WorldWideScience

Sample records for extended isotropic periodic

  1. An Improved Isotropic Periodic Sum Method That Uses Linear Combinations of Basis Potentials

    KAUST Repository

    Takahashi, Kazuaki Z.

    2012-11-13

    Isotropic periodic sum (IPS) is a technique that calculates long-range interactions differently than conventional lattice sum methods. The difference between IPS and lattice sum methods lies in the shape and distribution of remote images for long-range interaction calculations. The images used in lattice sum calculations are identical to those generated from periodic boundary conditions and are discretely positioned at lattice points in space. The images for IPS calculations are "imaginary", which means they do not explicitly exist in a simulation system and are distributed isotropically and periodically around each particle. Two different versions of the original IPS method exist. The IPSn method is applied to calculations for point charges, whereas the IPSp method calculates polar molecules. However, both IPSn and IPSp have their advantages and disadvantages in simulating bulk water or water-vapor interfacial systems. In bulk water systems, the cutoff radius effect of IPSn strongly affects the configuration, whereas IPSp does not provide adequate estimations of water-vapor interfacial systems unless very long cutoff radii are used. To extend the applicability of the IPS technique, an improved IPS method, which has better accuracy in both homogeneous and heterogeneous systems has been developed and named the linear-combination-based isotropic periodic sum (LIPS) method. This improved IPS method uses linear combinations of basis potentials. We performed molecular dynamics (MD) simulations of bulk water and water-vapor interfacial systems to evaluate the accuracy of the LIPS method. For bulk water systems, the LIPS method has better accuracy than IPSn in estimating thermodynamic and configurational properties without the countercharge assumption, which is used for IPSp. For water-vapor interfacial systems, LIPS has better accuracy than IPSp and properly estimates thermodynamic and configurational properties. In conclusion, the LIPS method can successfully estimate

  2. Periodic Driving at High Frequencies of an Impurity in the Isotropic XY Chain

    Science.gov (United States)

    Corsi, Livia; Genovese, Giuseppe

    2017-09-01

    We study the isotropic XY chain with a transverse magnetic field acting on a single site and analyse the long time behaviour of the time-dependent state of the system when a periodic perturbation drives the impurity. We find that for high frequencies the state approaches a periodic orbit synchronised with the forcing and provide the explicit rate of convergence to the asymptotics.

  3. 20 CFR 336.14 - Extended benefit period.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Extended benefit period. 336.14 Section 336.14 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT DURATION OF NORMAL AND EXTENDED BENEFITS Extended Benefits § 336.14 Extended benefit period...

  4. Absolutely continuous spectrum for the isotropic Maxwell operator with coefficients that are periodic in some directions and decay in other

    CERN Document Server

    Filonov, N

    2004-01-01

    The purpose of this paper is to prove that the spectrum of an isotropic Maxwell operator with electric permittivity and magnetic permeability that are periodic along certain directions and tending to a constant super-exponentially fast in the remaining directions is purely absolutely continuous. The basic technical tools is a new ``operatorial'' identity relating the Maxwell operator to a vector-valued Schroedinger operator. This operator is then studied using a method developed by the authors in a previous paper.

  5. Failures of homogeneous and isotropic cosmologies in extended quasidilaton massive gravity

    Science.gov (United States)

    Anselmi, Stefano; Kumar, Saurabh; Nacir, Diana López; Starkman, Glenn D.

    2017-10-01

    We analyze the extended quasidilaton massive gravity model around a Friedmann-Lemaître-Robertson-Walker cosmological background. We present a careful stability analysis of asymptotic fixed points. We find that the traditional fixed point cannot be approached dynamically, except from a perfectly fine-tuned initial condition involving both the quasidilaton and the Hubble parameter. A less-well examined fixed-point solution, where the time derivative of the zeroth Stückelberg field vanishes ϕ˙0=0 , encounters no such difficulty, and the fixed point is an attractor in some finite region of initial conditions. We examine the question of the presence of a Boulware-Deser ghost in the theory. We show that the additional constraint that generically allows for the elimination of the Boulware-Deser mode is only present under special initial conditions. We find that the only possibility corresponds to the traditional fixed point and the initial conditions are the same fine-tuned conditions that allow the fixed point to be approached dynamically.

  6. The Extended Symmetry Lie Algebra and the Asymptotic Expansion of the Transversal Correlation Function for the Isotropic Turbulence

    Directory of Open Access Journals (Sweden)

    V. N. Grebenev

    2013-01-01

    Full Text Available The extended symmetry of the functional of length determined in an affine space K3 of the correlation vectors for homogeneous isotropic turbulence is studied. The two-point velocity-correlation tensor field (parametrized by the time variable t of the velocity fluctuations is used to equip this space by a family of the pseudo-Riemannian metrics dl2(t (Grebenev and Oberlack (2011. First, we observe the results obtained by Grebenev and Oberlack (2011 and Grebenev et al. (2012 about a geometry of the correlation space K3 and expose the Lie algebra associated with the equivalence transformation of the above-mentioned functional for the quadratic form dlD22(t generated by dl2(t which is similar to the Lie algebra constructed by Grebenev et al. (2012. Then, using the properties of this Lie algebra, we show that there exists a nontrivial central extension wherein the central charge is defined by the same bilinear skew-symmetric form c as for the Witt algebra which measures the number of internal degrees of freedom of the system. For the applications in turbulence, as the main result, we establish the asymptotic expansion of the transversal correlation function for large correlation distances in the frame of dlD22(t.

  7. Extended period simulation (EPS) modelling of urban water ...

    African Journals Online (AJOL)

    Water distribution network was constructed, calibrated and validated for extended period simulation studies using the network's physical, operational, calibration and validation data. The model was then applied to evaluate: (i) effects of fluctuating water demand on system storage over 24 hour period and (ii) level of service ...

  8. Analysis of printed reflectarrays using extended local periodicity

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig Busk; Jorgensen, Erik

    2011-01-01

    An analysis technique for improved modeling of a printed reflectarray is proposed. The technique is based on a periodic approach where periodicity is applied on an extended unit cell, which includes the actual elements surrounding the element under consideration. An offset reflectarray sample has...

  9. Structure of weakly periodic rings with potent extended commutators

    OpenAIRE

    Adil Yaqub

    2001-01-01

    A well-known theorem of Jacobson (1964, page 217) asserts that a ring R with the property that, for each x in R, there exists an integer n(x)>1 such that xn(x)=x is necessarily commutative. This theorem is generalized to the case of a weakly periodic ring R with a “sufficient” number of potent extended commutators. A ring R is called weakly periodic if every x in R can be written in the form x=a+b, where a is nilpotent and b is “potent” in the sense that bn(b)=b for some integer n(b)>1. It is...

  10. Estimating short-period dynamics using an extended Kalman filter

    Science.gov (United States)

    Bauer, Jeffrey E.; Andrisani, Dominick

    1990-01-01

    An extended Kalman filter (EKF) is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. Because of the model chosen, handling qualities information is also obtained. The parameters are estimated from flight data as well as from a six-degree-of-freedom, nonlinear simulation of the aircraft. These two estimates are then compared and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation. The parameters obtained from the EKF analysis of flight data are compared to those obtained using frequency response analysis of the flight data. Time delays and damping ratios are compared and are in agreement. This technique demonstrates the potential to determine, in near real time, the extent of differences between computer models and the actual aircraft. Precise knowledge of these differences can help to determine the flying qualities of a test aircraft and lead to more efficient envelope expansion.

  11. NMDA receptor antagonists extend the sensitive period for imprinting.

    Science.gov (United States)

    Parsons, C H; Rogers, L J

    2000-03-01

    Filial imprinting in the domestic chick occurs during a sensitive period of development. The exact timing of this period can vary according to the methods used to measure imprinting. Using our imprinting paradigm, we have shown that normal, dark-reared chicks lose the ability to imprint after the second day post-hatching. Further, we reported that chicks treated 10 h after hatching with a mixture of the noncompetitive NMDA receptor antagonist ketamine (55 mg/kg) and the alpha(2)-adrenergic receptor agonist xylazine (6 mg/kg) were able to imprint on day 8 after hatching, whereas controls treated with saline did not imprint. We now show that the effect of the ketamine-xylazine mixture can be mimicked by treating chicks with ketamine alone or with another noncompetitive NMDA receptor antagonist, MK-801 (5 mg/kg). Treating chicks with a single dose of ketamine (55 mg/kg) or with a single dose of xylazine (6 mg/kg) failed to produce the effect on the sensitive period. However, prolonging the action of ketamine by treating chicks with two doses of ketamine (at 10 and 12 h after hatching) did allow imprinting on day 8. In contrast, prolonging the action of xylazine had no effect on the sensitive period for imprinting. Chicks treated with MK-801 were also able to imprint on day 8. Thus, we have evidence that the NMDA receptor system is involved in the mechanisms that control the sensitive period for imprinting.

  12. Manual wheelchair stroke characteristics during an extended period of propulsion.

    Science.gov (United States)

    Rice, I; Impink, B; Niyonkuru, C; Boninger, M

    2009-05-01

    Cross-sectional study. The purpose of this study was to examine stroke characteristics of long-term manual wheelchair users during an extended manual wheelchair propulsion trial and the extent to which changes in propulsion biomechanics occurred. Human Engineering Research Laboratories, VA Rehabilitation Research and Development Center, VA Pittsburgh Healthcare Systems, Pittsburgh, PA, USA. Kinetic data were recorded from 21 subjects with paraplegia at four time points over the course of a 10-min propulsion trial at a steady state speed of 1.4 m s(-1). Upper extremity kinetic parameters were recorded using Smartwheels, force and torque sensing pushrims. Subjects for propulsion biomechanics changed from early to late during the 10-min trial. Individuals displayed decreased maximum rate of rise of resultant force (P=0.0045) with a simultaneous increase in push time (P=0.043) and stroke time (P=0.023), whereas stroke frequency remained static. In addition, there was a decrease in out of plane moment application (P=0.032). Individuals seemed to naturally accommodate their propulsive stroke, using less injurious propulsion biomechanics over the course of a 10-minute trial on a dynamometer. The findings may have occurred as a result of both biomechanical compensations to a challenging propulsion trial and accommodation to propelling on a dynamometer. These results suggest that subjects may be capable of independently incorporating favorable biomechanical strategies to meet the demands of a challenging propulsion scenario.

  13. Humanization according to cancer patients with extended hospitalization periods.

    Science.gov (United States)

    Brito, Natália Tatiani Gonçalves; Carvalho, Rachel de

    2010-06-01

    To identify the concept of humanization and raise aspects that contribute towards and that hinder humanization of hospital care, according to the opinion of oncology patients. This is a descriptive-exploratory survey, with a qualitative-quantitative approach. The sample was made up of 10 patients hospitalized for more than 30 days at the Oncology Unit of Hospital Israelita Albert Einstein, who, after satisfying ethical and legal procedures, were interviewed and answered three questions in reference to humanization in oncology. The factors that contributed more towards humanization were warmth in giving care, friendliness, and smiles, and the factors that hindered it were bad moods, noise, and not being promptly attended. Hospital humanization should be experienced and felt by all those who work at hospital and needs to be reflected in the care offered to the client and his/her family members. These aspects become vital in oncology in order to understand the difficult period the patient is going through during the hospital stay, showing an interest in his/her problems and struggles with an attitude of empathy and cordiality, always acting ethically and with professional responsibility.

  14. Humanization according to cancer patients with extended hospitalization periods

    Directory of Open Access Journals (Sweden)

    Natália Tatiani Gonçalves Brito

    2010-06-01

    Full Text Available Objective: To identify the concept of humanization and raise aspects that contribute towards and that hinder humanization of hospital care, according to the opinion of oncology patients. Methods: This is a descriptive-exploratory survey, with a qualitative-quantitative approach. The sample was made up of 10 patients hospitalized for more than 30 days at the Oncology Unit of Hospital Israelita Albert Einstein, who, after satisfying ethical and legal procedures, were interviewed and answered three questions in reference to humanization in oncology. Results: The factors that contributed more towards humanization were warmth in giving care, friendliness, and smiles, and the factors that hindered it were bad moods, noise, and not being promptly attended. Conclusions: Hospital humanization should be experienced and felt by all those who work at hospital and needs to be reflected in the care offered to the client and his/her family members. These aspects become vital in oncology in order to understand the difficult period the patient is going through during the hospital stay, showing an interest in his/her problems and struggles with an attitude of empathy and cordiality, always acting ethically and with professional responsibility.

  15. 20 CFR 615.13 - Announcement of the beginning and ending of Extended Benefit Periods.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Announcement of the beginning and ending of Extended Benefit Periods. 615.13 Section 615.13 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR EXTENDED BENEFITS IN THE FEDERAL-STATE UNEMPLOYMENT COMPENSATION PROGRAM § 615.13 Announcement of the beginning and ending...

  16. The Nature and Nurture of High IQ: An Extended Sensitive Period for Intellectual Development

    NARCIS (Netherlands)

    Brant, A.M.; Munakata, Y.; Boomsma, D.I.; DeFries, J.C.; Haworth, C.M.A.; Keller, M.C.; Martin, N.G.; McGue, M.; Petrill, S.A.; Plomin, R.; Wadsworth, S.J.; Wright, M.J.; Hewitt, J.K.

    2013-01-01

    IQ predicts many measures of life success, as well as trajectories of brain development. Prolonged cortical thickening observed in individuals with high IQ might reflect an extended period of synaptogenesis and high environmental sensitivity or plasticity. We tested this hypothesis by examining the

  17. The Flexible Policy for the Seventh Period/Extended School Day in Florida.

    Science.gov (United States)

    Berger, Neal H.; And Others

    1986-01-01

    Between 1983 and 1985, the Florida Legislature enacted legislation that increased the credits required for high school graduation and redefined the closely related length and configuration of the school day. Members of the Superintendent's Task Force on the Seventh Period/Extended School Day, members and staff of the legislature's education and…

  18. Study on The Extended Range Weather Forecast of Low Frequency Signal Based on Period Analysis Method

    Science.gov (United States)

    Li, X.

    2016-12-01

    Although many studies have explored the MJO and its application for weather forecasting, low-frequency oscillation has been insufficiently studied for the extend range weather forecasting over middle and high latitudes. In China, low-frequency synoptic map is a useful tool for meteorological operation department to forecast extend range weather. It is therefore necessary to develop objective methods to serve the need for finding low-frequency signal, interpretation and application of this signal in the extend range weather forecasting. In this paper, method of Butterworth band pass filter was applied to get low-frequency height field at 500hPa from 1980 to 2014 by using NCEP/NCAR daily grid data. Then period analysis and optimal subset regression methods were used to process the low frequency data of 150 days before the first forecast day and extend the low frequency signal of 500hPa low-frequency high field to future 30 days in the global from June to August during 2011-2014. Finally, the results were test. The main results are as follows: (1) In general, the fitting effect of low frequency signals of 500hPa low-frequency height field by period analysis in the northern hemisphere was better than that in the southern hemisphere, and was better in the low latitudes than that in the high latitudes. The fitting accuracy gradually reduced with the increase of forecast time length, which tended to be stable during the late forecasting period. (2) The fitting effects over the 6 key regions in China showed that except filtering result over Xinjiang area in the first 10 days and 30 days, filtering results over the other 5 key regions throughout the whole period have passed reliability test with level more than 95%. (3) The center and scope of low and high low frequency systems can be fitted well by using the methods mentioned above, which is consist with the corresponding use of the low-frequency synoptic map for the prediction of the extended period. Application of the

  19. Extended hatching periods in the subantarctic lithodid crabs Lithodes santolla and Paralomis granulosa (Crustacea: Decapoda: Lithodidae)

    Science.gov (United States)

    Thatje, S.; Calcagno, J. A.; Lovrich, G. A.; Sartoris, F. J.; Anger, K.

    2003-06-01

    Temporal pattern of hatching was studied in the subantarctic lithodid crabs Lithodes santolla (Molina) and Paralomis granulosa (Jaquinot) from the Argentine Beagle Channel. In both species, larval hatching occurred in low daily numbers over an extended period of up to several weeks, depending on hatch size. Low daily hatching activity and low oxygen-consumption rates in freshly hatched P. granulosa larvae are discussed as life history adaptations to, and/or physiological constraints by, the environmental conditions of high latitudes.

  20. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  1. Momentum Distribution Functions in a One-Dimensional Extended Periodic Anderson Model

    Directory of Open Access Journals (Sweden)

    I. Hagymási

    2015-01-01

    Full Text Available We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, Ucf, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, the f electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value of Ucf the f electrons become again localized together with the conduction electrons. In the less than half-filled case, we observe that Ucf causes strong correlations between the f electrons in the mixed valence regime.

  2. Replantation of an avulsed tooth with an extended extra oral period

    Directory of Open Access Journals (Sweden)

    Girish Kubasad

    2012-01-01

    Full Text Available In this study, we have reported a case of the replantation of a maxillary incisor with an extended extraoral period following a traumatic avulsion. After storage in normal saline, the root surface of the avulsed tooth was conditioned with citric acid and treated with a triple antibiotic solution. The tooth socket was filled with Emdogain before replantation. A 12 month, 18 month and a 5 year follow-up clinical examination revealed the patient to be asymptomatic, and the tooth was functional. The recall radiograph showed no evidence of renewed periradicular breakdown and apical root resorption.

  3. Isotropic Single Negative Metamaterials

    Directory of Open Access Journals (Sweden)

    P. Protiva

    2008-09-01

    Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.

  4. The Use Combined Adsorbant to Extend the Storing Period of Cavendish Banana

    Directory of Open Access Journals (Sweden)

    Suryatmi Retno Dumadi

    2001-04-01

    Full Text Available Post harvest damage of horticulture commodity in Indonesia has reached 30 to 40%. This research is aimed at extending the storing period of cavendish banana in order to extend the market range, while still enabling to maintain the quality of fresh preserved banana as required by consumers. One of the ways to do so is by using combines adsorbant as to control the air of the fruit surrounding.The type of adsorbant used is as follows : 1,2 and 3% of KMn04 ; 0,5, 1 and 1,5% of iron powder, and 3% of active carbon. The experiment was conducted in completed randomized design, by 10 factors of combined and concentrate adsorbant, and by 6 factors of storing time. The parameters being analyzed includes texture intensity, starch rate, total acid rate, total glucose rate, water rate and reduced glucose rate.The statistics test results of 10 treatments of combines adsorbant KMn04, iron powder, active carbon which were(1%, 0,5%, 3%, (1%, 1%, 3%, (1%, 1,5%,3%, (2%, 0,5%, 3%, (2%, 1%, 3%, (2%, 1.5%, 3% (3%, 0,5%, 3%, (3%, 1%, 3% ( 3%, 1,5%, 3%, suggested that the combined adsorbant (2%, 1,5%, 3% at 15°C storing temperature is the best. This treatment is the best because it has the highest substances rate up to 72.36% db; relatively small texture change, total acid rate, total glucose rate, water rate and the lowest reduced glucose rate of 3.531% db which is more likely to extend the storing period of cavendish banana for approximately six weeks.

  5. Periodicity of Strong Seismicity in Italy: Schuster Spectrum Analysis Extended to the Destructive Earthquakes of 2016

    Science.gov (United States)

    Bragato, P. L.

    2017-10-01

    The strong earthquakes that occurred in Italy between 2009 and 2016 represent an abrupt acceleration of seismicity in respect of the previous 30 years. Such behavior seems to agree with the periodic rate change I observed in a previous paper. The present work improves that study by extending the data set up to the end of 2016, adopting the latest version of the historical seismic catalog of Italy, and introducing Schuster spectrum analysis for the detection of the oscillatory period and the assessment of its statistical significance. Applied to the declustered catalog of M w ≥ 6 earthquakes that occurred between 1600 and 2016, the analysis individuates a marked periodicity of 46 years, which is recognized above the 95% confidence level. Monte Carlo simulation shows that the oscillatory behavior is stable in respect of random errors on magnitude estimation. A parametric oscillatory model for the annual rate of seismicity is estimated by likelihood maximization under the hypothesis of inhomogeneous Poisson point process. According to the Akaike Information Criterion, such model outperforms the simpler homogeneous one with constant annual rate. A further element emerges form the analysis: so far, despite recent earthquakes, the Italian seismicity is still within a long-term decreasing trend established since the first half of the twentieth century.

  6. Estimating short-period dynamics using an extended Kalman filter. [for aircraft controllability

    Science.gov (United States)

    Bauer, Jeffrey E.; Andrisani, Dominick

    1990-01-01

    An extended Kalman filter is used to estimate the parameters of a low-order model from aircraft transient response data. The low-order model is a state-space model derived from the short-period approximation of the longitudinal aircraft dynamics. The model corresponds to the pitch rate to stick force transfer function currently used in flying qualities analysis. The parameters are estimated from flight data as well as from a 6-DOF nonlinear simulation of the aircraft. These two estimates are then compared, and the discrepancies noted. The low-order model is able to satisfactorily match both flight data and simulation data from a high-order computer simulation.

  7. Equatorial mountain lakes show extended periods of thermal stratification with recent climate change

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    2016-03-01

    Full Text Available Climate change in the Andes has already affected phenology, glaciology, and other ecosystem attributes, and now threatens to alter long-standing fundamental limnological properties. In the equatorial Andes, most lakes have traditionally been described as having waters that circulate continuously (polymictic, with only rare episodes of stratification. This characterization, albeit based on relatively few studies, is widely accepted, despite accelerated regional warming over the past 30 years.Here, we show that protracted periods of thermal stratification are presently the norm, not the exception, in equatorial mountain lakes. Annual circulation and stratification patterns recorded in four lakes from Ecuador’s southern Sierra show extended periods of stratification, which are stable and do not break down with nocturnal cooling. These data contrast with earlier research from this region, which reported full water column mixing and only infrequent stratification, but are not surprising in light of recent trends toward rising temperatures and declining wind velocities. Paleolimnological studies show that changes to the thermal regimes of these lakes likely began several decades ago and have resulted in ecosystem-scale changes including regime shifts in phytoplankton and declines in aquatic production.

  8. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mcpherson, Timothy N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  9. MICROBIAL CONTAMINATION OF PRESERVED OPHTHALMIC DROPS IN OUTPATIENT DEPARTMENTS: POSSIBILITY OF AN EXTENDED PERIOD OF USE

    Directory of Open Access Journals (Sweden)

    MOHAMMAD REZA FAZELI

    2004-09-01

    Full Text Available Ocular infections may arise from topical ophthalmic medications. A standard imposed by the British Pharmaceutical Codex implies that eye drops should be discarded after 1-day use when these remedies are used in outpatient departments. In this study the bioburden rates arising from 2, 4 and 7 days’ use were evaluated and compared with those of 1 day’s use to determine whether it is possible to extend the period of use of preserved eye drops in outpatient departments. A total of 200 eye drops were taken from outpatient departments of Farabi Eye Hospital after 1, 2, 4 and 7 days’ use and the contamination rates of the residual contents, caps and droppers were determined using conventional techniques. High biobudren rates were obtained in all the samples tested. Although the overall recorded incidences of microbial contamination in the 2 and 4-day drops were not considerably different from those of first day (P>0.01 but those of 7 days’ use were significant (P<0.01. However, when contamination rate of drop contents was taken into account there was a significant difference between 4 and 7 days’ use compared to 1-day drops. Most of the isolated organisms were either of human flora types of Gram-positive bacteria or air-borne fungi. It is concluded that the use of eye drops for outpatient practice may be extended up to 2 days; yet, care should be taken to reduce the overall contamination rates of these preparations for prevention of ocular nosocomial infections.

  10. Isotropic optical metamaterials

    DEFF Research Database (Denmark)

    Lederer, Falk; Rockstuhl, C.; Menzel, C.

    2010-01-01

    Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...

  11. Criteria for extending the operation periods of thermoelectric converters based on IV-VI compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sadia, Yatir, E-mail: yatttir@yahoo.com [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Ohaion-Raz, Tsion [Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Ben-Yehuda, Ohad; Korngold, Meidad; Gelbstein, Yaniv [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2016-09-15

    The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological “valley of death”, including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410–430 °C range for GeTe rich alloys and to 510–530 °C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter. - Graphical abstract: Evaporation rate in the GeTe and PbTe system showing the measured evaporation rates and the maximal operating temperatures for different compositions. In addition, the microstructure after evaporation is shown for PbTe, TAGS-85, and doped Pb{sub 0.13}Ge{sub 087}Te. Display Omitted - Highlights: • Evaporation rates of GeTe and PbTe based thermoelectric compounds were determined. • A criterion for their maximum operating temperature was established. • The materials showed phase separations and off-stoichiometry compositions.

  12. 76 FR 14102 - Notice of a Change in Status of an Extended Benefit (EB) Period for Alaska

    Science.gov (United States)

    2011-03-15

    ... Employment and Training Administration Notice of a Change in Status of an Extended Benefit (EB) Period for... announces a change in benefit period eligibility under the EB program for Alaska. The following changes have... total unemployment rate for Alaska met or exceeded the 8.0% threshold to enter a high unemployment...

  13. 77 FR 7603 - Notice of a Change in Status of an Extended Benefit (EB) Period for Alaska

    Science.gov (United States)

    2012-02-13

    ... Employment and Training Administration Notice of a Change in Status of an Extended Benefit (EB) Period for... announces a change in benefit period eligibility under the EB program for Alaska. The following changes have... unemployment rate (IUR) for the week ending January 7, 2012 rose to meet the 6% threshold to trigger ``on'' to...

  14. Effect of different extenders and storage periods on motility and fertility of ram sperm

    OpenAIRE

    Rossen Georgiev Stefanov; Georgi Anev; Desislava Vasileva Abadjieva

    2015-01-01

    The aim of this study was to test the effect of extenders containing different sugar in their composition on ram sperm motility and pregnancy rate of ewe’s following artificial insemination. Semen were collected from ten North-east Bulgarian fine-fleece breed and tested for quality. Semen was diluted with different extenders, with di- and trisaccharides. A series of experiments were repeated in triplicate. Total motility was determined by using Sperm Analysis (SCA, Microptic, Spain). A total ...

  15. Assessing the potential impact of extending antenatal steroids to the late preterm period.

    Science.gov (United States)

    Souter, Vivienne; Kauffman, Ellen; Marshall, Alice J; Katon, Jodie G

    2017-10-01

    In 2016, guidance statements were issued by the Society for Maternal-Fetal Medicine and the American Congress of Obstetricians and Gynecologists about extending antenatal steroid use to selected late preterm singleton pregnancies. We sought to review antenatal steroid use prior to the 2016 guidance statements and assess the potential impact of these. This cohort study used chart-abstracted data from singleton deliveries from Jan. 1, 2012, through March 31, 2016, at 12 centers participating in the Obstetrics Clinical Outcomes Assessment Program, a quality initiative in Washington State. Pregnancies with missing gestation at delivery, fetal anomalies, or antepartum demise were excluded. Antenatal steroid use prior to the 2016 guidance was evaluated based on the percentage of early preterm deliveries (23 +0 -33 +6 weeks) and the percentage of all pregnancies that received antenatal steroids. Newborn complication rates were calculated for late preterm deliveries (34+0 +0 -36 +6 weeks), grouped by whether they would be potentially eligible or ineligible for antenatal steroids based on the 2016 guidance statements. The opportunity for antenatal steroids was missed in 21.8% (226/1034) of early preterm deliveries and of all those who received antenatal steroids, 32.2% (614/1908) delivered at term. Of preterm deliveries, 74% (n = 2942) were in the late preterm period. In all, 80% (n = 2363) of late preterm deliveries were potentially eligible for antenatal steroids and 60% of these (n = 1411) delivered at 36 weeks. The rate of respiratory complications in newborns delivering at 34 and 35 weeks was higher in the group potentially eligible for late preterm antenatal steroids compared to those in the ineligible group. Of those delivering at 36 weeks, no differences were detected in prevalence of respiratory complications by potential eligibility for antenatal steroids; however, compared with the ineligible group, those potentially eligible had a lower risk of neonatal

  16. The Effect of Adopting New Storage Methods for Extending Product Validity Periods on Manufacturers Expected Inventory Costs

    OpenAIRE

    Po-Yu Chen

    2014-01-01

    The validness of the expiration dates (validity period) that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to c...

  17. 77 FR 62258 - Notice To Reopen and Extend the Scoping Comment Period for the Environmental Impact Statement for...

    Science.gov (United States)

    2012-10-12

    ... Enforcement Notice To Reopen and Extend the Scoping Comment Period for the Environmental Impact Statement for the Four Corners Power Plant and Navajo Mine Energy Project AGENCY: Office of Surface Mining... alternatives that we should consider in the planning and preparation of an environmental impact statement (EIS...

  18. Extended suicides in families in Eastern Denmark in the period 1993-2012

    DEFF Research Database (Denmark)

    Slot, Liselott; Thomsen, Asser Hedegaard; Leth, Peter Mygind

    2014-01-01

    So called extended suicides are a parents murder of his or hers own children, and sometimes also of the other parent, followed by the perpetrators suicide. Our investigation documents that these homicides has decreased in number in Denmark and that the perpetrators are now predominantly the fathers...

  19. Effect of different extenders and storage periods on motility and fertility of ram sperm

    Directory of Open Access Journals (Sweden)

    Rossen Georgiev Stefanov

    2015-03-01

    Full Text Available The aim of this study was to test the effect of extenders containing different sugar in their composition on ram sperm motility and pregnancy rate of ewe’s following artificial insemination. Semen were collected from ten North-east Bulgarian fine-fleece breed and tested for quality. Semen was diluted with different extenders, with di- and trisaccharides. A series of experiments were repeated in triplicate. Total motility was determined by using Sperm Analysis (SCA, Microptic, Spain. A total of 200 North-east Bulgarian fine-fleece breed mature ewes were used for cervical insemination with a sperm dose at the concentration of 100 x 106 spermatozoa. Pregnancies were diagnosed 60 days after AI by - a real-time ultrasonic scan device (Alloka SSD 500. In conclusion, our experiments demonstrated that higher sperm motility after storage at 4°C for 24 hours and 48 hours has a ram spermatozoa diluted with extender 1, with combination of disaccharides (sucrose and lactose and trisaccharides (rafinosa. This semen extender (number 1 can be used for successful insemination of ewes and to enhance pregnancy rate after artificial insemination.

  20. Isotropic stochastic rotation dynamics

    Science.gov (United States)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  1. Caffeine improves reaction time, vigilance and logical reasoning during extended periods with restricted opportunities for sleep.

    Science.gov (United States)

    Kamimori, Gary H; McLellan, Tom M; Tate, Charmaine M; Voss, David M; Niro, Phil; Lieberman, Harris R

    2015-06-01

    Various occupational groups are required to maintain optimal physical and cognitive function during overnight periods of wakefulness, often with less than optimal sleep. Strategies are required to help mitigate the impairments in cognitive function to help sustain workplace safety and productivity. To test the effectiveness of repeated 200 mg doses of caffeine on cognitive function and live-fire marksmanship with soldiers during three successive nights of sustained wakefulness followed by 4-h afternoon sleep periods. Twenty Special Forces personnel (28.6 ± 4.7 years, 177.6 ± 7.5 cm and 81.2 ± 8.0 kg) were randomly assigned to receive four 200-mg doses of caffeine (n = 10) or placebo (n = 10) during the late evening and early morning hours during three successive days. An afternoon 4-h sleep period followed. The psychomotor (PVT) and field (FVT) vigilance, logical reasoning (LRT) tests and a vigilance monitor assessed cognitive function throughout the study. Live-fire marksmanship requiring friend-foe discrimination was assessed. Caffeine maintained speed on the PVT (p optimal sleep periods during the day are not available.

  2. Composition and source apportionment of fine particulate matter during extended calm periods in the city of Rijeka, Croatia

    Science.gov (United States)

    Ivošević, T.; Orlić, I.; Bogdanović Radović, I.; Čargonja, M.; Stelcer, E.

    2017-09-01

    In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaign was recently completed. During that period, 345 samples of fine fraction of aerosols were collected on stretched Teflon filters. All samples were analyzed by Ion Beam Analysis techniques Proton Induced X-ray Emission and Proton Induced γ-Ray Emission and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where the city of Rijeka is located, long periods of calm weather are common. As a consequence, during these periods, air pollution is steadily increasing. To pin-point and characterize local, mostly anthropogenic, air pollution sources, only samples collected during the extended calm periods were used in this work. As a cut-off wind speed, speed of 1.5 m/s was used. In that way, out of all 345 samples, only 188 were selected. Those samples were statistically evaluated by means of positive matrix factorization. Results show that from all anthropogenic sources (vehicles, secondary sulphates, smoke, heavy oil combustion, road dust, industry Fe and port activities) only secondary sulphates and heavy oil combustion were significantly higher (40% and 50%, respectively) during calm periods. On the other hand, natural components of aerosol pollution such as soil and sea salts, (typically present in concentrations of 1.4% and 9%, respectively) are practically non-existent for calm weather conditions.

  3. Quantum criticality and first-order transitions in the extended periodic Anderson model

    OpenAIRE

    Hagymasi, I.; Itai, K.; Solyom, J.

    2012-01-01

    We investigate the behavior of the periodic Anderson model in the presence of $d$-$f$ Coulomb interaction ($U_{df}$) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of $U_{df}$ and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of ...

  4. High-resolution record of Northern Hemisphere climate extending into the last interglacial period

    DEFF Research Database (Denmark)

    North Greenland Ice Core Project members; Andersen, Katrine K.; Azuma, N.

    2004-01-01

    Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from......-saw between the hemispheres (which dominated the last glacial period) was not operating at this time....

  5. Effect of a Protected Sleep Period on Hours Slept During Extended Overnight In-hospital Duty Hours Among Medical Interns

    Science.gov (United States)

    Volpp, Kevin G.; Shea, Judy A.; Small, Dylan S.; Basner, Mathias; Zhu, Jingsan; Norton, Laurie; Ecker, Adrian; Novak, Cristina; Bellini, Lisa M.; Dine, C. Jessica; Mollicone, Daniel J.; Dinges, David F.

    2013-01-01

    Context A 2009 Institute of Medicine report recommended protected sleep periods for medicine trainees on extended overnight shifts, a position reinforced by new Accreditation Council for Graduate Medical Education requirements. Objective To evaluate the feasibility and consequences of protected sleep periods during extended duty. Design, Setting, and Participants Randomized controlled trial conducted at the Philadelphia VA Medical Center medical service and Oncology Unit of the Hospital of the University of Pennsylvania (2009–2010). Of the 106 interns and senior medical students who consented, 3 were not scheduled on any study rotations. Among the others, 44 worked at the VA center, 16 at the university hospital, and 43 at both. Intervention Twelve 4-week blocks were randomly assigned to either a standard intern schedule (extended duty overnight shifts of up to 30 hours; equivalent to 1200 overnight intern shifts at each site), or a protected sleep period (protected time from 12:30 AM to 5:30 AM with handover of work cell phone; equivalent to 1200 overnight intern shifts at each site). Participants were asked to wear wrist actigraphs and complete sleep diaries. Main Outcome Measures Primary outcome was hours slept during the protected period on extended duty overnight shifts. Secondary outcome measures included hours slept during a 24-hour period (noon to noon) by day of call cycle and Karolinska sleepiness scale. Results For 98.3% of on-call nights, cell phones were signed out as designed. At the VA center, participants with protected sleep had a mean 2.86 hours (95% CI, 2.57–3.10 hours) of sleep vs 1.98 hours (95% CI, 1.68–2.28 hours) among those who did not have protected hours of sleep (P sleep had a mean 3.04 hours (95% CI, 2.77–3.45 hours) of sleep vs 2.04 hours (95% CI, 1.79–2.24) among those who did not have protected sleep (P sleep were significantly less likely to have call nights with no sleep: 5.8% (95% CI, 3.0%–8.5%) vs 18.6% (95% CI, 13

  6. Quantum criticality and first-order transitions in the extended periodic Anderson model

    Science.gov (United States)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2013-03-01

    We investigate the behavior of the periodic Anderson model in the presence of d-f Coulomb interaction (Udf) using mean-field theory, variational calculation, and exact diagonalization of finite chains. The variational approach based on the Gutzwiller trial wave function gives a critical value of Udf and two quantum critical points (QCPs), where the valence susceptibility diverges. We derive the critical exponent for the valence susceptibility and investigate how the position of the QCP depends on the other parameters of the Hamiltonian. For larger values of Udf, the Kondo regime is bounded by two first-order transitions. These first-order transitions merge into a triple point at a certain value of Udf. For even larger Udf valence skipping occurs. Although the other methods do not give a critical point, they support this scenario.

  7. Anatomic and tissue characteristics in goats fed for extended periods with residue of castor biodiesel production

    Directory of Open Access Journals (Sweden)

    Cláudio Henrique de Almeida Oliveira

    2013-12-01

    Full Text Available Twenty-five adult crossbred goats, divided in two groups, were fed over a period of 16 months with diets based on Tifton hay and concentrate feed with (DCO or without (WDCO detoxified castor bean meal as a substitute for soybean meal. Throughout 480 days, blood samples were taken to measure lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, urea, albumin and creatinine. The animals were euthanized, and the anatomical components (lungs, heart, spleen, liver, kidneys, tongue, empty stomach, empty intestines, omentum, cardiac and renal adipose tissue, carcass and commercial cuts (shoulder, ham, loin, ribs and neck were weighed. Thereafter, an anatomic dissection of the loin was performed, separating the muscle, adipose and bone tissues. On the muscular part of the loin, longissimus dorsi, the proximate composition, fatty acid profile and the expression of SEW-1, IGF-I and IGF-II were analyzed. A higher incidence of bone tissue was observed in the anatomical dissections of the loin and a lower incidence of fat in the proximate composition of the longissimus dorsi of the DCO group compared to the WDCO group (p<0.05. The expression of the IGF-II and SEW-1 genes was higher (p<0.001 for each in the muscle tissue of the DCO animals. Thus, using detoxified castor bean meal for long periods does not produce significant changes in the anatomical composition of the loin or the proximate composition of the longissimus dorsi. However, the differences in gene expression suggest the need for new investigations and care when using this product for animal feeding.

  8. The circadian clock gene period extends healthspan in aging Drosophila melanogaster.

    Science.gov (United States)

    Krishnan, Natraj; Kretzschmar, Doris; Rakshit, Kuntol; Chow, Eileen; Giebultowicz, Jadwiga M

    2009-11-19

    There is increasing evidence that aging is affected by biological (circadian) clocks - the internal mechanisms that coordinate daily changes in gene expression, physiological functions and behavior with external day/night cycles. Recent data suggest that disruption of the mammalian circadian clock results in accelerated aging and increased age-related pathologies such as cancer; however, the links between loss of daily rhythms and aging are not understood. We sought to determine whether disruption of the circadian clock affects lifespan and healthspan in the model organism Drosophila melanogaster. We examined effects of a null mutation in the circadian clock gene period (per(01)) on the fly healthspan by challenging aging flies with short-term oxidative stress (24h hyperoxia) and investigating their response in terms of mortality hazard, levels of oxidative damage, and functional senescence. Exposure to 24h hyperoxia during middle age significantly shortened the life expectancy in per(01) but not in control flies. This homeostatic challenge also led to significantly higher accumulation of oxidative damage in per(01) flies compared to controls. In addition, aging per(01) flies showed accelerated functional decline, such as lower climbing ability and increased neuronal degeneration compared to age-matched controls. Together, these data suggest that impaired stress defense pathways may contribute to accelerated aging in the per mutant. In addition, we show that the expression of per gene declines in old wild type flies, suggesting that the circadian regulatory network becomes impaired with age.

  9. The effect of adopting new storage methods for extending product validity periods on manufacturers expected inventory costs.

    Science.gov (United States)

    Chen, Po-Yu

    2014-01-01

    The validness of the expiration dates (validity period) that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to current stochastic demands at each unit of time to determine the purchase amount of products for sale. If this decision maker is capable and an opportunity arises, new packaging methods (e.g., aluminum foil packaging, vacuum packaging, high-temperature sterilization after glass packaging, or packaging with various degrees of dryness) or storage methods (i.e., adding desiccants or various antioxidants) can be chosen to extend the validity periods of products. To minimize expected costs, this decision maker must be aware of the processing costs of new storage methods, inventory standards, inventory cycle lengths, and changes in relationships between factors such as stochastic demand functions in a cycle. Based on these changes in relationships, this study established a mathematical model as a basis for discussing the aforementioned topics.

  10. The Effect of Adopting New Storage Methods for Extending Product Validity Periods on Manufacturers Expected Inventory Costs

    Directory of Open Access Journals (Sweden)

    Po-Yu Chen

    2014-01-01

    Full Text Available The validness of the expiration dates (validity period that manufacturers provide on food product labels is a crucial food safety problem. Governments must study how to use their authority by implementing fair awards and punishments to prompt manufacturers into adopting rigorous considerations, such as the effect of adopting new storage methods for extending product validity periods on expected costs. Assuming that a manufacturer sells fresh food or drugs, this manufacturer must respond to current stochastic demands at each unit of time to determine the purchase amount of products for sale. If this decision maker is capable and an opportunity arises, new packaging methods (e.g., aluminum foil packaging, vacuum packaging, high-temperature sterilization after glass packaging, or packaging with various degrees of dryness or storage methods (i.e., adding desiccants or various antioxidants can be chosen to extend the validity periods of products. To minimize expected costs, this decision maker must be aware of the processing costs of new storage methods, inventory standards, inventory cycle lengths, and changes in relationships between factors such as stochastic demand functions in a cycle. Based on these changes in relationships, this study established a mathematical model as a basis for discussing the aforementioned topics.

  11. Optimization of the process of egg omelet production with fillings with extended storage period

    Directory of Open Access Journals (Sweden)

    V. Sukmanov

    2015-05-01

    Full Text Available Introduction. Optimization of the egg omelets (EO production using high pressure (HP will allow to produce a minimum cost product during manufacturing and also to obtain a product with high consumer properties. Materialsand methods. The concerned product is -EO -a mixture of liquid egg with grated or chopped cheese, xanthan gum, water or milk and spices. The EO manufacturing process consisted of packing the mixture in an airtight container with heating and processing in the high pressure installation. The EO suitability for long-term storage was evaluated by the "water activity" term. The EO quality was evaluated by an expert. There was used the undetermined Lagrange multipliers method to obtain the optimal process parameters. Results. As a result of the central composite rotatabel plan there was developed optimization model allowed to obtain the optimal EO HP processing parameters: pressure – 690 МPа, temperature –1220С, treatment duration –7×60s, 14g of water on 100 g of melange, 13 g of dry milk on 100 g of melange, xanthan gum content -0,75% of the total mixture mass, 25 g of cheese on 100 g of melange. These indicators allow to obtain the EO process parameters with the next indicators: water activity -0.704 and comprehensive quality Score - 0.98 that characterize the product as a product with high quality indicators stable over a long period of storage. The developed model analysis with using of Student's t test, Fisher dyspepsia and predicted optimization values calculation errors confirmed the reliability of the optimization parameters obtained values and the optimization model reliability. The calculations results for the given optimization parameters are presented as confidence intervals, confirming that their experimental values do not exceed the respective intervals and thus confirm the results authenticity . Conclusions. These results have practical significance and were adopted as the basis for the technical documentation

  12. Oxaliplatin and capecitabine concomitant with neoadjuvant radiotherapy and extended to the resting period in high risk locally advanced rectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Y.H.; Zeng, Z.F. [State Key Laboratory of Oncology in South China, Guangzhou (China); Sun Yat-sen University Cancer Center, Departments of Radiation Oncology, Guangzhou (China); Zhang, X. [State Key Laboratory of Oncology in South China, Guangzhou (China); Sun Yat-sen University Cancer Center, Departments of Thoracic Surgery, Guangzhou (China); An, X. [State Key Laboratory of Oncology in South China, Guangzhou (China); Sun Yat-sen University Cancer Center, Departments of Medical Oncology, Guangzhou (China); Cai, M.Y. [State Key Laboratory of Oncology in South China, Guangzhou (China); Sun Yat-sen University Cancer Center, Departments of Pathology, Guangzhou (China); Chen, G.; Kong, L.H.; Lin, J.Z.; Wan, D.S.; Pan, Z.Z.; Ding, P.R. [State Key Laboratory of Oncology in South China, Guangzhou (China); Sun Yat-sen University Cancer Center, Departments of Colorectal Surgery, Guangzhou (China)

    2014-02-15

    Conventional neoadjuvant chemoradiotherapy (CRT) is suboptimal for systemic control in locally advanced rectal cancer (LARC). To improve systemic control, we developed an alternative approach in which an intensified oxaliplatin and capecitabine (XELOX) chemotherapy regimen was administered concomitantly with radiation and extended to the resting period (consolidation chemotherapy) for high-risk LARC. The aim of the current study was to evaluate the short-term efficacy and toxicity of this strategy. Patients with high-risk LARC were treated with CRT. Two cycles of XELOX were administered concomitantly with radiation. Thereafter, an additional cycle of the same regimen was administered during the resting period after completion of CRT. Tumor response, toxicities and surgical complications were recorded. This study includes 36 patients treated with the above strategy. All patients completed the planned concurrent CRT. Because of grade 3 toxicities, 2 patients were unable to complete the additional chemotherapy. Grade 3 toxicities were leucopenia (2.8 %), diarrhea (2.8 %) and radiodermatitis (2.8 %). All patients underwent optimal surgery with total mesorectal excision (TME) and a sphincter-saving procedure was performed in 27 patients (75 %). There was no perioperative mortality. Postoperative complications developed in 7 patients (19.4 %). Pathologic complete regression (pCR),''nearly pCR'' (major regression), and moderate or minimal regression were achieved in 13 (36.1 %), 16 (44.4 %), and 7 patients (19.5 %), respectively. The preliminary results suggest that a XELOX regimen initially administered concomitantly with radiotherapy and then extended to the resting period in high-risk LARC patients is well tolerated. The strategy is highly effective in terms of pCR and nearly pCR rates, and thus warrants further investigation. (orig.)

  13. Topological optimization for the design of microstructures of isotropic cellular materials

    Science.gov (United States)

    Radman, A.; Huang, X.; Xie, Y. M.

    2013-11-01

    The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.

  14. In vitro effect of amorphous calcium phosphate paste applied for extended periods of time on enamel remineralization

    Directory of Open Access Journals (Sweden)

    Ana Elisa de Mello Vieira

    Full Text Available Abstract Dental applications based on the unique characteristics of amorphous calcium phosphate stabilized by casein phosphopeptides (CPP-ACP have been proposed, as well as the improvement of its properties. Objectives: The objective of this study was to determine the ability of topically applied CPP-ACP from a commercial product to remineralize subsurface lesions when applied for extended periods of time (3 h and 8 h. Material and Methods: Artificially induced carious lesions were produced in 50 bovine enamel blocks previously selected by surface hardness. After treatments with gel without F and CPP-ACP applied for 1 minute (Placebo; 2% NaF neutral gel applied for 1 minute (Fluoride 1 min; CPP-ACP applied for 3 min (ACP 3 min; and CPP-ACP applied for 3 h (ACP 3 h and for 8 h (ACP 8 h, the enamel blocks were submitted to the remineralization pH-cycling. Surface hardness and synchrotron micro-tomography were used to determine the percentage of surface hardness recovery (%SHR and to calculate mineral concentration (gHAp.cm−3, respectively. The data were submitted to ANOVA followed by the Student-Newman-Keuls test (p<0.05. Results: Fluoride gel presented higher %SHR followed by ACP 3 min (p<0.001. No difference (p = 0.148 was found for Placebo, ACP 3 h and ACP 8 h groups for %SHR. Fluoride gel showed greater mineral concentration (p<0.001 when compared with the other groups. ACP 3 min demonstrated a significant difference (p<0.001 from ACP 3 h and ACP 8 h. The ACP 3 h and 8 h presented a subsurface lesion with development of laminations in all blocks. Conclusion: In this in vitro study the use of CPP-ACP for extended periods of time did not produce an additive effect in the remineralization process.

  15. Realizing a variable isotropic depolarizer.

    Science.gov (United States)

    Shaham, Assaf; Eisenberg, Hagai S

    2012-07-01

    We demonstrate an isotropic depolarizing channel with a controllable degree of depolarization. The depolarizer is composed of four birefringent crystals and half-wave plates. Quantum process tomography results of the depolarization effect on single photons agree well with the theoretical prediction. This depolarizer can be used to test quantum communication protocols with photons.

  16. Short periodic applications of the vacuum-assisted closure device cause an extended tissue response in the diabetic mouse model.

    Science.gov (United States)

    Scherer, Sandra Saja; Pietramaggiori, Giorgio; Mathews, Jasmine C; Orgill, Dennis P

    2009-11-01

    The vacuum-assisted closure device is a widely used mechanical modulator of wound healing; however, the optimal time kinetics of application have not been determined. The objective of the study was to optimize the kinetics of vacuum-assisted closure application. Full-thickness wounds in seven diabetic mice per study group were treated with either an occlusive dressing alone, the vacuum-assisted closure device for 6 or 12 hours, or the vacuum-assisted closure device periodically for 4 hours every other day or continuously for 7 days. Wound closure and tissue response were evaluated by macroscopic, histologic, and immunohistochemical analyses on day 7. Wound closure was significantly faster after short initial vacuum-assisted closure (6-hour and 12-hour groups) when compared with continuous treatment. Increased granulation tissue formation was seen in the 12-hour group (2.4-fold increase) and in those treated periodically for 4 hours every other day (3.2-fold increase) compared with the dressing-alone controls. Significant stimulation of cell proliferation was seen after all vacuum-assisted closure patterns (3.6- to 5.3-fold increase), whereas angiogenesis was augmented only after the device was applied for either three times for 4 hours (4.3-fold) or continuously (4.7-fold) when compared with dressing-treated wounds. Treatment three times for 4 hours showed a superior angiogenic effect also when compared with short initial applications (6-hour and 12-hour groups). Short vacuum-assisted closure treatment induced an extended biological response in the wound. A total of 12 hours of periodically applied vacuum-assisted closure reached a similar wound tissue response as continuously applied vacuum-assisted closure for 7 days. These findings suggest new clinical approaches for mechanical wound-healing devices.

  17. Scattering from isotropic plasma coated nihility sphere

    Science.gov (United States)

    Hussan, M. M.; Ghaffar, A.; Alkanhal, Majeed A. S.; Naz, M. Y.; Ur Rehman, Sajjad; Khan, Y.

    2017-06-01

    In this study, it is observed that when an isotropic collisional plasma coating layer is produced on a nihility sphere, its back scattering efficiency becomes non-zero. Field equations, at each interface, are expanded in terms of spherical wave vector functions (SWVFs) by enforcing the extended classical wave scattering theory. Electromagnetic boundary conditions are applied at both interfaces, i.e., free space-plasma and plasma layer-nihility sphere core to obtain the scattering coefficients. The obtained scattering coefficients are used to calculate the forward scattering, back scattering, and extinction efficiencies. The obtained computational results show that an increase in collisional frequency causes a decrease in both forward and backscattered efficiencies and an increase in extinction efficiency. Furthermore, the numerical results indicate that an increase in plasma density causes an increase in both forward and backscattered efficiencies and a decrease in extinction efficiency.

  18. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  19. Analysis and assessment of Madeira wine ageing over an extended time period through GC-MS and chemometric analysis.

    Science.gov (United States)

    Pereira, Ana C; Reis, Marco S; Saraiva, Pedro M; Marques, José C

    2010-02-15

    Wine is one of the world's higher value agricultural products. The present work is centred on Madeira wine, a fine and prestigious example among Portuguese liqueur wines,with the main goal to deepen our understanding of relevant phenomena going on during the winemaking process, in particular during ageing of "Malmsey" Madeira wine. In this paper we present the results obtained from the chemical characterization of how its aroma composition evolves during ageing, and the development of a robust framework for analyzing the identity of aged Madeira wines. An extended ageing period was considered, covering a time frame of twenty years, from which several samples were analyzed in terms of their aromatic composition. The multivariate structure of this chemical information was then processed through multivariate statistical feature extraction techniques such as principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), in order to identify the relevant patterns corresponding to trends associated with wine ageing. Classification methodologies for age prediction were developed, using data from the lower dimensional sub-spaces obtained after projecting the original data to the latent variable spaces provided by PCA or PLS-DA. Finally, the performance for each classification methodology developed was evaluated according to their error rates using cross-validation methodologies (Leave-One-Out and k-fold Monte Carlo). Results obtained so far show that quite interesting classification performances can indeed be achieved, despite the natural variability present in wine products. These results also provide solid bases which can be used to build up available frameworks which assist quality monitoring and identity assurance tasks. Copyright 2009 Elsevier B.V. All rights reserved.

  20. 76 FR 22899 - Federal Health IT Strategic Plan: 2011-2015 Open Comment Period Extended Until Friday, May 6

    Science.gov (United States)

    2011-04-25

    ..., May 6 AGENCY: Office of the National Coordinator for Health Information Technology, HHS. ACTION... extended through Friday, May 6 at 11:59 p.m. (Eastern). In order for your comments to be read and...

  1. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  2. 75 FR 76401 - Pilot Program for Extended Time Period To Reply to a Notice To File Missing Parts of...

    Science.gov (United States)

    2010-12-08

    ... certification and request form that includes educational information regarding domestic benefit claims, foreign... provisional application if the provisional application was filed in a non-English language and a translation... certification and request to participate in the Extended Missing Parts Pilot Program with the nonprovisional...

  3. Isotropic transformation acoustics and applications

    Science.gov (United States)

    Su, Xiaoshi; Norris, Andrew N.

    2017-04-01

    A novel class of acoustic metamaterial is proposed for directional collimation of a cylindrical source into a plane wave beam. The effect is based on transformation acoustics which retains the exact form of the wave equation under conformal mapping from a circular region to a triangular area. The transformation is adjustable, allowing the acoustic energy to be equally radiated in three directions, or preferentially in a single direction. Importantly, the material properties in the physical domain are isotropic and therefore practically realizable. Two example devices are proposed using cylindrical elastic shells in water as the metamaterial elements and demonstrated using full wave simulations. This approach has potential applications beyond acoustic antenna design in beam-steering and wavefront manipulation.

  4. The effects of extended nap periods on cognitive, physiological and subjective responses under simulated night shift conditions.

    Science.gov (United States)

    Davy, Jonathan; Göbel, Matthias

    2017-11-16

    Extended nap opportunities have been effective in maintaining alertness in the context of extended night shifts (+12 h). However, there is limited evidence of their efficacy during 8-h shifts. Thus, this study explored the effects of extended naps on cognitive, physiological and perceptual responses during four simulated, 8-h night shifts. In a laboratory setting, 32 participants were allocated to one of three conditions. All participants completed four consecutive, 8-h night shifts, with the arrangements differing by condition. The fixed night condition worked from 22h00 to 06h00, while the nap early group worked from 20h00 to 08h00 and napped between 00h00 and 03h20. The nap late group worked from 00h00 to 12h00 and napped between 04h00 and 07h20. Nap length was limited to 3 hours and 20 minutes. Participants performed a simple beading task during each shift, while also completing six to eight test batteries roughly every 2 h. During each shift, six test batteries were completed, in which the following measures were taken. Performance indicators included beading output, eye accommodation time, choice reaction time, visual vigilance, simple reaction time, processing speed and object recognition, working memory, motor response time and tracking performance. Physiological measures included heart rate and tympanic temperature, whereas subjective sleepiness and reported sleep length and quality while outside the laboratory constituted the self reported measures. Both naps reduced subjective sleepiness but did not alter the circadian and homeostatic-related changes in cognitive and physiological measures, relative to the fixed night condition. Additionally, there was evidence of sleep inertia following each nap, which resulted in transient reductions in certain perceptual cognitive performance measures. The present study suggested that there were some benefits associated with including an extended nap during 8-h night shifts. However, the effects of sleep inertia

  5. Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days)

    Science.gov (United States)

    Moyer, Eric L; Dumars, Paula M; Sun, Gwo-Shing; Martin, Kara J; Heathcote, David G; Boyle, Richard D; Skidmore, Mike G

    2016-01-01

    The National Aeronautics and Space Administration Animal Enclosure Module (AEM) was developed as a self-contained rodent habitat for shuttle flight missions that provides inhabitants with living space, food, water, ventilation, and lighting, and this study reports whether, after minimal hardware modification, the AEM could support an extended term up to 35 days for Sprague-Dawley rats and C57BL/6 female mice for use on the International Space Station. Success was evaluated based on comparison of AEM housed animals to that of vivarium housed and to normal biological ranges through various measures of animal health and well-being, including animal health evaluations, animal growth and body masses, organ masses, rodent food bar consumption, water consumption, and analysis of blood contents. The results of this study confirmed that the AEMs could support 12 adult female C57BL/6 mice for up to 35 days with self-contained RFB and water, and the AEMs could also support 5 adult male Sprague-Dawley rats for 35 days with external replenishment of diet and water. This study has demonstrated the capability and flexibility of the AEM to operate for up to 35 days with minor hardware modification. Therefore, with modifications, it is possible to utilize this hardware on the International Space Station or other operational platforms to extend the space life science research use of mice and rats. PMID:28725722

  6. 76 FR 1192 - Notice of a Change in Status of an Extended Benefit (EB) Period for Puerto Rico

    Science.gov (United States)

    2011-01-07

    ... Puerto Rico AGENCY: Employment and Training Administration, Labor. ACTION: Notice. SUMMARY: This notice announces a change in benefit period eligibility under the EB Program for Puerto Rico. The following change has occurred since the publication of the last notice regarding the State's EB status: Puerto Rico's...

  7. Viscous propulsion in active transversely-isotropic media

    CERN Document Server

    Cupples, Gemma; Smith, David J

    2016-01-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhan...

  8. Actigraphy-assessed sleep during school and vacation periods: a naturalistic study of restricted and extended sleep opportunities in adolescents.

    Science.gov (United States)

    Bei, Bei; Allen, Nicholas B; Nicholas, Christian L; Dudgeon, Paul; Murray, Greg; Trinder, John

    2014-02-01

    School-related sleep restriction in adolescents has been identified by studies comparing weekday and weekend sleep. This study compared weekday and vacation sleep to assess restricted and extended sleep opportunities. One-hundred and forty-six adolescents (47.3% male) aged 16.2 ± 1.0 years (M ± SD) from the general community wore an actigraph continuously for 4 weeks: the last week of a school term (Time-E), the following 2-week vacation, and the first week of the next term. Self-reported sleep was assessed for each of the three time intervals, and chronotype was assessed using the Morningness-Eveningness Questionnaire at Time-E. Daily actigraphy bedtime, rise-time, time-in-bed, total sleep time, sleep onset latency, sleep efficiency, and % wake after sleep onset were analysed using latent growth curve modelling. The removal of school-related sleep restriction was associated with an abrupt delay in sleep timing and increase in sleep duration. Subsequently, bedtime and rise-time showed further linear delays throughout the vacation, while changes in time-in-bed were non-significant. Sleep onset latency increased linearly, peaking in the middle of the second vacation week. Across the first vacation week, total sleep time and sleep efficiency linearly decreased, while % wake after sleep onset increased. These changes stabilized during the second vacation week. Older age and eveningness were associated with later bedtime and rise-time, whilst females had longer time-in-bed, total sleep time and sleep onset latency. Compared with school days, sleep during the vacation was characterized by later timing, longer duration, lower quality and greater variability. Recovery from school-related sleep restriction appeared to be completed within the 2 weeks of naturalistic extended sleep. © 2013 European Sleep Research Society.

  9. Isotropic Chiral Objects With Zero Backscattering

    CERN Document Server

    Karilainen, Antti O

    2012-01-01

    In this paper we study electrically small chiral objects with isotropic response and zero backscattering. A bi-isotropic sphere is used as a simple example and its zero-backscattering conditions are studied. A theoretical model of an object composed of three orthogonal chiral particles made of conducting wire is presented as an analog of the zero-backscattering bi-isotropic sphere. A potential application of the object as a receiving antenna or a sensor with the ability to receive power from an arbitrary direction without backscattering is discussed.

  10. Effect of a protected sleep period on hours slept during extended overnight in-hospital duty hours among medical interns: a randomized trial.

    Science.gov (United States)

    Volpp, Kevin G; Shea, Judy A; Small, Dylan S; Basner, Mathias; Zhu, Jingsan; Norton, Laurie; Ecker, Adrian; Novak, Cristina; Bellini, Lisa M; Dine, C Jessica; Mollicone, Daniel J; Dinges, David F

    2012-12-05

    A 2009 Institute of Medicine report recommended protected sleep periods for medicine trainees on extended overnight shifts, a position reinforced by new Accreditation Council for Graduate Medical Education requirements. To evaluate the feasibility and consequences of protected sleep periods during extended duty. Randomized controlled trial conducted at the Philadelphia VA Medical Center medical service and Oncology Unit of the Hospital of the University of Pennsylvania (2009-2010). Of the 106 interns and senior medical students who consented, 3 were not scheduled on any study rotations. Among the others, 44 worked at the VA center, 16 at the university hospital, and 43 at both. Twelve 4-week blocks were randomly assigned to either a standard intern schedule (extended duty overnight shifts of up to 30 hours; equivalent to 1200 overnight intern shifts at each site), or a protected sleep period (protected time from 12:30 AM to 5:30 AM with handover of work cell phone; equivalent to 1200 overnight intern shifts at each site). Participants were asked to wear wrist actigraphs and complete sleep diaries. Primary outcome was hours slept during the protected period on extended duty overnight shifts. Secondary outcome measures included hours slept during a 24-hour period (noon to noon) by day of call cycle and Karolinska sleepiness scale. For 98.3% of on-call nights, cell phones were signed out as designed. At the VA center, participants with protected sleep had a mean 2.86 hours (95% CI, 2.57-3.10 hours) of sleep vs 1.98 hours (95% CI, 1.68-2.28 hours) among those who did not have protected hours of sleep (P sleep had a mean 3.04 hours (95% CI, 2.77-3.45 hours) of sleep vs 2.04 hours (95% CI, 1.79-2.24) among those who did not have protected sleep (P sleep were significantly less likely to have call nights with no sleep: 5.8% (95% CI, 3.0%-8.5%) vs 18.6% (95% CI, 13.9%-23.2%) at the VA center (P sleep period while on call resulted in an increase in overnight sleep duration

  11. Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case

    Science.gov (United States)

    Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard

    2017-09-01

    A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.

  12. Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case.

    Science.gov (United States)

    Springborg, Michael; Molayem, Mohammad; Kirtman, Bernard

    2017-09-14

    A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.

  13. Nightside Pi2 Wave Properties During an Extended Period With Stable Plasmapause Location and Variable Geomagnetic Activity

    Science.gov (United States)

    Hartinger, M. D.; Zou, S.; Takahashi, K.; Shi, X.; Redmon, R.; Goldstein, J.; Kurth, W.; Bonnell, J. W.

    2017-12-01

    The frequencies and amplitudes of inner magnetosphere Pi2 waves are affected by the radial plasma density profile. Variable geomagnetic activity and external driving conditions can affect both wave properties and density profiles simultaneously. When interpreting observations, this can lead to ambiguity about whether changing wave properties are due to changing external conditions, density profiles, or a combination of factors. We present a case study using multipoint ground-based and in situ measurements to examine Pi2 wave properties during a period of variable geomagnetic activity. Multiple satellite passes demonstrate the density profile and plasmapause location are stable for at least 2 h over a wide range of magnetic local time. This stability allows us to examine how factors besides the radial density profile affect Pi2 wave properties. We find evidence for Pi2 waves with a broadband frequency spectrum as well as a discrete frequency plasmaspheric virtual resonance (PVR) that is observed at low, middle, and high latitudes and both inside and outside the plasmapause. The PVR is excited in repeated bursts before, during, and after (1) the development of a substorm, (2) several auroral intensifications, (3) the development of Subauroral Polarization Stream flows/electric fields/conductivities, and (4) variable interplanetary magnetic field conditions. Through all these changes the PVR frequency remains remarkably stable (8.2 ± 0.53 mHz, based on low-latitude ground magnetometer observations), suggesting that these variations have little effect on the frequency. This is consistent with PVR model predictions for a stationary plasmapause.

  14. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented.......In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  15. Biogenic Aerosol - Effect on Clouds and Climate (BAECC-ERI). Extended Radiosonde Intensive Operational Period Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Nicoll, Ken A. [Univ. of Reading (United Kingdom); O' Connor, E. [Univ. of Helsinki (Finland)

    2016-02-01

    Large-scale properties of clouds such as lifetime, optical thickness, and precipitation are all dependent on small-scale cloud microphysical processes. Such processes determine when droplets will grow or shrink, their size, and the number of cloud droplets. Although our understanding of cloud microphysics has vastly improved over the past several decades with the development of remote sensing methods such as lidar and radar, there remain a number of processes that are not well understood, such as the effect of electrical charge on cloud microphysics. To understand the various processes and feedback mechanisms, high-vertical–resolution observations are required. Radiosondes provide an ideal platform for providing routine vertical profiles of in situ measurements at any location (with a vertical resolution of a few meters). Modified meteorological radiosondes have been extensively developed at the University of Reading for measuring cloud properties, to allow measurements beyond the traditional thermodynamic quantities (pressure, temperature and relative humidity) to be obtained cost-effectively. This project aims to investigate a number of cloud processes in which in situ cloud observations from these modified radiosondes can provide information either complementary to or not obtainable by lidar/radar systems. During two intensive operational periods (IOPs) in May and August 2014 during deployment to Hyytiälä, Finland, the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Second ARM Mobile Facility (AMF2) launched a total of 24 instrumented radiosondes through a number of different cloud types ranging from low-level stratiform cloud to cumulonimbus. Twelve balloon flights of an accelerometer turbulence sensor were made, which detected significant turbulence on eleven of these flights. Most of the turbulent episodes encountered were due to convective processes, but several were associated with the transition from troposphere to stratosphere at

  16. Electromechanical stress analysis of transversely isotropic solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.H.; Ballou, J.K.

    1977-03-01

    The mechanical behavior of superconducting magnets deviates from isotropy due to their construction techniques, which involve layering superconductor, insulation, and sometimes structural reinforcement within the windings. Previous mechanical analyses considered the windings of a magnet to behave isotropically. This paper describes an analytical solution for the deflection, stress, and strain of axisymmetric, electromechanically loaded, and rotationally transversely isotropic solenoids. The results indicate that for magnets with a large radial build compared to inner radius, transverse isotropy has a dramatic effect upon the mechanical response to load; for magnets with a small radial build compared to inner radius, transverse isotropy has a negligible effect.

  17. The Projective Andoyer transformation and the connection between the 4-D isotropic oscillator and Kepler systems

    OpenAIRE

    Ferrer, Sebastián

    2010-01-01

    Extending to 4 degrees of freedom a symplectomorphism used in attitude dynamics it is shown in a direct way the connection between the 4-D isotropic harmonic oscillator and the 3-D Kepler systems. This approach made transparent that only when we refer to rectilinear solutions, the {\\sl bilinear relation} defining the KS transformation is needed.

  18. Isotropic-nematic phase separation in asymmetrical rod-plate mixtures

    NARCIS (Netherlands)

    Wensink, H.H.; Vroege, G.J.; Lekkerkerker, H.N.W.

    2001-01-01

    Recent experiments on mixtures of rodlike and platelike colloidal particles have uncovered the phase behavior of strongly asymmetrical rod-plate mixtures. In these mixtures, in which the excluded volume of the platelets is much larger than that of the rods, an extended isotropic (I)–plate-rich

  19. On horizons in homogeneous isotropic universes

    Science.gov (United States)

    Patzelt, Harald

    1990-11-01

    In homogeneous isotropic universes the particle horizon defines causally connected regions. For inflationary universes it is known that microphysics can interact coherently only on a much smaller scale. Here an interaction horizon is introdued that allows this scale to be determined for Robertson-Walker models. During inflation its upper bound is the event horizon.

  20. Reduction of Dirac structures along isotropic subbundles

    OpenAIRE

    Calvo, I; Falceto, F.; Zambon, M

    2007-01-01

    Given a Dirac subbundle and an isotropic subbundle of a Courant algebroid, we provide a canonical method to obtain a new Dirac subbundle. When the original Dirac subbundle is involutive (i.e., a Dirac structure) this construction has interesting applications, for instance to Dirac's theory of constraints and to the Marsden-Ratiu reduction in Poisson geometry.

  1. ANALYTICAL BENDING SOLUTION OF ALL CLAMPED ISOTROPIC ...

    African Journals Online (AJOL)

    ANALYTICAL BENDING SOLUTION OF ALL CLAMPED ISOTROPIC RECTANGULAR PLATE ON WINKLER’S FOUNDATION USING CHARACTERISTIC ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

  2. Isotropic-nematic spinodal decomposition dynamics

    NARCIS (Netherlands)

    Dhont, Jan K.G.; Briels, Willem J.

    2005-01-01

    The initial stage of isotropic-nematic spinodal demixing kinetics of suspensions of very long and thin, stiff, repulsive rods is analyzed on the basis of the N -particle Smoluchowski equation. Equations of motion for the reduced probability density function of the position and orientation of a rod

  3. Vision development over an extended follow-up period in babies after successful vitrectomy for stage 4b retinopathy of prematurity.

    Science.gov (United States)

    Gadkari, Salil; Kamdar, Rushita; Kulkarni, Sucheta; Deshpande, Madan; Taras, Sudhir

    2015-05-01

    To demonstrate improvement in the vision of babies after successful vitrectomy for stage 4b retinopathy of prematurity (ROP) over an extended period of time. This was an observational prospective case series. Eight babies who had undergone successful vitrectomy in either their only seeing eye (or both eyes) with stage 4b ROP were followed up post-operatively for a period of 80 weeks or more. Vision with Teller acuity chart, refraction, binocular indirect ophthalmoscopy, and documentation with RetCam was done at each visit. Vision of the (only/better) seeing operated eye with corrective glasses was graded for the purpose of statistical evaluation. Paired t test was performed to compare the vision prior to 30 weeks and at or after 80 weeks. Statistically significant improvement in vision was noted at or after 80 weeks as compared to the vision recorded before 30 weeks (p = 0.0062). Unlike in adult intraocular surgeries where stable visual acuity is reached well before 30 weeks, continuing improvement at 80 weeks and beyond is noted. Gradual restoration of the retinal architecture and plasticity of the infant's developing brain are thought to be responsible.

  4. What is important in the surroundings in order to extend the healthy life period? A regional study of 19 older women in a northern part of Norway

    Directory of Open Access Journals (Sweden)

    Gunn-Tove Minde

    2013-08-01

    Full Text Available Introduction . Participating in a community with other retired individuals to increase life quaøity can be possible for the older persons. Cultural and ethnical background is important for their social identity. Objective . To identify what the informants think is important in their surroundings in order to extend their healthy life period. Study design . A structured questionnaire developed by the OCIN network. Methods . Nineteen elderly women aged 75 years or more were interviewed. This regional survey is a pilot study in Norway. The data were collected during 2 periods, in 2009 and 2010. The data are analyzed using a result scheme prepared by the network OCIN. Results . Our findings show that this is a group of elderly women that are concerned with promoting their own health. The participants wish to take care of themselves, so they do not become a burden for society and the local authorities. Conclusions . The findings of this study suggest that participation in the local context is important for promoting health and well-being among elderly in all ethnicities. For the Sami elderly, this is particularly important because meeting equal-minded people helps them maintain their Sami identity. In the Sami culture and among the Sami elderly, it is important to be “strong” and “healthy”. Due to these norms, the elderly Sami women try to live with their illnesses and are less eager to go to the doctor when they are seriously ill.

  5. Non-spore forming eubacteria isolated at an altitude of 20,000 m in Earth's atmosphere: extended incubation periods needed for culture-based assays

    Science.gov (United States)

    Griffin, Dale W.

    2008-01-01

    On 13 August 2004, an atmospheric sample was collected at an altitude of 20,000 m along a west to east transect over the continental United States by NASA’s Stratospheric and Cosmic Dust Program. This sample was then shipped to the US Geological Survey’s Global Desert Dust program for microbiological analyses. This sample, which was plated on a low nutrient agar to determine if cultivable microorganisms were present, produced 590 small yellow to off-white colonies after approximately 7 weeks of incubation at room-temperature. Of 50 colonies selected for identification using 16S rRNA sequencing, 41 belonged to the family Micrococcaceae, seven to the family Microbacteriaceae, one to the genus Staphylococcus, and one to the genus Brevibacterium. All of the isolates identified were non-spore-forming pigmented bacteria, and their presence in this sample illustrate that it is not unusual to recover viable microbes at extreme altitudes. Additionally, the extended period required to initiate growth demonstrates the need for lengthy incubation periods when analyzing high-altitude samples for cultivable microorganisms.

  6. How to estimate isotropic distributions and mean values in crystalline solids

    Science.gov (United States)

    Kontrym-Sznajd, G.; Dugdale, S. B.

    2015-11-01

    The concept of special directions in the Brillouin zone and the applicability of Houston’s formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. The results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples. As George Orwell might have put it: all directions are equal, but some directions are more equal than others.

  7. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  8. Gonotrophic cycle duration, fecundity and parity of Anopheles gambiae complex mosquitoes during an extended period of dry weather in a semi arid area in Baringo County, Kenya.

    Directory of Open Access Journals (Sweden)

    Albert O. Mala

    2014-06-01

    Full Text Available An entomological longitudinal survey was carried out over a 22 month period in two semi-arid villages in Baringo District in Kenya to study how adult malaria vectors survive under semi-arid conditions and during extended periods of dry weather. Methods Wild caught female mosquitoes were dissected to examine ovarian lobes for parity status and to determine number of gonotrophic cycles they had undergone. Duration of the first and second gonotrophic cycles were estimated using cage-reared F1 females. Blood-fed females were kept individually in plastic vials and percent oviposition incidence recorded. Results Significantly fewer mosquitoes laid eggs during the dry than the wet season. The average duration of the first gonotrophic cycle in the wet season was 4.1 d after blood feeding, 1.1 d (36% longer than the dry season (3.0 d. The average duration of the second gonotrophic cycle in the wet season was 2.9 d after second blood meal, 0.7 d (31.8% longer than those in the dry season. Chi-square tests showed the gonotrophic cycle duration was significantly shorter during the dry than the wet season. Both gonotrophic cycle duration and physiological age varied significantly between wet and dry seasons. Conclusion These findings suggest the duration of gonotrophic cycle among Anopheles gambiae in dry lands with scarce breeding sites is shorter during the dry than wet season. Low fecundity rates during the dry season could be a sign of reduced reproductive activity. However lack of variation in seasonal mating frequency is a clear indication that oviposition and mating kinetics are influenced differently even under the same environmental conditions. It is likely that the results of this study will shed an understanding on spatial and temporal heterogeneities experienced in malaria transmission in semi-arid regions of the world where malaria and indeed mosquito-borne diseases are a public health menace.

  9. Computations of Quasiconvex Hulls of Isotropic Sets

    Czech Academy of Sciences Publication Activity Database

    Heinz, S.; Kružík, Martin

    2017-01-01

    Roč. 24, č. 2 (2017), s. 477-492 ISSN 0944-6532 R&D Projects: GA ČR GA14-15264S; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : quasiconvexity * isotropic compact sets * matrices Subject RIV: BA - General Mathematics Impact factor: 0.496, year: 2016 http:// library .utia.cas.cz/separaty/2017/MTR/kruzik-0474874.pdf

  10. Isotropization of the quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, T.; Gelis, F.

    2014-06-15

    We report here recent analytical and numerical work on the theoretical treatment of the early stages of heavy ion collisions, that amounts to solving the classical Yang–Mills equations with fluctuating initial conditions. Our numerical simulations suggest a fast isotropization of the pressure tensor of the system. This trend appears already for small values of the coupling constant α{sub s}. In addition, the system exhibits an anomalously small shear viscosity.

  11. Renormalization Group Running of Newton's G: The Static Isotropic Case

    CERN Document Server

    Hamber, H W; Hamber, Herbert W.; Williams, Ruth M.

    2007-01-01

    Corrections are computed to the classical static isotropic solution of general relativity, arising from non-perturbative quantum gravity effects. A slow rise of the effective gravitational coupling with distance is shown to involve a genuinely non-perturbative scale, closely connected with the gravitational vacuum condensate, and thereby, it is argued, related to the observed effective cosmological constant. Several analogies between the proposed vacuum condensate picture of quantum gravitation, and non-perturbative aspects of vacuum condensation in strongly coupled non-abelian gauge theories are developed. In contrast to phenomenological approaches, the underlying functional integral formulation of the theory severely constrains possible scenarios for the renormalization group evolution of couplings. The expected running of Newton's constant $G$ is compared to known vacuum polarization induced effects in QED and QCD. The general analysis is then extended to a set of covariant non-local effective field equati...

  12. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...... dependence of the diffusion tensors, which causes the measured isotropic diffusivity to depend on gradient frame orientation. In turn, this conflates orientation dispersion with ensemble variance in isotropic diffusivity. Second, additional contributions to the apparent variance in isotropic diffusivity...

  13. DNS of Shock / Isotropic Turbulence Interaction

    Science.gov (United States)

    Grube, Nathan; Taylor, Ellen; Martín, Pino

    2010-11-01

    We discuss DNS of Shock / Isotropic Turbulence Interactions (SITI). We vary the incoming turbulence Mach number up to 0.8 and the convective Mach number up to 5 in order to determine their effects on the interaction. These cases are challenging due to the presence of shocklets in the incoming turbulence as well as significant motion of the main shock. Shock-capturing must be used at all points while still maintaining low enough numerical dissipation to preserve the turbulent fluctuations. We use the linearly- and nonlinearly-optimized Weighted Essentially Non-Oscillatory (WENO) method[1,2]. Particular attention is paid to the inflow boundary condition, where we find the use of snapshots of "frozen" turbulence from decaying isotropic box simulations to be unsatisfactory. We instead use time-varying inflow data generated by a separate forced isotropic turbulence simulation with a specified convection speed. This allows us to access flow conditions where the assumptions of Taylor's Hypothesis are not met. 1.) Mart'in, M.P., Taylor, E.M., Wu, M., and Weirs, V.G., JCP 220(1) 270-89, 2006. 2.) Taylor, E.M., Wu, M., and Mart'in, M.P., JCP 223(1) 384-97, 2007.

  14. Steady-state pharmacokinetics of once-daily cyclobenzaprine extended release: a randomized, double-blind, 2-period crossover study in healthy volunteers.

    Science.gov (United States)

    Darwish, Mona; Hellriegel, Edward T

    2011-06-01

    The single-dose pharmacokinetic profile of cyclobenzaprine extended-release (CER) has been previously characterized and compared with the pharmacokinetics of cyclobenzaprine immediate-release (CIR) administered 3 times daily for 3 doses. The objective of this study was to characterize the multiple-dose pharmacokinetic properties of once-daily CER 30 mg and CIR 10 mg TID formulations in healthy volunteers. In this double-blind, single-center, 2-period crossover study, healthy subjects were randomized to dosing sequences with once-daily CER 30 mg or CIR 10 mg TID for 7 days. Subjects crossed over to the alternative regimen following a 14-day washout period. Pharmacokinetic assessments at steady state included area under the plasma cyclobenzaprine concentration-time curve over the dosing interval (AUC(0-τ,ss)), peak plasma cyclobenzaprine concentration (C(max,ss)), time to observed C(max) (T(max,ss)), observed minimum cyclobenzaprine concentration (C(min,ss)), average cyclobenzaprine concentration (C(avg,ss)), accumulation ratio (R(ac)), and terminal elimination half-life (t(½)). Tolerability and safety assessments were conducted. A total of 36 subjects were randomized; 34 completed both dosing periods (1 subject was lost to follow-up, 1 withdrew consent). Steady state was reached for CER 30 mg on day 7. Mean C(max,ss), C(min,ss), and C(avg,ss) were 41.1, 21.4, and 31.4 ng/mL, respectively. The median T(max,ss) for CER 30 mg was 7.0 hours, with a mean t(½) of 34.8 hours. At steady state, CER produced a sustained plasma cyclobenzaprine concentration with a single peak in plasma concentration during the 24-hour dose interval. The R(ac) for CER was 2.65. Because of a protocol violation (insufficient data), no steady-state pharmacokinetic assessments could be performed for CIR. Most adverse events were mild or moderate in intensity. Somnolence was the most frequently reported adverse event (100% of subjects) in those receiving CER, followed by dry mouth (58

  15. Stochastic representations of seismic anisotropy: transversely isotropic effective media models

    Science.gov (United States)

    Song, Xin; Jordan, Thomas H.

    2017-06-01

    We apply Jordan's self-consistent, second-order Born theory to compute the effective stiffness tensor for spatially stationary, stochastic models of 3-D elastic heterogeneity. The effects of local anisotropy can be separated from spatially extended geometric anisotropy by factoring the covariance of the moduli into a one-point variance tensor and a two-point correlation function. The latter is incorporated into the rescaled Kneer tensor, which is contracted against the one-point variance tensor to yield a second-order perturbation to the Voigt average. The theory can handle heterogeneity with orthotropic stochastic symmetry, but the calculations presented here are restricted to media with transversely isotropic (TI) statistics. We thoroughly investigate TI stochastic media that are locally isotropic. If the heterogeneity aspect ratio η is unity, the effective medium is isotropic, and the main effect of the scattering is to reduce the moduli. The two limiting regimes are a 2-D vertical stochastic bundle (η → 0), where the P and S anisotropy ratios are negative, and a 1-D horizontal stochastic laminate (η → ∞), where they are positive. The effective-medium equations for the latter yield the second-order approximation to Backus's exact solution, demonstrating the connection between Backus theory and self-consistent effective-media theory. Comparisons of the exact and second-order results for non-Gaussian laminates indicate that the approximation should be adequate for moduli heterogeneities less than about 30 per cent and thus valid for most seismological purposes. We apply the locally isotropic theory to data from the Los Angeles Basin to illustrate how it can be used to explain shallow seismic anisotropy. To assess the relative contributions of geometric and local anisotropy to the effective anisotropy, we consider a rotational model for stochastic anisotropic variability proposed by Jordan. In this model, the axis of a hexagonally symmetric stiffness

  16. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  17. Nanoparticle-doped isotropic liquid crystals

    Science.gov (United States)

    Parfenov, Alexander; Xia, Xiaowei; Shapoury, Alireza; DeHoog, Edward A.; Zhang, Fang; Pradhan, Shilpa; Aye, Tin M.; Shih, Min-Yi; Hall, Arlynn Z.; Cooper, Thomas M.

    2011-10-01

    We demonstrate a new material composed of isotropic liquid crystal (ILC) blended with semiconductor nanoparticles, which could result in a novel high-speed, multiple-notch broadband passive optical switch to selectively discriminate bands of electromagnetic radiation in intelligence, surveillance, or reconnaissance systems. The new material has been demonstrated high nonlinear 3rd order optical Kerr coefficients (light-induced refractive index change, n2) exceeding 100 times of classic nonlinear material CS2 with n2 = 1.2E-11 esu. Details of fabrication and experimental results are presented.

  18. Modal dynamics of structures with bladed isotropic rotors and its complexity for 2-bladed rotors

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2016-01-01

    The modal dynamics of structures with bladed isotropic rotors is analyzed using Hill’s method. First, analytical derivation of the periodic system matrix shows that isotropic rotors with more than two blades can be represented by an exact Fourier series with 3/rev as the highest order. For 2-bladed...... rotors, the inverse mass matrix has an infinite Fourier series with harmonic components of decreasing norm, thus the system matrix can be approximated by a truncated Fourier series of predictable accuracy. Second, a novel method for automatically identifying the principal solutions of Hill’s eigenvalue...

  19. DSM Software for Computing Synthetic Seismograms in Transversely Isotropic Spherically Symmetric Media and Its Application

    Science.gov (United States)

    Kawai, K.; Takeuchi, N.; Geller, R. J.

    2002-12-01

    The existence of anisotropy has been suggested in many regions in the Earth. Determining the anisotropic seismic velocity structure of the Earth can contribute to our understanding of geodynamics and rheology. Inversion of observed seismic waveforms is a promising approach for determining the Earth's anisotropic structure, but development of computational algorithms and software for computing synthetic seismograms in anisotropic media is required. Software for computing seismic waveforms in isotropic media based on the Direct Solution Method (DSM; Geller and Ohminato 1994, GJI) has previously been developed and is being used in data analysis, but DSM software for computing synthetic seismograms for anisotropic media has not yet been developed. In this study, we derive algorithms and develop software for computing synthetics for transversely isotropic spherically symmetric media. Our derivation follows previous work for isotropic media (Takeuchi et al. 1996, GRL; Cummins et al. 1997, GJI). The displacement is represented using spherical harmonics for the lateral dependence and linear spline functions for the vertical dependence of the trial functions. The numerical operators derived using these trial functions are then replaced by optimally accurate operators (Geller and Takeuchi 1995, GJI; Takeuchi and Geller 2002, GJI, submitted). Although the number of elastic constants increases from 2 to 5, the numerical operators are basically identical to those for the isotropic case. Our derivation does not require approximations that treat the anisotropic or laterally heterogeneous structure as an infinitesimal perturbation to the isotropic structure. Only spherically symmetric models are considered in this paper, but when our methods can be extended to the 3-D case to permit computation of synthetic seismograms with the same accuracy as for spherically symmetric isotropic models. We present computational examples such as accuracy checks and also some applications to

  20. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  1. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and calculation of the corresponding proportionality factors. In the present paper radial and torsional vibrational modes are considered on the basis of an exact solution of 3-D equations of motion of an isotropic body in spherical coordinates. The solutions...

  2. An exhaustive list of isotropic apocalyptic scenarios

    CERN Document Server

    Parnovsky, S L

    2016-01-01

    We study the possible types of future singularities in the isotropic homogeneous cosmological models for the arbitrary equation of state of the contents of the Universe. We obtain all known types of these singularities as well as two new types using a simple approach. No additional singularity types are possible. We name the new singularities type "Big Squeeze" and "Little Freeze". The "Big Squeeze" is possible only in the flat Universe after a finite time interval. The density of the matter and dark energy tends to zero and its pressure to minus infinity. This requires the dark energy with a specific equation of state that has the same asymptotical behaviour at low densities as the generalised Chaplygin gas. The "Little Freeze" involves an eternal expansion of the Universe. Some solutions can mimic the $\\Lambda$CDM model.

  3. Kinematical uniqueness of homogeneous isotropic LQC

    CERN Document Server

    Engle, Jonathan

    2016-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space $\\mathbb{R}_{\\mathrm{Bohr}}$, as well as for the Fleischhack one $\\mathbb{R} \\sqcup \\mathbb{R}_{\\mathrm{Bohr}}$. We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on $\\mathbb{R}_{\\mathrm{Bohr}}$ is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on $\\mathbb{R}$ in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  4. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  5. Extended burnup core management for once-through uranium fuel cycles in LWRS. First annual report for the period 1 July 1979-30 June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sesonske, A.

    1980-08-01

    Detailed core management arrangements are developed requiring four operating cycles for the transition from present three-batch loading to an extended burnup four-batch plan for Zion-1. The ARMP code EPRI-NODE-P was used for core modeling. Although this work is preliminary, uranium and economic savings during the transition cycles appear of the order of 6 percent.

  6. Active Colloids in Isotropic and Anisotropic Electrolytes

    Science.gov (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  7. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    This report discusses in exact solution of the governing equation of an isotropic rectangular plate with four clamped edges. A numerical method for clamped isotropic rectangular plate under distributed loads and an exact solution of the governing equation in terms of trigonometric and hyperbolic function are given. Finally ...

  8. Einstein–Maxwell Field Equation in Isotropic Coordinates: An ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Einstein–Maxwell Field Equation in Isotropic Coordinates: An Application to Modeling Superdense Star ... Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K . Our solution is well behaved ...

  9. A modified failure criterion for transversely isotropic rocks

    Directory of Open Access Journals (Sweden)

    Omid Saeidi

    2014-03-01

    Full Text Available A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Mechanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consideration. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy indexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.

  10. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  11. Isotropic microscale mechanical properties of coral skeletons.

    Science.gov (United States)

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-05-06

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species:solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus E(IT) were determined from the analysis of several load-depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty,the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76-77 GPa range, and H(IT) in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in H(IT) is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure,observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections.

  12. Anisotropic Charged Fluid Sphere in Isotropic Coordinates

    Directory of Open Access Journals (Sweden)

    Neeraj Pant

    2014-01-01

    Full Text Available We have presented a class of charged superdense star models, starting with a static spherically symmetric metric in isotropic coordinates for anisotropic fluid by considering Hajj-Boutros-(1986 type metric potential and a specific choice of electrical intensity E and anisotropy factor Δ which involve charge parameter K and anisotropy parameter α. The solution is well behaved for all the values of Schwarzschild compactness parameter u lying in the range 0

  13. Vortex stretching in a homogeneous isotropic turbulence

    Science.gov (United States)

    Hirota, M.; Nishio, Y.; Izawa, S.; Fukunishi, Y.

    2017-04-01

    Stretching vortices whose sizes are in the inertial subrange of a homogeneous isotropic turbulence are picked up, and the geometric relations with the neighboring vortices whose scales are twice larger are studied. Hierarchical vortices are extracted using a Fourier band-pass filter, and each extracted vortex is reconstructed as a set of short cylindrical segments along the vortex axis to discuss the vortex interactions. As a result, it is shown that the directions of larger vortices near the segments of the fast stretching vortices tend to be orthogonal to the direction of the stretching segments, and the locations of the larger vortices that contribute most to the stretching of smaller vortex segments are likely to be found in the direction with the relative angle of 45° from the axes of the stretching vortex segments. And, the vortices with the second highest contributions tend to be in the directions 45° from the stretching segments’ axes and orthogonal to the directions of the highest contributing vortices.

  14. Homogeneous and isotropic calorimetry for space experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mori, N., E-mail: mori@fi.infn.it [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Adriani, O. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Basti, A. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bigongiari, G. [University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Bonechi, L. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bonechi, S. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Bongi, M. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bottai, S. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Brogi, P. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); D' Alessandro, R. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); University of Florence, Department of Physics and Astronomy, via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Detti, S.; Lenzi, P. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Maestro, P.; Marrocchesi, P.S. [INFN sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); University of Siena, Department of Physics, Earth and Environmental Sciences, Via Laterina 8, 53100 Siena (Italy); Papini, P. [INFN sezione di Firenze, via B. Rossi 1, 50019 Sesto Fiorentino (Italy); and others

    2013-12-21

    Calorimetry plays an essential role in experiments observing high energy gamma and cosmic rays in space. The observational capabilities are mainly limited by the geometrical dimensions and the mass of the calorimeter. Since deployable mass depends on the design of the detector and the total mass of the payload, it is important to optimize the geometrical acceptance of the calorimeter for rare events, its granularity for particle identification, and its absorption depth for the measurement of the particle energy. A design of a calorimeter that could simultaneously optimize these characteristics assuming a mass limit of about 1.6 t has been studied. As a result, a homogeneous calorimeter instrumented with cesium iodide (CsI) crystals was chosen as the best compromise given the total mass constraint. The most suitable geometry found is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic CsI crystals. The total radiation length in any direction is very large, and allows for optimal electromagnetic particle identification and energy measurement, while the interaction length is at least sufficient to allow a precise reconstruction of hadronic showers. Optimal values for the size of the crystals and spacing among them have been studied. Two prototypes have been constructed and preliminary tests with high energy ion and muon beams are reported.

  15. Co-infection with Bovine Herpesvirus 4 and Histophilus somni Significantly Extends the Service Period in Dairy Cattle with Purulent Vaginal Discharge.

    Science.gov (United States)

    Szenci, O; Sassi, G; Fodor, L; Molnár, L; Szelényi, Z; Tibold, J; Mádl, I; Egyed, L

    2016-02-01

    The aim of the study was to investigate the effect of Bovine Herpesvirus 4 (BoHV-4) and Histophilus (H.) somni on fertility rate of cows in a Hungarian Holstein-Friesian dairy herd with purulent vaginal discharge (PVD). Non-pregnant cows (n = 188) with mature corpus luteum were treated with cloprostenol and 3 days later if they did not show oestrus, were examined by rectal palpation. Animals showing PVD (n = 60/31.9%/) and 14 controls with normal vaginal discharge (Score 0) were randomly selected and further examined by ultrasonography and blood samples were collected for detecting BoHV-4 DNA and transcervical guarded swabs were collected from the uterus for bacteriological examination. Although the majority of the examined animals were infected with BoHV-4 and H. somni including the control animals as well, in group of animals with PVD score 3, fewer animals became pregnant and the duration between the first treatment to pregnancy was significantly extended. Based on these clinical and comparative data, our results confirm that these two microorganisms together may impair important reproductive parameters which may cause large economic losses to dairy farms. © 2015 Blackwell Verlag GmbH.

  16. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores.

    Directory of Open Access Journals (Sweden)

    Yunxiang Zhu

    Full Text Available Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS. In human bronchial epithelial cell cultures (HBECCs, maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h, to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5-2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist

  17. Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.

    Science.gov (United States)

    Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto

    2017-08-23

    The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.

  18. Alternative (Potentially Green) Separations Media: Aqueous Biphasic and Related Systems Extending the Frontier Final Report For Period September 1, 2002 January 31, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin D

    2007-06-25

    Through the current DoE-BES funding, we have extended our fundamental understanding of the critical phase separation of aqueous polymer solutions at the molecular level, and have developed a similar understanding of their application as novel solvent systems. Our principal aims included mode of delivery of the aqueous biphasic system (ABS) solvent system and the application of this system to problems of reactive extraction. In the former case we have developed novel solid phase analogues, in the form of cross-linked polyethylene glycol hydrogels, and in the latter case we have examined the role that ABS might play in reaction engineering, with a view to greener, simpler, and safer processes. We have also developed a new salt/salt ABS and have extended our understanding of this system as well. The major outcomes are as follows: (1) Through the use of variable temperature phase diagrams, coupled with differential scanning calorimetry (DSC) measurements of the phases, a better understanding of the thermodynamics of phase formation was obtained. Evidence to the existence and role of an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) (or both) in these systems was gained. With variable temperature solute partitioning, thermodynamic parameters were calculated, and inter-system comparisons were made. Through the use of Abraham's linear solvation energy regression (LSER) the solvent-solute properties of liquid/liquid ABS were examined. We have shown that ABS are indeed very tunable and LSERs have been used as a tool to compare these systems to traditional organic/water and other liquid/liquid systems. (2) We have successfully shown the development of novel reaction media for chemical synthesis and reaction; Aqueous Biphasic Reactive Extraction (ABRE). As a proof of concept, we have shown the synthesis of adipic acid from cyclohexene in an ABS, which represents an important development in the exploitation of this technology

  19. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  20. Effectiveness of an extended period of flashing lights and strategic signage to increase the salience of alcohol-gel dispensers for improving hand hygiene compliance.

    Science.gov (United States)

    Rashidi, Babak; Li, Aimee; Patel, Rakesh; Harmsen, Irene E; Sabri, Elham; Kyeremanteng, Kwadwo; D'Egidio, Gianni

    2016-07-01

    Multiple factors affect compliance with hand hygiene, including conspicuity of alcohol-gel dispensers. Previous studies have shown that flashing lights increase hand hygiene compliance; however, the durability of this effect has not been studied. We affixed flashing lights to hand sanitizer dispensers for a total of 6 weeks. Regression analysis was used to compare compliance rates between the beginning and end of the intervention. Our secondary objective was to determine whether compliance rates in cold weather could be improved by adding a sign separated in time and space from the dispensers. Flashing lights improved hand hygiene compliance from 11.8% to 20.7%, and this effect was unchanged over the 6-week study period. Fully charged lights resulted in a greater compliance increase. A preemptive sign did not have a significant effect on hand hygiene rates nor did absolute temperatures. Flashing lights are a simple, inexpensive way of improving hand hygiene. Brighter lights appear to have a greater effect; however, this must be balanced with annoyance in specific settings. Temperature did not have a significant effect; however, this may be because the relationship does not fit a linear model. Other interventions, such as signs, may need to be tailored specifically to individual hospital environments. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  1. Surface tension of isotropic-nematic interfaces: fundamental measure theory for hard spherocylinders.

    Science.gov (United States)

    Wittmann, René; Mecke, Klaus

    2014-03-14

    A fluid constituted of hard spherocylinders is studied using a density functional theory for non-spherical hard particles, which can be written as a function of weighted densities. This is based on an extended deconvolution of the Mayer f-function for arbitrarily shaped convex hard bodies in tensorial weight functions, which depend each only on the shape and orientation of a single particle. In the course of an examination of the isotropic-nematic interface at coexistence the functional is applied to anisotropic and inhomogeneous problems for the first time. We find good qualitative agreement with other theoretical predictions and also with Monte Carlo simulations.

  2. Determination of norovirus contamination in oysters from two commercial harvesting areas over an extended period, using semiquantitative real-time reverse transcription PCR.

    Science.gov (United States)

    Lowther, James A; Henshilwood, Kathleen; Lees, David N

    2008-07-01

    The human health risk associated with the consumption of molluscan shellfish grown in sewage-contaminated waters is well established. Noroviruses, which cause gastroenteritis, are the principal agents of shellfish-related illness. Fecal-indicator quality standards based on Escherichia coli are well established in Europe and elsewhere. However, norovirus outbreaks after consumption of shellfish meeting these standards still occur, and the need to improve consumer health protection is well recognized. Alternative approaches proposed include direct monitoring of viral pathogens and the use of alternative indicator organisms capable of providing a better indication of virus risk. This study applies a recently developed TaqMan PCR assay to assess norovirus contamination in shellfish. Comparison was made with E. coli as the existing sanitary standard and a male-specific RNA bacteriophage as a possible alternative. Two commercial pacific oyster (Crassostrea gigas) harvesting areas were monitored over a 31-month period. The results show peaks of norovirus contamination in both areas during winter months, with average levels approximately 17 times higher in oysters sampled October to March than during the remainder of the year, consistent with epidemiological data for the United Kingdom showing oyster-associated illness is confined to winter months. While there was no apparent association with E. coli, an association between levels of norovirus contamination and the male-specific RNA bacteriophage was noted, with average norovirus levels over 40 times higher in samples with male-specific RNA bacteriophage counts of >1,000 PFU/100 g than in samples with norovirus monitoring in shellfish production areas could be an effective strategy for reduction of virus risk.

  3. Extended Emotions

    OpenAIRE

    Krueger, Joel; Szanto, Thomas

    2016-01-01

    Until recently, philosophers and psychologists conceived of emotions as brain- and body-bound affairs. But researchers have started to challenge this internalist and individualist orthodoxy. A rapidly growing body of work suggests that some emotions incorporate external resources and thus extend beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article...

  4. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    us to explain the pathways for TKE exchange between the carrier turbulent flow and the flow inside the droplet. We also explain the role of the interfacial surface energy in the two-fluid TKE equation through work performed by surface tension. Furthermore, we derive the relationship between the power of surface tension and the rate of change of total droplet surface area. This link allows us to explain how droplet deformation, breakup and coalescence play roles in the temporal evolution of TKE. We then extend the code for non-evaporating droplets and develop a combined VoF method and low-Mach-number approach to simulate evaporating and condensing droplets. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. Finally, we perform DNS of an evaporating liquid droplet in forced isotropic turbulence. We show that the method accurately captures the temperature and vapor fields in the turbulent regime, and that the local evaporation rate can vary along the droplet surface depending on the structure of the surrounding vapor cloud. We also report the time evolution of the mean Sherwood number, which indicates that turbulence enhances the vaporization rate of liquid droplets.

  5. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-06-10

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  6. Orientation-specificity of adaptation: isotropic adaptation is purely monocular.

    Directory of Open Access Journals (Sweden)

    John Cass

    Full Text Available Numerous studies have found that prolonged exposure to grating stimuli reduces sensitivity to subsequently presented gratings, most evidently when the orientations of the adapting and test patterns are similar. The rate of sensitivity loss varies with angular difference indicating both the presence and bandwidths of psychophysical 'orientation channels'. Here we study the orientation dependency of contrast adaptation measured both monoptically and dichoptically. Earlier psychophysical reports show that orientation bandwidths are broader at lower spatial frequencies, and we confirm this with a simple von Mises model using 0.25 vs. 2 c.p.d. gratings. When a single isotropic (orientation invariant parameter is added to this model, however, we find no evidence for any difference in bandwidth with spatial frequency. Consistent with cross-orientation masking effects, we find isotropic adaptation to be strongly low spatial frequency-biased. Surprisingly, unlike masking, we find that the effects of interocular adaptation are purely orientation-tuned, with no evidence of isotropic threshold elevation. This dissociation points to isotropic (or 'cross-orientation' adaptation being an earlier and more magnocellular-like process than that which supports orientation-tuned adaptation and suggests that isotropic masking and adaptation are likely mediated by separate mechanisms.

  7. Orientation-specificity of adaptation: isotropic adaptation is purely monocular.

    Science.gov (United States)

    Cass, John; Johnson, Ameika; Bex, Peter J; Alais, David

    2012-01-01

    Numerous studies have found that prolonged exposure to grating stimuli reduces sensitivity to subsequently presented gratings, most evidently when the orientations of the adapting and test patterns are similar. The rate of sensitivity loss varies with angular difference indicating both the presence and bandwidths of psychophysical 'orientation channels'. Here we study the orientation dependency of contrast adaptation measured both monoptically and dichoptically. Earlier psychophysical reports show that orientation bandwidths are broader at lower spatial frequencies, and we confirm this with a simple von Mises model using 0.25 vs. 2 c.p.d. gratings. When a single isotropic (orientation invariant) parameter is added to this model, however, we find no evidence for any difference in bandwidth with spatial frequency. Consistent with cross-orientation masking effects, we find isotropic adaptation to be strongly low spatial frequency-biased. Surprisingly, unlike masking, we find that the effects of interocular adaptation are purely orientation-tuned, with no evidence of isotropic threshold elevation. This dissociation points to isotropic (or 'cross-orientation') adaptation being an earlier and more magnocellular-like process than that which supports orientation-tuned adaptation and suggests that isotropic masking and adaptation are likely mediated by separate mechanisms.

  8. Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F3.

    Science.gov (United States)

    Qin, Feiyu; Chen, Jun; Aydemir, Umut; Sanson, Andrea; Wang, Lu; Pan, Zhao; Xu, Jiale; Sun, Chengjun; Ren, Yang; Deng, Jinxia; Yu, Ranbo; Hu, Lei; Snyder, G Jeffrey; Xing, Xianran

    2017-09-18

    Scandium fluoride (ScF3) exhibits a pronounced negative thermal expansion (NTE), which can be suppressed and ultimately transformed into an isotropic zero thermal expansion (ZTE) by partially substituting Sc with Fe in (Sc0.8Fe0.2)F3 (Fe20). The latter displays a rather small coefficient of thermal expansion of -0.17 × 10(-6)/K from 300 to 700 K. Synchrotron X-ray and neutron pair distribution functions confirm that the Sc/Fe-F bond has positive thermal expansion (PTE). Local vibrational dynamics based on extended X-ray absorption fine structure indicates a decreased anisotropy of relative vibration in the Sc/Fe-F bond. Combined analysis proposes a delicate balance between the counteracting effects of the chemical bond PTE and NTE from transverse vibration. The present study extends the scope of isotropic ZTE compounds and, more significantly, provides a complete local vibrational dynamics to shed light on the ZTE mechanism in chemically tailored NTE compounds.

  9. Glycolaldehyde and Ethylene Glycol on Nearly Isotropic Comets

    Science.gov (United States)

    Butler, Jayden; Zellner, Nicolle; McCaffrey, Vanessa

    2017-01-01

    The delivery of glycolaldehyde (GLA) and ethylene glycol (EG) could be could be important for understanding the origin of life. GLA, the simplest sugar, is a building block for ribose, the backbone of RNA; EG is a reduced alcohol variant of GLA, found to be created by the impact of GLA under simulated cometary impact conditions (McCaffrey et al. 2014). GLA and EG have been found in regions of the interstellar medium and recently on nearly isotropic comets (NICs), which originate in the Oort Cloud. NICs are long period comets (P > 200 years) and have orbits that are nearly randomly inclined to the ecliptic plane (Mumma & Charnley et al. 2011). Based on impact experiments that assess survivability of these molecules (McCaffrey et al. 2014), we aim to determine the mass of GLA and EG that could have been delivered on comets since the formation of the Solar System. The focus of the current study is to determine the abundances of GLA and EG on C/1995 O1 (Hale-Bopp), C/2012 F6 (Lemmon), C/2013 R1 (Lovejoy 2013), and C/2014 Q2 (Lovejoy 2014), all of which have been found to possess at least one of these molecules. Using published values of observed production rates of water, GLA, and EG (e.g., Biver et al. 2015), we have estimated a range of masses of these molecules of interest on their host comets. Even with a high degree of uncertainty in comet diameters and volumes, we estimate that 109 to 1017 kg of these molecules could be delivered by a single comet, and that 108 to 1017 kg could have survived the impact.

  10. Labor Mobilization Project (1981). Extended Period. Addendum.

    Science.gov (United States)

    1981-06-30

    reconstruction reconstruction of the and rebuilding of the community & economic economy. base. I_ Page 58 4J cC L 0n 0. Li 4u i coo 4_) m 4 Lw ) CA ~co...Rainy Creek 8 mi. W. of Methow 7.87 5-29-48 20,000 2541 Prince Creek 6 mi. SE of Lucerne 35.9 5-29-48 24,700 680 Mad River W of Ardenvoir - 5-6-48 1,550...Street Santa Monica, CA 90401 Human Science Research ATTN: William Chenault Westgate Research Park 7710 Old Springhouse Road McLean, Virginia 22101 (2) Mr

  11. Isotropic radical CO{sub 2}{sup -} in biological apatites

    Energy Technology Data Exchange (ETDEWEB)

    Rudko, V.V. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)], E-mail: vv_rudko@yahoo.com; Ishchenko, S.S.; Vorona, I.P.; Baran, N.P. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)

    2007-10-15

    The isotropic CO{sub 2}{sup -} EPR spectrum at g{approx}2.0006 for {gamma}-irradiated powders of dental enamel annealed at different temperatures up to 320{sup 0}C is studied. The signal intensity is found to increase with the growth of annealing temperature up to 240{sup 0}C. This finding contradicts to the existing model of isotropic CO{sub 2}{sup -} radical in apatites. The possible models of the radical in biological apatite are analyzed and discussed. On the basis of the results obtained it is suggested that in tooth enamel apatite the isotropic CO{sub 2}{sup -} radical is the bulk radical localized in structural voids of hydroxyapatite lattice, which occur in the vicinity of a carbon radical in position B.

  12. Three-dimensional isotropic metamaterial consisting of domain-structure

    Science.gov (United States)

    Gong, Boyi; Zhao, Xiaopeng

    2012-03-01

    Whether an artificially designed negative-index structure could be regarded as a homogeneous medium or not rests with the ratio of its structural unit (man-made atom) over the operation wavelength. However, this definition is ambiguous, and usually the ratio is too large to rigorously meet the effective medium theory. In this paper a three-dimensional (3D) isotropic structure is presented which is obtained from a two-dimensional (2D) isotropic structure rotating on its axis for a circle, and the material is silver. Numerical studies confirm that both the 2D and 3D structures can realize a negative refractive index at microwave wavelengths. Observing the monitored surface current distributions and analogizing the molecular current and the magnetic domain, we suggest a new concept of domain-structure to explain the interior structure of this metamaterial, and finally conclude that the 3D structure is a kind of domain-structured and isotropic metamaterial.

  13. Visualization and computer graphics on isotropically emissive volumetric displays.

    Science.gov (United States)

    Mora, Benjamin; Maciejewski, Ross; Chen, Min; Ebert, David S

    2009-01-01

    The availability of commodity volumetric displays provides ordinary users with a new means of visualizing 3D data. Many of these displays are in the class of isotropically emissive light devices, which are designed to directly illuminate voxels in a 3D frame buffer, producing X-ray-like visualizations. While this technology can offer intuitive insight into a 3D object, the visualizations are perceptually different from what a computer graphics or visualization system would render on a 2D screen. This paper formalizes rendering on isotropically emissive displays and introduces a novel technique that emulates traditional rendering effects on isotropically emissive volumetric displays, delivering results that are much closer to what is traditionally rendered on regular 2D screens. Such a technique can significantly broaden the capability and usage of isotropically emissive volumetric displays. Our method takes a 3D dataset or object as the input, creates an intermediate light field, and outputs a special 3D volume dataset called a lumi-volume. This lumi-volume encodes approximated rendering effects in a form suitable for display with accumulative integrals along unobtrusive rays. When a lumi-volume is fed directly into an isotropically emissive volumetric display, it creates a 3D visualization with surface shading effects that are familiar to the users. The key to this technique is an algorithm for creating a 3D lumi-volume from a 4D light field. In this paper, we discuss a number of technical issues, including transparency effects due to the dimension reduction and sampling rates for light fields and lumi-volumes. We show the effectiveness and usability of this technique with a selection of experimental results captured from an isotropically emissive volumetric display, and we demonstrate its potential capability and scalability with computer-simulated high-resolution results.

  14. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic......). At this wavelength the refraction index is equal to -1.44. These values together with the effective cubic symmetry of the unit cell entitle us to assume the high potential of the suggested design as a constitutive block for an isotropic, relatively low-loss, metamaterial in the near IR region....

  15. Geometric phases and cyclic isotropic cosmologies

    CERN Document Server

    Bianchi, Leonardo

    2014-01-01

    In the present paper we study the evolution of the modes of a scalar field in a cyclic cosmology. In order to keep the discussion clear, we study the features of a scalar field in a toy model, a Friedman-Robertson-Walker universe with a periodic scale factor, in which the universe expands, contracts and bounces infinite times, in the approximation in which the dynamic features of this universe are driven by some external factor, without the backreaction of the scalar field under study. In particular, we show that particle production exhibits features of the cyclic cosmology in the WKB approximation. Also, by studying the Berry phase of the scalar field, we show that contrarily to what is commonly believed, the scalar field carries information from one bounce to another in the form of a global phase which occurs to be generically non-zero.

  16. Trapping waves with terahertz metamaterial absorber based on isotropic Mie resonators.

    Science.gov (United States)

    Yahiaoui, Riad; Hanai, Kenichiro; Takano, Keisuke; Nishida, Tsubasa; Miyamaru, Fumiaki; Nakajima, Makoto; Hangyo, Masanori

    2015-07-01

    Quasi-monodisperse dielectric particles organized in a periodic hexagonal network on an aluminum surface are exploited numerically and experimentally as a single-layered near-perfect absorber in the terahertz regime. Of particular interest are titanium dioxide (TiO(2)) microspheres because of their large dielectric permittivity and isotropic shape leading to Mie resonances with insensitive polarization. Absorption higher than 80% at normal incidence covering two distinct ranges of frequencies is demonstrated experimentally. Furthermore, the performance of the metamaterial absorber is kept over a wide range of incident angles.

  17. direct method of analysis of an isotropic rectangular plate direct ...

    African Journals Online (AJOL)

    eobe

    This work. This work evaluates the static analysis of an isotropic rectangular plate with various ... used to obtain the total potential energy of the plate by employing the static elastic theory of plate. static elastic theory of plate. The shape func he shape func he shape .... finite site particles and the overall response of such a.

  18. Ricci flow of warped product metrics with positive isotropic curvature ...

    Indian Academy of Sciences (India)

    We study the asymptotic behaviour of the ODE associated to the evolution of curvature operator in the Ricci flow of a doubly warped product metric on S p + 1 × S 1 with positive isotropic curvature. Author Affiliations. H A Gururaja1. Department of Mathematics, St. Aloysius College, Mangalore 575 003, India. Dates.

  19. Higher gradient expansion for linear isotropic peridynamic materials

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 6 (2017), s. 1483-1493 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : peridynamics * higher-grade theories * non-local elastic-material model * representation theorems for isotropic functions Subject RIV: BA - General Mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/10.1177/1081286516637235

  20. Switch isotropic/anisotropic wettability via dual-scale rods

    Directory of Open Access Journals (Sweden)

    Yang He

    2014-10-01

    Full Text Available It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  1. The structure of foam cells: isotropic plateau polyhedra

    NARCIS (Netherlands)

    Hilgenfeldt, Sascha; Kraynik, A.M.; Reinelt, D.A.; Sullivan, J.M.

    2004-01-01

    A mean-field theory for the geometry and diffusive growth rate of soap bubbles in dry 3D foams is presented. Idealized foam cells called isotropic Plateau polyhedra (IPPs), with F identical spherical-cap faces, are introduced. The geometric properties (e.g., surface area S, curvature R, edge length

  2. Thermo elastic waves with thermal relaxation in isotropic micropolar ...

    Indian Academy of Sciences (India)

    In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an infinitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic ...

  3. Isotropic Scattering in a Flatland Half-Space

    OpenAIRE

    d'Eon, Eugene; Williams, MMR

    2018-01-01

    We solve the Milne, constant-source and albedo problems for isotropic scattering in a two-dimensional "Flatland" half-space via the Wiener-Hopf method. The Flatland $H$-function is derived and benchmark values and some identities unique to Flatland are presented. A number of the derivations are supported by Monte Carlo simulation.

  4. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    ... received considerable attention because of its technical importance. This paper analyses the deflections of an isotropic rectangular clamped thin plates under uniformly distributed loads. A plate is called thin when its thickness is at least one order of magnitude smaller than the span of the plate. The bending and buckling.

  5. Analysis of vibration frequency in transversely-isotropic semilinear ...

    African Journals Online (AJOL)

    Analysis of vibration frequency in transversely-isotropic semilinear elastic thin plate. AP Akinola, BA Olokuntoye, OO Fadodun, AS Botokinni. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE ...

  6. Semiclassical States Associated with Isotropic Submanifolds of Phase Space

    Science.gov (United States)

    Guillemin, V.; Uribe, A.; Wang, Z.

    2016-12-01

    We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.

  7. Thermo elastic waves with thermal relaxation in isotropic micropolar ...

    Indian Academy of Sciences (India)

    elastic media. In isotropic elastic media Lord & Shulman (1967), Dhaliwal & Sherief (1980) deduced independently the generalized version of classical coupled theory. In the above theories flux rate ...... Eringen A C 1973 Linear theory of non-local microelasticity and dispersion of plane waves. Lett. Appl. Eng. Sci. 1: 11–17.

  8. Bulk isotropic negative-index material design for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast...

  9. Two-point paraxial traveltime formula for inhomogeneous isotropic and anisotropic media: Tests of accuracy

    KAUST Repository

    Waheed, Umair bin

    2013-09-01

    On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.

  10. Extended Emotions

    DEFF Research Database (Denmark)

    Krueger, Joel; Szanto, Thomas

    2016-01-01

    beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences....... First, we outline the background of the debate and discuss different argumentative strategies for ExE. In particular, we distinguish ExE from cognate but more moderate claims about the embodied and situated nature of cognition and emotion (Section 1). We then dwell upon two dimensions of ExE: emotions......Until recently, philosophers and psychologists conceived of emotions as brain- and body-bound affairs. But researchers have started to challenge this internalist and individualist orthodoxy. A rapidly growing body of work suggests that some emotions incorporate external resources and thus extend...

  11. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  12. The offset-midpoint traveltime pyramid in 3D transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Hao, Qi

    2014-12-30

    Analytic representation of the offset-midpoint traveltime equation for anisotropy is very important for prestack Kirchhoff migration and velocity inversion in anisotropic media. For transversely isotropic media with a vertical symmetry axis, the offset-midpoint traveltime resembles the shape of a Cheops’ pyramid. This is also valid for homogeneous 3D transversely isotropic media with a horizontal symmetry axis (HTI). We extended the offset-midpoint traveltime pyramid to the case of homogeneous 3D HTI. Under the assumption of weak anellipticity of HTI media, we derived an analytic representation of the P-wave traveltime equation and used Shanks transformation to improve the accuracy of horizontal and vertical slownesses. The traveltime pyramid was derived in the depth and time domains. Numerical examples confirmed the accuracy of the proposed approximation for the traveltime function in 3D HTI media.

  13. A transversely isotropic medium with a tilted symmetry axis normal to the reflector

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-05-01

    The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. Developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. The homogeneous-case zero-offset migration in such a medium can be performed using an isotropic operator scaled by the velocity of the medium in the tilt direction. For the nonzero-offset case, the reflection angle is always equal to the incidence angle, and thus, the velocities for the source and receiver waves at the reflection point are equal and explicitly dependent on the reflection angle. This fact allows for the development of explicit representations for angle decomposition as well as moveout formulas for analysis of extended images obtained by wave-equation migration. Although setting the tilt normal to the reflector dip may not be valid everywhere (i.e., on salt flanks), it can be used in the process of velocity model building, in which such constrains are useful and typically are used. © 2010 Society of Exploration Geophysicists.

  14. Decoupled equations for reverse time migration in tilted transversely isotropic media

    KAUST Repository

    Zhan, Ge

    2012-03-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts. © 2012 Society of Exploration Geophysicists.

  15. On the formulation, parameter identification and numerical integration of the EMMI model :plasticity and isotropic damage.

    Energy Technology Data Exchange (ETDEWEB)

    Bammann, Douglas J.; Johnson, G. C. (University of California, Berkeley, CA); Marin, Esteban B.; Regueiro, Richard A. (University of Colorado, Boulder, CO)

    2006-01-01

    In this report we present the formulation of the physically-based Evolving Microstructural Model of Inelasticity (EMMI) . The specific version of the model treated here describes the plasticity and isotropic damage of metals as being currently applied to model the ductile failure process in structural components of the W80 program . The formulation of the EMMI constitutive equations is framed in the context of the large deformation kinematics of solids and the thermodynamics of internal state variables . This formulation is focused first on developing the plasticity equations in both the relaxed (unloaded) and current configurations. The equations in the current configuration, expressed in non-dimensional form, are used to devise the identification procedure for the plasticity parameters. The model is then extended to include a porosity-based isotropic damage state variable to describe the progressive deterioration of the strength and mechanical properties of metals induced by deformation . The numerical treatment of these coupled plasticity-damage constitutive equations is explained in detail. A number of examples are solved to validate the numerical implementation of the model.

  16. Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-04-30

    Traveltime information is crucial for parameter estimation, especially if the medium is described by a set of anisotropy parameters. We can efficiently estimate these parameters if we are able to relate them analytically to traveltimes, which is generally hard to do in inhomogeneous media. I develop traveltime approximations for transversely isotropic media with a horizontal symmetry axis (HTI) as simplified and even linear functions of the anisotropy parameters. This is accomplished by perturbing the solution of the HTI eikonal equation with respect to the anellipticity parameter, η and the azimuth of the symmetry axis (typically associated with the fracture direction) from a generally inhomogeneous, elliptically anisotropic background medium. Such a perturbation is convenient since the elliptically anisotropic information might be obtained from well velocities in HTI media. Thus, we scan for only η and the symmetry-axis azimuth. The resulting approximations can provide a reasonably accurate analytical description of the traveltime in a homogenous background compared to other published moveout equations. They also help extend the inhomogenous background isotropic or elliptically anisotropic models to an HTI one with a smoothly variable η and symmetry-axis azimuth. © 2012 European Association of Geoscientists & Engineers.

  17. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  18. Linearization of homogeneous, nearly-isotropic cosmological models

    CERN Document Server

    Pontzen, Andrew

    2010-01-01

    Homogeneous, nearly-isotropic Bianchi cosmological models are considered. Their time evolution is expressed as a complete set of non-interacting linear modes on top of a Friedmann-Robertson-Walker background model. This connects the extensive literature on Bianchi models with the more commonly-adopted perturbation approach to general relativistic cosmological evolution. Expressions for the relevant metric perturbations in familiar coordinate systems can be extracted straightforwardly. Amongst other possibilities, this allows for future analysis of anisotropic matter sources in a more general geometry than usually attempted. We discuss the geometric mechanisms by which maximal symmetry is broken in the context of these models, shedding light on the origin of different Bianchi types. When all relevant length-scales are super-horizon, the simplest Bianchi I models emerge (in which anisotropic quantities appear parallel transported). Finally we highlight the existence of arbitrarily long near-isotropic epochs in ...

  19. Extended family medicine training

    Science.gov (United States)

    Slade, Steve; Ross, Shelley; Lawrence, Kathrine; Archibald, Douglas; Mackay, Maria Palacios; Oandasan, Ivy F.

    2016-01-01

    Abstract Objective To examine trends in family medicine training at a time when substantial pedagogic change is under way, focusing on factors that relate to extended family medicine training. Design Aggregate-level secondary data analysis based on the Canadian Post-MD Education Registry. Setting Canada. Participants All Canadian citizens and permanent residents who were registered in postgraduate family medicine training programs within Canadian faculties of medicine from 1995 to 2013. Main outcome measures Number and proportion of family medicine residents exiting 2-year and extended (third-year and above) family medicine training programs, as well as the types and numbers of extended training programs offered in 2015. Results The proportion of family medicine trainees pursuing extended training almost doubled during the study period, going from 10.9% in 1995 to 21.1% in 2013. Men and Canadian medical graduates were more likely to take extended family medicine training. Among the 5 most recent family medicine exit cohorts (from 2009 to 2013), 25.9% of men completed extended training programs compared with 18.3% of women, and 23.1% of Canadian medical graduates completed extended training compared with 13.6% of international medical graduates. Family medicine programs vary substantially with respect to the proportion of their trainees who undertake extended training, ranging from a low of 12.3% to a high of 35.1% among trainees exiting from 2011 to 2013. Conclusion New initiatives, such as the Triple C Competency-based Curriculum, CanMEDS–Family Medicine, and Certificates of Added Competence, have emerged as part of family medicine education and credentialing. In acknowledgment of the potential effect of these initiatives, it is important that future research examine how pedagogic change and, in particular, extended training shapes the care family physicians offer their patients. As part of that research it will be important to measure the breadth and uptake of

  20. date extended

    Indian Academy of Sciences (India)

    C A L AN DER OF EVENTS. Date of issue of bid document : 2016 September 21. Extended Due date and Time for Receipt of Tender : Up to 2016 October 17, Time 13:00 Hrs. Date and Time of opening of bid : 2016 October 17, Time 15:00 Hrs. Cost of Bid Document : Rs. 100/- only (Non-refundable). Earnest Money Deposit ...

  1. Extending Puppet

    CERN Document Server

    Franceschi, Alessandro

    2014-01-01

    This book is a clear, detailed and practical guide to learn about designing and deploying you puppet architecture, with informative examples to highlight and explain concepts in a focused manner. This book is designed for users who already have good experience with Puppet, and will surprise experienced users with innovative topics that explore how to design, implement, adapt, and deploy a Puppet architecture. The key to extending Puppet is the development of types and providers, for which you must be familiar with Ruby.

  2. Torsion-induced optical rotation in isotropic glass media.

    Science.gov (United States)

    Vasylkiv, Yuriy; Adamenko, Dmitro; Kvasnyuk, Oleksiy; Smaga, Ihor; Skab, Ihor; Shopa, Yaroslav; Vlokh, Rostyslav

    2015-03-20

    We have revealed that torsion stresses produce an optical activity effect in initially isotropic glass media. The optical activity caused by spatially inhomogeneous mechanical stresses has been experimentally studied for a standard glass BK7 subjected to torques, using a single-beam polarimetry and a polarizer-sample-analyzer scheme. The torsion-gyration coefficient for the BK7 glass has been determined as (3.96±0.82)×10-17  m3/N.

  3. Toward creating isotropic microwave composites with negative refraction

    OpenAIRE

    Simovski, C. R.; Sauviac, B.

    2003-01-01

    The properties of artificial isotropic microwave composites which would possess simultaneously negative permittivity and permeability are studied theoretically. Four kinds of composites are considered. Two of them concern media with split-ring resonator particles with different particle arrangements. The other two are realized with Omega particles. An analytical antenna model of the electromagnetic behavior of a split-ring resonator (SRR) is suggested and verified by numerical simulations. Ne...

  4. Determination of fracture parameters for interface cracks in transverse isotropic magnetoelectroelastic composites

    Directory of Open Access Journals (Sweden)

    Lei Jun

    2015-01-01

    Full Text Available To determine fracture parameters of interfacial cracks in transverse isotropic magnetoelectroelastic composites, a displacement extrapolation formula was derived. The matrix-form formula can be applicable for both material components with arbitrary poling directions. The corresponding explicit expression of this formula was obtained for each poling direction normal to the crack plane. This displacement extrapolation formula is only related to the boundary quantities of the extended crack opening displacements across crack faces, which is convenient for numerical applications, especially for BEM. Meantime, an alternative extrapolation formula based on the path-independent J-integral and displacement ratios was presented which may be more adaptable for any domain-based numerical techniques like FEM. A numerical example was presented to show the correctness of these formulae.

  5. Transversely isotropic higher-order averaged structure tensors

    Science.gov (United States)

    Hashlamoun, Kotaybah; Federico, Salvatore

    2017-08-01

    For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

  6. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  7. Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres

    NARCIS (Netherlands)

    Göncü, Fatih; Duran Vinent, Orencio; Durán, Orencio; Luding, Stefan

    2010-01-01

    The isotropic compression of polydisperse packings of frictionless spheres is modeled with the Discrete Element Method (DEM). The evolution of coordination number, fraction of rattlers, isotropic fabric, and pressure (isotropic stress) is reported as function of volume fraction for different system

  8. Comparison between isotropic linear-elastic law and isotropic hyperelastic law in the finite element modeling of the brachial plexus.

    Science.gov (United States)

    Perruisseau-Carrier, A; Bahlouli, N; Bierry, G; Vernet, P; Facca, S; Liverneaux, P

    2017-12-01

    Augmented reality could help the identification of nerve structures in brachial plexus surgery. The goal of this study was to determine which law of mechanical behavior was more adapted by comparing the results of Hooke's isotropic linear elastic law to those of Ogden's isotropic hyperelastic law, applied to a biomechanical model of the brachial plexus. A model of finite elements was created using the ABAQUS® from a 3D model of the brachial plexus acquired by segmentation and meshing of MRI images at 0°, 45° and 135° of shoulder abduction of a healthy subject. The offset between the reconstructed model and the deformed model was evaluated quantitatively by the Hausdorff distance and qualitatively by the identification of 3 anatomical landmarks. In every case the Hausdorff distance was shorter with Ogden's law compared to Hooke's law. On a qualitative aspect, the model deformed by Ogden's law followed the concavity of the reconstructed model whereas the model deformed by Hooke's law remained convex. In conclusion, the results of this study demonstrate that the behavior of Ogden's isotropic hyperelastic mechanical model was more adapted to the modeling of the deformations of the brachial plexus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Preliminary investigation of the effect of electric charge on particle-pair relative velocity in isotropic turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Kailu, Tushar; Liang, Zach; Meng, Hui

    2017-11-01

    In many particle-laden turbulent flows including thunderstorm clouds and aerosol sprays, the particles may be electrically charged. How the Coulomb force between charged particles competes with the turbulence forces on particle motion is not yet fully understood. Mean inward particle pair relative velocity (particle RV), a quantity relevant for particle collision in isotropic turbulence, is expected to be affected by charge. We extend our recent particle tracking velocimetry (PTV) study on particle pair relative velocity in fan-driven isotropic turbulence to particles with charge. To accomplish this, we established a method to independently vary particle charge distributions by balancing particle density and size while keeping constant Reλ and St, developed a unique instrument to measure particle charge using in-line holography, and measured particle RV using PTV at three levels of charge under a single flow condition. We present charged particle RV measurements from the experiments at Reλ = 343, St 1.19, and charge of order 10-15 Coulombs, which show that particle RV increases with magnitude of bipolar charge. This study paves the way for a comprehensive exploration of relative motion of charged particle in isotropic turbulence. This work was supported by NSF CBET-0967407.

  10. Extending Experiences

    DEFF Research Database (Denmark)

    A computer game's player is experiencing not only the game as a designer-made artefact, but also a multitude of social and cultural practices and contexts of both computer game play and everyday life. As a truly multidisciplinary anthology, Extending Experiences sheds new light on the mesh...... of possibilities and influences the player engages with. Part one, Experiential Structures of Play, considers some of the key concepts commonly used to address the experience of a computer game player. The second part, Bordering Play, discusses conceptual and practical overlaps of games and everyday life...... and the impacts of setting up, crossing and breaking the boundaries of game and non-game. Part three, Interfaces of Play, looks at games as technological and historical artefacts and commodities. The fourth part, Beyond Design, introduces new models for the practical and theoretical dimensions of game design....

  11. Identifying Isotropic Events Using a Regional Moment Tensor Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Dreger, D S; Walter, W R

    2008-11-04

    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.

  12. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  13. Single-dose pharmacokinetics of once-daily cyclobenzaprine extended release 30 mg versus cyclobenzaprine immediate release 10 mg three times daily in healthy young adults : a randomized, open-label, two-period crossover, single-centre study.

    Science.gov (United States)

    Darwish, Mona; Hellriegel, Edward T; Xie, Fang

    2008-01-01

    Cyclobenzaprine immediate release (CIR) has shown efficacy in the treatment of muscle spasm associated with acute, painful musculoskeletal conditions. An extended-release formulation of cyclobenzaprine (CER) has been developed to provide effective muscle spasm relief with once-daily dosing. The objective of this study was to compare the pharmacokinetics of CER and CIR. This was a single-centre study of 18 healthy young adults (aged 18-45 years). Healthy volunteers were assigned to receive either a single dose of CER 30 mg or three doses of CIR 10 mg on days 1 and 15 (separated by a 14-day washout) in an open-label, two-period crossover study. Pharmacokinetic parameters were monitored through 168 hours after the last dose in each dose period; adverse events (AEs) were monitored during the study through 3 weeks after the last dose of study drug. Cyclobenzaprine was administered as a single oral 30 mg dose of CER or three 10 mg oral doses of CIR given every 8 hours over 24 hours. Statistical tests were conducted against a two-sided alternative hypothesis at a 0.05 level of significance with equivalence limits of 80% and 125%. Measures included area under the plasma cyclobenzaprine concentration versus time curve (AUC) to 168 hours and infinity, maximum plasma cyclobenzaprine concentration (C(max)), and time to observed C(max) (t(max)). Eighteen subjects were randomized and 17 completed both periods of the study. CER exhibited a consistent concentration-time profile with a single peak, in contrast to the pharmacokinetic profile for CIR, which displayed multiple peaks and troughs over the 24-hour period. The pharmacokinetic profile of CER 30 mg was characterized by an absorption phase with a median t(max) of approximately 6 hours, compared with the initial peak of CIR (following the first dose) of about 4 hours. Mean plasma concentrations at 4 hours were comparable (12.1 ng/mL for CER; 12.4 ng/mL for CIR). Systemic cyclobenzaprine exposure (AUC and C(max)) was similar

  14. Modelling of the decay of isotropic turbulence by the LES

    Energy Technology Data Exchange (ETDEWEB)

    Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)

    2011-12-22

    This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.

  15. Reflection of electromagnetic waves at a biaxial-isotropic interface

    Science.gov (United States)

    Njoku, E. G.

    1983-01-01

    The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.

  16. Silicone elastomers capable of large isotropic dimensional change

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  17. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker

    2011-01-01

    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  18. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  19. Toward creating isotropic microwave composites with negative refraction

    Science.gov (United States)

    Simovski, C. R.; Sauviac, B.

    2004-04-01

    The properties of artificial isotropic microwave composites which would possess simultaneously negative permittivity and permeability are studied theoretically. Four kinds of composites are considered. Two of them concern media with split-ring resonator particles with different particle arrangements. The other two are realized with Omega particles. An analytical antenna model of the electromagnetic behavior of a split-ring resonator (SRR) is suggested and verified by numerical simulations. Next, material parameters of composite media made with SRR or Omega particles are calculated. Both mixtures can create negative index media, but Omega composites are more prospective for obtaining negative real values of permittivity and permeability than the split-ring resonators.

  20. Genericness of Big Bounce in isotropic loop quantum cosmology

    OpenAIRE

    Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the universe exhibiting a Big Bounce. We show that with scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and details of scalar field dynamics. The volume of the universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cut-off for computations of den...

  1. Electromagnetic cloaking of conducting cylinders using homogeneous and isotropic media

    Science.gov (United States)

    Gana, Usman M.

    2017-08-01

    Scattering characteristics of cloaked conducting cylinders is investigated. An attempt is made in replacing the difficult anisotropic material properties required of a cloack with simple ones. The anisotropic material parameters of the cylindrical cloaking shell was approximated by homogeneous, isotropic layers and effective medium approximation was employed in determining the parameters of the layers. Scattering of both polarized (TM & TE) and un-polarized plane electromagnetic waves was studied in the far field. Scattering cross sections of different kinds of cylindrical cloaks are presented and the merits of their structures outlined. Significant reductions in scattering cross sections, compared with bare cylinders, were realized by some of the structures studied.

  2. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  3. Even harmonic generation in isotropic media of dissociating homonuclear molecules

    CERN Document Server

    Silva, R E F; Morales, F; Smirnova, O; Ivanov, M; Martín, F

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\\"odinger equation for $H$$_2$$^+$ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are pro...

  4. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  5. Isotropic-Nematic Phase Transitions in Gravitational Systems

    Science.gov (United States)

    Roupas, Zacharias; Kocsis, Bence; Tremaine, Scott

    2017-06-01

    We examine dense self-gravitating stellar systems dominated by a central potential, such as nuclear star clusters hosting a central supermassive black hole. Different dynamical properties of these systems evolve on vastly different timescales. In particular, the orbital-plane orientations are typically driven into internal thermodynamic equilibrium by vector resonant relaxation before the orbital eccentricities or semimajor axes relax. We show that the statistical mechanics of such systems exhibit a striking resemblance to liquid crystals, with analogous ordered-nematic and disordered-isotropic phases. The ordered phase consists of bodies orbiting in a disk in both directions, with the disk thickness depending on temperature, while the disordered phase corresponds to a nearly isotropic distribution of the orbit normals. We show that below a critical value of the total angular momentum, the system undergoes a first-order phase transition between the ordered and disordered phases. At a critical point, the phase transition becomes second order, while for higher angular momenta there is a smooth crossover. We also find metastable equilibria containing two identical disks with mutual inclinations between 90° and 180°.

  6. Charged isotropic non-Abelian dyonic black branes

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2015-05-01

    Full Text Available We construct black holes with a Ricci-flat horizon in Einstein–Yang–Mills theory with a negative cosmological constant, which approach asymptotically an AdSd spacetime background (with d≥4. These solutions are isotropic, i.e. all space directions in a hypersurface of constant radial and time coordinates are equivalent, and possess both electric and magnetic fields. We find that the basic properties of the non-Abelian solutions are similar to those of the dyonic isotropic branes in Einstein–Maxwell theory (which, however, exist in even spacetime dimensions only. These black branes possess a nonzero magnetic field strength on the flat boundary metric, which leads to a divergent mass of these solutions, as defined in the usual way. However, a different picture is found for odd spacetime dimensions, where a non-Abelian Chern–Simons term can be incorporated in the action. This allows for black brane solutions with a magnetic field which vanishes asymptotically.

  7. Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence.

    Science.gov (United States)

    Verma, Siddhartha; Blanquart, G

    2014-06-01

    The geometric orientation of the subfilter-scale scalar-flux vector is examined in homogeneous isotropic turbulence. Vector orientation is determined using the eigenframe of the resolved strain-rate tensor. The Schmidt number is kept sufficiently large so as to leave the velocity field, and hence the strain-rate tensor, unaltered by filtering in the viscous-convective subrange. Strong preferential alignment is observed for the case of Gaussian and box filters, whereas the sharp-spectral filter leads to close to a random orientation. The orientation angle obtained with the Gaussian and box filters is largely independent of the filter width and the Schmidt number. It is shown that the alignment direction observed numerically using these two filters is predicted very well by the tensor-diffusivity model. Moreover, preferred alignment of the scalar gradient vector in the eigenframe is shown to mitigate any probable issues of negative diffusivity in the tensor-diffusivity model. Consequentially, the model might not suffer from solution instability when used for large eddy simulations of scalar transport in homogeneous isotropic turbulence. Further a priori tests indicate poor alignment of the Smagorinsky and stretched vortex model predictions with the exact subfilter flux. Finally, strong filter dependence of subfilter scalar-flux orientation suggests that explicit filtering may be preferable to implicit filtering in large eddy simulations.

  8. Anisotropic Self-Assembly from Isotropic Colloidal Building Blocks.

    Science.gov (United States)

    Rey, Marcel; Law, Adam D; Buzza, D Martin A; Vogel, Nicolas

    2017-12-06

    Spherical colloidal particles generally self-assemble into hexagonal lattices in two dimensions. However, more complex, non-hexagonal phases have been predicted theoretically for isotropic particles with a soft repulsive shoulder but have not been experimentally realized. We study the phase behavior of microspheres in the presence of poly(N-isopropylacrylamide) (PNiPAm) microgels at the air/water interface. We observe a complex phase diagram, including phases with chain and square arrangements, which exclusively form in the presence of the microgels. Our experimental data suggests that the microgels form a corona around the microspheres and induce a soft repulsive shoulder that governs the self-assembly in this system. The observed structures are fully reproduced by both minimum energy calculations and finite temperature Monte Carlo simulations of hard core-soft shoulder particles with experimentally realistic interaction parameters. Our results demonstrate how complex, anisotropic assembly patterns can be realized from entirely isotropic building blocks by control of the interaction potential.

  9. Elastoplastic properties of transversely isotropic sintered metal fiber sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, T.F. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, C.Q., E-mail: chencq@tsinghua.edu.cn [Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing 100084 (China); Deng, Z.C. [School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072 (China); State Key Laboratory of Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian 116024 (China)

    2016-04-26

    Sintering of layered metal fiber sheets produces a structured, tunable, paper-like material that holds promise for thermal and biomaterial applications. Particularly promising for these areas is a material system synthesized by the sequential-overlap method, which produces a networked, transversely isotropic open cell porous material. Engineering application of these materials has been limited due in part to uncertainty about their mechanical responses. Here, we present a comprehensive structural and mechanical characterization of these materials, and define a modeling framework suitable for engineering design. X-ray tomography revealed a layered structure with an isotropic fiber distribution within each layer. In-plane uniaxial compression and tension tests revealed a linear dependence of Young's modulus and yield strength upon relative fiber density. Out-of-plane tests, however, revealed much lower Young's modulus and strength, with quartic and cubic dependence upon relative density, respectively. Fiber fracture was the dominant mode of failure for tension within the “in-plane” directions of the fiber layers, and fiber decohesion was the dominant mode of failure for tension applied in the “out-of-plane” direction, normal to the layers. Models based upon dispersions of beams predicted both in-plane and out-of-plane elastoplastic properties as a function of the relative density of fibers. These models provide a foundation for mechanical design with and optimization of these materials for a broad range of potential applications.

  10. An Areal Isotropic Spline Filter for Surface Metrology.

    Science.gov (United States)

    Zhang, Hao; Tong, Mingsi; Chu, Wei

    2015-01-01

    This paper deals with the application of the spline filter as an areal filter for surface metrology. A profile (2D) filter is often applied in orthogonal directions to yield an areal filter for a three-dimensional (3D) measurement. Unlike the Gaussian filter, the spline filter presents an anisotropic characteristic when used as an areal filter. This disadvantage hampers the wide application of spline filters for evaluation and analysis of areal surface topography. An approximation method is proposed in this paper to overcome the problem. In this method, a profile high-order spline filter serial is constructed to approximate the filtering characteristic of the Gaussian filter. Then an areal filter with isotropic characteristic is composed by implementing the profile spline filter in the orthogonal directions. It is demonstrated that the constructed areal filter has two important features for surface metrology: an isotropic amplitude characteristic and no end effects. Some examples of applying this method on simulated and practical surfaces are analyzed.

  11. Extending the duration of the voluntary waiting period from 60 to 88 days in cows that received timed artificial insemination after the Double-Ovsynch protocol affected the reproductive performance, herd exit dynamics, and lactation performance of dairy cows.

    Science.gov (United States)

    Stangaferro, M L; Wijma, R W; Masello, M; Thomas, Mark J; Giordano, J O

    2017-10-18

    This experiment evaluated the reproductive performance, herd exit dynamics, and lactation performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. Secondary objectives were evaluating VWP effect on cyclicity status, uterine health, systemic inflammation, and body condition score (BCS) before first service. Lactating Holstein cows from 3 commercial farms in New York State cows were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to VWP of 60 (VWP60; n = 1,352) or 88 (VWP88; n = 1,359) days in milk (DIM). All cows received the Double-Ovsynch protocol (GnRH-7 d-PGF2α-3 d-GnRH-7 d-GnRH-7 d-PGF2α-56 h-GnRH-16 to 20 h-timed artificial insemination; TAI) for synchronization of ovulation and TAI. For second and greater artificial insemination (AI), cows received AI after detection of estrus or the Ovsynch protocol (GnRH-7 d-PGF2α-56 h-GnRH-16 to 20 h-TAI) initiated 32 ± 3 d after AI for cows not re-inseminated at detected estrus. Cyclicity status (progesterone concentration), uterine health (vaginal discharge and uterine cytology), BCS, and systemic inflammation (haptoglobin concentration) were evaluated at baseline (33 ± 3 DIM for both treatments), beginning of the Double-Ovsynch protocol, and 10 d before TAI. Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Extending duration of VWP from 60 to 88 DIM increased pregnancies per AI (P/AI) to first service (VWP60 = 41%; VWP88 = 47%). Nonetheless, the greatest benefit of extending VWP on first-service P/AI was for primiparous cows (VWP60 = 46%; VWP88 = 55%), as P/AI did not differ within the multiparous cow group (VWP60 = 36%; VWP88 = 40%). Physiological status more conducive to pregnancy-characterized by improved uterine health, greater BCS, reduced systemic inflammation, and to a lesser extent more time to resume ovarian cyclicity-explained the increment in P/AI to first

  12. A pharmacokinetic comparison of single doses of once-daily cyclobenzaprine extended-release 15 mg and 30 mg: a randomized, double-blind, two-period crossover study in healthy volunteers.

    Science.gov (United States)

    Darwish, Mona; Chang, Steven; Hellriegel, Edward T

    2009-01-01

    The purpose of this study was to compare the pharmacokinetics and tolerability of single oral doses of cyclobenzaprine extended-release (CER) 15- and 30-mg capsules. This was a randomized, double-blind, 2-period crossover study in healthy adults aged 18 to 40 years. Subjects were assigned to receive a single dose of either CER 15 mg or 30 mg on days 1 and 15, separated by a 14-day washout. Study comparisons included the plasma cyclobenzaprine AUC to 168 hours after dosing (AUC(0-168)), AUC(0-infinity), and C(max). Plasma cyclobenzaprine T(max), terminal elimination t(1/2), and adverse events (AEs) were also assessed. Sixteen subjects (9 women, 7 men) were randomized to receive cyclobenzaprine 15 mg or 30 mg; 13 (81.3%) were white and 3 (18.8%) were black. Mean age and weight were 30.2 years and 70.7 kg, respectively. The shapes of the pharmacokinetic profiles for CER 15 and 30 mg were parallel. Mean observed values for dose-dependent pharmacokinetic parameters of CER 15 and 30 mg were as follows: AUC(0-168), 318.3 and 736.6 ng . h/mL, respectively; AUC(0-infinity)), 354.1 and 779.9 ng . h/mL; and C(max), 8.3 and 19.9 ng/mL. Dose-independent parameters were comparable across doses. Median observed Tmax was 6.0 hours for both CER doses; mean t(1/2) was 33.4 hours for CER 15 mg and 32.0 hours for CER 30 mg. The bioavailability of the 2 doses, as indicated by the least squares mean AUC(0-infinity), was 330.3 ng . h/mL for CER 15 mg and 755.1 ng . h/mL for CER 30 mg. During the CER 15-mg treatment sequence, 5 subjects experienced 5 AEs (headache, dizziness, musculoskeletal pain, dermatitis, and glossodynia); during the CER 30-mg treatment sequence, 2 subjects experienced 2 AEs (somnolence and dysmenorrhea). All AEs were mild in intensity. No serious AEs occurred during the study. Once-daily CER 15 and 30 mg exhibited similarly shaped pharmacokinetic profiles. AUC(0-168), AUC(0-infinity)), and C(max) values for the 30-mg dose were approximately double those for the 15-mg

  13. An Accurate Hardware Sum-of-Cisoids Fading Channel Simulator for Isotropic and Non-Isotropic Mobile Radio Environments

    Directory of Open Access Journals (Sweden)

    L. Vela-Garcia

    2012-01-01

    Full Text Available The rapid technological development in the field of wireless communications calls for devices capable of reproducing and simulating the behavior of the channel under realistic propagation conditions. This paper presents a hardware fading channel simulator that is able to generate stochastic processes characterized by symmetrical and asymmetrical Doppler power spectral densities (PSDs depending on the assumption of isotropic or non-isotropic scattering. The concept of the proposed hardware simulator is based on an implementation of the sum-of-cisoids (SOC method. The hardware simulator is capable of handling any configuration of the cisoid's amplitudes, frequencies, and phases. Each of the cisoids that constitutes the SOC model is implemented using a piecewise polynomial approximation technique. The investigation of the higher-order statistics of the generated fading processes, like the level-crossing rate (LCR and the average duration of fades (ADF, shows that our design is able to reproduce accurately the key features of realistic channel models that are considered as candidates for the latest wireless communication standards.

  14. Nested structures approach in designing an isotropic negative-index material for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    2009-01-01

    We propose a new generic approach for designing isotropic metamaterial with nested cubic structures. As an example, a three-dimensional isotropic unit cell design "Split Cube in Cage" (SCiC) is shown to exhibit an effective negative refractive index on infrared wavelengths. We report...... on the refractive index reaching -2.3 and the figure of merit as high as 2.7. The structure exhibits potential for application as a building block of isotropic negative-index materials....

  15. Birefringent Stable Glass with Predominantly Isotropic Molecular Orientation

    Science.gov (United States)

    Liu, Tianyi; Exarhos, Annemarie L.; Alguire, Ethan C.; Gao, Feng; Salami-Ranjbaran, Elmira; Cheng, Kevin; Jia, Tiezheng; Subotnik, Joseph E.; Walsh, Patrick J.; Kikkawa, James M.; Fakhraai, Zahra

    2017-09-01

    Birefringence in stable glasses produced by physical vapor deposition often implies molecular alignment similar to liquid crystals. As such, it remains unclear whether these glasses share the same energy landscape as liquid-quenched glasses that have been aged for millions of years. Here, we produce stable glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene molecules that retain three-dimensional shapes and do not preferentially align in a specific direction. Using a combination of angle- and polarization-dependent photoluminescence and ellipsometry experiments, we show that these stable glasses possess a predominantly isotropic molecular orientation while being optically birefringent. The intrinsic birefringence strongly correlates with increased density, showing that molecular ordering is not required to produce stable glasses or optical birefringence, and provides important insights into the process of stable glass formation via surface-mediated equilibration. To our knowledge, such novel amorphous packing has never been reported in the past.

  16. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  17. Giant isotropic magnetostrain of GaCMn3

    Science.gov (United States)

    Guo, X. G.; Tong, P.; Lin, J. C.; Yang, C.; Zhang, K.; Lin, S.; Song, W. H.; Sun, Y. P.

    2017-02-01

    Normal magnetostriction (MS), which comes from the gradual rotation of magnetic domains in ferromagnets, is anisotropic and smoothly dependent on the applied magnetic field. In cubic antiperovskite compound GaCMn3, a sharp shrink of lattice volume takes place at the antiferromagnetic (AFM) to intermediate magnetic (IM) phase transition. Below the Neel temperature (˜143 K), the AFM-IM transformation can be driven by external magnetic field, leading to a giant isotropic MS of ˜1700 ppm comparable to that of commercial Terfenol-D. In contrast to normal MS, the field-induced magnetostrain exhibits a rapid switch behavior at the critical field. Furthermore, good reversibility and stability were demonstrated for the giant MS of GaCMn3 compound.

  18. Solitary plane waves in an isotropic hexagonal lattice

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

    1998-01-01

    Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same...... for different directions of wave propagation. The pseudospectral method allows us to obtain solitary wave solutions with very narrow profile, the thickness of which may contain a few atoms or even less than one lattice spacing (i.e., essentially discrete solutions). Since these nonlinear waves are quite narrow......, details of lattice microstructure appear to be important for their motion. Particularly, the regime of their propagation qualitatively depends on whether or not the direction of their motion occurs along the lattice bonds. Two types of solitary plane waves are found and studied. The stability...

  19. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    Science.gov (United States)

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Homogeneous, isotropic turbulence phenomenology, renormalization, and statistical closures

    CERN Document Server

    McComb, W David

    2014-01-01

    Fluid turbulence is often referred to as 'the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of...

  1. Fast response and transparent optically isotropic liquid crystal diffraction grating.

    Science.gov (United States)

    Manda, Ramesh; Pagidi, Srinivas; Bhattacharyya, Surjya Sarathi; Park, Chul Ho; Lim, Young Jin; Gwag, Jin Seog; Lee, Seung Hee

    2017-10-02

    We have demonstrated an electrically tunable less polarization sensitive and fast response nanostructured polymer dispersed liquid crystal (nano-PDLC) diffraction grating. Fabricated nano-PDLC is optically transparent in visible wavelength regime. The optical isotropic nature was increased by minimizing the liquid crystal droplet size below visible wavelength thereby eliminated scattering. Diffraction properties of in-plane switching (IPS) and fringe-field switching (FFS) cells were measured and compared with one another up to four orders. We have obtained a pore-type polymer network constructed by highly interlinked polymer beads at which the response time is improved by strong interaction of liquid crystal molecules with polymer beads at interface. The diffraction pattern obtained by transparent nano-PDLC film has several interesting properties such as less polarization dependence and fast response. This device can be used as transparent tunable diffractor along with other photonic application.

  2. Anisotropic to Isotropic Phase Transitions in the Early Universe

    Directory of Open Access Journals (Sweden)

    Ajaib M. A.

    2012-04-01

    Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.

  3. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.

    Science.gov (United States)

    Xu, Limei; Giovambattista, Nicolas; Buldyrev, Sergey V; Debenedetti, Pablo G; Stanley, H Eugene

    2011-02-14

    We perform discrete-event molecular dynamics simulations of a system of particles interacting with a spherically-symmetric (isotropic) two-scale Jagla pair potential characterized by a hard inner core, a linear repulsion at intermediate separations, and a weak attractive interaction at larger separations. This model system has been extensively studied due to its ability to reproduce many thermodynamic, dynamic, and structural anomalies of liquid water. The model is also interesting because: (i) it is very simple, being composed of isotropically interacting particles, (ii) it exhibits polyamorphism in the liquid phase, and (iii) its slow crystallization kinetics facilitate the study of glassy states. There is interest in the degree to which the known polyamorphism in glassy water may have parallels in liquid water. Motivated by parallels between the properties of the Jagla potential and those of water in the liquid state, we study the metastable phase diagram in the glass state. Specifically, we perform the computational analog of the protocols followed in the experimental studies of glassy water. We find that the Jagla potential calculations reproduce three key experimental features of glassy water: (i) the crystal-to-high-density amorphous solid (HDA) transformation upon isothermal compression, (ii) the low-density amorphous solid (LDA)-to-HDA transformation upon isothermal compression, and (iii) the HDA-to-very-high-density amorphous solid (VHDA) transformation upon isobaric annealing at high pressure. In addition, the HDA-to-LDA transformation upon isobaric heating, observed in water experiments, can only be reproduced in the Jagla model if a free surface is introduced in the simulation box. The HDA configurations obtained in cases (i) and (ii) are structurally indistinguishable, suggesting that both processes result in the same glass. With the present parametrization, the evolution of density with pressure or temperature is remarkably similar to the

  4. Circular random motion in diatom gliding under isotropic conditions.

    Science.gov (United States)

    Gutiérrez-Medina, Braulio; Guerra, Andrés Jiménez; Maldonado, Ana Iris Peña; Rubio, Yadiralia Covarrubias; Meza, Jessica Viridiana García

    2014-11-13

    How cells migrate has been investigated primarily for the case of trajectories composed by joined straight segments. In contrast, little is known when cellular motion follows intrinsically curved paths. Here, we use time-lapse optical microscopy and automated trajectory tracking to investigate how individual cells of the diatom Nitzschia communis glide across surfaces under isotropic environmental conditions. We find a distinct kind of random motion, where trajectories are formed by circular arcs traveled at constant speed, alternated with random stoppages, direction reversals and changes in the orientation of the arcs. Analysis of experimental and computer-simulated trajectories show that the circular random motion of diatom gliding is not optimized for long-distance travel but rather for recurrent coverage of limited surface area. These results suggest that one main biological role for this type of diatom motility is to efficiently build the foundation of algal biofilms.

  5. Isotropic radio background from quark nugget dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Kyle; Zhitnitsky, Ariel R., E-mail: arz@physics.ubc.ca

    2013-07-09

    Recent measurements by the ARCADE2 experiment unambiguously show an excess in the isotropic radio background at frequencies below the GHz scale. We argue that this excess may be a natural consequence of the interaction of visible and dark matter in the early universe if the dark matter consists of heavy nuggets of quark matter. Explanation of the observed radio band excess requires the introduction of no new parameters, rather we exploit the same dark matter model and identical normalization parameters to those previously used to explain other excesses of diffuse emission from the centre of our galaxy. These previously observed excesses include the WMAP Haze of GHz radiation, keV X-ray emission and MeV gamma-ray radiation.

  6. Impedances of rigid cylindrical foundations embedded in transversely isotropic soils

    Science.gov (United States)

    Barros, P. L. A.

    2006-06-01

    A complete formulation and implementation for assessment of the response to dynamic loads of cylindrical rigid structures embedded in transversely isotropic elastic half-spaces is presented. The analysis is performed in the frequency domain and the steady-state structure response is obtained. The method is based on a non-singular version of the indirect boundary element method which uses influence functions, instead of Green's functions, as fundamental solutions. These influence functions are the response of an elastic half-space to distributed, internally applied loads. The proposed method imposes full bonding contact between the foundation and the surrounding soil. Numerical results for displacement (vertical and horizontal) and rotation (twisting and rocking) impedances, showing the influence of the soil anisotropy, are presented. Results for the soil-structure interface tractions and for the displacement field throughout the half-space are also shown.

  7. A theoretical study of the isotropic cut sphere fluids

    Science.gov (United States)

    Chamoux, Antoine; Perera, Aurélien

    1998-05-01

    The cut sphere fluid is studied in the isotropic phase by the Percus Yevick (PY) and the Hypernetted Chain (HNC) integral equation techniques, as well as by the theory recently proposed which is based on a geometrical interpretation of the direct correlation function. Fluids of cut spheres with thicknesses L* ranging from 0 to 0.7 have been studied, and detailed results for L*=0.1, 0.2, and 0.3 are reported. The L*=0 case is also examined. A new simplified version of the numerical implementation of the PY and HNC closures is proposed here. The results for pressures and structural properties are compared with the available simulations results and the recent theoretical results from the authors. The important feature of the present work is to show the ability of the HNC theory to predict the cubatic phase observed in the computer simulations for thicknesses around 0.2. The nematic phase is also predicted by the HNC theory for thicknesses smaller than L*=0.12. In agreement with previously obtained results, the detailed analysis of the PY theory results show that this approximation is unable to predict an instability toward any of the orientationally ordered fluid phases. The geometrical approach shows the correct trend for an isotropic to nematic transition, but exhibits an instability toward the cubatic phase only for thicknesses above L*=0.5, thus providing an illustration of the inability of standard density functional type theories to fully describe complex fluids. This study also sheds some light on the major differences between the three approaches in the treatment of many body density correlations.

  8. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin-Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin-Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  9. Technical note: Accelerated nonrigid motion-compensated isotropic 3D coronary MR angiography.

    Science.gov (United States)

    Correia, Teresa; Cruz, Gastão; Schneider, Torben; Botnar, René M; Prieto, Claudia

    2018-01-01

    To develop an accelerated and nonrigid motion-compensated technique for efficient isotropic 3D whole-heart coronary magnetic resonance angiography (CMRA) with Cartesian acquisition. Highly efficient whole-heart 3D CMRA was achieved by combining image reconstruction from undersampled data using compressed sensing (CS) with a nonrigid motion compensation framework. Undersampled acquisition was performed using a variable-density Cartesian trajectory with radial order (VD-CAPR). Motion correction was performed in two steps: beat-to-beat 2D translational correction with motion estimated from interleaved image navigators, and bin-to-bin 3D nonrigid correction with motion estimated from respiratory-resolved images reconstructed from undersampled 3D CMRA data using CS. Nonrigid motion fields were incorporated into an undersampled motion-compensated reconstruction, which combines CS with the general matrix description formalism. The proposed approach was tested on 10 healthy subjects and compared against a conventional twofold accelerated 5-mm navigator-gated and tracked acquisition. The proposed method achieves isotropic 1.2-mm Cartesian whole-heart CMRA in 5 min ± 1 min (~8× acceleration). The proposed approach provides good-quality images of the left and right coronary arteries, comparable to those of a twofold accelerated navigator-gated and tracked acquisition, but scan time was up to about four times faster. For both coronaries, no significant differences (P > 0.05) in vessel sharpness and length were found between the proposed method and reference scan. The feasibility of a highly efficient motion-compensated reconstruction framework for accelerated 3D CMRA has been demonstrated in healthy subjects. Further investigation is required to assess the clinical value of the method. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. Comparison of contrast-enhanced isotropic 3D-GRE-T1WI sequence versus conventional non-isotropic sequence on preoperative staging of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xiaoduo Yu

    Full Text Available To compare contrast-enhanced isotropic 3D-GRE-T1WI sequence vs. conventional non-isotropic sequence in terms of image quality, estimated signal-to-noise ratio (eSNR, relative tumor contrast and performance of cervical cancer staging.This retrospective study was approved by the institutional review board, and informed consent was waived. Seventy-one patients (47 ± 9.4 years, with pathologically-confirmed cervical cancer underwent axial contrast-enhanced 1 mm3 isotropic 3D-GRE-T1WI sequence (herein referred to Isotropy, and 3-mm-thick non-isotropic sagittal and coronal sequences. Image quality score, eSNR and relative contrast between tumor to myometrium, gluteal muscle, and fat respectively, were compared between 3-mm-thick reconstructed images from Isotropy and directly scanned non-isotropic images by paired t-test. Difference in tumor staging obtained from Isotropy and combined Three-planes including reconstructed axial images, directly scanned sagittal and coronal sequence were compared by McNemar test.Both sequences showed similar image quality. Reconstructed images demonstrated higher eSNR, equal or lower relative tumor contrast compared with non-isotropic images. Compared with performing diagnosis on Three-planes, both reviewers showed higher accuracy when diagnosing vaginal invasion on Isotropy (p = 0.039 and 0.003, respectively.Compared with non-isotropic sequence, 3.0T MR isotropic 3D-GRE-T1WI sequence exhibited better eSNR, providing more reliable clinical information for preoperative staging of cervical cancer.

  11. Diffraction Coefficients of a Semi-Infinite Planar Crack Embedded in a Transversely-Isotropic Space

    Science.gov (United States)

    Gautesen, A.; Fradkin, L.; Zernov, V.

    2007-03-01

    We develop a semi-analytical procedure for calculating the diffraction coefficients for cracks perpendicular to the symmetry axis of a transversely-isotropic medium. The problem is of interest in the mathematical modeling of NDE (non-destructive evaluation) of austenitic steels, which are found in claddings and other welds in the nuclear reactors and can be modelled as transversely isotropic.

  12. Migration velocity analysis using a transversely isotropic medium with tilt normal to the reflector dip

    KAUST Repository

    Alkhalifah, T.

    2010-06-13

    A transversely isotropic model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TTI model. Though this model, in some cases, can not be represented physically like in the case of conflicting dips, it handles all dips with the assumption of symmetry axis normal to the dip. It provides a process in which areas that meet this feature is handled properly. We use efficient downward continuation algorithms that utilizes the reflection features of such a model. For lateral inhomogeneity, phase shift migration can be easily extended to approximately handle lateral inhomogeneity, because unlike the general TTI case the DTI model reduces to VTI for zero dip. We also equip these continuation algorithms with tools that expose inaccuracies in the velocity. We test this model on synthetic data of general TTI nature and show its resilience even couping with complex models like the recently released anisotropic BP model.

  13. Migration using a transversely isotropic medium with symmetry normal to the reflector dip

    KAUST Repository

    Alkhalifah, Tariq Ali

    2011-01-01

    A transversely isotropic (TI) model in which the tilt is constrained to be normal to the dip (DTI model) allows for simplifications in the imaging and velocity model building efforts as compared to a general TI (TTI) model. Although this model cannot be represented physically in all situations, for example, in the case of conflicting dips, it handles arbitrary reflector orientations under the assumption of symmetry axis normal to the dip. Using this assumption, we obtain efficient downward continuation algorithms compared to the general TTI ones, by utilizing the reflection features of such a model. Phase-shift migration can be easily extended to approximately handle lateral inhomogeneity using, for example, the split-step approach. This is possible because, unlike the general TTI case, the DTI model reduces to VTI for zero dip. These features enable a process in which we can extract velocity information by including tools that expose inaccuracies in the velocity model in the downward continuation process. We test this model on synthetic data corresponding to a general TTI medium and show its resilience. 2011 Tariq Alkhalifah and Paul Sava.

  14. Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily-inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Telle...

  15. Mean-periodic functions

    Directory of Open Access Journals (Sweden)

    Carlos A. Berenstein

    1980-01-01

    Full Text Available We show that any mean-periodic function f can be represented in terms of exponential-polynomial solutions of the same convolution equation f satisfies, i.e., u∗f=0(μ∈E′(ℝn. This extends to n-variables the work of L. Schwartz on mean-periodicity and also extends L. Ehrenpreis' work on partial differential equations with constant coefficients to arbitrary convolutors. We also answer a number of open questions about mean-periodic functions of one variable. The basic ingredient is our work on interpolation by entire functions in one and several complex variables.

  16. A Comprehensive Theory of Yielding and Failure for Isotropic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R M

    2006-08-10

    A theory of yielding and failure for homogeneous and isotropic materials is given. The theory is calibrated by two independent, measurable properties and from those it predicts possible failure for any given state of stress. It also differentiates between ductile yielding and brittle failure. The explicit ductile-brittle criterion depends not only upon the material specification through the two properties, but also and equally importantly depends upon the type of imposed stress state. The Mises criterion is a special (limiting) case of the present theory. A close examination of this case shows that the Mises material idealization does not necessarily imply ductile behavior under all conditions, only under most conditions. When the first invariant of the yield/failure stress state is sufficiently large relative to the distortional part, brittle failure will be expected to occur. For general material types, it is shown that it is possible to have a state of spreading plastic flow, but as the elastic-plastic boundary advances, the conditions for yielding on it can change over to conditions for brittle failure because of the evolving stress state. The general theory is of a three dimensional form and it applies to full density materials for which the yield/failure strength in uniaxial tension is less than or at most equal to the magnitude of that in uniaxial compression.

  17. An efficient Helmholtz solver for acoustic transversely isotropic media

    KAUST Repository

    Wu, Zedong

    2017-11-11

    The acoustic approximation, even for anisotropic media, is widely used in current industry imaging and inversion algorithms mainly because P-waves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulas tend to be simpler, resulting in more efficient implementations, and depend on less medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from S-wave artifacts. Thus, we propose to separate the quasi-P wave propagation in anisotropic media into the elliptic anisotropic operator (free of the artifacts) and the non-elliptic-anisotropic components, which form a pseudo-differential operator. We, then, develop a separable approximation of the dispersion relation of non-elliptic-anisotropic components, specifically for transversely isotropic (TI) media. Finally, we iteratively solve the simpler lower-order elliptical wave equation for a modified source function that includes the non-elliptical terms represented in the Fourier domain. A frequency domain Helmholtz formulation of the approach renders the iterative implementation efficient as the cost is dominated by the Lower-Upper (LU) decomposition of the impedance matrix for the simpler elliptical anisotropic model. Also, the resulting wavefield is free of S-wave artifacts and has balanced amplitude. Numerical examples show that the method is reasonably accurate and efficient.

  18. The Maximum Isotropic Energy of Gamma-ray Bursts

    Science.gov (United States)

    Atteia, J.-L.; Heussaff, V.; Dezalay, J.-P.; Klotz, A.; Turpin, D.; Tsvetkova, A. E.; Frederiks, D. D.; Zolnierowski, Y.; Daigne, F.; Mochkovitch, R.

    2017-03-01

    The most energetic gamma-ray bursts (GRBs) are remarkable sources releasing huge amounts of energy on short timescales. Their prompt emission, which usually lasts a few seconds, is so bright that it is visible across the whole observable universe. Studying these extreme events may provide clues on the nature of GRB progenitors and on the physical processes at work in relativistic jets. In this paper, we study the bright end of the isotropic energy distribution of long GRBs. We use two samples of long GRBs with redshift detected by Fermi/GBM or Konus-Wind, two instruments that measure the spectral shape and the energetics of the prompt emission accurately. We focus on GRBs within a range of redshifts z = 1-5, a volume that contains a large number of energetic GRBs, and we propose a simple method to reconstruct the bright end of the GRB energy distribution from the observed one. We find that the GRB energy distribution cannot be described by a simple power law but requires a strong cutoff above 1{--}3× {10}54 erg. We attribute this feature to an intrinsic limit on the energy per unit of solid angle radiated by GRBs.

  19. Magnetic resonance investigations of lipid motion in isotropic bicelles.

    Science.gov (United States)

    Andersson, August; Mäler, Lena

    2005-08-16

    The dynamics of DMPC in different isotropic bicelles have been investigated by NMR and EPR methods. The local dynamics were obtained by interpretation of 13C NMR relaxation measurements of DMPC in the bicelles, and these results were compared to EPR spectra of spin-labeled lipids. The overall size of the bicelles was investigated by PFG NMR translational diffusion measurements. The dynamics and relative sizes were compared among three different bicelles: [DMPC]/[DHPC] = 0.25, [DMPC]/[DHPC] = 0.5, and [DMPC]/[CHAPS] = 0.5. The local motion is found to depend much more strongly on the choice of the detergent, rather than the overall size of the bicelle. The results provide an explanation for differences in apparent dynamics for different peptides, which are bound to bicelles. This in turn determines under what conditions reasonable NMR spectra can be observed. A model is presented in which extensive local motion, in conjunction with the overall size, affects the spectral properties. An analytical expression for the size dependence of the bicelles, relating the radius of the bilayer region with physical properties of the detergent and the lipid, is also presented.

  20. Helical bottleneck effect in 3D homogeneous isotropic turbulence

    Science.gov (United States)

    Stepanov, Rodion; Golbraikh, Ephim; Frick, Peter; Shestakov, Alexander

    2018-02-01

    We present the results of modelling the development of homogeneous and isotropic turbulence with a large-scale source of energy and a source of helicity distributed over scales. We use the shell model for numerical simulation of the turbulence at high Reynolds number. The results show that the helicity injection leads to a significant change in the behavior of the energy and helicity spectra in scales larger and smaller than the energy injection scale. We suggest the phenomenology for direct turbulent cascades with the helicity effect, which reduces the efficiency of the spectral energy transfer. Therefore the energy is accumulated and redistributed so that non-linear interactions will be sufficient to provide a constant energy flux. It can be interpreted as the ‘helical bottleneck effect’ which, depending on the parameters of the injection helicity, reminds one of the well-known bottleneck effect at the end of inertial range. Simulations which included the infrared part of the spectrum show that the inverse cascade hardly develops under distributed helicity forcing.

  1. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Belluzzi, Luca [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland); Landi Degl’Innocenti, Egidio [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50125 Firenze (Italy); Bueno, Javier Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.

  2. High-Accuracy Approximation of High-Rank Derivatives: Isotropic Finite Differences Based on Lattice-Boltzmann Stencils

    Directory of Open Access Journals (Sweden)

    Keijo Kalervo Mattila

    2014-01-01

    Full Text Available We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils.

  3. High-accuracy approximation of high-rank derivatives: isotropic finite differences based on lattice-Boltzmann stencils.

    Science.gov (United States)

    Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar

    2014-01-01

    We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils.

  4. Reverse-time Migration in Tilted Transversely Isotropic Media with Decoupled Equations

    KAUST Repository

    Zhan, Ge

    2012-12-01

    Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, I extend these decoupled equations for modeling and reverse-time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral (PS) method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled P-wave equation remain numerically stable even for models with strong anisotropy and sharp contrasts. The most desirable feature of the TTI decoupled P-wave equation is that it is absolutely free of shear-wave artifacts and the consequent alleviation of numerical instabilities generally suffered by some systems of coupled equations. However, due to several forward-backward Fourier transforms in wavefield extrapolation at each time step, the computational cost is also high, and thereby hampers its prevalence. I hereby propose to use a hybrid pseudospectral and finite-difference (FD) scheme to solve the TTI decoupled P-wave equation. In the hybrid solution, most of the cost-consuming wavenumber terms in the equation are replaced by inexpensive FD operators, which in turn accelerates the computation and reduces the computational cost. To demonstrate the

  5. Cosmological simulations of isotropic conduction in galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Britton; O' Shea, Brian W.; Voit, G. Mark; Ventimiglia, David [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Skillman, Samuel W., E-mail: smit1685@msu.edu [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States)

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  6. Traveltime approximations for transversely isotropic media with an inhomogeneous background

    KAUST Repository

    Alkhalifah, Tariq

    2011-05-01

    A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.

  7. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  8. Cosmological Simulations of Isotropic Conduction in Galaxy Clusters

    Science.gov (United States)

    Smith, Britton; O'Shea, Brian W.; Voit, G. Mark; Ventimiglia, David; Skillman, Samuel W.

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ~5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  9. Extended self-assembled long periodicity and Zig-Zag domains from helix-helix diblock copolymer Poly(γ-benzyl-l-glutamate)-block-poly(O-benzyl-l-hydroxyproline).

    Science.gov (United States)

    Gkikas, Manos; Haataja, Johannes S; Seitsonen, Jani; Ruokolainen, Janne; Ikkala, Olli; Iatrou, Hermis; Houbenov, Nikolay

    2014-11-10

    We describe the synthesis and self-assembly of particularly high periodicity of diblock copolymers composed of poly(benzyl-l-hydroxyproline) (PBLHyP) and poly(γ-benzyl-l-glutamate) (PBLG), that is, two polypeptide blocks with dissimilar helical structures. The robust helicity of the PBLHyP block is driven by steric constraints of the repeat units, while PBLG forms α-helices driven by hydrogen bonding, allowing defects and deformations. Herein, high-molecular-weight diblock copolypeptides of PBLG-b-PBLHyP with three different volume fractions of the PBLHyP-blocks are discussed. For shorter PBLHyP blocks, hexagonal packing of PBLHyP helices is observed, while by increasing the length of the PBLHyP block, keeping at a similar PBLG block length, the packing is distorted. Zig-zag lamellar structures were obtained due to the mismatch in the packing periodicities of the PBLG and PBLHyP helices. The frustration that takes place at the interface leads the PBLHyP to tilt to match the PBLG periodicity. The zig-zag morphology is reported for the first time for high-molecular-weight helix-helix (rod-rod) copolypeptides, and the self-assembled periodicity is uncommonly large.

  10. Charged-Particle Transport in the Data-Driven, Non-Isotropic Turbulent Mangetic Field in the Solar Wind

    Science.gov (United States)

    Sun, P.; Jokipii, J. R.; Giacalone, J.

    2016-12-01

    Anisotropies in astrophysical turbulence has been proposed and observed for a long time. And recent observations adopting the multi-scale analysis techniques provided a detailed description of the scale-dependent power spectrum of the magnetic field parallel and perpendicular to the scale-dependent magnetic field line at different scales in the solar wind. In the previous work, we proposed a multi-scale method to synthesize non-isotropic turbulent magnetic field with pre-determined power spectra of the fluctuating magnetic field as a function of scales. We present the effect of test particle transport in the resulting field with a two-scale algorithm. We find that the scale-dependent turbulence anisotropy has a significant difference in the effect on charged par- ticle transport from what the isotropy or the global anisotropy has. It is important to apply this field synthesis method to the solar wind magnetic field based on spacecraft data. However, this relies on how we extract the power spectra of the turbulent magnetic field across different scales. In this study, we propose here a power spectrum synthesis method based on Fourier analysis to extract the large and small scale power spectrum from a single spacecraft observation with a long enough period and a high sampling frequency. We apply the method to the solar wind measurement by the magnetometer onboard the ACE spacecraft and regenerate the large scale isotropic 2D spectrum and the small scale anisotropic 2D spectrum. We run test particle simulations in the magnetid field generated in this way to estimate the transport coefficients and to compare with the isotropic turbulence model.

  11. Dynamic mechanical properties of isotropic/anisotropic silicon magnetorheological elastomer composites

    Science.gov (United States)

    Sapouna, K.; Xiong, Y. P.; Shenoi, R. A.

    2017-11-01

    This study examines the principle of combining isotropic and anisotropic magnetorheological elastomers (MRE) in parallel and series configurations, to adjust the zero-field dynamic stiffness and damping capability of silicon MREs without compromising MR effect. The dynamic mechanical properties can be further tailored by adjusting the isotropic/anisotropic ratio. Damping of parallel configuration isotropic/anisotropic composites can be increased by combining MREs made with iron particles of small (4-6 μm) and large (magnetic field-strain amplitude coupling effects were examined under a dynamic compressive strain where the amplitude was varied from 0.25% to 1.5%.

  12. Fourier Simulation of a Non-Isotropic Wind Field Model

    DEFF Research Database (Denmark)

    Mann, J.; Krenk, S.

    Realistic modelling of three dimensional wind fields has become important in calculation of dynamic loads on same spatially extended structures, such as large bridges, towers and wind turbines. For some structures the along wind component of the of the turbulent flow is important while for others...

  13. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  14. Pitch Control of Hexagonal Non-Close-Packed Nanosphere Arrays Using Isotropic Deformation of an Elastomer.

    Science.gov (United States)

    Huang, Xiaolu; Bjork, Matthew; Ratchford, Daniel C; Yeom, Junghoon

    2017-10-31

    Self-assembly of colloidal nanospheres combined with various nanofabrication techniques produces an ever-increasing range of two-dimensional (2D) ordered nanostructures, although the pattern periodicity is typically bound to the original interparticle spacing. Deformable soft lithography using controlled deformation of elastomeric substrates and subsequent contact printing transfer offer a versatile method to systematically control the lattice spacing and arrangements of the 2D nanosphere array. However, the anisotropic nature of uniaxial and biaxial stretching as well as the strain limit of solvent swelling makes it difficult to create well-separated, ordered 2D nanosphere arrays with large-area hexagonal arrangements. In this paper, we report a simple, facile approach to fabricate such arrays of polystyrene nanospheres using a custom-made radial stretching apparatus. The maximum stretchability and spatial uniformity of the poly(dimethylsiloxane) (PDMS) elastomeric substrate is systematically investigated. A pitch increase as large as 213% is demonstrated using a single stretching-and-transfer process, which is at least 3 times larger than the maximum pitch increase achievable using a single swelling-and-transfer process. Unlike the colloidal arrays generated by the uniaxial and biaxial stretching, the isotropic expansion of radial stretching allows the hexagonal array to retain its original structure across the entire substrate. Upon radial strain applied to the PDMS sheet, the nanosphere array with modified pitch is transferred to a variety of target substrates, exhibiting different optical behaviors and serving as an etch mask or a template for molding.

  15. MIMO Channel Capacity in 2D and 3D Isotropic Environments

    Directory of Open Access Journals (Sweden)

    Ryan J. Pirkl

    2012-01-01

    Full Text Available We analyze theoretical distributions of MIMO channel capacity for different antennas in 2D and 3D statistically isotropic environments, which may be generated by multiprobe anechoic and reverberation chambers, respectively. We observe that the two environments yield comparable capacity distributions provided that (1 the 2D statistically isotropic environment’s capacity data are taken at many different antenna orientations and (2 the radiation elements have a low directivity. When these conditions are met, we find that the relative error between the 2D statistically isotropic environment’s orientation-combined capacity distribution and the 3D statistically isotropic environment’s capacity distribution is typically less than 10% for signal-to-noise ratios greater than 5 dB.

  16. Interval estimation of the mass fractal dimension for isotropic sampling percolation clusters

    OpenAIRE

    Moskalev, P. V.; Grebennikov, K. V.; Shitov, V. V.

    2011-01-01

    This report focuses on the dependencies for the center and radius of the confidence interval that arise when estimating the mass fractal dimensions of isotropic sampling clusters in the site percolation model.

  17. Reversed Circular Dichroism of Isotropic Chiral Mediums with Negative Real permeability and permittivity

    OpenAIRE

    Lakhtakia, Akhlesh

    2002-01-01

    Negative real parts of the permittivity and permeability lead an isotropic chiral medium to exhibit circular dichroism that is reversed with respect to that exhibited by an identical medium but the real parts of whose permittivity and permeability are positive.

  18. Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)

    2002-07-01

    It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)

  19. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    OpenAIRE

    Tang, Anh Minh; Cui, Yu-Jun; Barnel, Nathalie

    2007-01-01

    International audience; This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed go...

  20. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    OpenAIRE

    Shakhawan Al-Zangana; Maria Iliut; Gökçen Boran; Michael Turner; Aravind Vijayaraghavan; Ingo Dierking

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such ...

  1. Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures

    Science.gov (United States)

    Noguchi, Hiroshi

    The membrane tubulation induced by banana-shaped protein rods is investigated by using coarse-grained meshless membrane simulations. It is found that the tubulation is promoted by laterally isotropic membrane inclusions that generate the same sign of spontaneous curvature as the adsorbed protein rods. The inclusions are concentrated in the tubules and reduce the bending energy of the tip of the tubules. On the other hand, the inclusions with an opposite curvature suppress the tubulation by percolated-network formation at a high protein-rod density while they induce a spherical membrane bud at a low rod density. When equal amounts of the two types of inclusions (with positive and negative curvatures) are added, their effects cancel each other for the first short period but later the tubulation is slowly accelerated. A positive surface tension suppresses the tubulation. Out results suggest that the cooperation of scaffolding of BAR (Bin/Amphiphysin/Rvs) domains and isotropic membrane inclusions is important for the tubulation.

  2. Decay of isotropic flow and anisotropic flow with rotation or magnetic field or both in a weakly nonlinear regime

    CERN Document Server

    Wei, Xing

    2016-01-01

    We investigate numerically the decay of isotropic, rotating, magnetohydrodynamic (MHD), and rotating MHD flows in a periodic box. The Reynolds number $Re$ defined with the box size and the initial velocity is $100$ at which the flows are in a weakly nonlinear regime, i.e. not laminar but far away from the fully turbulent state. The decay of isotropic flow has two stages, the first stage for the development of small scales and the second stage for the viscous dissipation. In the rapidly rotating flow, fast rotation induces the inertial wave and causes the large-scale structure to inhibit the development of the first stage and retard the flow decay. In the MHD flow, the imposed field also causes the large-scale structure but facilitates the flow decay in the first stage because of the energy conversion from flow to magnetic field. Magnetic Reynolds number $Rm$ is important for the dynamics of the MHD flow, namely a high $Rm$ induces the Alfv\\'en wave but a low $Rm$ cannot. In the rotating MHD flow, slower rotat...

  3. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  4. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  5. Final Report DOE Supported Activities through the Utility/DOE Matching Grant Program Contract Number DE FG02-95NE38111 For the Period 30 September 1995 through 30 September 2002 Extended until 30 March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James F.

    2003-08-15

    This report covers activities in the Univesity of Illinois Department of Nulcear, Plasma and Radiological Engineering Matching Grant Program for the period form 30 September 1995 to 30 March 2003. The funds for this program include industrial partner funds which were matched, or nearly matched by DOE-NE. The industrial partner was Commonwealth Edison, which changed its corporate structure and name to Exelon during the course of the contract. The funds from the contract were used to support nuclear engineering educational needs, including undergraduate and graduate students support, purchase of laboratory equipment, support for seminar speakers and conferences, and support for new faculty members. The funds were instrumental in maintaining a first quality nuclear engineering educational program at the University of Illinois.

  6. Growth of isotropic domains as a mechanism of dynamic diffraction grating recording in low molecular liquid-crystalline derivatives of azobenzene.

    Science.gov (United States)

    Czajkowski, Maciej; Bartkiewicz, Stanislaw; Mysliwiec, Jaroslaw

    2012-03-15

    In this paper, we propose and explain the mechanism of dynamic molecular motions and isotropic domain formation during the diffraction grating recording in low molecular liquid-crystalline azobenzene derivatives. The photochromic molecules of 4-heptyl-4'-methoxyazobenzene, showing nematic liquid-crystalline properties close to the room temperature (from T = 34 °C), are used. A one-dimensional model of the grating formation is formulated based on in vivo polarized microscope observations. Formation and growth of the isotropic domains induced by the sinusoidally modulated Gaussian light intensity distribution is proposed as the mechanism and is used for experimental data fitting. The influence of the recording light intensity, grating period, and temperature on the domain growth rate factor is checked. © 2012 American Chemical Society

  7. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  8. Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    CERN Document Server

    Zeng, Yi

    2013-01-01

    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to...

  9. Quasi-isotropic surface plasmon polariton generation through near-field coupling to a penrose pattern of silver nanoparticles.

    Science.gov (United States)

    Verre, Ruggero; Antosiewicz, Tomasz J; Svedendahl, Mikael; Lodewijks, Kristof; Shegai, Timur; Käll, Mikael

    2014-09-23

    Quasicrystals are structures that possess long-range order without being periodic. We investigate the unique characteristics of a photonic quasicrystal that consists of plasmonic Ag nanodisks arranged in a Penrose pattern. The quasicrystal scatters light in a complex but spectacular diffraction pattern that can be directly imaged in the back focal plane of an optical microscope, allowing us to assess the excitation efficiency of the various diffraction modes. Furthermore, surface plasmon polaritons can be launched almost isotropically through near-field grating coupling when the quasicrystal is positioned close to a homogeneous silver surface. We characterize the dispersion relation of the different excited plasmon modes by reflection measurements and simulations. It is demonstrated that the quasicrystal in-coupling efficiency is strongly enhanced compared to a nanoparticle array with the same particle density but only short-range lateral order. We envision that the system can be useful for a number of advanced light harvesting and optoelectronic applications.

  10. Interaction of elliptically polarised cross-degenerate cnoidal waves in an isotropic gyrotropic medium with spatial dispersion of cubic nonlinearity

    Science.gov (United States)

    Makarov, V. A.; Petnikova, V. M.; Shuvalov, V. V.

    2015-09-01

    Three unusual classes of particular analytical solutions to a system of four nonlinear equations are found for slowly varying complex amplitudes of circularly polarised components of the electric field. The system describes the self-action and interaction of two elliptically polarised plane waves collinearly propagating in an isotropic medium with second-order frequency dispersion and spatial dispersion of cubic nonlinearity. The solutions correspond to self-consistent combinations of two elliptically polarised cnoidal waves whose mutually orthogonal polarisation components vary in accordance with pairwise identical laws during propagation. At the same time, the amplitudes of the component with the same circular polarisation are proportional to two different elliptic Jacobi functions with the same periods.

  11. White-light spectral interferometric techniques used to measure the group dispersion of isotropic and anisotropic optical elements

    Science.gov (United States)

    Hlubina, P.; Ciprian, D.; Chlebus, R.

    2007-06-01

    We present two di.erent white-light spectral interferometric techniques employing a low-resolution spectrometer for a direct measurement of the group dispersion of isotropic and anisotropic optical elements. First, the dispersion of the group refractive index for glass plate is measured in a Michelson interferometer with the plate of known thickness inserted in one of the interferometer arms. The technique utilizes the spectrometer to record a series of spectral interferograms for measuring the equalization wavelength as a function of the displacement of the interferometer mirror from the reference position, which corresponds to a balanced Michelson interferometer. The use of the technique is extended for measuring the dispersion of the group refractive indices for the ordinary and extraordinary polarizations in a quartz crystal. We con.rm that the measured group dispersions agree well with those resulting from the semiempirical dispersion equations. We also show that the measured mirror displacement depends, in accordance with the theory, linearly on the theoretical group refractive index and that the slope of the corresponding straight line gives precisely the thickness of the quartz crystal. Second, the group dispersion of the quartz crystal is measured in an unbalanced Mach-Zehnder interferometer with the adjustable path length when the crystal is inserted in the test arm. The use of the second technique is extended for measuring the di.erential group dispersion of a glass of a holey optical fiber.

  12. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    Science.gov (United States)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  13. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: applications to the isotropic liquid/vapor interface and isotropic/nematic transition.

    Science.gov (United States)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-21

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, k(B)T(conf)=/, where ∇(r) is the nabla operator of position vector r. As far as we know, T(conf) was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T(conf) is much more widespread with more common potentials (Lennard Jones, electrostatic, ...). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  14. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material

    CERN Document Server

    Ni, Jincheng; Zhang, Chenchu; Hu, Yanlei; Yang, Liang; Lao, Zhaoxin; Xu, Bing; Li, Jiawen; Wu, Dong; Chu, Jiaru

    2016-01-01

    Optical vortices, as a kind of structured beam with helical phase wavefronts and doughnut shape intensity distribution, have been used for fabricating chiral structures in metal and spiral patterns in anisotropic polarization-dependent azobenzene polymer. However, in isotropic polymer, the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to two-dimensional doughnut intensity profile of optical vortices. Here we develop a powerful strategy for realizing chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave, which produces three-dimensional (3D) spiral optical fields. This coaxial interference beams are creatively produced by designing the contrivable holograms consisting of azimuthal phase and equiphase loaded on liquid-crystal spatial light modulator. Then, in isotropic polymer, 3D chiral microstructures are achieved under illumination of the coaxial interference femtosecond laser beams with their chirality controlled by ...

  15. A 3D printed dual GSM band near isotropic on-package antenna

    KAUST Repository

    Zhen, Su

    2017-10-25

    In this paper, we propose an on-package dual band monopole antenna with near-isotropic radiation pattern for GSM mobile applications. The proposed antenna is well matched for both GSM 900 and 1800 bands and provides decent gain for both the bands (1.67 and 3.27 dBi at 900 MHz and 1800 MHz respectively). The antenna is printed with silver ink on a 3D printed polymer based package. The package houses the GSM electronics and the battery. By optimizing the antenna arms width and length, a near-isotropic radiation pattern is achieved. Unlike the published isotropic antennas which are either single band or large in size, the proposed antenna covers both GSM bands with required bandwidth and is only half wavelength long. The design is low cost and highly suitable for various GSM applications such as localization, in additional to conventional communication applications.

  16. On the Speed of Rotation of the Isotropic Space (the Home of Photons)

    Science.gov (United States)

    Rabounski, Dmitri

    2009-10-01

    This paper applies the mathematical method of chronometric invariants, which are physical observable quantities in the General Theory of Relativity (Zelmanov A.L., Soviet Physics Doklady, 1956, v.1, 227-230). The isotropic region of the four-dimensional space-time is considered. This is the home for massless light-like particles (e.g. photons). It is shown that the isotropic space rotates, at each its point, with a linear velocity equal to the velocity of light. Even if the problem is tackled in the simplified conditions of Special Relativity, the same result is obtained. It is shown that the light-speed rotation of the isotropic space has a purely geometrical origin due to the space-time metric, where time is presented as the fourth coordinate, expressed through the velocity of light. This presentation is dedicated to Hermann Minkowski, on the 100th anniversary of his ``Raum und Zeit''.

  17. Excitation of surface waves on the interfaces of general bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    We study theoretically the characteristics of surface waves excited at the interface between a metal and a general bi-isotropic medium, which includes isotropic chiral media and Tellegen media as special cases. We derive an analytical dispersion relation for surface waves, using which we calculate the effective index and the propagation length numerically. We also calculate the absorptance, the cross-polarized reflectance and the spatial distribution of the electromagnetic fields for plane waves incident on a bilayer system consisting of a metal layer and a bi-isotropic layer in the Kretschmann configuration, using the invariant imbedding method. The results obtained using the invariant imbedding method agree with those obtained from the dispersion relation perfectly. In the case of chiral media, the effective index is an increasing function of the chirality index, whereas in Tellegen media, it is a decreasing function of the Tellegen parameter. The propagation length for surface waves in both cases increase ...

  18. Refractive Index and Wave Resistance of Homogeneous Plane Waves in Isotropic Media with Losses and Gain

    Science.gov (United States)

    Fisanov, V. V.

    2017-09-01

    Analytical expressions for complex values of the wave number, refractive index, and the characteristic wave impedance of homogeneous electromagnetic plane waves propagating in a linear, homogeneous, isotropic medium with losses and gain are derived. Formulas for determining the type of normal wave as a function of the values of the real and imaginary parts of the permittivity and permeability are obtained, and conditions for the appearance of positive and negative refraction at the interface of two isotropic media are indicated. In the approach applied here, the concept of a negative refractive index is not used.

  19. Direct manipulation of wave amplitude and phase through inverse design of isotropic media

    Science.gov (United States)

    Liu, Y.; Vial, B.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.

    2017-07-01

    In this article we propose a new design methodology allowing us to control both amplitude and phase of electromagnetic waves from a cylindrical incident wave. This results in isotropic materials and does not resort to transformation optics or its quasi-conformal approximations. Our method leads to two-dimensional isotropic, inhomogeneous material profiles of permittivity and permeability, to which a general class of scattering-free wave solutions arise. Our design is based on the separation of the complex wave solution into amplitude and phase. We give two types of examples to validate our methodology.

  20. The comparative study on analytical solutions and numerical solutions of displacement in transversely isotropic rock mass

    Science.gov (United States)

    Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao

    2016-06-01

    This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.

  1. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  2. Historiske perioder

    DEFF Research Database (Denmark)

    2017-01-01

    For at forstå fortiden og fortællingerne om den, må vi skabe en form for orden og systematik. Her spiller inddelingen af fortiden i historiske perioder en afgørende rolle – og historiske perioder er da også et kompetencemål efter 6. klasse. Videoen diskuterer forskellige principper...... for periodisering. Kronologi og sammenhænge hænger naturligt sammen med historiske perioder. Videoen handler også om forståelser og brug af synkrone og diakrone sammenhænge i faget....

  3. Extended icosahedral structures

    CERN Document Server

    Jaric, Marko V

    1989-01-01

    Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra

  4. Constructing 3D isotropic and azimuthally anisotropic crustal models across USArray using Rayleigh wave phase velocity and ellipticity: inferring continental stress field

    Science.gov (United States)

    Lin, F. C.; Schmandt, B.; Tsai, V. C.

    2014-12-01

    The EarthScope USArray Transportable Array (TA) has provided a great opportunity for imaging the detailed lithospheric structure beneath the continental US. In this presentation, we will report our recent progress on constructing detailed 3D isotropic and anisotropic crustal models of the contiguous US using Rayleigh wave phase velocity and ellipticity measurements across TA. In particular, we will discuss our recent methodology development of extracting short period Rayleigh wave ellipticity, or Rayleigh-wave H/V (horizontal to vertical) amplitude ratios, using multicomponent noise cross-correlations. To retain the amplitude ratio information between vertical and horizontal components, for each station, we perform daily noise pre-processing (temporal normalization and spectrum whitening) simultaneously for all three components. For each station pair, amplitude measurements between cross-correlations of different components (radial-radial, radial-vertical, vertical-radial and vertical-vertical) are then used to determine the Rayleigh-wave H/V ratios at the two station locations. Measurements from all available station pairs are used to determine isotropic and directionally dependent Rayleigh-wave H/V ratios at each location between 8- and 24-second period. The isotropic H/V ratio maps, combined with previous longer period Rayleigh-wave H/V ratio maps from earthquakes and Rayleigh-wave phase velocity maps from both ambient noise and earthquakes, are used to invert for a new 3-D isotropic crustal and upper-mantle model in the western United States. The new model has an outstanding vertical resolution in the upper crust and tradeoffs between different parameters are mitigated. A clear 180-degree periodicity is observed in the directionally dependent H/V ratio measurements for many locations where upper crustal anisotropy is likely strong. Across the US, good correlation is observed between the inferred fast directions in the upper crust and documented maximum

  5. Static deformation due to a long buried dip-slip fault in an isotropic ...

    Indian Academy of Sciences (India)

    Static deformation due to a long buried dip-slip fault in an isotropic half-space welded with an orthotropic half-space. NEERU BALA and SUNITA RANI. ∗. Department of Mathematics, Guru Jambheshwar University of Science and. Technology, Hisar 125 001 e-mail: s−b−rani@rediffmail.com. MS received 29 April 2008; ...

  6. Static deformation due to a long buried dip-slip fault in an isotropic ...

    Indian Academy of Sciences (India)

    Closed-form analytical expressions for the displacements and the stresses at any point of a two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a homogeneous, orthotropic, perfectly elastic half-space due to a dip-slip fault of finite width located at an arbitrary ...

  7. Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence

    NARCIS (Netherlands)

    Tsinober, A.; Vedula, P.; Yeung, P.K.

    2001-01-01

    The properties of acceleration fluctuations in isotropic turbulence are studied in direct numerical simulations (DNS) by decomposing the acceleration as the sum of local and convective contributions (aL = ?u/?t and aC = u??u), or alternatively as the sum of irrotational and solenoidal contributions

  8. Ca2+-induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers

    NARCIS (Netherlands)

    Gerritsen, W.J.; Kruijff, B. de; Verkleij, A.J.; Gier, J. de; Deenen, L.L.M. van

    1980-01-01

    Ca2+ induces a structural change in phosphatidylcholine-cardiolipin bilayers, which is visualised by freeze-fracturing as lipidic particles associated with the bilayer and is detected by 31P-NMR as isotropic motion of the phospholipids. In this structure a rapid transbilayer movement of

  9. Multiscale modeling of residual stresses in isotropic conductive adhesives with nano particles

    NARCIS (Netherlands)

    Erinc, M.; Dijk, M. van; Kouznetsova, V.H.

    2012-01-01

    Isotropic Conductive Adhesives (ICAs) are promising candidates for low temperature joining technologies in microelectronics, enabling ultra-fine pitch sizes. Especially in solar and automotive applications, long-term reliability is a prerequisite in new generation electronics. It is essential that

  10. Weak convergence to isotropic complex S α S $S\\alpha S$ random measure

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2017-09-01

    Full Text Available Abstract In this paper, we prove that an isotropic complex symmetric α-stable random measure ( 0 < α < 2 $0<\\alpha<2$ can be approximated by a complex process constructed by integrals based on the Poisson process with random intensity.

  11. Reliability investigations on LIFT-printed isotropic conductive adhesive joints for system-in-foil applications

    NARCIS (Netherlands)

    Sridhar, A.; Perinchery, S.M.; Smits, E.C.P.; Mandamparambil, R.; Brand, J. van den

    2015-01-01

    The reliability of a commercially available isotropic conductive adhesive (ICA) deposited via laser induced forward transfer (LIFT) printing is reported. ICAs are particularly important for surfacemount device (SMD) integration onto low-cost, large-area system-in-foil (SiF) applications such as

  12. Correlation and Capacity Calculations with Reference Antennas in an Isotropic Environment

    Directory of Open Access Journals (Sweden)

    Thorkild B. Hansen

    2012-01-01

    Full Text Available A reverberation chamber is a convenient tool for over-the-air testing of MIMO devices in isotropic environments. Isotropy is typically achieved in the chamber through the use of a mode stirrer and a turntable on which the device under test (DUT rides. The quality of the isotropic environment depends on the number of plane waves produced by the chamber and on their spatial distribution. This paper investigates how the required sampling rate for the DUT pattern is related to the plane-wave density threshold in the isotropic environment required to accurately compute antenna correlations. Once the plane-wave density is above the threshold, the antenna correlation obtained through isotropic experiments agrees with the antenna correlation obtained from the classical definition, as has been proven theoretically. This fact is verified for the good, nominal, and bad reference antennas produced by CTIA. MIMO channel capacity simulations are performed with a standard base station model and the DUT placed in a single-tap plane-wave reverberation chamber model. The capacity curves obtained with the good, nominal, and bad reference antennas are clearly distinguishable.

  13. Non-collinear wave mixing for a bulk wave phase velocity measurement in an isotropic solid

    NARCIS (Netherlands)

    Demcenko, A.

    2013-01-01

    A measurement method is presented to estimate the bulk wave phase velocity in an isotropic solid when longitudinal or shear wave velocity is known. This method is based on the non-collinear plane wave interaction theory and it does not need to estimate the phase time-of-flight and wave propagation

  14. Emergence of a thin shell structure during collapse in isotropic coordinates

    Science.gov (United States)

    Beauchesne, Hugues; Edery, Ariel

    2012-02-01

    Numerical studies of gravitational collapse in isotropic coordinates have recently shown an interesting connection between the gravitational Lagrangian and black hole thermodynamics. A study of the actual spacetime was not the main focus of this work and, in particular, the rich and interesting structure of the interior has not been investigated in much detail and remains largely unknown. We elucidate its features by performing a numerical study of the spacetime in isotropic coordinates during gravitational collapse of a massless scalar field. The most salient feature to emerge is the formation of a thin shell of matter just inside the apparent horizon. The energy density and Ricci scalar peak at the shell and there is a jump discontinuity in the extrinsic curvature across the apparent horizon, the hallmark that a thin shell is present in its vicinity. At late stages of the collapse, the spacetime consists of two vacuum regions separated by the thin shell. The interior is described by an interesting collapsing isotropic universe. It tends towards a vacuum (never reaches a perfect vacuum) and there is a slight inhomogeneity in the interior that plays a crucial role in the collapse process as the areal radius tends to zero. The spacetime evolves towards a curvature (physical) singularity in the interior, both a Weyl and Ricci singularity. In the exterior, our numerical results match closely the analytical form of the Schwarzschild metric in isotropic coordinates, providing a strong test of our numerical code.

  15. Exploitation of homogeneous isotropic turbulence models for optimization of turbulence remote sensing

    NARCIS (Netherlands)

    Oude Nijhuis, A.C.P.; Krasnov, O.K.; Unal, C.M.H.; Russchenberg, H.W.J.; Yarovoy, A.

    2015-01-01

    Homogeneous isotropic turbulence (HIT) models are compared, with respect to optimization of turbulence remote sensing. HIT models have different applications such as load calculation for wind turbines (Mann, 1998) or droplet track modelling (Pinsky and Khain, 2006). Details of vortices seem of less

  16. Homogeneous isotropization and equilibration of a strongly coupled plasma with a critical point

    Science.gov (United States)

    Critelli, Renato; Rougemont, Romulo; Noronha, Jorge

    2017-12-01

    We use holography to investigate the process of homogeneous isotropization and thermalization in a strongly coupled N=4 Super Yang-Mills plasma charged under a U(1) subgroup of the global SU(4) R-symmetry which features a critical point in its phase diagram. Isotropization dynamics at late times is affected by the critical point in agreement with the behavior of the characteristic relaxation time extracted from the analysis of the lowest non-hydrodynamic quasinormal mode in the SO(3) quintuplet (external scalar) channel of the theory. In particular, the isotropization time may decrease or increase as the chemical potential increases depending on whether one is far or close enough to the critical point, respectively. On the other hand, the thermalization time associated with the equilibration of the scalar condensate, which happens only after the system has relaxed to a (nearly) isotropic state, is found to always increase with chemical potential in agreement with the characteristic relaxation time associated to the lowest non-hydrodynamic quasinormal mode in the SO(3) singlet (dilaton) channel. These conclusions about the late dynamics of the system are robust in the sense that they hold for different initial conditions seeding the time evolution of the far-from-equilibrium plasma.

  17. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    Science.gov (United States)

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-08-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 oC) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

  18. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    Science.gov (United States)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  19. PERIODIC BEHAVIORS

    NARCIS (Netherlands)

    Napp, Diego; Put, Marius van der; Shankar, Shiva

    2010-01-01

    This paper studies behaviors that are defined on a torus, or equivalently, behaviors defined in spaces of periodic functions, and establishes their basic properties analogous to classical results of Malgrange, Palamodov, Oberst et al. for behaviors on R(n). These properties-in particular the

  20. Assessment of the bioequivalence of two formulations of clarithromycin extended-release 500-mg tablets under fasting and fed conditions: a single-dose, randomized, open-label, two-period, two-way crossover study in healthy Jordanian male volunteers.

    Science.gov (United States)

    Alkhalidi, Bashar A; Tamimi, Jaafar J; Salem, Isam I; Ibrahim, Husain; Sallam, Alsayed Alarabi I

    2008-10-01

    Clarithromycin extended-release tablets are indicated for the treatment of adults with acute maxillary sinusitis caused by Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae; acute bacterial exacerbation of chronic bronchitis due to H influenzae, Haemophilus parainfluenzae, M catarrhalis, or S pneumoniae; or community acquired pneumonia due to H influenzae, H parainfluenzae, M catarrhalis, S pneumoniae, Chlamydia pneumoniae, or Mycoplasma pneumoniae. This study was conducted to assess the bioequivalence of test and reference formulations of clarithromycin extended-release 500-mg tablets under fasting and fed conditions. This was a single-dose, randomized, open-label, 2-period, 2-way crossover study with a 1-week washout period between doses. Separate bioequivalence studies (fasting and fed) were performed in 2 groups of healthy male Jordanian volunteers. Eighteen blood samples were obtained from each volunteer over 38 hours after drug administration. Clarithromycin concentrations were determined in plasma using a validated high-performance liquid chromatography method with electrochemical detection. Pharmacokinetic parameters of clarithromycin (C(max), T(max), AUC(0-t), AUC(0-infinity), lambda(z) [first-order elimination rate constant], and t((1/2))) were calculated and analyzed statistically. Tolerability was assessed based on changes in vital signs and laboratory tests, and by questioning subjects about adverse events. Thirty-eight volunteers each participated in the fasting and fed studies. The mean ages of participants in the fasting and fed studies were 26.7 and 27.6 years, respectively; their mean weight was 71.2 and 70.9 kg and mean height was 171.3 and 179.0 cm. Under fasting conditions, the arithmetic mean (SD) C(max) was 569.4 (189.3) ng/mL for the test formulation and 641.2 (202.0) ng/mL for the reference formulation, with a geometric mean ratio of 0.88. The arithmetic mean AUC(0-t) was 8602.9 (4105.1) and 8245.3 (4122.4) ng . h

  1. Analysis of RTM extended images for VTI media

    KAUST Repository

    Li, Vladimir

    2016-04-28

    Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity (Vnmo), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters η and δ. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of η is dip-dependent, whereas errors in δ cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of η and δ on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.

  2. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  3. Extended defects in Germanium

    CERN Document Server

    Osgood, R M

    2008-01-01

    Intends to provide a fundamental understanding of the extended-defect formation during Ge materials and device processing, providing ways to distinguish harmful from less detrimental defects and should point out ways for defect engineering and control.

  4. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Qualitative and Quantitative Assessment of Isotropic Ankle Magnetic Resonance Imaging: Three-Dimensional Isotropic Intermediate-Weighted Turbo Spin Echo versus Three-Dimensional Isotropic Fast Field Echo Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun; Su; Yoon, Young Cheol; Kwon, Jong Won [Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul (Korea, Republic of); Choe, Bong Keun [Kyung Hee University School of Medicine, Seoul (Korea, Republic of)

    2012-07-15

    To compare the image quality of volume isotropic turbo spin echo acquisition (VISTA) imaging method with that of the three-dimensional (3D) isotropic fast field echo (FFE) imaging method applied for ankle joint imaging. MR imaging of the ankles of 10 healthy volunteers was performed with VISTA and 3D FFE sequences by using a 3.0 T machine. Two radiologists retrospectively assessed the tissue contrast between fluid and cartilage (F-C), and fluid and the Achilles tendon (F-T) with use of a 4-point scale. For a quantitative analysis, signal-to-noise ratio (SNR) was obtained by imaging phantom, and the contrast ratios (CRs) were calculated between F-T and F-C. Statistical analyses for differences in grades of tissue contrast and CRs were performed. VISTA had significantly superior grades in tissue contrast of F-T (p = 0.001). Results of 3D FFE had superior grades in tissue contrast of F-C, but these result were not statistically significant (p 0.157). VISTA had significantly superior CRs in F-T (p = 0.002), and 3D FFE had superior CRs in F-C (p = 0.003). The SNR of VISTA was higher than that of 3D FFE (49.24 vs. 15.94). VISTA demonstrates superior tissue contrast between fluid and the Achiles tendon in terms of quantitative and qualitative analysis, while 3D FFE shows superior tissue contrast between fluid and cartilage in terms of quantitative analysis.

  6. Electromagnetic wave propagation and wave-vector diagram in space-time periodic media.

    Science.gov (United States)

    Elachi, C.

    1972-01-01

    Analysis of TE and TM wave propagation in space-time periodic media such as dielectrics, isotropic plasmas and uniaxial plasmas. A numerical solution is obtained for media with sinusoidal periodicity. Wave-vector diagrams are plotted to facilitate studies of dipole radiation, wave propagation in waveguides and wave interactions with a half-space.

  7. Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gubitosi, Giulia [Berkeley Lab and University of California, Berkeley, CA 94720 (United States); Migliaccio, Marina [Università di Roma Tor Vergata, via della Ricerca Scientifica, 1, Roma (Italy); Pagano, Luca [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California (United States); Amelino-Camelia, Giovanni; Melchiorri, Alessandro [Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma (Italy); Natoli, Paolo [Dipartimento di Fisica, Università di Ferrara, via G. Saragat 1, Ferrara (Italy); Polenta, Gianluca, E-mail: giulia.gubitosi@berkeley.edu, E-mail: Marina.Migliaccio@roma2.infn.it, E-mail: luca.pagano@jpl.nasa.gov, E-mail: giovanni.amelino-camelia@roma1.infn.it, E-mail: alessandro.melchiorri@roma1.infn.it, E-mail: paolo.natoli@roma2.infn.it, E-mail: gianluca.polenta@asdc.asi.it [Agenzia Spaziale Italiana Science Data Center, c/o ESRIN, via Galileo Galilei, Frascati (Italy)

    2011-11-01

    We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.

  8. Goos-Hänchen Lateral Displacements at the Interface between Isotropic and Gyroelectric Media

    Directory of Open Access Journals (Sweden)

    Jinbao Wang

    2013-01-01

    Full Text Available A detailed study on Goos-Hänchen (GH lateral displacements of the reflected and transmitted waves propagating at the interface between an isotropic medium and a gyroelectric medium in Voigt configuration is presented. After the reflection coefficient and transmission coefficient are derived, based on the stationary phase approach, GH lateral displacements are obtained analytically. The numerical results for a specific gyroelectric medium are also given. It shows that with the existence of an applied magnetic field, the GH effect occurs not only during total reflection but also during nontotal reflection, which is not true for isotropic media. Moreover, due to the nonreciprocal property of the gyroelectric medium, the sign of the incident angle also influences the displacements. Finite-element method simulations have verified the theoretical results.

  9. Global distribution of energetic proton precipitations equatorward of the boundary of isotropic fluxes

    Science.gov (United States)

    Semenova, N. V.; Yahnina, T. A.; Yahnin, A. G.; Demekhov, A. G.

    2017-07-01

    Based on data of the NOAA POES satellite, the global distribution of the occurrence rate of precipitations of energetic protons ( E > 30 keV) equatorward of the boundary of isotropic fluxes has been constructed for the first time. It has been shown that the occurrence rate of proton precipitations inside the zone of anisotropic fluxes is maximum in daytime hours (1100-1600 MLT) at latitudes L = 6-9 and decreases in evening and morning hours. Comparison of the obtained results about proton precipitations with the spatial distribution of the occurrence rate of electromagnetic ion-cyclotron (EMIC) waves in the equatorial magnetosphere according to results of satellite observations demonstrates a close relationship between them. This corroborates that precipitations of energetic protons equatorward of the boundary of isotropic fluxes are a consequence of the development of the ion-cyclotron instability in the equatorial magnetosphere.

  10. Kerr effect at high electric field in the isotropic phase of mesogenic materials.

    Science.gov (United States)

    Li, Bing-Xiang; Borshch, Volodymyr; Shiyanovskii, Sergij V; Liu, Shao-Bin; Lavrentovich, Oleg D

    2015-11-01

    The well-known Kerr effect in isotropic fluids consists in the appearance of uniaxial orientational order and birefringence that grows as the square of the applied electric field. We predict and observe that at a high electric field, the Kerr effect displays features caused by the nonlinear dependence of dielectric permittivity on the field-induced orientational order parameter. Namely, the field-induced birefringence grows faster than the square of the electric field and the dynamics of birefringence growth slows down as the field increases. As a function of temperature, the field-induced birefringence is inversely proportional to the departure from an asymptotic critical temperature, but this temperature is no longer a constant (corresponding to the lower limit of the supercooled isotropic phase) and increases proportionally to the square of the electric field.

  11. Design of 3D isotropic metamaterial device using smart transformation optics.

    Science.gov (United States)

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  12. Oscillating test of the isotropic shift of the speed of light.

    Science.gov (United States)

    Baynes, Fred N; Tobar, Michael E; Luiten, Andre N

    2012-06-29

    In this Letter, we present an improved constraint on possible isotropic variations of the speed of light. Within the framework of the standard model extension, we provide a limit on the isotropic, scalar parameter κ̃(tr) of 3±11×10({-10), an improvement by a factor of 6 over previous constraints. This was primarily achieved by modulating the orientation of the experimental apparatus with respect to the velocity of Earth. This orientation modulation shifts the signal for Lorentz invariance to higher frequencies, and we have taken advantage of the higher stability of the resonator at shorter time scales, together with better rejection of systematic effects, to provide a new constraint.

  13. Surface-induced discrete smectic order in the isotropic phase of 12 CB in cylindrical pores

    Science.gov (United States)

    Iannacchione, Germano S.; Mang, Joseph T.; Kumar, Satyendra; Finotello, Daniele

    1994-11-01

    Through specific-heat and x-ray scattering studies, we show the existence of surface-induced discrete smectic order in the isotropic phase for dodecylcyanobiphenyl (12CB) confined to Anopore membranes. A quantized smectic layer growth is promoted by the pore surface when treated with an aliphatic acid of varying chain length. No surface-induced smectic order develops in untreated or lecithin treated pores nor in liquid crystals that possess a nematic phase.

  14. Spin-wave logic devices based on isotropic forward volume magneto-static waves

    OpenAIRE

    Klingler, Stefan; Pirro, Philipp; Brächer, Thomas; Leven, Britta; Hillebrands, Burkard; Chumak, Andrii V.

    2015-01-01

    We propose the utilization of isotropic forward volume magneto-static spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that the proposed out-of-plane magnetized majority gate overcomes the limitations of anisotropic in-plane magnetized majority gates due to the high spin-wave transmission through the gate, which enables a reduced energy consumption of these devices. Mor...

  15. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    OpenAIRE

    Gerald Artner; Gentner, Philipp K.; Johann Nicolics; Mecklenbräuker, Christoph F.

    2017-01-01

    A carbon fiber reinforced polymer (CFRP) laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the...

  16. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front.

    Science.gov (United States)

    Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-10

    We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing.

  17. The isotropic spectrum of the CO2 Raman 2ν3 overtone: a line-mixing band shape analysis at pressures up to several tens of atmospheres.

    Science.gov (United States)

    Verzhbitskiy, I A; Kouzov, A P; Rachet, F; Chrysos, M

    2011-06-14

    A line-mixing shape analysis of the isotropic remnant Raman spectrum of the 2ν(3) overtone of CO(2) is reported at room temperature and for densities, ρ, rising up to tens of amagats. The analysis, experimental and theoretical, employs tools of non-resonant light scattering spectroscopy and uses the extended strong collision model (ESCM) to simulate the strong line mixing effects and to evidence motional narrowing. Excellent agreement at any pressure is observed between the calculated spectra and our experiment, which, along with the easy numerical implementation of the ESCM, makes this model stand out clearly above other semiempirical models for band shape calculations. The hitherto undefined, explicit ρ-dependence of the vibrational relaxation rate is given. Our study intends to improve the understanding of pressure-induced phenomena in a gas that is still in the forefront of the news.

  18. An extended day program

    Directory of Open Access Journals (Sweden)

    Ševkušić-Mandić Slavica G.

    2002-01-01

    Full Text Available The paper presents the results of a pilot project evaluation, carried out as an action investigation whose aim was to provide a better quality extended day for primary school students. The project included the training of teachers involved in extended day program, designing of special activities performed by teachers with children once a week as well as changes and equipping of premises where children stay. The aims of the program were conception and performance of activities in a less formal way than during regular instructional days, linking of learning at school and acquired knowledge to everyday experiences, and work on contents contributing to the development of child's interests and creativity. The program was accomplished in a Belgrade primary school during the 2001/2002 academic year, comprising students of 1st and 2nd grades (N=77. The effects of the program were monitored throughout the academic year (observation and teachers' reports on accomplished workshops and at the end of the academic year (teachers and students' opinions of the program, academic achievement and creativity of students attending the extended day program compared with students not attending it. Findings about positive effects of the program on students' broadening of interests and willingness to express themselves creatively, indicate unequivocally that there is a need for developing special extended day programs. The extended day program is an opportunity for school to exert greater educational influence that has yet to be tapped.

  19. Extended spider cognition.

    Science.gov (United States)

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  20. Modeling the Extended Warranty: A Managerial Focus

    OpenAIRE

    Myung, Noah; Eger, Robert J.

    2015-01-01

    We provide a model of an extended warranty. To maximize profit, a producer always wants to sell with some type of warranty as opposed to selling with no warranty. The extended warranty is more likely to be provided as the consumer becomes more patient, as the producer becomes impatient, or if the likelihood of product failure does not increase too much in the extended period. We show that there is a separating equilibrium in which the high quality producers sell with warranties and the low qu...

  1. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner.

    Science.gov (United States)

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W; Chen, Nan-kuei

    2015-09-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167-181), showing that white matter fiber tracts can be much more accurately detected in data at a submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at a submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85×0.85×0.85mm(3)) in vivo human brain DTI on a 3Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2×2×2mm(3)). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  3. A finite-difference modeling of Love channel waves in transversely isotropic medium

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H. [Inha Univ., Incheon (Korea, Republic of); Lee, S.S. [Korea Mining Promotion Corp., Seoul (Korea, Republic of)

    1994-06-30

    The present paper deals with numerical modeling of Love channel waves in transversely isotropic elastic medium. First, an explicit finite-difference scheme of second order approximation is formulated with the wave equation of SH particle displacement in transversely isotropic medium. Since it is a heterogeneous formulation, it should enable efficient modeling of complex model structures without additional treatment of the internal boundary matching. With a model of isotropic coal seam embedded in high velocity host rock, seismograms are synthesized and turn out to be essentially identical with published ones of Korn and Stockl. Next, anisotropic coal seams are investigated. It is found that the horizontal velocity of the seam appears to play a major role of determining the group velocity of Love channel waves. The group velocity increases with the increase of the horizontal velocity or vice versa. However, further study will be needed to exploit fully Love channel waves for the determination of lithology, stratification, fracture in sedimentary rocks, for instance, for hydrocarbon exploration and development. (author). 21 refs., 3 tabs., 10 figs.

  4. Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Yuwaraj M. Ghugal

    2016-12-01

    Full Text Available A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure   analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero transverse shear stresses on the upper and lower surface of plate is satisfied. Hence the present formulation does not require the shear correction factor generally associated with the first order shear deformable theory. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Closed-form analytical solutions for simply supported square isotropic thick plates subjected to single sinusoidal distributed loads are obtained. Numerical results for static flexure analysis include the effects of side to thickness ratio and plate aspect ratio for simply supported isotropic plates. Numerical results are obtained using MATLAB programming. The results of present theory are in close agreement with those of higher order shear deformation theories and exact 3D elasticity solutions.

  5. Design methodology of single-feed compact near-isotropic antenna design

    KAUST Repository

    Su, Zhen

    2017-06-07

    The abundance of mobile wireless devices is giving rise to a new paradigm known as Internet of Things. In this paradigm, wireless devices will be everywhere and communicating with each other. Since they will be oriented randomly in the environment, they should be able to communicate equally in all directions in order to have stable communication link. Hence, compact near isotropic antennas are required, which can enable orientation insensitive communication. In this paper, we propose a simple design methodology to design a compact near-isotropic wire antenna based on equal vector potentials. As a proof of concept, a quarter wavelength monopole antennas has been designed that is wrapped on a 3D-printed box keeping the vector potentials in three orthogonal different directions equal. By optimizing the dimension of the antenna arms, a nearly isotropic radiation pattern is thus achieved. The results show that the antenna has a maximum gain of 2.2dBi at 900 MHz with gain derivation of 9.4dB.

  6. Fatigue Isotropy in Cross-Rolled, Hardened Isotropic-Quality Steel

    Science.gov (United States)

    Temmel, C.; Karlsson, B.; Ingesten, N.-G.

    2008-05-01

    Deformation and forging operations often introduce microstructural orientation and, therewith, mechanical anisotropy to steel. Flattened manganese sulfide inclusions are held responsible for a great part of fatigue anisotropy. Isotropic-quality (IQ) steel maintains the mechanical isotropy of the material, even after a deformation operation. Isotropic material generally contains little S and, therewith, few manganese sulfides. Further, the IQ steels used in this investigation were Ca treated. The Ca treatment improves the shape stability of the sulfides, even during a hot-working deformation. Two commercial materials were compared for their fatigue response, a standard medium-carbon steel with 0.04 wt pct S and a low-sulfur variant that underwent IQ treatment. The two batches were cross-rolled to plates with a deformation ratio of 4.5, leading to in-plane isotropy. Tension-compression fatigue testing was performed in longitudinal and short transversal directions relative to the rolling plane. The results showed strong anisotropy of the fatigue behavior for the standard material. The performance in the short transverse direction, with the principal stress perpendicular to the flattened inclusions, was inferior. The IQ material with nearly spherical inclusions was almost perfectly isotropic, with only slightly worse fatigue response in the short transverse direction.

  7. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids

    Science.gov (United States)

    Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.

    2017-10-01

    The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.

  8. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Anna I Sulatskaya

    Full Text Available In this work, the fluorescence of thioflavin T (ThT was studied in a wide range of viscosity and temperature. It was shown that ThT fluorescence quantum yield varies from 0.0001 in water at room temperature to 0.28 in rigid isotropic solution (T/η→0. The deviation of the fluorescence quantum yield from unity in rigid isotropic solution suggests that fluorescence quantum yield depends not only on the ultra-fast oscillation of ThT fragments relative to each other in an excited state as was suggested earlier, but also depends on the molecular configuration in the ground state. This means that the fluorescence quantum yield of the dye incorporated into amyloid fibrils must depend on its conformation, which, in turn, depends on the ThT environment. Therefore, the fluorescence quantum yield of ThT incorporated into amyloid fibrils can differ from that in the rigid isotropic solution. In particular, the fluorescence quantum yield of ThT incorporated into insulin fibrils was determined to be 0.43. Consequently, the ThT fluorescence quantum yield could be used to characterize the peculiarities of the fibrillar structure, which opens some new possibilities in the ThT use for structural characterization of the amyloid fibrils.

  9. Generic first-order phase transitions between isotropic and orientational phases with polyhedral symmetries

    Science.gov (United States)

    Liu, Ke; Greitemann, Jonas; Pollet, Lode

    2018-01-01

    Polyhedral nematics are examples of exotic orientational phases that possess a complex internal symmetry, representing highly nontrivial ways of rotational symmetry breaking, and are subject to current experimental pursuits in colloidal and molecular systems. The classification of these phases has been known for a long time; however, their transitions to the disordered isotropic liquid phase remain largely unexplored, except for a few symmetries. In this work, we utilize a recently introduced non-Abelian gauge theory to explore the nature of the underlying nematic-isotropic transition for all three-dimensional polyhedral nematics. The gauge theory can readily be applied to nematic phases with an arbitrary point-group symmetry, including those where traditional Landau methods and the associated lattice models may become too involved to implement owing to a prohibitive order-parameter tensor of high rank or (the absence of) mirror symmetries. By means of exhaustive Monte Carlo simulations, we find that the nematic-isotropic transition is generically first-order for all polyhedral symmetries. Moreover, we show that this universal result is fully consistent with our expectation from a renormalization group approach, as well as with other lattice models for symmetries already studied in the literature. We argue that extreme fine tuning is required to promote those transitions to second-order ones. We also comment on the nature of phase transitions breaking the O(3 ) symmetry in general cases.

  10. Vertical Dynamic Response of Pile Embedded in Layered Transversely Isotropic Soil

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2014-01-01

    Full Text Available The dynamic response of pile embedded in layered transversely isotropic soil and subjected to arbitrary vertical harmonic force is investigated. Based on the viscoelastic constitutive relations for a transversely isotropic medium, the dynamic governing equation of the transversely isotropic soil is obtained in cylindrical coordinates. By introducing the fictitious soil pile model and the distributed Voigt model, the governing equations of soil-pile system are also derived. Firstly, the vertical response of the soil layer is solved by using the Laplace transform technique and the separation of variables technique. Secondly, the analytical solution of velocity response in the frequency domain and its corresponding semianalytical solution of velocity response in the time domain are derived by means of inverse Fourier transform and convolution theorem. Finally, based on the obtained solutions, a parametric study has been conducted to investigate the influence of the soil anisotropy on the vertical dynamic response of pile. It can be seen that the influence of the shear modulus of soil in the vertical plane on the dynamic response of pile is more notable than the influence of the shear modulus of soil in the horizontal plane on the dynamic response of pile.

  11. Extending quantum mechanics entails extending special relativity

    Science.gov (United States)

    Aravinda, S.; Srikanth, R.

    2016-05-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.

  12. 7 CFR 948.103 - Fiscal period.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Fiscal period. 948.103 Section 948.103 Agriculture... Rules and Regulations General § 948.103 Fiscal period. Pursuant to § 948.10, the fiscal periods for each... following year, both dates inclusive. The 1986-87 fiscal period which began July 1, 1986, will be extended...

  13. 5 CFR 9901.411 - Appraisal period.

    Science.gov (United States)

    2010-01-01

    ... period, an employee has not met the minimum period of performance, management may extend the appraisal... PERSONNEL SYSTEM (NSPS) Performance Management § 9901.411 Appraisal period. (a) Except as provided in... groups of employees; (2) The appraisal period may begin after October 1 for employees who move to an NSPS...

  14. Analysis of RTM extended images for VTI media

    KAUST Repository

    Li, Vladimir

    2015-08-19

    Extended images obtained from reverse-time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Considering the actual spatial distribution of the zero-dip NMO velocity (Vnmo), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters η and δ. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. The results show that the signature of η is dip-dependent, whereas errors in δ cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of η and δ on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.

  15. STRESS STATE OF TRANSVERSELY ISOTROPIC ROCKS NEAR PRESSURIZED HYDRAULIC TUNNEL OF HORSESHOE CROSS-SECTION

    Directory of Open Access Journals (Sweden)

    Bautdinov Damir Tahirovich

    2017-10-01

    Full Text Available The parametric analysis of the stress state of a transversally isotropic rock mass near a pressurized hydraulic tunnel of a box-shaped form is carried out. Pressurized hydro-technical tunnels of box-shaped cross-section are widely used in the field of hydraulic engineering construction and are one of the complex, labor-intensive and expensive types of structures that make up the main structures of waterworks, melioration systems and water supply systems. As a culvert and water supply facilities they are built underground if the open excavation is impossible or not economical, or when the tunnel runs through a densely populated or densely built-up area, or when landslides, screes, rockfalls are possible. Violation of integrity of the rock mass, in particular, caused by tunneling, modifies the stress-strain state (SSS of the rock mass, which leads to appearance of tensile stresses in some places, and in some cases, to significant compressive stresses. If these stresses exceed the design strengths of rock to tension and compression, respectively, then the collapse of the working roof and buckling of the side walls and the bottom of the tunnel may occur. Subject: analysis of the stress state of transversally isotropic rocks near the pressurized hydraulic tunnel of horseshoe cross-section caused by the internal head of water. Research objectives: determination of real values of circumferential stresses along the development contour. Materials and methods: solution of the problem of plane deformation of the theory of elasticity for a transversely isotropic medium containing tunnel excavation cannot be obtained by analytical methods, and therefore the stress-strain analysis was carried out by the finite element method using the ANSYS software package, MCE. Results: determination of stresses along the development contour, construction of diagrams and graphs showing the effects of the anisotropy conditions and Poisson’s ratio. The tangential stresses

  16. Poster Session- Extended Abstracts

    Science.gov (United States)

    Jack D. Alexander III; Jean Findley; Brenda K. Kury; Jan L. Beyers; Douglas S. Cram; Terrell T. Baker; Jon C. Boren; Carl Edminster; Sue A. Ferguson; Steven McKay; David Nagel; Trent Piepho; Miriam Rorig; Casey Anderson; Jeanne Hoadley; Paulette L. Ford; Mark C. Andersen; Ed L. Fredrickson; Joe Truett; Gary W. Roemer; Brenda K. Kury; Jennifer Vollmer; Christine L. May; Danny C. Lee; James P. Menakis; Robert E. Keane; Zhi-Liang Zhu; Carol Miller; Brett Davis; Katharine Gray; Ken Mix; William P. Kuvlesky Jr.; D. Lynn Drawe; Marcia G. Narog; Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Timothy E. Paysen; Burton K. Pendleton; Rosemary L. Pendleton; Carleton S. White; John Rogan; Doug Stow; Janet Franklin; Jennifer Miller; Lisa Levien; Chris Fischer; Emma Underwood; Robert Klinger; Peggy Moore; Clinton S. Wright

    2008-01-01

    Titles found within Poster Session-Extended Abstracts include:Assessment of emergency fire rehabilitation of four fires from the 2000 fire season on the Vale, Oregon, BLM district: review of the density sampling materials and methods: p. 329 Growth of regreen, seeded for erosion control, in the...

  17. Extending Critical Performativity

    DEFF Research Database (Denmark)

    Spicer, André; Alvesson, Mats; Kärreman, Dan

    2016-01-01

    In this article we extend the debate about critical performativity. We begin by outlining the basic tenets of critical performativity and how this has been applied in the study of management and organization. We then address recent critiques of critical performance. We note these arguments suffer...

  18. Parameterization of extended systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    The YJBK parameterization (of all stabilizing controllers) is extended to handle systems with additional sensors and/or actuators. It is shown that the closed loop transfer function is still an affine function in the YJBK parameters in the nominal case. Further, some closed-loop stability results...

  19. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  20. Free vibration analysis of a finite-length isotropic solid elliptic cylinder using exact three dimensional elasticity theory

    National Research Council Canada - National Science Library

    Hasheminejad, Seyyed M; Ghaheri, Ali

    2013-01-01

    A three-dimensional analytical model based on Navier's displacement equation of motion is developed to describe the free vibrations of a simply supported elastic isotropic solid elliptical cylinder of finite length...

  1. Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials.

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-27

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator's gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  2. Production of krypton and xenon isotopes in thick stony and iron targets isotropically irradiated with 1600 MeV protons

    National Research Council Canada - National Science Library

    Gilabert, E; Lavielle, B; Michel, R; Leya, I; Neumann, S; Herpers, U

    2002-01-01

    Abstract— Two spherical targets made of gabbro with a radius of 25 cm and of steel with a radius of 10 cm were irradiated isotropically with 1600 MeV protons at the SATURNE synchrotron at Laboratoire National Saturne (LNS...

  3. Unbiased stereological estimation of d-dimensional volume in Rn from an isotropic random slice through a fixed point

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Kiêu, K

    1994-01-01

    Unbiased stereological estimators of d-dimensional volume in R(n) are derived, based on information from an isotropic random r-slice through a specified point. The content of the slice can be subsampled by means of a spatial grid. The estimators depend only on spatial distances. As a fundamental ...... lemma, an explicit formula for the probability that an isotropic random r-slice in R(n) through 0 hits a fixed point in R(n) is given....

  4. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  5. The Fly Printer - Extended

    DEFF Research Database (Denmark)

    Beloff, Laura; Klaus, Malena

    2016-01-01

    Artist talk / Work-in-progress What is the purpose of a machine or an artifact, like the Fly Printer, that is dislocated, that produces images that have no meaning, no instrumentality, that depict nothing in the world? The biological and the cultural are reunited in this apparatus as a possibilit...... the results. The extended version of the Fly Printer containing the technological perception and DNNs is a collaboration between Laura Beloff and Malene Theres Klaus...

  6. The dialogically extended mind

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Gangopadhyay, Nivedita; Tylén, Kristian

    2014-01-01

    , we argue that language enhances our cognitive capabilities in a much more radical way: The skilful engagement of public material symbols facilitates evolutionarily unprecedented modes of collective perception, action and reasoning (interpersonal synergies) creating dialogically extended minds. We...... relate our approach to other ideas about collective minds and review a number of empirical studies to identify the mechanisms enabling the constitution of interpersonal cognitive systems....

  7. Extended Theories of Gravitation

    Directory of Open Access Journals (Sweden)

    Fatibene Lorenzo

    2013-09-01

    Full Text Available Within the framework of extended theories of gravitation we shall discuss physical equivalences among different formalisms and classical tests. As suggested by the Ehlers-Pirani-Schild framework, the conformal invariance will be preserved and its effect on observational protocols discussed. Accordingly, we shall review standard tests showing how Palatini f(R-theories naturally passes solar system tests. Observation protocols will be discussed in this wider framework.

  8. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments*

    Science.gov (United States)

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.

    2017-01-01

    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561

  9. The thermalization of soft modes in non-expanding isotropic quark gluon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)

    2017-05-15

    We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark–gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.

  10. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  11. Fracture analysis of a transversely isotropic high temperature superconductor strip based on real fundamental solutions

    Science.gov (United States)

    Gao, Zhiwen; Zhou, Youhe

    2015-04-01

    Real fundamental solution for fracture problem of transversely isotropic high temperature superconductor (HTS) strip is obtained. The superconductor E-J constitutive law is characterized by the Bean model where the critical current density is independent of the flux density. Fracture analysis is performed by the methods of singular integral equations which are solved numerically by Gauss-Lobatto-Chybeshev (GSL) collocation method. To guarantee a satisfactory accuracy, the convergence behavior of the kernel function is investigated. Numerical results of fracture parameters are obtained and the effects of the geometric characteristics, applied magnetic field and critical current density on the stress intensity factors (SIF) are discussed.

  12. Constitutive relations in multidimensional isotropic elasticity and their restrictions to subspaces of lower dimensions

    Science.gov (United States)

    Georgievskii, D. V.

    2017-07-01

    The mechanical meaning and the relationships among material constants in an n-dimensional isotropic elastic medium are discussed. The restrictions of the constitutive relations (Hooke's law) to subspaces of lower dimension caused by the conditions that an m-dimensional strain state or an m-dimensional stress state (1 ≤ m written out for any m-dimensional restriction are expressed in terms of one another. These expressions in terms of the known constants, for example, of a three-dimensional medium, i.e., the classical elastic constants, enable us to judge the material properties of this medium immersed in a space of larger dimension.

  13. Study of the roughness in a photoresist masked, isotropic, SF6-based ICP silicon etch

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Petersen, Dirch Hjorth; Hansen, Ole

    2006-01-01

    = 40 - 70 mTorr. Here the normalized roughness is the ratio of the roughness amplitude to the etch depth. The rough etching processes showed characteristic high-aspect-ratio and crystal-orientation-dependent surface morphology. The temporal evolution of this roughness was studied, and observations...... suggest a gradual buildup of surface contamination (redeposits) originating from the photoresist mask. A model was used to analyze the etched profiles with respect the internal etching conditions. The almost isotropic etching profiles, obtained in both rough and smooth etching processes, are generally...

  14. Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; F.A., Roberge

    1997-01-01

    This paper describes a model of the frog skeletal muscle fiber that includes the effects of the transverse tubular system (T system) on propagation. Uniform propagation on an isolated fiber suspended in Ringer's solution or in air is simulated by placing the cylindrical fiber model in a concentric...... three-dimensional isotropic volume conductor. The current through the T system outlets at the sarcolemmal surface is comparable in magnitude to the sarcolemmal current density, but is of opposite polarity. When it is added to the sarcolemmal current, the resulting triphasic waveform has a 100% increase...

  15. Isotropic to smectic A phase transitions in a porous matrix a case of multiporous phase coexistence

    CERN Document Server

    Bellini, T; Link, D R

    2003-01-01

    The one-dimensional smectic ordering of the liquid crystal 10CB incorporated in the pores of a silica aerogel has been investigated via x-ray scattering. Although the smectic order is made short-ranged by the aerogel host and the amplitude of the associated Bragg-like peak grows continuously with decreasing temperature, part of the first-order character of the 10CB's direct isotropic-smectic phase transition is retained in the discontinuous temperature dependence of the smectic correlation length. This behaviour contrasts with that of materials where the smectic phase develops from a locally orientationally ordered nematic and can be interpreted as a nucleation-type process.

  16. A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Image Segmentation

    Science.gov (United States)

    2016-05-01

    boundaries between them. The values are designated by c1 and c2 and are obtained on the regions Σ and Σc respectively. The two regions and values are unknowns...model. For the remainder of the paper, we refer to L1−αL2 as the weighted difference of anisotropic and isotropic TV: Jani−αJiso = ‖ ux ‖1 + ‖uy‖1−α... ux |2 + |uy|2‖1 (3) where it is understood that these norms are operating on the gradients of the image. Here, α ∈ [0, 1] and is chosen based on

  17. Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids

    DEFF Research Database (Denmark)

    Kuklasiński, Adam; Doclo, Simon; Jensen, Søren Holdt

    2014-01-01

    We propose a multi-channel Wiener filter for speech dereverberation in hearing aids. The proposed algorithm uses joint maximum likelihood estimation of the speech and late reverberation spectral variances, under the assumption that the late reverberant sound field is cylindrically isotropic....... The dereverberation performance of the algorithm is evaluated using computer simulations with realistic hearing aid microphone signals including head-related effects. The algorithm is shown to work well with signals reverberated both by synthetic and by measured room impulse responses, achieving improvements...

  18. Thermodynamics of isotropic and anisotropic layered magnets: renormalization group approach and 1/N expansion

    OpenAIRE

    Irkhin, V. Yu.; Katanin, A. A.

    1997-01-01

    The O(N) model of layered antiferro- and ferromagnets with a weak interlayer coupling and/or easy-axis anisotropy is considered. A renormalization group (RG) analysis in this model is performed, the results for N=3 being expected to agree with those of the 1/M expansion in the CP^{M-1} model at M=2. The quantum and classical cases are considered. A crossover from an isotropic 2D-like to 3D Heisenberg (or 2D Ising) regime is investigated within the 1/N expansion. Analytical results for the tem...

  19. First-order goniospectrophotometric spectral modeling of isotropic and anisotropic colorant mixtures.

    Science.gov (United States)

    Kruschwitz, Jennifer D T; Berns, Roy S

    2014-02-01

    Color modeling of translucent and opaque media commonly uses two-constant Kubelka-Munk (KM) turbid media theory. KM theory is designed for isotropic color systems that rely on absorption and scatter to produce an overall reflected color. KM theory has previously been considered inadequate to use with interference pigments (IPs) due to their specular reflected, angle-dependent color and anisotropic behavior. If, however, an IP's reflected color is considered to contribute to the background reflectance and not as a colorant in a mixture with a conventional colorant, KM theory can be used. KM theory was successfully implemented to predict the goniospectrophotometric, normalized spectral reflectance of conventional colorants and IP mixtures.

  20. The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens

    DEFF Research Database (Denmark)

    Nyengaard, Jens Randel; Gundersen, Hans Jørgen Gottlieb

    1992-01-01

    The very simple and strong principle of vertical sections devised by Baddeley et al. has been a major advance in stereology when any kind of anisotropy is present in the specimen under study. On the other hand, some important stereological estimators still require isotropic, uniform random sectio....... This paper deals with a simple technique for embedding specimens in rubber moulds with spherical cavities. After the embedding, any handling or the resulting sphere independent of the specimen will induce isotropy of the final histological sections....

  1. Transition in the Flow of Power-Law Fluids through Isotropic Porous Media.

    Science.gov (United States)

    Zami-Pierre, F; de Loubens, R; Quintard, M; Davit, Y

    2016-08-12

    We use computational fluid dynamics to explore the creeping flow of power-law fluids through isotropic porous media. We find that the flow pattern is primarily controlled by the geometry of the porous structure rather than by the nonlinear effects in the rheology of the fluid. We further highlight a macroscale transition between a Newtonian and a non-Newtonian regime, which is the signature of a coupling between the viscosity of the fluid and the structure of the porous medium. These complex features of the flow can be condensed into an effective length scale, which defines both the non-Newtonian transition and the Newtonian permeability.

  2. A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process

    Science.gov (United States)

    Jin, Kai; Guo, Qun; Tao, Jie; Guo, Xun-zhong

    2017-11-01

    Numerical simulations of tube hydroforming process of hollow crankshafts were conducted by using finite element analysis method. Moreover, the modified model involving the integration of isotropic-kinematic hardening model with ductile criteria model was used to more accurately optimize the process parameters such as internal pressure, feed distance and friction coefficient. Subsequently, hydroforming experiments were performed based on the simulation results. The comparison between experimental and simulation results indicated that the prediction of tube deformation, crack and wrinkle was quite accurate for the tube hydroforming process. Finally, hollow crankshafts with high thickness uniformity were obtained and the thickness distribution between numerical and experimental results was well consistent.

  3. Near-affine-invariant texture learning for lung tissue analysis using isotropic wavelet frames.

    Science.gov (United States)

    Depeursinge, Adrien; Van de Ville, Dimitri; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning

    2012-07-01

    We propose near-affine-invariant texture descriptors derived from isotropic wavelet frames for the characterization of lung tissue patterns in high-resolution computed tomography (HRCT) imaging. Affine invariance is desirable to enable learning of nondeterministic textures without a priori localizations, orientations, or sizes. When combined with complementary gray-level histograms, the proposed method allows a global classification accuracy of 76.9% with balanced precision among five classes of lung tissue using a leave-one-patient-out cross validation, in accordance with clinical practice.

  4. A variation iteration method for isotropic velocity-dependent potentials: Scattering case

    Energy Technology Data Exchange (ETDEWEB)

    Eed, H. [Applied Science Private University, Basic Science Department, Amman (Jordan)

    2014-12-01

    We propose a new approximation scheme to obtain analytic expressions for the Schroedinger equation with isotropic velocity-dependent potential to determine the scattering phase shift. In order to test the validity of our approach, we applied it to an exactly solvable model for nucleon-nucleon scattering. The results of the variation iteration method (VIM) formalism compare quite well with those of the exactly solvable model. The developed formalism can be applied in problems concerning pion-nucleon, nucleon-nucleon, and electron-atom scattering. (orig.)

  5. Characterization of silicon isotropic etch by inductively coupled plasma etcher for microneedle array fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore); Sun Jianbo [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technologica l University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This work investigates the isotropic etching properties in inductively coupled plasma (ICP) etcher for microneedle arrays fabrication. The effects of process variables including powers, gas and pressure on needle structure generation are characterized by factorial design of experiment (DOE). The experimental responses of vertical etching depth, lateral etching length, ratio of vertical etching depth to lateral etching length and photoresist etching rate are reported. The relevance of the etching variables is also presented. The obtained etching behaviours for microneedle structure generation will be applied to develop recipes to fabricate microneedles in designed dimensions.

  6. A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung [Department of Physics, HCMC University of Pedagogy, 280 An Duong Vuong, Ward 10, Dist. 5, Ho Chi Minh City (Viet Nam)

    2009-05-01

    We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./.

  7. The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Bactavatchalou, R [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Alnot, P [Universite Henri Poincare, Nancy I (France); Bailer, J [Universite du Luxembourg (Luxembourg); Kolle, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Mueller, U [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Philipp, M [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Possart, W [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Rouxel, D [Universite Henri Poincare, Nancy I (France); Sanctuary, R [Universite du Luxembourg (Luxembourg); Tschoepe, A [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Vergnat, Ch [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg); Wetzel, B [Institut fuer Verbundwerkstoffe TU Kaiserslautern 67663 Kaiserslautern (Germany); Krueger, J K [Laboratoire Europeen de Recherche Universitaire Saarland- Lorraine- Luxembourg at Universitaet des Saarlandes (Luxembourg)

    2006-05-15

    The elastic properties of the isotropic state of condensed matter are given by the elastic constants ell and c44. In the liquid state the static shear stiffness c44 vanishes whereas at sufficient high probe frequencies a dynamic shear stiffness may appear. In that latter case the question about the existence of a Cauchy relation appears. It will be shown that a pure Cauchy relation can appear only under special conditions which are rarely fulfilled. For all investigated materials, including ceramics, liquids and glasses, a linear relation between ell and c44 called generalized Cauchy relation is observed, which, surprisingly, follows a linear transformation.

  8. π-Extended Tetrathiafulvalenes

    DEFF Research Database (Denmark)

    Petersen, Johannes Fabritius

    This Ph.D.-thesis focuses on the synthesis and properties of various redox-active ¼-extended tetrathiafulvalenes. One class of molecules are so-called H-cruciform shaped molecules. In these molecules the formation of a central stilbene double bond is elucidated. Here it was found that the formation...... of the stilbene bond originates from preformation of a 1,3-dioxa-2-phospholane, formed by reaction between P(OEt)3 present under the reaction conditions and two aldehydes. Under the reaction conditions this 1,3-dioxa-2-phospholane can then be converted to the stilbene. These mechanistic studies lead...

  9. Extended spider cognition

    OpenAIRE

    Japyassú, Hilton F.; Laland, Kevin Neville

    2017-01-01

    HFJ received a visiting professor fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil) (PDE PDE232691/2014-2). Research supported in part by a Grant from the John Templeton Foundation to KNL. There is a tension between the conception of cognition as a central nervous system (CNS) process, and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope w...

  10. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    Science.gov (United States)

    Verma, Prakash; Perera, Ajith; Morales, Jorge A.

    2013-11-01

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. In this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the 11B, 17O, 9Be, 19F, 1H, 13C, 35Cl, 33S,14N, 31P, and 67Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N7-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to

  11. Dynamic Response of Shear-Flexible Cylindrical Isotropic Shells with Clamped Edges

    Directory of Open Access Journals (Sweden)

    Zafer I. Sakka

    2006-01-01

    Full Text Available It is fundamental to obtain the natural frequencies and the corresponding mode shapes for cylindrical shells in order to determine their response to different dynamic loading. In this paper an analytical investigation to the free vibration response of moderately-thick shear flexible isotropic cylindrical shells with all edges clamped is presented. The Sander’s kinematic relations for moderately thick cylindrical shell panels are utilized to develop the governing partial differential equations in conjunction with the boundary conditions. A recently developed generalized Navier’s approach, based on a boundary continuous double Fourier series expansion, is used as a solution methodology. A parametric study is presented with respect to various thicknesses, length and radius of curvature of the shell panel. The convergence of the solution method is established numerically for various parametric properties. The present results are compared with the results obtained from finite element method using a four-node isoparametric shell element. The results thus presented should serve as bench-mark solutions for future comparisons with numerical and approximate methods for calculation of free vibration parameters of moderately-thick isotropic cylindrical shells.

  12. On the Schrodinger equations with isotropic and anisotropic fourth-order dispersion

    Directory of Open Access Journals (Sweden)

    Elder J. Villamizar-Roa

    2016-01-01

    Full Text Available This article concerns the Cauchy problem associated with the nonlinear fourth-order Schrodinger equation with isotropic and anisotropic mixed dispersion. This model is given by the equation $$ i\\partial_tu+\\epsilon \\Delta u+\\delta A u+\\lambda|u|^\\alpha u=0,\\quad x\\in\\mathbb{R}^{n},\\; t\\in \\mathbb{R}, $$ where A is either the operator $\\Delta^2$ (isotropic dispersion or $\\sum_{i=1}^d\\partial_{x_ix_ix_ix_i}$, $1\\leq d

  13. Isotropic-nematic transition for hard rods on a three-dimensional cubic lattice

    Science.gov (United States)

    Gschwind, A.; Klopotek, M.; Ai, Y.; Oettel, M.

    2017-07-01

    Using grand-canonical Monte Carlo (GCMC) simulations, we investigate the isotropic-nematic phase transition for hard rods of size L ×1 ×1 on a three-dimensional cubic lattice. We observe such a transition for L ≥6 . For L =6 , the nematic state has a negative order parameter, reflecting the co-occurrence of two dominating orientations. For L ≥7 , the nematic state has a positive order parameter, corresponding to the dominance of one orientation. We investigate rod lengths up to L =25 and find evidence for a very weakly first-order isotropic-nematic transition, while we cannot completely rule out a second-order transition. It was not possible to detect a density jump at the transition, despite using large systems containing several 105 particles. The probability density distributions P (Q ) from the GCMC simulations near the transition are very broad, pointing to strong fluctuations. Our results complement earlier results on the demixing (pseudonematic) transition for an equivalent system in two dimensions, which is presumably of Ising type and occurs for L ≥7 . We compare our results to lattice fundamental measure theory (FMT) and find that FMT strongly overestimates nematic order and consequently predicts a strong first-order transition. The rod packing fraction of the nematic coexisting states, however, agree reasonably well between FMT and GCMC.

  14. Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field

    Science.gov (United States)

    Huete, César; Jin, Tai; Martínez-Ruiz, Daniel; Luo, Kun

    2017-11-01

    Linear interaction analysis (LIA) is employed to investigate the interaction of reactive and nonreactive shock waves with isotropic vortical turbulence. The analysis is carried out, through Laplace-transform technique, accounting for long-time effects of vortical disturbances on the burnt-gas flow in the fast-reaction limit, where the reaction-region thickness is significantly small in comparison with the most representative turbulent length scales. Results provided by the opposite slow-reaction limit are also recollected. The reactive case is here restricted to situations where the overdriven detonation front does not exhibit self-induced oscillations nor inherent instabilities. The interaction of the planar detonation with a monochromatic pattern of perturbations is addressed first, and then a Fourier superposition for three-dimensional isotropic turbulent fields is employed to provide integral formulas for the amplification of the kinetic energy, enstrophy, and anisotropy downstream. Transitory evolution is also provided for single-frequency disturbances. In addition, further effects associated to the reaction rate, which have not been included in LIA, are studied through direct numerical simulations. The numerical computations, based on WENO-BO4-type scheme, provide spatial profiles of the turbulent structures downstream for four different conditions that include nonreacting shock waves, unstable reacting shock (sufficiently high activation energy), and stable reacting shocks for different detonation thicknesses. Effects of the propagation Mach number, chemical heat release, and burn rate are analyzed.

  15. Testing the magnetotail configuration based on observations of low-altitude isotropic boundaries during quiet times

    Science.gov (United States)

    Ilie, R.; Ganushkina, N.; Toth, G.; Dubyagin, S.; Liemohn, M. W.

    2015-12-01

    We investigate the configuration of the geomagnetic field on the nightside magnetosphere during a quiet time interval based on National Oceanic and Atmospheric Administration Polar Orbiting Environment Satellites Medium Energy Proton and Electron Detector (NOAA/POES MEPED) measurements in combination with numerical simulations of the global terrestrial magnetosphere using the Space Weather Modeling Framework. Measurements from the NOAA/POES MEPED low-altitude data sets provide the locations of isotropic boundaries; those are used to extract information regarding the field structure in the source regions in the magnetosphere. In order to evaluate adiabaticity and mapping accuracy, which is mainly controlled by the ratio between the radius of curvature and the particle's Larmor radius, we tested the threshold condition for strong pitch angle scattering based on the MHD magnetic field solution. The magnetic field configuration is represented by the model with high accuracy, as suggested by the high correlation coefficients and very low normalized root-mean-square errors between the observed and the modeled magnetic field. The scattering criterion, based on the values of k=Rcρ ratio at the crossings of magnetic field lines, associated with isotropic boundaries, with the minimum B surface, predicts a critical value of kCR˜33. This means that, in the absence of other scattering mechanisms, the strong pitch angle scattering takes place whenever the Larmor radius is ˜33 times smaller than the radius of curvature of the magnetic field, as predicted by the Space Weather Modeling Framework.

  16. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  17. Halo-independent determination of the unmodulated WIMP signal in DAMA: the isotropic case

    Science.gov (United States)

    Gondolo, Paolo; Scopel, Stefano

    2017-09-01

    We present a halo-independent determination of the unmodulated signal corresponding to the DAMA modulation if interpreted as due to dark matter weakly interacting massive particles (WIMPs). First we show how a modulated signal gives information on the WIMP velocity distribution function in the Galactic rest frame from which the unmodulated signal descends. Then we describe a mathematically-sound profile likelihood analysis in which the likelihood is profiled over a continuum of nuisance parameters (namely, the WIMP velocity distribution). As a first application of the method, which is very general and valid for any class of velocity distributions, we restrict the analysis to velocity distributions that are isotropic in the Galactic frame. In this way we obtain halo-independent maximum-likelihood estimates and confidence intervals for the DAMA unmodulated signal. We find that the estimated unmodulated signal is in line with expectations for a WIMP-induced modulation and is compatible with the DAMA background+signal rate. Specifically, for the isotropic case we find that the modulated amplitude ranges between a few percent and about 25% of the unmodulated amplitude, depending on the WIMP mass.

  18. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  19. Universality of spectrum of passive scalar variance at very high Schmidt number in isotropic steady turbulence

    Science.gov (United States)

    Gotoh, Toshiyuki

    2012-11-01

    Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.

  20. Effects of Homogenous Isotropic Turbulence on the Droplet Size Distribution and Clustering

    Science.gov (United States)

    Hager, Rachael; Savas, Ömer

    2017-11-01

    In clouds, the main growth mechanism of droplets with diameters 10-50 μm , known as the size-gap, is collision and coalescence. Atmospheric turbulence is known to increase the droplet growth rate in this range by enhancing the relative velocity between droplets and the formation of droplet clustering, thus increasing the droplet collision rate. The purpose here is to understand further how isotropic, homogeneous turbulence affects the evolution of the droplet size spectrum and the droplet concentration characteristics in the size-gap. Two sets of experiments are conducted in a 40-cm Eaton box, at the center of which homogeneous turbulence is generated. Flow images are taken of aluminum-oxide particles ranging from 0.5-5 μm in various flow conditions using a continuous wave laser sheet. Particle clustering and flow structures are examined for a range of Stokes numbers, where clustering is quantified using the radial distribution function. Secondly, droplets with an average diameter of 10 μm are injected into the turbulence box under various flow conditions. PDA is used to study the development of the droplet size distribution in isotropic, homogeneous turbulence.

  1. Rocking Rotation of a Rigid Disk Embedded in a Transversely Isotropic Half-Space

    Directory of Open Access Journals (Sweden)

    Seyed Ahmadi

    2014-06-01

    Full Text Available The asymmetric problem of rocking rotation of a circular rigid disk embedded in a finite depth of a transversely isotropic half-space is analytically addressed. The rigid disk is assumed to be in frictionless contact with the elastic half-space. By virtue of appropriate Green's functions, the mixed boundary value problem is written as a dual integral equation. Employing further mathematical techniques, the integral equation is reduced to a well-known Fredholm integral equation of the second kind. The results related to the contact stress distribution across the disk region and the equivalent rocking stiffness of the system are expressed in terms of the solution of the obtained Fredholm  integral  equation. When the rigid disk is located on the surface or at the remote boundary, the exact closed-form solutions are presented. For verification purposes, the limiting case of an isotropic half-space is considered and the results are verified with those available in the literature. The jump behavior in the results at the edge of the rigid disk for the case of an infinitesimal embedment is highlighted analytically for the first time. Selected numerical results are depicted for the contact stress distribution across the disk region, rocking stiffness of the system, normal stress, and displacement components along the radial axis. Moreover, effects of anisotropy on the rocking stiffness factor are discussed in detail.

  2. Highly tilted liquid crystalline materials possessing a direct phase transition from antiferroelectric to isotropic phase

    Energy Technology Data Exchange (ETDEWEB)

    Milewska, K.; Drzewiński, W. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Czerwiński, M., E-mail: mczerwinski@wat.edu.pl [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Dąbrowski, R. [Institute of Chemistry, Military University of Technology, 00-908 Warsaw (Poland); Piecek, W. [Institute of Applied Physics, Military University of Technology, 00-908 Warsaw (Poland)

    2016-03-01

    Pure compounds and multicomponent mixtures with a broad temperature range of high tilted liquid crystalline antiferroelectric phase and a direct phase transition from antiferroelectric to isotropic phase, were obtained. X-ray diffraction analysis confirms these kinds of materials form a high tilted anticlinic phase, with a fixed layer spacing and very weak dependency upon temperature, after the transition from the isotropic phase. Due to this, not only pure orthoconic antiferroelectric liquid crystals but also those with a moderate tilt should generate a good dark state. Furthermore, due to the increased potential for forming anticlinic forces, such materials could minimize a commonly observed asymmetry of a rise and fall switching times at a surface stabilized geometry. - Highlights: • The new class of liquid crystalline materials with the direct SmC{sub A}*. • Iso phase transition were obtained. • Materials possess the layer spacing fixed and very weak dependent upon temperature. • Smectic layers without shrinkage are observed. • A good dark state can be generate in SSAFLC.

  3. Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces

    Science.gov (United States)

    Curren, A. N.; Jensen, K. A.

    1984-01-01

    Experimentally determined values of true secondary electron emission and relative values of reflected primary electron yield for untreated and ion textured oxygen free high conductivity copper and untreated and ion textured high purity isotropic graphite surfaces are presented for a range of primary electron beam energies and beam impingement angles. This investigation was conducted to provide information that would improve the efficiency of multistage depressed collectors (MDC's) for microwave amplifier traveling wave tubes in space communications and aircraft applications. For high efficiency, MDC electrode surfaces must have low secondary electron emission characteristics. Although copper is a commonly used material for MDC electrodes, it exhibits relatively high levels of secondary electron emission if its surface is not treated for emission control. Recent studies demonstrated that high purity isotropic graphite is a promising material for MDC electrodes, particularly with ion textured surfaces. The materials were tested at primary electron beam energies of 200 to 2000 eV and at direct (0 deg) to near grazing (85 deg) beam impingement angles. True secondary electron emission and relative reflected primary electron yield characteristics of the ion textured surfaces were compared with each other and with those of untreated surfaces of the same materials. Both the untreated and ion textured graphite surfaces and the ion treated copper surface exhibited sharply reduced secondary electron emission characteristics relative to those of untreated copper. The ion treated graphite surface yielded the lowest emission levels.

  4. Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number

    Science.gov (United States)

    Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui

    2013-11-01

    To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.

  5. Elastic Cherenkov effects in transversely isotropic soft materials-I: Theoretical analysis, simulations and inverse method

    Science.gov (United States)

    Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping

    2016-11-01

    A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.

  6. LORENTZ-FACTOR-ISOTROPIC-LUMINOSITY/ENERGY CORRELATIONS OF GAMMA-RAY BURSTS AND THEIR INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Lue Jing; Zou Yuanchuan; Lei Weihua; Wu Qingwen; Wang Dingxiong [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang Bing; Lue Houjun [Department of Physics and Astronomy, University of Nevada Las Vegas, 4505 Maryland Parkway, Box 454002, Las Vegas, NV 89154-4002 (United States); Liang Enwei, E-mail: zouyc@hust.edu.cn, E-mail: leiwh@hust.edu.cn, E-mail: zhang@physics.unlv.edu [Department of Physics, Guangxi University, Nanning 530004 (China)

    2012-05-20

    The bulk Lorentz factor of the gamma-ray burst (GRB) ejecta ({Gamma}{sub 0}) is a key parameter to understanding GRB physics. Liang et al. have discovered a correlation between {Gamma}{sub 0} and isotropic {gamma}-ray energy: {Gamma}{sub 0}{proportional_to}E{sup 0.25}{sub {gamma},iso,52}. By including more GRBs with updated data and more methods to derive {Gamma}{sub 0}, we confirm this correlation and obtain {Gamma}{sub 0} {approx_equal} 91E{sup 0.29}{sub {gamma},iso,52}. Evaluating the mean isotropic {gamma}-ray luminosities L{sub {gamma},iso} of the GRBs in the same sample, we discover an even tighter correlation {Gamma}{sub 0} {approx_equal} 249L{sup 0.30}{sub {gamma},iso,52}. We propose an interpretation to this later correlation. Invoking a neutrino-cooled hyperaccretion disk around a stellar mass black hole as the central engine of GRBs, we derive jet luminosity powered by neutrino annihilation and baryon loading from a neutrino-driven wind. Applying beaming correction, we finally derive {Gamma}{sub 0}{proportional_to}L{sup 0.22}{sub {gamma},iso}, which is consistent with the data. This suggests that the central engine of long GRBs is likely a stellar mass black hole surrounded by a hyper-accreting disk.

  7. Angle gathers in wave-equation imaging for transversely isotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2010-11-12

    In recent years, wave-equation imaged data are often presented in common-image angle-domain gathers as a decomposition in the scattering angle at the reflector, which provide a natural access to analysing migration velocities and amplitudes. In the case of anisotropic media, the importance of angle gathers is enhanced by the need to properly estimate multiple anisotropic parameters for a proper representation of the medium. We extract angle gathers for each downward-continuation step from converting offset-frequency planes into angle-frequency planes simultaneously with applying the imaging condition in a transversely isotropic with a vertical symmetry axis (VTI) medium. The analytic equations, though cumbersome, are exact within the framework of the acoustic approximation. They are also easily programmable and show that angle gather mapping in the case of anisotropic media differs from its isotropic counterpart, with the difference depending mainly on the strength of anisotropy. Synthetic examples demonstrate the importance of including anisotropy in the angle gather generation as mapping of the energy is negatively altered otherwise. In the case of a titled axis of symmetry (TTI), the same VTI formulation is applicable but requires a rotation of the wavenumbers. © 2010 European Association of Geoscientists & Engineers.

  8. Finite element implementation of a new model of slight compressibility for transversely isotropic materials.

    Science.gov (United States)

    Pierrat, B; Murphy, J G; MacManus, D B; Gilchrist, M D

    2016-01-01

    Modelling transversely isotropic materials in finite strain problems is a complex task in biomechanics, and is usually addressed by using finite element (FE) simulations. The standard method developed to account for the quasi-incompressible nature of soft tissues is to decompose the strain energy function (SEF) into volumetric and deviatoric parts. However, this decomposition is only valid for fully incompressible materials, and its use for slightly compressible materials yields an unphysical response during the simulation of hydrostatic tension/compression of a transversely isotropic material. This paper presents the FE implementation as subroutines of a new volumetric model solving this deficiency in two FE codes: Abaqus and FEBio. This model also has the specificity of restoring the compatibility with small strain theory. The stress and elasticity tensors are first derived for a general SEF. This is followed by a successful convergence check using a particular SEF and a suite of single-element tests showing that this new model does not only correct the hydrostatic deficiency but may also affect stresses during shear tests (Poynting effect) and lateral stretches during uniaxial tests (Poisson's effect). These FE subroutines have numerous applications including the modelling of tendons, ligaments, heart tissue, etc. The biomechanics community should be aware of specificities of the standard model, and the new model should be used when accurate FE results are desired in the case of compressible materials.

  9. Extending juvenility in grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaeppler, Shawn; de Leon Gatti, Natalia; Foerster, Jillian

    2017-04-11

    The present invention relates to compositions and methods for modulating the juvenile to adult developmental growth transition in plants, such as grasses (e.g. maize). In particular, the invention provides methods for enhancing agronomic properties in plants by modulating expression of GRMZM2G362718, GRMZM2G096016, or homologs thereof. Modulation of expression of one or more additional genes which affect juvenile to adult developmental growth transition such as Glossy15 or Cg1, in conjunction with such modulation of expression is also contemplated. Nucleic acid constructs for down-regulation of GRMZM2G362718 and/or GRMZM2G096016 are also contemplated, as are transgenic plants and products produced there from, that demonstrate altered, such as extended juvenile growth, and display associated phenotypes such as enhanced yield, improved digestibility, and increased disease resistance. Plants described herein may be used, for example, as improved forage or feed crops or in biofuel production.

  10. Extended Poisson Exponential Distribution

    Directory of Open Access Journals (Sweden)

    Anum Fatima

    2015-09-01

    Full Text Available A new mixture of Modified Exponential (ME and Poisson distribution has been introduced in this paper. Taking the Maximum of Modified Exponential random variable when the sample size follows a zero truncated Poisson distribution we have derived the new distribution, named as Extended Poisson Exponential distribution. This distribution possesses increasing and decreasing failure rates. The Poisson-Exponential, Modified Exponential and Exponential distributions are special cases of this distribution. We have also investigated some mathematical properties of the distribution along with Information entropies and Order statistics of the distribution. The estimation of parameters has been obtained using the Maximum Likelihood Estimation procedure. Finally we have illustrated a real data application of our distribution.

  11. Extending rational maps

    Science.gov (United States)

    Martin, Gaven J.

    We investigate when a rational endomorphism of the Riemann sphere overline{C} extends to a mapping of the upper half-space {H3 which is rational with respect to some measurable conformal structure. Such an extension has the property that it and all its iterates have uniformly bounded distortion. Such maps are called uniformly quasiregular. We show that, in the space of rational mappings of degree d , such an extension is possible in the structurally stable component where there is a single (attracting) component of the Fatou set and the Julia set is a Cantor set. We show that generally outside of this set no such extension is possible. In particular, polynomials can never admit such an extension.

  12. Reduced Extended MHD

    Science.gov (United States)

    Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.

    2015-11-01

    Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.

  13. Extended model for Richtmyer-Meshkov mix

    Energy Technology Data Exchange (ETDEWEB)

    Mikaelian, K O

    2009-11-18

    We examine four Richtmyer-Meshkov (RM) experiments on shock-generated turbulent mix and find them to be in good agreement with our earlier simple model in which the growth rate h of the mixing layer following a shock or reshock is constant and given by 2{alpha}A{Delta}v, independent of initial conditions h{sub 0}. Here A is the Atwood number ({rho}{sub B}-{rho}{sub A})/({rho}{sub B} + {rho}{sub A}), {rho}{sub A,B} are the densities of the two fluids, {Delta}V is the jump in velocity induced by the shock or reshock, and {alpha} is the constant measured in Rayleigh-Taylor (RT) experiments: {alpha}{sup bubble} {approx} 0.05-0.07, {alpha}{sup spike} {approx} (1.8-2.5){alpha}{sup bubble} for A {approx} 0.7-1.0. In the extended model the growth rate beings to day after a time t*, when h = h*, slowing down from h = h{sub 0} + 2{alpha}A{Delta}vt to h {approx} t{sup {theta}} behavior, with {theta}{sup bubble} {approx} 0.25 and {theta}{sup spike} {approx} 0.36 for A {approx} 0.7. They ascribe this change-over to loss of memory of the direction of the shock or reshock, signaling transition from highly directional to isotropic turbulence. In the simplest extension of the model h*/h{sub 0} is independent of {Delta}v and depends only on A. They find that h*/h{sub 0} {approx} 2.5-3.5 for A {approx} 0.7-1.0.

  14. Oral hydromorphone extended-release.

    Science.gov (United States)

    Guay, David R P

    2010-12-01

    To review the chemistry, pharmacodynamics, pharmacokinetics, efficacy, tolerability, dosing, and role of the Osmotic-controlled Release Oral delivery System (OROS) hydromorphone extended-release (ER) tablets. A MEDLINE/PUBMED search (1986-August 2010) was conducted to identify studies in the English language, with additional references being obtained from their bibliographies. All studies of hydromorphone ER were reviewed. This is the second long-acting hydromorphone formulation to receive approval by the Food and Drug Administration (a twice-daily formulation was approved in September 2004, but was subsequently withdrawn in July 2005). Hydromorphone is a semi-synthetic mu-opioid receptor agonist structurally similar to morphine, hydrocodone, and oxymorphone. OROS ER technology allows once-daily dosing. Clinical trials have focused on the convertibility of (an) other opioid(s) to hydromorphone ER in chronic malignant and nonmalignant pain. This product displays the expected opioid side effects, being comparable to oxycodone controlled-release. Coadministration with ethanol does not produce the degree of "dose-dumping" seen with the former hydromorphone twice-daily product or oxymorphone ER. Hydromorphone ER is indicated for the management of moderate-to-severe pain in opioidtolerant patients requiring continuous, around-the-clock opioid analgesia for an extended period of time. Dosage adjustment is recommended in patients with moderate hepatic impairment (Child-Pugh class B) and moderate renal impairment (creatinine clearance of 30-60 mL/min). Hydromorphone ER is the newest oral opioid to enter a crowded marketplace now totaling 15 different Schedule 2 opioids (including tapentadol), and tramadol, available in oral, parenteral, rectal, transdermal, transmucosal, and intranasal formulations. It does not appear to have any unique assets or liabilities and should be considered as one of many oral opioids available for the management of persistent pain of moderate

  15. Collapse pressure analysis of transversely isotropic thick-walled cylinder using Lebesgue strain measure and transition theory.

    Science.gov (United States)

    Aggarwal, A K; Sharma, Richa; Sharma, Sanjeev

    2014-01-01

    The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl) is on the safer side of the design as compared to the cylinders made up of isotropic material (steel). This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of "stress saving" that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.

  16. Dual-Dipole UHF RFID Tag Antenna with Quasi-Isotropic Patterns Based on Four-Axis Reflection Symmetry

    Directory of Open Access Journals (Sweden)

    Chunfang Qin

    2013-01-01

    Full Text Available In many RFID practical applications, it is required that reader can effectively read tags which are placed in radiation covering area randomly. In this paper, a passive UHF dual-dipole tag antenna with quasi-isotropic patterns is designed, which can reduce the sensibility of tag read-orientation in a long distance. Two dipoles with four-axis reflection symmetric structure are used, and the two arms of the dipole are bent to fill the space of the antenna. In this way, a quasi-isotropic tag is easier to be obtained. The test results show that the gain deviation of the proposed antenna was less than 3.25 dB, and the maximum reading range in different directions was from 6.9 m to 10.0 m, with better quasi-isotropic performance and reading range than other commercial tags.

  17. Extended Mixed Vector Equilibrium Problems

    Directory of Open Access Journals (Sweden)

    Mijanur Rahaman

    2014-01-01

    Full Text Available We study extended mixed vector equilibrium problems, namely, extended weak mixed vector equilibrium problem and extended strong mixed vector equilibrium problem in Hausdorff topological vector spaces. Using generalized KKM-Fan theorem (Ben-El-Mechaiekh et al.; 2005, some existence results for both problems are proved in noncompact domain.

  18. Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children.

    Science.gov (United States)

    Dias, Sílvia Costa; Ølsen, Oystein E

    2012-11-01

    MRI has a fundamental role in paediatric imaging. The T2-weighted fast/turbo spin-echo sequence is important because it has high signal-to-noise ratio compared to gradient-echo sequences. It is usually acquired as 2-D sections in one or more planes. Volumetric spin-echo has until recently only been possible with very long echo times due to blurring of the soft-tissue contrast with long echo trains. A new 3-D spin-echo sequence uses variable flip angles to overcome this problem. It may reproduce useful soft-tissue contrast, with improved spatial resolution. Its isotropic capability allows subsequent reconstruction in standard, curved or arbitrary planes. It may be particularly useful for visualisation of small lesions, or if large lesions distort the usual anatomical relations. We present clinical examples, describe the technical parameters and discuss some potential artefacts and optimisation of image quality.

  19. Effect of Quasi-Isotropic Antenna Orientation on Indoor Multipath Propagation Characteristics in RSN Applications

    Directory of Open Access Journals (Sweden)

    Abdelhamid Bou-El-Harmel

    2017-01-01

    Full Text Available In the RFID sensor networks (RSN, the orientations of the antennas used in the network nodes have a significant influence on the propagation characteristics. In this article, we investigated the effects of the two antennas’ orientation of different radiation and polarization on the multipath propagation characteristics. This study is evaluated in a typical indoor environment by computer simulations based on the three-dimensional (3D ray-tracing method. This method is based on geometric optics and uniform diffraction theory and also it offers significant advantages in terms of accurate and comprehensive prediction of propagation characterization. The simulations have been performed at frequency 915 MHz and the propagation characteristics are compared in terms of received power level (Pr and Root-Mean-Square (RMS delay spread for a quasi-isotropic 3D cubic antenna with circular polarization and for an omnidirectional dipole with linear polarization in the LOS, NLOS, and OLOS scenarios.

  20. Digital Material Assembly by Passive Means and Modular Isotropic Lattice Extruder System

    Science.gov (United States)

    Carney, Matthew Eli (Inventor); Jenett, Benjamin (Inventor); Gershenfeld, Neil (Inventor)

    2017-01-01

    A set of machines and related systems build structures by the additive assembly of discrete parts. These digital material assemblies constrain the constituent parts to a discrete set of possible positions and orientations. In doing so, the structures exhibit many of the properties inherent in digital communication such as error correction, fault tolerance and allow the assembly of precise structures with comparatively imprecise tools. Assembly of discrete cellular lattices by a Modular Isotropic Lattice Extruder System (MILES) is implemented by pulling strings of lattice elements through a forming die that enforces geometry constraints that lock the elements into a rigid structure that can then be pushed against and extruded out of the die as an assembled, loadbearing structure.

  1. Fluence Rate in UV Photoreactor for Disinfection of Water: Isotropically Radiating Cylinder

    Directory of Open Access Journals (Sweden)

    Roman Ilinsky

    2014-01-01

    Full Text Available The calculation of fluence rate in the photochemical reactor using ultraviolet (UV radiation for disinfection of water for the case, when a cylinder of infinite length is used as a light source, has been considered. Such a cylinder is filled with an isotropically radiating medium. The dependence of the fluent rate on the diameter of the radiating cylinder has been analytically analyzed. The limiting case when the diameter of the radiating cylinder tends to zero has been considered and the notion of “effective interval” has been introduced. Based on this notion, the comparison of fluence rates for the cylinders of finite and infinite lengths has been performed. In the calculations of fluence rate, it is advisable to use the Chebyshev method for the operations of numerical integration.

  2. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  3. Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene

    Science.gov (United States)

    Craco, L.

    2017-10-01

    Using density functional dynamical mean-field theory (DFDMFT) we address the problem of antiferromagnetic spin ordering in isotropically superstrained graphene. It is shown that the interplay between strain-induced one-particle band narrowing and sizable on-site electron-electron interactions naturally stabilizes a magnetic phase with orbital-selective spin-polarized p -band electronic states. While an antiferromagnetic phase with strong local moments arises in the pz orbitals, the px ,y bands reveal a metallic state with quenched sublattice magnetization. We next investigate the possibility of superconductivity to emerge in this selective magnetoelectronic state. Our theory is expected to be an important step to understanding the next generation of flexible electronics made of Mott localized carbon-based materials as well as the ability of superstrained graphene to host coexisting superconductivity and magnetism at low temperatures.

  4. Corrsin's Hypothesis and Two-Particle Dispersion in Isotropic, Stationary Turbulence

    DEFF Research Database (Denmark)

    Kristensen, Leif; Kirkegaard, Peter

    On the basis of Corrsin’s independence hypothesis, in conjunction with specific assumptions about the form of the distance-neighbour function, an equation is derived for twoparticle dispersion in isotropic turbulence with no mean motion. It is formulated in terms of the mean-square difference...... for the scale free k−5/3 energy spectrum as well as for the von K´arm´an spectrum. The model implies that only when the outer scale is infinite, i.e. in the limit where the energy spectrum is of the form k−5/3, will there be a Cεt 3 range of the mean-square separation between the two particles. In this limiting...

  5. A Homogeneous and Isotropic Universe in Lorentz Gauge Theory of Gravity

    CERN Document Server

    Borzou, Ahmad

    2016-01-01

    Lorentz gauge theory of gravity was recently introduced. We study the homogeneous and isotropic universe of this theory. It is shown that some time after the matter in the universe is diluted enough, at $z \\sim 0.6$, the decelerating expansion shifts spontaneously to an accelerating one without a dark energy. We discuss that Lorentz gauge theory puts no constraint on the total energy content of the universe at present time and therefore the magnitude of vacuum energy predicted by field theory is not contradictory anymore. It is demonstrated that in this theory the limit on the number of relativistic particles in the universe is much looser than in GR. An inflationary mechanism is discussed as well. We show that the theory, unlike GR, does not require the slow-roll or similar conditions to drive the inflation at the beginning of the universe.

  6. Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor

    Science.gov (United States)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.

  7. Microwave absorption properties and the isotropic antenna mechanism of ZnO nanotrees

    Science.gov (United States)

    Zhuo, R. F.; Qiao, L.; Feng, H. T.; Chen, J. T.; Yan, D.; Wu, Z. G.; Yan, P. X.

    2008-11-01

    In this paper, ZnO nanowires and ZnO nanotrees have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the ZnO nanostructures and paraffin composites have been measured in a frequency of 0.1-18 GHz. Excellent microwave absorption performances have been observed in ZnO nanotree composite compared to ZnO nanowire composite, and the maximum absorption is enhanced as the concentration of the nanotrees increases in the composite. The value of minimum reflection loss for the composites with 60 vol % ZnO nanotrees is -58 dB at 4.2 GHz with a thickness of 4.0 mm. Such strong absorption is attributed to the unique isotropic antenna morphology of the ZnO nanotrees in the composite.

  8. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  9. Sedimentation of elongated non-motile prolate spheroids in homogenous isotropic turbulence

    CERN Document Server

    Ardekani, M Niazi; Brandt, L; Karp-Boss, L; Bearon, R N; Variano, E A

    2016-01-01

    Phytoplankton are the foundation of aquatic food webs. Through photosynthesis, phytoplankton draw down CO2 at magnitudes equivalent to forests and other terrestrial plants and convert it to organic material that is then consumed by other organisms of phytoplankton in higher trophic levels. Mechanisms that affect local concentrations and velocities are of primary significance to many encounter-based processes in the plankton including prey-predator interactions, fertilization and aggregate formation. We report results from simulations of sinking phytoplankton, considered as elongated spheroids, in homogenous isotropic turbulence to answer the question of whether trajectories and velocities of sinking phytoplankton are altered by turbulence. We show in particular that settling spheroids with physical characteristics similar to those of diatoms weakly cluster and preferentially sample regions of down-welling flow, corresponding to an increase of the mean settling speed with respect to the mean settling speed in ...

  10. Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity

    Science.gov (United States)

    Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin

    2017-02-01

    This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.

  11. An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    A 3-D (cube-shaped) antenna, which has been inkjet printed on a paper substrate and integrated with embedded electronics, is presented for the first time. A 1.5λ0 dipole is uniquely implemented on all the faces of the cube to achieve near isotropic radiation pattern. The antenna measures 13mm × 13mm × 13mm, where each side of the cube corresponds to only 0.1λ0 (at 2.4 GHz). Measurements with driving electronics placed inside the cube have shown that the antenna performance is not affected by the presence of embedded circuits. The cube antenna design is highly suitable for mobile sensing applications.

  12. Analysis of isotropic tapered beams by using symmetric smoothed particle hydrodynamics method

    Directory of Open Access Journals (Sweden)

    Armağan Karamanlı

    2016-10-01

    Full Text Available The Symmetric Smoothed Particle Hydrodynamics (SSPH method is applied to solve elastostatic deformations of isotropic tapered beams subjected to different sets of boundary conditions. Governing equations are presented by using either the Euler-Bernoulli and Timoshenko beam theories. The performance of the SSPH method is evaluated by using different numbers of nodes in the problem domain and employing different beam theories for the numerical solutions of the iostropic tapered beam problems. To validate the performance of the SSPH method, comparison studies in terms of transverse deflections and axial stresses are carried out with the analytical solutions of Euler Bernoulli Beam Theory. Since there is no available closed form solutions of the problems based on the Timoshenko Beam Theory, the analytical solutions obtained by the Euler Beam Theory are used for the comparison purposes. It is observed that the SSPH method has the conventional convergence properties and yields smaller L2 error.

  13. Isotropic-to-nematic phase transition of liquid crystals confined in nanoemulsion droplets

    Science.gov (United States)

    Bono, S.; Takanishi, Y.; Yamamoto, J.

    2015-01-01

    We fabricated liquid crystalline nanoemulsions (LCNEs) by introducing low molecular weight liquid crystals (LMWLCs) into the core of nanoemulsions, and investigated the phase transition behavior of LMWLCs in the core part with the various weight ratios of LMWLCs to surfactants. The polarized dynamic light scattering measurement was performed to estimate the radii of LCNEs, and it is found that their radii can be controlled by the weight ratio of LMLCs to surfactant polymers. In the depolarized light scattering, it was revealed that the order of the isotropic-nematic phase transition behavior changes from the first order to biased second order with decreasing radius of LCNEs because of the three-dimensional confinement effect surrounded by an anchoring surface.

  14. Three-dimensional, isotropic imaging of mouse brain using multi-view deconvolution light sheet microscopy

    Directory of Open Access Journals (Sweden)

    Sa Liu

    2017-09-01

    Full Text Available We present a three-dimensional (3D isotropic imaging of mouse brain using light-sheet fluorescent microscopy (LSFM in conjunction with a multi-view imaging computation. Unlike common single view LSFM is used for mouse brain imaging, the brain tissue is 3D imaged under eight views in our study, by a home-built selective plane illumination microscopy (SPIM. An output image containing complete structural information as well as significantly improved resolution (∼4 times are then computed based on these eight views of data, using a bead-guided multi-view registration and deconvolution. With superior imaging quality, the astrocyte and pyramidal neurons together with their subcellular nerve fibers can be clearly visualized and segmented. With further including other computational methods, this study can be potentially scaled up to map the connectome of whole mouse brain with a simple light-sheet microscope.

  15. Calculation of point isotropic buildup factors of gamma rays for water and lead

    Directory of Open Access Journals (Sweden)

    A. S. H.

    2001-12-01

    Full Text Available   Exposure buildup factors for water and lead have been calculated by the Monte-Carlo method for an isotropic point source in an infinite homogeneous medium, using the latest cross secions available on the Internet. The types of interactions considered are ,photoelectric effect, incoherent (or bound-electron Compton. Scattering, coherent (or Rayleigh scattering and pair production. Fluorescence radiations have also been taken into acount for lead. For each material, calculations were made at 10 gamma ray energies in the 40 keV to 10 MeV range and up to penetration depths of 10 mean free paths at each energy point. The results presented in this paper can be considered as modified gamma ray exposure buildup factors and be used in radiation shielding designs.

  16. Thermal stresses in a spherical pressure vessel having temperature-dependent, transversely isotropic, elastic properties

    Science.gov (United States)

    Tauchert, T. R.

    1976-01-01

    Rayleigh-Ritz and modified Rayleigh-Ritz procedures are used to construct approximate solutions for the response of a thick-walled sphere to uniform pressure loads and an arbitrary radial temperature distribution. The thermoelastic properties of the sphere are assumed to be transversely isotropic and nonhomogeneous; variations in the elastic stiffness and thermal expansion coefficients are taken to be an arbitrary function of the radial coordinate and temperature. Numerical examples are presented which illustrate the effect of the temperature-dependence upon the thermal stress field. A comparison of the approximate solutions with a finite element analysis indicates that Ritz methods offer a simple, efficient, and relatively accurate approach to the problem.

  17. Isotropic high resolution optoacoustic imaging with linear detector arrays in bi-directional scanning.

    Science.gov (United States)

    Schwarz, Mathias; Buehler, Andreas; Ntziachristos, Vasilis

    2015-01-01

    Optoacoustic (photoacoustic) imaging is often performed with one-dimensional transducer arrays, in analogy to ultrasound imaging. Optoacoustic imaging using linear arrays offers ease of implementation but comes with several performance drawbacks, in particular poor elevation resolution, i.e. the resolution along the axis perpendicular to the focal plane. Herein, we introduce and investigate a bi-directional scanning approach using linear arrays that can improve the imaging performance to quasi-isotropic transverse resolution. We study the approach theoretically and perform numerical simulations and phantom measurements to evaluate its performance under defined conditions. Finally, we discuss the features and the limitations of the proposed method. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermo-oxidative degradation assessment in quasi-isotropic carbon fiber/epoxy composites

    Science.gov (United States)

    Daily, Connor; Barnard, Dan J.; Jones, Roger W.; McClelland, John F.; Bowler, Nicola

    2015-03-01

    Components made from polymer matrix composites (PMCs) are finding increasing use in armored vehicles for the purpose of weight savings and fuel efficiency. Often times, these PMC components are installed next to engines, or in other high-temperature environments within the vehicle. The present work investigates the change in surface chemistry and its correlation with changes in the interlaminar shear strength (ILSS) due to accelerated thermo-oxidative aging of a quasi-isotropic carbon fiber reinforced epoxy laminate. Samples are aged isothermally at various temperatures whose selection is guided by degradation steps revealed by thermo-gravimetric analysis. Fourier transform infrared (FTIR) photoacoustic spectroscopy is utilized to identify the chemical changes due to aging, and compression-test results reveal a non-linear decrease in ILSS with increasing aging temperature. A correlation between the FTIR and ILSS data sets suggests that nondestructive FTIR techniques may be used for assessing ILSS of PMCs.

  19. Novel Kinetic Theory of the Classical Isotropic Oscillator Gas, the Flexible Shell Model

    Science.gov (United States)

    Schruben, Dale

    2013-12-01

    Ever since Chapman and Enskog first used the hard sphere model to evaluate the collision integral in the Boltzmann equation, more sophisticated models for molecular encounters have been sought. Rotation of molecules in kinetic theory has been pursued with a number of models, such as the spherocylinder or loaded sphere, to account for that aspect. As these efforts continued, more workers started to incorporate quantum mechanics methods in pursuit of solutions to the Boltzmann equation. Progress there with both rotational and vibrational features of molecules has been attained. Until now though, there has been no classical vibration model for molecules in kinetic theory. Far from standard kinetic theory, here a simple classical mechanics isotropic oscillator is combined, through a flexible shell, with the hard sphere model in a full Chapman Enskog procedure. The intent here has been to introduce the model, so items like translational-vibrational coupling have not been included. Still, the results compliment literature.

  20. Analytical applications and effective properties of a second gradient isotropic elastic material model

    Science.gov (United States)

    Enakoutsa, Koffi

    2015-06-01

    Recently, the works by Toupin, Mindlin, Sokolowski and Germain have been developed following two research streams. In the first one, higher-order gradient continuum models were developed based on the Cauchy tetrahedron argument (see, e.g., dell'Isola and Seppecher in Comptes Rendus de l Academie de Sciences 17 Serie IIb: Mecanique, Physique, Chimie, Astronomie 321:303-308, 1995, Meccanica 32:33-52 1997, Zeitschrift fr Angewandte Mathematik und Physik 63(6):1119-1141, 2012). In the second one, the structure of higher-order gradient models is developed with a view to the applications. In particular in the model of linear isotropic solids proposed by Dell'Isola, Sciarra and Vidoli (DSV), the main constitutive equation is obtained for the case of second gradient models. This model introduces in addition to the two well-known Lame's elastic constants five constitutive constants. The practical applications of this model remain in its infancy since the issue of determining the new moduli it introduces is not yet completely addressed. Also, analytical solutions of simple boundary value problems that can be helpful to grasp some of the physical foundations of this model are missing. This paper aims to address these two issues by providing the analytical solutions for two model problems, a spherical shell subjected to axisymmetric loading conditions and the circular bending of a beam in plane strain, both the beam and the shell obeying the DSV second gradient isotropic elastic model. The solution of the circular bending of a beam has served to grasp some of the physical soundness of the model. A framework based on homogenization under inhomogeneous boundary conditions is also suggested to determine the unknown constitutive constants, which are provided in the particular case of elastic porous heterogeneous materials.

  1. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; hide

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  2. Isotropic Heating of Galaxy Cluster Cores via Rapidly Reorienting Active Galactic Nucleus Jets

    Science.gov (United States)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-05-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 1044 - 45 erg s-1, typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  3. Lipid concentration and molar ratio boundaries for the use of isotropic bicelles.

    Science.gov (United States)

    Beaugrand, Maïwenn; Arnold, Alexandre A; Hénin, Jérôme; Warschawski, Dror E; Williamson, Philip T F; Marcotte, Isabelle

    2014-06-03

    Bicelles are model membranes generally made of long-chain dimyristoylphosphatidylcholine (DMPC) and short-chain dihexanoyl-PC (DHPC). They are extensively used in the study of membrane interactions and structure determination of membrane-associated peptides, since their composition and morphology mimic the widespread PC-rich natural eukaryotic membranes. At low DMPC/DHPC (q) molar ratios, fast-tumbling bicelles are formed in which the DMPC bilayer is stabilized by DHPC molecules in the high-curvature rim region. Experimental constraints imposed by techniques such as circular dichroism, dynamic light scattering, or microscopy may require the use of bicelles at high dilutions. Studies have shown that such conditions induce the formation of small aggregates and alter the lipid-to-detergent ratio of the bicelle assemblies. The objectives of this work were to determine the exact composition of those DMPC/DHPC isotropic bicelles and study the lipid miscibility. This was done using (31)P nuclear magnetic resonance (NMR) and exploring a wide range of lipid concentrations (2-400 mM) and q ratios (0.15-2). Our data demonstrate how dilution modifies the actual DMPC/DHPC molar ratio in the bicelles. Care must be taken for samples with a total lipid concentration ≤250 mM and especially at q ∼ 1.5-2, since moderate dilutions could lead to the formation of large and slow-tumbling lipid structures that could hinder the use of solution NMR methods, circular dichroism or dynamic light scattering studies. Our results, supported by infrared spectroscopy and molecular dynamics simulations, also show that phospholipids in bicelles are largely segregated only when q > 1. Boundaries are presented within which control of the bicelles' q ratio is possible. This work, thus, intends to guide the choice of q ratio and total phospholipid concentration when using isotropic bicelles.

  4. A Par-1-Par-3-Centrosome Cell Polarity Pathway and Its Tuning for Isotropic Cell Adhesion.

    Science.gov (United States)

    Jiang, Tao; McKinley, R F Andrew; McGill, Melanie A; Angers, Stephane; Harris, Tony J C

    2015-10-19

    To form regulated barriers between body compartments, epithelial cells polarize into apical and basolateral domains and assemble adherens junctions (AJs). Despite close links with polarity networks that generate single polarized domains, AJs distribute isotropically around the cell circumference for adhesion with all neighboring cells [1-3]. How AJs avoid the influence of polarity networks to maintain their isotropy has been unclear. In established epithelia, trans cadherin interactions could maintain AJ isotropy [4], but AJs are dynamic during epithelial development and remodeling [5, 6], and thus specific mechanisms may control their isotropy. In Drosophila, aPKC prevents hyper-polarization of junctions as epithelia develop from cellularization to gastrulation [7]. Here, we show that aPKC does so by inhibiting a positive feedback loop between Bazooka (Baz)/Par-3, a junctional organizer [5, 8-10], and centrosomes. Without aPKC, Baz and centrosomes lose their isotropic distributions and recruit each other to single plasma membrane (PM) domains. Surprisingly, our loss- and gain-of-function analyses show that the Baz-centrosome positive feedback loop is driven by Par-1, a kinase known to phosphorylate Baz and inhibit its basolateral localization [8, 11, 12]. We find that Par-1 promotes the positive feedback loop through both centrosome microtubule effects and Baz phosphorylation. Normally, aPKC attenuates the circuit by expelling Par-1 from the apical domain at gastrulation. The combination of local activation and global inhibition is a common polarization strategy [13-16]. Par-1 seems to couple both effects for a potent Baz polarization mechanism that is regulated for the isotropy of Baz and AJs around the cell circumference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants.

    Science.gov (United States)

    Pelaez-Vargas, A; Gallego-Perez, D; Magallanes-Perdomo, M; Fernandes, M H; Hansford, D J; De Aza, A H; Pena, P; Monteiro, F J

    2011-06-01

    Titanium implants are the gold standard in dentistry; however, problems such as gingival tarnishing and peri-implantitis have been reported. For zirconia to become a competitive alternative dental implant material, surface modification techniques that induce guided tissue growth must be developed. To develop alternative surface modification techniques to promote guided tissue regeneration on zirconia materials, for applications in dental implantology. A methodology that combined soft lithography and sol-gel chemistry was used to obtain isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates. The materials were characterized via chemical, structural, surface morphology approaches. In vitro biological behavior was evaluated in terms of early adhesion and viability/metabolic activity of human osteoblast-like cells. Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. Isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates were obtained using a combined approach based on sol-gel technology and soft lithography. Micropatterned silica surfaces exhibited a biocompatible behavior, and modulated cell responses (i.e. inducing early alignment of osteoblast-like cells). After 7d of culture, the cells fully covered the top surfaces of pillar microstructured silica films. The micropatterned silica films on zirconia showed a biocompatible response, and were capable of inducing guided osteoblastic cell adhesion, spreading and propagation. The results herein presented suggest that surface-modified ceramic implants via soft lithography and sol-gel chemistry could potentially be used to guide periodontal tissue regeneration, thus promoting tight tissue apposition, and avoiding gingival retraction and peri-implantitis. Copyright © 2011 Academy of Dental Materials. All rights reserved.

  6. Magnetic compressibility and Isotropic Scale-Invariant Dissipation of Solar Wind Turbulence

    Science.gov (United States)

    Kiyani, K. H.; Chapman, S. C.; Khotyaintsev, Y. V.; Hnat, B.; Sahraoui, F.

    2010-12-01

    The anisotropic nature of solar wind magnetic fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field ACE, and Cluster FGM and STAFF observations spanning five decades in scales from the inertial to dissipation ranges of plasma turbulence. We find an abrupt transition at ion kinetic scales to a single isotropic stochastic process as characterized by the single functional form of the probability density functions (PDFs) of fluctuations that characterizes the dissipation range on all observable scales. In contrast to the inertial range, this is accompanied by a successive scale-invariant reduction in the ratio between parallel and transverse power. We suggest that this reflects the phase space nature of the cascade which operates in a scale-invariant isotropic manner in the (kinetic) dissipation range - distinct from the anisotropic phenomenology in the (magnetohydrodynamic) inertial range. Alternatively, if we assume that non-linear effects are weak in the dissipation range and use the results of the linear dispersion theory of waves; then our measurements of fluctuation anisotropy provide deep insight into the nature of these waves. In particular, using these measurements to form a measure for the scale-by-scale magnetic compressibility, we can distinguish between the competing hypotheses of oblique kinetic Alfven waves versus Whistler waves dominating the energy transfer in the dissipation range. By looking at the scale-by-scale PDFs of the fluctuations we will also comment on how reasonable the assumption of linear theory is as we cross from the inertial to the dissipation range of plasma turbulence.

  7. Thermodynamics extends economics potentials

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, Alexander V. [Kiev Technical Univ., Dept. of Marketing and Management, Kiev (Ukraine); Brodiansky, Victor M. [Moscow Energy Inst., Dept. of Cryogen Machines, Moscow (Russian Federation)

    2001-08-01

    In this paper we consider the use of exergy in economic valuation and its correlation with money. Exergy-based determination of production expenses provides a new base for 'natural' price determination. A new macroeconomic dynamics approach based on this correlation is proposed. This method is relatively general because it is not restricted by certain assumptions used in traditional economic analysis. The exergy model of macroeconomic dynamics was tested by utilizing data from the US economy. This test, covering a period of about 25 years, confirms this approach and opens new potentials in economic analysis. (Author)

  8. On Balancing and Order Reduction of Unstable Periodic Systems

    OpenAIRE

    Varga, Andras

    2001-01-01

    Abstract: We consider the direct application of balancing techniques to unstable periodic systems by extending the balancing concepts to arbitrary periodic systems. We extend first the balancing concepts to unstable discrete-time systems by defining the reachability and observability grammians from appropriate right and left coprime factorizations with inner denominators. Further, we extend this new balancing method to unstable linear time-varying discrete-time systems with periodically vary...

  9. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  10. Dynamic analysis of slab track on multi-layered transversely isotropic saturated soils subjected to train loads

    Science.gov (United States)

    Zhan, Yongxiang; Yao, Hailin; Lu, Zheng; Yu, Dongming

    2014-12-01

    The dynamic responses of a slab track on transversely isotropic saturated soils subjected to moving train loads are investigated by a semi-analytical approach. The track model is described as an upper Euler beam to simulate the rails and a lower Euler beam to model the slab. Rail pads between the rails and slab are represented by a continuous layer of springs and dashpots. A series of point loads are formulated to describe the moving train loads. The governing equations of track-ground systems are solved using the double Fourier transform, and the dynamic responses in the time domain are obtained by the inverse Fourier transform. The results show that a train load with high velocity will generate a larger response in transversely isotropic saturated soil than the lower velocity load, and special attention should be paid on the pore pressure in the vicinity of the ground surface. The anisotropic parameters of a surface soil layer will have greater influence on the displacement and excess pore water pressure than those of the subsoil layer. The traditional design method taking ground soil as homogeneous isotropic soil is unsafe for the case of RE < 1 and RG < 1, so a transversely isotropic foundation model is of great significance to the design for high train velocities.

  11. Laplace-transform-based method to calculate back-reflected radiance from an isotropically scattering half-space

    NARCIS (Netherlands)

    Rinzema, K.; Hoenders, B.J; Ferwerda, H.A

    We present a method to determine the back-reflected radiance From an isotropically scattering half-space with matched boundary. This method has the advantage that it leads very quickly to the relevant equations, the numerical solution of which is also quite easy. Essentially, the method is derived

  12. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    Science.gov (United States)

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) 3 ∞ [Eu 2 (BDC) 3 ]·2DMF·2H 2 O (BDC 2- = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  13. Absent menstrual periods - primary

    Science.gov (United States)

    Primary amenorrhea; No periods - primary; Absent periods - primary; Absent menses - primary; Absence of periods - primary ... nutrition Tumors In many cases, the cause of primary amenorrhea is not known.

  14. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  15. Attenuation modelling of bulk waves generated by a point source in an isotropic medium

    Energy Technology Data Exchange (ETDEWEB)

    Ramadas, C. [Composites Research Center, R and D, Pune (India)

    2016-10-15

    Attenuation of a bulk wave, generated by a point source, propagating in an isotropic medium, is due to the geometry and nature of the material involved. In numerical simulations, if the complete domain of propagation is modeled, then it captures the attenuation of a wave caused due to its geometry. To model the attenuation of the wave caused due to the nature of the material, it is required to know the material'attenuation coefficient. Since experimental measurement on attenuation of a wave involves both the effects of geometry and material, a method based on curve fitting to estimate the material'attenuation coefficient from effective attenuation coefficient, is proposed. Using the material'attenuation coefficient in the framework of Rayleigh damping model, numerical modeling on attenuation of both the bulk waves - longitudinal and shear excited by a point source was carried out. It was shown that the proposed method captures the attenuation of bulk waves caused on account of geometry as well as nature of the material.

  16. New insights on the direct activation of isotropic petroleum pitch by alkaline hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Vilaplana-Ortego, E.; Lillo-Rodenas, M.A.; Alcaniz-Monge, J.; Cazorla-Amoros, D.; Linares-Solano, A. [Grupo de Materiales Carbonosos y Medio Ambiente, Dpto. Quimica Inorganica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2010-02-15

    The paper provides interesting evidences that a low softening point isotropic petroleum pitch can be used as a good carbon precursor for the preparation of activated carbons. The activation is carried out by KOH and/or NaOH and the resulting activated carbons present well developed porosity. Such hydroxide activations can be done directly on the pristine petroleum pitch (P) or on the pitch that has been submitted to an air stabilisation followed by a N{sub 2} heat treatment (TAN). In general, KOH activation produces better results than NaOH, both in terms of porosity and yield, the results obtained for the activation of TAN being impressive because of the good porosity developments and high yields reached. The different treatments carried out over the petroleum pitch precursor clearly show that they significantly influence the extent of microporosity development. This is due to different changes occurring in the porous structure of the precursor as a function of the treatment carried out. The efficiency of the activation process increases as the mesophase content of the precursor decreases, as well as the mesophase formation during the activation process is avoided. (author)

  17. Generalized thermoelastic extensional and flexural wave motions in homogenous isotropic plate by using asymptotic method

    Science.gov (United States)

    Sharma, J. N.; Sharma, P. K.; Rana, S. K.

    2011-01-01

    In this paper the asymptotic method has been applied to investigate propagation of generalized thermoelastic waves in an infinite homogenous isotropic plate. The governing equations for the extensional, transversal and flexural motions are derived from the system of three-dimensional dynamical equations of linear theories of generalized thermoelasticity. The asymptotic operator plate model for extensional and flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth degree polynomial secular equations, respectively. These secular equations govern frequency and phase velocity of various possible modes of wave propagation at all wavelengths. The velocity dispersion equations for extensional and flexural wave motion are deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate. The approximation for long and short waves along with expression for group velocity has also been obtained. The Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations and its equivalence established with that of asymptotic method. The numeric values for phase velocity, group velocity and attenuation coefficients has also been obtained using MATHCAD software and are shown graphically for extensional and flexural waves in generalized theories of thermoelastic plate for solid helium material.

  18. Surface-induced order in the isotropic phase of thin smectogenic films: a deuteron NMR study*

    Science.gov (United States)

    Jin, Tao; Finotello, Daniele

    2002-03-01

    Using deuteron NMR, we study the pretransitional wetting behavior in the isotropic phase for different thickness smectogenic films formed in Anopore membranes. The membranes, with 200nm pores are treated with different surfactants that promote homeotropic alignment including lecithin, silane and palmitic acid. Previous work on 12CB completely filling the Anopore pores showed a discrete substrate-induced bilayer-by-bilayer growth of smectic order[1, 2]. In this study, thin smectogenic films with effective thickness ranging from one monolayer up to about twenty molecular layers are prepared using the solvent evaporation method. The effect of the different surfactants and the thickness of its coating on the surface-induced order for the semctogenic is reflected in the spectral patterns obtained as a function of temperature and angular orientation in the NMR field. [1]. G. S. Iannacchione et al, Phys. Rev. Lett, 73, 2708 (1994). [2] G. P. Crawford et al, unpublished. *Supported by NSF-ALCOM 89-20147 and NSF-INT 98-15313

  19. Low-temperature magnetic resonance imaging with 2.8 μm isotropic resolution

    Science.gov (United States)

    Chen, Hsueh-Ying; Tycko, Robert

    2018-02-01

    We demonstrate the feasibility of high-resolution 1H magnetic resonance imaging (MRI) at low temperatures by obtaining an MRI image of 20 μm diameter glass beads in glycerol/water at 28 K with 2.8 μm isotropic resolution. The experiments use a recently-described MRI apparatus (Moore and Tycko, 2015) with minor modifications. The sample is contained within a radio-frequency microcoil with 150 μm inner diameter. Sensitivity is additionally enhanced by paramagnetic doping, optimization of the sample temperature, three-dimensional phase-encoding of k-space data, pulsed spin-lock detection of 1H nuclear magnetic resonance signals, and spherical sampling of k-space. We verify that the actual image resolution is 2.7 ± 0.3 μm by quantitative comparisons of experimental and calculated images. Our imaging approach is compatible with dynamic nuclear polarization, providing a path to significantly higher resolution in future experiments.

  20. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed. Published by Elsevier B.V.

  1. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.

    Science.gov (United States)

    Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R

    2013-11-15

    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material. © 2013 Elsevier Ltd. All rights reserved.

  2. Multiscale permutation entropy analysis of laser beam wandering in isotropic turbulence

    Science.gov (United States)

    Olivares, Felipe; Zunino, Luciano; Gulich, Damián; Pérez, Darío G.; Rosso, Osvaldo A.

    2017-10-01

    We have experimentally quantified the temporal structural diversity from the coordinate fluctuations of a laser beam propagating through isotropic optical turbulence. The main focus here is on the characterization of the long-range correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. To fulfill this goal, a laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing the symbolic technique based on ordinal patterns to estimate the well-known permutation entropy. We show that the permutation entropy estimations at multiple time scales evidence an interplay between different dynamical behaviors. More specifically, a crossover between two different scaling regimes is observed. We confirm a transition from an integrated stochastic process contaminated with electronic noise to a fractional Brownian motion with a Hurst exponent H =5 /6 as the sampling time increases. Besides, we are able to quantify, from the estimated entropy, the amount of electronic noise as a function of the turbulence strength. We have also demonstrated that these experimental observations are in very good agreement with numerical simulations of noisy fractional Brownian motions with a well-defined crossover between two different scaling regimes.

  3. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

    Science.gov (United States)

    Riedinger, Andreas; Ott, Florian D.; Mule, Aniket; Mazzotti, Sergio; Knüsel, Philippe N.; Kress, Stephan J. P.; Prins, Ferry; Erwin, Steven C.; Norris, David J.

    2017-07-01

    Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counter-intuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials.

  4. Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence

    Science.gov (United States)

    Overholt, M. R.; Pope, S. B.

    1996-11-01

    Mixing of a passive scalar in statistically homogeneous, isotropic, and stationary turbulence with a mean scalar gradient is investigated via direct numerical simulation, for Taylor-scale Reynolds numbers, Rλ, from 28 to 185. Multiple independent simulations are performed to get confidence intervals, and local regression smoothing is used to further reduce statistical fluctuations. The scalar fluctuation field, φ(x,t), is initially zero, and develops to a statistically stationary state after about four eddy turnover times. Quantities investigated include the dissipation of scalar flux, which is found to be significant; probability density functions (pdfs) and joint-pdfs of the scalar, its derivatives, scalar dissipation, and mechanical dissipation; and conditional expectations of scalar mixing, ∇2φ. A linear model for scalar mixing jointly conditioned on the scalar and v-velocity is developed, and reproduces the data quite well. Also considered is scalar mixing jointly conditioned on the scalar and scalar dissipation. Terms appearing in the balance equation for the pdf of φ are examined. From a solution of the scalar pdf equation two sufficient conditions arise for the scalar pdf to be Gaussian. These are shown to be well satisfied for moderate values of the scalar, and approximately so for large fluctuations. Many correlations are also presented, including ρ(v,φ), which changes during the evolution of the scalar from a value of unity when initialized to the stationary value of 0.5-0.6.

  5. Modeling of evolution of shape of ductile metal disk for isotropic bombardment

    Science.gov (United States)

    Osipov, Dulustaan R.; Yakovlev, Boris V.; Matveev, Andrei I.; Osipov, Dulustan A.

    2017-11-01

    This work is devoted to a calculation of formation time of a toroidal shape of a flat piece of ductile metal in enrichment of minerals. Gold grains occurring in nature, in most cases, originally have a form of a flat plate (the scaly form). Continuous bombardment of the surface of a piece of gold with surrounding grains of sand during the enrichment of ores in various jigging, separation, and crusher devices results in the piece assuming a toroidal shape. When separating, the shape of the grains in the form of a torus is considered to be the most effective. Therefore, the problem of calculation of the formation time of the toroidal shape of the piece of gold is urgent. In this paper, we propose a physical model for the formation of the toroidal shape of the piece of ductile metal, in which an isotropic, homogeneous flow of particles deforming a plane body (disk) is introduced. Based on the proposed physical model, a mathematical model of evolution of the surface under deformation of a body was developed. A first-order differential equation is obtained with respect to the deformable surface, which is solved by the Runge-Kutta method. As a result of the study, the dependence of the deformed surface on the time was determined.

  6. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  7. How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology.

    Science.gov (United States)

    Herculano-Houzel, Suzana; von Bartheld, Christopher S; Miller, Daniel J; Kaas, Jon H

    2015-04-01

    The number of cells comprising biological structures represents fundamental information in basic anatomy, development, aging, drug tests, pathology and genetic manipulations. Obtaining unbiased estimates of cell numbers, however, was until recently possible only through stereological techniques, which require specific training, equipment, histological processing and appropriate sampling strategies applied to structures with a homogeneous distribution of cell bodies. An alternative, the isotropic fractionator (IF), became available in 2005 as a fast and inexpensive method that requires little training, no specific software and only a few materials before it can be used to quantify total numbers of neuronal and non-neuronal cells in a whole organ such as the brain or any dissectible regions thereof. This method entails transforming a highly anisotropic tissue into a homogeneous suspension of free-floating nuclei that can then be counted under the microscope or by flow cytometry and identified morphologically and immunocytochemically as neuronal or non-neuronal. We compare the advantages and disadvantages of each method and provide researchers with guidelines for choosing the best method for their particular needs. IF is as accurate as unbiased stereology and faster than stereological techniques, as it requires no elaborate histological processing or sampling paradigms, providing reliable estimates in a few days rather than many weeks. Tissue shrinkage is also not an issue, since the estimates provided are independent of tissue volume. The main disadvantage of IF, however, is that it necessarily destroys the tissue analyzed and thus provides no spatial information on the cellular composition of biological regions of interest.

  8. Multi-scale analysis of local flow topology in isotropic turbulence

    Science.gov (United States)

    Danish, Mohammad; Meneveau, Charles

    2017-11-01

    Knowledge of local flow-topology, as described by the velocity gradients, is useful to develop insights of turbulence processes, such as energy cascade, material element deformation, etc. Much has been learned in recent past about flow-topology at the smallest (viscous) scales of turbulence. However, less is known at larger (or inertial) scales of turbulence. In this work, we present a detailed study on the scale-dependence of various quantities of our interest, like population fraction of different flow-topologies, joint probability distribution of second and third invariants of velocity gradient tensor, etc. We use a new filter proposed by Eyink & Aluie to decompose the flow into small and large scales. We provide further insights for the observed behavior of scale-dependence by examining the probability fluxes appearing in the Fokker-Plank equation. Specifically, we aim to understand whether the differences observed between the viscous and inertial range are due to different effects caused by pressure, subgrid-scale or viscous stresses, or various combination thereof. For this purpose, we use the isotropic turbulence dataset at Reλ = 433 available at JHTDB and the analysis tools developed for SciServer, including FFT to evaluate filtering and gradients. Supported by the National Science Foundation (Grants No. 1507469 and 1633124).

  9. On the local virial theorems for linear and isotropic harmonic oscillator potentials in d dimensions

    Science.gov (United States)

    Bencheikh, K.; Nieto, L. M.

    2010-09-01

    For the system of noninteracting fermions in a one-body potential V(\\overrightarrow{\\vphantom{A}r}), the local virial theorems (LVT) are relations, at a given point \\overrightarrow{\\vphantom{A}r} in space, between this potential, kinetic energy and particle densities. It was recently shown (Brack et al 2010 J. Phys. A: Math. Theor. 43 255204) that for d-dimensional linear and also for isotropic harmonic oscillator potentials these LVTs are exactly satisfied. We present alternative and simple proofs of these theorems, by consideration of the canonical or Bloch density matrix and its relation to the kinetic energy density. The explicit analytical forms of the Bloch density matrix are used for the above-mentioned potentials to achieve the proofs. For the case of linear potential, we obtain a more general result for the so-called semilocal virial theorem, and for the harmonic oscillator potential case we derive a new relationship between the diagonal part of the canonical bloch density and the kinetic energy density.

  10. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  11. Processing an acoustic microscope's spatiotemporal signal to determine the parameters of an isotropic layer

    Science.gov (United States)

    Titov, S. A.; Levin, V. M.; Petronyuk, Yu. S.

    2017-11-01

    This paper presents a method for measuring the thickness and velocities of body waves and the density of an isotropic layer by a pulse scanning acoustic microscope. The method is based on recording the microscope signal as a function of the displacement magnitude of the focused ultrasonic transducer along its axis perpendicular to the sample surface and on the decomposition of the recorded 2D spatiotemporal signal into the spectrum of plane pulse waves. The velocities of the longitudinal and transverse waves and the layer's thickness are calculated from the relative delays of the components of the spectrum of plane waves reflected from the surfaces of the layer and the density is computed by the amplitudes of these components. An experimental investigation of a test sample in the form of a glass plate carried out in the 50-MHz range shows that the error in measuring the thickness and velocities of body waves does not exceed 1% and the density measurement error does not exceed 10%.

  12. Size estimates for fat inclusions in an isotropic Reissner–Mindlin plate

    Science.gov (United States)

    Morassi, Antonino; Rosset, Edi; Vessella, Sergio

    2018-02-01

    In this paper we consider the inverse problem of determining, within an elastic isotropic thick plate modelled by the Reissner–Mindlin theory, the possible presence of an inclusion made of a different elastic material. Under some a priori assumptions on the inclusion, we deduce constructive upper and lower estimates of the area of the inclusion in terms of a scalar quantity related to the work developed in deforming the plate by applying simultaneously a couple field and a transverse force field at the boundary of the plate. The approach allows us to consider plates with a boundary of Lipschitz class. The first author is supported by PRIN 2015TTJN95 ‘Identification and monitoring of complex structural systems’. The second author is supported by FRA 2016 ‘Problemi Inversi, dalla stabilità alla ricostruzione’, Università degli Studi di Trieste. The second and the third authors are supported by Progetto GNAMPA 2017 ‘Analisi di problemi inversi: stabilità e ricostruzione’, Istituto Nazionale di Alta Matematica (INdAM).

  13. Experimental Exploration of Electrostatic Charge on Particle Pair Relative Velocity in Homogeneous and Isotropic Turbulence

    Science.gov (United States)

    Hammond, Adam; Dou, Zhongwang; Tripathi, Anjan; Liang, Zach; Meng, Hui

    2015-11-01

    Study of droplet collision and cloud formation should consider the effects of both turbulence and electrostatic charge on particle dynamics. We present the first experimental observation of radial relative velocity (RV) of charged particles in homogeneous and isotropic turbulence (HIT). Charges on particles were generated through triboelectric effect between the inner wall of the chamber and the particles. To measure charge distribution, a particle-laden head-on impinging flow mimicking our HIT chamber conditions was built and holographic particle tracking was applied to quantify particle charges by measuring their displacements in an electric field. Particles were observed to have opposite charges. Next, in our HIT chamber, we measured particle RV by a novel 4-frame particle tracking velocimetry technique with and without charges on particles, wherein charges were neutralized by coating the interior of the HIT chamber with conductive carbon paint. We compared RV under the same turbulence conditions between charged particles and neutral particles and observed that when particles were oppositely charged, their mean inward RV increased at small separation distances. This result is consistent with recent theory and simulations (Lu and Shaw, Physics of Fluids, 2015). This work was supported by the National Science Foundation through a Collaborative Research Grant CBET-0967407.

  14. Hybrid Model for Homogenization of the Elastoplastic Properties of Isotropic Matrix Composites

    Science.gov (United States)

    Fedotov, A. F.

    2017-07-01

    A hybrid homogenization model for calculating the effective elastoplastic properties of isotropic matrix composites is suggested. The hybrid model combines the continuous deformation models of heterogeneous solid and porous materials. A distinctive feature of the model is the calculation of concentration coefficients of the average Hill strains in terms of the effective volumes of strain averaging. The effective volumes of averaging are determined by solving the boundary-value problem on plastic deformation of a simplified structural model of a two-phase composite considering the porous state of matrix. A comparison of calculation results with experimental data upon constructing deformation diagrams for polymer-matrix and metal-matrix composites is carried out. The possibility of changing the properties of the metal matrix in producing composites is mentioned. Therefore, the adequacy of analytical models greatly depends on the accuracy of identification of material constants of the matrix. On the whole, the new model described the plastic deformation of matrix composites more accurately than the Mori-Tanaka model. The analytical model proposed has a simpler sampling scheme, a simple computation algorithm, and ensured the same calculation accuracy for the deformation diagram of an aluminum-matrix composite as the numerical finite-element model created by the ABAQUS software.

  15. Ceramography of Irradiated tristructural isotropic (TRISO) Fuel from the AGR-2 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Ceramography was performed on cross sections from four tristructural isotropic (TRISO) coated particle fuel compacts taken from the AGR-2 experiment, which was irradiated between June 2010 and October 2013 in the Advanced Test Reactor (ATR). The fuel compacts examined in this study contained TRISO-coated particles with either uranium oxide (UO2) kernels or uranium oxide/uranium carbide (UCO) kernels that were irradiated to final burnup values between 9.0 and 11.1% FIMA. These examinations are intended to explore kernel and coating morphology evolution during irradiation. This includes kernel porosity, swelling, and migration, and irradiation-induced coating fracture and separation. Variations in behavior within a specific cross section, which could be related to temperature or burnup gradients within the fuel compact, are also explored. The criteria for categorizing post-irradiation particle morphologies developed for AGR-1 ceramographic exams, was applied to the particles in the AGR-2 compacts particles examined. Results are compared with similar investigations performed as part of the earlier AGR-1 irradiation experiment. This paper presents the results of the AGR-2 examinations and discusses the key implications for fuel irradiation performance.

  16. A Novel Richardson-Lucy Model with Dictionary Basis and Spatial Regularization for Isolating Isotropic Signals.

    Directory of Open Access Journals (Sweden)

    Tiantian Xu

    Full Text Available Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has been increasingly used in neuroscience imaging over the last decade. Partial volume effects (PVEs exist in sampling signal for many physical and actual reasons, which lead to inaccurate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from diffusion-weighted signal, which can provide more accurate estimation of fiber orientations. In this work, we use a novel response function (RF and the correspondent fiber orientation distribution function (fODF to construct different signal models, in which case the fODF is represented using dictionary basis function. We then put forward a new index Piso, which is a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL model is usually used in the field of digital image processing to solve the problem of spherical deconvolution caused by highly ill-posed least-squares algorithm. In this case, we propose an innovative model integrating RL model with spatial regularization to settle the suggested double-models, which improve noise resistance and accuracy of imaging. Experimental results of simulated and real data show that the proposal method, which we call iRL, can robustly reconstruct a more accurate fODF and the quantitative index Piso performs better than fractional anisotropy and general fractional anisotropy.

  17. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

    Science.gov (United States)

    Mule, Aniket; Mazzotti, Sergio; Knüsel, Philippe N.; Kress, Stephan J. P.; Prins, Ferry; Erwin, Steven C.; Norris, David J.

    2017-01-01

    Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counterintuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead-halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface, and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials. PMID:28369052

  18. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium

    Science.gov (United States)

    Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu

    2015-05-01

    The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.

  19. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T

    CERN Document Server

    Larbalestier, D C; Trociewitz, U P; Kametani, F; Scheuerlein, C; Dalban-Canassy, M; Matras, M; Chen, P; Craig, N C; Lee, P J; Hellstrom, E E

    2014-01-01

    Magnets are the principal market for superconductors, but making attractive conductors out of the high-temperature cuprate superconductors (HTSs) has proved difficult because of the presence of high-angle grain boundaries that are generally believed to lower the critical current density, J$_c$. To minimize such grain boundary obstacles, HTS conductors such as REBa$_2$Cu$_3$O$_{7−x}$ and (Bi, Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10−x}$ are both made as tapes with a high aspect ratio and a large superconducting anisotropy. Here we report that Bi$_2$2Sr$_2$CaCu$_2$O$_{8−x}$ (Bi-2212) can be made in the much more desirable isotropic, round-wire, multifilament form that can be wound or cabled into arbitrary geometries and will be especially valuable for high-field NMR magnets beyond the present 1 GHz proton resonance limit of Nb$_3$Sn technology. An appealing attribute of this Bi-2212 conductor is that, being without macroscopic texture, it contains many high-angle grain boundaries but nevertheless attains a very hi...

  20. Principal curvatures and area ratio of propagating surfaces in isotropic turbulence

    Science.gov (United States)

    Zheng, Tianhang; You, Jiaping; Yang, Yue

    2017-10-01

    We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.

  1. An efficient eikonal solver for tilted transversely isotropic and tilted orthorhombic media

    KAUST Repository

    Waheed, Umair bin

    2014-01-01

    Computing first-arrival traveltimes in the presence of anisotropy is important for high-end near surface modeling, microseismic source localization, and fractured reservoir characterization. Anisotropy deviating from elliptical anisotropy introduces higher-order nonlinearity into the eikonal equation, which makes solving the equation a challenging task. We address this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function is updated to capture the effects due to the higher order nonlinear terms in the anisotropy. We use Aitken extrapolation to speed up the convergence rate of the iterative algorithm. The result is an efficient algorithm for firstarrival traveltime computations in tilted anisotropic media. We demonstrate the proposed method for the tilted transversely isotropic media and the tilted orthorhombic media. Numerical tests show that the proposed method is feasible and produces results that are comparable to wavefield extrapolation, even for strongly anisotropic and complex structures. Therefore, for the cases where one or two-point ray tracing fails, our method may be a potential substitute for computing traveltimes.

  2. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  3. A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Sergei [Los Alamos National Laboratory

    2008-01-01

    We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.

  4. Numerical simulation of the thermal effect of a laser--induced plasma on isotropic turbulence

    Science.gov (United States)

    Ghosh, Shankar; Mahesh, Krishnan

    2008-11-01

    The interaction of a laser--induced plasma with isotropic turbulence is studied using numerical simulations. The simulations use air as the working fluid and assume local thermodynamic equilibrium. The numerical method is fully spectral and uses a shock capturing scheme in a corrector step. Turbulent Reynolds number Reλ= 30 and fluctuation Mach numbers Mt= 0.001 and 0.3 are considered. Mt of 0.001 is chosen to correspond to low speed experiments (e.g. Comte--Bellot and Corrsin 1971). Here, the shock wave propagates on a much faster time--scale compared to the turbulence evolution. The turbulence ahead of the shock is therefore almost frozen. At Mt of 0.3 the time--scales of the shock wave are comparable to that of the background. In both cases, the mean flow has a significant effect on the turbulence. The effect of the turbulence on the time scale of shock formation and the shock velocity and distortion is studied. The turbulence experiences strong compression due to the shock wave and strong expansion in the core. Turbulence intensities are enhanced and suppressed due to the effects of compression and expansion respectively. This behavior is spatially inhomogeneous and non--stationary in time. Spatial and one--point temporal statistics are discussed. Also kinetic energy budgets are computed and will be discussed.

  5. Evolution of periodicity in periodical cicadas.

    Science.gov (United States)

    Ito, Hiromu; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Koyama, Takuya; Sota, Teiji; Cooley, John R; Yoshimura, Jin

    2015-09-14

    Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada implicates the decline in average temperature during glacial periods. During the evolution of periodicity, the determinant of maturation in ancestral cicadas is hypothesized to have switched from size dependence to time (period) dependence. The selection for the prime-numbered cycles should have taken place only after the fixation of periodicity. Here, we build an individual-based model of cicadas under conditions of climatic cooling to explore the fixation of periodicity. In our model, under cold environments, extremely long juvenile stages lead to extremely low adult densities, limiting mating opportunities and favouring the evolution of synchronized emergence. Our results indicate that these changes, which were triggered by glacial cooling, could have led to the fixation of periodicity in the non-periodical ancestors.

  6. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  7. On core stability and extendability

    OpenAIRE

    Shellshear, Evan

    2011-01-01

    This paper investigates conditions under which the core of a TU cooperative game is stable. In particular the author extends the idea of extendability to find new conditions under which the core is stable. It is also shown that these new conditions are not necessary for core stability.

  8. Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?

    Directory of Open Access Journals (Sweden)

    Renê Gonçalves da Silva Carneiro

    Full Text Available Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum-N. cattleianum, and P. myrtoides-N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities.

  9. Extended Active Disturbance Rejection Controller

    Science.gov (United States)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  10. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase-corrected diffusion-prepared 3D turbo spin echo.

    Science.gov (United States)

    Cervantes, Barbara; Van, Anh T; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J; Gersing, Alexandra; Kirschke, Jan S; Karampinos, Dimitrios C

    2018-01-29

    To perform in vivo isotropic-resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase-navigated diffusion-prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase-error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Phase-navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy-current effects on the signal magnitude. Phase navigation of motion-induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single-shot echo planar imaging (ss-EPI) in 13 subjects. Diffusion data were phase-corrected per k z plane with respect to T 2 -weighted data. The effects of motion-induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss-EPI. Non-phase-corrected 3D TSE resulted in artifacts in diffusion-weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss-EPI DTI parameters (MD = 1.62 ± 0.21). DP 3D TSE with phase correction allows distortion-free isotropic diffusion imaging of lower back nerves with robustness to motion-induced artifacts and DTI quantification errors. Magn Reson Med, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2018 The Authors Magnetic Resonance in Medicine

  11. Analytical solution to the 1D Lemaitre's isotropic damage model and plane stress projected implicit integration procedure

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Hattel, Jesper Henri

    2016-01-01

    In the present paper, for the first time in literature an exact analytical solution to Lemaitre's isotropic damage model is developed for the special case of uniaxial tensile testing. This is achieved by taking advantage of a convenient formulation of the isotropic hardening function, which allows...... obtaining an integral relationship between total strain and effective stress. By means of the generalized binomial theorem, an expression in terms of infinite series is subsequently derived. The solution is found to simplify considerably existing techniques for material parameters identification based...... on optimization, as all issues associated with classical numerical solution procedures of the constitutive equations are eliminated. In addition, an implicit implementation of the plane stress projected version of Lemaitre's model is discussed, showing that the resulting algebraic system can be reduced...

  12. Experimental Study of Inertial Particle-Pair Relative Velocity in Isotropic Turbulence

    Science.gov (United States)

    Dou, Zhongwang

    The investigation of turbulence-enhanced inertial particle collision in isotropic turbulence could improve our understanding and modeling of many particle-laden turbulent flows in engineering and nature. In this study, we investigate one of the most critical factors of particle collision - particle-pair relative velocity (RV) in three major steps. First, to generate a reliable homogeneous and isotropic turbulence (HIT) field, we have designed and implemented a high Reynolds number (R lambda), enclosed, fan-driven HIT chamber in the shape of 'soccer ball', conducive for studying inertial particle dynamics using whole-field imaging techniques. The characterization of turbulence in this near-zero-mean flow chamber was performed using a new two-scale particle imaging velocimetry (PIV) approach. The measurement results showed that turbulence in the apparatus achieved high homogeneity and isotropy in a large central region (48mm diameter) of the chamber with minimized gravity effect. A maximum Rlambda of 384 was achieved. Second, to measure particle-pair RV accurately, we have employed numerical experiments to systemically analyze the measurement error in the previous particle-pair RV measurement by holographic PIV. We found that accurate RV measurement requires high accuracy of both particle positioning and particle pairing. To meet these requirements, we have devised a novel planar 4-frame particle tracking velocimetry technique (4F-PTV) combining two PIV systems. It tracks particles in four consecutive frames in high speed to increase particle pairing accuracy. Furthermore, the particles are tracked only in a thin laser light sheet, thus negating the intrinsic position uncertainty in the depth direction in holographic PIV. In addition, we have studied the laser thickness effect on the RV measurement and attempted to use Monte Carlo analysis to correct this effect. Third, and most importantly, to better understand turbulence-enhanced inertial particle collision, we

  13. Star-forming galaxies significantly contribute to the isotropic gamma-ray background

    Science.gov (United States)

    Linden, Tim

    2017-10-01

    The origin of the isotropic gamma-ray background (IGRB)—the portion of the extragalactic gamma-ray sky that is not resolvable into individual point sources—provides a powerful probe into the evolution of the high-energy Universe. Star-forming galaxies (SFGs) are among the most likely contributors to the IGRB, though their contribution is difficult to constrain because their flux distribution is dominated by numerous faint sources. We produce a novel joint-likelihood analysis of the γ -ray emission from 584 SFGs, utilizing advanced statistical techniques to compare the distribution of low-significance excesses against the non-Poissonian γ -ray background fluctuations. We first examine the theoretically well-motivated relationship between the far-IR and γ -ray luminosities of SFGs, utilizing a model where the γ -ray luminosity is given by log10 (Lγ/(erg s-1 ))=αlog10 (LIR /(10 10L⊙))+β . We calculate best-fit parameters α =1.18 ±0.15 , β =38.49 ±0.24 , with a log-normal dispersion in this relationship given by σ =0.39 ±0.12 . The best-fit values of α and β are consistent with previous studies. We find a larger dispersion in the far-IR to γ -ray correlation than previous studies. This dispersion is significant at the level of 5.7 σ . These results imply that SFGs significantly contribute to the IGRB, producing between 61.0-18.3+30.2% of the total IGRB intensity above an energy of 1 GeV. Along with recent works, this strongly indicates that multiple source classes provide comparable contributions to the IGRB intensity. We discuss the implication of these results for the interpretation of the IceCube neutrinos.

  14. Feasibility of 1.6-mm isotropic voxel diffusion tensor tractography in depicting limbic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Shunrou [Iwate Medical University, Advanced Medical Research Center, Takizawa (Japan); Sasaki, Makoto [Iwate Medical University, Department of Radiology, Morioka (Japan); Kanbara, Yoshiyuki [Iwate Medical University, Memorial Heart Center, Morioka (Japan); Inoue, Takashi [Kohnan Hospital, Department of Neurosurgery, Taihaku-ku, Sendai (Japan); Hirooka, Ryonoshin; Ogawa, Akira [Iwate Medical University, Department of Neurosurgery, Morioka (Japan)

    2008-02-15

    We attempted to assess the feasibility of a 1.6-mm isotropic voxel diffusion tensor imaging (DTI) tractography at 3T in visualizing nerve bundles in the limbic system. We examined 20 healthy volunteers by conventional DTI with a voxel size of 1.6 x 1.6 x 3.0 mm and by high-resolution DTI with a voxel size of 1.6 x 1.6 x 1.6 mm and generated tractographs of three limbic nerve bundles: the fornix, cingulum, and uncinate fasciculus. We visually assessed whether these bundles reached their targets and compared their diffusion parameters between the two techniques. The entire pathways of the fornix, cingulum, and uncinate fasciculus were more readily visualized by high-resolution DTI than by conventional DTI. Among these, the fimbria of the fornix and the uncinate fasciculus adjacent to the temporal pole were identified more frequently by high-resolution DTI (visualization rate 83 and 100%, respectively) than by conventional DTI (visualization rate 63 and 83%, respectively) at a statistical significance of P < 0.05 and P < 0.01, respectively. Fractional anisotropy values in the fornix, cingulum, and uncinate fasciculus by high-resolution DTI were significantly higher than those by conventional DTI (P < 0.01); in contrast, the apparent diffusion coefficient values of all these fibers except that of the fornix remained unchanged between the two techniques. The 1.6-mm istropic voxel DTI at 3T is a feasible visualization tool and can improve the precision of tracking nerve bundles of the limbic system. (orig.)

  15. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  16. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  17. Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation

    Science.gov (United States)

    Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.

    2012-01-01

    Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.

  18. Testing the Isotropic Universe Using the Gamma-Ray Burst Data of Fermi/GBM

    Science.gov (United States)

    Řípa, Jakub; Shafieloo, Arman

    2017-12-01

    The sky distribution of gamma-ray bursts (GRBs) has been intensively studied by various groups for more than two decades. Most of these studies test the isotropy of GRBs based on their sky number density distribution. In this work, we propose an approach to test the isotropy of the universe through inspecting the isotropy of the properties of GRBs such as their duration, fluences, and peak fluxes at various energy bands and different timescales. We apply this method on the Fermi/Gamma-ray Burst Monitor (GBM) data sample containing 1591 GRBs. The most noticeable feature we found is near the Galactic coordinates l≈ 30^\\circ , b≈ 15^\\circ , and radius r≈ 20^\\circ {--}40^\\circ . The inferred probability for the occurrence of such an anisotropic signal (in a random isotropic sample) is derived to be less than a percent in some of the tests while the other tests give results consistent with isotropy. These are based on the comparison of the results from the real data with the randomly shuffled data samples. Considering the large number of statistics we used in this work (some of which are correlated with each other), we can anticipate that the detected feature could be a result of statistical fluctuations. Moreover, we noticed a considerably low number of GRBs in this particular patch, which might be due to some instrumentation or observational effects that can consequently affect our statistics through some systematics. Further investigation is highly desirable in order to clarify this result, e.g., utilizing a larger future Fermi/GBM data sample as well as data samples of other GRB missions and also looking for possible systematics.

  19. Body-wave radiation patterns and AVO in transversely isotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Tsvankin, I.

    1994-03-01

    It is well known that the angular dependence of reflection coefficients may be significantly distorted in the presence of elastic anisotropy. However, the influence of anisotropy on amplitude-versus-offset analysis (AVO) is not limited to reflection coefficients. AVO signatures (e.g., AVO gradient) in anisotropic media are also distorted by the redistribution of energy along the wavefront of the wave travelling down to the reflector and back up to the surface. Significant anisotropy above the target horizon may be rather typical of sand-shale sequences commonly encountered in AVO analysis. Here, I examine the influence of P- and S-wave radiation patterns on AVO in the most common anisotropic model - transversely isotropic media. A concise analytic solution, obtained in the weak-anisotropy approximation, provides a convenient way to estimate the impact of the distortions of the radiation patterns on AVO results. It is shown that the shape of the P-wave radiation pattern in the range of angles most important to AVO analysis (0 - 40{degrees}) is mostly dependent on the difference between Thomsen parameters {epsilon} and {beta}. For media with {epsilon} - {beta} > 0 (the most common case), the P-wave amplitude may drop substantially over the first 25{degrees} - 40{degrees} from vertical. There is no simple correlation between the strength of velocity anisotropy and angular amplitude variations: for instance, for models with a fixed positive {epsilon} - {beta} the amplitude distortions are less pronounced for larger anisotropies {epsilon} and {beta}. The distortions of the SV-wave radiation pattern are usually much more significant than those for the P-wave. The anisotropic directivity factor for the incident wave may be of equal or greater importance for AVO than the influence of anisotropy on the reflection coefficient.

  20. Direct Numerical Simulation of Particles-Bubbles Collisions Kernel in Homogeneous Isotropic Turbulence

    Directory of Open Access Journals (Sweden)

    Hassan E. Fayed

    2013-09-01

    Full Text Available Particles and bubbles suspended in homogeneous isotropic turbulence are tracked and their collisions frequency is determined as a function of particle Stokes number. The carrier phase velocity fluctuations are determined by Direct Numerical Simulations (DNS. The effects of the dispersed phases on the carrier phase are neglected. Particles and bubbles of sizes on the order of Kolmogorov length scale are treated as point masses. In addition to Stokes drag, the pressure gradient in the carrier phase and added-mass forces are also included. Equations of motion of dispersed phases are integrated simultaneously with the equations of the carrier phase using the same time stepping scheme. The collision model used here allows overlap of particles and bubbles. Simulations for three turbulence Reynolds numbers ReΛ = 57, 77, and 96 have been performed. Collisions kernel, radial relative velocity, and radial distribution function found by DNS are compared to theoretical models over a range of particle Stokes number. Comparisons are made with Zaichik et al. [22] model, which is applicable to heavy particles, and Zaichik et al. [23] model which is valid for an arbitrary Stokes number. Zaichik et al. [23] is essentially a model for the radial relative velocity, and for the purpose of computing the collision kernel, it assumes the radial distribution function to be one. In general, good agreement between DNS and Zaichik et al. models is obtained for radial relative velocity for both particle-particle and particle-bubble collisions. The DNS results show that around Stokes number of unity particles of the same group undergo expected preferential concentration while particles and bubbles are segregated. The segregation behavior of particles and bubbles leads to a radial distribution function that is less than one. Existing theoretical models do not account for effects of this segregation behavior of particles and bubbles on the radial distribution function.

  1. Thermomagnetic effect on the propagation of Rayleigh waves in an isotropic homogeneous elastic half-space under initial stress

    Directory of Open Access Journals (Sweden)

    Rajeev Ghatuary

    2015-12-01

    Full Text Available Rayleigh wave propagation in an isotropic homogeneous initially stressed thermoelastic half-space under the effect of magnetic field has been studied using Green–Lindsay (GL theory of generalized thermoelasticity. The frequency equation has been obtained for Rayleigh waves. The Rayleigh wave velocity is computed numerically for different values of initial stress parameter, magnetic pressure number, thermoelastic coupling parameter, and wave number for aluminium material, and the results obtained are compared graphically.

  2. A first-principles polarized Raman method for determining whether a uniform region of a sample is crystalline or isotropic.

    Science.gov (United States)

    Weisman, Andrew L; DuBay, Kateri H; Willets, Katherine A; Friesner, Richard A

    2014-12-14

    Previous methods for determining whether a uniform region of a sample is crystalline or isotropic-what we call the "state of internal orientation" S-require a priori knowledge of properties of the purely crystalline and purely isotropic states. In addition, these methods can be ambiguous in their determination of state S for particular materials and, for a given material, the spectral methods can be ambiguous when using particular peaks. Using first-principles Raman theory, we have discovered a simple, non-resonance, polarized Raman method for determining the state S that requires no information a priori and will work unambiguously for any material using any vibrational mode. Similar to the concept behind "magic angle spinning" in NMR, we have found that for a special set of incident/analyzed polarizations and scattering angle, the dependence of the Raman modulation depth M on the sample composition-and, for crystalline regions, the unit cell orientation-falls out completely, leaving dependence on only whether the region is crystalline (M = 1) or isotropic (M = 0). Further, upon scanning between homogeneous regions or domains within a heterogeneous sample, our signal M is a clear detector of the region boundaries, so that when combined with methods for determining the orientations of the crystalline domains, our method can be used to completely characterize the molecular structure of an entire heterogeneous sample to a very high certainty. Interestingly, our method can also be used to determine when a given mode is vibrationally degenerate. While simulations on realistic terthiophene systems are included to illustrate our findings, our method should apply to any type of material, including thin films, molecular crystals, and semiconductors. Finally, our discovery of these relationships required derivations of Raman intensity formulas that are at least as general as any we have found, and herein we present our comprehensive formulas for both the crystalline and

  3. Laplace-transform-based method to calculate back-reflected radiance from an isotropically scattering half-space

    OpenAIRE

    Rinzema, K.; Hoenders, B. J.; Ferwerda, H.A.

    1997-01-01

    We present a method to determine the back-reflected radiance From an isotropically scattering half-space with matched boundary. This method has the advantage that it leads very quickly to the relevant equations, the numerical solution of which is also quite easy. Essentially, the method is derived from a mathematical criterion that effectively forbids the existence of solutions to the transport equation which grow exponentially as one moves away from the surface and deeper into the medium. Pr...

  4. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  5. Topological defects in extended inflation

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, E.J. (Department of Physics, University of Sussex, Brighton BN1 9QH (United Kingdom)); Kolb, E.W. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL (USA) Department of Astronomy and Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, IL (USA)); Liddle, A.R. (Astronomy Centre, Department of Physics, University of Sussex, Brighton (United Kingdom))

    1990-10-15

    We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings.

  6. Topological defects in extended inflation

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, E.J. (Sussex Univ., Brighton (UK). Dept. of Physics); Kolb, E.W. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.); Liddle, A.R. (Sussex Univ., Brighton (UK). Astronomy Centre)

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs.

  7. Extended lactation in dairy cows

    DEFF Research Database (Denmark)

    Sorensen, Annette; Muir, D. Donald; Knight, Christopher Harold

    2008-01-01

    of the lactation, protein and fat percentages increasing and lactose percentage decreasing, irrespective of treatment. The quality of the milk for processing into cheese, fermented products, heat-treated products and cream liqueurs was assessed by calculation of casein number (casein protein as a proportion...... interventions, the results lend support to the economic arguments in favour of extended lactation cycles. The likely welfare benefits of extended lactation are also discussed....

  8. Extender for securing a closure

    Science.gov (United States)

    Thomas, II, Patrick A.

    2012-10-02

    An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.

  9. Diffusion-weighted 3D multislab echo planar imaging for high signal-to-noise ratio efficiency and isotropic image resolution.

    Science.gov (United States)

    Engström, Mathias; Skare, Stefan

    2013-12-01

    To acquire isotropic high-resolution, signal-to-noise ratio (SNR) efficient, 3D encoded diffusion-weighted MRI data. Multiple Fourier encoded slabs were combined into one full volume, using a generalized autocalibrating partially parallel acquisitions (GRAPPA) accelerated diffusion-weighted 3D multislab echo planar imaging (EPI) sequence with 2D phase navigation and in-plane motion correction. Reconstructed data with 1.5-mm(3) nominal resolution is presented and shown under the influence of motion and with variable slab thicknesses. The SNR efficiency between diffusion-weighted 3D multislab EPI and DW 2D ss-EPI is compared. Finally, a 1.3-mm(3) full brain scan with 45 diffusion directions is presented. Diffusion-weighted 3D multislab EPI has been presented as an alternative sequence for high-resolution and high-SNR full brain coverage diffusion studies. Compared with the gold standard 2D diffusion-weighted single-shot Echo Planar Imaging, the SNR efficiency is significantly higher. Copyright © 2012 Wiley Periodicals, Inc.

  10. Subtalar instability: imaging features of subtalar ligaments on 3D isotropic ankle MRI.

    Science.gov (United States)

    Kim, Tae Hyung; Moon, Sung Gyu; Jung, Hong-Geun; Kim, Na Ra

    2017-11-21

    MRI analysis of subtalar ligaments in the tarsal sinus has not been well performed. We retrospectively investigated the appearance of subtalar ligaments using 3D isotropic MRI and compared imaging findings of subtalar ligaments between patients with subtalar instability (STI) and controls. Preoperative MRIs of 23 STI patients treated with arthroscopic subtalar reconstruction were compared to MRIs of 23 age- and sex-matched control subjects without STI. Thickness and width of anterior capsular ligament (ACL) and interosseous talocalcaneal ligament (ITCL) as well as thickness of calcaneofibular ligament (CFL) and anterior talofibular ligament (ATFL) were measured. Abnormalities in ACL, ITCL, CFL, ATFL, cervical ligament, and inferior extensor retinaculum were analyzed. STI patients had significantly smaller ACL thickness and ACL width than controls (ACL thickness: 1.73 mm vs. 2.22 mm, p = 0.007; ACL width: 7.21 mm vs. 8.80 mm, p = 0.004). ACL thickness of ≤2.1 mm had a sensitivity of 66.7% and a specificity of 66.7% for diagnosis of STI. ACL width of ≤7.9 mm had a sensitivity of 80.0% and a specificity of 76.2% for the diagnosis of STI. However, thickness and width of ITCL, thickness of CFL, or thickness of ATFL was not significantly different between the two groups. Absence or complete tear of ACL was significantly more frequent in STI patients than that in controls (34.8% vs. 8.7%, p = 0.035). Complete tear of CFL and ATFL was more common in STI patients than that in controls, although the difference between the two groups was not statistically significant. Abnormalities of ITCL, cervical ligament, or inferior extensor retinaculum were not significantly different between the two groups. MRI features of thin or narrow ACLs may suggest STI. Absence or complete tear of ACL was significantly more common in STI patients than that in controls.

  11. Wind tunnel measurements of the preferential concentration of inertial droplets in homogeneous isotropic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bateson, Colin P.; Aliseda, Alberto [University of Washington, Department of Mechanical Engineering, 4000 15th Ave NE, Box 352600, Seattle, WA (United States)

    2012-06-15

    We describe an experimental setup aimed at studying turbulent-induced droplet collisions in a laboratory setting. Our goal is to reproduce conditions relevant to warm-rain formation in clouds. In these conditions, the trajectories of small inertial droplets are strongly influenced by the background air turbulence, and collisions can potentially explain the droplet growth rates and spectrum broadening observed in this type of clouds. Warm-rain formation is currently under strong scrutiny because it is an important source of uncertainty in atmospheric models. A grid at the entrance of a horizontal wind tunnel produces homogeneous isotropic turbulence at a Re{sub {lambda}} in the range of 400-500. Water droplets are injected from the nodes of the turbulence-inducing grid at a volume fraction ({phi}) of 2.7 x 10{sup -5} and with sizes of 10-200 {mu}m. A complex manifold-injection system was developed to obtain uniform water droplet seeding, in terms of both water content and size distribution. We characterize the resulting droplet-laden turbulent flow, and the statistics of droplet pairs are measured and analyzed. We found that the radial distribution function (RDF), a measure of preferential concentration of droplets that plays a key role in collision kernel models, has a large peak at distances below the Kolmogorov microscale of the turbulence. At very long separations, comparable with the integral length scale of the turbulence, these RDFs show a slow decay to the average probability given by the mean droplet number density. Consistent with this result, conditional analysis shows an increased local concentration of droplets within the inertial length scale ({approx} 10-100 Kolmogorov lengths). These results are in good agreement with previous experiments that found clustering of inertial droplets with St {approx} 1 at scales on the order of 10{eta}. Ultimately, our results support the hypothesis that turbulence-induced preferential concentration and enhanced

  12. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  13. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions.

    Science.gov (United States)

    Parapat, Riny Y; Wijaya, Muliany; Schwarze, Michael; Selve, Sören; Willinger, Marc; Schomäcker, Reinhard

    2016-04-07

    Correction for 'Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions' by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796-805.

  14. Progress in the analysis of non-axisymmetric wave propagation in a homogeneous solid circular cylinder of a piezoelectric transversely isotropic material

    CSIR Research Space (South Africa)

    Every, AG

    2010-01-01

    Full Text Available Non-axisymmetric waves in a free homogeneous piezoelectric cylinder of transversely isotropic material with axial polarization are investigated on the basis of the linear theory of elasticity and linear electromechanical coupling. The solution...

  15. Viability of bull semen extended with commercial semen extender ...

    African Journals Online (AJOL)

    Andrea Raseona

    Abstract. The aim of this study was to evaluate the viability of bull spermatozoa diluted with commercial semen extender and two culture media stored at controlled room temperature (24 °C) for 72 hours. Two Nguni bulls were used for semen collection with the aid of an electro-ejaculator. After macroscopic evaluation ...

  16. Extended cognition in science communication.

    Science.gov (United States)

    Ludwig, David

    2014-11-01

    The aim of this article is to propose a methodological externalism that takes knowledge about science to be partly constituted by the environment. My starting point is the debate about extended cognition in contemporary philosophy and cognitive science. Externalists claim that human cognition extends beyond the brain and can be partly constituted by external devices. First, I show that most studies of public knowledge about science are based on an internalist framework that excludes the environment we usually utilize to make sense of science and does not allow the possibility of extended knowledge. In a second step, I argue that science communication studies should adopt a methodological externalism and accept that knowledge about science can be partly realized by external information resources such as Wikipedia. © The Author(s) 2013.

  17. The use of isotropic and anisotropic concepts of damage to the calculation of the long-term strength of steam turbine rotor under conditions of high temperature creep

    OpenAIRE

    Гораш, Є. М.

    2006-01-01

    Within the framework of the research work two typical material models describing isotropic and anisotropic creep-damage processes in metals and alloys are applied to the simulation of the mechanical behaviour of a steam turbine rotor in its service conditions. Numerical solutions of the initial-boundary value problems have been obtained by FEM using solid axisymmetrical type finite elements. For the purpose of adequate long-term strength analysis both isotropic and anisotropic creep-damage mo...

  18. Exclusion Bounds for Extended Anyons

    Science.gov (United States)

    Larson, Simon; Lundholm, Douglas

    2017-08-01

    We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent. Our main results are many-body magnetic Hardy inequalities and local exclusion principles for these particles, leading to estimates for the ground-state energy of the anyon gas over the full range of the parameters. This brings out further non-trivial aspects in the dependence on the anyonic statistics parameter, and also gives improvements in the ideal (non-extended) case.

  19. 3D isotropic shear wave velocity structure of the lithosphere-asthenosphere system underneath the Alpine-Mediterranean Mobile belt

    Science.gov (United States)

    El-Sharkawy, Amr; Weidle, Christian; Christiano, Luigia; Lebedev, Sergei; Meier, Thomas

    2017-04-01

    fundamental modes are calculated from the phase of the cross correlation functions weighted in the time-frequency plane. Path average dispersion curves are obtained by averaging the smooth parts of single-event dispersion curves. A careful quality control of the resulting phase velocities is performed. We calculate maps of Love and Rayleigh phase velocity at more than 100 different periods. The phase-velocity maps provide the local phase-velocity dispersion curve for each geographical grid node of the map. Each of these local dispersion curves is inverted individually for 1D shear wave velocity model using a newly implemented Particle Swarm Optimization (PSO) algorithm. The resulted 1D velocity models are then combined to construct the 3D shear-velocity model. Horizontal and vertical cross sections through the 3D isotropic model reveal significant variations in shear wave velocity with depth, and lateral changes in the crust and upper mantle structure emphasizing the processes associated with the convergence of the Eurasian and African plates. Key words: seismic tomography, Mediterranean, surface waves, particle swarm optimization.

  20. Extended memory management under RTOS

    Science.gov (United States)

    Plummer, M.

    1981-01-01

    A technique for extended memory management in ROLM 1666 computers using FORTRAN is presented. A general software system is described for which the technique can be ideally applied. The memory manager interface with the system is described. The protocols by which the manager is invoked are presented, as well as the methods used by the manager.

  1. Extended time-interval analysis

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall; Riisager, Karsten

    2014-01-01

    Several extensions of the halflife analysis method recently suggested by Horvat and Hardy are put forward. Goodness-of-fit testing is included, and the method is extended to cases where more information is available for each decay event which allows applications also for e.g. γ decay data. The re...

  2. Extended duration orbiter (EDO) insignia

    Science.gov (United States)

    1990-01-01

    Extended duration orbiter (EDO) insignia incorporates a space shuttle orbiter with payload bay doors (PLBDs) open and a spacelab module inside. Trailing the orbiter are the initials EDO. The EDO-modified Columbia, Orbiter Vehicle (OV) 102, will be flown for the first EDO mission, STS-50.

  3. Extended Duration Orbiter Medical Project

    Science.gov (United States)

    Leach, C. S.; Pool, S. L.; Sawin, C. F.; Nicogossian, A. E.

    1990-01-01

    The Extended Duration Orbiter (EDO) program addresses a need for more time to perform experiments and other tasks during Space Shuttle missions. As a part of this program, the Extended Duration Orbiter Medical Project (EDOMP) has been instituted to obtain information about physiologic effects of extending mission duration and the effectiveness of countermeasures against factors that might compromise crew health, safety, or performance on extended-duration missions. Only those investigations that address and characterize operational problems, develop countermeasures, or evaluate the effectiveness of countermeasures will be pursued. The EDOMP investigations will include flight-associated Detailed Supplementary Objectives as well as ground-based studies simulating the influence of microgravity. Investigator teams have been formed in the following areas: biomedical physiology, cardiovascular and fluid/electrolyte physiology, environmental health, muscle and exercise physiology, and neurophysiology. Major operational questions must be answered in each of these areas, and investigations have been designed to answer them. The EDO program will proceed only after countermeasures have been shown to be effective in preventing or mitigating the adverse changes they have been designed to attenuate. The program is underway and will continue on each Shuttle flight as the manifest builds toward a 16-day orbital flight.

  4. Applying and extending Oracle Spatial

    CERN Document Server

    Simon Gerard Greener, Siva Ravada

    2013-01-01

    This book is an advanced practical guide to applying and extending Oracle Spatial.This book is for existing users of Oracle and Oracle Spatial who have, at a minimum, basic operational experience of using Oracle or an equivalent database. Advanced skills are not required.

  5. Extended mind and after: socially extended mind and actor-network.

    Science.gov (United States)

    Kono, Tetsuya

    2014-03-01

    The concept of extended mind has been impressively developed over the last 10 years by many philosophers and cognitive scientists. The extended mind thesis (EM) affirms that the mind is not simply ensconced inside the head, but extends to the whole system of brain-body-environment. Recently, some philosophers and psychologists try to adapt the idea of EM to the domain of social cognition research. Mind is socially extended (SEM). However, EM/SEM theory has problems to analyze the interactions among a subject and its surroundings with opposition, antagonism, or conflict; it also tends to think that the environment surrounding the subject is passive or static, and to neglect the power of non-human actants to direct and regulate the human subject. In these points, actor-network theory (ANT) proposed by Latour and Callon is more persuasive, while sharing some important ideas with EM/SEM theory. Actor-network is a hybrid community which is composed of a series of heterogeneous elements, animate and inanimate for a certain period of time. I shall conclude that EM/SEM could be best analyzed as a special case of actor-network. EM/SEM is a system which can be controlled by a human agent alone. In order to understand collective behavior, philosophy and psychology have to study the actor-network in which human individuals are situated.

  6. Nanocompositional Electron Microscopic Analysis and Role of Grain Boundary Phase of Isotropically Oriented Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available Nanoanalytical TEM characterization in combination with finite element micromagnetic modelling clarifies the impact of the grain misalignment and grain boundary nanocomposition on the coercive field and gives guidelines how to improve coercivity in Nd-Fe-B based magnets. The nanoprobe electron energy loss spectroscopy measurements obtained an asymmetric composition profile of the Fe-content across the grain boundary phase in isotropically oriented melt-spun magnets and showed an enrichment of iron up to 60 at% in the Nd-containing grain boundaries close to Nd2Fe14B grain surfaces parallel to the c-axis and a reduced iron content up to 35% close to grain surfaces perpendicular to the c-axis. The numerical micromagnetic simulations on isotropically oriented magnets using realistic model structures from the TEM results reveal a complex magnetization reversal starting at the grain boundary phase and show that the coercive field increases compared to directly coupled grains with no grain boundary phase independently of the grain boundary thickness. This behaviour is contrary to the one in aligned anisotropic magnets, where the coercive field decreases compared to directly coupled grains with an increasing grain boundary thickness, if Js value is > 0.2 T, and the magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries at the prismatic planes parallel to the c-axis and secondly as Néel domain wall at the basal planes perpendicular to the c-axis. In summary our study shows an increase of coercive field in isotropically oriented Nd-Fe-B magnets for GB layer thickness > 5 nm and an average Js value of the GB layer < 0.8 T compared to the magnet with perfectly aligned grains.

  7. Comparison of three dimensional isotropic and two dimensional conventional indirect MR arthrography for the diagnosis of rotator cuff tears

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hyun; Yoon, Young Cheol; Kwon, Jong Won; Yoo, Jae Chul [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Cha, Jang Kyu [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Jee, Suk Kyoung [Joeun Madi Hospital, Seoul (Korea, Republic of)

    2014-12-15

    To compare the accuracy between a three-dimensional (3D) indirect isotropic T1-weighted fast spin-echo (FSE) magnetic resonance (MR) arthrography and a conventional two-dimensional (2D) T1-weighted sequences of indirect MR arthrography for diagnosing rotator cuff tears. The study was approved by our Institutional Review Board. In total, 205 patients who had undergone indirect shoulder MR arthrography followed by arthroscopic surgery for 206 shoulders were included in this study. Both conventional 2D T1-weighted FSE sequences and 3D isotropic T1-weighted FSE sequence were performed in all patients. Two radiologists evaluated the images for the presence of full- or partial-thickness tears in the supraspinatus-infraspinatus (SSP-ISP) tendons and tears in the subscapularis (SSC) tendons. Using the arthroscopic findings as the reference standard, the diagnostic performances of both methods were analyzed by the area under the receiver operating characteristic curve (AUC). Arthroscopy confirmed 165 SSP-ISP tendon tears and 103 SSC tendon tears. For diagnosing SSP-ISP tendon tears, the AUC values were 0.964 and 0.989 for the 2D sequences and 3D T1-weighted FSE sequence, respectively, in reader I and 0.947 and 0.963, respectively, in reader II. The AUC values for diagnosing SSC tendon tears were 0.921 and 0.925, respectively, for reader I and 0.856 and 0.860, respectively, for reader II. There was no significant difference between the AUC values of the 2D and 3D sequences in either reader for either type of tear. 3D indirect isotropic MR arthrography with FSE sequence and the conventional 2D arthrography are not significantly different in terms of accuracy for diagnosing rotator cuff tears.

  8. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  9. Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.

    Science.gov (United States)

    Odille, Freddy; Bustin, Aurélien; Liu, Shufang; Chen, Bailiang; Vuissoz, Pierre-André; Felblinger, Jacques; Bonnemains, Laurent

    2017-10-02

    Segmentation of cardiac cine MRI data is routinely used for the volumetric analysis of cardiac function. Conventionally, 2D contours are drawn on short-axis (SAX) image stacks with relatively thick slices (typically 8 mm). Here, an acquisition/reconstruction strategy is used for obtaining isotropic 3D cine datasets; reformatted slices are then used to optimize the manual segmentation workflow. Isotropic 3D cine datasets were obtained from multiple 2D cine stacks (acquired during free-breathing in SAX and long-axis (LAX) orientations) using nonrigid motion correction (cine-GRICS method) and super-resolution. Several manual segmentation strategies were then compared, including conventional SAX segmentation, LAX segmentation in three views only, and combinations of SAX and LAX slices. An implicit B-spline surface reconstruction algorithm is proposed to reconstruct the left ventricular cavity surface from the sparse set of 2D contours. All tested sparse segmentation strategies were in good agreement, with Dice scores above 0.9 despite using fewer slices (3-6 sparse slices instead of 8-10 contiguous SAX slices). When compared to independent phase-contrast flow measurements, stroke volumes computed from four or six sparse slices had slightly higher precision than conventional SAX segmentation (error standard deviation of 5.4 mL against 6.1 mL) at the cost of slightly lower accuracy (bias of -1.2 mL against 0.2 mL). Functional parameters also showed a trend to improved precision, including end-diastolic volumes, end-systolic volumes, and ejection fractions). The postprocessing workflow of 3D isotropic cardiac imaging strategies can be optimized using sparse segmentation and 3D surface reconstruction. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    Science.gov (United States)

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2015-09-01

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.

  11. The rotation and translation of non-spherical particles in homogeneous isotropic turbulence

    Science.gov (United States)

    Byron, Margaret

    The motion of particles suspended in environmental turbulence is relevant to many scientific fields, from sediment transport to biological interactions to underwater robotics. At very small scales and simple shapes, we are able to completely mathematically describe the motion of inertial particles; however, the motion of large aspherical particles is significantly more complex, and current computational models are inadequate for large or highly-resolved domains. Therefore, we seek to experimentally investigate the coupling between freely suspended particles and ambient turbulence. A better understanding of this coupling will inform not only engineering and physics, but the interactions between small aquatic organisms and their environments. In the following pages, we explore the roles of shape and buoyancy on the motion of passive particles in turbulence, and allow these particles to serve as models for meso-scale aquatic organisms. We fabricate cylindrical and spheroidal particles and suspend them in homogeneous, isotropic turbulence that is generated via randomly-actuated jet arrays. The particles are fabricated with agarose hydrogel, which is refractive-index-matched to the surrounding fluid (water). Both the fluid and the particle are seeded with passive tracers, allowing us to perform Particle Image Velocimetry (PIV) simultaneously on the particle and fluid phase. To investigate the effects of shape, particles are fabricated at varying aspect ratios; to investigate the effects of buoyancy, particles are fabricated at varying specific gravities. Each particle type is freely suspended at a volume fraction of F=0.1%, for which four-way coupling interactions are negligible. The suspended particles are imaged together with the surrounding fluid and analyzed using stereoscopic PIV, which yields three velocity components in a two-dimensional measurement plane. Using image thresholding, the results are separated into simultaneous fluid-phase and solid-phase velocity

  12. Modelling the physical properties of cracked rocks (1): application to an isotropic basalt from Mount Etna

    Science.gov (United States)

    Vinciguerra, S.; Schubnel, A.; Benson, P.; Trovato, C.; Hazzard, J.; Young, R. P.; Meredith, P.

    2004-05-01

    The high level of mechanical and thermal stresses acting in volcanic areas, along with circulation of fluids at high temperatures, are believed to enhance mechanical damage of the host rocks to cyclic magmatic pressurisations. Cracks and high aspect ratio void space are crucial in determining preferential penetration of magma or steam. Mechanically, cracks make the rock much more compliant crack networks within a rock matrix greatly enhances the ability for fluid to flow through the rock body. In this experimental and modelling study, we characterised the physical properties of lava flow basalts, forming Etna volcano edifice. We first measure the elastic wave velocity and permeability of a test rock as a function of hydrostatic pressure. The rock chosen for this work is a porphyritic alkali basalt with an initial density of 2860 kg.m-3 and a porosity of 2.1%. The simultaneous evolution of acoustic wave velocity (P-wave and S-wave) and permeability, was measured during hydrostatic compression of 4 different rock samples (38.1mm diameter by 40mm length) in a high pressure confining cell installed at University College London. The experimental P-wave velocities ranged from 5.35 km/s at 5 MPa to 5.88 km/s at 80 MPa; while S-wave velocities ranged from 3.30 km/s to 3.60 km/s. Permeability ranged from 10-15 m-2 to 10-17 m-2 over the same pressure interval. The Etnean basalt has been found to be thermally cracked (Vinciguerra et al. [2004]), yielding an isotropic, highly cracked fracture network, due to the fast cooling history. In such conditions, the effective elastic properties predicted by Kachanov's model [1993] are dependent only on the matrix Young's modulus and Poisson ratio, the fluid compressibility and, more importantly, the crack density and average crack aspect ratio. Assuming initial P and S wave velocities in uncracked material of 6 km/s and 3.75 km/s respectively, and taking for Kfluid = 2 GPa, we perform a simple least square fit inversion of our data in

  13. Visual quasi-periodicity

    NARCIS (Netherlands)

    Pogalin, E.; Smeulders, A.W.M.; Thean, A.H.C.

    2008-01-01

    Periodicity is at the core of the recognition of many actions. This paper takes the following steps to detect and measure periodicity. 1) We establish a conceptual framework of classifying periodicity in 10 essential cases, the most important of which are flashing (of a traffic light), pulsing (of

  14. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  15. Crossover from 3D ising to isotropic Lifshitz critical behavior in a mixture of a homopolymer blend and diblock copolymer

    DEFF Research Database (Denmark)

    Schwahn, D.; Mortensen, K.; Frielinghaus, H.

    1999-01-01

    Thermal composition fluctuations and the associated crossover from the 3D Ising to the isotropic Lifshitz universality class have been studied in a three component mixture made of a critical polymer blend and the corresponding diblock copolymer. The critical exponents were found to be appreciably...... larger than these of the 3D Ising, in agreement with expectations from the larger upper critical dimension. Very near the critical temperature a crossover to a renormalized Lifshitz critical behavior was observed possibly caused by fluctuation induced rearrangements of the diblock copolymers....

  16. DNA origami nanoneedles on freestanding lipid membranes as a tool to observe isotropic-nematic transition in two dimensions.

    Science.gov (United States)

    Czogalla, Aleksander; Kauert, Dominik J; Seidel, Ralf; Schwille, Petra; Petrov, Eugene P

    2015-01-14

    We introduce a simple experimental system to study dynamics of needle-like nanoobjects in two dimensions (2D) as a function of their surface density close to the isotropic-nematic transition. Using fluorescence correlation spectroscopy, we find that translational and rotational diffusion of rigid DNA origami nanoneedles bound to freestanding lipid membranes is strongly suppressed upon an increase in the surface particle density. Our experimental observations show a good agreement with results of Monte Carlo simulations of Brownian hard needles in 2D.

  17. Monitoring the temperature-dependent elastic and anelastic properties in isotropic polycrystalline ice using resonant ultrasound spectroscopy

    Directory of Open Access Journals (Sweden)

    M. J. Vaughan

    2016-11-01

    calibration of active and passive seismic data gathered in the field. The elastic properties and anelastic quality factor Q in laboratory-manufactured polycrystalline isotropic ice cores decrease (reversibly with increasing temperature, but compressional-wave speed and attenuation prove most sensitive to temperature, indicative of pre-melting of the ice. This method of resonant ultrasound spectroscopy can be deployed in the field, for those situations where shipping samples is difficult (e.g. remote locations, or where the properties of ice change rapidly after extraction (e.g. in the case of sea ice.

  18. Effect of Extending Hot Weather Periods on Approach to Floor Construction in Moderate Climate Residential Buildings / Wpływ Przedłużających Się Okresów Występowania Wysokich Temperatur Letnich Na Podejście Do Projektowania Podłogi Na Gruncie w Budynkach Mieszkalnych w Krajach Klimatu Umiarkowanego

    Directory of Open Access Journals (Sweden)

    Staszczuk Anna

    2016-03-01

    Full Text Available The effects of changes in Global climate on the prolonging time and the frequency of the periods of very high outside air temperature at summer were shown in the paper with particular emphasis on European moderate climate countries. In these countries, residential buildings, are usually equipped neither in air conditioning equipment, nor in ordinary window blinds. As the most promising solution it is suggested to resign completely or partially from ground slab thermal insulation, directly utilizing ground heat storage capacity. The paper includes detailed simulations on potential effect of various kind of floor construction and actions preventing high indoor air temperatures in building approach on air temperature inside the one-storey, passive residential buildings during consecutive days of very high outdoor temperature and total energy used yearly for additional heating and air conditioning.

  19. Effect of Extending Hot Weather Periods on Approach to Floor Construction in Moderate Climate Residential Buildings / Wpływ Przedłużających Się Okresów Występowania Wysokich Temperatur Letnich Na Podejście Do Projektowania Podłogi Na Gruncie w Budynkach Mieszkalnych w Krajach Klimatu Umiarkowanego

    Science.gov (United States)

    Staszczuk, Anna; Kuczyński, Tadeusz

    2016-03-01

    The effects of changes in Global climate on the prolonging time and the frequency of the periods of very high outside air temperature at summer were shown in the paper with particular emphasis on European moderate climate countries. In these countries, residential buildings, are usually equipped neither in air conditioning equipment, nor in ordinary window blinds. As the most promising solution it is suggested to resign completely or partially from ground slab thermal insulation, directly utilizing ground heat storage capacity. The paper includes detailed simulations on potential effect of various kind of floor construction and actions preventing high indoor air temperatures in building approach on air temperature inside the one-storey, passive residential buildings during consecutive days of very high outdoor temperature and total energy used yearly for additional heating and air conditioning.

  20. 78 FR 79660 - Enhancing Agricultural Coexistence; Extension of Comment Period

    Science.gov (United States)

    2013-12-31

    .... APHIS-2013-0047] Enhancing Agricultural Coexistence; Extension of Comment Period ACTION: Notice; extension of comment period. SUMMARY: We are extending the comment period for a request for information... agricultural production systems in order to further agricultural coexistence. This action will allow interested...