard term is then determined either at the mean-field level or with sophisticated many......-body techniques such as using dynamical mean-field theory. We review the physics underlying these approaches and discuss their strengths and weaknesses in terms of the larger issues of electronic structure that they involve. In particular, we argue that the common assumptions made to justify such calculations...

  4. Adequacy of Si:P chains as Fermi-Hubbard simulators

    Science.gov (United States)

    Dusko, Amintor; Delgado, Alain; Saraiva, André; Koiller, Belita

    2018-01-01

    The challenge of simulating many-body models with analogue physical systems requires both experimental precision and very low operational temperatures. Atomically precise placement of dopants in Si permits the construction of nanowires by design. We investigate the suitability of these interacting electron systems as simulators of a fermionic extended Hubbard model on demand. We describe the single-particle wavefunctions as a linear combination of dopant orbitals (LCDO). The electronic states are calculated within configuration interaction (CI). Due to the peculiar oscillatory behavior of each basis orbital, properties of these chains are strongly affected by the interdonor distance R0, in a non-monotonic way. Ground state (T = 0 K) properties such as charge and spin correlations are shown to remain robust under temperatures up to 4 K for specific values of R0. The robustness of the model against disorder is also tested, allowing some fluctuation of the placement site around the target position. We suggest that finite donor chains in Si may serve as an analog simulator for strongly correlated model Hamiltonians. This simulator is, in many ways, complementary to those based on cold atoms in optical lattices—the trade-off between the tunability achievable in the latter and the survival of correlation at higher operation temperatures for the former suggests that both technologies are applicable for different regimes.

  5. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    Science.gov (United States)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  6. Evolution of the low-energy excitation spectrum from the pure Hubbard ladder to the SO(5) ladder: A numerical study

    International Nuclear Information System (INIS)

    Duffy, D.; Haas, S.; Kim, E.

    1998-01-01

    The Hubbard Hamiltonian on a two-leg ladder is studied numerically using quantum Monte Carlo and exact diagonalization techniques. A rung interaction, V, is turned on such that the resulting model has an exact SO(5) symmetry when V=-U. The evolution of the low-energy excitation spectrum is presented from the pure Hubbard ladder to the SO(5) ladder. It is shown that the low-energy excitations in the pure Hubbard ladder have an approximate SO(5) symmetry. copyright 1998 The American Physical Society

  7. Diagram analysis of the Hubbard model: Stationarity property of the thermodynamic potential

    International Nuclear Information System (INIS)

    Moskalenko, V. A.; Dohotaru, L. A.; Cebotari, I. D.

    2010-01-01

    The diagram approach proposed many years ago for the strongly correlated Hubbard model is developed with the aim to analyze the thermodynamic potential properties. A new exact relation between renormalized quantities such as the thermodynamic potential, the one-particle propagator, and the correlation function is established. This relation contains an additional integration of the one-particle propagator with respect to an auxiliary constant. The vacuum skeleton diagrams constructed from the irreducible Green's functions and tunneling propagator lines are determined and a special functional is introduced. The properties of this functional are investigated and its relation to the thermodynamic potential is established. The stationarity property of this functional with respect to first-order variations of the correlation function is demonstrated; as a consequence, the stationarity property of the thermodynamic potential is proved.

  8. Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose–Hubbard model

    International Nuclear Information System (INIS)

    Sanders, Sören; Holthaus, Martin

    2017-01-01

    We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose–Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems. (paper)

  9. Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose-Hubbard model

    Science.gov (United States)

    Sanders, Sören; Holthaus, Martin

    2017-10-01

    We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose-Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems.

  10. Finite-temperature dynamics of the Mott insulating Hubbard chain

    Science.gov (United States)

    Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.

    2018-01-01

    We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.

  11. Algebraic approach to q-deformed supersymmetric variants of the Hubbard model with pair hoppings

    International Nuclear Information System (INIS)

    Arnaudon, D.

    1997-01-01

    Two quantum spin chains Hamiltonians with quantum sl(2/1) invariance are constructed. These spin chains define variants of the Hubbard model and describe electron models with pair hoppings. A cubic algebra that admits the Birman-Wenzl-Murakami algebra as a quotient allows exact solvability of the periodic chain. The two Hamiltonians, respectively built using the distinguished and the fermionic bases of U q (sl(2/1)) differ only in the boundary terms. They are actually equivalent, but the equivalence is non local. Reflection equations are solved to get exact solvability on open chains with non trivial boundary conditions. Two families of diagonal solutions are found. The centre and the s-Casimir of the quantum enveloping algebra of sl(2/1) appear as tools for the construction of exactly solvable Hamiltonians. (author)

  12. Phase transitions in the Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1977-05-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  13. Fermionic Hubbard model with Rashba or Dresselhaus spin-orbit coupling

    Science.gov (United States)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2017-06-01

    In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin-orbit coupling (SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin model. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground (Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by the spin wave expansion up to order 1/{S}2. In some SOC parameter regimes, the Y-y state supports a massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic quantities and also lead to the separation of the peak positions between the longitudinal and the transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads to a weak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to be played by these C-IC magnons at generic SOC parameters or under various external probes are hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms are discussed.

  14. Non local theory of excitations applied to the Hubbard model

    International Nuclear Information System (INIS)

    Kakehashi, Y; Nakamura, T; Fulde, P

    2010-01-01

    We propose a nonlocal theory of single-particle excitations. It is based on an off-diagonal effective medium and the projection operator method for treating the retarded Green function. The theory determines the nonlocal effective medium matrix elements by requiring that they are consistent with those of the self-energy of the Green function. This arrows for a description of long-range intersite correlations with high resolution in momentum space. Numerical study for the half-filled Hubbard model on the simple cubic lattice demonstrates that the theory is applicable to the strong correlation regime as well as the intermediate regime of Coulomb interaction strength. Furthermore the results show that nonlocal excitations cause sub-bands in the strong Coulomb interaction regime due to strong antiferromagnetic correlations, decrease the quasi-particle peak on the Fermi level with increasing Coulomb interaction, and shift the critical Coulomb interaction U C2 for the divergence of effective mass towards higher energies at least by a factor of two as compared with that in the single-site approximation.

  15. Phase diagram and topological phases in the triangular lattice Kitaev-Hubbard model

    Science.gov (United States)

    Li, Kai; Yu, Shun-Li; Gu, Zhao-Long; Li, Jian-Xin

    2016-09-01

    We study the half-filled Hubbard model on a triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a 120° magnetic order, a nonmagnetic insulator (NMI), and an interacting Chern insulator (CI) with a nonzero Chern number. The transition from CI to NMI is characterized by the change of the charge gap from an indirect band gap to a direct Mott gap. Based on the slave-rotor mean-field theory, the NMI phase is further suggested to be a gapless Mott insulator with a spinon Fermi surface or a fractionalized CI with nontrivial spinon topology, depending on the strength of the Kitaev-like hopping. Our work highlights the rising field in which interesting phases emerge from the interplay between band topology and Mott physics.

  16. MX chains: 1-D analog of CuO planes?

    International Nuclear Information System (INIS)

    Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.

    1989-01-01

    We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs

  17. Can disorder act as a chemical pressure? An optical study of the Hubbard model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-05-01

    The optical properties have been studied using the dynamical mean-field theory on a disordered Hubbard model. Despite the fact that disorder turns a metal to an insulator in high dimensional correlated materials, we notice that it can enhance certain metallic behavior as if a chemical pressure is applied to the system resulting in an increase of the effective lattice bandwidth (BW). We study optical properties in such a scenario and compare results with experiments where the BW is changed through isovalent chemical substitution (keeping electron filling unaltered) and obtain remarkable similarities vindicating our claim. We also make the point that these similarities differ from some other forms of BW tuned optical effects.

  18. Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model

    Science.gov (United States)

    Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn

    2018-04-01

    Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).

  19. Approximation auto-coherente a deux particules, pseudogap et supraconductivite dans le modele de Hubbard attractif

    Science.gov (United States)

    Allen, Steve

    2000-10-01

    Dans cette these nous presentons une nouvelle methode non perturbative pour le calcul des proprietes d'un systeme de fermions. Notre methode generalise l'approximation auto-coherente a deux particules proposee par Vilk et Tremblay pour le modele de Hubbard repulsif. Notre methode peut s'appliquer a l'etude du comportement pre-critique lorsque la symetrie du parametre d'ordre est suffisamment elevee. Nous appliquons la methode au probleme du pseudogap dans le modele de Hubbard attractif. Nos resultats montrent un excellent accord avec les donnees Monte Carlo pour de petits systemes. Nous observons que le regime ou apparait le pseudogap dans le poids spectral a une particule est un regime classique renormalise caracterise par une frequence caracteristique des fluctuations supraconductrices inferieure a la temperature. Une autre caracteristique est la faible densite de superfluide de cette phase demontrant que nous ne sommes pas en presence de paires preformees. Les resultats obtenus semblent montrer que la haute symetrie du parametre d'ordre et la bidimensionalite du systeme etudie elargissent le domaine de temperature pour lequel le regime pseudogap est observe. Nous argumentons que ce resultat est transposable aux supraconducteurs a haute temperature critique ou le pseudogap apparait a des' temperatures beaucoup plus grandes que la temperature critique. La forte symetrie dans ces systemes pourraient etre reliee a la theorie SO(5) de Zhang. En annexe, nous demontrons un resultat tout recent qui permettrait d'assurer l'auto-coherence entre les proprietes a une et a deux particules par l'ajout d'une dynamique au vertex irreductible. Cet ajout laisse entrevoir la possibilite d'etendre la methode au cas d'une forte interaction.

  20. Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model

    International Nuclear Information System (INIS)

    Toschi, A; Barone, P; Capone, M; Castellani, C

    2005-01-01

    The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function

  1. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    Science.gov (United States)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  2. Generalization of the Peierls-Bogolyubov inequality by means of a quantum-mechanical variational principle

    International Nuclear Information System (INIS)

    Soldatov, A.V.

    2000-01-01

    The Peierls-Bogolyubov inequality was generalized and a set of inequalities was derived instead, so that every subsequent inequality in this set approximates the quality in question with better precision than the preceding one. These inequalities lead to a sequence of improving upper bounds to the free energy of a quantum system if this system allows representation in terms of coherent states [ru

  3. On the particle-hole symmetry of the fermionic spinless Hubbard model in D=1

    Directory of Open Access Journals (Sweden)

    M.T. Thomaz

    2014-06-01

    Full Text Available We revisit the particle-hole symmetry of the one-dimensional (D=1 fermionic spinless Hubbard model, associating that symmetry to the invariance of the Helmholtz free energy of the one-dimensional spin-1/2 XXZ Heisenberg model, under reversal of the longitudinal magnetic field and at any finite temperature. Upon comparing two regimes of that chain model so that the number of particles in one regime equals the number of holes in the other, one finds that, in general, their thermodynamics is similar, but not identical: both models share the specific heat and entropy functions, but not the internal energy per site, the first-neighbor correlation functions, and the number of particles per site. Due to that symmetry, the difference between the first-neighbor correlation functions is proportional to the z-component of magnetization of the XXZ Heisenberg model. The results presented in this paper are valid for any value of the interaction strength parameter V, which describes the attractive/null/repulsive interaction of neighboring fermions.

  4. Elemental Germans Klaus Fuchs, Rudolf Peierls and the making of British nuclear culture 1939-59

    CERN Document Server

    Laucht, Christoph

    2012-01-01

    Christoph Laucht offers the first investigation into the roles played by two German-born emigre atomic scientists, Klaus Fuchs and Rudolf Peierls, in the development of British nuclear culture, especially the practice of nuclear science and the political implications of the atomic scientists' work, from the start of the Second World War until 1959.

  5. Two-particle excitations in the Hubbard model for high-temperature superconductors. A quantum cluster study

    International Nuclear Information System (INIS)

    Brehm, Sascha

    2009-01-01

    Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides

  6. Dynamical mean field study of the Mott transition in the half-filled Hubbard model on a triangular lattice

    OpenAIRE

    Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.

    2006-01-01

    We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...

  7. Momentum distribution critical exponents for one dimensional large U hubbard model in thermodynamic limit

    International Nuclear Information System (INIS)

    Qin Shaojin; Yu Lu.

    1996-03-01

    The critical exponent of the momentum distribution near k F , 3k F and 5k F are studied numerically for one-dimensional U → ∞ Hubbard model, using finite size systems and extrapolating them to the thermodynamic limit. Results at k F agree with earlier calculations, while at 3k F exponents less than 1 are obtained for finite size systems with extrapolation to 1 (regular behaviour) in the thermodynamic limit, in contrast to earlier analytic prediction 9/8. The distribution is regular at 5k F even for finite systems. The singularity near 3k F is interpreted as due to low energy excitations near 3k F in finite systems. (author). 18 refs, 4 figs, 1 tab

  8. Absence of ballistic charge transport in the half-filled 1D Hubbard model

    Science.gov (United States)

    Carmelo, J. M. P.; Nemati, S.; Prosen, T.

    2018-05-01

    Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mηz = - 2 Sηz/L = 1 -ne → 0, nonzero temperature T > 0, and U / t > 0 the charge stiffness of the 1D Hubbard model with first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different approaches yield contradictory results. (Here Sηz = - (L -Ne) / 2 is the η-spin projection and ne =Ne / L the electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly as at zero temperature), for T > 0 and U / t > 0 it vanishes for mηz → 0 within the canonical ensemble in the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ →μu where (μ -μu) ≥ 0 and 2μu is the Mott-Hubbard gap. The lack of charge ballistic transport indicates that charge transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and doubly occupied lattice sites are good quantum numbers for U / t > 0. In contrast to often less controllable numerical studies, the use of such a representation reveals the carriers that couple to the charge probes and provides useful physical information on the microscopic processes behind the exotic charge transport properties of the 1D electronic correlated system under study.

  9. Charge-spin-orbital dynamics of one-dimensional two-orbital Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Hiroaki [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2010-01-15

    We study the real-time evolution of a charge-excited state in a one-dimensional e{sub g}-orbital degenerate Hubbard model, by a time-dependent density-matrix renormalization group method. Considering a chain along the z direction, electrons hop between adjacent 3z{sup 2}-r{sup 2} orbitals, while x{sup 2}-y{sup 2} orbitals are localized. For the charge-excited state, a holon-doublon pair is introduced into the ground state at quarter filling. At initial time, there is no electron in a holon site, while a pair of electrons occupies 3z{sup 2}-r{sup 2} orbital in a doublon site. As the time evolves, the holon motion is governed by the nearest-neighbor hopping, but the electron pair can transfer between 3z{sup 2}-r{sup 2} orbital and x{sup 2}-y{sup 2} orbital through the pair hopping in addition to the nearest-neighbor hopping. Thus holon and doublon propagate at different speed due to the pair hopping that is characteristic of multi-orbital systems.

  10. Phase transition in the non-degenerate Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Chaves, C.M.; Lederer, P.; Gomes, A.A.

    1976-01-01

    Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed

  11. Magnetic field dependence of conductivity and effective mass of carriers in a model of Mott-Hubbard material

    Directory of Open Access Journals (Sweden)

    L.Didukh

    2005-01-01

    Full Text Available The effect of external magnetic field h on a static conductivity of Mott-Hubbard material which is described by the model with correlated hopping of electrons has been investigated. By means of canonical transformation, the effective Hamiltonian is obtained which takes into account strong intra-site Coulomb repulsion and correlated hopping. Using a variant of generalized Hartree-Fock approximation the single-electron Green function and quasiparticle energy spectrum of the model have been calculated. The static conductivity σ has been calculated as a function of h, electron concentration n and temperature T. The correlated hopping is shown to cause the electron-hole asymmetry of transport properties of narrow band materials.

  12. Attractive Hubbard model: Homogeneous Ginzburg–Landau expansion and disorder

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2016-01-01

    We derive a Ginzburg–Landau (GL) expansion in the disordered attractive Hubbard model within the combined Nozieres–Schmitt-Rink and DMFT+Σ approximation. Restricting ourselves to the homogeneous expansion, we analyze the disorder dependence of GL expansion coefficients for a wide range of attractive potentials U, from the weak BCS coupling region to the strong-coupling limit, where superconductivity is described by Bose–Einstein condensation (BEC) of preformed Cooper pairs. We show that for the a semielliptic “bare” density of states of the conduction band, the disorder influence on the GL coefficients A and B before quadratic and quartic terms of the order parameter, as well as on the specific heat discontinuity at the superconducting transition, is of a universal nature at any strength of the attractive interaction and is related only to the general widening of the conduction band by disorder. In general, disorder growth increases the values of the coefficients A and B, leading either to a suppression of the specific heat discontinuity (in the weak-coupling limit), or to its significant growth (in the strong-coupling region). However, this behavior actually confirms the validity of the generalized Anderson theorem, because the disorder dependence of the superconducting transition temperature T c , is also controlled only by disorder widening of the conduction band (density of states).

  13. Superfluid drag in the two-component Bose-Hubbard model

    Science.gov (United States)

    Sellin, Karl; Babaev, Egor

    2018-03-01

    In multicomponent superfluids and superconductors, co- and counterflows of components have, in general, different properties. A. F. Andreev and E. P. Bashkin [Sov. Phys. JETP 42, 164 (1975)] discussed, in the context of He3/He4 superfluid mixtures, that interparticle interactions produce a dissipationless drag. The drag can be understood as a superflow of one component induced by phase gradients of the other component. Importantly, the drag can be both positive (entrainment) and negative (counterflow). The effect is known to have crucial importance for many properties of diverse physical systems ranging from the dynamics of neutron stars and rotational responses of Bose mixtures of ultracold atoms to magnetic responses of multicomponent superconductors. Although substantial literature exists that includes the drag interaction phenomenologically, only a few regimes are covered by quantitative studies of the microscopic origin of the drag and its dependence on microscopic parameters. Here we study the microscopic origin and strength of the drag interaction in a quantum system of two-component bosons on a lattice with short-range interaction. By performing quantum Monte Carlo simulations of a two-component Bose-Hubbard model we obtain dependencies of the drag strength on the boson-boson interactions and properties of the optical lattice. Of particular interest are the strongly correlated regimes where the ratio of coflow and counterflow superfluid stiffnesses can diverge, corresponding to the case of saturated drag.

  14. Two-site Hubbard molecule with a spinless electron-positron pair

    KAUST Repository

    Cossu, Fabrizio

    2012-12-19

    We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.

  15. Two-site Hubbard molecule with a spinless electron-positron pair

    KAUST Repository

    Cossu, Fabrizio; Schuster, Cosima; Schwingenschlö gl, Udo

    2012-01-01

    We determine the eigenvalues of the two-site Hubbard molecule with one electron and one positron to describe the characteristics of electron-positron interactions in solids. While the effect of hopping is, in general, opposite to the effect of on-site interaction, we find a complex scenario for the electron-positron pair with a non-vanishing potential drop. We give analytical solutions and discuss the combined effects of the model parameters.

  16. Instability of Nagaoka's Theorem within The Hubbard Model ...

    African Journals Online (AJOL)

    Hence the t – J model is a better model for studying magnetism than the t – U model. Investigation also revealed that the inclusion of the on-site Coulomb interaction term U, in the t – J model enhances ferromagnetic tendencies in the systems studied. In this work, Nagaoka's theorem on ferromagnetism has been extended ...

  17. Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    International Nuclear Information System (INIS)

    Held, K.; Huscroft, C.; Scalettar, R. T.; McMahan, A. K.

    2000-01-01

    The single band Hubbard and the two band periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems--the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half filling. We address potential implications of this for theories of the rare earth ''volume collapse'' transition. (c) 2000 The American Physical Society

  18. Variational study of the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model

    International Nuclear Information System (INIS)

    Bajdich, M.; Hlubina, R.

    2001-01-01

    Making use of variational wave functions of the Basile-Elser type we study the stability of the Nagaoka state against single-spin flips in the two-dimensional t-t#prime# Hubbard model for t#prime#/t∼0.5. In the low-density limit the variational estimate of the stability region of the Nagaoka state is in qualitative agreement with the predictions of the T-matrix approximation

  19. Fermi-liquid to non-Fermi-liquid transition in a dynamical generalization of the CPA in a disordered Hubbard model

    International Nuclear Information System (INIS)

    Dasgupta, I.; Mookerjee, A.

    1993-07-01

    Based on the Augmented Space formalism proposed by one of us and a generalization of the alloy analogy, including the effect of the dynamics of the exchange bath, we show that a half-filled Hubbard model shows Fermi-liquid behaviour at low values of the interaction parameter U. This gives way to non-Fermi liquid behaviour at a critical U, where the system is still metallic. We also show that quenched disorder tends to lower this critical value of U. (author). 19 refs, 2 figs

  20. Pseudogap and Fermi-Surface Topology in the Two-Dimensional Hubbard Model

    Science.gov (United States)

    Wu, Wei; Scheurer, Mathias S.; Chatterjee, Shubhayu; Sachdev, Subir; Georges, Antoine; Ferrero, Michel

    2018-04-01

    One of the distinctive features of hole-doped cuprate superconductors is the onset of a "pseudogap" below a temperature T* . Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fermi surface. Here, we address this issue by studying the two-dimensional Hubbard model with two distinct numerical methods. We find that the pseudogap only exists when the Fermi surface is holelike and that, for a broad range of parameters, its opening is concomitant with a Fermi-surface topology change from electronlike to holelike. We identify a common link between these observations: The polelike feature of the electronic self-energy associated with the formation of the pseudogap is found to also control the degree of particle-hole asymmetry, and hence the Fermi-surface topology transition. We interpret our results in the framework of an SU(2) gauge theory of fluctuating antiferromagnetism. We show that a mean-field treatment of this theory in a metallic state with U(1) topological order provides an explanation of this polelike feature and a good description of our numerical results. We discuss the relevance of our results to experiments on cuprates.

  1. Comparative DMFT study of the eg-orbital Hubbard model in thin films

    Science.gov (United States)

    Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.

    2014-02-01

    Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.

  2. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    Science.gov (United States)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  3. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  4. Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions

    International Nuclear Information System (INIS)

    Hamerla, Simone Anke

    2013-10-01

    In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in

  5. Dynamics of fermionic Hubbard models after interaction quenches in one and two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Hamerla, Simone Anke

    2013-10-15

    In the last years the impressive progress on the experimental side led to a variety of new experiments allowing to address systems out of equilibrium. In this way the behavior of such systems far from equilibrium is no longer a purely theoretical issue but indeed observable. New experimental techniques, like particles trapped in optical lattices, render a realization of quantum systems with nearly arbitrary system parameters possible and provide a possibility to study their time evolution. Systems out of equilibrium are characterized by the fact, that these systems are in highly excited states giving rise to totally new fascinating properties. In the present thesis one- and two-dimensional fermionic Hubbard models out of equilibrium are discussed. The system is taken out of equilibrium by a so-called interaction quench. At the beginning the system is prepared in the groundstate of the non-interacting Hamiltonian. At a time t the interaction between the fermions is suddenly turned on so that the time evolution is governed by the whole, interacting Hamiltonian. Hence the system is prepared in the groundstate of one Hamiltonian but evolves according to a different Hamiltonian. Consequently the system ends up in a highly excited state. To describe such a system a method based on an expansion of the Heisenberg equations of motion to highest order possible is developed in this thesis. This method provides an exact description of the time evolution on short and intermediate time scales after the quench. As the method reveal exact results and does not rely on any perturbative assumption, a study of arbitrarily large interaction strengths is possible. Besides, the method is one of the few methods capable of two-dimensional systems. In the following the method used in this thesis is explained and advantages and disadvantages of the approach are thematized. For this purpose the results of the developed iterated equation of motion approach are compared to results obtained in

  6. Hubbard U calculations for gap states in dilute magnetic semiconductors.

    Science.gov (United States)

    Fukushima, T; Katayama-Yoshida, H; Sato, K; Bihlmayer, G; Mavropoulos, P; Bauer, D S G; Zeller, R; Dederichs, P H

    2014-07-09

    On the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa-Kohn-Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N - 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for n(0) ± 1/2 occupancies around the charge-neutral occupancy n0 (Janak's transition state model). The two methods give nearly identical results. Moreover the values calculated by the supercell method agree quite well with the Green function values. We point out an important difference between the 'global' U parameter calculated using Janak's theorem and the 'local' U of the Hubbard model.

  7. Attractive Hubbard model with disorder and the generalized Anderson theorem

    International Nuclear Information System (INIS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2015-01-01

    Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T c for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T c (in the weak-coupling region) or significantly increase T c (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band

  8. Implementation of the Lanczos algorithm for the Hubbard model on the Connection Machine system

    International Nuclear Information System (INIS)

    Leung, P.W.; Oppenheimer, P.E.

    1992-01-01

    An implementation of the Lanczos algorithm for the exact diagonalization of the two dimensional Hubbard model on a 4x4 square lattice on the Connection Machine CM-2 system is described. The CM-2 is a massively parallel machine with distributed memory. The program is written in C/PARIS. This implementation minimizes memory usage by generating the matrix elements as needed instead of storing them. The Lanczos vectors are stored across the local memory of the processors. Using translational symmetry only, the dimension of the Hilbert space at half filling is more than 10 million. A speed of about 2.4 min per iteration is achieved on a 64K CM-2. This implementation is scalable. Running it on a bigger machine with more processors speeds up the process. The performance analysis of this implementation is shown and discuss its advantages and disadvantages are discussed

  9. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field

    International Nuclear Information System (INIS)

    Yao, K.L.; Li, Y.C.; Sun, X.Z.; Liu, Q.M.; Qin, Y.; Fu, H.H.; Gao, G.Y.

    2005-01-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge-charge and spin-spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge-charge and the spin-spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute

  10. Propagation of quantum correlations after a quench in the Mott-insulator regime of the Bose-Hubbard model

    International Nuclear Information System (INIS)

    Krutitsky, Konstantin V.; Navez, Patrick; Schuetzhold, Ralf; Queisser, Friedemann

    2014-01-01

    We study a quantum quench in the Bose-Hubbard model where the tunneling rate J is suddenly switched from zero to a finite value in the Mott regime. In order to solve the many-body quantum dynamics far from equilibrium, we consider the reduced density matrices for a finite number of lattice sites and split them up into on-site density operators, i.e., the mean field, plus two-point and three-point correlations etc. Neglecting three-point and higher correlations, we are able to numerically simulate the time-evolution of the on-site density matrices and the two-point quantum correlations (e.g., their effective light-cone structure) for a comparably large number of lattice sites. (orig.)

  11. Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices

    Science.gov (United States)

    Dias, R. G.; Gouveia, J. D.

    2015-11-01

    We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette.

  12. Functional-derivative study of the Hubbard model. III. Fully renormalized Green's function

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    The functional-derivative method of calculating the Green's function developed earlier for the Hubbard model is generalized and used to obtain a fully renormalized solution. Higher-order functional derivatives operating on the basic Green's functions, G and GAMMA, are all evaluated explicitly, thus making the solution applicable to the narrow-band region as well as the wide-band region. Correction terms Phi generated from functional derivatives of equal-time Green's functions of the type delta/sup n/ /deltaepsilon/sup n/, etc., with n > or = 2. It is found that the Phi's are, in fact, renormalization factors involved in the self-energy Σ and that the structure of the Phi's resembles that of Σ and contains the same renormalization factors Phi. The renormalization factors Phi are shown to satisfy a set of equations and can be evaluated self-consistently. In the presence of the Phi's, all difficulties found in the previous results (papers I and II) are removed, and the energy spectrum ω can now be evaluated for all occupations n. The Schwinger relation is the only basic relation used in generating this fully self-consistent Green's function, and the Baym-Kadanoff continuity condition is automatically satisfied

  13. Polaronic and bipolaronic structures in the adiabatic Hubbard-Hostein model involving 2 electrons and in its extensions; Structures polaroniques et bipolaroniques dans le modele de hostein hubbard adiabatique a deux electrons et ses extensions

    Energy Technology Data Exchange (ETDEWEB)

    Proville, L

    1998-03-30

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.) 33 refs.

  14. Simultaneous diagonal and off-diagonal order in the Bose-Hubbard Hamiltonian

    International Nuclear Information System (INIS)

    Scalettar, R.T.; Batrouni, G.G.; Kampf, A.P.; Zimanyi, G.T.

    1995-01-01

    The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long-range (solid) order dominates as well as conducting regimes where off-diagonal long-range order (superfluidity) is present. In this paper we describe the results of quantum Monte Carlo calculations of the phase diagram, both for the hard- and soft-core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin-wave dispersion

  15. Damping at positive frequencies in the limit J⊥-->0 in the strongly correlated Hubbard model

    Science.gov (United States)

    Mohan, Minette M.

    1992-08-01

    I show damping in the two-dimensional strongly correlated Hubbard model within the retraceable-path approximation, using an expansion around dominant poles for the self-energy. The damping half-width ~J2/3z occurs only at positive frequencies ω>5/2Jz, the excitation energy of a pure ``string'' state of length one, where Jz is the Ising part of the superexchange interaction, and occurs even in the absence of spin-flip terms ~J⊥ in contrast to other theoretical treatments. The dispersion relation for both damped and undamped peaks near the upper band edge is found and is shown to have lost the simple J2/3z dependence characteristic of the peaks near the lower band edge. The position of the first three peaks near the upper band edge agrees well with numerical simulations on the t-J model. The weight of the undamped peaks near the upper band edge is ~J4/3z, contrasting with Jz for the weight near the lower band edge.

  16. Realization of a scenario with two relaxation rates in the Hubbard Falicov-Kimball model

    Science.gov (United States)

    Barman, H.; Laad, M. S.; Hassan, S. R.

    2018-02-01

    A single transport relaxation rate governs the decay of both longitudinal and Hall currents in Landau Fermi liquids (FL). Breakdown of this fundamental feature, first observed in two-dimensional cuprates and subsequently in other three-dimensional correlated systems close to the Mott metal-insulator transition, played a pivotal role in emergence of a non-FL (NFL) paradigm in higher dimensions D (>1 ) . Motivated hereby, we explore the emergence of this "two relaxation rates" scenario in the Hubbard Falicov-Kimball model (HFKM) using the dynamical mean-field theory (DMFT). Specializing to D =3 , we find, beyond a critical Falicov-Kimball (FK) interaction, that two distinct relaxation rates governing distinct temperature (T ) dependence of the longitudinal and Hall currents naturally emerges in the NFL metal. Our results show good accord with the experiment in V2 -yO3 near the metal-to-insulator transition (MIT). We rationalize this surprising finding by an analytical analysis of the structure of charge and spin Hamiltonians in the underlying impurity problem, specifically through a bosonization method applied to the Wolff model and connecting it to the x-ray edge problem.

  17. Non-Fermi Liquid Behavior and Continuously Tunable Resistivity Exponents in the Anderson-Hubbard Model at Finite Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Niravkumar D. [The Univ. of Tennessee, Knoxville, TN (United States); Mukherjee, Anamitra [National Institute of Science Education and Research, Jatni (India); Kaushal, Nitin [The Univ. of Tennessee, Knoxville, TN (United States); Moreo, Adriana [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dagotto, Elbio R. [The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-24

    Here, we employ a recently developed computational many-body technique to study for the first time the half-filled Anderson-Hubbard model at finite temperature and arbitrary correlation U and disorder V strengths. Interestingly, the narrow zero temperature metallic range induced by disorder from the Mott insulator expands with increasing temperature in a manner resembling a quantum critical point. Our study of the resistivity temperature scaling Tα for this metal reveals non-Fermi liquid characteristics. Moreover, a continuous dependence of α on U and V from linear to nearly quadratic is observed. We argue that these exotic results arise from a systematic change with U and V of the “effective” disorder, a combination of quenched disorder and intrinsic localized spins.

  18. Hole motion in the t-J and Hubbard models: Effect of a next-nearest-neighbor hopping

    International Nuclear Information System (INIS)

    Gagliano, E.; Bacci, S.; Dagotto, E.

    1990-01-01

    Using exact diagonalization techniques, we study one dynamical hole in the two-dimensional t-J and Hubbard models on a square lattice including a next-nearest-neighbor hopping t'. We present the phase diagram in the parameter space (J/t,t'/t), discussing the ground-state properties of the hole. At J=0, a crossing of levels exists at some value of t' separating a ferromagnetic from an antiferromagnetic ground state. For nonzero J, at least four different regions appear where the system behaves like an antiferromagnet or a (not fully saturated) ferromagnet. We study the quasiparticle behavior of the hole, showing that for small values of |t'| the previously presented string picture is still valid. We also find that, for a realistic set of parameters derived from the Cu-O Hamiltonian, the hole has momentum (π/2,π/2), suggesting an enhancement of the p-wave superconducting mode due to the second-neighbor interactions in the spin-bag picture. Results for the t-t'-U model are also discussed with conclusions similar to those of the t-t'-J model. In general we found that t'=0 is not a singular point of these models

  19. Phase transitions in the hard-core Bose-Fermi-Hubbard model at non-zero temperatures in the heavy-fermion limit

    Energy Technology Data Exchange (ETDEWEB)

    Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua

    2017-04-15

    Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.

  20. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  1. Mapping the electron correlation onto a model Hamiltonian for Cs/GaAs(110): a Mott-Hubbard insulator at quarter filling

    CERN Document Server

    Chen Chang Feng

    1998-01-01

    We have constructed an effective model Hamiltonian in the Hubbard formalism for the Cs/GaAs(110) surface at quarter-monolayer coverage with all of the parameters extracted from constrained local-density-approximation (LDA) pseudopotential calculations. The single-particle excitation spectrum of the model has been calculated using an exact-diagonalization technique to help determine the relevant interaction terms. It is shown that the intersite interaction between the nearest-neighbour Ga sites plays the key role in determining the insulating nature of the system and must be included in the model, in contrast to suggestions of some previous work. Our results show that a reliable mapping of LDA results onto an effective model Hamiltonian can be achieved by combining constrained LDA calculations for the Hamiltonian parameters and many-body calculations of the single-particle excitation spectrum for identifying relevant interaction terms. (author)

  2. Effects of geometrical frustration on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice

    Science.gov (United States)

    Farkašovský, Pavol

    2018-05-01

    The small-cluster exact-diagonalization calculations and the projector quantum Monte Carlo method are used to examine the competing effects of geometrical frustration and interaction on ferromagnetism in the Hubbard model on the generalised Shastry-Sutherland lattice. It is shown that the geometrical frustration stabilizes the ferromagnetic state at high electron concentrations ( n ≳ 7/4), where strong correlations between ferromagnetism and the shape of the noninteracting density of states are observed. In particular, it is found that ferromagnetism is stabilized for these values of frustration parameters, which lead to the single-peaked noninterating density of states at the band edge. Once, two or more peaks appear in the noninteracting density of states at the band edge the ferromagnetic state is suppressed. This opens a new route towards the understanding of ferromagnetism in strongly correlated systems.

  3. A pure Hubbard model with demonstrable pairing adjacent to the Mott-insulating phase

    International Nuclear Information System (INIS)

    Champion, J D; Long, M W

    2003-01-01

    We introduce a Hubbard model on a particular class of geometries, and consider the effect of doping the highly spin-degenerate Mott-insulating state with a microscopic number of holes in the extreme strong-coupling limit. The geometry is quite general, with pairs of atomic sites at each superlattice vertex, and a highly frustrated inter-atomic connectivity: the one-dimensional realization is a chain of edge-sharing tetrahedra. The sole model parameter is the ratio of intra-pair to inter-pair hopping matrix elements. If the intra-pair hopping is negligible then introducing a microscopic number of holes results in a ferromagnetic Nagaoka groundstate. Conversely, if the intra-pair hopping is comparable with the inter-pair hopping then the groundstate is low spin with short-ranged spin correlations. We exactly solve the correlated motion of a pair of holes in such a state and find that, in 1d and 2d, they form a bound pair on a length scale that increases with diminishing binding energy. This result is pertinent to the long-standing problem of hole motion in the CuO 2 planes of the high-temperature superconductors: we have rigorously shown that, on our frustrated geometry, the holes pair up and a short-ranged low-spin state is generated by hole motion alone

  4. Lattice relaxation theory of localized excitations in quasi-one-dimensional systems

    International Nuclear Information System (INIS)

    Wang Chuilin; Su Zhaobin; Yu Lu.

    1993-04-01

    The lattice relaxation theory developed earlier by Su and Yu for solitons and polarons in conducting polymers is applied to systems with both electron-phonon and electron-electron interactions, described by a single band Peierls-Hubbard model. The localized excitations in the competing bond-order-wave (BOW), charge-density-wave (CDW) and spin-density-wave (SDW) systems show interesting new features in their dynamics. In particular, a non-monotonic dependence of the relaxation rate on the coupling strength is predicted from the theory. The possible connection of this effect with photo-luminescence experiments is discussed. Similar phenomena may occur in other quasi-one-dimensional systems as well. (author). 21 refs, 4 figs

  5. Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder

    Science.gov (United States)

    Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2018-05-01

    The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.

  6. Multiple mobility edges in a 1D Aubry chain with Hubbard interaction in presence of electric field: Controlled electron transport

    Science.gov (United States)

    Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.

    2016-09-01

    Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.

  7. Floquet Engineering of Correlated Tunneling in the Bose-Hubbard Model with Ultracold Atoms.

    Science.gov (United States)

    Meinert, F; Mark, M J; Lauber, K; Daley, A J; Nägerl, H-C

    2016-05-20

    We report on the experimental implementation of tunable occupation-dependent tunneling in a Bose-Hubbard system of ultracold atoms via time-periodic modulation of the on-site interaction energy. The tunneling rate is inferred from a time-resolved measurement of the lattice site occupation after a quantum quench. We demonstrate coherent control of the tunneling dynamics in the correlated many-body system, including full suppression of tunneling as predicted within the framework of Floquet theory. We find that the tunneling rate explicitly depends on the atom number difference in neighboring lattice sites. Our results may open up ways to realize artificial gauge fields that feature density dependence with ultracold atoms.

  8. Hubbard-Stratonovich-like Transformations for Few-Body Inter-actions

    Directory of Open Access Journals (Sweden)

    Körber Christopher

    2018-01-01

    Full Text Available Through the development of many-body methodology and algorithms, it has become possible to describe quantum systems composed of a large number of particles with great accuracy. Essential to all these methods is the application of auxiliary fields via the Hubbard-Stratonovich transformation. This transformation effectively reduces two-body interactions to interactions of one particle with the auxiliary field, thereby improving the computational scaling of the respective algorithms. The relevance of collective phenomena and interactions grows with the number of particles. For many theories, e.g. Chiral Perturbation Theory, the inclusion of three-body forces has become essential in order to further increase the accuracy on the many-body level. In this proceeding, the an-alytical framework for establishing a Hubbard-Stratonovich-like transformation, which allows for the systematic and controlled inclusion of contact three-and more-body inter-actions, is presented.

  9. Bose-Hubbard lattice as a controllable environment for open quantum systems

    Science.gov (United States)

    Cosco, Francesco; Borrelli, Massimo; Mendoza-Arenas, Juan José; Plastina, Francesco; Jaksch, Dieter; Maniscalco, Sabrina

    2018-04-01

    We investigate the open dynamics of an atomic impurity embedded in a one-dimensional Bose-Hubbard lattice. We derive the reduced evolution equation for the impurity and show that the Bose-Hubbard lattice behaves as a tunable engineered environment allowing one to simulate both Markovian and non-Markovian dynamics in a controlled and experimentally realizable way. We demonstrate that the presence or absence of memory effects is a signature of the nature of the excitations induced by the impurity, being delocalized or localized in the two limiting cases of a superfluid and Mott insulator, respectively. Furthermore, our findings show how the excitations supported in the two phases can be characterized as information carriers.

  10. Studies on entanglement entropy for Hubbard model with hole-doping and external magnetic field [rapid communication

    Science.gov (United States)

    Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.

    2005-10-01

    By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.

  11. Polaronic and bipolaronic structures in the adiabatic Hubbard-Holstein model involving 2 electrons and its extensions

    International Nuclear Information System (INIS)

    Proville, L.

    1998-01-01

    This thesis brings its contribution to the bipolaronic theory which might explain the origin of superconductivity at high temperature. A polaron is a quasiparticle made up of a localized electron and a deformation in the crystal structure. 2 electrons in singlet states localized on the same site form a bipolaron. Whenever the Coulomb repulsion between the 2 electrons is too strong bipolaron turns into 2 no bound polarons. We study the existence and the mobility of bipolarons. We describe the electron-phonon interaction by the Holstein term and the Coulomb repulsion by the Hubbard term. 2 assumptions are made: - the local electron-phonon interaction is strong and opposes the Coulomb repulsion between Hubbard type electrons - the system is close to the adiabatic limit. The system is reduced to 2 electrons in order to allow an exact treatment and the investigation of some bipolaronic bound states. At 2-dimensions the existence of bipolarons requires a very strong coupling which forbids any classical mobility. In some cases an important tunneling effect appears and we show that mobile bipolarons exist in a particular parameter range. Near the adiabatic limit we prove that polaronic and bipolaronic structures exist for a great number of electrons. (A.C.)

  12. Rationalization of the Hubbard U parameter in CeOx from first principles: Unveiling the role of local structure in screening

    International Nuclear Information System (INIS)

    Lu, Deyu; Liu, Ping

    2014-01-01

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions

  13. Quasiparticle band structure for the Hubbard systems: Application to α-CeAl2

    International Nuclear Information System (INIS)

    Costa-Quintana, J.; Lopez-Aguilar, F.; Balle, S.; Salvador, R.

    1990-01-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy U. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of α-CeAl 2 because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method

  14. Stability of the split-band solution and energy gap in the narrow-band region of the Hubbard model

    International Nuclear Information System (INIS)

    Arai, T.; Cohen, M.H.

    1980-01-01

    By inserting quasielectron energies ω calculated from the fully renormalized Green's function of the Hubbard model obtained in the preceding paper into the exact expression of Galitskii and Migdal, the ground-state energy, the chemical potential, and the dynamic- and thermodynamic-stability conditions are calculated in the narrow-band region. The results show that as long as the interaction energy I is finite, electrons in the narrow-band region do not obey the Landau theory of Fermi liquids, and a gap appears between the lowest quasielectron energy ω and the chemical potential μ for any occupation n, regardless of whether the lower band is exactly filled or not. This unusual behavior is possible because, when an electron is added to the system of N electrons, the whole system relaxes due to the strong interaction, introducing a relaxation energy difference between the two quantities. We also show that all previous solutions which exhibit the split-band structure, including Hubbard's work, yield the same conclusion that electrons do not behave like Landau quasiparticles. However, the energy gap is calculated to be negative at least for some occupations n, demonstrating the dynamic instability of those solutions. They also exhibit thermodynamic instability for certain occupations, while the fully renormalized solution, having sufficient electron correlations built in, satisfies the dynamic and thermodynamic stability conditions for all occupations. When the lower band is nearly filled, the nature of the solution is shown to change, making the coherent motion of electrons with fixed k values more difficult. In the pathological limit where I=infinity, however, the gap vanishes, yielding a metallic state

  15. Gutzwiller variational wave function for a two-orbital Hubbard model on a square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, Kevin Torben zu

    2015-07-01

    In this work, we formulated and applied the Gutzwiller variational many-body approach to multi-band Hubbard models. In chapter 1, we gave a short introduction to the problem and an outline of the scope of the work. In the chapter 2, we developed a complete, concise diagrammatic formalism for a perturbative evaluation of expectation values for Gutzwiller-correlated wave functions on finite lattices. The derivation of the diagrammatic expansion consists of three steps. In a first step, we introduced a one-to-one mapping between a sequence of fermion operators and their Hartree-Fock counterparts in order to eliminate all local contractions. We explicitly showed the consistency of the mapping. In a second step, we derived and applied the linked-cluster theorem. To this end, we expanded numerator and denominator in the Gutzwiller expectation value of one-site and two-site operators in terms of a perturbation series, and used Wick's theorem to express the coefficients in terms of diagrams. The introduction of the Hartree-Fock operators excludes all local contractions so that lines between identical lattice sites are zero by definition. The normal ordering of the operators and the sum over distinctive lattice sites permitted the introduction of Grassmann variables. For multi-band Gutzwiller wave functions, we had to introduce a formal representation of local operators in terms of an exponential series which led to a re-definition of the values of external and internal vertices. Then, the linked-cluster theorem applied, both for infinite and finite lattices, i.e., the unconnected diagrams in the numerator are canceled by the denominator. In this way, the nth-order in perturbation theory corresponds to summing all connected diagrams with n internal nodes. As a third and last step, we eliminated all internal nodes with two lines by fixing a subset of our variational parameters. We showed that, for our applications, this gauge fixing does not restrict the variational

  16. Pseudogap and the specific heat of high Tc superconductors: a Hubbard model in a n-pole approximation

    Science.gov (United States)

    Calegari, E. J.; Lausmann, A. C.; Magalhaes, S. G.; Chaves, C. M.; Troper, A.

    2015-03-01

    In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-Tc superconductors (HTSC), is studied taking into account hopping to first (t) and second (t2) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (nT) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation.

  17. Unconventional and intertwined orders of the low-dimensional Hubbard model

    International Nuclear Information System (INIS)

    Leprevost, Alexandre

    2015-01-01

    The understanding of superconductivity exhibited at high critical temperature by certain transition metal oxides remains a central issue in theoretical condensed matter physics. In this context, and since the historical proposal by P. W. Anderson, the repulsive Hubbard model in two dimensions became a paradigm in an attempt to capture the essential properties of non-conventional superconducting materials. However, the determination of the exact ground state encounters the exponential complexity of the quantum many-body problem. The main purpose of this thesis is to develop a variational scheme free of any hypothesis concerning magnetic, charge or superconducting orders likely to emerge from the Hamiltonian at low energy. The originality of the approach is found in the introduction of correlations by restoring, before variation, symmetries deliberately broken in a trial state given by a superposition of versatile wavefunctions of Hartree-Fock and Bogoliubov-de Gennes types. For small clusters of two and four sites, we show analytically that this symmetry entangled mean field method allows to find the exact ground state regardless of the strength of the on-site interaction. For larger hole-doped clusters and in the strongly correlated regime, we highlight an arrangement of magnetic moments in a spiral or in a spin density wave that is then accompanied by inhomogeneities in the form of regularly distributed stripes. Moreover, such orders are intertwined with long range d-wave pairing correlations, which, in the thermodynamic limit, sign superconductivity. These results are obtained through systematic simulations in a four-leg tube geometry that can be realized experimentally using cold atoms trapped in optical lattices. (author) [fr

  18. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Y.A.

    2003-01-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories

  19. Quantum phase transitions of light in a dissipative Dicke-Bose-Hubbard model

    Science.gov (United States)

    Wu, Ren-Cun; Tan, Lei; Zhang, Wen-Xuan; Liu, Wu-Ming

    2017-09-01

    The impact that the environment has on the quantum phase transition of light in the Dicke-Bose-Hubbard model is investigated. Based on the quasibosonic approach, mean-field theory, and perturbation theory, the formulation of the Hamiltonian, the eigenenergies, and the superfluid order parameter are obtained analytically. Compared with the ideal cases, the order parameter of the system evolves with time as the photons naturally decay in their environment. When the system starts with the superfluid state, the dissipation makes the photons more likely to localize, and a greater hopping energy of photons is required to restore the long-range phase coherence of the localized state of the system. Furthermore, the Mott lobes depend crucially on the numbers of atoms and photons (which disappear) of each site, and the system tends to be classical with the number of atoms increasing; however, the atomic number is far lower than that expected under ideal circumstances. As there is an inevitable interaction between the coupled-cavity array and its surrounding environment in the actual experiments, the system is intrinsically dissipative. The results obtained here provide a more realistic image for characterizing the dissipative nature of quantum phase transitions in lossy platforms, which will offer valuable insight into quantum simulation of a dissipative system and which are helpful in guiding experimentalists in open quantum systems.

  20. Quantum behaviour of open pumped and damped Bose-Hubbard trimers

    Science.gov (United States)

    Chianca, C. V.; Olsen, M. K.

    2018-01-01

    We propose and analyse analogs of optical cavities for atoms using three-well inline Bose-Hubbard models with pumping and losses. With one well pumped and one damped, we find that both the mean-field dynamics and the quantum statistics show a qualitative dependence on the choice of damped well. The systems we analyse remain far from equilibrium, although most do enter a steady-state regime. We find quadrature squeezing, bipartite and tripartite inseparability and entanglement, and states exhibiting the EPR paradox, depending on the parameter regimes. We also discover situations where the mean-field solutions of our models are noticeably different from the quantum solutions for the mean fields. Due to recent experimental advances, it should be possible to demonstrate the effects we predict and investigate in this article.

  1. Stability of superfluid phases in the 2D spin-polarized attractive Hubbard model

    Science.gov (United States)

    Kujawa-Cichy, A.; Micnas, R.

    2011-08-01

    We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LPs) with increasing attraction, in the presence of the Zeeman magnetic field (h) for d=2, within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation as well as the strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin-independent hopping integrals (t↑=t↓), we find no stable homogeneous polarized superfluid (SCM) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation (PS) is favoured for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin-dependent hopping integrals (mass imbalance) on the stability of the SCM phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC0) to SCM and tricritical points in the h-|U| and t↑/t↓-|U| ground-state phase diagrams. We also construct the finite temperature phase diagrams for both t↑=t↓ and t↑≠t↓ and analyze the possibility of occurrence of a spin-polarized KT superfluid.

  2. Pseudogap and the specific heat of high Tc superconductors: a Hubbard model in a n-pole approximation

    International Nuclear Information System (INIS)

    Calegari, E J; Lausmann, A C; Magalhaes, S G; Chaves, C M; Troper, A

    2015-01-01

    In this work the specific heat of a two-dimensional Hubbard model, suitable to discuss high-T c superconductors (HTSC), is studied taking into account hopping to first (t) and second (t 2 ) nearest neighbors. Experimental results for the specific heat of HTSC's, for instance, the YBCO and LSCO, indicate a close relation between the pseudogap and the specific heat. In the present work, we investigate the specific heat by the Green's function method within a n-pole approximation. The specific heat is calculated on the pseudogap and on the superconducting regions. In the present scenario, the pseudogap emerges when the antiferromagnetic (AF) fluctuations become sufficiently strong. The specific heat jump coefficient Δγ decreases when the total occupation per site (n T ) reaches a given value. Such behavior of Δγ indicates the presence of a pseudogap in the regime of high occupation

  3. Rationalization of the Hubbard U parameter in CeO{sub x} from first principles: Unveiling the role of local structure in screening

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Deyu, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov; Liu, Ping, E-mail: dlu@bnl.gov, E-mail: pingliu3@bnl.gov [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2014-02-28

    The density functional theory (DFT)+U method has been widely employed in theoretical studies on various ceria systems to correct the delocalization bias in local and semi-local DFT functionals with moderate computational cost. We present a systematic and quantitative study, aiming to gain better understanding of the dependence of Hubbard U on the local atomic arrangement. To rationalize the Hubbard U of Ce 4f, we employed the first principles linear response method to compute Hubbard U for Ce in ceria clusters, bulks, and surfaces. We found that the Hubbard U varies in a wide range from 4.3 eV to 6.7 eV, and exhibits a strong correlation with the Ce coordination number and Ce–O bond lengths, rather than the Ce 4f valence state. The variation of the Hubbard U can be explained by the changes in the strength of local screening due to O → Ce intersite transitions.

  4. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.

  5. Polyacetylene and relativistic field-theory models

    International Nuclear Information System (INIS)

    Bishop, A.R.; Campbell, D.K.; Fesser, K.

    1981-01-01

    Connections between continuum, mean-field, adiabatic Peierls-Froehlich theory in the half-filled band limit and known field theory results are discussed. Particular attention is given to the phi 4 model and to the solvable N = 2 Gross-Neveu model. The latter is equivalent to the Peierls system at a static, semi-classical level. Based on this equivalence we note the prediction of both kink and polaron solitons in models of trans-(CH)/sub x/. Polarons in cis-(CH)/sub x/ are compared with those in the trans isomer. Optical absorption from polarons is described, and general experimental consequences of polarons in (CH)/sub x/ and other conjugated polymers is discussed

  6. Physical properties and the Peierls instability of Li0.82[Pt(S2C2(CN)2)2] · 2H2O

    DEFF Research Database (Denmark)

    Ahmad, M. M.; Turner, D. J.; Underhill, A. E.

    1984-01-01

    The infrared reflectivity, the temperature-dependent conductivity, and thermopower of the one-dimensional conductor Li0.82[Pt(S2C2(CN)2)2] · 2H2O, LiPt(mnt), is presented. It undergoes a simple Peierls transition at Tc=215 K, which is not influenced by correlations or by cation ordering. The meta...

  7. Entanglement of Exact Excited Eigenstates of the Hubbard Model in Arbitrary Dimension

    Directory of Open Access Journals (Sweden)

    Oskar Vafek, Nicolas Regnault, B. Andrei Bernevig

    2017-12-01

    Full Text Available We compute exactly the von Neumann entanglement entropy of the eta-pairing states - a large set of exact excited eigenstates of the Hubbard Hamiltonian. For the singlet eta-pairing states the entropy scales with the logarithm of the spatial dimension of the (smaller partition. For the eta-pairing states with finite spin magnetization density, the leading term can scale as the volume or as the area-times-log, depending on the momentum space occupation of the Fermions with flipped spins. We also compute the corrections to the leading scaling. In order to study the eigenstate thermalization hypothesis (ETH, we also compute the entanglement Renyi entropies of such states and compare them with the corresponding entropies of thermal density matrix in various ensembles. Such states, which we find violate strong ETH, may provide a useful platform for a detailed study of the time-dependence of the onset of thermalization due to perturbations which violate the total pseudospin conservation.

  8. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model

    Science.gov (United States)

    Lu, Yi; Haverkort, Maurits W.

    2017-12-01

    We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.

  9. Twist map, the extended Frenkel-Kontorova model and the devil's staircase

    International Nuclear Information System (INIS)

    Aubry, S.

    1982-01-01

    Exact results obtained on the discrete Frenkel Kontorova (FK) model and its extensions during the past few years are reviewed. These models are associated with area preserving twist maps of the cylinder (or a part of it) onto itself. The theorems obtained for the FK model thus yields new theorems for the twist maps. The exact structure of the ground-states which are either commensurate or incommensurate and assert the existence of elementary discommensurations under certain necessary and sufficient conditions is described. Necessary conditions for the trajectories to represent metastable configurations, which can be chaotic, are given. The existence of a finite Peierl Nabarro barrier for elementary discommensurations is connected with a property of non-integrability of the twist map. The existence of KAM tori corresponds to undefectible incommensurate ground-states and a theorem is given which asserts that when the phenon spectrum of an incommensurate ground-state exhibits a finite gap, then the corresponding trajectory is dense on a Cantor set with zero measure length. These theorems, when applied to the initial FK model, allows one to prove the existence of the transition by breaking of analyticity for the incommensurate structures when the parameter which describes the discrepancy of the model to the integrable limit varies. Finally, we describe a theorem proving the existence of a devil's staircase for the variation curve of the atomic mean distance versus a chemical potential, for certain properties of the twist map which are generally satisfied

  10. Recurrent variational approach to the two-leg Hubbard ladder

    International Nuclear Information System (INIS)

    Kim, E.H.; Sierra, G.; Duffy, D.

    1999-01-01

    We applied the recurrent variational approach to the two-leg Hubbard ladder. At half filling, our variational ansatz was a generalization of the resonating valence-bond state. At finite doping, hole pairs were allowed to move in the resonating valence-bond background. The results obtained by the recurrent variational approach were compared with results from density matrix renormalization group. copyright 1999 The American Physical Society

  11. A mechanical of spin-triplet superconductivity in Hubbard model on triangular lattice: application to UNi sub 2 Al sub 3

    CERN Document Server

    Nisikawa, Y

    2002-01-01

    We discuss the possibility of spin-triplet superconductivity in a two-dimensional Hubbard model on a triangular lattice within the third-order perturbation theory. When we vary the symmetry in the dispersion of the bare energy band from D sub 2 to D sub 6 , spin-singlet superconductivity in the D sub 2 -symmetric system is suppressed and we obtain spin-triplet superconductivity in near the D sub 6 -symmetric system. In this case, it is found that the vertex terms, which are not included in the interaction mediated by the spin fluctuation, are essential for realizing the spin-triplet pairing. We point out the possibility that obtained results correspond to the difference between the superconductivity of UNi sub 2 Al sub 3 and that of UPd sub 2 Al sub 3. (author)

  12. The search for competing charge orders in frustrated ladder systems

    International Nuclear Information System (INIS)

    Lal, Siddhartha; Laad, Mukul S.

    2007-08-01

    A recent study revealed the dynamics of the charge sector of a one-dimensional quarter- filled electronic system with extended Hubbard interactions to be that of an effective pseudospin transverse-field Ising model (TFIM) in the strong coupling limit. With the twin motivations of studying the co-existing charge and spin order found in strongly correlated chain systems and the effects of inter-chain couplings, we investigate the phase diagram of coupled effective (TFIM) systems. A bosonisation and RG analysis for a two-leg TFIM ladder yields a rich phase diagram showing Wigner/Peierls charge order and Neel/dimer spin order. In a broad parameter regime, the orbital antiferromagnetic phase is found to be stable. An intermediate gapless phase of finite width is found to lie in between two charge-ordered gapped phases. Kosterlitz-Thouless transitions are found to lead from the gapless phase to either of the charge-ordered phases. Low energy effective Hamiltonian analyses of a strongly coupled 2-chain ladder system confirm a phase diagram with in-chain CO, rung-dimer, and orbital antiferromagnetic ordered phases with varying interchain couplings as well as superconductivity upon hole-doping. Our work is potentially relevant for a unified description of a class of strongly correlated, quarter-filled chain and ladder systems. (autor)

  13. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Gregory W., E-mail: gmann@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Mesosphere, Inc., San Francisco, California 94105 (United States); Lee, Kyuho, E-mail: kyuholee@lbl.gov [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Synopsys, Inc., Mountain View, California 94043 (United States); Cococcioni, Matteo, E-mail: matteo.cococcioni@epfl.ch [Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Smit, Berend, E-mail: Berend-Smit@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion (Switzerland); Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2016-05-07

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO{sub 2}-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO{sub 2} binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  14. First-principles Hubbard U approach for small molecule binding in metal-organic frameworks

    International Nuclear Information System (INIS)

    Mann, Gregory W.; Lee, Kyuho; Cococcioni, Matteo; Smit, Berend; Neaton, Jeffrey B.

    2016-01-01

    We apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO 2 -MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%. In addition, U-dependent calculations for an example system, Co-MOF-74, suggest that the CO 2 binding energy grows monotonically with the value of Hubbard U, with the binding energy shifting 4 kJ/mol (or 0.041 eV) over the range of U = 0-5.4 eV. These results provide insight into an approximate but computationally efficient means for calculation of small molecule binding energies to open-shell transition metal atoms in MOFs and suggest that the approach can be predictive with good accuracy, independent of the cations used and the availability of experimental data.

  15. Quantum critical phenomena and conformal invariance

    International Nuclear Information System (INIS)

    Zhe Chang.

    1995-05-01

    We show that the Abelian bosonization of continuum limit of the 1D Hubbard model corresponds to the 2D explicitly conformal invariant Gaussian model at weak coupling limit. A universality argument is used to extend the equivalence to an entire segment of the critical line of the strongly correlated electron system. An integral equation satisfied by the mapping function between critical lines of the 1D Hubbard model and 2D Gaussian model is obtained and then solved in some limiting cases. By making use of the fact that the free Hubbard system reduces to four fermions and each of them is related to a c = 1/2 conformal field theory, we present exactly the partition function of the Hubbard model on a finite 1D lattice. (author). 16 refs

  16. Ferromagnetic Peierls insulator state in A Mg4Mn6O15(A =K ,Rb ,Cs )

    Science.gov (United States)

    Yamaguchi, T.; Sugimoto, K.; Ohta, Y.; Tanaka, Y.; Sato, H.

    2018-04-01

    Using the density-functional-theory-based electronic structure calculations, we study the electronic state of recently discovered mixed-valent manganese oxides A Mg4Mn6O15(A =K ,Rb ,Cs ) , which are fully spin-polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described as a three-dimensional arrangement of the one-dimensional chains of a 2 p orbital of O and a 3 d orbital of Mn running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the system insulating.

  17. On the Relative Stability of Donor and Acceptor Stacks Against the Peierls Distortion in the Tetrathia- and Tetraselenafulvalenium Tetracyanoquinodimethanide Family of Organic Metals

    DEFF Research Database (Denmark)

    Andersen, Jan Rud; Taranko, A. R.; Tomkiewicz, Y.

    1987-01-01

    An organic conductor having a Peierls instability driven by donor stacks is considered. The compound is tetramethyltetraselenafulvalene-2,5-dimethyltetracyanoquinodimethane. Magnetic data confirm that the instability is donor driven. The influence of the unit cell size is examined. The unit cell...... size can be changed by the substitution of sulphur or selenium or by the introduction of methyl groups. The consequences of this are discussed...

  18. Modeling of extended defects in silicon

    International Nuclear Information System (INIS)

    Law, M.E.; Jones, K.S.; Earles, S.K.; Lilak, A.D.; Xu, J.W.

    1997-01-01

    Transient Enhanced Diffusion (TED) is one of the biggest modeling challenges present in predicting scaled technologies. Damage from implantation of dopant ions changes the diffusivities of the dopants and precipitates to form complex extended defects. Developing a quantitative model for the extended defect behavior during short time, low temperature anneals is a key to explaining TED. This paper reviews some of the modeling developments over the last several years, and discusses some of the challenges that remain to be addressed. Two examples of models compared to experimental work are presented and discussed

  19. Microscopic origin of magnetism and magnetic interactions in ferropnictides

    Science.gov (United States)

    Johannes, M. D.; Mazin, I. I.

    2009-06-01

    One year after their initial discovery, two schools of thought have crystallized regarding the electronic structure and magnetic properties of ferropnictide systems. One postulates that these are itinerant weakly correlated metallic systems that become magnetic by virtue of spin-Peierls-type transition due to near nesting between the hole and the electron Fermi-surface pockets. The other argues that these materials are strongly or at least moderately correlated and the electrons are considerably localized and close to a Mott-Hubbard transition, with the local magnetic moments interacting via short-range superexchange. In this Rapid Communication we argue that neither picture is fully correct. The systems are moderately correlated but with correlations driven by Hund’s rule coupling rather than by the on-site Hubbard repulsion. The iron moments are largely local, driven by Hund’s intra-atomic exchange. Superexchange is not operative, and the interactions between the Fe moments are considerably long range and driven mostly by one-electron energies of all occupied states.

  20. An extended technicolor model

    International Nuclear Information System (INIS)

    Appelquist, T.; Terning, J.

    1994-01-01

    An extended technicolor model is constructed. Quark and lepton masses, spontaneous CP violation, and precision electroweak measurements are discussed. Dynamical symmetry breaking is analyzed using the concept of the big MAC (most attractive channel)

  1. Superconductivity, Mott-Hubbard states, and molecular orbital order in intercalated fullerides

    CERN Document Server

    Iwasa, Y

    2003-01-01

    This article reviews the current status of chemically doped fullerene superconductors and related compounds, with particular focus on Mott-Hubbard states and the role of molecular orbital degeneracy. Alkaline-earth metal fullerides produce superconductors of several kinds, all of which have states with higher valence than (C sub 6 sub 0) sup 6 sup - , where the second lowest unoccupied molecular orbital (the LUMO + 1 state) is filled. Alkali-metal-doped fullerides, on the other hand, afford superconductors only at the stoichiometry A sub 3 C sub 6 sub 0 (A denotes alkali metal) and in basically fcc structures. The metallicity and superconductivity of A sub 3 C sub 6 sub 0 compounds are destroyed either by reduction of the crystal symmetry or by change in the valence of C sub 6 sub 0. This difference is attributed to the narrower bandwidth in the A sub 3 C sub 6 sub 0 system, causing electronic instability in Jahn-Teller insulators and Mott-Hubbard insulators. The latter metal-insulator transition is driven by...

  2. Chemical and morphological distinctions between vertical and lateral podzolization at Hubbard Brook

    Science.gov (United States)

    Rebecca R. Bourgault; Donald S. Ross; Scott W. Bailey

    2015-01-01

    Classical podzolization studies assumed vertical percolation and pedon-scale horizon development. However, hillslope-scale lateral podzolization also occurs where lateral subsurface water flux predominates. In this hydropedologic study, 99 podzols were observed in Watershed 3, Hubbard Brook Experimental Forest, New Hampshire. Soil horizon samples were extracted with...

  3. Stochastic mean-field theory: Method and application to the disordered Bose-Hubbard model at finite temperature and speckle disorder

    International Nuclear Information System (INIS)

    Bissbort, Ulf; Hofstetter, Walter; Thomale, Ronny

    2010-01-01

    We discuss the stochastic mean-field theory (SMFT) method, which is a new approach for describing disordered Bose systems in the thermodynamic limit including localization and dimensional effects. We explicate the method in detail and apply it to the disordered Bose-Hubbard model at finite temperature, with on-site box disorder, as well as experimentally relevant unbounded speckle disorder. We find that disorder-induced condensation and re-entrant behavior at constant filling are only possible at low temperatures, beyond the reach of current experiments [M. Pasienski, D. McKay, M. White, and B. DeMarco, e-print arXiv:0908.1182]. Including off-diagonal hopping disorder as well, we investigate its effect on the phase diagram in addition to pure on-site disorder. To make connection to present experiments on a quantitative level, we also combine SMFT with an LDA approach and obtain the condensate fraction in the presence of an external trapping potential.

  4. Numerically exact dynamics of the interacting many-body Schroedinger equation for Bose-Einstein condensates. Comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Energy Technology Data Exchange (ETDEWEB)

    Sakmann, Kaspar

    2010-07-21

    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)

  5. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    Science.gov (United States)

    Aizawa, H.; Kuroki, K.; Yasuzuka, S.; Yamada, J.

    2012-11-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ-B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of Tc is qualitatively consistent with the experimental observation.

  6. Model construction and superconductivity analysis of organic conductors β-(BDA-TTP)2MF6 (M = P, As, Sb and Ta) based on first-principles band calculation

    International Nuclear Information System (INIS)

    Aizawa, H; Kuroki, K; Yasuzuka, S; Yamada, J

    2012-01-01

    We perform a first-principles band calculation for a group of quasi-two-dimensional organic conductors β-(BDA-TTP) 2 MF 6 (M = P, As, Sb and Ta). The ab-initio calculation shows that the density of states is correlated with the bandwidth of the singly occupied (highest) molecular orbital, while it is not necessarily correlated with the unit-cell volume. The direction of the major axis of the cross section of the Fermi surface lies in the Γ–B-direction, which differs from that obtained by the extended Hückel calculation. Then, we construct a tight-binding model which accurately reproduces the ab-initio band structure. The obtained transfer energies give a smaller dimerization than in the extended Hückel band. As to the difference in the anisotropy of the Fermi surface, the transfer energies along the inter-stacking direction are smaller than those obtained in the extended Hückel calculation. Assuming spin-fluctuation-mediated superconductivity, we apply random phase approximation to a two-band Hubbard model. This two-band Hubbard model is composed of the tight-binding model derived from the first-principles band structure and an on-site (intra-molecule) repulsive interaction taken as a variable parameter. The obtained superconducting gap changes sign four times along the Fermi surface like in a d-wave gap, and the nodal direction is different from that obtained in the extended Hückel model. Anion dependence of T c is qualitatively consistent with the experimental observation. (paper)

  7. An Examination of Extended a-Rescaling Model

    Institute of Scientific and Technical Information of China (English)

    YAN Zhan-Yuan; DUAN Chun-Gui; HE Zhen-Min

    2001-01-01

    The extended x-rescaling model can explain the quark's nuclear effect very well. Weather it can also explain the gluon's nuclear effect should be investigated further. Associated J/ψ and γ production with large PT is a very clean channel to probe the gluon distribution in proton or nucleus. In this paper, using the extended x-rescaling model, the PT distribution of the nuclear effect factors of p + Fe → J/Ψ + γ+ X process is calculated and discussed. Comparing our theoretical results with the future experimental data, the extended x-rescaling model can be examined.``

  8. A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model

    Directory of Open Access Journals (Sweden)

    Mark Kelbert

    2013-01-01

    Full Text Available This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin is ℋ1=L2(M, where M is a d-dimensional unit torus M=ℝd/ℤd with a flat metric. The phase space of k spins is ℋk=L2sym(Mk, the subspace of L2(Mk formed by functions symmetric under the permutations of the arguments. The Fock space H=⊕k=0,1,…ℋk yields the phase space of a system of a varying (but finite number of particles. We associate a space H≃H(i with each vertex i∈Γ of a graph (Γ,ℰ satisfying a special bidimensionality property. (Physically, vertex i represents a heavy “atom” or “ion” that does not move but attracts a number of “light” particles. The kinetic energy part of the Hamiltonian includes (i -Δ/2, the minus a half of the Laplace operator on M, responsible for the motion of a particle while “trapped” by a given atom, and (ii an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of multiplication by a function (the potential energy of a classical configuration which is a sum of (a one-body potentials U(1(x, x∈M, describing a field generated by a heavy atom, (b two-body potentials U(2(x,y, x,y∈M, showing the interaction between pairs of particles belonging to the same atom, and (c two-body potentials V(x,y, x,y∈M, scaled along the graph distance d(i,j between vertices i,j∈Γ, which gives the interaction between particles belonging to different atoms. The system under consideration can be considered as a generalized (bosonic Hubbard model. We assume that a connected Lie group G acts on M, represented by a Euclidean space or torus of dimension d'≤d, preserving the metric and the volume in M. Furthermore, we suppose that the potentials U(1, U(2, and V are G-invariant. The result

  9. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Science.gov (United States)

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  10. An Alternative Approach to the Extended Drude Model

    Science.gov (United States)

    Gantzler, N. J.; Dordevic, S. V.

    2018-05-01

    The original Drude model, proposed over a hundred years ago, is still used today for the analysis of optical properties of solids. Within this model, both the plasma frequency and quasiparticle scattering rate are constant, which makes the model rather inflexible. In order to circumvent this problem, the so-called extended Drude model was proposed, which allowed for the frequency dependence of both the quasiparticle scattering rate and the effective mass. In this work we will explore an alternative approach to the extended Drude model. Here, one also assumes that the quasiparticle scattering rate is frequency dependent; however, instead of the effective mass, the plasma frequency becomes frequency-dependent. This alternative model is applied to the high Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 92 K, and the results are compared and contrasted with the ones obtained from the conventional extended Drude model. The results point to several advantages of this alternative approach to the extended Drude model.

  11. A Novel Biped Pattern Generator Based on Extended ZMP and Extended Cart-Table Model

    Directory of Open Access Journals (Sweden)

    Guangbin Sun

    2015-07-01

    Full Text Available This paper focuses on planning patterns for biped walking on complex terrains. Two problems are solved: ZMP (zero moment point cannot be used on uneven terrain, and the conventional cart-table model does not allow vertical CM (centre of mass motion. For the ZMP definition problem, we propose the extended ZMP (EZMP concept as an extension of ZMP to uneven terrains. It can be used to judge dynamic balance on universal terrains. We achieve a deeper insight into the connection and difference between ZMP and EZMP by adding different constraints. For the model problem, we extend the cart-table model by using a dynamic constraint instead of constant height constraint, which results in a mathematically symmetric set of three equations. In this way, the vertical motion is enabled and the resultant equations are still linear. Based on the extended ZMP concept and extended cart-table model, a biped pattern generator using triple preview controllers is constructed and implemented simultaneously to three dimensions. Using the proposed pattern generator, the Atlas robot is simulated. The simulation results show the robot can walk stably on rather complex terrains by accurately tracking extended ZMP.

  12. Full self-consistency versus quasiparticle self-consistency in diagrammatic approaches: exactly solvable two-site Hubbard model.

    Science.gov (United States)

    Kutepov, A L

    2015-08-12

    Self-consistent solutions of Hedin's equations (HE) for the two-site Hubbard model (HM) have been studied. They have been found for three-point vertices of increasing complexity (Γ = 1 (GW approximation), Γ1 from the first-order perturbation theory, and the exact vertex Γ(E)). Comparison is made between the cases when an additional quasiparticle (QP) approximation for Green's functions is applied during the self-consistent iterative solving of HE and when QP approximation is not applied. The results obtained with the exact vertex are directly related to the present open question-which approximation is more advantageous for future implementations, GW + DMFT or QPGW + DMFT. It is shown that in a regime of strong correlations only the originally proposed GW + DMFT scheme is able to provide reliable results. Vertex corrections based on perturbation theory (PT) systematically improve the GW results when full self-consistency is applied. The application of QP self-consistency combined with PT vertex corrections shows similar problems to the case when the exact vertex is applied combined with QP sc. An analysis of Ward Identity violation is performed for all studied in this work's approximations and its relation to the general accuracy of the schemes used is provided.

  13. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  14. Ab inito calculations of Hubbard parameters for NiO and Gd crystals

    Directory of Open Access Journals (Sweden)

    A. R Faghihi and S Jalali Asadabadi

    2008-07-01

    Full Text Available   In this research the Hubbard parameters have been calculated for NiO and Gd crystals, as two strongly correlated systems with partially full 3d and 4f levels, respectively. The calculations were performed within the density functional theory (DFT using the augmented plane waves plus the local orbitat (APW+lo method. We constructed a suitable supercell and found that the Hubbard parameters for the NiO and Gd compounds are equal to 5.9 eV and 5.7 eV, respectively. Our results are in good agreement with experimental data and results of other computational methods. Then we used the obtained parameters to study the structural properties of NiO and Gd by means of LDA+U approximation. Our results calculated by the LDA+U method which are in better agreement with the experiment show a significant improvement compared to the GGA approximation. The result shows that our method for calculating U parameter can be considered as a satisfactory method to study a strongly correlated system.

  15. Catapodium marinum (L.) Hubbard, Scirpus planifolius Grimm en Trifolium micranthum Viv. op Goeree

    NARCIS (Netherlands)

    Westhoff, V.; Leeuwen, van C.G.

    1962-01-01

    The mediterranean-atlantic species Catapodium marinum (L.) Hubbard reaches its northern limit on the continent in the Netherlands. Up to 1959 only 2 localities on the Dutch coast were known. In 1961 the species was discovered in large quantities on the brackish estuary shore of the island of Goeree,

  16. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    Science.gov (United States)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  17. Correlation mediated superconductivity in a 'High-Tsub(c)' model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    A simple model is presented to account for the High-Tsub(c) perovskite superconductors. The superconducting mechanism is purely electronic and comes from local Hubbard correlations. The model comprises a Hubbard model for the copper sites with a single particle oxygen band between the two copper Hubbard bands. The electrons move only between nearest neighbour atoms which are of different types. Using two very different approximation schemes, one related to 'Slave-Boson' mean field theory and the other based on an exact local Fermion transformation, the possibility of copper-oxygen or a mixture of copper-oxygen and oxygen-oxygen pairing is shown. The author believes that the most promising situation for superconductivity is with the Oxygen band over half-filled and closer in energy to the lower Hubbard band. (author)

  18. Charge and pairing dynamics in the attractive Hubbard model: Mode coupling and the validity of linear-response theory

    Science.gov (United States)

    Bünemann, Jörg; Seibold, Götz

    2017-12-01

    Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.

  19. X-ray and neutron diffraction studies of the Peierls instability

    International Nuclear Information System (INIS)

    Renker, B.; Comes, R.

    1974-01-01

    The experimental techniques of X-ray and thermal neutron scattering provide a lot of information about the metal insulator transition in linear conductors. The enhanced Kohn anomaly which has been detected in KCP at room temperature proves 1d-metallic properties at higher temperatures. But additionally a very low frequency peak was found at the same wave vector which was explained by the assumption of critical fluctuations. Thus at room temperature one does not observe a real metallic state but the system already performs fluctuations around an equilibrum position which is the isolating state at lower temperatures. The fluctuations will cause the existence of a pseudo gap which is responsible for a reduced electron mobility and a hardening of the soft mode frequencies above 100 K. The temperature dependent intensity of the central component has been measured. The transition to the Peierls state where the fluctuations are frozen in, is caused by a 3d-ordering of the distortions impressed on the single chains. Finally it was found that this 3d-transition does not lead to a real long range ordered structure. It leads to domains which are fairly large in chain direction [xi > 170 A] but which are small perpendicular to that direction [xi = 33 A]. The X-ray experiments where performed at Orsay, and the neutron scattering experiments partly at the Karlsruhe FR2 reactor and the Grenoble ILL-high flux reactor. (orig./HK) [de

  20. Extended Jiles-Atherton model for modelling the magnetic characteristics of isotropic materials

    International Nuclear Information System (INIS)

    Szewczyk, Roman; Bienkowski, Adam; Salach, Jacek

    2008-01-01

    This paper presents the idea of the extension of the Jiles-Atherton model applied for modelling of the magnetic characteristics of Mn-Zn, as well as Ni-Zn ferrites. The presented extension of the model takes into account changes of the parameter k during the magnetisation process, what is physically judged. The extended Jiles-Atherton model gives novel possibility of modelling the hysteresis loops of isotropic materials. For one set of the extended model parameters, a good agreement between experimental data and modelled hysteresis loops is observed, for different values of maximal magnetising field. As a result, the extended Jiles-Atherton model presented in the paper may be applied for both technical applications and fundamental research, focused on understanding the physical aspects of the magnetisation process of anisotropic soft magnetic materials

  1. Desarrollo No Perturbativo para el Modelo de Hubbard Generalizado

    Directory of Open Access Journals (Sweden)

    Oscar P. Zandron

    2010-01-01

    Full Text Available Se extienden a un estado superconductor nuestros resultados previamente obtenidos para un estado normal en el marco del formalismo Lagrangiano. Se considera la expansión noperturbativa a N grande aplicada a un modelo generalizado de Hubbard describiendo N bandas degeneradas correlacionadas. Se obtienen la diagramática Feynman del modelo y se calculan y analizan las cantidades físicas renormalizadas. Nuestro propósito es obtener la corrección 1/N de los propagadores bosónico y fermiónico renormalizados cuando se tiene en cuenta un estado de condensación de pares de Cooper.

  2. Building and testing models with extended Higgs sectors

    Science.gov (United States)

    Ivanov, Igor P.

    2017-07-01

    Models with non-minimal Higgs sectors represent a mainstream direction in theoretical exploration of physics opportunities beyond the Standard Model. Extended scalar sectors help alleviate difficulties of the Standard Model and lead to a rich spectrum of characteristic collider signatures and astroparticle consequences. In this review, we introduce the reader to the world of extended Higgs sectors. Not pretending to exhaustively cover the entire body of literature, we walk through a selection of the most popular examples: the two- and multi-Higgs-doublet models, as well as singlet and triplet extensions. We will show how one typically builds models with extended Higgs sectors, describe the main goals and the challenges which arise on the way, and mention some methods to overcome them. We will also describe how such models can be tested, what are the key observables one focuses on, and illustrate the general strategy with a subjective selection of results.

  3. Critical slowing down in driven-dissipative Bose-Hubbard lattices

    Science.gov (United States)

    Vicentini, Filippo; Minganti, Fabrizio; Rota, Riccardo; Orso, Giuliano; Ciuti, Cristiano

    2018-01-01

    We explore theoretically the dynamical properties of a first-order dissipative phase transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated Wigner approximation, we investigate the dynamical behavior as a function of system size for one-dimensional (1D) and 2D square lattices in the regime where mean-field theory predicts nonlinear bistability. We show that a critical slowing down emerges for increasing number of sites in 2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties of the collective phases in the critical region.

  4. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  5. Phase diagram of an extended Agassi model

    Science.gov (United States)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  6. On the Reconciliation of the Extended Nelson-Siegel and the Extended Vasicek Models (with a View Towards Swap and Swaption Valuation)

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    Extended Nelson-Siegel models are widely used by e.g. practitioners and central banks to estimate current term structures of riskless zero-coupon interest rates, whereas other models such as the extended Vasicek model (a.k.a. the Hull-White model) are popular for pricing interest rate derivatives....... This paper establishes theoretical consistency between these two types of models by showing how to specify the extended Vasicek model such that its implied initial term structure curve precisely matches a given extended Nelson-Siegel specification. That is, we show how to reconcile the two classes of models...

  7. Microscopic description of the three major bands in transitional nuclei

    International Nuclear Information System (INIS)

    Pineda S, R.L.

    1986-01-01

    The author has extended the Coherent Phonon Model to the description of the three major bands in medium heavy transitional nuclei. The model assumes an axially symmetric deformed ground intrinsic state for the description of the low lying yrast levels of the ground band, while the excited bands are generated by intrinsic excitations of the ground band. Good angular momentum states are generated by the Peierls-Yoccoz angular momentum projection method

  8. Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.

    Science.gov (United States)

    Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert

    2013-07-01

    The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.

  9. Extendable linearised adjustment model for deformation analysis

    NARCIS (Netherlands)

    Hiddo Velsink

    2015-01-01

    Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices

  10. Extendable linearised adjustment model for deformation analysis

    NARCIS (Netherlands)

    Velsink, H.

    2015-01-01

    This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation

  11. Quantum lattice model solver HΦ

    Science.gov (United States)

    Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki

    2017-08-01

    HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).

  12. Hydrogen ion input to the Hubbard Brook Experimental Forest, New Hampshire, during the last decade

    Science.gov (United States)

    Gene E. Likens; F. Herbert Bormann; John S. Eaton; Robert S. Pierce; Noye M. Johnson

    1976-01-01

    Being downwind of eastern and midwestern industrial centers, the Hubbard Brook Experimental Forest offers a prime location to monitor long-term trends in atmospheric chemistry. Continuous measurements of precipitation chemistry during the last 10 years provide a measure of recent changes in precipitation inputs of hydrogen ion. The weighted average pH of precipitation...

  13. Extending product modeling methods for integrated product development

    DEFF Research Database (Denmark)

    Bonev, Martin; Wörösch, Michael; Hauksdóttir, Dagný

    2013-01-01

    Despite great efforts within the modeling domain, the majority of methods often address the uncommon design situation of an original product development. However, studies illustrate that development tasks are predominantly related to redesigning, improving, and extending already existing products...... and PVM methods, in a presented Product Requirement Development model some of the individual drawbacks of each method could be overcome. Based on the UML standard, the model enables the representation of complex hierarchical relationships in a generic product model. At the same time it uses matrix....... Updated design requirements have then to be made explicit and mapped against the existing product architecture. In this paper, existing methods are adapted and extended through linking updated requirements to suitable product models. By combining several established modeling techniques, such as the DSM...

  14. One-Particle vs. Two-Particle Crossover in Weakly Coupled Hubbard Chains and Ladders: Perturbative Renormalization Group Approach

    OpenAIRE

    Kishine, Jun-ichiro; Yonemitsu, Kenji

    1997-01-01

    Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to.

  15. A quasi-exactly solvable Lipkin-Meshkov-Glick model

    International Nuclear Information System (INIS)

    Pan Feng; Lin Jijie; Xue Xiaogang; Draayer, J P

    2010-01-01

    We prove that a special Lipkin-Meshkov-Glick model is quasi-exactly solvable with solutions that can be expressed in the SU(2) coherent state form. Ground-state properties of the model are studied analytically. We also show that the model reduces to the standard two-site Bose-Hubbard model in the large-N limit for finite U/t or large (N - 1)|U|/t cases with finite N, which proves that in these cases the ground state of the standard two-site Bose-Hubbard model is an SU(2) coherent state.

  16. An atomic string model for a screw dislocation in iron: Implications for the development of interatomic potentials

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Dudarev, S.L.; Chiesa, S.; Derlet, P.M.

    2009-01-01

    Thermally activated motion of screw dislocations is the rate-determining mechanism for plastic deformation and fracture of body centred cubic (bcc) metals and alloys. Recent experimental observations by S.G. Roberts' group at Oxford showed that ductile-brittle behaviour of bcc vanadium, tungsten, pure iron, and iron-chromium alloys is controlled by an Arrhenius process in which the energy for thermal activation is proportional to the formation energy for a double kink on a b= 1/2 screw dislocation, where b is the Burgers vector of the dislocation. Interpreting these experimental observations and extending the analysis to the case of irradiated materials requires developing a full quantitative treatment for perfect and kinked screw dislocations. Modelling screw dislocations also presents a challenge for the development of interatomic potentials. Recent density functional theory (DFT) calculations have revealed that the ground-state structure of the core of screw dislocations in all the bcc transition metals is non-degenerate and symmetric, whereas inter-atomic potentials used in molecular dynamics simulations for these metals often predict a degenerate, symmetry-broken core-structure. In this work we show how, by treating the structure of a screw dislocation within a multistring Frenkel-Kontorova model, we can develop a criterion that guarantees the correct symmetric core of the dislocation. Extending this treatment, we find a systematic recipe for constructing Finnis-Sinclair-type potentials that are able, as a matter of routine, produce non-degenerate core structures of 1/2 screw dislocations. Modelling thermally activated mobility of screw dislocations also requires that the transition pathway between stable core positions of a dislocation is accurately reproduced. DFT data indicates that the shape of the 'Peierls energy barrier' is a single-hump curve, including transitional configurations close to the so-called 'hard' structure. Interatomic potentials have, up

  17. Soliton excitations in polyacetylene and relativistic field theory models

    International Nuclear Information System (INIS)

    Campbell, D.K.; Bishop, A.R.; Los Alamos Scientific Lab., NM

    1982-01-01

    A continuum model of a Peierls-dimerized chain, as described generally by Brazovskii and discussed for the case of polyacetylene by Takayama, Lin-Liu and Maki (TLM), is considered. The continuum (Bogliubov-de Gennes) equations arising in this model of interacting electrons and phonons are shown to be equivalent to the static, semiclassical equations for a solvable model field theory of self-coupled fermions - the N = 2 Gross-Neveu model. Based on this equivalence we note the existence of soliton defect states in polyacetylene that are additional to, and qualitatively different from, the amplitude kinks commonly discussed. The new solutions do not have the topological stability of kinks but are essentially conventional strong-coupling polarons in the dimerized chain. They carry spin (1/2) and charge (+- e). In addition, we discuss further areas in which known field theory results may apply to a Peierls-dimerized chain, including relations between phenomenological PHI 4 and continuuum electron-phonon models, and the structure of the fully quantum versus mean field theories. (orig.)

  18. Synchrotron X-ray diffraction studies of the incommensurate phase of a spin-Peierls system CuGeO3 in strong magnetic fields

    International Nuclear Information System (INIS)

    Narumi, Yasuo; Katsumata, Koichi; Tanaka, Yoshikazu; Ishikawa, Tetsuya; Kitamura, Hideo; Hara, Toru; Tanaka, Takashi; Tamasaku, Kenji; Tabata, Yoshikazu; Kimura, Shojiro; Nakamura, Tetsuya; Yabashi, Makina; Goto, Shunji; Ohashi, Haruhiko; Takeshita, Kunikazu; Ohata, Toru; Matsushita, Tomohiro; Bizen, Teruhiko; Shimomura, Susumu; Matsuda, Masaaki

    2004-01-01

    Synchrotron X-ray diffraction measurements on a spin-Peierls material CuGeO 3 in applied magnetic fields, H, up to 15 T are made. We find that the temperature, T, dependence of the incommensurate Bragg peak at a lower H is quite different from that at a higher H. At sufficiently high fields, we find that the lattice incommensurability, δι, is almost independent of T, while at H slightly above the critical field = 12.25 T for the commensurate to incommensurate transition, δι decreases with increasing T. We interpret that this finding is due to a stabilization of the incommensurate state by a strong magnetic field which suppresses thermal fluctuations. (author)

  19. Le modele de Hubbard bidimensionnel a faible couplage: Thermodynamique et phenomenes critiques

    Science.gov (United States)

    Roy, Sebastien

    Une etude systematique du modele de Hubbard en deux dimensions a faible couplage a l'aide de la theorie Auto-Coherente a Deux Particules (ACDP) dans le diagramme temperature-dopage-interaction-sauts permet de mettre en evidence l'influence des fluctuations magnetiques sur les proprietes thermodynamiques du systeme electronique sur reseau. Le regime classique renormalise a temperature finie pres du dopage nul est marque par la grandeur de la longueur de correlation de spin comparee a la longueur thermique de de Broglie et est caracterisee par un accroissement drastique de la longueur de correlation de spin. Cette croissance exponentielle a dopage nul marque la presence d'un pic de chaleur specifique en fonction de la temperature a basse temperature. Une temperature de crossover est alors associee a la temperature a laquelle la longueur de correlation de spin est egale a la longueur thermique de de Broglie. C'est a cette temperature caracteristique, ou est observee l'ouverture du pseudogap dans le poids spectral, que se situe le maximum du pic de chaleur specifique. La presence de ce pic a des consequences sur l'evolution du potentiel chimique avec le dopage lorsque l'uniformite thermodynamique est respectee. Les contraintes imposees par les lois de la thermodynamique font en sorte que l'evolution du potentiel chimique avec le dopage est non triviale. On demontre entre autres que le potentiel chimique est proportionnel a la double occupation qui est reliee au moment local. Par ailleurs, une derivation de la fonction de mise a l'echelle de la susceptibilite de spin a frequence nulle au voisinage d'un point critique marque sans equivoque la presence d'un point critique quantique en dopage pour une valeur donnee de l'interaction. Ce point critique, associe a une transition de phase magnetique en fonction du dopage a temperature nulle, induit un comportement non trivial sur les proprietes physiques du systeme a temperature finie. L'approche quantitative ACDP permet de

  20. Ferromagnetically coupled local moments along an extended line defect in graphene

    Science.gov (United States)

    White, Carter T.; Vasudevan, Smitha; Gunlycke, Daniel

    2011-03-01

    Recently an extended line defect was observed composed of octagonal and pentagonal carbon rings embedded in a graphene sheet [Nat. Nanotech. 5, 326 (2010)]. We report results of studies we have made of this defect using both first-principles and semi-empirical methods. Two types of boundary-localized states arising from the defect are identified. The first (second) type has eigenstates with wavefunctions that are anti- symmetric (symmetric) with respect to a mirror plane that is perpendicular to the graphene sheet and passes through the line defect center line. The boundary-localized anti-symmetric states are shown to be intimately connected to the zigzag edge states of semi-infinite graphene. They exhibit little dispersion along the defect line and lie close to the Fermi level giving rise to a spontaneous spin polarization along the defect once electron-electron interactions are included at the level of a mean field approximation to a Hubbard Model. Within this approach, symmetry requires that the principal moments couple ferromagnetically both along and across the line defect leading to approximately 2/3 more up than down spin electrons per defect repeat unit. This work was supported by ONR, directly and through NRL.

  1. Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain

    Science.gov (United States)

    Vitoriano, Carlindo; Coutinho-Filho, M. D.

    2010-09-01

    We investigate the ground-state and low-temperature properties of the integrable version of the Penson-Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary excitations and manifest differently in the four regions of the phase diagram U/t versus n , where U is the Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local pair formation, fractionalization of the average occupation number per orbital k , or U - and n -dependent average electric charge per orbital k . We also study the scaling behavior near the U -driven quantum phase transitions and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive- U regime for U

  2. Disorder structure of free-flow and global jams in the extended BML model

    International Nuclear Information System (INIS)

    Zhao Xiaomei; Xie Dongfan; Jia Bin; Jiang Rui; Gao Ziyou

    2011-01-01

    The original BML model is extended by introducing extended sites, which can hold several vehicles at each time-step. Unexpectedly, the flow in the extended model sharply transits from free-flow to global jams, but the transition is not one-order in original BML model. And congestion in the extended model appears more easily. This can ascribe to the mixture of vehicles from different directions in one site, leading to the drop-off of the capacity of the site. Furthermore, the typical configuration of free flowing and global jams in the extended models is disorder, different from the regular structure in the original model.

  3. Penson-Kolb-Hubbard model: A study of the competition between single-particle and pair hopping in one dimension

    International Nuclear Information System (INIS)

    Hui, A.; Doniach, S.

    1993-01-01

    In this paper, we present a study of the ground-state phase diagram of a one-dimensional quantum chain, the Penson-Kolb-Hubbard model, H=-summation i ,η=±1,σ (tc i+ησ † c iσ +Vc i+η↑ † c i+η↓ † c i↓ ci↑)+ summation i Un i↑ ni↓ at half filling. We have examined the system using exact diagonalization for samples of up to 12 sites and employed two techniques, eigenprojection decomposition and twisted-boundary conditions, in analyzing the data. These techniques allow us to characterize the ground state in a manner insensitive to changes in sample size and provide us with a clean way to visualize the physics. When used with the ''correct'' order parameter, qualitative features emerge even for sample sizes as small as six sites. We find that the second-order charge-density-wave--spin-density-wave transition in the weak-coupling limit (t much-gt U∼2V) turns into a first-order superconducting--antiferromagnetic transition in the strong-coupling regime [t much-lt U∼(4/π)V]. We also observe evidence of a charge-density-wave--superconducting transition in the parameter range (t∼V much-gt U). These three transition lines meet together at a tricritical point at (t:U:V)∼(0.04:0.54:0.42). A naive renormalization-group analysis in the intermediate-coupling regime produces results consistent with this conclusion

  4. Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH USA

    Science.gov (United States)

    Rakesh Minocha; Stephanie Long; Palaniswamy Thangavel; Subhash C. Minocha; Christopher Eagar; Charles T. Driscoll

    2010-01-01

    Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions...

  5. Magnetic behavior of a spin-1 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Mancini, F P

    2010-01-01

    I study the one-dimensional spin-1 Blume-Emery-Griffiths model with bilinear and biquadratic exchange interactions and single-ion crystal field under an applied magnetic field. This model can be exactly mapped into a tight-binding Hubbard model - extended to include intersite interactions - provided one renormalizes the chemical and the on-site potentials, which become temperature dependent. After this transformation, I provide the exact solution of the Blume-Emery-Griffiths model in one dimension by means of the Green's functions and equations of motion formalism. I investigate the magnetic variations of physical quantities - such as magnetization, quadrupolar moment, susceptibility - for different values of the interaction parameters and of the applied field, focusing on the role played by the biquadratic interaction in the breakdown of the magnetization plateaus.

  6. Center for Extended Magnetohydrodynamics Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jesus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-14

    This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification of the numerical codes. This activity was funded for twelve years.

  7. Two-magnon Raman scattering in a Mott-Hubbard antiferromagnet

    International Nuclear Information System (INIS)

    Basu, S.; Singh, A.

    1996-01-01

    A perturbation-theoretic diagrammatic scheme is developed for systematically studying the two-magnon Raman scattering in a Mott-Hubbard antiferromagnet. The fermionic structure of the magnon interaction vertex is obtained at order-1/N level in an inverse-degeneracy expansion, and the relevant two-magnon propagator is obtained by incorporating magnon interactions at a ladder-sum level. Evaluation of the magnon interaction vertex in the large-U limit yields a nearest-neighbor instantaneous interaction with interaction energy -J. Application of this approach to the intermediate-U regime, which is of relevance for cuprate antiferromagnets, is also discussed. Incorporating the zero-temperature magnon damping, which is estimated in terms of quantum spin fluctuations, the two-magnon Raman scattering intensity is evaluated and compared with experiments on La 2 CuO 4 . copyright 1996 The American Physical Society

  8. Extended Linear Models with Gaussian Priors

    DEFF Research Database (Denmark)

    Quinonero, Joaquin

    2002-01-01

    In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....

  9. Quantifying the levitation picture of extended states in lattice models

    OpenAIRE

    Pereira, Ana. L. C.; Schulz, P. A.

    2002-01-01

    The behavior of extended states is quantitatively analyzed for two-dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the quantum Hall phase diagrams may be disorder dependent.

  10. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard.

    Science.gov (United States)

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han

    2014-01-01

    Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.

  11. Theory of superconductivity and spin excitations in cuprates

    Science.gov (United States)

    Plakida, Nikolay M.

    2018-06-01

    A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.

  12. The spin-Peierls chain revisited

    International Nuclear Information System (INIS)

    Hager, Georg; Weisse, Alexander; Wellein, Gerhard; Jeckelmann, Eric; Fehske, Holger

    2007-01-01

    We extend previous analytical studies of the ground-state phase diagram of a one-dimensional Heisenberg spin chain coupled to optical phonons, which for increasing spin-lattice coupling undergoes a quantum phase transition from a gapless to a gaped phase with finite lattice dimerisation. We check the analytical results against established four-block and new two-block density matrix renormalisation group (DMRG) calculations. Different finite-size scaling behaviour of the spin excitation gaps is found in the adiabatic and anti-adiabatic regimes

  13. Axelrod Model with Extended Conservativeness

    Science.gov (United States)

    Dybiec, Bartłomiej

    2012-11-01

    Similarity of opinions and memory about recent interactions are two main factors determining likelihood of social contacts. Here, we explore the Axelrod model with an extended conservativeness which incorporates not only similarity between individuals but also a preference to the last source of accepted information. The additional preference given to the last source of information increases the initial decay of the number of ideas in the system, changes the character of the phase transition between homogeneous and heterogeneous final states and could increase the number of stable regions (clusters) in the final state.

  14. Thermodynamic admissibility of the extended Pom-Pom model for branched polymers

    NARCIS (Netherlands)

    Soulages, J.; Hütter, M.; Öttinger, H.C.

    2006-01-01

    The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M.

  15. Extended Lipkin-type models with residual proton-neutron interaction

    International Nuclear Information System (INIS)

    Stoica, S.

    1999-01-01

    Extended Lipkin-Meshkov-Glick (LMG) models for testing the Random Phase Approximation (RPA) and proton-neutron Random Phase Approximation (pnRPA) methods are developed taking into account explicitly the proton and neutron degrees of freedom. First, an extended LMG model for testing RPA is developed. The proton and neutron Hamiltonians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included. Exact solutions in a SU(2) x SU(2) basis as well as the RPA solutions for the energy spectrum of the model Hamiltonian are obtained. Then, the behaviour of the first collective excited state is studied as a function of the interaction parameters of the model using the exact and RPA methods. Secondly, an extended LMG model for testing pnRPA method is developed. Besides the proton and neutron single particle terms two types of residual proton-neutron interactions, one simulating a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian, so that the model is exactly solvable in an isospin SU(2) x SU(2) basis. The exact and pnRPA spectra of the model Hamiltonian are calculated as a function of the model parameters and compared to each other. Furthermore, charge-changing operators simulating a nuclear beta decay and their action on eigenfunctions of the model Hamiltonian are defined, and transition amplitude of them are calculated using exact and pnRPA wave functions. The best agreement between the exact RPA-type calculations for spectra and transitions, was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state was employed and when both kinds of residual interactions (i.e. like- and unlike-particle two-body interactions) are included in the model Hamiltonians. (author)

  16. Hubbard Glacier, Alaska: growing and advancing in spite of global climate change and the 1986 and 2002 Russell Lake outburst floods

    Science.gov (United States)

    Trabant, Dennis C.; March, Rod S.; Thomas, Donald S.

    2003-01-01

    Hubbard Glacier, the largest calving glacier on the North American Continent (25 percent larger than Rhode Island), advanced across the entrance to 35-mile-long Russell Fiord during June 2002, temporarily turning it into a lake. Hubbard Glacier has been advancing for more than 100 years and has twice closed the entrance to Russell Fiord during the last 16 years by squeezing and pushing submarine glacial sediments across the mouth of the fiord. Water flowing into the cutoff fiord from mountain streams and glacier melt causes the level of Russell Lake to rise. However, both the 1986 and 2002 dams failed before the lake altitude rose enough for water to spill over a low pass at the far end of the fiord and enter the Situk River drainage, a world-class sport and commercial fishery near Yakutat, Alaska.

  17. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  18. Model-Based Engine Control Architecture with an Extended Kalman Filter

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  19. Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2017-01-01

    Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....

  20. Current reversals and metastable states in the infinite Bose-Hubbard chain with local particle loss

    Science.gov (United States)

    Kiefer-Emmanouilidis, M.; Sirker, J.

    2017-12-01

    We present an algorithm which combines the quantum trajectory approach to open quantum systems with a density-matrix renormalization-group scheme for infinite one-dimensional lattice systems. We apply this method to investigate the long-time dynamics in the Bose-Hubbard model with local particle loss starting from a Mott-insulating initial state with one boson per site. While the short-time dynamics can be described even quantitatively by an equation of motion (EOM) approach at the mean-field level, many-body interactions lead to unexpected effects at intermediate and long times: local particle currents far away from the dissipative site start to reverse direction ultimately leading to a metastable state with a total particle current pointing away from the lossy site. An alternative EOM approach based on an effective fermion model shows that the reversal of currents can be understood qualitatively by the creation of holon-doublon pairs at the edge of the region of reduced particle density. The doublons are then able to escape while the holes move towards the dissipative site, a process reminiscent—in a loose sense—of Hawking radiation.

  1. Coleman-Weinberg phase transition in extended Higgs models

    International Nuclear Information System (INIS)

    Sher, M.

    1996-01-01

    In Coleman-Weinberg symmetry breaking, all dimensionful parameters vanish and the symmetry is broken by loop corrections. Before Coleman-Weinberg symmetry breaking in the standard model was experimentally ruled out, it had already been excluded on cosmological grounds. In this Brief Report, the cosmological analysis is carried out for Coleman-Weinberg models with extended Higgs sectors, which are not experimentally ruled out, and general constraints on such models are given. copyright 1996 The American Physical Society

  2. An extended chain Ising model and its Glauber dynamics

    International Nuclear Information System (INIS)

    Zhao Xing-Yu; Fan Xiao-Hui; Huang Yi-Neng; Huang Xin-Ru

    2012-01-01

    It was first proposed that an extended chain Ising (ECI) model contains the Ising chain model, single spin double-well potentials and a pure phonon heat bath of a specific energy exchange with the spins. The extension method is easy to apply to high dimensional cases. Then the single spin-flip probability (rate) of the ECI model is deduced based on the Boltzmann principle and general statistical principles of independent events and the model is simplified to an extended chain Glauber—Ising (ECGI) model. Moreover, the relaxation dynamics of the ECGI model were simulated by the Monte Carlo method and a comparison with the predictions of the special chain Glauber—Ising (SCGI) model was presented. It was found that the results of the two models are consistent with each other when the Ising chain length is large enough and temperature is relative low, which is the most valuable case of the model applications. These show that the ECI model will provide a firm physical base for the widely used single spin-flip rate proposed by Glauber and a possible route to obtain the single spin-flip rate of other form and even the multi-spin-flip rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Dynamical quantum phase transitions in extended transverse Ising models

    Science.gov (United States)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  4. Low-energy limit of the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)

    2018-01-15

    The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)

  5. Stable-unstable transition for a Bose-Hubbard chain coupled to an environment

    Science.gov (United States)

    Guo, Chu; de Vega, Ines; Schollwöck, Ulrich; Poletti, Dario

    2018-05-01

    Interactions in quantum systems may induce transitions to exotic correlated phases of matter which can be vulnerable to coupling to an environment. Here, we study the stability of a Bose-Hubbard chain coupled to a bosonic bath at zero and nonzero temperature. We show that only above a critical interaction the chain loses bosons and its properties are significantly affected. The transition is of a different nature than the superfluid-Mott-insulator transition and occurs at a different critical interaction. We explain such a stable-unstable transition by the opening of a global charge gap. The comparison of accurate matrix product state simulations to approximative approaches that miss this transition reveals its many-body origin.

  6. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    Science.gov (United States)

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  7. Statistical model of stress corrosion cracking based on extended

    Indian Academy of Sciences (India)

    The mechanism of stress corrosion cracking (SCC) has been discussed for decades. Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the variational principle under approximately supposed thermal equilibrium. In that model the functionals are expressed with extended forms of ...

  8. An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.

  9. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Science.gov (United States)

    John L. Campbell; Scott V. Ollinger; Gerald N. Flerchinger; Haley Wicklein; Katharine Hayhoe; Amey S. Bailey

    2010-01-01

    Long-term data from the Hubbard Brook Experimental Forest in New Hampshire show that air temperature has increased by about 1 °C over the last half century. The warmer climate has caused significant declines in snow depth, snow water equivalent and snow cover duration. Paradoxically, it has been suggested that warmer air temperatures may result in colder soils...

  10. Effective field theories for correlated electrons

    International Nuclear Information System (INIS)

    Wallington, J.P.

    1999-10-01

    In this thesis, techniques of functional integration are applied to the construction of effective field theories for models of strongly correlated electrons. This is accomplished by means of the Hubbard-Stratonovic transformation which maps a system of interacting fermions onto one of free fermions interacting, not with each other, but with bosonic fields representing the collective modes of the system. Different choices of transformation are investigated throughout the thesis. It is shown that there exists a new group of discrete symmetries and transformations of the Hubbard model. Using this new group, the problem of choosing a Hubbard-Stratonovic decomposition of the Hubbard interaction term is solved. In the context of the exotic doped barium bismuthates, an extended Hubbard model with on-site attraction and nearest neighbour repulsion is studied. Mean field and renormalisation group analyses show a 'pseudospin-flop' from charge density wave to superconductivity as a function of filling. The nearest neighbour attractive Hubbard model on a quasi-2D lattice is studied as a simple phenomenological model for the high-T c cuprates. Mean field theory shows a transition from pure d-wave to pure s-wave superconductivity, via a mixed symmetry s + id state. Using Gaussian fluctuations, the BCS-Bose crossover is examined and suggestions are made about the origin of the angle dependence of the pseudogap. The continuum delta-shell potential model is introduced for anisotropic superconductors. Its mean field phases are studied and found to have some unusual properties. The BCS-Bose crossover is examined and the results are compared with those of the lattice model. Quasi-2D (highly anisotropic 3D) systems are considered. The critical properties of a Bose gas are investigated as the degree of anisotropy is varied. A new 2D Bose condensate state is found. A renormalisation group analysis is used to investigate the crossover from 2D to 3D. (author)

  11. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  12. In search of a quasi-zero dimensional quantum spin-switching device

    International Nuclear Information System (INIS)

    Hancock, Y.

    2002-01-01

    Full text: In this paper, we propose a theoretical mechanism and potential application for quantum spin switching systems of the generic NMMMMMN type. In this case, N and M respectively refer to non-magnetic and magnetic atoms, of a 7-site finite, inhomogeneous system. We base our understanding on recent investigations into the magnetic induction mechanism on the N-type sites. Such investigations were performed within the context of the Hubbard Model, using both Hartree-Fock and Exact Diagonalization studies. In this work, we have used exact diagonalization studies to probe the spin-spin (2-site) correlation results of these systems, as a function of the model parameters and electron filling. Such calculations were performed within the context of the Hubbard and the Extended Hubbard Models. We have used our results as a means of investigating the proposed quantum spin-switching mechanism within the context of the full many-body problem. In addition to investigating this mechanism, we aim to propose a more realistic theoretical context in which the potential of these systems can be further explored

  13. Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential

    Science.gov (United States)

    Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2018-05-01

    We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.

  14. Strong-coupling expansion for the momentum distribution of the Bose-Hubbard model with benchmarking against exact numerical results

    International Nuclear Information System (INIS)

    Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini

    2009-01-01

    A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

  15. The extended RBAC model based on grid computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  16. Constructing Multidatabase Collections Using Extended ODMG Object Model

    Directory of Open Access Journals (Sweden)

    Adrian Skehill Mark Roantree

    1999-11-01

    Full Text Available Collections are an important feature in database systems. They provide us with the ability to group objects of interest together, and then to manipulate them in the required fashion. The OASIS project is focused on the construction a multidatabase prototype which uses the ODMG model and a canonical model. As part of this work we have extended the base model to provide a more powerful collection mechanism, and to permit the construction of a federated collection, a collection of heterogenous objects taken from distributed data sources

  17. Hubbard pair cluster in the external fields. Studies of the magnetic properties

    Science.gov (United States)

    Balcerzak, T.; Szałowski, K.

    2018-06-01

    The magnetic properties of the two-site Hubbard cluster (dimer or pair), embedded in the external electric and magnetic fields and treated as the open system, are studied by means of the exact diagonalization of the Hamiltonian. The formalism of the grand canonical ensemble is adopted. The phase diagrams, on-site magnetizations, spin-spin correlations, mean occupation numbers and hopping energy are investigated and illustrated in figures. An influence of temperature, mean electron concentration, Coulomb U parameter and external fields on the quantities of interest is presented and discussed. In particular, the anomalous behaviour of the magnetization and correlation function vs. temperature near the critical magnetic field is found. Also, the effect of magnetization switching by the external fields is demonstrated.

  18. Extended Cellular Automata Models of Particles and Space-Time

    Science.gov (United States)

    Beedle, Michael

    2005-04-01

    Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.

  19. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination

    Science.gov (United States)

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-01

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural ``prototypes'' shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  20. Phenomenological comparison of models with extended Higgs sectors

    International Nuclear Information System (INIS)

    Muehlleitner, Margarete

    2017-01-01

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  1. Phenomenological comparison of models with extended Higgs sectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-22

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  2. Minimal representations of supersymmetry and 1D N-extended σ-models

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2008-01-01

    We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)

  3. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  4. Dry deposition of sulfur: a 23-year record for the Hubbard Brook Forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Likens, G E; Eaton, J S [Inst. of Ecosystem Studies, The New York Botanical Garden, NY (US); Bormann, F H [School of Forestry and Environmental Studies Yale Univ., New Haven, CT (US); Hedin, L O [Dept. of Biology, Yale Univ., New Haven, CT (US); Driscoll, C T [Dept. of Civil and Environmental Engineering, Syracuse, NY (US)

    1990-01-01

    Dry deposition of S was estimated for watershed-ecosystems of the Hubbard Brook Experimental Forest from 1964-65 through 1986-87. Two approaches, a regression analysis of bulk precipitation inputs and stream outputs and a mass-balance method, gave similar average values for Watershed 6 430 and 410 eq SO{sub 4}{sup =}/ha-yr, respectively, for this 23-year period. Dry deposition contributed about 37% of total S deposition, varying from 12% in 1964-65 to 61% in 1983-84. Long-term data from 'replicated' watershed-ecosystems showed that temporal variability in estimates of dry deposition was considerably greater than spatial (between watersheds) variability.

  5. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    International Nuclear Information System (INIS)

    Seyler, C. E.; Martin, M. R.

    2011-01-01

    It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.

  6. Extended Mixed-Efects Item Response Models with the MH-RM Algorithm

    Science.gov (United States)

    Chalmers, R. Philip

    2015-01-01

    A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…

  7. Orbital currents and charge density waves in a generalized Hubbard ladder

    International Nuclear Information System (INIS)

    Fjaerestad, J.O.; Marston, J.B.; Schollwoeck, U.

    2006-01-01

    We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2k F and 4k F for the currents and densities, where 2k F = π (1 - δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities

  8. Non-Fermi liquid behaviour in an extended Anderson model

    International Nuclear Information System (INIS)

    Liu Yuliang; Su Zhaobin; Yu Lu.

    1996-08-01

    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs

  9. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    International Nuclear Information System (INIS)

    Ma, Jie; Wang, Bo; Zhao, Shunli; Wu, Guangxin; Zhang, Jieyu; Yang, Zhiliang

    2016-01-01

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  10. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  11. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  12. Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2008-01-01

    The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior - not unlike computational weather prediction - to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU-DIST software library for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD's performance by a factor of five in typical large nonlinear simulations, which has been publicized

  13. The Action of Chain Extenders in Nylon-6, PET, and Model Compounds

    NARCIS (Netherlands)

    Loontjens, T.; Pauwels, K.; Derks, F.; Neilen, M.; Sham, C.K.; Serné, M.

    1997-01-01

    The action of two complementary chain extenders is studied in model systems as well as in poly(ethylene terephthalate) (PET) and nylon–6. Chain extenders are low molecular weight compounds that can be used to increase the molecular weight of polymers in a short time. The reaction must preferably be

  14. Extended icosahedral structures

    CERN Document Server

    Jaric, Marko V

    1989-01-01

    Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra

  15. Exploring Social Structures in Extended Team Model

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Ali Babar, Muhammad

    2013-01-01

    Extended Team Model (ETM) as a type of offshore outsourcing is increasingly becoming popular mode of Global Software Development (GSD). There is little knowledge about the social structures in ETM and their impact on collaboration. Within a large interdisciplinary project to develop the next...... generation of GSD technologies, we are exploring the role of social structures to support collaboration. This paper reports some details of our research design and initial findings about the mechanisms to support social structures and their impact on collaboration in an ETM....

  16. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  17. Magnetization plateaux in an extended Shastry-Sutherland model

    International Nuclear Information System (INIS)

    Schmidt, Kai Phillip; Dorier, Julien; Mila, Frederic

    2009-01-01

    We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu 2 (BO 3 ) 2 .

  18. Extended objects

    International Nuclear Information System (INIS)

    Creutz, M.

    1976-01-01

    After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation

  19. Modeling of carbon dioxide absorption by aqueous ammonia solutions using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J. M.; Stenby, Erling Halfdan

    2010-01-01

    An upgraded version of the Extended UNIQUAC thermodynamic model for the carbon dioxide-ammonia-water system has been developed, based on the original version proposed by Thomsen and Rasmussen. The original model was valid in the temperature range 0-110°C, the pressure range 0-10 MPa...... properties of carbon dioxide and ammonia to supercritical conditions....

  20. Soil bacterial communities of a calcium-supplemented and a reference watershed at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA

    Science.gov (United States)

    Ganapathi Sridevi; Rakesh Minocha; Swathi A. Turlapati; Katherine C. Goldfarb; Eoin L. Brodie; Louis S. Tisa; Subhash C. Minocha

    2012-01-01

    Soil Ca depletion because of acidic deposition-related soil chemistry changes has led to the decline of forest productivity and carbon sequestration in the northeastern USA. In 1999, acidic watershed (WS) 1 at the Hubbard Brook Experimental Forest (HBEF), NH, USA was amended with Ca silicate to restore soil Ca pools. In 2006, soil samples were collected from the Ca-...

  1. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj

    2009-01-01

    The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...

  2. An Extended Optimal Velocity Model with Consideration of Honk Effect

    International Nuclear Information System (INIS)

    Tang Tieqiao; Li Chuanyao; Huang Haijun; Shang Huayan

    2010-01-01

    Based on the OV (optimal velocity) model, we in this paper present an extended OV model with the consideration of the honk effect. The analytical and numerical results illustrate that the honk effect can improve the velocity and flow of uniform flow but that the increments are relevant to the density. (interdisciplinary physics and related areas of science and technology)

  3. Spatial noise correlations of a chain of ultracold fermions: A numerical study

    International Nuclear Information System (INIS)

    Luescher, Andreas; Laeuchli, Andreas M.; Noack, Reinhard M.

    2007-01-01

    We present a numerical study of noise correlations, i.e., density-density correlations in momentum space, in the extended fermionic Hubbard model in one dimension. In experiments with ultracold atoms, these noise correlations can be extracted from time-of-flight images of the expanding cloud. Using the density-matrix renormalization group method to investigate the Hubbard model at various fillings and interactions, we confirm that the noise correlations contain full information on the most important fluctuations present in the system. We point out the importance of the sum rules fulfilled by the noise correlations and show that they yield nonsingular structures beyond the predictions of bosonization approaches. Noise correlations can thus serve as a universal probe of order and can be used to characterize the many-body states of cold atoms in optical lattices

  4. The low-energy constants of the extended linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian; Giacosa, Francesco; Kovacs, Peter; Rischke, Dirk H. [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany)

    2016-07-01

    The low-energy dynamics of Quantum Chromodynamics (QCD) is fully determined by the interactions of the (pseudo-) Nambu-Goldstone bosons of spontaneous chiral symmetry breaking, i.e., for two quark flavors, the pions. Pion dynamics is described by the low-energy effective theory of QCD, chiral perturbation theory (ChPT), which is based on the nonlinear realization of chiral symmetry. An alternative description is provided by the Linear Sigma Model, where chiral symmetry is linearly realized. An extended version of this model, the so-called extended Linear Sigma Model (eLSM) was recently developed which incorporates all J{sup P}=0{sup ±}, 1{sup ±} anti qq mesons up to 2 GeV in mass. A fit of the coupling constants of this model to experimentally measured masses and decay widths has a surprisingly good quality. In this talk, it is demonstrated that the low-energy limit of the eLSM, obtained by integrating out all fields which are heavier than the pions, assumes the same form as ChPT. Moreover, the low-energy constants (LECs) of the eLSM agree with those of ChPT.

  5. Constraints based analysis of extended cybernetic models.

    Science.gov (United States)

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    Science.gov (United States)

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  7. MILES extended : Stellar population synthesis models from the optical to the infrared

    NARCIS (Netherlands)

    Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical

  8. Coupling of Hubbard fermions with phonons in La{sub 2} CuO{sub 4}: A combined study using density-functional theory and the generalized tight-binding method

    Energy Technology Data Exchange (ETDEWEB)

    Shneyder, E.I., E-mail: shneyder@iph.krasn.ru [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Reshetnev Siberian State Aerospace University, Krasnoyarsk 660014 (Russian Federation); Spitaler, J. [Materials Center Leoben Forschung GmbH, Rosegger-Straße 18, A-8700 Leoben (Austria); Kokorina, E.E.; Nekrasov, I.A. [Institute of Electrophysics UB RAS, Amundsena Str. 106, 620016 Yekaterinburg (Russian Federation); Gavrichkov, V.A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation); Draxl, C. [Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Ovchinnikov, S.G. [Kirensky Institute of Physics SB RAS, Krasnoyarsk 660036 (Russian Federation)

    2015-11-05

    We present results for the electron-phonon interaction of the Γ-point phonons in the tetragonal high-temperature phase of La{sub 2} CuO{sub 4} obtained from a hybrid scheme, combining density-functional theory (DFT) with the generalized tight-binding approach. As a starting point, eigenfrequencies and eigenvectors for the Γ-point phonons are determined from DFT within the frozen phonon approach utilizing the augmented plane wave + local orbitals method. The so obtained characteristics of electron-phonon coupling are converted into parameters of the generalized tight-binding method. This approach is a version of cluster perturbation theory and takes the strong on-site electron correlations into account. The obtained parameters describe the interaction of phonons with Hubbard fermions which form quasiparticle bands in strongly correlated electron systems. As a result, it is found that the Γ-point phonons with the strongest electron-phonon interaction are the A{sub 2u} modes (236 cm{sup −1}, 131 cm{sup −1} and 476 cm{sup −1}). Finally it is shown, that the single-electron spectral-weight redistribution between different Hubbard fermion quasiparticles results in a suppression of electron-phonon interaction which is strongest for the triplet Hubbard band with z oriented copper and oxygen electrons. - Highlights: • Electron-phonon interaction in strongly correlated electron systems is analyzed. • Interaction parameters between strongly correlated electrons and phonons are obtained. • The suppression of these parameters by strong electron correlations is demonstrated.

  9. Thermodynamic modeling of CO2 absorption in aqueous N-Methyldiethanolamine using Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2015-01-01

    A Thermodynamic model that can predict the behavior of the gas sweetening process over the applicable conditions is of vital importance in industry. In this work, Extended UNIQUAC model parameters optimized for the CO2-MDEA-H2O system are presented. Different types of experimental data consisting...... model accurately represents thermodynamic and thermal properties of the studied systems. The model parameters are valid in the temperature range from -15 to 200 °C, MDEA mass% of 5-75 and CO2 partial pressure of 0-6161.5 kPa....

  10. Extended Smoluchowski models for interpreting relaxation phenomena in liquids

    International Nuclear Information System (INIS)

    Polimeno, A.; Frezzato, D.; Saielli, G.; Moro, G.J.; Nordio, P.L.

    1998-01-01

    Interpretation of the dynamical behaviour of single molecules or collective modes in liquids has been increasingly centered, in the last decade, on complex liquid systems, including ionic solutions, polymeric liquids, supercooled fluids and liquid crystals. This has been made necessary by the need of interpreting dynamical data obtained by advanced experiments, like optical Kerr effect, time dependent fluorescence shift experiments, two-dimensional Fourier-transform and high field electron spin resonance and scattering experiments like quasi-elastic neutron scattering. This communication is centered on the definition, treatment and application of several extended stochastic models, which have proved to be very effective tools for interpreting and rationalizing complex relaxation phenomena in liquids structures. First, applications of standard Fokker-Planck equations for the orientational relaxation of molecules in isotropic and ordered liquid phase are reviewed. In particular attention will be focused on the interpretation of neutron scattering in nematics. Next, an extended stochastic model is used to interpret time-domain resolved fluorescence emission experiments. A two-body stochastic model allows the theoretical interpretation of dynamical Stokes shift effects in fluorescence emission spectra, performed on probes in isotropic and ordered polar phases. Finally, for the case of isotropic fluids made of small rigid molecules, a very detailed model is considered, which includes as basic ingredients a Fokker-Planck description of the molecular vibrational motion and the slow diffusive motion of a persistent cage structure together with the decay processes related to the changing structure of the cage. (author)

  11. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest

    Science.gov (United States)

    Brett A. Huggett; Paul G. Schaberg; Gary J. Hawley; Christopher Eager

    2007-01-01

    We surveyed and wounded forest-grown sugar maple (Acer saccharum Marsh.) trees in a long-term, replicated Ca manipulation study at the Hubbard Brook Experimental Forest in New Hampshire, USA. Plots received applications of Ca (to boost Ca availability above depleted ambient levels) or A1 (to compete with Ca uptake and further reduce Ca availability...

  12. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  13. Acceleration of the Particle Swarm Optimization for Peierls–Nabarro modeling of dislocations in conventional and high-entropy alloys

    International Nuclear Information System (INIS)

    Pei, Zongrui; Eisenbach, Markus

    2017-01-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  14. Charge-changing transitions in an extended Lipkin-type model

    International Nuclear Information System (INIS)

    Mihut, I.; Stoica, S.; Suhonen, J.

    1997-01-01

    Charge-changing transition are considered in an extended Lipkin-Meshkov-Glick (LMG) model taking into account explicitly the proton and neutron degrees of freedom. The proton and neutron Hamiltonians are taken to be of the LMG form and in addition, a residual proton-neutron interaction is included. Model charge-changing operators and their action on eigenfunctions of the model Hamiltonian are defined. Transition amplitudes of these operators are calculated using exact eigenfunctions and then the RPA approximation. The best agreement between the two kinds of calculations was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state, is employed and when the proton-neutron residual interaction besides the proton-proton and neutron-neutron residual interactions is taken into account in the model Hamiltonian

  15. An Organization's Extended (Soft) Competencies Model

    Science.gov (United States)

    Rosas, João; Macedo, Patrícia; Camarinha-Matos, Luis M.

    One of the steps usually undertaken in partnerships formation is the assessment of organizations’ competencies. Typically considered competencies of a functional or technical nature, which provide specific outcomes can be considered as hard competencies. Yet, the very act of collaboration has its specific requirements, for which the involved organizations must be apt to exercise other type of competencies that affect their own performance and the partnership success. These competencies are more of a behavioral nature, and can be named as soft-competencies. This research aims at addressing the effects of the soft competencies on the performance of the hard ones. An extended competencies model is thus proposed, allowing the construction of adjusted competencies profiles, in which the competency levels are adjusted dynamically according to the requirements of collaboration opportunities.

  16. Effectiveness and Safety of an Extended ICU Visitation Model for Delirium Prevention: A Before and After Study.

    Science.gov (United States)

    Rosa, Regis Goulart; Tonietto, Tulio Frederico; da Silva, Daiana Barbosa; Gutierres, Franciele Aparecida; Ascoli, Aline Maria; Madeira, Laura Cordeiro; Rutzen, William; Falavigna, Maicon; Robinson, Caroline Cabral; Salluh, Jorge Ibrain; Cavalcanti, Alexandre Biasi; Azevedo, Luciano Cesar; Cremonese, Rafael Viegas; Haack, Tarissa Ribeiro; Eugênio, Cláudia Severgnini; Dornelles, Aline; Bessel, Marina; Teles, José Mario Meira; Skrobik, Yoanna; Teixeira, Cassiano

    2017-10-01

    To evaluate the effect of an extended visitation model compared with a restricted visitation model on the occurrence of delirium among ICU patients. Prospective single-center before and after study. Thirty-one-bed medical-surgical ICU. All patients greater than or equal to 18 years old with expected length of stay greater than or equal to 24 hours consecutively admitted to the ICU from May 2015 to November 2015. Change of visitation policy from a restricted visitation model (4.5 hr/d) to an extended visitation model (12 hr/d). Two hundred eighty-six patients were enrolled (141 restricted visitation model, 145 extended visitation model). The primary outcome was the cumulative incidence of delirium, assessed bid using the confusion assessment method for the ICU. Predefined secondary outcomes included duration of delirium/coma; any ICU-acquired infection; ICU-acquired bloodstream infection, pneumonia, and urinary tract infection; all-cause ICU mortality; and length of ICU stay. The median duration of visits increased from 133 minutes (interquartile range, 97.7-162.0) in restricted visitation model to 245 minutes (interquartile range, 175.0-272.0) in extended visitation model (p < 0.001). Fourteen patients (9.6%) developed delirium in extended visitation model compared with 29 (20.5%) in restricted visitation model (adjusted relative risk, 0.50; 95% CI, 0.26-0.95). In comparison with restricted visitation model patients, extended visitation model patients had shorter length of delirium/coma (1.5 d [interquartile range, 1.0-3.0] vs 3.0 d [interquartile range, 2.5-5.0]; p = 0.03) and ICU stay (3.0 d [interquartile range, 2.0-4.0] vs 4.0 d [interquartile range, 2.0-6.0]; p = 0.04). The rate of ICU-acquired infections and all-cause ICU mortality did not differ significantly between the two study groups. In this medical-surgical ICU, an extended visitation model was associated with reduced occurrence of delirium and shorter length of delirium/coma and ICU stay.

  17. Higgs detectability in the extended supersymmetric standard model

    International Nuclear Information System (INIS)

    Kamoshita, Jun-ichi

    1995-01-01

    Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)

  18. The renormalizability and the asymptotically free behaviour of the extended Wess-Zumino models

    International Nuclear Information System (INIS)

    Ha Huy Bang; Hoang Ngoc Long.

    1989-09-01

    By using the path integral method for superfields the Ward identities and the Callan-Symanzik equations for the extended Wess-Zumino models are derived. From these the renormalizability and the asymptotically behaviour of all the extended Wess-Zumino models in d = 2,4 (mod 8)-dimensional space-time are studied. In particular, we will come to the conclusion that the supersymmetric Ward identities together with the broken chiral Ward identities imply that a single wave function renormalization is sufficient to renormalize the theory and that the theory is not asymptotically free. (author). 16 refs

  19. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  20. Perturbation expansion of the ground-state energy for the one-dimensional cyclic Hubbard system in the Hueckel limit

    International Nuclear Information System (INIS)

    Takahashi, M.; Bracken, P.; Cizek, J.; Paldus, J.

    1995-01-01

    The perturbation expansion coefficients for the ground-state energy of the half-filled one-dimensional Hubbard model with N = 4 ν + 2, (ν = 1,2,...) sites and satisfying cyclic boundary conditions were calculated in the Hueckel limit (U/β → 0), where β designates the one-electron hopping or resonance integral, and U, the two-electron on-site Coulomb integral. This was achieved by solving-order by order-the Lieb-Wu equations, a system of transcendental equations that determines the set of quasi-momenta (k i ) and spin variable τ α for this model. The exact values for these quantities were found for the N = 6 member ring up to the 20th order in terms of the coupling constant B = U/2β, as well as numerically for 10 ≤ N ≤ 50, and the N = 6 Lieb-Wu system was reduced to a system of sextic algebraic equations. These results are compared with those of the infinite system derived analytically by Misurkin and Ovchinnikov. It is further shown how the results of this article can be used for the interpolation by the root of a polynomial. It is demonstrated that a polynomial of relatively small degree provides a very good approximation for the energy in the intermediate coupling region. 20 refs., 3 tabs

  1. Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    NARCIS (Netherlands)

    Jones, Valerie M.; Rensink, Arend; Brinksma, Hendrik

    2005-01-01

    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing

  2. The Extended Parallel Process Model: Illuminating the Gaps in Research

    Science.gov (United States)

    Popova, Lucy

    2012-01-01

    This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…

  3. Modeling of VSC-Based Power Systems in The Extended Harmonic Domain

    DEFF Research Database (Denmark)

    Esparza, Miguel; Segundo-Ramirez, Juan; Kwon, Jun Bum

    2017-01-01

    Averaged modeling is a commonly used approach used to obtain mathematical representations of VSC-based systems. However, essential characteristics mainly related to the modulation process and the harmonic distortion of the signals are not able to be accurately captured and analyzed. The extended ...... on simulations and experimental case studies. The obtained results show that the resulting EHD models are accurate and reliable, while the memory and computation time are improved with the proposed model order reductions....

  4. Students Working Online for Group Projects: A Test of an Extended Theory of Planned Behaviour Model

    Science.gov (United States)

    Cheng, Eddie W. L.

    2017-01-01

    This study examined an extended theory of planned behaviour (TPB) model that specified factors affecting students' intentions to collaborate online for group work. Past behaviour, past experience and actual behavioural control were incorporated in the extended TPB model. The mediating roles of attitudes, subjective norms and perceived behavioural…

  5. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  6. Superconducting characteristics of the Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2000-01-01

    We study superconducting properties of the Penson-Kolb model, i. e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction J. The evolution of the critical fields, the coherence length, the Ginzburg ratio, and London penetration depth with particle concentration n and pairing strength are determined. The results are compared with those found earlier for the attractive Hubbard model. (author)

  7. Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chih-Lung

    2005-04-05

    The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.

  8. Prediction Model of Mechanical Extending Limits in Horizontal Drilling and Design Methods of Tubular Strings to Improve Limits

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-01-01

    Full Text Available Mechanical extending limit in horizontal drilling means the maximum horizontal extending length of a horizontal well under certain ground and down-hole mechanical constraint conditions. Around this concept, the constrained optimization model of mechanical extending limits is built and simplified analytical results for pick-up and slack-off operations are deduced. The horizontal extending limits for kinds of tubular strings under different drilling parameters are calculated and drawn. To improve extending limits, an optimal design model of drill strings is built and applied to a case study. The results indicate that horizontal extending limits are underestimated a lot when the effects of friction force on critical helical buckling loads are neglected. Horizontal extending limits firstly increase and tend to stable values with vertical depths. Horizontal extending limits increase faster but finally become smaller with the increase of horizontal pushing forces for tubular strings of smaller modulus-weight ratio. Sliding slack-off is the main limit operation and high axial friction is the main constraint factor constraining horizontal extending limits. A sophisticated installation of multiple tubular strings can greatly inhibit helical buckling and increase horizontal extending limits. The optimal design model is called only once to obtain design results, which greatly increases the calculation efficiency.

  9. Monte Carlo study of superconductivity in the three-band Emery model

    International Nuclear Information System (INIS)

    Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.

    1990-01-01

    We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity

  10. A multifluid model extended for strong temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.

  11. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  12. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  13. Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable

    NARCIS (Netherlands)

    Elhorst, J. Paul

    2001-01-01

    This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the

  14. Scale-invariant extended inflation

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential

  15. An extended car-following model considering the acceleration derivative in some typical traffic environments

    Science.gov (United States)

    Zhou, Tong; Chen, Dong; Liu, Weining

    2018-03-01

    Based on the full velocity difference and acceleration car-following model, an extended car-following model is proposed by considering the vehicle’s acceleration derivative. The stability condition is given by applying the control theory. Considering some typical traffic environments, the results of theoretical analysis and numerical simulation show the extended model has a more actual acceleration of string vehicles than that of the previous models in starting process, stopping process and sudden brake. Meanwhile, the traffic jams more easily occur when the coefficient of vehicle’s acceleration derivative increases, which is presented by space-time evolution. The results confirm that the vehicle’s acceleration derivative plays an important role in the traffic jamming transition and the evolution of traffic congestion.

  16. Extended MHD modeling of nonlinear instabilities in fusion and space plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Germaschewski, Kai [Univ. of New Hampshire, Durham, NH (United States)

    2017-11-15

    A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements of the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.

  17. Online Cancer Information Seeking: Applying and Extending the Comprehensive Model of Information Seeking.

    Science.gov (United States)

    Van Stee, Stephanie K; Yang, Qinghua

    2017-10-30

    This study applied the comprehensive model of information seeking (CMIS) to online cancer information and extended the model by incorporating an exogenous variable: interest in online health information exchange with health providers. A nationally representative sample from the Health Information National Trends Survey 4 Cycle 4 was analyzed to examine the extended CMIS in predicting online cancer information seeking. Findings from a structural equation model supported most of the hypotheses derived from the CMIS, as well as the extension of the model related to interest in online health information exchange. In particular, socioeconomic status, beliefs, and interest in online health information exchange predicted utility. Utility, in turn, predicted online cancer information seeking, as did information-carrier characteristics. An unexpected but important finding from the study was the significant, direct relationship between cancer worry and online cancer information seeking. Theoretical and practical implications are discussed.

  18. An extended geometric criterion for chaos in the Dicke model

    International Nuclear Information System (INIS)

    Li Jiangdan; Zhang Suying

    2010-01-01

    We extend HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion for chaotic motion to Hamiltonian systems of weak coupling of potential and momenta by defining the 'mean unstable ratio'. We discuss the Dicke model of an unstable Hamiltonian system in detail and show that our results are in good agreement with that of the computation of Lyapunov characteristic exponents.

  19. Exact diagonalization library for quantum electron models

    Science.gov (United States)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  20. A Local Search Modeling for Constrained Optimum Paths Problems (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Quang Dung Pham

    2009-10-01

    Full Text Available Constrained Optimum Path (COP problems appear in many real-life applications, especially on communication networks. Some of these problems have been considered and solved by specific techniques which are usually difficult to extend. In this paper, we introduce a novel local search modeling for solving some COPs by local search. The modeling features the compositionality, modularity, reuse and strengthens the benefits of Constrained-Based Local Search. We also apply the modeling to the edge-disjoint paths problem (EDP. We show that side constraints can easily be added in the model. Computational results show the significance of the approach.

  1. An advanced BLT-humanized mouse model for extended HIV-1 cure studies.

    Science.gov (United States)

    Lavender, Kerry J; Pace, Craig; Sutter, Kathrin; Messer, Ronald J; Pouncey, Dakota L; Cummins, Nathan W; Natesampillai, Sekar; Zheng, Jim; Goldsmith, Joshua; Widera, Marek; Van Dis, Erik S; Phillips, Katie; Race, Brent; Dittmer, Ulf; Kukolj, George; Hasenkrug, Kim J

    2018-01-02

    Although bone marrow, liver, thymus (BLT)-humanized mice provide a robust model for HIV-1 infection and enable evaluation of cure strategies dependent on endogenous immune responses, most mice develop graft versus host disease (GVHD), limiting their utility for extended HIV cure studies. This study aimed to: evaluate the GVHD-resistant C57 black 6 (C57BL/6) recombination activating gene 2 (Rag2)γcCD47 triple knockout (TKO)-BLT mouse as a model to establish HIV-1 latency. Determine whether TKO-BLT mice could be maintained on antiretroviral therapy (ART) for extended periods of time. Assess the rapidity of viral rebound following therapy interruption. TKO-BLT mice were HIV-1 infected, treated with various ART regimens over extended periods of time and assayed for viral rebound following therapy interruption. Daily subcutaneous injection and oral ART-mediated suppression of HIV-1 infection was tested at various doses in TKO-BLT mice. Mice were monitored for suppression of viremia and cellular HIV-1 RNA and DNA prior to and following therapy interruption. Mice remained healthy for 45 weeks posthumanization and could be treated with ART for up to 18 weeks. Viremia was suppressed to less than 200 copies/ml in the majority of mice with significant reductions in cellular HIV-1 RNA and DNA. Treatment interruption resulted in rapid viral recrudescence. HIV-1 latency can be maintained in TKO-BLT mice over extended periods on ART and rapid viral rebound occurs following therapy removal. The additional 15-18 weeks of healthy longevity compared with other BLT models provides sufficient time to examine the decay kinetics of the latent reservoir as well as observe delays in recrudescence in HIV-1 cure studies.

  2. Multistate modelling extended by behavioural rules: An application to migration.

    Science.gov (United States)

    Klabunde, Anna; Zinn, Sabine; Willekens, Frans; Leuchter, Matthias

    2017-10-01

    We propose to extend demographic multistate models by adding a behavioural element: behavioural rules explain intentions and thus transitions. Our framework is inspired by the Theory of Planned Behaviour. We exemplify our approach with a model of migration from Senegal to France. Model parameters are determined using empirical data where available. Parameters for which no empirical correspondence exists are determined by calibration. Age- and period-specific migration rates are used for model validation. Our approach adds to the toolkit of demographic projection by allowing for shocks and social influence, which alter behaviour in non-linear ways, while sticking to the general framework of multistate modelling. Our simulations yield that higher income growth in Senegal leads to higher emigration rates in the medium term, while a decrease in fertility yields lower emigration rates.

  3. Inference and testing on the boundary in extended constant conditional correlation GARCH models

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard

    2017-01-01

    We consider inference and testing in extended constant conditional correlation GARCH models in the case where the true parameter vector is a boundary point of the parameter space. This is of particular importance when testing for volatility spillovers in the model. The large-sample properties...

  4. Electronic transport in VO2—Experimentally calibrated Boltzmann transport modeling

    International Nuclear Information System (INIS)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y.; Kado, Motohisa; Ling, Chen; Zhu, Gaohua; Banerjee, Debasish

    2015-01-01

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO 2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO 2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO 2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties

  5. Conductance Through a Redox System in the Coulomb Blockade Regime: Many-Particle Effects and Influence of Electronic Correlations

    OpenAIRE

    Tornow, Sabine; Zwicknagl, Gertrud

    2009-01-01

    We investigate the transport characteristics of a redox system weakly coupled to leads in the Coulomb blockade regime. The redox system comprises a donor and acceptor separated by an insulating bridge in a solution. It is modeled by a two-site extended Hubbard model which includes on-site and inter-site Coulomb interactions and the coupling to a bosonic bath. The current voltage characteristics is calculated at high temperatures using a rate equation approach. For high voltages exceeding the ...

  6. SINGLE-BAND, TRIPLE-BAND, OR MULTIPLE-BAND HUBBARD MODELS

    NARCIS (Netherlands)

    ESKES, H; SAWATZKY, GA

    1991-01-01

    The relevance of different models, such as the one-band t-J model and the three-band Emery model, as a realistic description of the electronic structure of high-T(c) materials is discussed. Starting from a multiband approach using cluster calculations and an impurity approach, the following

  7. A VRML-Based Data Portal: Hydrology of the Hubbard Brook Experimental Forest and Mirror Lake Sub-Basin

    Science.gov (United States)

    Becker, M. W.; Bursik, M. I.; Schuetz, J. W.

    2001-05-01

    The Hubbard Brook Experimental Forest (HBEF) of Central New Hampshire has been a focal point for collaborative hydrologic research for over 40 years. A tremendous amount of data from this area is available through the internet and other sources, but is not organized in a manner that facilitates teaching of hydrologic concepts. The Mirror Lake Watershed Interactive Teaching Database is making hydrologic data from the HBEF and associated interactive problem sets available to upper-level and post-graduate university students through a web-based resource. Hydrologic data are offered via a three-dimensional VRML (Virtual Reality Modeling Language) interface, that facilitates viewing and retrieval in a spatially meaningful manner. Available data are mapped onto a topographic base, and hot spots representing data collection points (e.g. weirs) lead to time-series displays (e.g. hydrographs) that provide a temporal link to the spatially organized data. Associated instructional exercises are designed to increase understanding of both hydrologic data and hydrologic methods. A pedagogical module concerning numerical ground-water modeling will be presented as an example. Numerical modeling of ground-water flow involves choosing the combination of hydrogeologic parameters (e.g. hydraulic conductivity, recharge) that cause model-predicted heads to best match measured heads in the aquifer. Choosing the right combination of parameters requires careful judgment based upon knowledge of the hydrogeologic system and the physics of ground-water flow. Unfortunately, students often get caught up in the technical aspects and lose sight of the fundamentals when working with real ground-water software. This module provides exercises in which a student chooses model parameters and immediately sees the predicted results as a 3-D VRML object. VRML objects are based upon actual Modflow model results corresponding to the range of model input parameters available to the student. This way, the

  8. Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum

    Science.gov (United States)

    Shin, Ilgyou; Carter, Emily A.

    2013-08-01

    Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.

  9. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  10. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  11. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Science.gov (United States)

    Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi

    2003-05-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002

  12. Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations

    DEFF Research Database (Denmark)

    Patrick, Christopher; Thygesen, Kristian Sommer

    2016-01-01

    In non-self-consistent calculations of the total energy within the random-phase approximation (RPA) for electronic correlation, it is necessary to choose a single-particle Hamiltonian whose solutions are used to construct the electronic density and noninteracting response function. Here we...... investigate the effect of including a Hubbard-U term in this single-particle Hamiltonian, to better describe the on-site correlation of 3d electrons in the transitionmetal compounds ZnS, TiO2, and NiO.We find that the RPA lattice constants are essentially independent of U, despite large changes...... in the underlying electronic structure. We further demonstrate that the non-selfconsistent RPA total energies of these materials have minima at nonzero U. Our RPA calculations find the rutile phase of TiO2 to be more stable than anatase independent of U, a result which is consistent with experiments...

  13. Extending SME to Handle Large-Scale Cognitive Modeling.

    Science.gov (United States)

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  14. Effect of relevant umklapp process on the two-leg Hubbard ladder with a half-filled band under pressure

    International Nuclear Information System (INIS)

    Haddad, S.; Bennaceur, R.

    1999-01-01

    By means of perturbative renormalization approach we study the effect of relevant umklapp process on dimensional crossover caused by interladder one particle hopping t bot in weakly coupled two-leg Hubbard ladders with a half filled-band. We found that a crossover takes place at a finite value t botc which increases as the amplitude of umklapp process increases. For t bot botc the system undergoes a phase transition to the spin density wave phase (SDW) via the two particle hopping process, while for t bot >t botc the system undergoes a crossover to the two dimensional Fermi liquid phase via one particle hopping process. (orig.)

  15. Model Calibration of Exciter and PSS Using Extended Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit; Du, Pengwei; Huang, Zhenyu

    2012-07-26

    Power system modeling and controls continue to become more complex with the advent of smart grid technologies and large-scale deployment of renewable energy resources. As demonstrated in recent studies, inaccurate system models could lead to large-scale blackouts, thereby motivating the need for model calibration. Current methods of model calibration rely on manual tuning based on engineering experience, are time consuming and could yield inaccurate parameter estimates. In this paper, the Extended Kalman Filter (EKF) is used as a tool to calibrate exciter and Power System Stabilizer (PSS) models of a particular type of machine in the Western Electricity Coordinating Council (WECC). The EKF-based parameter estimation is a recursive prediction-correction process which uses the mismatch between simulation and measurement to adjust the model parameters at every time step. Numerical simulations using actual field test data demonstrate the effectiveness of the proposed approach in calibrating the parameters.

  16. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  17. A novel model for extending international co-operation in science and education

    NARCIS (Netherlands)

    de Boer, S.J.; Ji-zehn, Q.

    2004-01-01

    Journal of Zhejiang University SCIENCE (ISSN 1009-3095, Monthly) 2004 Vol. 5 No. 3 p.358-364 --------------------------------------------------------------------------------A novel model for extending international co-operation in science and educationDE BOER Sirp J.1, QIU Ji-zhen 2(1International

  18. Competing recombinant technologies for environmental innovation: Extending Arthur's model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; van den Bergh, J.C.J.M.

    2011-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.

  19. Competing recombinant technologies for environmental innovation : extending Arthur's model of lock-in

    NARCIS (Netherlands)

    Zeppini, P.; Bergh, van den J.C.J.M.

    2011-01-01

    This article presents a model of sequential decisions about investments in environmentally dirty and clean technologies, which extends the path-dependence framework of B. Arthur (1989, Competing technologies, increasing returns, and lock-in by historical events, The Economic Journal, 99, pp.

  20. Short range order in liquid pnictides

    International Nuclear Information System (INIS)

    Mayo, M; Makov, G; Yahel, E; Greenberg, Y

    2013-01-01

    Liquid pnictides have anomalous physical properties and complex radial distribution functions. The quasi-crystalline model of liquid structure is applied to interpret the three-dimensional structure of liquid pnictides. It is shown that all the column V elements can be characterized by a short range order lattice symmetry similar to that of the underlying solid, the A7 structure, which originates from a Peierls distorted simple cubic lattice. The evolution of the liquid structure down the column as well as its temperature and pressure dependence is interpreted by means of the effect of thermodynamic parameters on the Peierls distortion. Surprisingly, it is found that the Peierls effect increases with temperature and the nearest neighbour distances exhibit negative thermal expansion. (paper)

  1. Validating and extending the three process model of alertness in airline operations.

    Directory of Open Access Journals (Sweden)

    Michael Ingre

    Full Text Available Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS. The present study sought to validate the inner workings of one such model, Three Process Model (TPM, on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C, with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications.

  2. Validating and extending the three process model of alertness in airline operations.

    Science.gov (United States)

    Ingre, Michael; Van Leeuwen, Wessel; Klemets, Tomas; Ullvetter, Christer; Hough, Stephen; Kecklund, Göran; Karlsson, David; Åkerstedt, Torbjörn

    2014-01-01

    Sleepiness and fatigue are important risk factors in the transport sector and bio-mathematical sleepiness, sleep and fatigue modeling is increasingly becoming a valuable tool for assessing safety of work schedules and rosters in Fatigue Risk Management Systems (FRMS). The present study sought to validate the inner workings of one such model, Three Process Model (TPM), on aircrews and extend the model with functions to model jetlag and to directly assess the risk of any sleepiness level in any shift schedule or roster with and without knowledge of sleep timings. We collected sleep and sleepiness data from 136 aircrews in a real life situation by means of an application running on a handheld touch screen computer device (iPhone, iPod or iPad) and used the TPM to predict sleepiness with varying level of complexity of model equations and data. The results based on multilevel linear and non-linear mixed effects models showed that the TPM predictions correlated with observed ratings of sleepiness, but explorative analyses suggest that the default model can be improved and reduced to include only two-processes (S+C), with adjusted phases of the circadian process based on a single question of circadian type. We also extended the model with a function to model jetlag acclimatization and with estimates of individual differences including reference limits accounting for 50%, 75% and 90% of the population as well as functions for predicting the probability of any level of sleepiness for ecological assessment of absolute and relative risk of sleepiness in shift systems for safety applications.

  3. A Multistep Extending Truncation Method towards Model Construction of Infinite-State Markov Chains

    Directory of Open Access Journals (Sweden)

    Kemin Wang

    2014-01-01

    Full Text Available The model checking of Infinite-State Continuous Time Markov Chains will inevitably encounter the state explosion problem when constructing the CTMCs model; our method is to get a truncated model of the infinite one; to get a sufficient truncated model to meet the model checking of Continuous Stochastic Logic based system properties, we propose a multistep extending advanced truncation method towards model construction of CTMCs and implement it in the INFAMY model checker; the experiment results show that our method is effective.

  4. From fusion hierarchy to excited state TBA

    International Nuclear Information System (INIS)

    Juettner, G.; Kluemper, A.

    1998-01-01

    Functional relations among the fusion hierarchy of quantum transfer matrices give a novel derivation of the TBA equations, namely without string hypothesis. This is demonstrated for two important models of 1D highly correlated electron systems, the supersymmetric t-J model and the supersymmetric extended Hubbard model. As a consequence, ''the excited state TBA'' equations, which characterize correlation lengths, are explicitly derived for the t-J model. To the authors' knowledge, this is the first explicit derivation of excited state TBA equations for 1D lattice electron systems. (orig.)

  5. An Inconvenient Truth: An Application of the Extended Parallel Process Model

    Science.gov (United States)

    Goodall, Catherine E.; Roberto, Anthony J.

    2008-01-01

    "An Inconvenient Truth" is an Academy Award-winning documentary about global warming presented by Al Gore. This documentary is appropriate for a lesson on fear appeals and the extended parallel process model (EPPM). The EPPM is concerned with the effects of perceived threat and efficacy on behavior change. Perceived threat is composed of an…

  6. Extended nonnegative tensor factorisation models for musical sound source separation.

    Science.gov (United States)

    FitzGerald, Derry; Cranitch, Matt; Coyle, Eugene

    2008-01-01

    Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  7. Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

    Directory of Open Access Journals (Sweden)

    Derry FitzGerald

    2008-01-01

    Full Text Available Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  8. Competition of the Peierls relief and structural defects in damping the domain walls in [Mn left brace (R/S)-pn right brace]2[Mn left brace(R/S)-pn right brace2(H2O)][Cr(CN)6]2 ferrimagnet

    International Nuclear Information System (INIS)

    Talantsev, A.D.; Kollak, O.V.; Kirman, M.V.; Morgunov, R.B.

    2015-01-01

    The [ [Mn left brace (R/S)-pn right brace] 2 [Mn left brace(R/S)-pn right brace 2 (H 2 O)][Cr(CN) 6 ] 2 molecular ferrimagnet exhibits an inverse sequence of changes in the domain wall motion regimes with increasing temperature in alternative magnetic field of 0.04-1400 Hz frequency. Initiation of the relaxation regime on the background of creep indicates that there are two different systems of the domain walls damping. The threshold amplitude of the alternative magnetic field corresponds to the Peierls relief contribution to the domain wall dynamics as well as the defect contribution usually considered.

  9. Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy

    Science.gov (United States)

    Gninzanlong, Carlos Lawrence; Ndjomatchoua, Frank Thomas; Tchawoua, Clément

    2018-04-01

    The nonlinear dynamics of a homogeneous DNA chain based on site-dependent finite stacking and pairing enthalpies is studied. A new variant of extended discrete nonlinear Schrödinger equation describing the dynamics of modulated wave is derived. The regions of discrete modulational instability of plane carrier waves are studied, and it appears that these zones depend strongly on the phonon frequency of Fourier's mode. The staggered/unstaggered discrete breather (SDB/USDB) is obtained straightforwardly without the staggering transformation, and it is demonstrated that SDBs are less unstable than USDB. The instability of discrete multi-humped SDB/USDB solution does not depend on the number of peaks of the discrete breather (DB). By using the concept of Peierls-Nabarro energy barrier, it appears that the low-frequency DBs are more mobile.

  10. Effects of doping on spin correlations in the periodic Anderson model

    International Nuclear Information System (INIS)

    Bonca, J.; Gubernatis, J.E.

    1998-01-01

    We studied the effects of hole doping on spin correlations in the two-dimensional periodic Anderson model, mainly at the full and three-quarters-full lower bands cases. In the full lower band case, strong antiferromagnetic correlations develop when the on-site repulsive interaction strength U becomes comparable to the quasiparticle bandwidth. In the three-quarters full case, a kind of spin correlation develops that is consistent with the resonance between a (π,0) and a (0,π) spin-density wave. In this state the spins on different sublattices appear uncorrelated. Hole doping away from the completely full case rapidly destroys the long-range antiferromagnetic correlations, in a manner reminiscent of the destruction of antiferromagnetism in the Hubbard model. In contrast to the Hubbard model, the doping does not shift the peak in the magnetic structure factor from the (π,π) position. At dopings intermediate to the full and three-quarters full cases, only weak spin correlations exist. copyright 1998 The American Physical Society

  11. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    Science.gov (United States)

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  12. Model-based safety analysis of a control system using Simulink and Simscape extended models

    Directory of Open Access Journals (Sweden)

    Shao Nian

    2017-01-01

    Full Text Available The aircraft or system safety assessment process is an integral part of the overall aircraft development cycle. It is usually characterized by a very high timely and financial effort and can become a critical design driver in certain cases. Therefore, an increasing demand of effective methods to assist the safety assessment process arises within the aerospace community. One approach is the utilization of model-based technology, which is already well-established in the system development, for safety assessment purposes. This paper mainly describes a new tool for Model-Based Safety Analysis. A formal model for an example system is generated and enriched with extended models. Then, system safety analyses are performed on the model with the assistance of automation tools and compared to the results of a manual analysis. The objective of this paper is to improve the increasingly complex aircraft systems development process. This paper develops a new model-based analysis tool in Simulink/Simscape environment.

  13. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  14. Self-energies, renormalization factor, Luttinger sum rule and quasiparticle structure of the Hubbard systems

    International Nuclear Information System (INIS)

    Lopez-Aguilar, F.; Costa-Quintana, J.

    1992-01-01

    In this paper, the authors give a method for obtaining the renormalized electronic structure of the Hubbard systems. The first step is the determination of the self-energy beyond the Hartree-Fock approximation. This self-energy is constructed from several dielectric response functions. The second step is the determination of the quasiparticle band structure calculation which is performed from an appropriate modification of the augmented plane wave method. The third step consists in the determination of the renormalized density of states deduced from the spectral functions. The analysis of the renormalized density of states of the strongly correlated systems leads to the conclusion that there exist three types of resonances in their electronic structures, the lower energy resonances (LER), the middle energy resonances (MER) and the upper energy resonances (UER). In addition, the authors analyze the conditions for which the Luttinger theorem is satisfied. All of these questions are determined in a characteristic example which allows to test the theoretical method

  15. Conformal standard model with an extended scalar sector

    Energy Technology Data Exchange (ETDEWEB)

    Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-10-26

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  16. A functional integral approach without slave bosons to the Anderson model

    International Nuclear Information System (INIS)

    Nguyen Ngoc Thuan; Nguyen Toan Thang; Coqblin, B.; Bhattacharjee, A.; Hoang Anh Tuan.

    1994-06-01

    We developed the technique of the functional integral method without slave bosons for the Periodic Anderson Model (PAM) suggested by Sarker for treating the Hubbard Model. This technique allowed us to obtain an analytical expression of Green functions containing U-dependence that is omitted in the formalism with slave bosons. (author). 9 refs

  17. An extended continuum model considering optimal velocity change with memory and numerical tests

    Science.gov (United States)

    Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng

    2018-01-01

    In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.

  18. Default risk modeling beyond the first-passage approximation: Extended Black-Cox model

    Science.gov (United States)

    Katz, Yuri A.; Shokhirev, Nikolai V.

    2010-07-01

    We develop a generalization of the Black-Cox structural model of default risk. The extended model captures uncertainty related to firm’s ability to avoid default even if company’s liabilities momentarily exceeding its assets. Diffusion in a linear potential with the radiation boundary condition is used to mimic a company’s default process. The exact solution of the corresponding Fokker-Planck equation allows for derivation of analytical expressions for the cumulative probability of default and the relevant hazard rate. Obtained closed formulas fit well the historical data on global corporate defaults and demonstrate the split behavior of credit spreads for bonds of companies in different categories of speculative-grade ratings with varying time to maturity. Introduction of the finite rate of default at the boundary improves valuation of credit risk for short time horizons, which is the key advantage of the proposed model. We also consider the influence of uncertainty in the initial distance to the default barrier on the outcome of the model and demonstrate that this additional source of incomplete information may be responsible for nonzero credit spreads for bonds with very short time to maturity.

  19. eGSM: A extended Sky Model of Diffuse Radio Emission

    Science.gov (United States)

    Kim, Doyeon; Liu, Adrian; Switzer, Eric

    2018-01-01

    Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.

  20. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    Science.gov (United States)

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  1. Extended behavioural modelling of FET and lattice-mismatched HEMT devices

    Science.gov (United States)

    Khawam, Yahya; Albasha, Lutfi

    2017-07-01

    This study presents an improved large signal model that can be used for high electron mobility transistors (HEMTs) and field effect transistors using measurement-based behavioural modelling techniques. The steps for accurate large and small signal modelling for transistor are also discussed. The proposed DC model is based on the Fager model since it compensates between the number of model's parameters and accuracy. The objective is to increase the accuracy of the drain-source current model with respect to any change in gate or drain voltages. Also, the objective is to extend the improved DC model to account for soft breakdown and kink effect found in some variants of HEMT devices. A hybrid Newton's-Genetic algorithm is used in order to determine the unknown parameters in the developed model. In addition to accurate modelling of a transistor's DC characteristics, the complete large signal model is modelled using multi-bias s-parameter measurements. The way that the complete model is performed is by using a hybrid multi-objective optimisation technique (Non-dominated Sorting Genetic Algorithm II) and local minimum search (multivariable Newton's method) for parasitic elements extraction. Finally, the results of DC modelling and multi-bias s-parameters modelling are presented, and three-device modelling recommendations are discussed.

  2. An extended car-following model considering random safety distance with different probabilities

    Science.gov (United States)

    Wang, Jufeng; Sun, Fengxin; Cheng, Rongjun; Ge, Hongxia; Wei, Qi

    2018-02-01

    Because of the difference in vehicle type or driving skill, the driving strategy is not exactly the same. The driving speeds of the different vehicles may be different for the same headway. Since the optimal velocity function is just determined by the safety distance besides the maximum velocity and headway, an extended car-following model accounting for random safety distance with different probabilities is proposed in this paper. The linear stable condition for this extended traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulting from multiple safety distance in the optimal velocity function. The cases of multiple types of safety distances selected with different probabilities are presented. Numerical results show that the traffic flow with multiple safety distances with different probabilities will be more unstable than that with single type of safety distance, and will result in more stop-and-go phenomena.

  3. Effects of hydrostatic pressure and uniaxial strain on spin-Peierls transition in an organic radical magnet, BBDTA·InCl4

    International Nuclear Information System (INIS)

    Mito, Masaki; Kawagoe, Seiichiro; Deguchi, Hiroyuki; Takagi, Seichi; Fujita, Wataru; Awaga, Kunio; Kondo, Ryusuke; Kagoshima, Seiichi

    2009-01-01

    We investigated the effects of hydrostatic pressure and uniaxial strain on the spin-Peierls (SP) transition of an organic radical magnet, benzo[1,2-d:4,5-d']bis[1,3,2]dithiazole(BBDTA)·InCl 4 . It has a one-dimensional coordination polymer structure along its c-axis and its SP transition occurs at 108 K. The SP transition temperature T SP decreased to 99 K at a hydrostatic pressure of 10 kbar, while it increased to 132 K at a uniaxial strain along the c-axis of 8 kbar. The pressure dependences of T SP under these two conditions were discussed by evaluating two parameters, namely, the intrachain interaction 2J/k B and the effective spin-lattice coupling parameter η, that are related to T SP by the equation T SP =1.6ηJ/k B . Under ambient pressure, the a- and c-axes of this material shortened monotonically with decreasing temperature, while the b-axis elongated below T SP . In this study, we found the correlation between η and the change in the lattice constant b. 2J/k B increased with increasing hydrostatic pressure and uniaxial strain, suggesting that the contraction along the c-axis does not depend on the manner of pressurization. From the evaluation of η, the observed variation in T SP is explained by the difference between the changes in b under the two pressurization conditions. (author)

  4. Cosmological dynamics of extended chameleons

    International Nuclear Information System (INIS)

    Tamanini, Nicola; Wright, Matthew

    2016-01-01

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.

  5. Cosmological dynamics of extended chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Tamanini, Nicola [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2016-04-01

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.

  6. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    Science.gov (United States)

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  7. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  8. The administration of renoprotective agents extends warm ischemia in a rat model.

    Science.gov (United States)

    Cohen, Jacob; Dorai, Thambi; Ding, Cheng; Batinic-Haberle, Ines; Grasso, Michael

    2013-03-01

    Extended warm ischemia time during partial nephrectomy leads to considerable renal injury. Using a rat model of renal ischemia, we examined the ability of a unique renoprotective cocktail to ameliorate warm ischemia-reperfusion injury and extend warm ischemia time. A warm renal ischemia model was developed using Sprague-Dawley rats, clamping the left renal artery for 40, 50, 60, and 70 minutes, followed by 48 hours of reperfusion. An improved renoprotective cocktail referred to as I-GPM (a mixture of specific renoprotective growth factors, porphyrins, and mitochondria-protecting amino acids) was administered -24 hours, 0 hours, and +24 hours after surgery. At 48 hours, both kidneys were harvested and examined with hematoxylin and eosin and periodic acid-Schiff stains for the analysis of renal tubular necrosis. Creatinine, protein, and gene expression levels were also analyzed to evaluate several ischemia-specific and antioxidant response markers. I-GPM treated kidneys showed significant reversal of morphologic changes and a significant reduction in specific ischemic markers lipocalin-2, galectin-3, GRP-78, and HMGB1 compared with ischemic controls. These experiments also showed an upregulation of the stress response protein, heat shock protein (HSP)-70, as well as the phosphorylated active form of the transcription factor, heat shock factor (HSF)-1. In addition, quantitative RT-PCR analyses revealed a robust upregulation of several antioxidant pathway response genes in I-GPM treated animals. By histopathologic and several molecular measures, our unique renoprotective cocktail mitigated ischemia-reperfusion injury. Our cocktail minimized oxidative stress in an ischemic kidney rat model while at the same time protecting the global parenchymal function during extended periods of ischemia.

  9. Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy, and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3

    KAUST Repository

    Liu, Lili

    2014-07-31

    The elastic properties and generalized stacking fault energy curves of antiperovskite-type Ni-rich nitrides MNNi3 (M = Zn, Cd) under different pressure have been obtained from the first-principles calculations. By using the variational method, the core width and Peierls stresses of (Formula presented.) edge dislocation and screw dislocation in ZnNNi3 and CdNNi3 within the improved Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account have been investigated. Whatever the material or the pressure range, the Peierls stress of edge dislocation is smaller than that of screw dislocation. This also demonstrates that the edge dislocation is considered to be the dominant factor in determining the plastic behavior of MNNi3 (M = Zn, Cd) in the pressure range of 0–30 GPa.

  10. Core structure of screw dislocations in Fe from first-principles; Simulation ab initio des coeurs de dislocation vis dans le fer

    Energy Technology Data Exchange (ETDEWEB)

    Ventelon, L

    2008-11-15

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  11. Core structure of screw dislocations in Fe from first-principles

    International Nuclear Information System (INIS)

    Ventelon, L.

    2008-11-01

    The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)

  12. Extended Nambu models: Their relation to gauge theories

    Science.gov (United States)

    Escobar, C. A.; Urrutia, L. F.

    2017-05-01

    Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.

  13. Extended Fitts' model of pointing time in eye-gaze input system - Incorporating effects of target shape and movement direction into modeling.

    Science.gov (United States)

    Murata, Atsuo; Fukunaga, Daichi

    2018-04-01

    This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.

  14. 2D Modeling and Classification of Extended Objects in a Network of HRR Radars

    NARCIS (Netherlands)

    Fasoula, A.

    2011-01-01

    In this thesis, the modeling of extended objects with low-dimensional representations of their 2D geometry is addressed. The ultimate objective is the classification of the objects using libraries of such compact 2D object models that are much smaller than in the state-of-the-art classification

  15. Invariance of an Extended Technology Acceptance Model Across Gender and Age Group

    Science.gov (United States)

    Ahmad, Tunku Badariah Tunku; Madarsha, Kamal Basha; Zainuddin, Ahmad Marzuki; Ismail, Nik Ahmad Hisham; Khairani, Ahmad Zamri; Nordin, Mohamad Sahari

    2011-01-01

    In this study, we examined the likelihood of a TAME (extended technology acceptance model), in which the interrelationships among computer self-efficacy, perceived usefulness, intention to use and self-reported use of computer-mediated technology were tested. In addition, the gender- and age-invariant of its causal structure were evaluated. The…

  16. Perceived Convenience in an Extended Technology Acceptance Model: Mobile Technology and English Learning for College Students

    Science.gov (United States)

    Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih

    2012-01-01

    Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…

  17. Standard model extended by a heavy singlet: Linear vs. nonlinear EFT

    Energy Technology Data Exchange (ETDEWEB)

    Buchalla, G., E-mail: gerhard.buchalla@lmu.de; Catà, O.; Celis, A.; Krause, C.

    2017-04-15

    We consider the Standard Model extended by a heavy scalar singlet in different regions of parameter space and construct the appropriate low-energy effective field theories up to first nontrivial order. This top-down exercise in effective field theory is meant primarily to illustrate with a simple example the systematics of the linear and nonlinear electroweak effective Lagrangians and to clarify the relation between them. We discuss power-counting aspects and the transition between both effective theories on the basis of the model, confirming in all cases the rules and procedures derived in previous works from a bottom-up approach.

  18. Momentum Distribution Functions in a One-Dimensional Extended Periodic Anderson Model

    Directory of Open Access Journals (Sweden)

    I. Hagymási

    2015-01-01

    Full Text Available We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, Ucf, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, the f electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value of Ucf the f electrons become again localized together with the conduction electrons. In the less than half-filled case, we observe that Ucf causes strong correlations between the f electrons in the mixed valence regime.

  19. Electronic transport in VO{sub 2}—Experimentally calibrated Boltzmann transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kinaci, Alper; Rosenmann, Daniel; Chan, Maria K. Y., E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kado, Motohisa [Higashifuji Technical Center, Toyota Motor Corporation, Susono, Shizuoka 410-1193 (Japan); Ling, Chen; Zhu, Gaohua; Banerjee, Debasish, E-mail: debasish.banerjee@toyota.com, E-mail: mchan@anl.gov [Materials Research Department, Toyota Motor Engineering and Manufacturing North America, Inc., Ann Arbor, Michigan 48105 (United States)

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study, because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO{sub 2} has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach with Hubbard U correction (DFT + U) to model electronic transport properties in VO{sub 2} in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high quality VO{sub 2} films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.

  20. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)