WorldWideScience

Sample records for extended combustion model

  1. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    Science.gov (United States)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  2. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  3. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  4. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  5. An extended technicolor model

    International Nuclear Information System (INIS)

    Appelquist, T.; Terning, J.

    1994-01-01

    An extended technicolor model is constructed. Quark and lepton masses, spontaneous CP violation, and precision electroweak measurements are discussed. Dynamical symmetry breaking is analyzed using the concept of the big MAC (most attractive channel)

  6. Pulsating hydrodynamic instability and thermal coupling in an extended Landau/Levich model of liquid-propellant combustion. 2. Viscous analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  7. Combustion modeling in waste tanks

    International Nuclear Information System (INIS)

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  8. Modeling of microgravity combustion experiments

    Science.gov (United States)

    Buckmaster, John

    1995-01-01

    This program started in February 1991, and is designed to improve our understanding of basic combustion phenomena by the modeling of various configurations undergoing experimental study by others. Results through 1992 were reported in the second workshop. Work since that time has examined the following topics: Flame-balls; Intrinsic and acoustic instabilities in multiphase mixtures; Radiation effects in premixed combustion; Smouldering, both forward and reverse, as well as two dimensional smoulder.

  9. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  10. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  11. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  12. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sö ren; Jarząbek, Michał; Hadrich, Torsten; Michels, Dominik L.; Palubicki, Wojciech

    2017-01-01

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical

  13. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  14. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  15. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  16. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  17. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  18. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  19. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    the accuracy of engineering calculations and thereby the potential of primary measures for NOx control. In this review our current understanding of the mechanisms that are responsible for combustion-generated nitrogen-containing air pollutants is discussed. The thermochemistry of the relevant nitrogen...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  20. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  1. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  2. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  3. Modeling of Plasma Assisted Combustion

    Science.gov (United States)

    Akashi, Haruaki

    2012-10-01

    Recently, many experimental study of plasma-assisted combustion has been done. However, numerous complex reactions in combustion of hydrocarbons are preventing from theoritical study for clarifying inside the plasma-assisted combustion, and the effect of plasma-assist is still not understood. Shinohara and Sasaki [1,2] have reported that the shortening of flame length by irradiating microwave without increase of gas temperature. And they also reported that the same phenomena would occur when applying dielectric barrier discharges to the flame using simple hydrocarbon, methane. It is suggested that these phenomena may result by the electron heating. To clarify this phenomena, electron behavior under microwave and DBD was examined. For the first step of DBD plasma-assisted combustion simulation, electron Monte Carlo simulation in methane, oxygen and argon mixture gas(0.05:0.14:0.81) [2] has been done. Electron swarm parameters are sampled and electron energy distribution function (EEDF)s are also determined. In the combustion, gas temperature is higher(>1700K), so reduced electric field E/N becomes relatively high(>10V/cm/Torr). The electrons are accelerated to around 14 eV. This result agree with the optical emission from argon obtained by the experiment of reference [2]. Dissociation frequency of methane and oxygens are obtained in high. This might be one of the effect of plasma-assist. And it is suggested that the electrons should be high enough to dissociate methane, but plasma is not needed.[4pt] [1] K. Shinohara et al, J. Phys. D:Appl. Phys., 42, 182008 (1-7) (2009).[0pt] [2] K. Sasaki, 64th Annual Gaseous Electronic Conference, 56, 15 CT3.00001(2011).

  4. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  5. Modeling and simulating combustion and generation of NOx

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    2007-01-01

    This paper deals with the modeling and simulation of combustion processes and generation of NO x in a combustion chamber and boiler, with supplementary combustion in a gas turbine installation. The fuel burned in the combustion chamber was rich gas with a chemical composition more complex than natural gas. Pitcoal was used in the regenerative boiler. From the resulting combustion products, 17 compounds were retained, including nitrogen and sulphur compounds. Using the developed model, the simulation resulted in excess air for a temperature imposed at the combustion chamber exhaust. These simulations made it possible to determine the concentrations of combustion compounds with a variation in excess combustion. (author)

  6. Axelrod Model with Extended Conservativeness

    Science.gov (United States)

    Dybiec, Bartłomiej

    2012-11-01

    Similarity of opinions and memory about recent interactions are two main factors determining likelihood of social contacts. Here, we explore the Axelrod model with an extended conservativeness which incorporates not only similarity between individuals but also a preference to the last source of accepted information. The additional preference given to the last source of information increases the initial decay of the number of ideas in the system, changes the character of the phase transition between homogeneous and heterogeneous final states and could increase the number of stable regions (clusters) in the final state.

  7. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  8. Reaction-diffusion pulses: a combustion model

    International Nuclear Information System (INIS)

    Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim

    2004-01-01

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations

  9. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-02

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  10. Center for Extended Magnetohydrodynamics Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jesus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-02-14

    This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification of the numerical codes. This activity was funded for twelve years.

  11. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  12. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  13. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  14. Application of the FIRST Combustion model to Spray Combustion

    NARCIS (Netherlands)

    de Jager, B.; Kok, Jacobus B.W.

    2004-01-01

    Liquid fuel is of interest to apply to gas turbines. The large advantage is that liquids are easily storable as compared to gaseous fuels. Disadvantage is that liquid fuel has to be sprayed, vaporized and mixed with air. Combustion occurs at some stage of mixing and ignition. Depending on the

  15. Modeling random combustion of lycopodium particles and gas

    Directory of Open Access Journals (Sweden)

    M Bidabadi

    2016-06-01

    Full Text Available The random modeling combustion of lycopodium particles has been researched by many authors. In this paper, we extend this model and we also generate a different method by analyzing the effect of random distributed sources of combustible mixture. The flame structure is assumed to consist of a preheat-vaporization zone, a reaction zone and finally a post flame zone. We divide the preheat zone to different parts. We assumed that there is different distribution of particles in sections which are really random. Meanwhile, it is presumed that the fuel particles vaporize first to yield gaseous fuel. In other words, most of the fuel particles are vaporized at the end of the preheat zone. It is assumed that the Zel’dovich number is large; therefore, the reaction term in preheat zone is negligible. In this work, the effect of random distribution of particles in the preheat zone on combustion characteristics such as burning velocity, flame temperature for different particle radius is obtained.

  16. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  17. Large-eddy simulation of ethanol spray combustion using a finite-rate combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Li, K.; Zhou, L.X. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics; Chan, C.K. [Hong Kong Polytechnic Univ. (China). Dept. of Applied Mathematics

    2013-07-01

    Large-eddy simulation of spray combustion is under its rapid development, but the combustion models are less validated by detailed experimental data. In this paper, large-eddy simulation of ethanol-air spray combustion was made using an Eulerian-Lagrangian approach, a subgrid-scale kinetic energy stress model, and a finite-rate combustion model. The simulation results are validated in detail by experiments. The LES obtained statistically averaged temperature is in agreement with the experimental results in most regions. The instantaneous LES results show the coherent structures of the shear region near the high-temperature flame zone and the fuel vapor concentration map, indicating the droplets are concentrated in this shear region. The droplet sizes are found to be in the range of 20-100{mu}m. The instantaneous temperature map shows the close interaction between the coherent structures and the combustion reaction.

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  19. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  20. Scramjet Combustion Stability Behavior Modeling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  1. Scramjet Combustion Stability Behavior Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  2. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  3. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    Science.gov (United States)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  4. Multi-zone modelling of PCCI combustion

    NARCIS (Netherlands)

    Egüz, U.; Somers, L.M.T.; Leermakers, C.A.J.; Goey, de L.P.H.

    2011-01-01

    Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) combustion is a promising concept for the diesel combustion. Although EDI PCCI assures very low soot and NO xemission levels, the injection is uncoupled from combustion, which narrows down the operating conditions. The main

  5. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  6. Improvement of a combustion model in MELCOR code

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    1999-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using five different flame front shapes of fireball, prism, bubble, spherical jet, and plane jet. For validation of the proposed model, the results of the Battelle multi-compartment hydrogen combustion test were used. The selected test cases for the study were Hx-6, 13, 14, 20 and Ix-2 which had two, three or four compartments under homogeneous hydrogen concentration of 5 to 10 vol%. The proposed model could predict well the combustion behavior in multi-compartment containment geometry on the whole. MELCOR code, incorporating the present combustion model, can simulate combustion behavior during severe accident with acceptable computing time and some degree of accuracy. The applicability study of the improved MELCOR code to the actual reactor plants will be further continued. (author)

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  8. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  9. Modeling and simulation of combustion chamber and propellant dynamics and issues in active control of combustion instabilities

    Science.gov (United States)

    Isella, Giorgio Carlo

    A method for a comprehensive approach to analysis of the dynamics of an actively controlled combustion chamber, with detailed analysis of the combustion models for the case of a solid rocket propellant, is presented here. The objective is to model the system as interconnected blocks describing the dynamics of the chamber, combustion and control. The analytical framework for the analysis of the dynamics of a combustion chamber is based on spatial averaging, as introduced by Culick. Combustion dynamics are analyzed for the case of a solid propellant. Quasi-steady theory is extended to include the dynamics of the gas-phase and also of a surface layer. The models are constructed so that they produce a combustion response function for the solid propellant that can be immediately introduced in the our analytical framework. The principal objective mechanisms responsible for the large sensitivity, observed experimentally, of propellant response to small variations. We show that velocity coupling, and not pressure coupling, has the potential to be the mechanism responsible for that high sensitivity. We also discuss the effect of particulate modeling on the global dynamics of the chamber and revisit the interpretation of the intrinsic stability limit for burning of solid propellants. Active control is also considered. Particular attention is devoted to the effect of time delay (between sensing and actuation); several methods to compensate for it are discussed, with numerical examples based on the approximate analysis produced by our framework. Experimental results are presented for the case of a Dump Combustor. The combustor exhibits an unstable burning mode, defined through the measurement of the pressure trace and shadowgraph imaging. The transition between stable and unstable modes of operation is characterized by the presence of hysteresis, also observed in other experimental works, and hence not a special characteristic of this combustor. Control is introduced in the

  10. Analysis the ECFM-3Z Combustion Model for Simulating the Combustion Process and Emission Characteristics in a HSDI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2015-12-01

    Full Text Available An advanced CFD simulation has been performed to analyze the ECFM-3Z (Extended Coherent Flame Model-3Z combustion model for simulating the combustion process and emission characteristics in a high speed direct injection (HSDI diesel engine. A four cylinders, HSDI diesel engine based on a Ford production engine with a 2nd generation Delphi common rail fuel injection system has been modeled in this research. 3D CFD simulation was carried out from intake valve closing (IVC to exhaust valve opening (EVO. A good agreement of calculated and measured in-cylinder pressure trace as well as pollutant formation trends could be observed for all investigated operating points. Based on the confidence gained from validation, the study is extended to evaluate the effect of fuel injection timing on engine performance and emissions. For this purpose, a comprehensive study of the effect of injection timing with respect to performance and emissions has been considered. Three main injection timing, (1 2.65 BTDC, (2 0.65 BTDC and (3 1.35 ATDC, all with 30 crank angle pilot separations has been used to investigate the effect of the injection timing. The results show that the current methodology can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.

  11. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  12. Turbulent Combustion Modeling Advances, New Trends and Perspectives

    CERN Document Server

    Echekki, Tarek

    2011-01-01

    Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...

  13. Modeling of extended defects in silicon

    International Nuclear Information System (INIS)

    Law, M.E.; Jones, K.S.; Earles, S.K.; Lilak, A.D.; Xu, J.W.

    1997-01-01

    Transient Enhanced Diffusion (TED) is one of the biggest modeling challenges present in predicting scaled technologies. Damage from implantation of dopant ions changes the diffusivities of the dopants and precipitates to form complex extended defects. Developing a quantitative model for the extended defect behavior during short time, low temperature anneals is a key to explaining TED. This paper reviews some of the modeling developments over the last several years, and discusses some of the challenges that remain to be addressed. Two examples of models compared to experimental work are presented and discussed

  14. Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.; Giakoumis, E.G.

    2008-01-01

    A previously developed and validated zero-dimensional, multi-zone, thermodynamic combustion model for the prediction of spark ignition (SI) engine performance and nitric oxide (NO) emissions has been extended to include second-law analysis. The main characteristic of the model is the division of the burned gas into several distinct zones, in order to account for the temperature and chemical species stratification developed in the burned gas during combustion. Within the framework of the multi-zone model, the various availability components constituting the total availability of each of the multiple zones of the simulation are identified and calculated separately. The model is applied to a multi-cylinder, four-stroke, turbocharged and aftercooled, natural gas (NG) SI gas engine running on synthesis gas (syngas) fuel. The major part of the unburned mixture availability consists of the chemical contribution, ranging from 98% at the inlet valve closing (IVC) event to 83% at the ignition timing of the total availability for the 100% load case, which is due to the presence of the combustible fuel. On the contrary, the multiple burned zones possess mainly thermomechanical availability. Specifically, again for the 100% load case, the total availability of the first burned zone at the exhaust valve opening (EVO) event consists of thermomechanical availability approximately by 90%, with similar percentages for all other burned zones. Two definitions of the combustion exergetic efficiency are used to explore the degree of reversibility of the combustion process in each of the multiple burned zones. It is revealed that the crucial factor determining the thermodynamic perfection of combustion in each burned zone is the level of the temperatures at which combustion occurs in the zone, with minor influence of the whole temperature history of the zone during the complete combustion phase. The availability analysis is extended to various engine loads. The engine in question is

  15. Extendable linearised adjustment model for deformation analysis

    NARCIS (Netherlands)

    Hiddo Velsink

    2015-01-01

    Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices

  16. Extendable linearised adjustment model for deformation analysis

    NARCIS (Netherlands)

    Velsink, H.

    2015-01-01

    This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation

  17. Extending the Modelling Framework for Gas-Particle Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup

    , with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...

  18. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  19. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  20. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.; Vanteru, Mahendra Reddy; Ruan, S.; Doan, N. A K; Roberts, William L.; Swaminathan, N.

    2016-01-01

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used

  1. A model for steady-state HNF combustion

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    A simple model for the combustion of solid monopropellants is presented. The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: high activation energy, and low activation energy. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of the model are compared with experimental results of Hydrazinium Nitroformate (HNF) combustion.

  2. Interaction between combustion and turbulence in modelling of emissions

    International Nuclear Information System (INIS)

    Oksanen, A.; Maeki-Mantila, E.

    1995-01-01

    The aim of the work is to study the combustion models which are taking into account the coupling between gas phase chemistry and turbulence in the modelling of emissions, especially of nitric oxide, when temperature and species concentrating are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion are the probability density function (pdf) and the other models which are taking into consideration the effect of turbulence on the chemical reactions in flames. Such other models to use in the modelling are many e.g. Eddy Dissipation Model (EDM), Eddy Dissipation Concept (EDC), Eddy Dissipation Kinetic model (EDK), Eddy Break Up model (EBU), kinetic models and the combinations of those ones, respectively. Besides these models the effect of the different turbulence models on the formation of emissions will be also studied. Same kind of modelling has been done also by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the name of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.). Combustion measurements are also tried to do if only the practical conditions take it possible. (author)

  3. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner

    Directory of Open Access Journals (Sweden)

    Yik Siang Pang

    2018-01-01

    Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec

  4. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  5. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  6. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  7. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  8. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M T; Kaario, O T [VTT Energy, Espoo (Finland)

    1998-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  9. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  10. Phase diagram of an extended Agassi model

    Science.gov (United States)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  11. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  12. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  13. An experimental and modeling study of n-octanol combustion

    KAUST Repository

    Cai, Liming

    2015-01-01

    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained in a jet stirred reactor for a range of initial conditions. A detailed kinetic model was developed to describe the oxidation of n-octanol at both low and high temperatures, and the model shows good agreement with the present dataset. The fuel\\'s combustion characteristics are compared to those of n-alkanes and to short chain alcohols to illustrate the effects of the hydroxyl moiety and the carbon chain length on important combustion properties. Finally, the results are discussed in detail. © 2014 The Combustion Institute.

  14. Numerical modeling of straw combustion in a fixed bed

    DEFF Research Database (Denmark)

    Zhou, Haosheng; Jensen, Anker; Glarborg, Peter

    2005-01-01

    . The straw combustion processes include moisture evaporation, straw pyrolysis, gas combustion, and char combustion. The model provides detailed information of the structure of the ignition flame front. Simulated gas species concentrations at the bed surface, ignition flame front rate, and bed temperature......Straw is being used as main renewable energy source in grate boilers in Denmark. For optimizing operating conditions and design parameters, a one-dimensional unsteady heterogeneous mathematical model has been developed and experiments have been carried out for straw combustion in a fixed bed...... are in good agreement with measurements at different operating conditions such as primary air-flow rate, pre-heating of the primary air, oxygen concentration, moisture content in straw, and bulk density of the straw in the fixed bed. A parametric study indicates that the effective heat conductivity, straw...

  15. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  16. Interaction between combustion and turbulence in modelling of emissions

    International Nuclear Information System (INIS)

    Oksanen, A.; Maeki-Mantila, E.

    1996-01-01

    The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with β and γ-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-ε models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)

  17. Extended Linear Models with Gaussian Priors

    DEFF Research Database (Denmark)

    Quinonero, Joaquin

    2002-01-01

    In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....

  18. US-Japan Seminar on Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1995-01-01

    The articles in this volume treat various problems in combustion science that are of importance in applications to technology and to environmental sciences. The authors treat turbulence in premixed and non-premixed flames as well as pressure interactions and wave phenomena. Also supersonic flows and detonations are discussed. The main emphasis, however, is on the modelling and numerical treatment of combustion phenomena. The book addresses researchers in physics and engineering, and mathematicians from scientific computing.

  19. Mathematical model for solid fuel combustion in fluidized bed

    International Nuclear Information System (INIS)

    Kostikj, Zvonimir; Noshpal, Aleksandar

    1994-01-01

    A mathematical model for computation of the combustion process of solid fuel in fluidized bed is presented in this work. Only the combustor part of the plant (the fluidized bed and the free board) is treated with this model. In that manner, all principal, physical presumption and improvements (upon which this model is based) are given. Finally, the results of the numerical realisation of the mathematical model for combustion of minced straw as well as the results of the experimental investigation of a concrete physical model are presented. (author)

  20. Extended Higgs sectors in radiative neutrino models

    Directory of Open Access Journals (Sweden)

    Oleg Antipin

    2017-05-01

    Full Text Available Testable Higgs partners may be sought within the extensions of the SM Higgs sector aimed at generating neutrino masses at the loop level. We study a viability of extended Higgs sectors for two selected models of radiative neutrino masses: a one-loop mass model, providing the Higgs partner within a real triplet scalar representation, and a three-loop mass model, providing it within its two-Higgs-doublet sector. The Higgs sector in the one-loop model may remain stable and perturbative up to the Planck scale, whereas the three-loop model calls for a UV completion around 106 GeV. Additional vector-like lepton and exotic scalar fields, which are required to close one- and three-loop neutrino-mass diagrams, play a decisive role for the testability of the respective models. We constrain the parameter space of these models using LHC bounds on diboson resonances.

  1. Modeling local extinction in turbulent combustion using an embedding method

    Science.gov (United States)

    Knaus, Robert; Pantano, Carlos

    2012-11-01

    Local regions of extinction in diffusion flames, called ``flame holes,'' can reduce the efficiency of combustion and increase the production of certain pollutants. At sufficiently high speeds, a flame may also be lifted from the rim of the burner to a downstream location that may be stable. These two phenomena share a common underlying mechanism of propagation related to edge-flame dynamics where chemistry and fluid mechanics are equally important. We present a formulation that describes the formation, propagation, and growth of flames holes on the stoichiometric surface using edge flame dynamics. The boundary separating the flame from the quenched region is modeled using a progress variable defined on the moving stoichiometric surface that is embedded in the three-dimensional space using an extension algorithm. This Cartesian problem is solved using a high-order finite-volume WENO method extended to this nonconservative problem. This algorithm can track the dynamics of flame holes in a turbulent reacting-shear layer and model flame liftoff without requiring full chemistry calculations.

  2. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  3. Numerical Modeling of Diesel Spray Formation and Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2009-01-01

    A study is presented on the modeling of fuel sprays in diesel engines. The objective of this study is in the first place to accurately and efficiently model non-reacting diesel spray formation, and secondly to include ignition and combustion. For that an efficient 1D Euler-Euler spray model [21] is

  4. Improved hydrogen combustion model for multi-compartment analysis

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    2000-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using six different flame front shapes of fireball, prism, bubble, spherical jet, plane jet, and parallelepiped. A verification study of the proposed model was carried out using the NUPEC large-scale combustion test results following the previous work in which the GRS/Battelle multi-compartment combustion test results had been used. The selected test cases for the study were the premixed test and the scenario-oriented test which simulated the severe accident sequences of an actual plant. The improved MELCOR code replaced by the proposed model could predict sufficiently both results of the premixed test and the scenario-oriented test of NUPEC large-scale test. The improved MELCOR code was confirmed to simulate the combustion behavior in the multi-compartment containment vessel during a severe accident with acceptable degree of accuracy. Application of the new model to the LWR severe accident analysis will be continued. (author)

  5. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    International Nuclear Information System (INIS)

    Sathiah, Pratap; Roelofs, Ferry

    2014-01-01

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor

  6. Numerical modeling of sodium fire – Part II: Pool combustion and combined spray and pool combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Shell Global Solutions Ltd., Brabazon House, Concord Business Park, Threapwood Road, Manchester M220RR (United Kingdom); Roelofs, Ferry, E-mail: roelofs@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755ZG Petten (Netherlands)

    2014-10-15

    Highlights: • A CFD based method is proposed for the simulation of sodium pool combustion. • A sodium evaporation based model is proposed to model sodium pool evaporation. • The proposed method is validated against sodium pool experiments of Newman and Payne. • The results obtained using the proposed method are in good agreement with the experiments. - Abstract: The risk of sodium-air reaction has received considerable attention after the sodium-fire accident in Monju reactor. The fires resulting from the sodium-air reaction can be detrimental to the safety of a sodium fast reactor. Therefore, predicting the consequences of a sodium fire is important from a safety point of view. A computational method based on CFD is proposed here to simulate sodium pool fire and understand its characteristics. The method solves the Favre-averaged Navier-Stokes equation and uses a non-premixed mixture fraction based combustion model. The mass transfer of sodium vapor from the pool surface to the flame is obtained using a sodium evaporation model. The proposed method is then validated against well-known sodium pool experiments of Newman and Payne. The flame temperature and location predicted by the model are in good agreement with experiments. Furthermore, the trends of the mean burning rate with initial pool temperature and oxygen concentration are captured well. Additionally, parametric studies have been performed to understand the effects of pool diameter and initial air temperature on the mean burning rate. Furthermore, the sodium spray and sodium pool combustion models are combined to simulate simultaneous spray and pool combustion. Simulations were performed to demonstrate that the combined code could be applied to simulate this. Once sufficiently validated, the present code can be used for safety evaluation of a sodium fast reactor.

  7. CFD modeling of combustion processes using KIVA3V Code with partially stirred reactor model for turbulence-combustion interactions

    International Nuclear Information System (INIS)

    Jarnicki, R.; Sobiesiak, A.

    2002-01-01

    In order to solve the averaged conservation equations for turbulent reacting flow one is faced with a task of specifying the averaged chemical reaction rate. This is due to turbulence influence on the mean reaction rates that appear in the species concentration Reynolds-averaged equation. In order to investigate the Partially Stirred Reactor (PaSR) combustion model capabilities, a CFD modeling using KIVA3V Code with the PaSR model of two very different combustion processes, was performed. Experimental results were compared with modeling

  8. Observing and modeling nonlinear dynamics in an internal combustion engine

    International Nuclear Information System (INIS)

    Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.

    1998-01-01

    We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society

  9. A mathematical model of combustion kinetics of municipal solid ...

    African Journals Online (AJOL)

    Municipal Solid Waste has become a serious environmental problem troubling many cities. In this paper, a mathematical model of combustion kinetics of municipal solid waste with focus on plastic waste was studied. An analytical solution is obtained for the model. From the numerical simulation, it is observed that the ...

  10. Exploring Social Structures in Extended Team Model

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Ali Babar, Muhammad

    2013-01-01

    Extended Team Model (ETM) as a type of offshore outsourcing is increasingly becoming popular mode of Global Software Development (GSD). There is little knowledge about the social structures in ETM and their impact on collaboration. Within a large interdisciplinary project to develop the next...... generation of GSD technologies, we are exploring the role of social structures to support collaboration. This paper reports some details of our research design and initial findings about the mechanisms to support social structures and their impact on collaboration in an ETM....

  11. A Mixing Based Model for DME Combustion in Diesel Engines

    DEFF Research Database (Denmark)

    Bek, Bjarne H.; Sorenson, Spencer C.

    1998-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combus-tion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  12. A mixing based model for DME combustion in diesel engines

    DEFF Research Database (Denmark)

    Bek, Bjarne Hjort; Sorenson, Spencer C

    2001-01-01

    A series of studies has been conducted investigating the behavior of di-methyl ether (DME) fuel jets injected into quiescent combustion chambers. These studies have shown that it is possible to make a good estimate of the penetration of the jet based on existing correlations for diesel fuel......, by using appropriate fuel properties. The results of the spray studies have been incorporated into a first generation model for DME combustion. The model is entirely based on physical mixing, where chemical processes have been assumed to be very fast in relation to mixing. The assumption was made...

  13. H2-O2 supercritical combustion modeling using a CFD code

    Directory of Open Access Journals (Sweden)

    Benarous Abdallah

    2009-01-01

    Full Text Available The characteristics of propellant injection, mixing, and combustion have a profound effect on liquid rocket engine performance. The necessity of raising rocket engines performance requires a combustion chamber operation often in a supercritical regime. A supercritical combustion model based on a one-phase multi-components approach is developed and tested on a non-premixed H2-O2 flame configuration. A two equations turbulence model is used for describing the jet dynamics where a limited Pope correction is added to account for the oxidant spreading rate. Transport properties of the mixture are calculated using extended high pressure forms of the mixing rules. An equilibrium chemistry scheme is adopted in this combustion case, with both algebraic and stochastic expressions for the chemistry/turbulence coupling. The model was incorporated into a computational fluid dynamics commercial code (Fluent 6.2.16. The validity of the present model was investigated by comparing predictions of temperature, species mass fractions, recirculation zones and visible flame length to the experimental data measured on the Mascotte test rig. The results were confronted also with advanced code simulations. It appears that the agreement between the results was fairly good in the chamber regions situated downstream the near injection zone.

  14. Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement

    International Nuclear Information System (INIS)

    Sovinec, Carl R.

    2008-01-01

    The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior - not unlike computational weather prediction - to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU-DIST software library for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD's performance by a factor of five in typical large nonlinear simulations, which has been publicized

  15. Modeling of a bioethanol combustion engine under different operating conditions

    International Nuclear Information System (INIS)

    Hedfi, Hachem; Jedli, Hedi; Jbara, Abdessalem; Slimi, Khalifa

    2014-01-01

    Highlights: • Bioethanol/gasoline blends’ fuel effects on engine’s efficiency, CO and NOx emissions. • Fuel consumption and EGR optimizations with respect to estimated engine’s work. • Ignition timing and blends’ effects on engine’s efficiency. • Rich mixture, gasoline/bioethanol blends and EGR effects on engine’s efficiency. - Abstract: A physical model based on a thermodynamic analysis was designed to characterize the combustion reaction parameters. The time-variations of pressure and temperature required for the calculation of specific heat ratio are obtained from the solution of energy conservation equation. The chemical combustion of biofuel is modeled by an overall reaction in two-steps. The rich mixture and EGR were varied to obtain the optimum operating conditions for the engine. The NOx formation is modeled by using an eight-species six-step mechanism. The effect of various formation steps of NOx in combustion is considered via a phenomenological model of combustion speed. This simplified model, which has been validated by the most available published results, is used to characterize and control, in real time, the impact of biofuel on engine performances and NOx emissions as well. It has been demonstrated that a delay of the ignition timing leads to an increase of the gas mixture temperature and cylinder pressure. Furthermore, it has been found that the CO is lower near the stoichiometry. Nevertheless, we notice that lower rich mixture values result in small NOx emission rates

  16. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1998-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  17. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  18. Constraints based analysis of extended cybernetic models.

    Science.gov (United States)

    Mandli, Aravinda R; Venkatesh, Kareenhalli V; Modak, Jayant M

    2015-11-01

    The cybernetic modeling framework provides an interesting approach to model the regulatory phenomena occurring in microorganisms. In the present work, we adopt a constraints based approach to analyze the nonlinear behavior of the extended equations of the cybernetic model. We first show that the cybernetic model exhibits linear growth behavior under the constraint of no resource allocation for the induction of the key enzyme. We then quantify the maximum achievable specific growth rate of microorganisms on mixtures of substitutable substrates under various kinds of regulation and show its use in gaining an understanding of the regulatory strategies of microorganisms. Finally, we show that Saccharomyces cerevisiae exhibits suboptimal dynamic growth with a long diauxic lag phase when growing on a mixture of glucose and galactose and discuss on its potential to achieve optimal growth with a significantly reduced diauxic lag period. The analysis carried out in the present study illustrates the utility of adopting a constraints based approach to understand the dynamic growth strategies of microorganisms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. An Organization's Extended (Soft) Competencies Model

    Science.gov (United States)

    Rosas, João; Macedo, Patrícia; Camarinha-Matos, Luis M.

    One of the steps usually undertaken in partnerships formation is the assessment of organizations’ competencies. Typically considered competencies of a functional or technical nature, which provide specific outcomes can be considered as hard competencies. Yet, the very act of collaboration has its specific requirements, for which the involved organizations must be apt to exercise other type of competencies that affect their own performance and the partnership success. These competencies are more of a behavioral nature, and can be named as soft-competencies. This research aims at addressing the effects of the soft competencies on the performance of the hard ones. An extended competencies model is thus proposed, allowing the construction of adjusted competencies profiles, in which the competency levels are adjusted dynamically according to the requirements of collaboration opportunities.

  20. A comprehensive experimental and modeling study of 2-methylbutanol combustion

    KAUST Repository

    Park, Sungwoo

    2015-05-01

    2-Methylbutanol (2-methyl-1-butanol) is one of several next-generation biofuels that can be used as an alternative fuel or blending component for combustion engines. This paper presents new experimental data for 2-methylbutanol, including ignition delay times in a high-pressure shock tube and premixed laminar flame speeds in a constant volume combustion vessel. Shock tube ignition delay times were measured for 2-methylbutanol/air mixtures at three equivalence ratios, temperatures ranging from 750 to 1250. K, and at nominal pressures near 20 and 40. bar. Laminar flame speed data were obtained using the spherically propagating premixed flame configuration at pressures of 1, 2, and 5. bar. A detailed chemical kinetic model for 2-methylbutanol oxidation was developed including high- and low-temperature chemistry based on previous modeling studies on butanol and pentanol isomers. The proposed model was tested against new and existing experimental data at pressures of 1-40. atm, temperatures of 740-1636. K, equivalence ratios of 0.25-2.0. Reaction path and sensitivity analyses were conducted for identifying key reactions at various combustion conditions, and to obtain better understanding of the combustion characteristics of larger alcohols.

  1. Tabulated Combustion Model Development For Non-Premixed Flames

    Science.gov (United States)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  2. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  3. Comprehensive mechanisms for combustion chemistry: Experiment, modeling, and sensitivity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dryer, F.L.; Yetter, R.A. [Princeton Univ., NJ (United States)

    1993-12-01

    This research program is an integrated experimental/numerical effort to study pyrolysis and oxidation reactions and mechanisms for small-molecule hydrocarbon structures under conditions representative of combustion environments. The experimental aspects of the work are conducted in large diameter flow reactors, at pressures from one to twenty atmospheres, temperatures from 550 K to 1200 K, and with observed reaction times from 10{sup {minus}2} to 5 seconds. Gas sampling of stable reactant, intermediate, and product species concentrations provides not only substantial definition of the phenomenology of reaction mechanisms, but a significantly constrained set of kinetic information with negligible diffusive coupling. Analytical techniques used for detecting hydrocarbons and carbon oxides include gas chromatography (GC), and gas infrared (NDIR) and FTIR methods are utilized for continuous on-line sample detection of light absorption measurements of OH have also been performed in an atmospheric pressure flow reactor (APFR), and a variable pressure flow (VPFR) reactor is presently being instrumented to perform optical measurements of radicals and highly reactive molecular intermediates. The numerical aspects of the work utilize zero and one-dimensional pre-mixed, detailed kinetic studies, including path, elemental gradient sensitivity, and feature sensitivity analyses. The program emphasizes the use of hierarchical mechanistic construction to understand and develop detailed kinetic mechanisms. Numerical studies are utilized for guiding experimental parameter selections, for interpreting observations, for extending the predictive range of mechanism constructs, and to study the effects of diffusive transport coupling on reaction behavior in flames. Modeling using well defined and validated mechanisms for the CO/H{sub 2}/oxidant systems.

  4. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.; Sarathy, Mani

    2015-01-01

    necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values

  5. Modelling of NO formation in the combustion of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Backreedy, R.I.; Jones, J.M.; Pis, J.J.; Pourkashanian, M.; Rubiera, F.; Williams, A. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain)

    2002-03-01

    Coal blending is becoming of increasing importance in power stations firing pulverised coal as a result of increasing competition, stricter emission legislation and is an attractive way of improving plant economic and combustion performance. Presently, the two general methods used by power station operators to assess or predict the performance of an unknown coal blend to be fired in power station boilers are by the use of experimental large scale rig tests or correlation indices derived from experience of firing other coal blends in the power station environment. The first is expensive and the second is of doubtful accuracy in some cases. This paper evaluates the application of mathematical modelling of the combustion of a series of binary coal blends in the test situation of a drop tube reactor to predict the NO emissions and degree of char burnout. Its applicability to low NOx burners used in power stations is discussed and it is concluded that present mathematical coal combustion models are not developed sufficiently to enable an adequate description of the binary blends and the physical and chemical processes, which may include interactions, during combustion of the blend. This means that accurate predictions cannot be made. 20 refs., 4 figs., 5 tabs.

  6. Modelling of Devolatilization in Fluidized Bed Combustion

    DEFF Research Database (Denmark)

    Stenseng, Mette; Lin, Weigang; Johnsson, Jan Erik

    1997-01-01

    A mathematical model is developed to describe the devolatilization process in a circulating fluidized bed combustor. The model is a combination of two submodels: single particle devolatilization and fluid dynamics. The single particle model includes the influence of both chemical kinetics and hea...

  7. Simulation of MILD combustion using Perfectly Stirred Reactor model

    KAUST Repository

    Chen, Z.

    2016-07-06

    A simple model based on a Perfectly Stirred Reactor (PSR) is proposed for moderate or intense low-oxygen dilution (MILD) combustion. The PSR calculation is performed covering the entire flammability range and the tabulated chemistry approach is used with a presumed joint probability density function (PDF). The jet, in hot and diluted coflow experimental set-up under MILD conditions, is simulated using this reactor model for two oxygen dilution levels. The computed results for mean temperature, major and minor species mass fractions are compared with the experimental data and simulation results obtained recently using a multi-environment transported PDF approach. Overall, a good agreement is observed at three different axial locations for these comparisons despite the over-predicted peak value of CO formation. This suggests that MILD combustion can be effectively modelled by the proposed PSR model with lower computational cost.

  8. Mathematical Model of Piston Ring Sealing in Combustion Engine

    Directory of Open Access Journals (Sweden)

    Koszałka Grzegorz

    2015-01-01

    Full Text Available This paper presents a mathematical model of piston-rings-cylinder sealing (TPC of a combustion engine. The developed model is an itegrated model of gas flow through gaps in TPC unit, displacements and twisting motions of piston rings in ring grooves as well as generation of oil film between ring face surfaces and cylinder liner. Thermal deformations and wear of TPC unit elements as well as heat exchange between flowing gas and surrounding walls, were taken into account in the model. The paper contains descriptions of: assumptions used for developing the model, the model itself, its numerical solution as well as its computer application for carrying out simulation tests.

  9. Nitrogen chemistry in combustion and gasification - mechanisms and modeling

    International Nuclear Information System (INIS)

    Kilpinen, P.; Hupa, M.

    1998-01-01

    The objective of this work has been to increase the understanding of the complex details of gaseous emission formation in energy production techniques based on combustion and/or gasification. The aim has also been to improve the accuracy of mathematical furnace models when they are used for predicting emissions. The main emphasis has been on nitrogen oxides (NO x , N 2 O). The work supports development of cleaner and more efficient combustion technology. The main emphasis has been on combustion systems that are based on fluidized bed technology including both atmospheric and pressurized conditions (BFBC, CFBC, PFBC/G). The work has consisted of advanced theoretical modeling and of experiments in laboratory devices that have partly been made in collaboration with other LIEKKI projects. Two principal modeling tools have been used: detailed homogeneous chemical kinetic modeling and computational fluid dynamic simulation. In this report, the most important results of the following selected items will be presented: (1) Extension of a detailed kinetic nitrogen and hydrocarbon oxidation mechanism into elevated pressure, and parametric studies on: effect of pressure on fuel-nitrogen oxidation under PFBC conditions, effect of pressure on selective non-catalytic NO x reduction under PFBC conditions, effect of different oxidizers on hot-gas cleaning of ammonia by means of selective oxidation in gasification gas. (2) Extension of the above mechanism to include chlorine reactions at atmospheric pressure, and parametric studies on: effect of HCl on CO burn-out in FBC combustion of waste. (3) Development of more accurate emission prediction models: incorporation of more accurate submodels on hydrocarbon oxidation into CFD furnace models, and evaluation of different concepts describing the interaction between turbulence and chemical reaction, development of a mechanistic detailed 1.5-dimensional emission model for circulating fluidized bed combustors. (orig.) 14 refs

  10. Universal autoignition models for designer fuels in HCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Boulouchos, K.; Wright, Y.M. [LAV - Aerothermochemistry and Combustion Systems Laboratory - Institute of Energy Technology, ETH Zurich (Switzerland)], email: vandersickel@lav.mavt.ethz.ch

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, homogeneous charge compression ignition (HCCI), can improve the emissions performance of an engine in terms of NOx and soot release over that of diesel while maintaining the same efficiencies. However, problems of ignition timing control arise with HCCI. The aim of this paper is to determine how fuel properties impact the HCCI ignition process and operating range. This study was carried out as part of a collaboration among several universities and automotive companies and 10 fuels were investigated experimentally and numerically using Arrhenius' model and a lumped reaction model. The two ignition models were successfully adapted to describe the behavior of the studied fuels; atomizer engine experiments validated their results. Further work will be conducted to optimize the reaction mechanism for the remaining process fuels.

  11. A flammability and combustion model for integrated accident analysis

    International Nuclear Information System (INIS)

    Plys, M.G.; Astleford, R.D.; Epstein, M.

    1988-01-01

    A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs

  12. LES of n-Dodecane Spray Combustion Using a Multiple Representative Interactive Flamelets Model

    Directory of Open Access Journals (Sweden)

    Davidovic Marco

    2017-09-01

    Full Text Available A single-hole n-dodecane spray flame is studied in a Large-Eddy Simulation (LES framework under Diesel-relevant conditions using a Multiple Representative Interactive Flamelets (MRIF combustion model. Diesel spray combustion is strongly affected by the mixture formation process, which is dominated by several physical processes such as the flow within the injector, break-up of the liquid fuel jet, evaporation and turbulent mixing with the surrounding gas. While the effects of nozzle-internal flow and primary breakup are captured within tuned model parameters in traditional Lagrangian spray models, an alternative approach is applied in this study, where the initial droplet conditions and primary fuel jet breakup are modeled based on results from highly resolved multiphase simulations with resolved interface. A highly reduced chemical mechanism consisting of 57 species and 217 reactions has been developed for n-dodecane achiving a good computational performance at solving the chemical reactions. The MRIF model, which has demonstrated its capability of capturing combustion and pollutant formation under typical Diesel conditions in Reynolds-Averaged Navier-Stokes (RANS simulations is extended for the application in LES. In the standard RIF combustion model, representative chemistry conditioned on mixture fraction is solved interactively with the flow. Subfilter-scale mixing is modeled by the scalar dissipation rate. While the standard RIF model only includes temporal changes of the scalar dissipation rate, the spatial distribution can be accounted for by extending the model to multiple flamelets, which also enables the possibility of capturing different fuel residence times. Overall, the model shows good agreement with experimental data regarding both, low and high temperature combustion characteristics. It is shown that the ignition process and pollutant formation are affected by turbulent mixing. First, a cool flame is initiated at approximately

  13. Automated cost modeling for coal combustion systems

    International Nuclear Information System (INIS)

    Rowe, R.M.; Anast, K.R.

    1991-01-01

    This paper reports on cost information developed at AMAX R and D Center for coal-water slurry production implemented in an automated spreadsheet (Lotus 123) for personal computer use. The spreadsheet format allows the user toe valuate impacts of various process options, coal feedstock characteristics, fuel characteristics, plant location sites, and plant sizes on fuel cost. Model flexibility reduces time and labor required to determine fuel costs and provides a basis to compare fuels manufactured by different processes. The model input includes coal characteristics, plant flowsheet definition, plant size, and market location. Based on these inputs, selected unit operations are chosen for coal processing

  14. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-05

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.

  15. Management methods ash from combustion of biomass. Review of productions and associated methods. Extended abstract

    International Nuclear Information System (INIS)

    Boulday, D.; Marcovecchio, F.

    2016-02-01

    The study deals with the management of biomass ashes from industrial and collective facilities (wood log excluded) and provides a state of the art, in France and in Europe, flows, methods of recovery and post-treatment, physico-chemical characteristics and programs for new opportunities. Currently, flows of biomass ash are estimated at 110 kt-330 kt in France and 1 500 kt - 4 500 kt in Europe and should amount respectively 330 kt-1000 kt and 3100 kt-8000 kt in 2020. The physical and chemical composition of biomass ash is influenced by many factors: fuel, pretreatment, post-treatment, additives, fly and bottom ash, power installation, type of combustion equipment, extraction mode...However, these ashes have characteristics which are commonly accepted: liming / neutralizing power, fertilizer, pozzolanic behavior generally almost zero. In France and Europe, a distinction is made between fly and bottom ashes, usually less polluted. However, this separation does not always make sense according to the valuation mode, the type of equipment (including fluidized bed or grid) or mixtures of ash made in the plant (e.g. mix of bottom and coarse ash). Currently, the main outlet is ash landfill, followed by agricultural and forestry recycling. The other identified opportunities concern a few countries and marginal flows: brick-works, road engineering... The development of biomass energy, coupled with a reduction in landfill options, has given rise to many research and demonstration programs in recent years, particularly in France, with some promising solutions. Many limiting factors, which can be different according to opportunities, have been identified. More or less advanced solutions aimed at reducing the harmful effects of these factors (slaking lime, sorting, grinding...).However to date, the most robust and massive solution for ash recycling material remains undoubtedly the agricultural recycling. According to the study, it's necessary to consolidate the agricultural

  16. Hybrid Approach for Modeling Chemical Kinetics and Turbulence Effects on Combustion-Instability, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Combustion instabilities pose a significant technical risk in the development of liquid and solid rocket motors. Much of the effort in modeling combustion...

  17. Models for turbulent flows with variable density and combustion

    International Nuclear Information System (INIS)

    Jones, W.P.

    1980-01-01

    Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms

  18. Numerical modeling of turbulent combustion and flame spread

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenghua

    1999-01-01

    Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall

  19. Transient combustion modeling of an oscillating lean premixed methane/air flam

    NARCIS (Netherlands)

    Withag, J.A.M.; Kok, Jacobus B.W.; Syed, Khawar

    2009-01-01

    The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions

  20. Gasdynamic Model of Turbulent Combustion in TNT Explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Bell, J B; Beckner, V E

    2010-01-08

    A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.

  1. Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

    Directory of Open Access Journals (Sweden)

    Lucas Eder

    2018-03-01

    Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.

  2. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R; Maekiranta, R [Tampere Univ. (Finland). Energy and Process Engineering

    1997-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  3. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering

    1996-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  4. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    Science.gov (United States)

    VanOverbeke, Thomas J.

    1998-01-01

    for peak temperature and tangential velocity. The hybrid pdf method did take longer and required more memory, but has a theoretical basis to extend to many reaction steps which cannot be said of current turbulent combustion models.

  5. Development of hydrogen combustion analysis model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Jin; Lee, K. D.; Kim, S. N. [Soongsil University, Seoul (Korea, Republic of); Hong, J. S.; Kwon, H. Y. [Seoul National Polytechnic University, Seoul (Korea, Republic of); Kim, Y. B.; Kim, J. S. [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    The objectives of this project is to construct a credible DB for component reliability by developing methodologies and computer codes for assessing component independent failure and common cause failure probability, incorporating applicability and dependency of the data. In addition to this, the ultimate goal is to systematize all the analysis procedures so as to provide plans for preventing component failures by employing flexible tools for the change of specific plant or data sources. For the first subject, we construct a DB for similarity index and dependence matrix and propose a systematic procedure for data analysis by investigating the similarity and redundancy of the generic data sources. Next, we develop a computer code for this procedure and construct reliability data base for major components. The second subject is focused on developing CCF procedure for assessing the plant specific defense ability, rather than developing another CCF model. We propose a procedure and computer code for estimating CCF event probability by incorporating plant specific defensive measure. 116 refs., 25 tabs., 24 figs. (author)

  6. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)

    2006-01-15

    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  7. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  8. Extended equivalent dipole model for radiated emissions

    OpenAIRE

    Obiekezie, Chijioke S.

    2016-01-01

    This work is on the characterisation of radiated fields from electronic devices. An equivalent dipole approach is used. Previous work showed that this was an effective approach for single layer printed circuit boards where an infinite ground plane can be assumed. In this work, this approach is extended for the characterisation of more complex circuit boards or electronic systems.\\ud For complex electronic radiators with finite ground planes, the main challenge is characterising field diffract...

  9. Simple model of inhibition of chain-branching combustion processes

    Science.gov (United States)

    Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.

    2017-11-01

    A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.

  10. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  11. A gas radiation property model applicable to general combustion CFD and its demonstration in oxy-fuel combustion simulation

    DEFF Research Database (Denmark)

    Yin, Chungen; Singh, Shashank; Romero, Sergio Sanchez

    2017-01-01

    As a good compromise between computational efficiency and accuracy, the weighted-sum-of-gray-gases model (WSGGM) is often used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gas radiative properties. However, the WSGGMs still have practical limitations (e...

  12. Application of Detailed Chemical Kinetics to Combustion Instability Modeling

    Science.gov (United States)

    2016-01-04

    Clearance Number 15692 Clearance Date 12/3/2015 14. ABSTRACT A comparison of a single step global reaction and the detailed GRI -Mech 1.2 for combustion...comparison of a single step global reaction and the detailed GRI -Mech 1.2 for com- bustion instability modeling in a methane-fueled longitudinal-mode...methane as the fuel. We use the GRI -Mech 1.2 kinetics mechanism for methane oxidation.11 The GRI -Mech 1.2 was chosen over 2.11 because the only

  13. Improvement of NO and CO predictions for a homogeneous combustion SI engine using a novel emissions model

    International Nuclear Information System (INIS)

    Karvountzis-Kontakiotis, Apostolos; Ntziachristos, Leonidas

    2016-01-01

    Highlights: • Presentation of a novel emissions model to predict pollutants formation in engines. • Model based on detailed chemistry, requires no application-specific calibration. • Combined with 0D and 1D combustion models with low additional computational cost. • Demonstrates accurate prediction of cyclic variability of pollutants emissions. - Abstract: This study proposes a novel emissions model for the prediction of spark ignition (SI) engine emissions at homogeneous combustion conditions, using post combustion analysis and a detailed chemistry mechanism. The novel emissions model considers an unburned and a burned zone, where the latter is considered as a homogeneous reactor and is modeled using a detailed chemical kinetics mechanism. This allows detailed emission predictions at high speed practically based only on combustion pressure and temperature profiles, without the need for calibration of the model parameters. The predictability of the emissions model is compared against the extended Zeldovich mechanism for NO and a simplified two-step reaction kinetic model for CO, which both constitute the most widespread existing approaches in the literature. Under various engine load and speed conditions examined, the mean error in NO prediction was 28% for the existing models and less than 1.3% for the new model proposed. The novel emissions model was also used to predict emissions variation due to cyclic combustion variability and demonstrated mean prediction error of 6% and 3.6% for NO and CO respectively, compared to 36% (NO) and 67% (CO) for the simplified model. The results show that the emissions model proposed offers substantial improvements in the prediction of the results without significant increase in calculation time.

  14. A Comparison of Prominent LES Combustion Models for Nonpremixed Supersonic Combustion

    Data.gov (United States)

    National Aeronautics and Space Administration — The capability of accurately simulating supersonic combustion is a vital topic for designing and advancing hypersonic air-breathing vehicles. As a consequence, there...

  15. Black liquor combustion validated recovery boiler modeling, five-year report

    Energy Technology Data Exchange (ETDEWEB)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  16. Micro dosimetry model. An extended version

    International Nuclear Information System (INIS)

    Vroegindewey, C.

    1994-07-01

    In an earlier study a relative simple mathematical model has been constructed to simulate the energy transfer on a cellular scale and thus gain insight in the fundamental processes of BNCT. Based on this work, a more realistic micro dosimetry model is developed. The new facets of the model are: the treatment of proton recoil, the calculation of the distribution of energy depositions, and the determination of the number of particles crossing the target nucleus subdivided in place of origin. Besides these extensions, new stopping power tables for the emitted particles are generated and biased Monte Carlo techniques are used to reduce computer time. (orig.)

  17. A Novel Biped Pattern Generator Based on Extended ZMP and Extended Cart-Table Model

    Directory of Open Access Journals (Sweden)

    Guangbin Sun

    2015-07-01

    Full Text Available This paper focuses on planning patterns for biped walking on complex terrains. Two problems are solved: ZMP (zero moment point cannot be used on uneven terrain, and the conventional cart-table model does not allow vertical CM (centre of mass motion. For the ZMP definition problem, we propose the extended ZMP (EZMP concept as an extension of ZMP to uneven terrains. It can be used to judge dynamic balance on universal terrains. We achieve a deeper insight into the connection and difference between ZMP and EZMP by adding different constraints. For the model problem, we extend the cart-table model by using a dynamic constraint instead of constant height constraint, which results in a mathematically symmetric set of three equations. In this way, the vertical motion is enabled and the resultant equations are still linear. Based on the extended ZMP concept and extended cart-table model, a biped pattern generator using triple preview controllers is constructed and implemented simultaneously to three dimensions. Using the proposed pattern generator, the Atlas robot is simulated. The simulation results show the robot can walk stably on rather complex terrains by accurately tracking extended ZMP.

  18. Extended nonabelian symmetries for free fermionic model

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1993-08-01

    The higher spin symmetry for both Dirac and Majorana massless free fermionic field models are considered. An infinite Lie algebra which is a linear realization of the higher spin extension of the cross products of the Virasoro and affine Kac-Moody algebras is obtained. The corresponding current algebra is closed which is not the case of analogous current algebra in the WZNW model. The gauging procedure for the higher spin symmetry is also given. (author). 12 refs

  19. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  20. Extending the prevalent consumer loyalty modelling

    DEFF Research Database (Denmark)

    Olsen, Svein Ottar; Tudoran, Ana Alina; Brunsø, Karen

    2013-01-01

    Purpose: This study addresses the role of habit strength in explaining loyalty behaviour. Design/methodology/approach: The study uses 2063 consumers’ data from a survey in Denmark and Spain, and multigroup structural equation modelling to analyse the data. The paper describes an approach employing...... the psychological meanings of the habit construct, such as automaticity, lack of awareness or very little conscious deliberation. Findings: The findings suggest that when habits start to develop and gain strength, less planning is involved, and that the loyalty behaviour sequence mainly occurs guided...... by automaticity and inertia. A new model with habit strength as a mediator between satisfaction and loyalty behaviour provides a substantial increase in explained variance in loyalty behaviour over the traditional model with intention as a mediator. Originality/value: This study contributes to the existent...

  1. Results from flamelet and non-flamelet models for supersonic combustion

    Science.gov (United States)

    Ladeinde, Foluso; Li, Wenhai

    2017-11-01

    Air-breathing propulsion systems (scramjets) have been identified as a viable alternative to rocket engines for improved efficiency. A scramjet engine, which operates at flight Mach numbers around 7 or above, is characterized by the existence of supersonic flow conditions in the combustor. In a dual-mode scramjet, this phenomenon is possible because of the relatively low value of the equivalence ratio and high stagnation temperature, which, together, inhibits thermal choking downstream of transverse injectors. The flamelet method has been our choice for turbulence-combustion interaction modeling and we have extended the basic approach in several dimensions, with a focus on the way the pressure and progress variable are modeled. Improved results have been obtained. We have also examined non-flamelet models, including laminar chemistry (QL), eddy dissipation concept (EDC), and partially-stirred reactor (PaSR). The pressure/progress variable-corrected simulations give better results compared with the original model, with reaction rates that are lower than those from EDC and PaSR. In general, QL tends to over-predict the reaction rate for the supersonic combustion problems investigated in our work.

  2. Modelling the effects of heat loss and fuel/air mixing on turbulent combustion in gas turbine combustion systems

    NARCIS (Netherlands)

    Gövert, S.

    2016-01-01

    The present study is concerned with the development and validation of a simulation framework for the accurate prediction of turbulent reacting flows at reduced computational costs. Therefore, a combustion model based on the tabulation of laminar premixed flamelets is employed. By compilation of

  3. Extending Social Cognition Models of Health Behaviour

    Science.gov (United States)

    Abraham, Charles; Sheeran, Paschal; Henderson, Marion

    2011-01-01

    A cross-sectional study assessed the extent to which indices of social structure, including family socio-economic status (SES), social deprivation, gender and educational/lifestyle aspirations correlated with adolescent condom use and added to the predictive utility of a theory of planned behaviour model. Analyses of survey data from 824 sexually…

  4. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael Mejias

    2016-01-01

    This work studies the modifications implemented over successive versions in the empirical models of the computer program FRAPCON used to simulate the steady state irradiation performance of Pressurized Water Reactor (PWR) fuel rods under high burnup condition. In the study, the empirical models present in FRAPCON official documentation were analyzed. A literature study was conducted on the effects of high burnup in nuclear fuels and to improve the understanding of the models used by FRAPCON program in these conditions. A steady state fuel performance analysis was conducted for a typical PWR fuel rod using FRAPCON program versions 3.3, 3.4, and 3.5. The results presented by the different versions of the program were compared in order to verify the impact of model changes in the output parameters of the program. It was observed that the changes brought significant differences in the results of the fuel rod thermal and mechanical parameters, especially when they evolved from FRAPCON-3.3 version to FRAPCON-3.5 version. Lower temperatures, lower cladding stress and strain, lower cladding oxide layer thickness were obtained in the fuel rod analyzed with the FRAPCON-3.5 version. (author)

  5. Characterising and modelling extended conducted electromagnetic emission

    CSIR Research Space (South Africa)

    Grobler, Inus

    2013-06-01

    Full Text Available , such as common mode and differential mode separation, calibrated with an EMC ETS-Lindgren current probe. Good and workable model accuracies were achieved with the basic Step-Up and Step-Down circuits over the conducted emission frequency band and beyond...

  6. Four-Stroke, Internal Combustion Engine Performance Modeling

    Science.gov (United States)

    Wagner, Richard C.

    In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.

  7. Cold flow model study of an oxyfuel combustion pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Guio-Perez, D.C.; Tondl, G.; Hoeltl, W.; Proell, T.; Hofbauer, H. [Vienna University of Technology, Institute of Chemical Engineering, Vienna (Austria)

    2011-12-15

    The fluid-dynamic behavior of a circulating fluidized bed pilot plant for oxyfuel combustion was studied in a cold flow model, down-scaled using Glicksman's criteria. Pressures along the unit and the global circulation rate were used for characterization. The analysis of five operating parameters and their influence on the system was carried out; namely, total solids inventory and the air velocity of primary, secondary, loop seal and support fluidizations. The cold flow model study shows that the reactor design allows stable operation at a wide range of fluidization rates, with results that agree well with previous observations described in the literature. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Modeling of aerosol formation during biomass combustion in grate furnaces and comparison with measurements

    NARCIS (Netherlands)

    Joeller, M.; Brunner, T.; Obernberger, I.

    2005-01-01

    Results from mathematical modeling of aerosol formation during combustion of woody biomass fuels were compared with results from particle size distribution (PSD) measurements at a pilot-scale biomass combustion unit with moving grate and flame tube boiler. The mathematical model is a plug flow model

  9. Building metaphors and extending models of grief.

    Science.gov (United States)

    VandeCreek, L

    1985-01-01

    Persons in grief turn to metaphors as they seek to understand and express their experience. Metaphors illustrated in this article include "grief is a whirlwind," "grief is the Great Depression all over again" and "grief is gray, cloudy and rainy weather." Hospice personnel can enhance their bereavement efforts by identifying and cultivating the expression of personal metaphors from patients and families. Two metaphors have gained wide cultural acceptance and lie behind contemporary scientific explorations of grief. These are "grief is recovery from illness" (Bowlby and Parkes) and "death is the last stage of growth and grief is the adjustment reaction to this growth" (Kubler-Ross). These models have developed linear perspectives of grief but have neglected to study the fluctuating intensity of symptoms. Adopting Worden's four-part typology of grief, the author illustrates how the pie graph can be used to display this important aspect of the grief experience, thus enhancing these models.

  10. Rare top quark decays in extended models

    International Nuclear Information System (INIS)

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2006-01-01

    Flavor changing neutral currents (FCNC) decays t → H0 + c, t → Z + c, and H0 → t + c-bar are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed

  11. Macroeconomic model of national economy development (extended

    Directory of Open Access Journals (Sweden)

    M. Diaconova

    1997-08-01

    Full Text Available The macroeconomic model offered in this paper describes complex functioning of national economy and can be used for forecasting of possible directions of its development depending on various economic policies. It is the extension of [2] and adaptation of [3]. With the purpose of determination of state policies influence in the field of taxes and exchange rate national economy is considered within the framework of three sectors: government, private and external world.

  12. Top quark decays in extended models

    International Nuclear Information System (INIS)

    Gaitan, R.; Cabral-Rosetti, L.G.

    2011-01-01

    We evaluate the FCNC decays t → H 0 + c at tree-level and t → γ + c at one-loop level in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; in the first case, FCNC decays occurs at tree-level and they are only suppressed by the mixing between ordinary top and charm quarks. (author)

  13. Extending Ansoff’s Strategic Diagnosis Model

    Directory of Open Access Journals (Sweden)

    Daniel Kipley

    2012-01-01

    Full Text Available Given the complex and disruptive open-ended dynamics in the current dynamic global environment, senior management recognizes the need for a formalized, consistent, and comprehensive framework to analyze the firm’s strategic posture. Modern assessment tools, such as H. Igor Ansoff’s seminal contributions to strategic diagnosis, primarily focused on identifying and enhancing the firm’s strategic performance potential through the analysis of the industry’s environmental turbulence level relative to the firm’s aggressiveness and responsiveness of capability. Other epistemic modeling techniques envisage Porter’s generic strategic positions, Strengths, Weaknesses, Opportunities, Threats (SWOT, and Resource-Based View as useful methodologies to aid in the planning process. All are complex and involve multiple managerial perspectives. Over the last two decades, attempts have been made to comprehensively classify the firm’s future competitive position. Most of these proposals utilized matrices to depict the position, such as the Boston Consulting Group, point positioning, and dispersed positioning. The GE/McKinsey later enhanced this typology by expanding to 3 × 3, contributing to management’s deeper understanding of the firm’s position. Both types of assessments, Ansoff’s strategic diagnosis and positional matrices, are invaluable strategic tools for firms. However, it could be argued that these positional analyses singularly reflect a blind spot in modeling the firm’s future strategic performance potential, as neither considers the interactions of the other. This article is conceptual and takes a different approach from earlier methodologies. Although conceptual, the article aims to present a robust model combining Ansoff’s strategic diagnosis with elements of the performance matrices to provide the management with an enriched capability to evaluate the firm’s current and future performance position.

  14. Modeling segregated in- situ combustion processes through a vertical displacement model applied to a Colombian field

    International Nuclear Information System (INIS)

    Guerra Aristizabal, Jose Julian; Grosso Vargas, Jorge Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as segregated in-situ combustion processes, which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Split-production Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate horizontal producers and gravity drainage phenomena. When applied to thick reservoirs a process of this nature could be reasonably modeled under concepts of conventional in-situ combustion and Crestal Gas injection, especially for heavy oils mobile at reservoir conditions. A process of this nature has been studied through an analytic model conceived for the particular conditions of the Castilla field, a homogeneous thick anticline structure containing high mobility heavy oil, which seems to be an excellent candidate for the application of these technologies

  15. Modeling of PWR fuel at extended burnup

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Raphael M.; Silva, Antonio Teixeira, E-mail: rmdias@ipen.br, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  16. Extending the enterprise evolution contextualisation model

    Science.gov (United States)

    de Vries, Marné; van der Merwe, Alta; Gerber, Aurona

    2017-07-01

    Enterprise engineering (EE) emerged as a new discipline to encourage comprehensive and consistent enterprise design. Since EE is multidisciplinary, various researchers study enterprises from different perspectives, which resulted in a plethora of applicable literature and terminology, but without shared meaning. Previous research specifically focused on the fragmentation of knowledge for designing and aligning the information and communication technology (ICT) subsystem of the enterprise in order to support the business organisation subsystem of the enterprise. As a solution for this fragmented landscape, a business-IT alignment model (BIAM) was developed inductively from existing business-IT alignment approaches. Since most of the existing alignment frameworks addressed the alignment between the ICT subsystem and the business organisation subsystem, BIAM also focused on the alignment between these two subsystems. Yet, the emerging EE discipline intends to address a broader scope of design, evident in the existing approaches that incorporate a broader scope of design/alignment/governance. A need was identified to address the knowledge fragmentation of the EE knowledge base by adapting BIAM to an enterprise evolution contextualisation model (EECM), to contextualise a broader set of approaches, as identified by Lapalme. The main contribution of this article is the incremental development and evaluation of EECM. We also present guiding indicators/prerequisites for applying EECM as a contextualisation tool.

  17. Modeling of PWR fuel at extended burnup

    International Nuclear Information System (INIS)

    Dias, Raphael M.; Silva, Antonio Teixeira

    2015-01-01

    Since FRAPCON-3 series was rolled out, many improvements have been implanted in fuel performance codes, based on most recent literature, to promote better predictions against current data. Much of this advances include: improving fuel gas release prediction, hydrogen pickup model, cladding corrosion, and many others. An example of those modifications has been new cladding materials has added into hydrogen pickup model to support M5™, ZIRLO™, and ZIRLO™ optimized family under pressurized water reactor (PWR) conditions. Recently some research have been made over USNRC's steady-state fuel performance code, assessments against FUMEX-III's data have concluded that FRAPCON provides best-estimate calculation of fuel performance. Face of this, a study is required to summarize all those modifications and new implementations, as well as to compare this result against FRAPCON's older version, scrutinizing FRAPCON-3 series documentation to understand the real goal and literature base of any improvements. We have concluded that FRAPCON's latest modifications are based on strong literature review. Those modifications were tested against most recent data to assure these results will be the best evaluation as possible. Many improvements have been made to allow USNRC to have an audit tool with the last improvements. (author)

  18. An Examination of Extended a-Rescaling Model

    Institute of Scientific and Technical Information of China (English)

    YAN Zhan-Yuan; DUAN Chun-Gui; HE Zhen-Min

    2001-01-01

    The extended x-rescaling model can explain the quark's nuclear effect very well. Weather it can also explain the gluon's nuclear effect should be investigated further. Associated J/ψ and γ production with large PT is a very clean channel to probe the gluon distribution in proton or nucleus. In this paper, using the extended x-rescaling model, the PT distribution of the nuclear effect factors of p + Fe → J/Ψ + γ+ X process is calculated and discussed. Comparing our theoretical results with the future experimental data, the extended x-rescaling model can be examined.``

  19. Topics in dual models and extended solutions

    International Nuclear Information System (INIS)

    Roth, R.S.

    1977-01-01

    Two main topics are explored. The first deals with the infinities arising from the one loop planar string diagram of the standard dual model. It is shown that for the number of dimensions d = 25 or 26, these infinities lead to a renormalization of the slope of the Regge trajectories, in addition to a renormalization of the coupling constant. The second topic deals with the propagator for a confined particle (monopole) in a field theory. When summed to all orders, this propagator is altogether free of singularities in the finite momentum plane, and an attempt is made to illustrate this. The Bethe-Salpeter equation is examined and it is shown that ladder diagrams are not sufficient to obtain this result. However, in a nonrelativistic approximation confinement is obtained and all poles disappear

  20. An Extended Model of Knowledge Governance

    Science.gov (United States)

    Karvalics, Laszlo Z.; Dalal, Nikunj

    In current times, we are seeing the emergence of a new paradigm to describe, understand, and analyze the expanding "knowledge domain". This overarching framework - called knowledge governance - draws from and builds upon knowledge management and may be seen as a kind of meta-layer of knowledge management. The emerging knowledge governance approach deals with issues that lie at the intersection of organization and knowledge processes. Knowledge governance has two main interpretation levels in the literature: the company- (micro-) and the national (macro-) level. We propose a three-layer model instead of the previous two-layer version, adding a layer of "global" knowledge governance. Analyzing and separating the main issues in this way, we can re-formulate the focus of knowledge governance research and practice in all layers.

  1. Polaron as the extended particle model

    International Nuclear Information System (INIS)

    Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

    1977-01-01

    The polaron (a moving electron with concomitant lattice distortion) mass and energy are calculated. The problem of finding the Green function in the polaron model is solved. A number of the simplest approximations corresponding to the approximation in the picture of straight-line paths is considered. The case of strong coupling requires more detailed study of the particle motion in the effective field, caused by the significant polarization of vacuum near the particle. As a consequence, a more complex approximation of functional integrals is required. A variation method is used in this case. The bound state of a polaron interacting not only with photons, but also with some external classical field is investigated as well. A classical potential is considered as an example

  2. CFD Modeling of Fuel Injection and Combustion in an HDDI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Rijk, E.

    2009-07-01

    Siebers concerning liquid length are 12% and 4.5%, respectively. Prediction by Star-CD of fuel penetration is very accurate and performs better compared to the used non-Lagrangian models. The next step in this study is the validation of the hypothesis that emissions of unburnt hydrocarbons (UHC) in engines operating in the Early Direct Injection (EDI) Premixed Charge Compression Ignition (PCCI) regime are mainly caused by the impingement of liquid fuel on the cylinder wall, called wall-wetting. Therefore a dynamic mesh is created in Star-CD, representing a compressing and expanding piston. Fuel is injected at different points in the engine cycle and the calculated amount of wall-wetting is compared with the associated measured amount of UHC emissions. From this comparison, it can be concluded that if conventional DI nozzles are used, wall-wetting is the primary cause for UHC emissions. Because other phenomena can be responsible for these emissions as well, further research is necessary to determine the exact contribution of these phenomena. After diesel spray formation is modeled accurately, the HDDI engine cycle is extended with modeling of combustion. To do so, the Flamelet Generated Manifold (FGM) method is applied. This is a detailed tabulated chemistry approach based on the flamelet concept, wherein both ignition and combustion are included. The manifold is preprocessed using igniting non-premixed flamelets. The species concentrations, density, temperature etc. are stored as function of four control variables in a 4D look-up table. To investigate the interaction between Star-CD and FGM, it is first applied to a constant volume combustion case. From this case, it appears that the interaction works properly and the fuel ignites at the same location as observed in the associated experiment. Ignition delay however proved to be short, due to the used reduced reaction mechanism and interpolation routine. Finally, the FGM approach is used to simulate combustion in an HDDI

  3. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  4. Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2013-01-01

    The deployment of oxy-fuel combustion in utility boilers is one of the major options for CO2 capture. However, combustion under oxy-firing conditions differs from conventional air-firing combustion, e.g., in the aspect of radiative heat transfer, coal conversion and pollutants formation....... In this work, a numerical study on pulverised coal combustion was conducted to verify the applicability and accuracy of several sub-models refined for oxy-fuel conditions, e.g., gaseous radiative property model, gas-phase combustion mechanism and heterogeneous char reaction model. The sub-models were...... implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21-35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results...

  5. Developing and Extending a Cyberinfrastructure Model

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Rosio

    2007-11-13

    Increasingly, research and education institutions are realizing the strategic value and challenge of deploying and supporting institutional cyberinfrastructure (CI). Cyberinfrastructure is composed of high performance computing systems, massive storage systems, visualization systems, and advanced networks to interconnect the components within and across institutions and research communities. CI also includes the professionals with expertise in scientific application and algorithm development and parallel systems operation. Unlike ?regular? IT infrastructure, the manner in which the components are configured and skills to do so are highly specific and specialized. Planning and coordinating these assets is a fundamental step toward enhancing an institution?s research competitiveness and return on personnel, technology, and facilities investments. Coordinated deployment of CI assets has implications across the institution. Consider the VC for Research whose new faculty in the Life Sciences are now asking for simulation systems rather than wet labs, or the Provost who lost another faculty candidate to a peer institution that offered computational support for research, or the VC for Administration who has seen a spike in power and cooling demands from many of the labs and office spaces being converted to house systems. These are just some of the issues that research institutions are wrestling with as research becomes increasingly computational, data-intensive and interdisciplinary. This bulletin will discuss these issues and will present an approach for developing a cyberinfrastructure model that was successfully developed at one institution and then deployed across institutions.

  6. Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method

    International Nuclear Information System (INIS)

    Noor, M M; Hairuddin, A Aziz; Wandel, Andrew P; Yusaf, T F

    2012-01-01

    Most of the electricity generation and energy for transport is still generated by the conversion of chemical to mechanical energy by burning the fuels in the combustion chamber. Regulation for pollution and the demand for more fuel economy had driven worldwide researcher to focus on combustion efficiency. In order to reduce experimental cost, accurate modelling and simulation is very critical step. Taylor series expansion was utilised to reduce the error term for the discretization. FORTRAN code was used to execute the discretized partial differential equation. Hydrogen combustion was simulated using Conditional Moment Closure (CMC) model. Combustion of hydrogen with oxygen was successfully simulated and reported in this paper.

  7. Modeling JP-8 Fuel Effects on Diesel Combustion Systems

    National Research Council Canada - National Science Library

    Schihl, Peter; Hoogterp, Laura; Pangilinan, Harold; Schwarz, Ernest; Bryzik, Walter

    2006-01-01

    .... Since engine manufacturers rely solely on DF-2 for commercial vehicle applications most domestic industry, university, and national laboratory lead diesel engine combustion system research activities...

  8. Modeling reacting gases and aftertreatment devices for internal combustion engines

    Science.gov (United States)

    Depcik, Christopher David

    As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream

  9. Model predictive control as a tool for improving the process operation of MSW combustion plants

    International Nuclear Information System (INIS)

    Leskens, M.; Kessel, L.B.M. van; Bosgra, O.H.

    2005-01-01

    In this paper a feasibility study is presented on the application of the advanced control strategy called model predictive control (MPC) as a tool for obtaining improved process operation performance for municipal solid waste (MSW) combustion plants. The paper starts with a discussion of the operational objectives and control of such plants, from which a motivation follows for applying MPC to them. This is followed by a discussion on the basic idea behind this advanced control strategy. After that, an MPC-based combustion control system is proposed aimed at tackling a typical MSW combustion control problem and, using this proposed control system, an assessment is made of the improvement in performance that an MPC-based MSW combustion control system can provide in comparison to conventional MSW combustion control systems. This assessment is based on simulations using an experimentally obtained process and disturbance model of a real-life large-scale MSW combustion plant

  10. Quantifying the levitation picture of extended states in lattice models

    OpenAIRE

    Pereira, Ana. L. C.; Schulz, P. A.

    2002-01-01

    The behavior of extended states is quantitatively analyzed for two-dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the quantum Hall phase diagrams may be disorder dependent.

  11. Emission Modeling of an Interturbine Burner Based on Flameless Combustion

    NARCIS (Netherlands)

    Perpignan, A.A.V.; Talboom, M.G.; Levy, Yeshayahou; Gangoli Rao, A.

    2018-01-01

    Since its discovery, the flameless combustion (FC) regime has been a promising alternative to reduce pollutant emissions of gas turbine engines. This combustion mode is characterized by well-distributed reaction zones, which potentially decreases temperature gradients, acoustic oscillations, and

  12. Interactive computer modeling of combustion chemistry and coalescence-dispersion modeling of turbulent combustion

    Science.gov (United States)

    Pratt, D. T.

    1984-01-01

    An interactive computer code for simulation of a high-intensity turbulent combustor as a single point inhomogeneous stirred reactor was developed from an existing batch processing computer code CDPSR. The interactive CDPSR code was used as a guide for interpretation and direction of DOE-sponsored companion experiments utilizing Xenon tracer with optical laser diagnostic techniques to experimentally determine the appropriate mixing frequency, and for validation of CDPSR as a mixing-chemistry model for a laboratory jet-stirred reactor. The coalescence-dispersion model for finite rate mixing was incorporated into an existing interactive code AVCO-MARK I, to enable simulation of a combustor as a modular array of stirred flow and plug flow elements, each having a prescribed finite mixing frequency, or axial distribution of mixing frequency, as appropriate. Further increase the speed and reliability of the batch kinetics integrator code CREKID was increased by rewriting in vectorized form for execution on a vector or parallel processor, and by incorporating numerical techniques which enhance execution speed by permitting specification of a very low accuracy tolerance.

  13. Building and testing models with extended Higgs sectors

    Science.gov (United States)

    Ivanov, Igor P.

    2017-07-01

    Models with non-minimal Higgs sectors represent a mainstream direction in theoretical exploration of physics opportunities beyond the Standard Model. Extended scalar sectors help alleviate difficulties of the Standard Model and lead to a rich spectrum of characteristic collider signatures and astroparticle consequences. In this review, we introduce the reader to the world of extended Higgs sectors. Not pretending to exhaustively cover the entire body of literature, we walk through a selection of the most popular examples: the two- and multi-Higgs-doublet models, as well as singlet and triplet extensions. We will show how one typically builds models with extended Higgs sectors, describe the main goals and the challenges which arise on the way, and mention some methods to overcome them. We will also describe how such models can be tested, what are the key observables one focuses on, and illustrate the general strategy with a subjective selection of results.

  14. Application of Pareto-efficient combustion modeling framework to large eddy simulations of turbulent reacting flows

    Science.gov (United States)

    Wu, Hao; Ihme, Matthias

    2017-11-01

    The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.

  15. Numerical modeling of spray combustion in DI diesel engine using partially stirred reactor (PaSR) model

    International Nuclear Information System (INIS)

    Khaleghi, H.; Hosseini, S.M.

    2003-01-01

    In recent years special attention has been paid to the topic of diesel engine combustion. Various combustion models are used in CFD codes. In this paper Partially Stirred Reactor (PaSR) model, one of the newest turbulent combustion models, is introduced. This model has been employed in conjunction with the non-iterative PISO algorithm to calculate spray combustion in an axi-symmetric, direct injection diesel engine. Qualitative consideration of the results shows very good agreement with physical expectations and other numerical and experimental results. (author)

  16. Combustion modelling of a fuel oil flame; Modelisation de la combustion d`une flamme de fuel

    Energy Technology Data Exchange (ETDEWEB)

    Flour, I.; Mechitouan, N.

    1996-10-01

    The combustion modelling of a fuel oil flame has been realised in the scope of the R and D `Combustion Turbines`. This report presents the results of the 2D simulation of a fuel oil flame (n-octane), at atmospherical pressure, without swirl, realised using the Eulerian two-phase flow software Melodif. This calculation has been defined in collaboration with IFP, using experimental data from the IFRP. The hollow cone spray of liquid fuel is injected in the middle of the combustion chamber, with a co-flowing annular air. The furnace diameter is 2 meter and its length is 6,25 meter. A large recirculation zone is induced by the air flow, and leads to take into account the whole furnace, in order to avoid some problems with the limit conditions at the outlet. This calculation deals with droplets evaporation, gaseous phase combustion and radiation heat transfer. Predictions concerning gaseous axial mean velocity and mean temperature gradient in the flame, are in good agreement with measurements. However the temperature is too low in the peripheral zone of the flow. This is probably due to the fact that heat exchanges at the wall furnace are not correctly represented, because of a lack of detailed limit conditions for the walls. The mean radial velocity is not so well predicted, but this measurement is also quite difficult in a strongly longitudinal flow. The results concerning the dispersed phase will not be compared, because no measurements on the liquid fuel were available. As it has been experimentally observed, the simulation shows that the fuel oil spray quickly evaporates as it enters the combustion chamber. This result allows to propose to use an homogeneous approach (hypothesis of no-slipping between the two phases) in an Eulerian one-phase flow code, in case of a 3D simulation of liquid fuel turbine. (authors)

  17. Modeling of the dynamical combustion of explosives: influence of mechanical properties; Modelisation de la combustion dynamique des explodifs: influence des proprietes mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Picart, D.; Pertuis, C. [CEA Le Ripault, 37 - Tours (France)

    1996-12-31

    Experimental observations performed during the combustion of solid explosives under pressure have shown an unexpected desensitization of the samples when damaged. A simplified method of combustion simulation inside a pressure cell is proposed in this study. The model used is based on the description of the mechanical behaviour of the solid phase. It allows to retrieve the overall experimental results, and in particular the occurrence of anomalous combustion modes. (J.S.) 8 refs.

  18. An insight on the spray-A combustion characteristics by means of RANS and LES simulations using flamelet-based combustion models

    NARCIS (Netherlands)

    Akkurt, B.; Akargün, H.Y.; Somers, L.M.T.; Deen, N.G.; Novella, R.; Perez-Sanchez, E. J.

    2017-01-01

    Advanced Computational Fluid Dynamics (CFD) modeling of reacting sprays provides access to information not available even applying the most advanced experimental techniques. This is particularly evident if the combustion model handles detailed chemical kinetic models efficiently to describe the fuel

  19. Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Ali Cemal Benim

    2016-01-01

    Full Text Available Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.

  20. Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  1. Towards control-oriented modeling of natural gas-diesel RCCI combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Baert, R.S.G.; Willems, F.P.T.; Somers, L.M.T.

    2015-01-01

    For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The

  2. Modeling of combustion products composition of hydrogen-containing fuels

    International Nuclear Information System (INIS)

    Assad, M.S.

    2010-01-01

    Due to the usage of entropy maximum principal the algorithm and the program of chemical equilibrium calculation concerning hydrogen--containing fuels are devised. The program enables to estimate the composition of combustion products generated in the conditions similar to combustion conditions in heat engines. The program also enables to reveal the way hydrogen fraction in the conditional composition of the hydrocarbon-hydrogen-air mixture influences the harmful components content. It is proven that molecular hydrogen in the mixture is conductive to the decrease of CO, CO 2 and CH x concentration. NO outlet increases due to higher combustion temperature and N, O, OH concentrations in burnt gases. (authors)

  3. Accuracy improvement of the modified EDM model for non-premixed turbulent combustion in gas turbine

    Directory of Open Access Journals (Sweden)

    Qiong Li

    2015-09-01

    Full Text Available Eight bluff body and swirl turbulent diffusion flames resembling the flow field and combustion inside gas turbine combustors are simulated and the simulation results are compared with experimental data. It is revealed that the original modified EDM model could not predict the temperature profile accurately. A more accurate model is developed and validated for gas turbine combustion application. However, this model under predicts the flame temperature for the regular round jet flames indicating that no universal form of the modified EDM model could be achieved for the combustion simulation of both gas furnaces and gas turbines.

  4. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  5. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  6. An Extended Optimal Velocity Model with Consideration of Honk Effect

    International Nuclear Information System (INIS)

    Tang Tieqiao; Li Chuanyao; Huang Haijun; Shang Huayan

    2010-01-01

    Based on the OV (optimal velocity) model, we in this paper present an extended OV model with the consideration of the honk effect. The analytical and numerical results illustrate that the honk effect can improve the velocity and flow of uniform flow but that the increments are relevant to the density. (interdisciplinary physics and related areas of science and technology)

  7. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  8. An Alternative Approach to the Extended Drude Model

    Science.gov (United States)

    Gantzler, N. J.; Dordevic, S. V.

    2018-05-01

    The original Drude model, proposed over a hundred years ago, is still used today for the analysis of optical properties of solids. Within this model, both the plasma frequency and quasiparticle scattering rate are constant, which makes the model rather inflexible. In order to circumvent this problem, the so-called extended Drude model was proposed, which allowed for the frequency dependence of both the quasiparticle scattering rate and the effective mass. In this work we will explore an alternative approach to the extended Drude model. Here, one also assumes that the quasiparticle scattering rate is frequency dependent; however, instead of the effective mass, the plasma frequency becomes frequency-dependent. This alternative model is applied to the high Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) with Tc = 92 K, and the results are compared and contrasted with the ones obtained from the conventional extended Drude model. The results point to several advantages of this alternative approach to the extended Drude model.

  9. Statistical model of stress corrosion cracking based on extended

    Indian Academy of Sciences (India)

    The mechanism of stress corrosion cracking (SCC) has been discussed for decades. Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the variational principle under approximately supposed thermal equilibrium. In that model the functionals are expressed with extended forms of ...

  10. Phenomenological modeling of combustion and NOx emissions using detailed tabulated chemistry methods in diesel engines

    OpenAIRE

    Rezaei, R.; Dinkelacker, F.; Tilch, B.; Delebinski, T.; Brauer, M.

    2016-01-01

    Enhancing the predictive quality of engine models, while maintaining an affordable computational cost, is of great importance. In this study, a phenomenological combustion and a tabulated NOx model, focusing on efficient modeling and improvement of computational effort, is presented. The proposed approach employs physical and chemical sub-models for local processes such as injection, spray formation, ignition, combustion, and NOx formation, being based on detailed tabulated chemistry methods....

  11. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Directory of Open Access Journals (Sweden)

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  12. Modeling of Supersonic Combustion Systems for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Stephen M. Neill

    2017-11-01

    Full Text Available Through Computational Fluid Dynamics and validation, an optimal scramjet combustor has been designed based on twin-strut Hydrogen injection to sustain flight at a desired speed of Mach 8. An investigation undertaken into the efficacy of supersonic combustion through various means of injection saw promising results for Hydrogen-based systems, whereby strut-style injectors were selected over transverse injectors based on their pressure recovery performance and combustive efficiency. The final configuration of twin-strut injectors provided robust combustion and a stable region of net thrust (1873 kN in the nozzle. Using fixed combustor inlet parameters and injection equivalence ratio, the finalized injection method advanced to the early stages of two-dimensional (2-D and three-dimensional (3-D scramjet engine integration. The overall investigation provided a feasible supersonic combustion system, such that Mach 8 sustained cruise could be achieved by the aircraft concept in a computational design domain.

  13. An experimental and modeling study of n-octanol combustion

    KAUST Repository

    Cai, Liming; Uygun, Yasar; Togbé , Casimir; Pitsch, Heinz G.; Olivier, Herbert; Dagaut, P.; Sarathy, Mani

    2015-01-01

    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained

  14. Research in Supercritical Fuel Properties and Combustion Modeling

    Science.gov (United States)

    2015-09-18

    identified reactions needing further study and C-2 and C-3 species to add to the mechanism . 15. SUBJECT TERMS Supercritical fluids , Brillouin scattering...kinetics mechanism for combustion of hydrocarbon fuels containing up to 2 carbon atoms, including uncertainties. • We identified key reactions and...safety. The chemical mechanisms for combustion of all of these fuels share the same set of elementary reactions of smaller-fragment hydrocarbons , and

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Musculus, Mark P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically short injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.

  16. The role of CFD combustion modeling in hydrogen safety management – IV: Validation based on non-homogeneous hydrogen–air experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sathiah, Pratap, E-mail: pratap.sathiah78@gmail.com [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Komen, Ed, E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Roekaerts, Dirk, E-mail: d.j.e.m.roekaerts@tudelft.nl [Delft University of Technology, Department of Process and Energy, Section Fluid Mechanics, Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-15

    Highlights: • TFC combustion model is further extended to simulate flame propagation in non-homogeneous hydrogen–air mixtures. • TFC combustion model results are in good agreement with large-scale non-homogeneous hydrogen–air experiments. • The model is further extended to account for the non-uniform hydrogen–air–steam mixture for the presence of PARs on hydrogen deflagration. - Abstract: The control of hydrogen in the containment is an important safety issue in NPPs during a loss of coolant accident, because the dynamic pressure loads from hydrogen combustion can be detrimental to the structural integrity of the reactor safety systems and the reactor containment. In Sathiah et al. (2012b), we presented a computational fluid dynamics based method to assess the consequence of the combustion of uniform hydrogen–air mixtures. In the present article, the extension of this method to and its validation for non-uniform hydrogen–air mixture is described. The method is implemented in the CFD software ANSYS FLUENT using user defined functions. The extended code is validated against non-uniform hydrogen–air experiments in the ENACCEF facility. It is concluded that the maximum pressure and intermediate peak pressure were predicted within 12% and 18% accuracy. The eigen frequencies of the residual pressure wave phenomena were predicted within 4%. It is overall concluded that the current model predicts the considered ENACCEF experiments well.

  17. Extending product modeling methods for integrated product development

    DEFF Research Database (Denmark)

    Bonev, Martin; Wörösch, Michael; Hauksdóttir, Dagný

    2013-01-01

    Despite great efforts within the modeling domain, the majority of methods often address the uncommon design situation of an original product development. However, studies illustrate that development tasks are predominantly related to redesigning, improving, and extending already existing products...... and PVM methods, in a presented Product Requirement Development model some of the individual drawbacks of each method could be overcome. Based on the UML standard, the model enables the representation of complex hierarchical relationships in a generic product model. At the same time it uses matrix....... Updated design requirements have then to be made explicit and mapped against the existing product architecture. In this paper, existing methods are adapted and extended through linking updated requirements to suitable product models. By combining several established modeling techniques, such as the DSM...

  18. Coleman-Weinberg phase transition in extended Higgs models

    International Nuclear Information System (INIS)

    Sher, M.

    1996-01-01

    In Coleman-Weinberg symmetry breaking, all dimensionful parameters vanish and the symmetry is broken by loop corrections. Before Coleman-Weinberg symmetry breaking in the standard model was experimentally ruled out, it had already been excluded on cosmological grounds. In this Brief Report, the cosmological analysis is carried out for Coleman-Weinberg models with extended Higgs sectors, which are not experimentally ruled out, and general constraints on such models are given. copyright 1996 The American Physical Society

  19. Straw combustion on slow-moving grates - a comparison of model predictions with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Kaer, S.K. [Aalborg Univ. (Denmark). Inst. of Energy Technology

    2005-03-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ''walking-column'' approach and includes the energy equations for both the fuel and the gas accounting for heat transfer between the two phases. The model gives important insight into the combustion process and provides inlet conditions for a computational fluid dynamics analysis of the freeboard. The model predictions indicate the existence of two distinct combustion modes. Combustion air temperature and mass flow-rate are the two parameters determining the mode. There is a significant difference in reaction rates (ignition velocity) and temperature levels between the two modes. Model predictions were compared to measurements in terms of ignition velocity and temperatures for five different combinations of air mass flow and temperature. In general, the degree of correspondence with the experimental data is favorable. The largest difference between measurements and predictions occurs when the combustion mode changes. The applicability to full-scale is demonstrated by predictions made for an existing straw-fired boiler located in Denmark. (author)

  20. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  1. An extended geometric criterion for chaos in the Dicke model

    International Nuclear Information System (INIS)

    Li Jiangdan; Zhang Suying

    2010-01-01

    We extend HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion for chaotic motion to Hamiltonian systems of weak coupling of potential and momenta by defining the 'mean unstable ratio'. We discuss the Dicke model of an unstable Hamiltonian system in detail and show that our results are in good agreement with that of the computation of Lyapunov characteristic exponents.

  2. The Extended Parallel Process Model: Illuminating the Gaps in Research

    Science.gov (United States)

    Popova, Lucy

    2012-01-01

    This article examines constructs, propositions, and assumptions of the extended parallel process model (EPPM). Review of the EPPM literature reveals that its theoretical concepts are thoroughly developed, but the theory lacks consistency in operational definitions of some of its constructs. Out of the 12 propositions of the EPPM, a few have not…

  3. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  4. Evaluation of reduced chemical kinetic mechanisms used for modeling mild combustion for natural gas

    Directory of Open Access Journals (Sweden)

    Hamdi Mohamed

    2009-01-01

    Full Text Available A numerical and parametric study was performed to evaluate the potential of reduced chemistry mechanisms to model natural gas chemistry including NOx chemistry under mild combustion mode. Two reduced mechanisms, 5-step and 9-step, were tested against the GRI-Mech3.0 by comparing key species, such as NOx, CO2 and CO, and gas temperature predictions in idealized reactors codes under mild combustion conditions. It is thus concluded that the 9-step mechanism appears to be a promising reduced mechanism that can be used in multi-dimensional codes for modeling mild combustion of natural gas.

  5. Extended Cellular Automata Models of Particles and Space-Time

    Science.gov (United States)

    Beedle, Michael

    2005-04-01

    Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.

  6. Flamelet mathematical models for non-premixed laminar combustion

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), Colom 11, E-08222 Terrassa, Barcelona (Spain); Coelho, P.J. [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2009-02-15

    Detailed numerical calculations based on the solution of the full transport equations have been compared with flamelet calculations in order to analyse the flamelet concept for laminar diffusion flames. The goal of this work is to study the interactive (Lagrangian Flamelet Model and Interactive Steady Flamelet Model), and non-interactive (Steady Flamelet Model and Enthalpy Defect Flamelet Model) flamelet models considering both differential diffusion and non-differential diffusion situations, and adiabatic and non-adiabatic conditions. Moreover, a new procedure has been employed to obtain enthalpy defects in the flamelet library, the application of which has been found to be encouraging. The effect of using in-situ, local or stoichiometric scalar dissipation rate conditions, and also the effect of using local or stoichiometric conditions to evaluate the flamelet-like time has been analysed. To improve slow species predictions using the non-interactive models, their transport equations are solved with the reaction terms calculated from the flamelet library, also considering local or stoichiometric conditions in the so-called Extended Flamelet Models. (author)

  7. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate

  8. Turbulent combustion modeling using Flamelet-Generated Manifolds for Gas Turbine applications in OpenFOAM

    NARCIS (Netherlands)

    Fancello, A.; Panek, L.; Lammel, O.; Krebs, W.; Bastiaans, R.J.M.; de Goey, L.P.H.

    2014-01-01

    The continuous interest in reducing pollutions and developing both an efficient and clean combustion system require large attention in the design requirements, especially when related to industrial gas turbine application. Although in recent years the advancements in modelling have increased

  9. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg; Bedoya, Ivá n D.

    2013-01-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  10. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  11. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  12. Integration of CFD codes and advanced combustion models for quantitative burnout determination

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)

    2007-10-15

    CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.

  13. An extended chain Ising model and its Glauber dynamics

    International Nuclear Information System (INIS)

    Zhao Xing-Yu; Fan Xiao-Hui; Huang Yi-Neng; Huang Xin-Ru

    2012-01-01

    It was first proposed that an extended chain Ising (ECI) model contains the Ising chain model, single spin double-well potentials and a pure phonon heat bath of a specific energy exchange with the spins. The extension method is easy to apply to high dimensional cases. Then the single spin-flip probability (rate) of the ECI model is deduced based on the Boltzmann principle and general statistical principles of independent events and the model is simplified to an extended chain Glauber—Ising (ECGI) model. Moreover, the relaxation dynamics of the ECGI model were simulated by the Monte Carlo method and a comparison with the predictions of the special chain Glauber—Ising (SCGI) model was presented. It was found that the results of the two models are consistent with each other when the Ising chain length is large enough and temperature is relative low, which is the most valuable case of the model applications. These show that the ECI model will provide a firm physical base for the widely used single spin-flip rate proposed by Glauber and a possible route to obtain the single spin-flip rate of other form and even the multi-spin-flip rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Experimental kinetic parameters in the thermo-fluid-dynamic modelling of coal combustion

    International Nuclear Information System (INIS)

    Migliavacca, G.; Perini, M.; Parodi, E.

    2001-01-01

    The designing and the optimisation of modern and efficient combustion systems are nowadays frequently based on calculation tools for mathematical modelling, which are able to predict the evolution of the process starting from the first principles of physics. Otherwise, in many cases, specific experimental parameters are needed to describe the specific nature of the materials considered in the calculations. It is especially true in the modelling of coal combustion, which is a complex process strongly dependent on the chemical and physical features of the fuel. This paper describes some experimental techniques used to estimate the fundamental kinetic parameters of coal combustion and shows how this data may be introduced in a model calculation to predict the pollutant emissions from a real scale combustion plant [it

  15. A statistical model for combustion resonance from a DI diesel engine with applications

    Science.gov (United States)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  16. Model based control of grate combustion; Modellbaserad roststyrning

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Kjellstroem, Bjoern; Niklasson, Fredrik; Boecher Poulsen, Kristian

    2006-12-15

    An existing dynamic model for grate combustion has been further developed. The model has been used for studies of possible advantages that can be gained from utilisation of measurements of grate temperatures and fuel bed height for control of a boiler after disturbances caused by varying fuel moisture and fuel feeding. The objective was to asses the possibilities to develop a control system that would adjust for such disturbances quicker than measurements of steam output and oxygen in the exhaust. The model is based on dividing the fuel bed into three layers, where the different layers include fuel being dried, fuel being pyrolysed and char reacting with oxygen. The grate below the fuel bed is also considered. A mass balance, an energy balance and a volume balance is considered for each layer in 22 cells along the grate. The energy balances give the temperature distribution and the volume balances the bed height. The earlier version of the model could not handle layers that are consumed. This weakness has now been eliminated. Comparisons between predicted grate temperatures and measurements in a 25 MW boiler fuelled with biofuel have been used for validation of the model. The comparisons include effects of variations in primary air temperature, fuel moisture and output power. The model shows good agreement with observations for changes in the air temperature but the ability of the model to predict effects of changed fuel moisture is difficult to judge since the steam dome pressure control caused simultaneous changes of the primary air flow, which probably had a larger influence on the grate temperature. A linearised, tuned and reduced version of the model was used for design of a linear quadratic controller. This was used for studies of advantages of using measurements of grate temperatures and bed height for control of pusher velocity, grate speed, primary air flow and air temperature after disturbances of fuel moisture and fuel flow. Measurements of the grate

  17. Exotic superconducting states in the extended attractive Hubbard model.

    Science.gov (United States)

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-04

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  18. Low-energy limit of the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Kovacs, Peter [Wigner Research Center for Physics, Hungarian Academy of Sciences, Institute for Particle and Nuclear Physics, Budapest (Hungary); GSI Helmholtzzentrum fuer Schwerionenforschung, ExtreMe Matter Institute, Darmstadt (Germany); Giacosa, Francesco [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); Jan-Kochanowski University, Institute of Physics, Kielce (Poland); Rischke, Dirk H. [Johann Wolfgang Goethe-Universitaet, Institut fuer Theoretische Physik, Frankfurt am Main (Germany); University of Science and Technology of China, Interdisciplinary Center for Theoretical Study and Department of Modern Physics, Hefei, Anhui (China)

    2018-01-15

    The extended Linear Sigma Model is an effective hadronic model based on the linear realization of chiral symmetry SU(N{sub f}){sub L} x SU(N{sub f}){sub R}, with (pseudo)scalar and (axial-)vector mesons as degrees of freedom. In this paper, we study the low-energy limit of the extended Linear Sigma Model (eLSM) for N{sub f} = flavors by integrating out all fields except for the pions, the (pseudo-)Nambu-Goldstone bosons of chiral symmetry breaking. The resulting low-energy effective action is identical to Chiral Perturbation Theory (ChPT) after choosing a representative for the coset space generated by chiral symmetry breaking and expanding it in powers of (derivatives of) the pion fields. The tree-level values of the coupling constants of the effective low-energy action agree remarkably well with those of ChPT. (orig.)

  19. Dynamical quantum phase transitions in extended transverse Ising models

    Science.gov (United States)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  20. Two phase flow combustion modelling of a ducted rocket

    NARCIS (Netherlands)

    Stowe, R.A.; Dubois, C.; Harris, P.G.; Mayer, A.E.H.J.; Champlain, A. de; Ringuette, S.

    2001-01-01

    Under a co-operative program, the Defence Research Establishment Valcartier and Université Laval in Canada and the TNO Prins Maurits Laboratory in the Netherlands have studied the use of a ducted rocket for missile propulsion. Hot-flow direct-connect combustion experiments using both simulated and

  1. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail

    2016-07-01

    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  2. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    The basis of combustion synthesis technique comes from the ... of oxidizer to fuel is calculated using the total oxidizing ..... +. −. ∑. (4) where S/Nm is the mean S/N ratio of all the experimental ..... Minitab Inc., User manual of MINITAB. TM.

  3. Spatial emission modelling for residential wood combustion in Denmark

    DEFF Research Database (Denmark)

    Plejdrup, Marlene Schmidt; Nielsen, Ole-Kenneth; Brandt, Jørgen

    2016-01-01

    Residential wood combustion (RWC) is a major contributor to atmospheric pollution especially for particulate matter. Air pollution has significant impact on human health, and it is therefore important to know the human exposure. For this purpose, it is necessary with a detailed high resolution sp...

  4. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  5. The extended RBAC model based on grid computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  6. Constructing Multidatabase Collections Using Extended ODMG Object Model

    Directory of Open Access Journals (Sweden)

    Adrian Skehill Mark Roantree

    1999-11-01

    Full Text Available Collections are an important feature in database systems. They provide us with the ability to group objects of interest together, and then to manipulate them in the required fashion. The OASIS project is focused on the construction a multidatabase prototype which uses the ODMG model and a canonical model. As part of this work we have extended the base model to provide a more powerful collection mechanism, and to permit the construction of a federated collection, a collection of heterogenous objects taken from distributed data sources

  7. Non-Fermi liquid behaviour in an extended Anderson model

    International Nuclear Information System (INIS)

    Liu Yuliang; Su Zhaobin; Yu Lu.

    1996-08-01

    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs

  8. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    Science.gov (United States)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  9. Interaction between combustion and turbulence in modelling of emissions; Palamisen ja turbulenssin vuorovaikutus paeaestoejen mallinnuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Thermal Engineering

    1996-12-01

    The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with {beta} and {gamma}-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-{epsilon} models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)

  10. Catalytically stabilized combustion of lean methane-air-mixtures: a numerical model

    Energy Technology Data Exchange (ETDEWEB)

    Dogwiler, U; Benz, P; Mantharas, I [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The catalytically stabilized combustion of lean methane/air mixtures has been studied numerically under conditions closely resembling the ones prevailing in technical devices. A detailed numerical model has been developed for a laminar, stationary, 2-D channel flow with full heterogeneous and homogeneous reaction mechanisms. The computations provide direct information on the coupling between heterogeneous-homogeneous combustion and in particular on the means of homogeneous ignitions and stabilization. (author) 4 figs., 3 refs.

  11. Model Calibration of Exciter and PSS Using Extended Kalman Filter

    Energy Technology Data Exchange (ETDEWEB)

    Kalsi, Karanjit; Du, Pengwei; Huang, Zhenyu

    2012-07-26

    Power system modeling and controls continue to become more complex with the advent of smart grid technologies and large-scale deployment of renewable energy resources. As demonstrated in recent studies, inaccurate system models could lead to large-scale blackouts, thereby motivating the need for model calibration. Current methods of model calibration rely on manual tuning based on engineering experience, are time consuming and could yield inaccurate parameter estimates. In this paper, the Extended Kalman Filter (EKF) is used as a tool to calibrate exciter and Power System Stabilizer (PSS) models of a particular type of machine in the Western Electricity Coordinating Council (WECC). The EKF-based parameter estimation is a recursive prediction-correction process which uses the mismatch between simulation and measurement to adjust the model parameters at every time step. Numerical simulations using actual field test data demonstrate the effectiveness of the proposed approach in calibrating the parameters.

  12. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  13. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    Science.gov (United States)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  14. Modelling of thermoelectric generator with heat pipe assist for range extender application

    OpenAIRE

    Brito, F. P.; Martins, Jorge; Gonçalves, L. M.; Sousa, R.

    2011-01-01

    Recent trends towards electrification of vehicles favour the adoption of waste energy recovery into electricity. Battery-only Electric Vehicles (BEV) need a very large energy storage system so the use of a Range Extender (RE) may allow a significant downsizing of these bulky components. The Internal Combustion Engines (ICE) have two major discarded energy fluxes, engine cooling and exhaust gas. In Extended Range Electric Vehicles (EREV) and hybrids the potential for heat conversion into elect...

  15. Numerical model describing the heat transfer between combustion products and ventilation-system duct walls

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    A package of physical models simulating the heat transfer processes occurring between combustion gases and ducts in ventilation systems is described. The purpose of the numerical model is to predict how the combustion gas in a system heats up or cools down as it flows through the ducts in a ventilation system under fire conditions. The model treats a duct with (forced convection) combustion gases flowing on the inside and stagnant ambient air on the outside. The model is composed of five submodels of heat transfer processes along with a numerical solution procedure to evaluate them. Each of these quantities is evaluated independently using standard correlations based on experimental data. The details of the physical assumptions, simplifications, and ranges of applicability of the correlations are described. A typical application of this model to a full-scale fire test is discussed, and model predictions are compared with selected experimental data

  16. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    , heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  17. Experience with the Large Eddy Simulation (LES) Technique for the Modelling of Premixed and Non-premixed Combustion

    OpenAIRE

    Malalasekera, W; Ibrahim, SS; Masri, AR; Gubba, SR; Sadasivuni, SK

    2013-01-01

    Compared to RANS based combustion modelling, the Large Eddy Simulation (LES) technique has recently emerged as a more accurate and very adaptable technique in terms of handling complex turbulent interactions in combustion modelling problems. In this paper application of LES based combustion modelling technique and the validation of models in non-premixed and premixed situations are considered. Two well defined experimental configurations where high quality data are available for validation is...

  18. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  19. Magnetization plateaux in an extended Shastry-Sutherland model

    International Nuclear Information System (INIS)

    Schmidt, Kai Phillip; Dorier, Julien; Mila, Frederic

    2009-01-01

    We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu 2 (BO 3 ) 2 .

  20. Evaluation of deconvolution modelling applied to numerical combustion

    Science.gov (United States)

    Mehl, Cédric; Idier, Jérôme; Fiorina, Benoît

    2018-01-01

    A possible modelling approach in the large eddy simulation (LES) of reactive flows is to deconvolve resolved scalars. Indeed, by inverting the LES filter, scalars such as mass fractions are reconstructed. This information can be used to close budget terms of filtered species balance equations, such as the filtered reaction rate. Being ill-posed in the mathematical sense, the problem is very sensitive to any numerical perturbation. The objective of the present study is to assess the ability of this kind of methodology to capture the chemical structure of premixed flames. For that purpose, three deconvolution methods are tested on a one-dimensional filtered laminar premixed flame configuration: the approximate deconvolution method based on Van Cittert iterative deconvolution, a Taylor decomposition-based method, and the regularised deconvolution method based on the minimisation of a quadratic criterion. These methods are then extended to the reconstruction of subgrid scale profiles. Two methodologies are proposed: the first one relies on subgrid scale interpolation of deconvolved profiles and the second uses parametric functions to describe small scales. Conducted tests analyse the ability of the method to capture the chemical filtered flame structure and front propagation speed. Results show that the deconvolution model should include information about small scales in order to regularise the filter inversion. a priori and a posteriori tests showed that the filtered flame propagation speed and structure cannot be captured if the filter size is too large.

  1. The role of CFD combustion modelling in hydrogen safety management – VI: Validation for slow deflagration in homogeneous hydrogen-air-steam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cutrono Rakhimov, A., E-mail: cutrono@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Visser, D.C., E-mail: visser@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Holler, T., E-mail: tadej.holler@ijs.si [Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana (Slovenia); Komen, E.M.J., E-mail: komen@nrg.eu [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2017-01-15

    Highlights: • Deflagration of hydrogen-air-steam homogeneous mixtures is modeled in a medium-scale containment. • Adaptive mesh refinement is applied on flame front positions. • Steam effect influence on combustion modeling capabilities is investigated. • Mean pressure rise is predicted with 18% under-prediction when steam is involved. • Peak pressure is evaluated with 5% accuracy when steam is involved. - Abstract: Large quantities of hydrogen can be generated during a severe accident in a water-cooled nuclear reactor. When released in the containment, the hydrogen can create a potential deflagration risk. The dynamic pressure loads resulting from hydrogen combustion can be detrimental to the structural integrity of the reactor. Therefore, accurate prediction of these pressure loads is an important safety issue. In previous papers, we validated a Computational Fluid Dynamics (CFD) based method to determine the pressure loads from a fast deflagration. The combustion model applied in the CFD method is based on the Turbulent Flame Speed Closure (TFC). In our last paper, we presented the extension of this combustion model, Extended Turbulent Flame Speed Closure (ETFC), and its validation against hydrogen deflagration experiments in the slow deflagration regime. During a severe accident, cooling water will enter the containment as steam. Therefore, the effect of steam on hydrogen deflagration is important to capture in a CFD model. The primary objectives of the present paper are to further validate the TFC and ETFC combustion models, and investigate their capability to predict the effect of steam. The peak pressures, the trends of the flame velocity, and the pressure rise with an increase in the initial steam dilution are captured reasonably well by both combustion models. In addition, the ETFC model appeared to be more robust to mesh resolution changes. The mean pressure rise is evaluated with 18% under-prediction and the peak pressure is evaluated with 5

  2. Multistate modelling extended by behavioural rules: An application to migration.

    Science.gov (United States)

    Klabunde, Anna; Zinn, Sabine; Willekens, Frans; Leuchter, Matthias

    2017-10-01

    We propose to extend demographic multistate models by adding a behavioural element: behavioural rules explain intentions and thus transitions. Our framework is inspired by the Theory of Planned Behaviour. We exemplify our approach with a model of migration from Senegal to France. Model parameters are determined using empirical data where available. Parameters for which no empirical correspondence exists are determined by calibration. Age- and period-specific migration rates are used for model validation. Our approach adds to the toolkit of demographic projection by allowing for shocks and social influence, which alter behaviour in non-linear ways, while sticking to the general framework of multistate modelling. Our simulations yield that higher income growth in Senegal leads to higher emigration rates in the medium term, while a decrease in fertility yields lower emigration rates.

  3. Multi-zone modeling of combustion and emissions formation in DI diesel engine operating on ethanol-diesel fuel blends

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.

    2008-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) diesel engine is applied for the interesting case of its operation with ethanol-diesel fuel blends, the ethanol (bio-fuel) being considered recently as a promising extender to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using bio-fuels. This is a two dimensional, multi-zone model with the issuing fuel jets divided into several discrete volumes, called 'zones', formed along and across the direction of the fuel injection. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to provide local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of eleven species considered, together with chemical rate equations for calculation of nitric oxide (NO) and a model for net soot formation. The results from the computer program, implementing the analysis, for the in cylinder pressure, exhaust NO concentration and soot density compare well with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI diesel engine located at the authors' laboratory, which is operated with ethanol-diesel fuel blends containing 5%, 10% and 15% (by vol.) ethanol. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the cylinder at various instants of time, when using these ethanol-diesel fuel blends against the diesel fuel (baseline fuel), shed light on the mechanisms

  4. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas

    2014-06-14

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model\\'s capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  5. Phenomenological comparison of models with extended Higgs sectors

    International Nuclear Information System (INIS)

    Muehlleitner, Margarete

    2017-01-01

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  6. Phenomenological comparison of models with extended Higgs sectors

    Energy Technology Data Exchange (ETDEWEB)

    Muehlleitner, Margarete [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Sampaio, Marco O.P. [Aveiro Univ. e CIDMA (Portugal). Dept. de Fisica; Santos, Rui [Instituto Politecnico de Lisboa (Portugal). ISEL - Instituto Superior de Engenharia de Lisboa; Lisboa Univ. (Portugal). Centro de Fisica Teorica e Computacional; Univ. do Minho, Braga (Portugal). LIP, Dept. de Fisica; Wittbrodt, Jonas [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-22

    Beyond the Standard Model (SM) extensions usually include extended Higgs sectors. Models with singlet or doublet fields are the simplest ones that are compatible with the ρ parameter constraint. The discovery of new non-SM Higgs bosons and the identification of the underlying model requires dedicated Higgs properties analyses. In this paper, we compare several Higgs sectors featuring 3 CP-even neutral Higgs bosons that are also motivated by their simplicity and their capability to solve some of the flaws of the SM. They are: the SM extended by a complex singlet field (C x SM), the singlet extension of the 2-Higgs-Doublet Model (N2HDM), and the Next-to-Minimal Supersymmetric SM extension (NMSSM). In addition, we analyse the CP-violating 2-Higgs-Doublet Model (C2HDM), which provides 3 neutral Higgs bosons with a pseudoscalar admixture. This allows us to compare the effects of singlet and pseudoscalar admixtures. Through dedicated scans of the allowed parameter space of the models, we analyse the phenomenologically viable scenarios from the view point of the SM-like Higgs boson and of the signal rates of the non-SM-like Higgs bosons to be found. In particular, we analyse the effect of singlet/pseudoscalar admixture, and the potential to differentiate these models in the near future. This is supported by a study of couplings sums of the Higgs bosons to massive gauge bosons and to fermions, where we identify features that allow us to distinguish the models, in particular when only part of the Higgs spectrum is discovered. Our results can be taken as guidelines for future LHC data analyses, by the ATLAS and CMS experiments, to identify specific benchmark points aimed at revealing the underlying model.

  7. Finite-rate chemistry modelling of non-conventional combustion regimes using a Partially-Stirred Reactor closure: combustion model formulation and implementation details

    OpenAIRE

    Li, Zhiyi; Ferrarotti, Marco; Cuoci, Alberto; Parente, Alessandro

    2018-01-01

    The present work focuses on the numerical simulation ofModerate or Intense Low oxygen Dilution combustion condition, using thePartially-Stirred Reactor model for turbulence-chemistry interactions.The Partially-Stirred Reactor model assumes that reactions are confinedin a specific region of the computational cell, whose mass fractiondepends both on the mixing and the chemical time scales. Therefore, theappropriate choice of mixing and chemical time scales becomes crucial toensure the accuracy ...

  8. MODELING SEGREGATED INSITU COMBUSTION PROCESSES THROUGH A VERTICAL DISPLACEMENT MODEL APPLIED TO A COLOMBIAN FIELD

    OpenAIRE

    Guerra Aristizábal, José-Julián; Grosso Vargas, Jorge-Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as Segregated In-Situ Combustion processes which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Splitproduction Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate ...

  9. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  10. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  11. Higgs detectability in the extended supersymmetric standard model

    International Nuclear Information System (INIS)

    Kamoshita, Jun-ichi

    1995-01-01

    Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)

  12. Extended Smoluchowski models for interpreting relaxation phenomena in liquids

    International Nuclear Information System (INIS)

    Polimeno, A.; Frezzato, D.; Saielli, G.; Moro, G.J.; Nordio, P.L.

    1998-01-01

    Interpretation of the dynamical behaviour of single molecules or collective modes in liquids has been increasingly centered, in the last decade, on complex liquid systems, including ionic solutions, polymeric liquids, supercooled fluids and liquid crystals. This has been made necessary by the need of interpreting dynamical data obtained by advanced experiments, like optical Kerr effect, time dependent fluorescence shift experiments, two-dimensional Fourier-transform and high field electron spin resonance and scattering experiments like quasi-elastic neutron scattering. This communication is centered on the definition, treatment and application of several extended stochastic models, which have proved to be very effective tools for interpreting and rationalizing complex relaxation phenomena in liquids structures. First, applications of standard Fokker-Planck equations for the orientational relaxation of molecules in isotropic and ordered liquid phase are reviewed. In particular attention will be focused on the interpretation of neutron scattering in nematics. Next, an extended stochastic model is used to interpret time-domain resolved fluorescence emission experiments. A two-body stochastic model allows the theoretical interpretation of dynamical Stokes shift effects in fluorescence emission spectra, performed on probes in isotropic and ordered polar phases. Finally, for the case of isotropic fluids made of small rigid molecules, a very detailed model is considered, which includes as basic ingredients a Fokker-Planck description of the molecular vibrational motion and the slow diffusive motion of a persistent cage structure together with the decay processes related to the changing structure of the cage. (author)

  13. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  14. Combustion chemistry of alcohols: Experimental and modeled structure of a premixed 2-methylbutanol flame

    KAUST Repository

    Lucassen, Arnas; Park, Sungwoo; Hansen, Nils; Sarathy, Mani

    2014-01-01

    This paper presents a detailed investigation of 2-methylbutanol combustion chemistry in low-pressure premixed flames. This chemistry is of particular interest to study because this compound is potentially a lignocellulosic-based, next-generation biofuel. The detailed chemical structure of a stoichiometric low-pressure (25 Torr) flame was determined using flame-sampling molecular-beam mass spectrometry. A total of 55 species were identified and subsequently quantitative mole fraction profiles as function of distance from the burner surface were determined. In an independent effort, a detailed flame chemistry model for 2-methylbutanol was assembled based on recent knowledge gained from combustion chemistry studies for butanol isomers ([Sarathy et al. Combust. Flame 159 (6) (2012) 2028-2055]) and iso-pentanol (3-methylbutanol) [Sarathy et al. Combust. Flame 160 (12) (2013) 2712-2728]. Experimentally determined and modeled mole fraction profiles were compared to demonstrate the model's capabilities. Examples of individual mole fraction profiles are discussed together with the most significant fuel consumption pathways to highlight the combustion chemistry of 2-methylbutanol. Discrepancies between experimental and modeling results are used to suggest areas where improvement of the kinetic model would be needed. © 2014.

  15. Evaluation of a Semiempirical, Zero-Dimensional, Multizone Model to Predict Nitric Oxide Emissions in DI Diesel Engines’ Combustion Chamber

    Directory of Open Access Journals (Sweden)

    Nicholas S. Savva

    2016-01-01

    Full Text Available In the present study, a semiempirical, zero-dimensional multizone model, developed by the authors, is implemented on two automotive diesel engines, a heavy-duty truck engine and a light-duty passenger car engine with pilot fuel injection, for various operating conditions including variation of power/speed, EGR rate, fuel injection timing, fuel injection pressure, and boost pressure, to verify its capability for Nitric Oxide (NO emission prediction. The model utilizes cylinder’s basic geometry and engine operating data and measured cylinder pressure to estimate the apparent combustion rate which is then discretized into burning zones according to the calculation step used. The requisite unburnt charge for the combustion in the zones is calculated using the zone equivalence ratio provided from a new empirical formula involving parameters derived from the processing of the measured cylinder pressure and typical engine operating parameters. For the calculation of NO formation, the extended Zeldovich mechanism is used. From this approach, the model is able to provide the evolution of NO formation inside each burned zone and, cumulatively, the cylinder’s NO formation history. As proven from the investigation conducted herein, the proposed model adequately predicts NO emissions and NO trends when the engine settings vary, with low computational cost. These encourage its use for engine control optimization regarding NOx abatement and real-time/model-based NOx control applications.

  16. Modelling of a combustion process for the incineration of municipal solid waste

    International Nuclear Information System (INIS)

    Rohyiza Ba'an Sivapalan Kathiravale Mohamad Puad Abu Muhd Noor Muhd Yunus

    2005-01-01

    Municipal Solid Waste (MSW) in Malaysia is increasing rapidly with increase in the population and economic growth. Landfill capacity required to accommodate the generated waste is anticipated to exceed 20,000 tons per day by year 2020. The current management system of solely depending on landfill disposal is inadequate and calls for a more environmentally friendly management system, which include the prospects of an eco park. To understand the combustion process, the development of mathematical model based on waste characteristic is required. Hence this paper will present the mathematical model developed to predict the mass and heat balance for MSW combustion process. This results of this mathematical model will be compared against the actual combustion of MSW in Thermal Oxidation Plant, so that the accuracy of the developed model can be determined accordingly. (Author)

  17. OSeMOSYS Energy Modeling Using an Extended UTOPIA Model

    Science.gov (United States)

    Lavigne, Denis

    2017-01-01

    The OSeMOSYS project offers open-access energy modeling to a wide audience. Its relative simplicity makes it appealing for academic research and governmental organizations to study the impacts of policy decisions on an energy system in the context of possibly severe greenhouse gases emissions limitations. OSeMOSYS is a tool that enhances the…

  18. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  19. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  20. A combustion model of vegetation burning in "Tiger" fire propagation tool

    Science.gov (United States)

    Giannino, F.; Ascoli, D.; Sirignano, M.; Mazzoleni, S.; Russo, L.; Rego, F.

    2017-11-01

    In this paper, we propose a semi-physical model for the burning of vegetation in a wildland fire. The main physical-chemical processes involved in fire spreading are modelled through a set of ordinary differential equations, which describe the combustion process as linearly related to the consumption of fuel. The water evaporation process from leaves and wood is also considered. Mass and energy balance equations are written for fuel (leaves and wood) assuming that combustion process is homogeneous in space. The model is developed with the final aim of simulating large-scale wildland fires which spread on heterogeneous landscape while keeping the computation cost very low.

  1. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  2. Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation

    International Nuclear Information System (INIS)

    Benajes, Jesus; Novella, Ricardo; Pastor, Jose Manuel; Hernández-López, Alberto; Hasegawa, Manabu; Tsuji, Naohide; Emi, Masahiko; Uehara, Isshoh; Martorell, Jordi; Alonso, Marcos

    2016-01-01

    Highlights: • A DOE-based optimization of the combustion system of a CI engine has been performed. • Improving efficiency controlling emissions needs optimizing bowl design and settings. • Swirl-supported with re-entrant bowl combustion system is required after optimizing. • Computationally optimized combustion system has been validated by engine tests. - Abstract: The research in the field of internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO_2 emissions, while fulfilling the increasingly stringent pollutant emissions regulations. In this framework, this research work focuses on describing a methodology for optimizing the combustion system of Compression Ignition (CI) engines, by combining Computational Fluid Dynamics (CFD) modeling, and the statistical Design of Experiments (DOE) technique known as Response Surface Method (RSM). As a key aspect, in addition to the definition of the optimum set of values for the input parameters, this methodology is extremely useful to gain knowledge on the cause/effect relationships between the input and output parameters under investigation. This methodology is applied in two sequential studies to the optimization of the combustion system of a 4-cylinder 4-stroke Medium Duty Direct Injection (DI) CI engine, minimizing the fuel consumption while fulfilling the emission limits in terms of NO_x and soot. The first study targeted four optimization parameters related to the engine hardware including piston bowl geometry, injector nozzle configuration and mean swirl number (MSN) induced by the intake manifold design. After the analysis of the results, the second study extended to six parameters, limiting the optimization of the engine hardware to the bowl geometry, but including the key air management and injection settings. For both studies, the simulation plans were defined following a Central Composite Design (CCD), providing 25 and 77 simulations respectively. The results

  3. Extended nonnegative tensor factorisation models for musical sound source separation.

    Science.gov (United States)

    FitzGerald, Derry; Cranitch, Matt; Coyle, Eugene

    2008-01-01

    Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  4. Extended Nonnegative Tensor Factorisation Models for Musical Sound Source Separation

    Directory of Open Access Journals (Sweden)

    Derry FitzGerald

    2008-01-01

    Full Text Available Recently, shift-invariant tensor factorisation algorithms have been proposed for the purposes of sound source separation of pitched musical instruments. However, in practice, existing algorithms require the use of log-frequency spectrograms to allow shift invariance in frequency which causes problems when attempting to resynthesise the separated sources. Further, it is difficult to impose harmonicity constraints on the recovered basis functions. This paper proposes a new additive synthesis-based approach which allows the use of linear-frequency spectrograms as well as imposing strict harmonic constraints, resulting in an improved model. Further, these additional constraints allow the addition of a source filter model to the factorisation framework, and an extended model which is capable of separating mixtures of pitched and percussive instruments simultaneously.

  5. A parametric investigation of hydrogen hcci combustion using a multi-zone model approach

    International Nuclear Information System (INIS)

    Komninos, N.P.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    The purpose of the present study is to examine the effect of various operating variables of a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen, using a multi-zone model developed by the authors. The multi-zone model consists of zones, which are allotted spatial locations within the combustion chamber. The model takes into account heat transfer between the zones and the combustion chamber walls, providing a spatial temperature distribution during the closed part of the engine cycle, i.e. compression, combustion and expansion. Mass transfer between zones is also accounted for, based on the geometric configuration of the zones, and includes the flow of mass in and out of the crevice regions, represented by the crevice zone. Combustion is incorporated using chemical kinetics based on a chemical reaction mechanism for the oxidation of hydrogen. This chemical reaction mechanism also includes the reactions for nitrogen oxides formation. Using the multi-zone model a parametric investigation is conducted, in order to determine the effect of engine speed, equivalence ratio, compression ratio, inlet pressure and inlet temperature, on the performance, combustion characteristics and emissions of an HCCI engine fueled with hydrogen

  6. Combustion modeling and kinetic rate calculations for a stoichiometric cyclohexane flame. 1. Major reaction pathways.

    Science.gov (United States)

    Zhang, Hongzhi R; Huynh, Lam K; Kungwan, Nawee; Yang, Zhiwei; Zhang, Shaowen

    2007-05-17

    The Utah Surrogate Mechanism was extended in order to model a stoichiometric premixed cyclohexane flame (P = 30 Torr). Generic rates were assigned to reaction classes of hydrogen abstraction, beta scission, and isomerization, and the resulting mechanism was found to be adequate in describing the combustion chemistry of cyclohexane. Satisfactory results were obtained in comparison with the experimental data of oxygen, major products and important intermediates, which include major soot precursors of C2-C5 unsaturated species. Measured concentrations of immediate products of fuel decomposition were also successfully reproduced. For example, the maximum concentrations of benzene and 1,3-butadiene, two major fuel decomposition products via competing pathways, were predicted within 10% of the measured values. Ring-opening reactions compete with those of cascading dehydrogenation for the decomposition of the conjugate cyclohexyl radical. The major ring-opening pathways produce 1-buten-4-yl radical, molecular ethylene, and 1,3-butadiene. The butadiene species is formed via beta scission after a 1-4 internal hydrogen migration of 1-hexen-6-yl radical. Cascading dehydrogenation also makes an important contribution to the fuel decomposition and provides the exclusive formation pathway of benzene. Benzene formation routes via combination of C2-C4 hydrocarbon fragments were found to be insignificant under current flame conditions, inferred by the later concentration peak of fulvene, in comparison with benzene, because the analogous species series for benzene formation via dehydrogenation was found to be precursors with regard to parent species of fulvene.

  7. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  8. Extending SME to Handle Large-Scale Cognitive Modeling.

    Science.gov (United States)

    Forbus, Kenneth D; Ferguson, Ronald W; Lovett, Andrew; Gentner, Dedre

    2017-07-01

    Analogy and similarity are central phenomena in human cognition, involved in processes ranging from visual perception to conceptual change. To capture this centrality requires that a model of comparison must be able to integrate with other processes and handle the size and complexity of the representations required by the tasks being modeled. This paper describes extensions to Structure-Mapping Engine (SME) since its inception in 1986 that have increased its scope of operation. We first review the basic SME algorithm, describe psychological evidence for SME as a process model, and summarize its role in simulating similarity-based retrieval and generalization. Then we describe five techniques now incorporated into the SME that have enabled it to tackle large-scale modeling tasks: (a) Greedy merging rapidly constructs one or more best interpretations of a match in polynomial time: O(n 2 log(n)); (b) Incremental operation enables mappings to be extended as new information is retrieved or derived about the base or target, to model situations where information in a task is updated over time; (c) Ubiquitous predicates model the varying degrees to which items may suggest alignment; (d) Structural evaluation of analogical inferences models aspects of plausibility judgments; (e) Match filters enable large-scale task models to communicate constraints to SME to influence the mapping process. We illustrate via examples from published studies how these enable it to capture a broader range of psychological phenomena than before. Copyright © 2016 Cognitive Science Society, Inc.

  9. Combustion Modeling with the G-Equation Modélisation de la combustion avec l'équation de G

    Directory of Open Access Journals (Sweden)

    Peters N.

    2006-12-01

    Full Text Available Numerical investigations concerning the turbulent flame front propagation in Gasoline Direct Injection (GDI engines were made by implementing a flamelet model in the CFD code Fire. The advantage of this combustion model is the decoupling of the chemistry from the turbulent flow. For this purpose the combustion chamber has to be divided into a burned and an unburned area, which is realized by transporting a scalar field (G-Equation. The reference value defines the present averaged flame position. The complete reaction kinetics is calculated interactively with the CFD code in a one dimensional Representative Interactive Flamelet (RIF code. This combustion model was verified by simulating a 2. 0 l-2 V gasoline engine with homogeneous combustion where a parameter study was conducted to check the flamelet model for plausibility. Finally, the potential of this combustion model was investigated by simulating a hypothetical 2. 0 1-4 V GDI engine. Une investigation numérique relative à la propagation des fronts de flammes turbulents dans les moteurs à essence à injection directe (GDI a été menée en implantant un modèle de flameletdans le code 3D Fire. L'avantage de ce modèle de combustion est de découpler la chimie de l'écoulement turbulent en divisant la chambre de combustion en deux zones : brûlée et imbrûlée, à l'aide d'une équation de transport d'un scalaire (équation de G. Une valeur de référence de ce scalaire définit la position moyenne de la flamme. Une chimie complète est calculée interactivement avec le calcul 3D à l'aide d'un code monodimensionnel RIF (Representative Interactive Flamelet. Le modèle de combustion a été validé sur la simulation d'un moteur 2 litres à 2 soupapes en combustion homogène pour vérifier la représentativité de l'approche flamelet . Puis, le potentiel du modèle de combustion a été étudié en simulant un moteur modèle 2 litres 4 soupapes GDI.

  10. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

    2009-03-15

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  11. Modelling NOx-formation for application in a biomass combustion furnace

    NARCIS (Netherlands)

    Kuijk, van H.A.J.A.; Bastiaans, R.J.M.; Oijen, van J.A.; Goey, de L.P.H.

    2005-01-01

    To optimize the design for biomass combustion furnaces for NOx-emission reduction, numerical models can be used. In these models, the Eddy Dissipation Concept and the PDF-flamelet approach can be applied to describe the interaction between the chemistry and the turbulence. As a first step in

  12. A study on the 0D phenomenological model for diesel engine simulation: Application to combustion of Neem methyl esther biodiesel

    International Nuclear Information System (INIS)

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi; Ayissi, Zacharie Merlin; Obonou, Marcel

    2015-01-01

    Highlights: • We elaborate a 0D model for prediction of diesel engine operating parameters. • We implement the model for Neem methyl ester biodiesel combustion. • We show methyl butanoate and butyrate can be used as surrogates for biodiesel. • The model predicts fuel spray, in cylinder gaseous state and NOx emissions. • We show the model can be effective both in accuracy and computational speed. - Abstract: The design and monitoring of modern diesel engines running on alternative fuels require reliable models that can validly substitute experimental tests and predict their operating characteristics under different load conditions. Although there exists a multitude of models for diesel engines, 0D phenomenological models present the advantages of giving fast and accurate computed results. These models are useful for predicting fuel spray characteristics and instantaneous gas state. However, there are few reported studies on the application of 0D phenomenological models on biodiesel fuel combustion in diesel engines. This work reports the elaboration, validation and application on Neem methyl ester biodiesel (NMEB) combustion of a 0D phenomenological model for diesel engine simulation. The model addresses some specific aspects of diesel engine modeling found in previous studies such as the compromise between computers cost, accurateness and model simplicity, the reduction of the number of empirical fitting constant, the prediction of combustion kinetics with reduction of the need of experimental curve fitting, the ability to simultaneously predict under various loads engine thermodynamic and spray parameters as well as emission characteristics and finally the ability to simulate diesel engine parameters when fueled by alternative fuels. The proposed model predicts fuel spray behavior, in cylinder combustion and nitric oxides (NOx) emissions. The model is implemented through a Matlab code. The model is mainly based on Razlejtsev’s spray evaporation model

  13. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.

    Science.gov (United States)

    Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej

    2018-07-15

    Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Conformal standard model with an extended scalar sector

    Energy Technology Data Exchange (ETDEWEB)

    Latosiński, Adam [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Lewandowski, Adrian; Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-10-26

    We present an extended version of the Conformal Standard Model (characterized by the absence of any new intermediate scales between the electroweak scale and the Planck scale) with an enlarged scalar sector coupling to right-chiral neutrinos. The scalar potential and the Yukawa couplings involving only right-chiral neutrinos are invariant under a new global symmetry SU(3){sub N} that complements the standard U(1){sub B−L} symmetry, and is broken explicitly only by the Yukawa interaction, of order O(10{sup −6}), coupling right-chiral neutrinos and the electroweak lepton doublets. We point out four main advantages of this enlargement, namely: (1) the economy of the (non-supersymmetric) Standard Model, and thus its observational success, is preserved; (2) thanks to the enlarged scalar sector the RG improved one-loop effective potential is everywhere positive with a stable global minimum, thereby avoiding the notorious instability of the Standard Model vacuum; (3) the pseudo-Goldstone bosons resulting from spontaneous breaking of the SU(3){sub N} symmetry are natural Dark Matter candidates with calculable small masses and couplings; and (4) the Majorana Yukawa coupling matrix acquires a form naturally adapted to leptogenesis. The model is made perturbatively consistent up to the Planck scale by imposing the vanishing of quadratic divergences at the Planck scale (‘softly broken conformal symmetry’). Observable consequences of the model occur mainly via the mixing of the new scalars and the standard model Higgs boson.

  15. Extended particle model with quark confinement and charmonium spectroscopy

    International Nuclear Information System (INIS)

    Hasenfratz, Peter; Kuti, Julius; Szalay, A.S.

    Extended particle like vector gluon bubbles /bags/ are introduced which are stabilized against free expansion by a surface tension of volume tension. Since quraks are coupled to the gluon field, they are confined to the inside of the gluon bag without any further mechanism. Only color singlet gluon bags are allowed. Nonlinear boundary conditions are not imposed on the quark field in the model. A massless abelian gauge confined by a surface tension is first considered; in a four-dimensional relativistic picture the surface of the gauge field bubble appears as a tube with a three dimensional surface. As a first application, the model is used to study bound states of heavy charmed quarks (charmonium). Similar to the Born-Oppenheimer approximation in molecular physics, heavy charmed quarks are treated as nonrelativistic in their motion whereas the gluon bag and light quarks (u,d,s) are treated in an adiabatic approximation

  16. Properties of hybrid stars in an extended MIT bag model

    International Nuclear Information System (INIS)

    Bao Tmurbagan; Liu Guangzhou; Zhu Mingfeng

    2009-01-01

    The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(ρ) decreases with baryon density ρ; this decrement makes the strange quark matter become more energetically favorable than ever; which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii. (authors)

  17. Construction and validation of detailed kinetic models for the combustion of gasoline surrogates; Construction et validation de modeles cinetiques detailles pour la combustion de melanges modeles des essences

    Energy Technology Data Exchange (ETDEWEB)

    Touchard, S.

    2005-10-15

    The irreversible reduction of oil resources, the CO{sub 2} emission control and the application of increasingly strict standards of pollutants emission lead the worldwide researchers to work to reduce the pollutants formation and to improve the engine yields, especially by using homogenous charge combustion of lean mixtures. The numerical simulation of fuel blends oxidation is an essential tool to study the influence of fuel formulation and motor conditions on auto-ignition and on pollutants emissions. The automatic generation helps to obtain detailed kinetic models, especially at low temperature, where the number of reactions quickly exceeds thousand. The main purpose of this study is the generation and the validation of detailed kinetic models for the oxidation of gasoline blends using the EXGAS software. This work has implied an improvement of computation rules for thermodynamic and kinetic data, those were validated by numerical simulation using CHEMKIN II softwares. A large part of this work has concerned the understanding of the low temperature oxidation chemistry of the C5 and larger alkenes. Low and high temperature mechanisms were proposed and validated for 1 pentene, 1-hexene, the binary mixtures containing 1 hexene/iso octane, 1 hexene/toluene, iso octane/toluene and the ternary mixture of 1 hexene/toluene/iso octane. Simulations were also done for propene, 1-butene and iso-octane with former models including the modifications proposed in this PhD work. If the generated models allowed us to simulate with a good agreement the auto-ignition delays of the studied molecules and blends, some uncertainties still remains for some reaction paths leading to the formation of cyclic products in the case of alkenes oxidation at low temperature. It would be also interesting to carry on this work for combustion models of gasoline blends at low temperature. (author)

  18. Analysis of the phase structure in extended Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Seniuch, M.

    2006-07-07

    We study the generation of the baryon asymmetry in the context of electroweak baryogenesis in two different extensions of the Standard Model. First, we consider an effective theory, in which the Standard Model is augmented by an additional dimension-six Higgs operator. The effects of new physics beyond a cut-off scale are parameterized by this operator. The second model is the two-Higgs-doublet model, whose particle spectrum is extended by two further neutral and two charged heavy Higgs bosons. In both cases we focus on the properties of the electroweak phase transition, especially on its strength and the profile of the nucleating bubbles. After reviewing some general aspects of the electroweak phase transition and baryogenesis we derive the respective thermal effective potentials to one-loop order. We systematically study the parameter spaces, using numerical methods, and compute the strength of the phase transition and the wall thickness as a function of the Higgs masses. We find a strong first order transition for a light Higgs state with a mass up to about 200 GeV. In case of the dimension-six model the cut-off scale has to stay between 500 and 850 GeV, in the two-Higgs-doublet model one needs at least one heavy Higgs mass of 300 GeV. The wall thickness varies for both theories in the range roughly from two to fifteen, in units of the inverse critical temperature. We also estimate the size of the electron and neutron electric dipole moments, since new sources of CP violation give rise to them. In wide ranges of the parameter space we are not in conflict with the experimental bounds. Finally the baryon asymmetry, which is predicted by these models, is related to the Higgs mass and the other appropriate input parameters. In both models the measured baryon asymmetry can be achieved for natural values of the model parameters. (orig.)

  19. Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor

    Science.gov (United States)

    Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik

    2017-11-01

    Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.

  20. Hydraulic modelling of the CARA Fuel element; Desarrollo hidraulico del combustible CARA

    Energy Technology Data Exchange (ETDEWEB)

    Brasnarof, Daniel O; Juanico, Luis [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Disenios Avanzados y Evaluacion Economica; Giorgi, M [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; Ghiselli, Alberto M; Zampach, Ruben; Fiori, Jose M; Yedros, Pablo A [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Ensayos no Destructivos

    2004-07-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10{sup 4} and 1,5x10{sup 5}) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [Spanish] Con el objeto de validar la similitud hidraulica del elemento combustible CARA con los actuales combustibles de Atucha y Embalse, se realizaron ensayos de perdida de carga en el circuito CBP del CAC con un nuevo diseno de separador de mejor desempeno hidraulico. Se presenta aqui el analisis de los mismos, de los cuales se validaron modelos de base racional para estimar las restricciones hidraulicas de los distintos componentes estructurales (separadores, grillas y barras combustibles) en funcion del flujo refrigerante. Se estimo asi la caida de presion del CARA dentro del canal combustible Embalse en condiciones nominales de reactor, siendo la misma similar al del combustible actual de 37 barras. (autor)

  1. Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels

    Directory of Open Access Journals (Sweden)

    Mazen A. Eldeeb

    2018-02-01

    Full Text Available There is growing interest in the use of furans, a class of alternative fuels derived from biomass, as transportation fuels. This paper reviews recent progress in the characterization of its combustion properties. It reviews their production processes, theoretical kinetic explorations and fundamental combustion properties. The theoretical efforts are focused on the mechanistic pathways for furan decomposition and oxidation, as well as the development of detailed chemical kinetic models. The experiments reviewed are mostly concerned with the temporal evolutions of homogeneous reactors and the propagation of laminar flames. The main thrust in homogeneous reactors is to determine global chemical time scales such as ignition delay times. Some studies have adopted a comparative approach to bring out reactivity differences. Chemical kinetic models with varying degrees of predictive success have been established. Experiments have revealed the relative behavior of their combustion. The growing body of literature in this area of combustion chemistry of alternative fuels shows a great potential for these fuels in terms of sustainable production and engine performance. However, these studies raise further questions regarding the chemical interactions of furans with other hydrocarbons. There are also open questions about the toxicity of the byproducts of combustion.

  2. Dimensionless model to determine spontaneous combustion danger zone in the longwall gob

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-hai; DENG Jun; WEN Hu

    2011-01-01

    According to spontaneous combustion propensity,the longwall gob is divided into three zones,including heat dissipation zone,self-heating zone and the choking zone.Only in the self-heating zone can temperature of coal rise due to oxidation.Studying the distribution of the “Three Zones” in gob is important for predicting and preventing spontaneous combustion in coalmine.In normal mining operations,temperature of coal is roughly constant.The process of mass transfer in the gob is considered to be steady.Based on mass conservation,gas species conservation,darcy' s law,Ficks law of diffusion and coal oxidation 1-grade reaction rule,governing equation for air leakage intensity and species concentration are deduced.With critical value of coal spontaneous combustion and the size of longwall workface as basic dimension,a dimensionless steady coupled model of air flow diffusion and chemical reaction in loose coal of Fully Mechanized Top-Coal Caving Mining Workface (FMTCCMW) is setup.By solving the model numerically,regulation of three zones' distribution and spontaneous combustion in the gob can be obtained.The results can be easily popularized to prediction of spontaneous combustion in other coalmines' longwall gob.

  3. Modelling grain growth in the framework of Rational Extended Thermodynamics

    International Nuclear Information System (INIS)

    Kertsch, Lukas; Helm, Dirk

    2016-01-01

    Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena. (paper)

  4. Extended Nambu models: Their relation to gauge theories

    Science.gov (United States)

    Escobar, C. A.; Urrutia, L. F.

    2017-05-01

    Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.

  5. Modelling grain growth in the framework of Rational Extended Thermodynamics

    Science.gov (United States)

    Kertsch, Lukas; Helm, Dirk

    2016-05-01

    Grain growth is a significant phenomenon for the thermomechanical processing of metals. Since the mobility of the grain boundaries is thermally activated and energy stored in the grain boundaries is released during their motion, a mutual interaction with the process conditions occurs. To model such phenomena, a thermodynamic framework for the representation of thermomechanical coupling phenomena in metals including a microstructure description is required. For this purpose, Rational Extended Thermodynamics appears to be a useful tool. We apply an entropy principle to derive a thermodynamically consistent model for grain coarsening due to the growth and shrinkage of individual grains. Despite the rather different approaches applied, we obtain a grain growth model which is similar to existing ones and can be regarded as a thermodynamic extension of that by Hillert (1965) to more general systems. To demonstrate the applicability of the model, we compare our simulation results to grain growth experiments in pure copper by different authors, which we are able to reproduce very accurately. Finally, we study the implications of the energy release due to grain growth on the energy balance. The present unified approach combining a microstructure description and continuum mechanics is ready to be further used to develop more elaborate material models for complex thermo-chemo-mechanical coupling phenomena.

  6. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  7. Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Chou, S.K.; Chua, K.J.

    2013-01-01

    Highlights: ► Group contribution methods from molecular level have been used for the prediction. ► Complete prediction of the physical properties for 5 methyl esters has been done. ► The predicted results can be very useful for biodiesel combustion modeling. ► Various models have been compared and the best model has been identified. ► Predicted properties are over large temperature ranges with excellent accuracies. -- Abstract: In order to accurately simulate the fuel spray, atomization, combustion and emission formation processes of a diesel engine fueled with biodiesel, adequate knowledge of biodiesel’s physical properties is desired. The objective of this work is to do a detailed physical properties prediction for the five major methyl esters of biodiesel for combustion modeling. The physical properties considered in this study are: normal boiling point, critical properties, vapor pressure, and latent heat of vaporization, liquid density, liquid viscosity, liquid thermal conductivity, gas diffusion coefficients and surface tension. For each physical property, the best prediction model has been identified, and very good agreements have been obtained between the predicted results and the published data where available. The calculated results can be used as key references for biodiesel combustion modeling.

  8. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, S.A. [Higher Technical Inst., Nicosia, Cyprus (Greece). Dept. of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. Al systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how Al techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of Al as a design tool in many areas of combustion engineering. (author)

  9. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Soteris A. Kalogirou, [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. AI systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how AI techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of AI as a design tool in many areas of combustion engineering. 109 refs., 31 figs., 11 tabs.

  10. Ising tricriticality in the extended Hubbard model with bond dimerization

    Science.gov (United States)

    Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).

  11. A multifluid model extended for strong temperature nonequilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    We present a multifluid model in which the material temperature is strongly affected by the degree of segregation of each material. In order to track temperatures of segregated form and mixed form of the same material, they are defined as different materials with their own energy. This extension makes it necessary to extend multifluid models to the case in which each form is defined as a separate material. Statistical variations associated with the morphology of the mixture have to be simplified. Simplifications introduced include combining all molecularly mixed species into a single composite material, which is treated as another segregated material. Relative motion within the composite material, diffusion, is represented by material velocity of each component in the composite material. Compression work, momentum and energy exchange, virtual mass forces, and dissipation of the unresolved kinetic energy have been generalized to the heterogeneous mixture in temperature nonequilibrium. The present model can be further simplified by combining all mixed forms of materials into a composite material. Molecular diffusion in this case is modeled by the Stefan-Maxwell equations.

  12. Extended timescale atomistic modeling of crack tip behavior in aluminum

    International Nuclear Information System (INIS)

    Baker, K L; Warner, D H

    2012-01-01

    Traditional molecular dynamics (MD) simulations are limited not only by their spatial domain, but also by the time domain that they can examine. Considering that many of the events associated with plasticity are thermally activated, and thus rare at atomic timescales, the limited time domain of traditional MD simulations can present a significant challenge when trying to realistically model the mechanical behavior of materials. A wide variety of approaches have been developed to address the timescale challenge, each having their own strengths and weaknesses dependent upon the specific application. Here, we have simultaneously applied three distinct approaches to model crack tip behavior in aluminum at timescales well beyond those accessible to traditional MD simulation. Specifically, we combine concurrent multiscale modeling (to reduce the degrees of freedom in the system), parallel replica dynamics (to parallelize the simulations in time) and hyperdynamics (to accelerate the exploration of phase space). Overall, the simulations (1) provide new insight into atomic-scale crack tip behavior at more typical timescales and (2) illuminate the potential of common extended timescale techniques to enable atomic-scale modeling of fracture processes at typical experimental timescales. (paper)

  13. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and

  14. "Let's Move" campaign: applying the extended parallel process model.

    Science.gov (United States)

    Batchelder, Alicia; Matusitz, Jonathan

    2014-01-01

    This article examines Michelle Obama's health campaign, "Let's Move," through the lens of the extended parallel process model (EPPM). "Let's Move" aims to reduce the childhood obesity epidemic in the United States. Developed by Kim Witte, EPPM rests on the premise that people's attitudes can be changed when fear is exploited as a factor of persuasion. Fear appeals work best (a) when a person feels a concern about the issue or situation, and (b) when he or she believes to have the capability of dealing with that issue or situation. Overall, the analysis found that "Let's Move" is based on past health campaigns that have been successful. An important element of the campaign is the use of fear appeals (as it is postulated by EPPM). For example, part of the campaign's strategies is to explain the severity of the diseases associated with obesity. By looking at the steps of EPPM, readers can also understand the strengths and weaknesses of "Let's Move."

  15. Fidelity study of superconductivity in extended Hubbard models

    Science.gov (United States)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  16. Extended Group Contribution Model for Polyfunctional Phase Equilibria

    DEFF Research Database (Denmark)

    Abildskov, Jens

    of physical separation processes. In a thermodynamic sense, design requires detailed knowledge of activity coefficients in the phases at equilibrium. The prediction of these quantities from a minimum of experimental data is the broad scope of this thesis. Adequate equations exist for predicting vapor......Material and energy balances and equilibrium data form the basis of most design calculations. While material and energy balances may be stated without much difficulty, the design engineer is left with a choice between a wide variety of models for describing phase equilibria in the design......-liquid equilibria from data on binary mixtures, composed of structurally simple molecules with a single functional group. More complex is the situation with mixtures composed of structurally more complicated molecules or molecules with more than one functional group. The UNIFAC method is extended to handle...

  17. Baryon and meson phenomenology in the extended Linear Sigma Model

    Energy Technology Data Exchange (ETDEWEB)

    Giacosa, Francesco; Habersetzer, Anja; Teilab, Khaled; Eshraim, Walaa; Divotgey, Florian; Olbrich, Lisa; Gallas, Susanna; Wolkanowski, Thomas; Janowski, Stanislaus; Heinz, Achim; Deinet, Werner; Rischke, Dirk H. [Institute for Theoretical Physics, J. W. Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Kovacs, Peter; Wolf, Gyuri [Institute for Particle and Nuclear Physics, Wigner Research Center for Physics, Hungarian Academy of Sciences, H-1525 Budapest (Hungary); Parganlija, Denis [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2014-07-01

    The vacuum phenomenology obtained within the so-called extended Linear Sigma Model (eLSM) is presented. The eLSM Lagrangian is constructed by including from the very beginning vector and axial-vector d.o.f., and by requiring dilatation invariance and chiral symmetry. After a general introduction of the approach, particular attention is devoted to the latest results. In the mesonic sector the strong decays of the scalar and the pseudoscalar glueballs, the weak decays of the tau lepton into vector and axial-vector mesons, and the description of masses and decays of charmed mesons are shown. In the baryonic sector the omega production in proton-proton scattering and the inclusion of baryons with strangeness are described.

  18. Modelling and simulation of wood chip combustion in a hot air generator system.

    Science.gov (United States)

    Rajika, J K A T; Narayana, Mahinsasa

    2016-01-01

    This study focuses on modelling and simulation of horizontal moving bed/grate wood chip combustor. A standalone finite volume based 2-D steady state Euler-Euler Computational Fluid Dynamics (CFD) model was developed for packed bed combustion. Packed bed combustion of a medium scale biomass combustor, which was retrofitted from wood log to wood chip feeding for Tea drying in Sri Lanka, was evaluated by a CFD simulation study. The model was validated by the experimental results of an industrial biomass combustor for a hot air generation system in tea industry. Open-source CFD tool; OpenFOAM was used to generate CFD model source code for the packed bed combustion and simulated along with an available solver for free board region modelling in the CFD tool. Height of the packed bed is about 20 cm and biomass particles are assumed to be spherical shape with constant surface area to volume ratio. Temperature measurements of the combustor are well agreed with simulation results while gas phase compositions have discrepancies. Combustion efficiency of the validated hot air generator is around 52.2 %.

  19. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    DEFF Research Database (Denmark)

    Yin, Chungen

    2017-01-01

    Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes...

  20. Phenomenological study of extended seesaw model for light sterile neutrino

    International Nuclear Information System (INIS)

    Nath, Newton; Ghosh, Monojit; Goswami, Srubabati; Gupta, Shivani

    2017-01-01

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m eτ =0 and m ττ =0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 ×Z 2 .

  1. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  2. Very light Higgs bosons in extended models at the LHC

    International Nuclear Information System (INIS)

    Belyaev, Alexander; Guedes, Renato; Santos, Rui; Moretti, Stefano

    2010-01-01

    The Large Electron-Positron (LEP) collider experiments have constrained the mass of the standard model (SM) Higgs boson to be above 114.4 GeV. This bound applies to all extensions of the SM where the coupling of a Higgs boson to the Z boson and also the Higgs decay profile do not differ much from the SM one. However, in scenarios with extended Higgs sectors, this coupling can be made very small by a suitable choice of the parameters of the model. In such cases, the lightest CP-even Higgs boson mass can in turn be made very small. Such a very light Higgs state, with a mass of the order of the Z boson one or even smaller, could have escaped detection at LEP. In this work we perform a detailed parton level study on the feasibility of the detection of such a very light Higgs particle at the Large Hadron Collider (LHC) in the production process pp→hj→τ + τ - j, where j is a resolved jet. We conclude that there are several models where such a Higgs state could be detected at the LHC with early data.

  3. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  4. On the TFNS Subgrid Models for Liquid-Fueled Turbulent Combustion

    Science.gov (United States)

    Liu, Nan-Suey; Wey, Thomas

    2014-01-01

    This paper describes the time-filtered Navier-Stokes (TFNS) approach capable of capturing unsteady flow structures important for turbulent mixing in the combustion chamber and two different subgrid models used to emulate the major processes occurring in the turbulence-chemistry interaction. These two subgrid models are termed as LEM-like model and EUPDF-like model (Eulerian probability density function), respectively. Two-phase turbulent combustion in a single-element lean-direct-injection (LDI) combustor is calculated by employing the TFNS/LEM-like approach as well as the TFNS/EUPDF-like approach. Results obtained from the TFNS approach employing these two different subgrid models are compared with each other, along with the experimental data, followed by more detailed comparison between the results of an updated calculation using the TFNS/LEM-like model and the experimental data.

  5. Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model

    International Nuclear Information System (INIS)

    Xiao, Gang; Jia, Ming; Wang, Tianyou

    2016-01-01

    Spray combustion of n-heptane in a constant-volume vessel under engine-relevant conditions was investigated using linear eddy model in the framework of large eddy simulation. In this numerical approach, turbulent mixing was traced by an innovative stochastic approach instead of the conventional gradient diffusion model. Chemical reaction rates were calculated with the consideration of the sub-grid scale spatial fluctuations of reactive scalars. Turbulence-chemistry interactions were represented by the separated treatments of the underlying processes including turbulent stirring, chemical reaction, and molecular diffusion. The model was validated against the experimental data of ignition delay times, chemiluminescence images, and soot images from Sandia National Laboratories. Numerical results showed that the ignition process changed from the temperature-controlled regime to the mixing-controlled regime as the initial ambient temperature increased from 800 K to 1000 K. The premixed flame and the diffusion flame coexisted, while the gross heat release rate was found to be dominated by the premixed flame. The temperature fluctuation was mainly observed around the spray jet due to the cooling effect of the fuel vaporization. The fluctuations were more significantly smoothed out by the high-temperature flame than the low-temperature flame. The mean temperature would be overpredicted if the sub-grid temperature fluctuation was neglected. - Highlights: • Turbulent mixing is traced by stochastic method instead of gradient diffusion model. • Sub-grid scale fluctuations of reactive scalars are captured. • Ignition process varies from temperature-controlled to mixing-controlled regime. • Temperature fluctuation can be smoothed out by high-temperature flame. • The heat release rate is dominated by the premixed flame.

  6. Extended Jiles-Atherton model for modelling the magnetic characteristics of isotropic materials

    International Nuclear Information System (INIS)

    Szewczyk, Roman; Bienkowski, Adam; Salach, Jacek

    2008-01-01

    This paper presents the idea of the extension of the Jiles-Atherton model applied for modelling of the magnetic characteristics of Mn-Zn, as well as Ni-Zn ferrites. The presented extension of the model takes into account changes of the parameter k during the magnetisation process, what is physically judged. The extended Jiles-Atherton model gives novel possibility of modelling the hysteresis loops of isotropic materials. For one set of the extended model parameters, a good agreement between experimental data and modelled hysteresis loops is observed, for different values of maximal magnetising field. As a result, the extended Jiles-Atherton model presented in the paper may be applied for both technical applications and fundamental research, focused on understanding the physical aspects of the magnetisation process of anisotropic soft magnetic materials

  7. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    Science.gov (United States)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of

  8. Modeling CO2 emissions from fossil fuel combustion using the logistic equation

    International Nuclear Information System (INIS)

    Meng, Ming; Niu, Dongxiao

    2011-01-01

    CO 2 emissions from fossil fuel combustion have been known to contribute to the greenhouse effect. Research on emission trends and further forecasting their further values is important for adjusting energy policies, particularly those relative to low carbon. Except for a few countries, the main figures of CO 2 emission from fossil fuel combustion in other countries are S-shaped curves. The logistic function is selected to simulate the S-shaped curve, and to improve the goodness of fit, three algorithms were provided to estimate its parameters. Considering the different emission characteristics of different industries, the three algorithms estimated the parameters of CO 2 emission in each industry separately. The most suitable parameters for each industry are selected based on the criterion of Mean Absolute Percentage Error (MAPE). With the combined simulation values of the selected models, the estimate of total CO 2 emission from fossil fuel combustion is obtained. The empirical analysis of China shows that our method is better than the linear model in terms of goodness of fit and simulation risk. -- Highlights: → Figures of CO 2 emissions from fossil fuel combustion in most countries are S-shape curves. → Using the logistic function to model the S-shape curve. → Three algorithms are offered to estimate the parameters of the logistic function. → The empirical analysis from China shows that the logistic equation has satisfactory simulation results.

  9. SCR at bio fuels combustion - phase 2. Measures to extend catalyst life time; SCR vid biobraensleeldning - etapp 2. Aatgaerder foer att foerlaenga katalysatorns livslaengd

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Bodin, Henrik; Sahlqvist, Aasa [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Khodayari, Raziyeh; Odenbrand, Ingemar [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    2000-07-01

    In this project phase, the deactivation of catalysts during combustion of bio fuels, and different methods of regeneration have been investigated. The overall purpose is to improve the economic and technical possibilities to use SCR at bio fuels combustion. The two different methods for regeneration are washing with water and so called sulphation (treatment with sulphur dioxide). The results from wood fired FB-boilers show that the catalyst lose 25% (average) of the relative activity during a normal heat production season. The tendency is that a boiler with short residence time between final combustion and catalyst and/or high flame temperatures gives a faster deactivation. Such unfavourable conditions arise in FB-boilers with a large part of the combustion in freeboard/cyclone. The alkali content of the fuel (wood fuel) is of minor importance for the deactivation rate compared with the combustion conditions. The flue gas temperature within the interval 250 - 375 deg C is not an important parameter for the deactivation in the time interval 3 000 - 6 000 h. The 'new' honeycomb catalysts that were tested during phase two, BiotypA-C, evidently show different deactivation trends. The highly active BiotypC e.g. increases its activity during the first thousand hours. Calculations indicate that BiotypC at 315 deg C requires the smallest volume of catalyst over ten years of operation in order to maintain given performance. Practical consequences for downstream equipment also need to be carefully checked. Sulphation with SO{sub 2} works in the laboratory as a regeneration method for all of the tested samples. The sulphatised samples deactivation are almost comparable to a fresh sample when exposed to flue gas. About 80 % of the lost activity can be regained only by using sulphation. Plate-type catalysts gets a somewhat lower increase in activity compared to honeycomb-types, probably related to chemical rather than geometric design. High SO{sub 2}-concentration

  10. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    Science.gov (United States)

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  12. Evaluation of the Predictive Capabilities of a Phenomenological Combustion Model for Natural Gas SI Engine

    Directory of Open Access Journals (Sweden)

    Toman Rastislav

    2017-12-01

    Full Text Available The current study evaluates the predictive capabilities of a new phenomenological combustion model, available as a part of the GT-Suite software package. It is comprised of two main sub-models: 0D model of in-cylinder flow and turbulence, and turbulent SI combustion model. The 0D in-cylinder flow model (EngCylFlow uses a combined K-k-ε kinetic energy cascade approach to predict the evolution of the in-cylinder charge motion and turbulence, where K and k are the mean and turbulent kinetic energies, and ε is the turbulent dissipation rate. The subsequent turbulent combustion model (EngCylCombSITurb gives the in-cylinder burn rate; based on the calculation of flame speeds and flame kernel development. This phenomenological approach reduces significantly the overall computational effort compared to the 3D-CFD, thus allowing the computation of full engine operating map and the vehicle driving cycles. Model was calibrated using a full map measurement from a turbocharged natural gas SI engine, with swirl intake ports. Sensitivity studies on different calibration methods, and laminar flame speed sub-models were conducted. Validation process for both the calibration and sensitivity studies was concerning the in-cylinder pressure traces and burn rates for several engine operation points achieving good overall results.

  13. Phenomenological study of extended seesaw model for light sterile neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Newton [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Indian Institute of Technology,Gandhinagar, Ahmedabad-382424 (India); Ghosh, Monojit [Department of Physics, Tokyo Metropolitan University,Hachioji, Tokyo 192-0397 (Japan); Goswami, Srubabati [Physical Research Laboratory,Navarangpura, Ahmedabad 380 009 (India); Gupta, Shivani [Center of Excellence for Particle Physics (CoEPP), University of Adelaide,Adelaide SA 5005 (Australia)

    2017-03-14

    We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m{sub ν}, depends on the Dirac neutrino mass matrix (M{sub D}), Majorana neutrino mass matrix (M{sub R}) and the mass matrix (M{sub S}) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M{sub D} and observe that maximum five zeros in M{sub D} can lead to viable zero textures in m{sub ν}. For this study we consider four different forms for M{sub R} (one diagonal and three off diagonal) and two different forms of (M{sub S}) containing one zero. Remarkably we obtain only two allowed forms of m{sub ν} (m{sub eτ}=0 and m{sub ττ}=0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m{sub ν} in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m{sub ν}. We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z{sub 8}×Z{sub 2}.

  14. Annual Report: Advanced Combustion (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey [NETL; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  15. Toward the modeling of combustion reactions through discrete element method (DEM) simulations

    Science.gov (United States)

    Reis, Martina Costa; Alobaid, Falah; Wang, Yongqi

    2018-03-01

    In this work, the process of combustion of coal particles under turbulent regime in a high-temperature reaction chamber is modeled through 3D discrete element method (DEM) simulations. By assuming the occurrence of interfacial transport phenomena between the gas and solid phases, one investigates the influence of the physicochemical properties of particles on the rates of heterogeneous chemical reactions, as well as the influence of eddies present in the gas phase on the mass transport of reactants toward the coal particles surface. Moreover, by considering a simplistic chemical mechanism for the combustion process, thermochemical and kinetic parameters obtained from the simulations are employed to discuss some phenomenological aspects of the combustion process. In particular, the observed changes in the mass and volume of coal particles during the gasification and combustion steps are discussed by emphasizing the changes in the chemical structure of the coal. In addition to illustrate how DEM simulations can be used in the modeling of consecutive and parallel chemical reactions, this work also shows how heterogeneous and homogeneous chemical reactions become a source of mass and energy for the gas phase.

  16. Disorder structure of free-flow and global jams in the extended BML model

    International Nuclear Information System (INIS)

    Zhao Xiaomei; Xie Dongfan; Jia Bin; Jiang Rui; Gao Ziyou

    2011-01-01

    The original BML model is extended by introducing extended sites, which can hold several vehicles at each time-step. Unexpectedly, the flow in the extended model sharply transits from free-flow to global jams, but the transition is not one-order in original BML model. And congestion in the extended model appears more easily. This can ascribe to the mixture of vehicles from different directions in one site, leading to the drop-off of the capacity of the site. Furthermore, the typical configuration of free flowing and global jams in the extended models is disorder, different from the regular structure in the original model.

  17. CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.

  18. Streamflow data assimilation in SWAT model using Extended Kalman Filter

    Science.gov (United States)

    Sun, Leqiang; Nistor, Ioan; Seidou, Ousmane

    2015-12-01

    The Extended Kalman Filter (EKF) is coupled with the Soil and Water Assessment Tools (SWAT) model in the streamflow assimilation of the upstream Senegal River in West Africa. Given the large number of distributed variables in SWAT, only the average watershed scale variables are included in the state vector and the Hydrological Response Unit (HRU) scale variables are updated with the a posteriori/a priori ratio of their watershed scale counterparts. The Jacobian matrix is calculated numerically by perturbing the state variables. Both the soil moisture and CN2 are significantly updated in the wet season, yet they have opposite update patterns. A case study for a large flood forecast shows that for up to seven days, the streamflow forecast is moderately improved using the EKF-subsequent open loop scheme but significantly improved with a newly designed quasi-error update scheme. The former has better performances in the flood rising period while the latter has better performances in the recession period. For both schemes, the streamflow forecast is improved more significantly when the lead time is shorter.

  19. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio

    2011-01-01

    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  20. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    Energy Technology Data Exchange (ETDEWEB)

    Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-09-15

    Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent

  1. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Bjoern Johan

    1998-12-31

    This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139

  2. 3d Modeling of Combustion for Di-Si Engines Modélisation 3D de la combustion dans les moteurs à injection directe d'essence

    Directory of Open Access Journals (Sweden)

    Duclos J. P.

    2006-12-01

    Full Text Available Direct injection of gasoline is a promising concept to reduce fuel consumption of SI engines. The development of GDI engines is difficult and 3D CFD is a way to support its design. It requires models able to describe the spray and its evaporation and combustion. This paper presents a model, the ECFM, that enables to compute combustion for stratified load in the GDI engines. This model is a development of the Coherent Flame Model which includes thermal expansion effects, and is coupled with a burnt/unburnt gases conditionnal thermodynamic properties description. The model is validated by comparing measurements and computations on the GDI Mitsubishi engine in production. L'injection directe d'essence (IDE est un concept prometteur pour les moteurs à allumage commandé. La mise au point de ce type de moteur est néanmoins délicate, et le calcul 3D des chambres de combustion est un moyen d'aider à leur conception. Ceci nécessite cependant de disposer de modèles adaptés, à même de décrire le jet d'essence, son évaporation et la combustion du mélange créé. Cet article présente un modèle ECFM de simulation de la combustion dans les moteurs IDE, y compris en fonctionnement stratifié. C'est un développement du modèle flamme cohérente qui comprend des effets d'expansion thermique et est couplé avec une description conditionnelle gaz frais/gaz brûlés des grandeurs thermodynamiques. Ce modèle a été validé par rapprochement de mesures et simulations sur le moteur GDI Mitsubishi.

  3. A-Priori Tuning of Modified Magnussen Combustion Model

    Science.gov (United States)

    Norris, A. T.

    2016-01-01

    In the application of CFD to turbulent reacting flows, one of the main limitations to predictive accuracy is the chemistry model. Using a full or skeletal kinetics model may provide good predictive ability, however, at considerable computational cost. Adding the ability to account for the interaction between turbulence and chemistry improves the overall fidelity of a simulation but adds to this cost. An alternative is the use of simple models, such as the Magnussen model, which has negligible computational overhead, but lacks general predictive ability except for cases that can be tuned to the flow being solved. In this paper, a technique will be described that allows the tuning of the Magnussen model for an arbitrary fuel and flow geometry without the need to have experimental data for that particular case. The tuning is based on comparing the results of the Magnussen model and full finite-rate chemistry when applied to perfectly and partially stirred reactor simulations. In addition, a modification to the Magnussen model is proposed that allows the upper kinetic limit for the reaction rate to be set, giving better physical agreement with full kinetic mechanisms. This procedure allows a simple reacting model to be used in a predictive manner, and affords significant savings in computational costs for simulations.

  4. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  5. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-01-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  6. Modeling and optimization of processes for clean and efficient pulverized coal combustion in utility boilers

    Directory of Open Access Journals (Sweden)

    Belošević Srđan V.

    2016-01-01

    Full Text Available Pulverized coal-fired power plants should provide higher efficiency of energy conversion, flexibility in terms of boiler loads and fuel characteristics and emission reduction of pollutants like nitrogen oxides. Modification of combustion process is a cost-effective technology for NOx control. For optimization of complex processes, such as turbulent reactive flow in coal-fired furnaces, mathematical modeling is regularly used. The NOx emission reduction by combustion modifications in the 350 MWe Kostolac B boiler furnace, tangentially fired by pulverized Serbian lignite, is investigated in the paper. Numerical experiments were done by an in-house developed three-dimensional differential comprehensive combustion code, with fuel- and thermal-NO formation/destruction reactions model. The code was developed to be easily used by engineering staff for process analysis in boiler units. A broad range of operating conditions was examined, such as fuel and preheated air distribution over the burners and tiers, operation mode of the burners, grinding fineness and quality of coal, boiler loads, cold air ingress, recirculation of flue gases, water-walls ash deposition and combined effect of different parameters. The predictions show that the NOx emission reduction of up to 30% can be achieved by a proper combustion organization in the case-study furnace, with the flame position control. Impact of combustion modifications on the boiler operation was evaluated by the boiler thermal calculations suggesting that the facility was to be controlled within narrow limits of operation parameters. Such a complex approach to pollutants control enables evaluating alternative solutions to achieve efficient and low emission operation of utility boiler units. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018: Increase in energy and ecology efficiency of processes in pulverized coal-fired furnace and optimization of utility steam boiler air preheater by using in

  7. The one-dimensional extended Bose–Hubbard model

    Indian Academy of Sciences (India)

    Unknown

    method to obtain the zero-temperature phase diagram of the one-dimensional, extended ... Progress in this field has been driven by an interplay between ... superconductor-insulator transition in thin films of superconducting materials like bis-.

  8. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    Science.gov (United States)

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modeling of Plasma-Induced Ignition and Combustion

    National Research Council Canada - National Science Library

    Boyd, Iain D; Keidar, Michael

    2008-01-01

    .... Phenomena that must be considered in an electrothermal chemical gun model include the initial capillary plasma properties, the plasma-air interaction, plasma sheath effects, and the plasma-propellant interaction itself...

  10. Improved Kinetic Models for High-Speed Combustion Simulation

    National Research Council Canada - National Science Library

    Montgomery, C. J; Tang, Q; Sarofim, A. F; Bockelie, M. J; Gritton, J. K; Bozzelli, J. W; Gouldin, F. C; Fisher, E. M; Chakravarthy, S

    2008-01-01

    Report developed under an STTR contract. The overall goal of this STTR project has been to improve the realism of chemical kinetics in computational fluid dynamics modeling of hydrocarbon-fueled scramjet combustors...

  11. Optimization of pulverised coal combustion by means of CFD/CTA modeling

    Directory of Open Access Journals (Sweden)

    Filkoski Risto V.

    2006-01-01

    Full Text Available The objective of the work presented in this paper was to apply a method for handling two-phase reacting flow for prediction of pulverized coal combustion in large-scale boiler furnace and to assess the ability of the model to predict existing power plant data. The paper presents the principal steps and results of the numerical modeling of power boiler furnace with tangential disposition of the burners. The computational fluid dynamics/computational thermal analysis (CFD/CTA approach is utilized for creation of a three-dimensional model of the boiler furnace, including the platen superheater in the upper part of the furnace. Standard k-e model is employed for description of the turbulent flow. Coal combustion is modeled by the mixture fraction/probability density function approach for the reaction chemistry, with equilibrium assumption applied for description of the system chemistry. Radiation heat transfer is computed by means of the simplified P-N model, based on the expansion of the radiation intensity into an orthogonal series of spherical harmonics. Some distinctive results regarding the examined boiler performance in capacity range between 65 and 95% are presented graphically. Comparing the simulation predictions and available site measurements concerning temperature, heat flux and combustion efficiency, a conclusion can be drawn that the model produces realistic insight into the furnace processes. Qualitative agreement indicates reasonability of the calculations and validates the employed sub-models. After the validation and verification of the model it was used to check the combustion efficiency as a function of coal dust sieve characteristics, as well as the impact of burners modification with introduction of over fire air ports to the appearance of incomplete combustion, including CO concentration, as well as to the NOx concentration. The described case and other experiences with CFD/CTA stress the advantages of numerical modeling and

  12. Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • Models for the post flame reactions (CO and hydrocarbons) and heat release rate are proposed. • ‘Freezing’ effect of CO kinetics is captured but equilibrium CO concentrations are low. • Reactive–diffusive processes are modeled for hydrocarbons and the last stage of combustion is captured. - Abstract: Reduced fuel consumption, low pollutant emissions and adequate output performance are key features in the contemporary design of spark ignition engines. Zero-dimensional numerical simulation is an attractive alternative to engine experiments for the evaluation of various engine configurations. Both flame front reaction and post-flame processes contribute to the heat release rate. The contribution of this work is to highlight and model the role of post-flame reactions (CO and hydrocarbons) in the heat release rate. The modeling approach to CO kinetics used two reactions considered to be dominant and thus more suitable for the description of CO chemical mechanism. Equilibrium concentrations of all the species involved were calculated by a two-zone thermodynamic model. The computed characteristic time of CO kinetics was found to be of a similar order to the results of complex chemistry simulations. The proposed model captured the ‘freezing’ effect (reaction rate is almost zero) for temperatures lower than 1800 K and followed the trends of the measured values at exhaust. However, a consistent underestimation of CO levels at the exhaust was observed. The impact of the remaining CO on the combustion efficiency is considerable especially for rich mixtures. For a remaining 0.4% CO mass fraction, the impact on combustion inefficiency is 0.1%. Unburnt hydrocarbon, which have not reacted within the flame front before quenching, diffuse in the burnt gas and react. In this work, a global reaction rate models the kinetic behavior of hydrocarbon. The diffusion process was modeled by a relaxation equation applied on the calculated kinetic concentration

  13. Multi-zone thermodynamic modelling of spark-ignition engine combustion - An overview

    International Nuclear Information System (INIS)

    Verhelst, S.; Sheppard, C.G.W.

    2009-01-01

    'Multi-zone thermodynamic engine model' is a generic term adopted here for the type of model also referred to as quasi-dimensional, two-zone, three-zone, etc.; based on the laws of mass and energy conservation and using a mass burning rate sub-model (as opposed to a prescribed mass burning rate) to predict the in-cylinder pressure and temperature throughout the power cycle. Such models have been used for about three decades and provide valuable tools for rapid evaluation of the influence of key engine parameters. Numerous papers have been published on the development of models of varying complexity and their application. The current work is not intended as a comprehensive review of all these works, but presents an overview of multi-zone thermodynamic models for spark-ignition engines, their pros and cons, the model equations and sub-models used to account for various processes such as turbulent wrinkling, flame development, flame geometry, heat transfer, etc. It is suggested that some past terminology adopted to distinguish combustion models (e.g. 'entrainment' versus 'flamelet') is artificial and confusing; it can also be difficult to compare the different models used. Naturally, different models use varying underlying assumptions; however, the influence of several physical processes has frequently been incorporated into one term, not always well documented or clearly described. The authors propose a unified framework that can be used to compare different sub-models on the same basis, with particular focus on turbulent combustion models.

  14. Modeling Turbulent Combustion for Variable Prandtl and Schmidt Number

    Science.gov (United States)

    Hassan, H. A.

    2004-01-01

    This report consists of two abstracts submitted for possible presentation at the AIAA Aerospace Science Meeting to be held in January 2005. Since the submittal of these abstracts we are continuing refinement of the model coefficients derived for the case of a variable Turbulent Prandtl number. The test cases being investigated are a Mach 9.2 flow over a degree ramp and a Mach 8.2 3-D calculation of crossing shocks. We have developed an axisymmetric code for treating axisymmetric flows. In addition the variable Schmidt number formulation was incorporated in the code and we are in the process of determining the model constants.

  15. Thermodynamic modelling of acid gas removal from natural gas using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2017-01-01

    Thermodynamics of natural gas sweetening process needs to be known for proper design of natural gas treating plants. Absorption with aqueous N-Methyldiethanolamine is currently the most commonly used process for removal of acid gas (CO2 and H2S) impurities from natural gas. Model parameters...... for the Extended UNIQUAC model have already been determined by the same authors to calculate single acid gas solubility in aqueous MDEA. In this study, the model is further extended to estimate solubility of CO2 and H2S and their mixture in aqueous MDEA at high pressures with methane as a makeup gas....

  16. Development of a new reduced hydrogen combustion mechanism with NO_x and parametric study of hydrogen HCCI combustion using stochastic reactor model

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2017-01-01

    Highlights: • PDF based stochastic reactor model used for study of hydrogen HCCI engine. • New reduced hydrogen combustion mechanism with NOx developed (30 species and 253 reactions). • Mechanism predicts cylinder pressure and captures NO_x emission trend with sufficient accuracy. • Parametric study of hydrogen HCCI engine over wide range of speed and load conditions. • Hydrogen HCCI operating range increases with compression ratio & decreases with engine speed. - Abstract: Hydrogen is a potential alternative and renewable fuel for homogenous charge compression ignition (HCCI) engine to achieve higher efficiency and zero emissions of CO, unburned hydrocarbons as well as other greenhouse gases such as CO_2 and CH_4. In this study, a detailed hydrogen oxidation mechanism with NO_x was developed by incorporating additional species and NO_x reactions to the existing hydrogen combustion mechanism (10 species and 40 reactions). The detailed hydrogen combustion mechanism used in this study consists of 39 species and 311 reactions. A reduced mechanism consisting 30 species and 253 reactions was also developed by using directed relation graph (DRG) method from detailed mechanism. Developed mechanisms were validated with experimental data by HCCI engine simulation using stochastic reactor model. Sensitivity analysis was performed to identify the most important reactions in hydrogen combustion and NO_x formation in HCCI engine. Pathway analysis was also performed to analyze the important reaction pathways at different temperatures. Results revealed that H2 + HO2 [=] H + H2O2 and O2 + NNH [=] N2 + HO2 are the most significant reactions in the hydrogen HCCI combustion and NO_x formation respectively. Detailed parametric study of HCCI combustion was conducted using developed chemical kinetic model. Numerical simulations are performed at different engine operating condition by varying engine speed (1000–3000 rpm), intake air temperature (380–460 K), and compression

  17. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    Science.gov (United States)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  18. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  19. CFD Modelling of Biomass Combustion in Small-Scale Boilers. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xue-Song Bai; Griselin, Niklas; Klason, Torbern; Nilsson, Johan [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering

    2002-10-01

    This project deals with CFD modeling of combustion of wood in fixed bed boilers. A flamelet model for the interaction between turbulence and chemical reactions is developed and applied to study small-scale boiler. The flamelet chemistry employs 43 reactive species and 174 elementary reactions. It gives detailed distributions of important species such as CO and NO{sub x} in the flow field and flue gas. Simulation of a small-scale wood fired boiler measured at SP Boraas (50 KW) shows that the current flamelet model yields results agreeable to the available experimental data. A detailed chemical kinetic model is developed to study the bed combustion process. This model gives boundary conditions for the CFD analysis of gas phase volatile oxidation in the combustion chambers. The model combines a Functional Group submodel with a Depolymerisation, Vaporisation and Crosslinking submodel. The FG submodel simulates how functional groups decompose and form light gas species. The DVC submodell predicts depolymerisation and vaporisation of the macromolecular network and this includes bridge breaking and crosslinking processes, where the wood structure breaks down to fragments. The light fragments form tar and the heavy ones form metaplast. Two boilers firing wood log/chips are studied using the FG-DVC model, one is the SP Boraas small-scale boiler (50 KW) and the other is the Sydkraft Malmoe Vaerme AB's Flintraennan large-scale boiler (55 MW). The fix bed is assumed to be two zones, a partial equilibrium drying/devolatilisation zone and an equilibrium zone. Three typical biomass conversion modes are simulated, a lean fuel combustion mode, a near-stoichiometric combustion and a fuel rich gasification mode. Detailed chemical species and temperatures at different modes are obtained. Physical interpretation is provided. Comparison of the computational results with experimental data shows that the model can reasonably simulate the fixed bed biomass conversion process. CFD

  20. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  1. Reactor design, cold-model experiment and CFD modeling for chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaohua; Ma, Jinchen; Hu, Xintao; Zhao, Haibo; Wang, Baowen; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    Chemical looping combustion (CLC) is an efficient, clean and cheap technology for CO{sub 2} capture, and an interconnected fluidized bed is more appropriate solution for CLC. This paper aims to design a reactor system for CLC, carry out cold-model experiment of the system, and model fuel reactor using commercial CFD software. As for the CLC system, the air reactor (AR) is designed as a fast fluidized bed while the fuel reactor (FR) is a bubbling bed; a cyclone is used for solid separation of the AR exit flow. The AR and FR are separated by two U-type loop seals to remain gas sealed. Considered the chemical kinetics of oxygen carrier, fluid dynamics, pressure balance and mass balance of the system simultaneously, some key design parameters of a CH{sub 4}-fueled and Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-based CLC reactor (thermal power of 50 kWth) are determined, including key geometric parameters (reactor cross-sectional area and reactor height) and operation parameters (bed material quantity, solid circulation rate, apparent gas velocity of each reactor). A cold-model bench having same geometric parameters with its prototype is built up to study the effects of various operation conditions (including gas velocity in the reactors and loop seals, and bed material height, etc.) on the solids circulation rate, gas leakage, and pressure balance. It is witnessed the cold-model system is able to meet special requirements for CLC system such as gas sealing between AR and FR, the circulation rate and particles residence time. Furthermore, the thermal FR reactor with oxygen carrier of Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3} and fuel of CH{sub 4} is simulated by commercial CFD solver FLUENT. It is found that for the design case the combustion efficiency of CH{sub 4} reaches 88.2%. A few part of methane is unburned due to fast, large bubbles rising through the reactor.

  2. Combustion and emission formation in a biomass fueled grate furnace - measurements and modelling

    International Nuclear Information System (INIS)

    Lindsjoe, H.

    1997-06-01

    A study of turbulent combustion with special emphasis on the formation of nitrous oxide emissions in a biomass fueled grate furnace has been conducted with the aid of measurements, literature studies and CFD-computations. The literature study covers nitrous oxide formation and the pyrolysis, gasification and combustion of biomass fuel. The measurements were conducted inside the furnace and at the outlet, and temperature and some major species were measured. A tool for the treatment of the bed processes (pyrolysis, gasification and combustion) has been developed. The measurements show significantly higher concentrations of oxygen above the fuel bed than expected. The gas production in the bed was shown to be very unevenly distributed over the width of the furnace. The measured temperatures were relatively low and in the same order as reported from other, similar measurements. The computational results are in good quantitative agreement with the measurements, even for the nitrous oxide emissions. It was necessary to include tar as one of the combustible species to achieve reasonable results. The computations point out that the fuel-NO mechanism is the most important reaction path for the formation of nitrous oxide in biomass combustion in grate furnaces. The thermal NO mechanism is responsible for less than 10% of the total amount of NO-emissions. Although the results are quantitatively in good agreement with the measurements, a sensitivity study showed that the fuel-NO model did not respond to changes in the distribution of secondary air as the measurements indicate. The results from this work have lead to some guidelines on how the furnace should be operated to achieve minimum NO-emissions. Some proposals of smaller changes in the construction are also given. 33 refs, 37 figs, 7 tabs

  3. Computational experience with a three-dimensional rotary engine combustion model

    Science.gov (United States)

    Raju, M. S.; Willis, E. A.

    1990-04-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  4. Combustion engine diagnosis model-based condition monitoring of gasoline and diesel engines and their components

    CERN Document Server

    Isermann, Rolf

    2017-01-01

    This book offers first a short introduction to advanced supervision, fault detection and diagnosis methods. It then describes model-based methods of fault detection and diagnosis for the main components of gasoline and diesel engines, such as the intake system, fuel supply, fuel injection, combustion process, turbocharger, exhaust system and exhaust gas aftertreatment. Additionally, model-based fault diagnosis of electrical motors, electric, pneumatic and hydraulic actuators and fault-tolerant systems is treated. In general series production sensors are used. It includes abundant experimental results showing the detection and diagnosis quality of implemented faults. Written for automotive engineers in practice, it is also of interest to graduate students of mechanical and electrical engineering and computer science. The Content Introduction.- I SUPERVISION, FAULT DETECTION AND DIAGNOSIS METHODS.- Supervision, Fault-Detection and Fault-Diagnosis Methods - a short Introduction.- II DIAGNOSIS OF INTERNAL COMBUST...

  5. Simulation of hydrogen release and combustion in large scale geometries: models and methods

    International Nuclear Information System (INIS)

    Beccantini, A.; Dabbene, F.; Kudriakov, S.; Magnaud, J.P.; Paillere, H.; Studer, E.

    2003-01-01

    The simulation of H2 distribution and combustion in confined geometries such as nuclear reactor containments is a challenging task from the point of view of numerical simulation, as it involves quite disparate length and time scales, which need to resolved appropriately and efficiently. Cea is involved in the development and validation of codes to model such problems, for external clients such as IRSN (TONUS code), Technicatome (NAUTILUS code) or for its own safety studies. This paper provides an overview of the physical and numerical models developed for such applications, as well as some insight into the current research topics which are being pursued. Examples of H2 mixing and combustion simulations are given. (authors)

  6. Modeling of carbon dioxide absorption by aqueous ammonia solutions using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Darde, Victor Camille Alfred; van Well, Willy J. M.; Stenby, Erling Halfdan

    2010-01-01

    An upgraded version of the Extended UNIQUAC thermodynamic model for the carbon dioxide-ammonia-water system has been developed, based on the original version proposed by Thomsen and Rasmussen. The original model was valid in the temperature range 0-110°C, the pressure range 0-10 MPa...... properties of carbon dioxide and ammonia to supercritical conditions....

  7. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  8. Refined weighted sum of gray gases model for air-fuel combustion and its impacts

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    Radiation is the principal mode of heat transfer in utility boiler furnaces. Models for radiative properties play a vital role in reliable simulations of utility boilers and simulation-based design and optimization. The weighted sum of gray gases model (WSGGM) is one of the most widely used models...... in computational fluid dynamics (CFD) simulation of air-fuel combustion processes. It represents a reasonable compromise between an oversimplified gray gas model and a comprehensive approach addressing high-resolution dependency of radiative properties and intensity upon wavelength. The WSGGM coefficients...

  9. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  10. LES of explosions in venting chamber: A test case for premixed turbulent combustion models

    OpenAIRE

    Vermorel , Olivier; Quillatre , Pierre; Poinsot , Thierry

    2017-01-01

    International audience; This paper presents a new experimental and Large Eddy Simulation (LES) database to study upscaling effects in vented gas explosions. The propagation of premixed flames in three setups of increasing size is investigated experimentally and numerically. The baseline model is the well-known laboratory-scale combustion chamber from Sydney (Kent et al., 2005; Masri et al., 2012); two exact replicas at scales 6 and 24.4 were set up by GexCon (Bergen, Norway). The volume ratio...

  11. Exhaust gas recirculation – Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Asad, Usman; Tjong, Jimi; Zheng, Ming

    2014-01-01

    Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  12. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  13. Development of a self-ignition and combustion model for diesel engines; Modelisation de l`auto-inflammation et de la combustion pour les moteurs diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pires Da Cruz, A.

    1997-12-09

    The work concerns self-ignition and combustion modelling in Diesel engines. Special attention is given to turbulence induced effects. Only gas fuel injection is taken into account. Turbulent mixing is identified as one of the main parameters controlling self-ignition in Diesel engines. However, turbulence effects are often neglected by models currently used in engine calculation codes. A new model based on results obtained by direct numerical simulation (DNS) is proposed. It includes turbulence effects by means of the scalar dissipation rate and presumed pdf of the mixture fraction and a chemical reaction progress variable. The model is validated through several steps. First, its results are compared to DNS in simple mixing and self-ignition cases. Then, its averaged version is integrated into the KIVA2-MB calculation code, where its behavior is tested in a one dimensional version and compared to other formulations. Finally, the model is validated with comparisons to experimental results of methane injection into a high pressure combustion chamber filled with hot air. The combustion chamber allows large optical access and therefore, optical diagnostics can be made. (author) 101 refs.

  14. CCR+: Metadata Based Extended Personal Health Record Data Model Interoperable with the ASTM CCR Standard.

    Science.gov (United States)

    Park, Yu Rang; Yoon, Young Jo; Jang, Tae Hun; Seo, Hwa Jeong; Kim, Ju Han

    2014-01-01

    Extension of the standard model while retaining compliance with it is a challenging issue because there is currently no method for semantically or syntactically verifying an extended data model. A metadata-based extended model, named CCR+, was designed and implemented to achieve interoperability between standard and extended models. Furthermore, a multilayered validation method was devised to validate the standard and extended models. The American Society for Testing and Materials (ASTM) Community Care Record (CCR) standard was selected to evaluate the CCR+ model; two CCR and one CCR+ XML files were evaluated. In total, 188 metadata were extracted from the ASTM CCR standard; these metadata are semantically interconnected and registered in the metadata registry. An extended-data-model-specific validation file was generated from these metadata. This file can be used in a smartphone application (Health Avatar CCR+) as a part of a multilayered validation. The new CCR+ model was successfully evaluated via a patient-centric exchange scenario involving multiple hospitals, with the results supporting both syntactic and semantic interoperability between the standard CCR and extended, CCR+, model. A feasible method for delivering an extended model that complies with the standard model is presented herein. There is a great need to extend static standard models such as the ASTM CCR in various domains: the methods presented here represent an important reference for achieving interoperability between standard and extended models.

  15. Hazard identification by extended multilevel flow modelling with function roles

    DEFF Research Database (Denmark)

    Wu, Jing; Zhang, Laibin; Jørgensen, Sten Bay

    2014-01-01

    ) is extended with functi on roles to complete HAZOP studies in principle. A graphical MFM editor, which is combined with the reasoning engine (MFM Workbench) developed by DTU is applied to automate HAZOP studies. The method is proposed to suppor t the ‘brain-storming’ sessions in traditional HAZOP analysis...

  16. Creating a Generic Extended Enterprise Management Model using GERAM

    DEFF Research Database (Denmark)

    Larsen, Lars Bjørn; Kaas-Pedersen, Carsten; Vesterager, Johan

    1998-01-01

    The two main themes of the Globeman21 (Global Manufacturing in the 21st century) project are product life cycle management and extended enterprise management. This article focus on the later of these subjects and an illustration of the concept is given together with a discussion of the concept...

  17. An extended rational thermodynamics model for surface excess fluxes

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2012-01-01

    In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal

  18. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  19. A comprehensive experimental and modeling study of iso-pentanol combustion

    KAUST Repository

    Sarathy, Mani

    2013-12-01

    Biofuels are considered as potentially attractive alternative fuels that can reduce greenhouse gas and pollutant emissions. iso-Pentanol is one of several next-generation biofuels that can be used as an alternative fuel in combustion engines. In the present study, new experimental data for iso-pentanol in shock tube, rapid compression machine, jet stirred reactor, and counterflow diffusion flame are presented. Shock tube ignition delay times were measured for iso-pentanol/air mixtures at three equivalence ratios, temperatures ranging from 819 to 1252. K, and at nominal pressures near 40 and 60. bar. Jet stirred reactor experiments are reported at 5. atm and five equivalence ratios. Rapid compression machine ignition delay data was obtained near 40. bar, for three equivalence ratios, and temperatures below 800. K. Laminar flame speed data and non-premixed extinction strain rates were obtained using the counterflow configuration. A detailed chemical kinetic model for iso-pentanol oxidation was developed including high- and low-temperature chemistry for a better understanding of the combustion characteristics of higher alcohols. First, bond dissociation energies were calculated using ab initio methods, and the proposed rate constants were based on a previously presented model for butanol isomers and n-pentanol. The model was validated against new and existing experimental data at pressures of 1-60. atm, temperatures of 650-1500. K, equivalence ratios of 0.25-4.0, and covering both premixed and non-premixed environments. The method of direct relation graph (DRG) with expert knowledge (DRGX) was employed to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was used to predict non-premixed flames. In addition, reaction path and temperature A-factor sensitivity analyses were conducted for identifying key reactions at various combustion conditions. © 2013 The Combustion Institute.

  20. A comprehensive experimental and modeling study of iso-pentanol combustion

    KAUST Repository

    Sarathy, Mani; Park, Sungwoo; Weber, Bryan W.; Wang, Weijing; Veloo, Peter S.; Davis, Alexander C.; Togbé , Casimir; Westbrook, Charles K.; Park, Okjoo; Dayma, Guillaume; Luo, Zhaoyu; Oehlschlaeger, Matthew A.; Egolfopoulos, Fokion N.; Lu, Tianfeng; Pitz, William J.; Sung, Chihjen; Dagaut, P.

    2013-01-01

    Biofuels are considered as potentially attractive alternative fuels that can reduce greenhouse gas and pollutant emissions. iso-Pentanol is one of several next-generation biofuels that can be used as an alternative fuel in combustion engines. In the present study, new experimental data for iso-pentanol in shock tube, rapid compression machine, jet stirred reactor, and counterflow diffusion flame are presented. Shock tube ignition delay times were measured for iso-pentanol/air mixtures at three equivalence ratios, temperatures ranging from 819 to 1252. K, and at nominal pressures near 40 and 60. bar. Jet stirred reactor experiments are reported at 5. atm and five equivalence ratios. Rapid compression machine ignition delay data was obtained near 40. bar, for three equivalence ratios, and temperatures below 800. K. Laminar flame speed data and non-premixed extinction strain rates were obtained using the counterflow configuration. A detailed chemical kinetic model for iso-pentanol oxidation was developed including high- and low-temperature chemistry for a better understanding of the combustion characteristics of higher alcohols. First, bond dissociation energies were calculated using ab initio methods, and the proposed rate constants were based on a previously presented model for butanol isomers and n-pentanol. The model was validated against new and existing experimental data at pressures of 1-60. atm, temperatures of 650-1500. K, equivalence ratios of 0.25-4.0, and covering both premixed and non-premixed environments. The method of direct relation graph (DRG) with expert knowledge (DRGX) was employed to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was used to predict non-premixed flames. In addition, reaction path and temperature A-factor sensitivity analyses were conducted for identifying key reactions at various combustion conditions. © 2013 The Combustion Institute.

  1. Development of generalised model for grate combustion of biomass

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Kær, Søren Knudsen; Sørensen, Henrik

    for two reasons: 1) to improve emission understanding and reduction measures and 2) to improve boundary conditions for CFD-based furnace modelling. The selected approach has been based on a diffusion coefficient formulation, where conservation equations for the concentration of fuel are solved...... in a spatially resolved grid, much in the same manner as in a finite volume CFD code. Within this porous layer of fuel, gas flows according to the Ergun equation. The diffusion coefficient links the properties of the fuel to the grate type and vibration mode, and is determined for each combination of fuel, grate...... is big enough to represent real, full scale conditions, and yet small enough to be operational in terms of parameter studies of different nature. Apart from full SRO data, measurements (gas sampling, velocity, temperature, particle sampling) can be taken through a heated, water-cooled probe...

  2. Experiments and Model Development for the Investigation of Sooting and Radiation Effects in Microgravity Droplet Combustion

    Science.gov (United States)

    Choi, Mun Young; Yozgatligil, Ahmet; Dryer, Frederick L.; Kazakov, Andrei; Dobashi, Ritsu

    2001-01-01

    Today, despite efforts to develop and utilize natural gas and renewable energy sources, nearly 97% of the energy used for transportation is derived from combustion of liquid fuels, principally derived from petroleum. While society continues to rely on liquid petroleum-based fuels as a major energy source in spite of their finite supply, it is of paramount importance to maximize the efficiency and minimize the environmental impact of the devices that burn these fuels. The development of improved energy conversion systems, having higher efficiencies and lower emissions, is central to meeting both local and regional air quality standards. This development requires improvements in computational design tools for applied energy conversion systems, which in turn requires more robust sub-model components for combustion chemistry, transport, energy transport (including radiation), and pollutant emissions (soot formation and burnout). The study of isolated droplet burning as a unidimensional, time dependent model diffusion flame system facilitates extensions of these mechanisms to include fuel molecular sizes and pollutants typical of conventional and alternative liquid fuels used in the transportation sector. Because of the simplified geometry, sub-model components from the most detailed to those reduced to sizes compatible for use in multi-dimensional, time dependent applied models can be developed, compared and validated against experimental diffusion flame processes, and tested against one another. Based on observations in microgravity experiments on droplet combustion, it appears that the formation and lingering presence of soot within the fuel-rich region of isolated droplets can modify the burning rate, flame structure and extinction, soot aerosol properties, and the effective thermophysical properties. These observations led to the belief that perhaps one of the most important outstanding contributions of microgravity droplet combustion is the observation that in the

  3. Modeling and experiments of biomass combustion in a large-scale grate boiler

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2007-01-01

    is inherently more difficult due to the complexity of the solid biomass fuel bed on the grate, the turbulent reacting flow in the combustion chamber and the intensive interaction between them. This paper presents the CFD validation efforts for a modern large-scale biomass-fired grate boiler. Modeling...... and experiments are both done for the grate boiler. The comparison between them shows an overall acceptable agreement in tendency. However at some measuring ports, big discrepancies between the modeling and the experiments are observed, mainly because the modeling-based boundary conditions (BCs) could differ...

  4. Integrated engineering and cost model for management of coal combustion byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H. [Department of Mining Engineering, Southern Illinois University at Carbondale, Carbondale, Illinois (United States); Renninger, S. [US Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia (United States)

    1998-07-01

    An integrated engineering and cost model has been developed as a part of an overall research project for exploring the technical, environmental and economic feasibility of disposing coal combustion byproducts and flue gas desulfurisation products in underground coal mines in Illinois. The features of the model have been keyed in user-friendly software. In this paper, the purpose and the structure of the model are described. The capabilities of the software are illustrated through an example involving transportation of byproducts in containers from a power plant to a mine site, and subsequent placement of the byproducts in a abandoned underground coal mine using a hydraulic injection system. 3 refs.

  5. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room.

    Science.gov (United States)

    Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-11-15

    Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Low temperature combustion of organic coal-water fuel droplets containing petrochemicals while soaring in a combustion chamber model

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available The paper examines the integral characteristics (minimum temperature, ignition delay times of stable combustion initiation of organic coal-water fuel droplets (initial radius is 0.3-1.5 mm in the oxidizer flow (the temperature and velocity varied in ranges 500-900 K, 0.5-3 m/s. The main components of organic coal-water fuel were: brown coal particles, filter-cakes obtained in coal processing, waste engine, and turbine oils. The different modes of soaring and ignition of organic coal-water fuel have been established. The conditions have been set under which it is possible to implement the sustainable soaring and ignition of organic coal-water fuel droplets. We have compared the ignition characteristics with those defined in the traditional approach (based on placing the droplets on a low-inertia thermocouple junction into the combustion chamber. The paper shows the scale of the influence of heat sink over the thermocouple junction on ignition inertia. An original technique for releasing organic coal-water fuel droplets to the combustion chamber was proposed and tested. The limitations of this technique and the prospects of experimental results for the optimization of energy equipment operation were also formulated.

  7. Modelling NO[sub x] formation in coal particle combustion at high temperature: an investigation of the devolatilisation kinetic factors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.M.; Patterson, P.M.; Pourkashanian, M.; Williams, A.; Arenillas, A.; Rubiera, F.; Pis, J.J. (University of Leeds, Leeds (United Kingdom). Dept. of Fuel and Energy)

    1999-08-01

    Coal combustion computational fluid dynamic (CFD) models are a powerful predictive tool in combustion research. In existing coal combustion CFD models, the process is described by three kinetic rates: coal devolatilizaton, volatile combustion and char combustion. A general, representative devolatilisation rate for coal is a matter of some contention, and measured rates depend upon the type of experimental system employed in their determination. Thus the reported rates vary considerably, causing difficulties in the choice of rate expression for CFD modelling applications. In this investigation, a laminar flow CFD model of a drop-tube furnace was used to assess the influence of global devolatilisation rates on overall combustion behaviour, and in particular, NOx emissions. The rates chosen include some of the common expressions employed by researchers in the field. Analysis, and comparison of the modelling results with those of the experimental indicated that a single-step devolatilisation rate can give satisfactory profiles. This rate can be calculated from the tar release rate using a network model such as FG-DVC (functional group, depolymerisation, vaporisation and cross-linking) together with the nitrogen partitioning between gas and char during pyrolysis. The use of these single-step models result in good predictions of NOx, and the inclusion of soot/NOx interactions can improve the mode significantly to give an excellent agreement with experimental results. 2 refs., 4 figs., 3 tabs.

  8. On the Reconciliation of the Extended Nelson-Siegel and the Extended Vasicek Models (with a View Towards Swap and Swaption Valuation)

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    Extended Nelson-Siegel models are widely used by e.g. practitioners and central banks to estimate current term structures of riskless zero-coupon interest rates, whereas other models such as the extended Vasicek model (a.k.a. the Hull-White model) are popular for pricing interest rate derivatives....... This paper establishes theoretical consistency between these two types of models by showing how to specify the extended Vasicek model such that its implied initial term structure curve precisely matches a given extended Nelson-Siegel specification. That is, we show how to reconcile the two classes of models...

  9. Maximal combustion temperature estimation

    International Nuclear Information System (INIS)

    Golodova, E; Shchepakina, E

    2006-01-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models

  10. Investigation of Methane Oxy-Fuel Combustion in a Swirl-Stabilised Gas Turbine Model Combustor

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-05-01

    Full Text Available CO2 has a strong impact on both operability and emission behaviours in gas turbine combustors. In the present study, an atmospheric, preheated, swirl-stabilised optical gas turbine model combustor rig was employed. The primary objectives were to analyse the influence of CO2 on the fundamental characteristics of combustion, lean blowout (LBO limits, CO emission and flame structures. CO2 dilution effects were examined with three preheating temperatures (396.15, 431.15, and 466.15 K. The fundamental combustion characteristics were studied utilising chemical kinetic simulations. To study the influence of CO2 on the operational range of the combustor, equivalence ratio (Ф was varied from stoichiometric conditions to the LBO limits. CO emissions were measured at the exit of the combustor using a water-cooled probe over the entire operational range. The flame structures and locations were characterised by performing CH chemiluminescence imaging. The inverse Abel transformation was used to analyse the CH distribution on the axisymmetric plane of the combustor. Chemical kinetic modelling indicated that the CO2 resulted in a lower reaction rate compared with the CH4/air flame. Fundamental combustion properties such as laminar flame speed, ignition delay time and blowout residence time were found to be affected by CO2. The experimental results revealed that CO2 dilution resulted in a narrower operational range for the equivalence ratio. It was also found that CO2 had a strong inhibiting effect on CO burnout, which led to a higher concentration of CO in the combustion exhaust. CH chemiluminescence showed that the CO2 dilution did not have a significant impact on the flame structure.

  11. Theories of extended objects and composite models of particles

    International Nuclear Information System (INIS)

    Barut, A.O.

    1992-05-01

    The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab

  12. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  13. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  14. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  15. Artificial intelligence-based modeling and control of fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, E.; Leppaekoski, K. (Univ. of Oulu, Dept. of Process and Environmental Engineering (Finland)). email: enso.ikonen@oulu.fi

    2009-07-01

    AI-inspired techniques have a lot to offer when developing methods for advanced identification, monitoring, control and optimization of industrial processes, such as power plants. Advanced control methods have been extensively examined in the research of the Power Plant Automation group at the Systems Engineering Laboratory, e.g., in fuel inventory modelling, combustion power control, modelling and control of flue gas oxygen, drum control, modelling and control of superheaters, or in optimization of flue-gas emissions. Most engineering approaches to artificial intelligence (AI) are characterized by two fundamental properties: the ability to learn from various sources and the ability to deal with plant complexity. Learning systems that are able to operate in uncertain environments based on incomplete information are commonly referred to as being intelligent. A number of other approaches exist, characterized by these properties, but not easily categorized as AI-systems. Advanced control methods (adaptive, predictive, multivariable, robust, etc.) are based on the availability of a model of the process to be controlled. Hence identification of processes becomes a key issue, leading to the use of adaptation and learning techniques. A typical learning control system concerns a selection of learning techniques applied for updating a process model, which in turn is used for the controller design. When design of learning control systems is complemented with concerns for dealing with uncertainties or vaguenesses in models, measurements, or even objectives, particularly close connections exist between advanced process control and methods of artificial intelligence and machine learning. Needs for advanced techniques are typically characterized by the desire to properly handle plant non-linearities, the multivariable nature of the dynamic problems, and the necessity to adapt to changing plant conditions. In the field of fluidized bed combustion (FBC) control, the many promising

  16. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Science.gov (United States)

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  17. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Directory of Open Access Journals (Sweden)

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  18. Quantitative laser diagnostic and modeling study of C2 and CH chemistry in combustion.

    Science.gov (United States)

    Köhler, Markus; Brockhinke, Andreas; Braun-Unkhoff, Marina; Kohse-Höinghaus, Katharina

    2010-04-15

    Quantitative concentration measurements of CH and C(2) have been performed in laminar, premixed, flat flames of propene and cyclopentene with varying stoichiometry. A combination of cavity ring-down (CRD) spectroscopy and laser-induced fluorescence (LIF) was used to enable sensitive detection of these species with high spatial resolution. Previously, CH and C(2) chemistry had been studied, predominantly in methane flames, to understand potential correlations of their formation and consumption. For flames of larger hydrocarbon fuels, however, quantitative information on these small intermediates is scarce, especially under fuel-rich conditions. Also, the combustion chemistry of C(2) in particular has not been studied in detail, and although it has often been observed, its role in potential build-up reactions of higher hydrocarbon species is not well understood. The quantitative measurements performed here are the first to detect both species with good spatial resolution and high sensitivity in the same experiment in flames of C(3) and C(5) fuels. The experimental profiles were compared with results of combustion modeling to reveal details of the formation and consumption of these important combustion molecules, and the investigation was devoted to assist the further understanding of the role of C(2) and of its potential chemical interdependences with CH and other small radicals.

  19. A model of the enhancement of coal combustion using high intensity acoustic fields

    International Nuclear Information System (INIS)

    Yavuzkurt, S.; Ha, M.Y.; Koopmann, G.H.; Scaroni, A.

    1989-01-01

    In this paper a model for the enhancement of coal combustion in the presence of high intensity acoustics is developed. A high intensity acoustic field induces an oscillating velocity over pulverized coal particles otherwise entrained in the main gas stream, resulting in increased heat and mass transfer. The augmented heat and mass transfer coefficients, expressed as space- and time-averaged Nusselt and Sherwood numbers for the oscillating flow, were implemented in an existing computer code (PCGC-2) capable of predicting various aspects of pulverized coal combustion and gasification. Increases in the Nusselt and Sherwood numbers of about 45, 60 and 82.5% at sound pressure levels of 160, 165, and 170 dB for 100 μm coal particles were obtained due to increases in the acoustic slop velocity associated with the increased sound pressure levels. The main effect of the acoustic field was observed during the char combustion phase in a diffusionally controlled situation. A decrease in the char burnout length (time) of 15.7% at 160 dB and 30.2% at 170 dB was obtained compared to the case with no sound for the 100 μm coal particles

  20. Research of power fuel low-temperature vortex combustion in industrial boiler based on numerical modelling

    Directory of Open Access Journals (Sweden)

    Orlova K.Y.

    2017-01-01

    Full Text Available The goal of the presented research is to perform numerical modelling of fuel low-temperature vortex combustion in once-through industrial steam boiler. Full size and scaled-down furnace model created with FIRE 3D software and was used for the research. All geometrical features were observed. The baseline information for the low-temperature vortex furnace process are velocity and temperature of low, upper and burner blast, air-fuel ratio, fuel consumption, coal dust size range. The obtained results are: temperature and velocity three dimensional fields, furnace gases and solid fuel ash particles concentration.

  1. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    The formation, ignition, and combustion of fuel sprays are highly complex processes and the available models have various shortcomings. The development and application of multidimensional CFD models, that describe the different phenomena have rapidly increased through the use of commercial and public software (e.g. Star-CD, KIVA, FIRE and OpenFOAM). The general approach to spray modeling is given by the Eulerian-Lagrangian method, where the gas phase is modeled as a continuum and the droplets are tracked in a Lagrangian way. The accuracy and robustness of today's spray models vary substantially and spray penetration simulations and the levels of spray-generated turbulence are dependent on the discretization. The work presented here deals with the prediction of spray formation and combustion with improved models implemented in the free, open source software package OpenFOAM. The VSB2 spray model was implemented and tested under varying ambient conditions. The design criteria of the model were to be unconditionally robust, have a minimal number of tuning parameters, and be implementable in any CFD software package supporting particle tracking. The main difference between the VSB2 spray model and standard spray models is how the interaction between the liquid fuel and hot gas phase is modeled. In the VSB2 spray model, a 'blob' is defined, containing differently sized droplets; instead of a parcel containing equally sized droplets. Another feature is the definition of a bubble surrounding the blob. The blob just interacts with the gas phase in the bubble instead of with the gas phase in the whole grid cell. The idea is to reduce grid dependency. Furthermore, equilibrium between the blob and the bubble is ensured, which makes the model very robust. Results of spray penetration simulations are compared with data obtained from experiments done at Chalmers Univ. of Technology and with experimental data published by Siebers and Naber from Sandia National

  2. Cold light dark matter in extended seesaw models

    Science.gov (United States)

    Boulebnane, Sami; Heeck, Julian; Nguyen, Anne; Teresi, Daniele

    2018-04-01

    We present a thorough discussion of light dark matter produced via freeze-in in two-body decays A→ B DM . If A and B are quasi-degenerate, the dark matter particle has a cold spectrum even for keV masses. We show this explicitly by calculating the transfer function that encodes the impact on structure formation. As examples for this setup we study extended seesaw mechanisms with a spontaneously broken global U(1) symmetry, such as the inverse seesaw. The keV-scale pseudo-Goldstone dark matter particle is then naturally produced cold by the decays of the quasi-degenerate right-handed neutrinos.

  3. Accelerated Electromechanical Modeling of a Distributed Internal Combustion Engine Generator Unit

    Directory of Open Access Journals (Sweden)

    Serhiy V. Bozhko

    2012-07-01

    Full Text Available Distributed generation with a combustion engine prime mover is still widely used to supply electric power in a variety of applications. These applications range from backup power supply systems and combined wind-diesel generation to providing power in places where grid connection is either technically impractical or financially uneconomic. Modelling of such systems as a whole is extremely difficult due to the long-time load profiles needed and the computational difficulty of including small time-constant electrical dynamics with large time-constant mechanical dynamics. This paper presents the development of accelerated, reduced-order models of a distributed internal combustions engine generator unit. Overall these models are shown to achieve a massive improvement in the computational time required for long-time simulations while also achieving an extremely high level of dynamic accuracy. It is demonstrated how these models are derived, used and verified against benchmark models created using established techniques. Throughout the paper the modelling set as a whole, including multi level detail, is presented, detailed and finally summarised into a crucial tool for general system investigation and multiple target optimisation.

  4. Thermodynamic modeling of CO2 absorption in aqueous N-Methyldiethanolamine using Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Sadegh, Negar; Stenby, Erling Halfdan; Thomsen, Kaj

    2015-01-01

    A Thermodynamic model that can predict the behavior of the gas sweetening process over the applicable conditions is of vital importance in industry. In this work, Extended UNIQUAC model parameters optimized for the CO2-MDEA-H2O system are presented. Different types of experimental data consisting...... model accurately represents thermodynamic and thermal properties of the studied systems. The model parameters are valid in the temperature range from -15 to 200 °C, MDEA mass% of 5-75 and CO2 partial pressure of 0-6161.5 kPa....

  5. A comprehensive experimental and kinetic modeling study of n -propylbenzene combustion

    KAUST Repository

    Yuan, Wenhao; Li, Yuyang; Dagaut, Philippe; Wang, Yizun; Wang, Zhandong; Qi, Fei

    2017-01-01

    This work presents a comprehensive experimental and kinetic modeling study on the combustion of n-propylbenzene. Flow reactor pyrolysis of n-propylbenzene at 0.04, 0.2 and 1 atm and laminar premixed flames of n-propylbenzene at 0.04 atm with equivalence ratios of 0.75 and 1.00 were investigated with synchrotron vacuum ultraviolet photoionization mass spectrometry. Jet stirred reactor (JSR) oxidation of n-propylbenzene at 10 atm with equivalence ratios of 0.5, 1.0, 1.5 and 2.0 was investigated with gas chromatography. A detailed kinetic model for n-propylbenzene combustion with 340 species and 2069 reactions was developed and validated against the data measured in this work. Model analyses such as rate of production analysis and sensitivity analysis were also performed to reveal the key pathways in the consumption of fuel and formation of polycyclic aromatic hydrocarbons (PAHs). The analysis results demonstrate that the benzylic Csingle bondC bond dissociation reaction is crucial for the decomposition of n-propylbenzene in the pyrolysis and rich flame. Low temperature oxidation reactions play important roles in the high pressure JSR oxidation of n-propylbenzene. In addition, the formation pathways of PAHs are strongly related to the fuel structure, especially for the formation of bicyclic PAHs such as indene and naphthalene. Furthermore, the present model was also validated against previous experimental data of n-propylbenzene combustion under a wide range of conditions, including ignition delay times, laminar flame speeds, extinction strain rates, speciation profiles in atmospheric pressure JSR oxidation, flow reactor oxidation and high pressure shock tube pyrolysis and oxidation.

  6. A comprehensive experimental and kinetic modeling study of n -propylbenzene combustion

    KAUST Repository

    Yuan, Wenhao

    2017-09-05

    This work presents a comprehensive experimental and kinetic modeling study on the combustion of n-propylbenzene. Flow reactor pyrolysis of n-propylbenzene at 0.04, 0.2 and 1 atm and laminar premixed flames of n-propylbenzene at 0.04 atm with equivalence ratios of 0.75 and 1.00 were investigated with synchrotron vacuum ultraviolet photoionization mass spectrometry. Jet stirred reactor (JSR) oxidation of n-propylbenzene at 10 atm with equivalence ratios of 0.5, 1.0, 1.5 and 2.0 was investigated with gas chromatography. A detailed kinetic model for n-propylbenzene combustion with 340 species and 2069 reactions was developed and validated against the data measured in this work. Model analyses such as rate of production analysis and sensitivity analysis were also performed to reveal the key pathways in the consumption of fuel and formation of polycyclic aromatic hydrocarbons (PAHs). The analysis results demonstrate that the benzylic Csingle bondC bond dissociation reaction is crucial for the decomposition of n-propylbenzene in the pyrolysis and rich flame. Low temperature oxidation reactions play important roles in the high pressure JSR oxidation of n-propylbenzene. In addition, the formation pathways of PAHs are strongly related to the fuel structure, especially for the formation of bicyclic PAHs such as indene and naphthalene. Furthermore, the present model was also validated against previous experimental data of n-propylbenzene combustion under a wide range of conditions, including ignition delay times, laminar flame speeds, extinction strain rates, speciation profiles in atmospheric pressure JSR oxidation, flow reactor oxidation and high pressure shock tube pyrolysis and oxidation.

  7. Global combustion sources of organic aerosols: model comparison with 84 AMS factor-analysis data sets

    Science.gov (United States)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2016-07-01

    Emissions of organic compounds from biomass, biofuel, and fossil fuel combustion strongly influence the global atmospheric aerosol load. Some of the organics are directly released as primary organic aerosol (POA). Most are emitted in the gas phase and undergo chemical transformations (i.e., oxidation by hydroxyl radical) and form secondary organic aerosol (SOA). In this work we use the global chemistry climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) with a computationally efficient module for the description of organic aerosol (OA) composition and evolution in the atmosphere (ORACLE). The tropospheric burden of open biomass and anthropogenic (fossil and biofuel) combustion particles is estimated to be 0.59 and 0.63 Tg, respectively, accounting for about 30 and 32 % of the total tropospheric OA load. About 30 % of the open biomass burning and 10 % of the anthropogenic combustion aerosols originate from direct particle emissions, whereas the rest is formed in the atmosphere. A comprehensive data set of aerosol mass spectrometer (AMS) measurements along with factor-analysis results from 84 field campaigns across the Northern Hemisphere are used to evaluate the model results. Both the AMS observations and the model results suggest that over urban areas both POA (25-40 %) and SOA (60-75 %) contribute substantially to the overall OA mass, whereas further downwind and in rural areas the POA concentrations decrease substantially and SOA dominates (80-85 %). EMAC does a reasonable job in reproducing POA and SOA levels during most of the year. However, it tends to underpredict POA and SOA concentrations during winter indicating that the model misses wintertime sources of OA (e.g., residential biofuel use) and SOA formation pathways (e.g., multiphase oxidation).

  8. Influence of process parameters on coal combustion performance. Review, experiments and engineering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lans, R.P. van der

    1997-04-01

    The objective of this study is to improve the understanding of nitrogen oxide formation and carbon burnout during the combustion of pulverized coal, and to contribute to addressing the potential of chemical engineering models for the prediction of furnace temperatures, NO emissions and the amount of carbon in ash. To this purpose, the effect of coal quality on NO and burnout has been investigated experimentally, a radiation heat balance has been developed based on a simple chemical engineering methodology, and a mixing study has been conducted in order to describe the near burner macro mixing in terms of a reactor configuration. The influence of coal type and process conditions on NO formation and carbon burnout has been investigated experimentally in a 400 MW{sub e} corner fired boiler with over fire air, a 350 MW{sub e} opposed fired boiler, and in a 160 kW{sub t} pilot scale test rig. Three different coals were fired in each of the furnaces as part of the activities in group 3 of the European Union JOULE 2 Extension project `Atmospheric Pressure Combustion of Pulverized Coal and Coal Based Blends for Power Generation`. On the pilot scale test both single stage and air staged tests were performed. A simple, one-dimensional combustion and radiation heat transfer model has been developed for the furnace of full scale boilers. The model has been applied to the two boilers mentioned above, and is validated against measured temperatures and carbon in ash concentrations. A mixing study has been performed in order to initiate an investigation of the potential of chemical engineering models to predict NO from pulverized fuel burners. (EG) 11 refs.

  9. Modeling of electron behaviors under microwave electric field in methane and air pre-mixture gas plasma assisted combustion

    Science.gov (United States)

    Akashi, Haruaki; Sasaki, K.; Yoshinaga, T.

    2011-10-01

    Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found that the simulated emission from 2nd PBS agrees with the experimental result. Recently, plasma-assisted combustion has been focused on for achieving more efficient combustion way of fossil fuels, reducing pollutants and so on. Shinohara et al has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power without increase of gas temperature. This suggests that electrons heated by microwave electric field assist the combustion. They also measured emission from 2nd Positive Band System (2nd PBS) of nitrogen during the irradiation. To clarify this mechanism, electron behavior under microwave power should be examined. To obtain electron transport parameters, electron Monte Carlo simulations in methane and air mixture gas have been done. A simple model has been developed to simulate inside the flame. To make this model simple, some assumptions are made. The electrons diffuse from the combustion plasma region. And the electrons quickly reach their equilibrium state. And it is found

  10. An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, M. G.; Thomsen, Per Grove

    2009-01-01

    phase behavior sensitivity for in situ combustion, a thermal oil recovery process. For the one-dimensional model we first study the sensitivity to numerical discretization errors and provide grid density guidelines for proper resolution of in situ combustion behavior. A critical condition for success...... to ignition. For a particular oil we show that the simplified approach overestimates the required air injection rate for sustained front propagation by 17% compared to the equation of state-based approach....

  11. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song

    2015-01-01

    with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases......, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced....

  12. Extending enterprise architecture modelling with business goals and requirements

    NARCIS (Netherlands)

    Engelsman, W.; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten J.

    The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling

  13. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  14. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results

    Science.gov (United States)

    M. M. Clark; T. H. Fletcher; R. R. Linn

    2010-01-01

    The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixture– fraction model relying on thermodynamic...

  15. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  16. General Friction Model Extended by the Effect of Strain Hardening

    DEFF Research Database (Denmark)

    Nielsen, Chris V.; Martins, Paulo A.F.; Bay, Niels

    2016-01-01

    An extension to the general friction model proposed by Wanheim and Bay [1] to include the effect of strain hardening is proposed. The friction model relates the friction stress to the fraction of real contact area by a friction factor under steady state sliding. The original model for the real...... contact area as function of the normalized contact pressure is based on slip-line analysis and hence on the assumption of rigid-ideally plastic material behavior. In the present work, a general finite element model is established to, firstly, reproduce the original model under the assumption of rigid...

  17. Extending enterprise architecture modelling with business goals and requirements

    Science.gov (United States)

    Engelsman, Wilco; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten

    2011-02-01

    The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling techniques for EA focus on the products, services, processes and applications of an enterprise. In addition, techniques may be provided to describe structured requirements lists and use cases. Little support is available however for modelling the underlying motivation of EAs in terms of stakeholder concerns and the high-level goals that address these concerns. This article describes a language that supports the modelling of this motivation. The definition of the language is based on existing work on high-level goal and requirements modelling and is aligned with an existing standard for enterprise modelling: the ArchiMate language. Furthermore, the article illustrates how EA can benefit from analysis techniques from the requirements engineering domain.

  18. Regeneration in an internal combustion engine: Thermal-hydraulic modeling and analysis

    International Nuclear Information System (INIS)

    Thyageswaran, Sridhar

    2016-01-01

    Highlights: • An arrangement is proposed for in-cylinder regeneration in a 4-stroke engine. • Thermodynamic models are formulated for overall cycle analysis. • A design procedure is outlined for micro-channel regenerators. • Partial differential equations are solved for flow inside the regenerator. • Regeneration with lean combustion decreases the idealized cycle efficiency. - Abstract: An arrangement is proposed for a four-stroke internal combustion engine to: (a) recover thermal energy from products of combustion during the exhaust stroke; (b) store that energy as sensible heat in a micro-channel regenerator matrix; and (c) transfer the stored heat to compressed fresh charge that flows through the regenerator during the succeeding mechanical cycle. An extra moveable piston that can be locked at preferred positions and a sequence of valve events enable the regenerator to lose heat to the working fluid during one interval of time but gain heat from the fluid during another interval of time. This paper examines whether or not this scheme for in-cylinder regeneration (ICR) improves the cycle thermal efficiency η I . Models for various thermodynamic processes in the cycle and treatments for unsteady compressible flow and heat transfer inside the regenerator are developed. Digital simulations of the cycle are made. Compared to an idealized engine cycle devoid of regeneration, provisions for ICR seem to deteriorate the thermal efficiency. In an 8:1 compression ratio octane engine simulated with an equivalence ratio of 0.75, η I  = 0.455 with regeneration and η I  = 0.491 without. This study shows that previous claims on efficiency gains via ICR, using highly-simplified models, may be misleading.

  19. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    Science.gov (United States)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  20. Students Working Online for Group Projects: A Test of an Extended Theory of Planned Behaviour Model

    Science.gov (United States)

    Cheng, Eddie W. L.

    2017-01-01

    This study examined an extended theory of planned behaviour (TPB) model that specified factors affecting students' intentions to collaborate online for group work. Past behaviour, past experience and actual behavioural control were incorporated in the extended TPB model. The mediating roles of attitudes, subjective norms and perceived behavioural…

  1. Thermodynamic admissibility of the extended Pom-Pom model for branched polymers

    NARCIS (Netherlands)

    Soulages, J.; Hütter, M.; Öttinger, H.C.

    2006-01-01

    The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M.

  2. Extending a configuration model to find communities in complex networks

    International Nuclear Information System (INIS)

    Jin, Di; Hu, Qinghua; He, Dongxiao; Yang, Bo; Baquero, Carlos

    2013-01-01

    Discovery of communities in complex networks is a fundamental data analysis task in various domains. Generative models are a promising class of techniques for identifying modular properties from networks, which has been actively discussed recently. However, most of them cannot preserve the degree sequence of networks, which will distort the community detection results. Rather than using a blockmodel as most current works do, here we generalize a configuration model, namely, a null model of modularity, to solve this problem. Towards decomposing and combining sub-graphs according to the soft community memberships, our model incorporates the ability to describe community structures, something the original model does not have. Also, it has the property, as with the original model, that it fixes the expected degree sequence to be the same as that of the observed network. We combine both the community property and degree sequence preserving into a single unified model, which gives better community results compared with other models. Thereafter, we learn the model using a technique of nonnegative matrix factorization and determine the number of communities by applying consensus clustering. We test this approach both on synthetic benchmarks and on real-world networks, and compare it with two similar methods. The experimental results demonstrate the superior performance of our method over competing methods in detecting both disjoint and overlapping communities. (paper)

  3. Hyperstate matrix models : extending demographic state spaces to higher dimensions

    NARCIS (Netherlands)

    Roth, G.; Caswell, H.

    2016-01-01

    1. Demographic models describe population dynamics in terms of the movement of individuals among states (e.g. size, age, developmental stage, parity, frailty, physiological condition). Matrix population models originally classified individuals by a single characteristic. This was enlarged to two

  4. Model-based segmentation and classification of trajectories (Extended abstract)

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Buchin, K.; Buchin, M.; Sijben, S.; Westenberg, M.A.

    2014-01-01

    We present efficient algorithms for segmenting and classifying a trajectory based on a parameterized movement model like the Brownian bridge movement model. Segmentation is the problem of subdividing a trajectory into parts such that each art is homogeneous in its movement characteristics. We

  5. An extended gravity model with substitution applied to international trade

    NARCIS (Netherlands)

    Bikker, J.A.|info:eu-repo/dai/nl/06912261X

    The traditional gravity model has been applied many times to international trade flows, especially in order to analyze trade creation and trade diversion. However, there are two fundamental objections to the model: it cannot describe substitutions between flows and it lacks a cogent theoretical

  6. A 'theory of everything'? [Extending the Standard Model

    International Nuclear Information System (INIS)

    Ross, G.G.

    1993-01-01

    The Standard Model provides us with an amazingly successful theory of the strong, weak and electromagnetic interactions. Despite this, many physicists believe it represents only a step towards understanding the ultimate ''theory of everything''. In this article we describe why the Standard Model is thought to be incomplete and some of the suggestions for its extension. (Author)

  7. Efficient Modelling and Generation of Markov Automata (extended version)

    NARCIS (Netherlands)

    Timmer, Mark; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    2012-01-01

    This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the

  8. Analytic investigation of extended Heitler-Matthews model

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Stefan; Veberic, Darko; Engel, Ralph [KIT, IKP (Germany)

    2016-07-01

    Many features of extensive air showers are qualitatively well described by the Heitler cascade model and its extensions. The core of a shower is given by hadrons that interact with air nuclei. After each interaction some of these hadrons decay and feed the electromagnetic shower component. The most important parameters of such hadronic interactions are inelasticity, multiplicity, and the ratio of charged vs. neutral particles. However, in analytic considerations approximations are needed to include the characteristics of hadron production. We discuss extensions of the simple cascade model by analytic description of air showers by cascade models which include also the elasticity, and derive the number of produced muons. In a second step we apply this model to calculate the dependence of the shower center of gravity on model parameters. The depth of the center of gravity is closely related to that of the shower maximum, which is a commonly-used composition-sensitive observable.

  9. Semi-continuous and multigroup models in extended kinetic theory

    International Nuclear Information System (INIS)

    Koller, W.

    2000-01-01

    The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)

  10. Near wall combustion modeling in spark ignition engines. Part A: Flame–wall interaction

    International Nuclear Information System (INIS)

    Demesoukas, Sokratis; Caillol, Christian; Higelin, Pascal; Boiarciuc, Andrei; Floch, Alain

    2015-01-01

    Highlights: • A model for flame–wall interaction in addition to flame wrinkling by turbulence is proposed. • Two sparkplug positions and two lengths are used in a test engine for model validation. • Flame–wall interaction decreases the maximum values of cylinder pressure and heat release rates. • The impact of combustion chamber geometry is taken into account by the flame–wall interaction model. - Abstract: Research and design in the field of spark ignition engines seek to achieve high performance while conserving fuel economy and low pollutant emissions. For the evaluation of various engine configurations, numerical simulations are favored, since they are quick and less expensive than experiments. Various zero-dimensional combustion models are currently used. Both flame front reactions and post-flame processes contribute to the heat release rate. The first part of this study focuses on the role of the flame front on the heat release rate, by modeling the interaction of the flame front with the chamber wall. Post-flame reactions are dealt with in Part B of the study. The basic configurations of flame quenching in laminar flames are also applicable in turbulent flames, which is the case in spark ignition engines. A simplified geometric model of the combustion chamber was used to calculate the mean flame surface, the flame volume and the distribution of flame surface as a function of the distance from the wall. The flame–wall interaction took into account the geometry of the combustion chamber and of the flame, aerodynamic turbulence and the in-cylinder pressure and temperature conditions, through a phenomenological attenuation function of the wrinkling factor. A modified global wrinkling factor as a function of the mean surface distance distribution from the wall was calculated. The impact of flame–wall interaction was simulated for four configurations of the sparkplug position and length: centered and lateral position, and standard and projected

  11. Extended UNIQUAC model for thermodynamic modeling of CO2 absorption in aqueous alkanolamine solutions

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Thomsen, Kaj

    2009-01-01

    The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA-MDEA). F......The extended UNIQUAC model [K. Thomsen, R Rasmussen, Chem. Eng. Sci. 54 (1999) 1787-1802] was applied to the thermodynamic representation of carbon dioxide absorption in aqueous monoethanolamine (MEA), methyldiethanolamine (MDEA) and varied strength mixtures of the two alkanolamines (MEA......) are included in the parameter estimation process. The previously unavailable standard state properties of the alkanolamine ions appearing in this work, i.e. MEA protonate, MEA carbamate and MDEA protonate are determined. The concentration of the species in both MEA and MDEA solutions containing CO2...

  12. Interaction between combustion and turbulence in modelling of emissions; Palamisen ja turbulenssin vuorovaikutus paeaestoejen mallinnuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Inst. of Energy and Process Technology

    1997-10-01

    The aim of the project has been to model and simulate gas phase combustion taking into account the interaction between the chemical reactions and turbulence, respectively. Especially the modelling of nitric oxide and carbon monoxide were included in the computations which were applied into two laboratory-scale test cases namely into the about 300 kW natural gas burner by International Flame Research Foundation and into the smaller natural gas jet flame by delft University of Technology. Both test cases were calculated in two dimensional axially symmetric chambers with the swirl numbers equal to 0.56 and zero in the IFRF and Delft flames, respectively. In this study it was necessary to take into account as well as possible the effect of turbulence on the chemical reactions. Therefore, the Eddy Dissipation Concept Model (EDC) together with the local extinction was chosen to describe both the combustion reactions of methane and carbon monoxide and the formation and reduction of nitric oxide, too. In this study two different turbulent time scales were used namely the Kolmogorov time scale in the fine structure conditions without and with the factor taking more into account the fine structure conditions, respectively. It can be noticed the computational results are more similar with the experimental data when the factor was used. The prediction of chemical time scale was based on the principle by Gran et Melaaen and Magnussen. (orig.)

  13. Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models

    International Nuclear Information System (INIS)

    Hawkes, Evatt R; Sankaran, Ramanan; Sutherland, James C; Chen, Jacqueline H

    2005-01-01

    The advancement of our basic understanding of turbulent combustion processes and the development of physics-based predictive tools for design and optimization of the next generation of combustion devices are strategic areas of research for the development of a secure, environmentally sound energy infrastructure. In direct numerical simulation (DNS) approaches, all scales of the reacting flow problem are resolved. However, because of the magnitude of this task, DNS of practical high Reynolds number turbulent hydrocarbon flames is out of reach of even terascale computing. For the foreseeable future, the approach to this complex multi-scale problem is to employ distinct but synergistic approaches to tackle smaller sub-ranges of the complete problem, which then require models for the small scale interactions. With full access to the spatially and temporally resolved fields, DNS can play a major role in the development of these models and in the development of fundamental understanding of the micro-physics of turbulence-chemistry interactions. Two examples, from simulations performed at terascale Office of Science computing facilities, are presented to illustrate the role of DNS in delivering new insights to advance the predictive capability of models. Results are presented from new three-dimensional DNS with detailed chemistry of turbulent non-premixed jet flames, revealing the differences between mixing of passive and reacting scalars, and determining an optimal lower dimensional representation of the full thermochemical state space

  14. A simple one-step chemistry model for partially premixed hydrocarbon combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [Instituto Nacional de Tecnica Aeroespacial, Madrid (Spain); Sanchez, Antonio L. [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Leganes 28911 (Spain); Linan, Amable [ETSI Aeronauticos, Pl. Cardenal Cisneros 3, Madrid 28040 (Spain); Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States)

    2006-10-15

    This work explores the applicability of one-step irreversible Arrhenius kinetics with unity reaction order to the numerical description of partially premixed hydrocarbon combustion. Computations of planar premixed flames are used in the selection of the three model parameters: the heat of reaction q, the activation temperature T{sub a}, and the preexponential factor B. It is seen that changes in q with equivalence ratio f need to be introduced in fuel-rich combustion to describe the effect of partial fuel oxidation on the amount of heat released, leading to a universal linear variation q(f) for f>1 for all hydrocarbons. The model also employs a variable activation temperature T{sub a}(f) to mimic changes in the underlying chemistry in rich and very lean flames. The resulting chemistry description is able to reproduce propagation velocities of diluted and undiluted flames accurately over the whole flammability limit. Furthermore, computations of methane-air counterflow diffusion flames are used to test the proposed chemistry under nonpremixed conditions. The model not only predicts the critical strain rate at extinction accurately but also gives near-extinction flames with oxygen leakage, thereby overcoming known predictive limitations of one-step Arrhenius kinetics. (author)

  15. Experimental investigation and mathematical modelling of wood combustion in a moving grate boiler

    International Nuclear Information System (INIS)

    Zhang, Xiaohui; Chen, Qun; Sharifi, Vida; Swithenbank, Jim; Bradford, Richard

    2010-01-01

    The use of biomass to generate energy offers significant environmental advantages for the reduction in emissions of greenhouse gases. The main objective of this study was to investigate the performance of a small scale biomass heating plant: i.e. combustion characteristics and emissions. An extensive series of experimental tests was carried out at a small scale residential biomass heating plant i.e. wood chip fired boiler. The concentrations of CO, NO x , particulate matter in the flue gas were measured. In addition, mathematical modelling work using FLIC and FLUENT codes was carried out in order to simulate the overall performance of the wood fired heating system. Results showed that pollutant emissions from the boiler were within the relative emission limits. Mass concentration of CO emission was 550-1600 mg/m 3 (10% O 2 ). NO x concentration in the flue gas from the wood chips combustion varied slightly between 28 and 60 ppmv. Mass concentration of PM 10 in the flue gas was 205 mg/m 3 (10% O 2 ) The modelling results showed that most of the fuel was burnt inside the furnace and little CO was released from the system due to the high flue gas temperature in the furnace. The injection of the secondary air provided adequate mixing and favourable combustion conditions in the over-bed chamber in the wood chips fired boiler. This study has shown that the use of wood heating system result in much lower CO 2 emissions than from a fossil fuel e.g. coal fired heating system. (author)

  16. Modelling heavy-ion energy deposition in extended media

    International Nuclear Information System (INIS)

    Mishustin, I.; Pshenichnov, I.; Greiner, W.; Mishustin, I.; Pshenichnov, I.

    2010-01-01

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  17. Modelling heavy-ion energy deposition in extended media

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, I.; Pshenichnov, I.; Greiner, W. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, Frankfurt am Main (Germany); Mishustin, I. [Kurchatov Institute, Russian Research Center, Moscow (Russian Federation); Pshenichnov, I. [Institute for Nuclear Research, Russian Academy of Science, Moscow (Russian Federation)

    2010-10-15

    We present recent developments of the Monte Carlo model for heavy-ion therapy (MCHIT), which is currently based on the Geant4 tool-kit of version 9.2. The major advancement of the model concerns the modelling of violent fragmentation reactions by means of the Fermi break-up model, which is used to simulate decays of hot fragments created after the first stage of nucleus-nucleus collisions. By means of MCHIT we study the dose distributions from therapeutic beams of carbon nuclei in tissue-like materials, like water and PMMA. The contributions to the total dose from primary beam nuclei and from charged secondary fragments produced in nuclear fragmentation reactions are calculated. The build-up of secondary fragments along the beam axis is calculated and compared with available experimental data. Finally, we demonstrate the impact of violent multifragment decays on energy distributions of secondary neutrons produced by carbon nuclei in water. (authors)

  18. Modern elementary particle physics explaining and extending the standard model

    CERN Document Server

    Kane, Gordon

    2017-01-01

    This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

  19. Real-time modelling of the diesel engine combustion process; Echtzeitfaehige Modellierung des dieselmotorischen Verbrennungsprozesses

    Energy Technology Data Exchange (ETDEWEB)

    Merz, B.

    2008-07-01

    The publication investigates single-zone models of diesel engine combustion which are capable, in addition to pre-injection and main injection, to represent post-injection processes on a physical basis. These must function in real time as they are used in ''hardware-in-the-loop'' test stands. Methods to adapt the models to other engine types are explained. Validation is made across the whole characteristic field on the basis of measured data provided by two serial engines. For assessing pollutant production, models are integrated that are capable of calculating NOx and soot formation. These, too, are calculated in real time using appropriate hardware systems. A runtime analysis compares the computing times of the models. (orig.)

  20. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.

    2016-04-05

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  1. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)], E-mail: tony.roskilly@ncl.ac.uk

    2009-01-15

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator.

  2. Coupled dynamic-multidimensional modelling of free-piston engine combustion

    International Nuclear Information System (INIS)

    Mikalsen, R.; Roskilly, A.P.

    2009-01-01

    Free-piston engines are under investigation by a number of research groups worldwide, as an alternative to conventional technology in applications such as electric and hydraulic power generation. The piston dynamics of the free-piston engine differ significantly from those of conventional engines, and this may influence in-cylinder gas motion, combustion and emissions formation. Due to the complex interaction between mechanics and thermodynamics, the modelling of free-piston engines is not straight-forward. This paper presents a novel approach to the modelling of free-piston engines through the introduction of solution-dependent mesh motion in an engine CFD code. The particular features of free-piston engines are discussed, and the model for engine dynamics implemented in the CFD code is described. Finally, the coupled solver is demonstrated through the modelling of a spark ignited free-piston engine generator

  3. A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

    KAUST Repository

    Skeen, Scott A.; Manin, Julien; Pickett, Lyle M.; Cenker, Emre; Bruneaux, Gilles; Kondo, Katsufumi; Aizawa, Tets; Westlye, Fredrik; Dalen, Kristine; Ivarsson, Anders; Xuan, Tiemin; Garcia-Oliver, Jose M; Pei, Yuanjiang; Som, Sibendu; Hu, Wang; Reitz, Rolf D.; Lucchini, Tommaso; D'Errico, Gianluca; Farrace, Daniele; Pandurangi, Sushant S.; Wright, Yuri M.; Chishty, Muhammad Aqib; Bolla, Michele; Hawkes, Evatt

    2016-01-01

    The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.

  4. Quark-flavour phenomenology of models with extended gauge symmetries

    International Nuclear Information System (INIS)

    Carlucci, Maria Valentina

    2013-01-01

    Gauge invariance is one of the fundamental principles of the Standard Model of particles and interactions, and it is reasonable to believe that it also regulates the physics beyond it. In this thesis we have studied the theory and phenomenology of two New Physics models based on gauge symmetries that are extensions of the Standard Model group. Both of them are particularly interesting because they provide some answers to the question of the origin of flavour, which is still unexplained. Moreover, the flavour sector represents a promising field for the research of indirect signatures of New Physics, since after the first run of LHC we do not have any direct hint of it yet. The first model assumes that flavour is a gauge symmetry of nature, SU(3) 3 f , spontaneously broken by the vacuum expectation values of new scalar fields; the second model is based on the gauge group SU(3) c x SU(3) L x U(1) X , the simplest non-abelian extension of the Standard Model group. We have traced the complete theoretical building of the models, from the gauge group, passing through the nonanomalous fermion contents and the appropriate symmetry breakings, up to the spectra and the Feynman rules, with a particular attention to the treatment of the flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-violating phases. In fact, these models present an interesting flavour phenomenology, and for both of them we have analytically calculated the contributions to the ΔF=2 and ΔF=1 down-type transitions, arising from new tree-level and box diagrams. Subsequently, we have performed a comprehensive numerical analysis of the phenomenology of the two models. In both cases we have found very effective the strategy of first to identify the quantities able to provide the strongest constraints to the parameter space, then to systematically scan the allowed regions of the latter in order to obtain indications about the key flavour observables, namely the mixing parameters of

  5. Model for extended Pati-Salam gauge symmetry

    International Nuclear Information System (INIS)

    Foot, R.; Lew, H.; Volkas, R.R.

    1990-11-01

    The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs

  6. Extended model of restricted beam for FSO links

    Science.gov (United States)

    Poliak, Juraj; Wilfert, Otakar

    2012-10-01

    Modern wireless optical communication systems in many aspects overcome wire or radio communications. Their advantages are license-free operation and broad bandwidth that they offer. The medium in free-space optical (FSO) links is the atmosphere. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. This beam originates in the transmitter and is affected by its individual parts, especially by the lens socket and the transmitter aperture, where attenuation and diffraction effects take place. Both of these phenomena unfavourable influence the beam and cause degradation of link availability, or its total malfunction. Therefore, both of these phenomena should be modelled and simulated, so that one can judge the link function prior to the realization of the system. Not only the link availability and reliability are concerned, but also economic aspects. In addition, the transmitted beam is not, generally speaking, circularly symmetrical, what makes the link simulation more difficult. In a comprehensive model, it is necessary to take into account the ellipticity of the beam that is restricted by circularly symmetrical aperture where then the attenuation and diffraction occur. General model is too computationally extensive; therefore simplification of the calculations by means of analytical and numerical approaches will be discussed. Presented model is not only simulated using computer, but also experimentally proven. One can then deduce the ability of the model to describe the reality and to estimate how far can one go with approximations, i.e. limitations of the model are discussed.

  7. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    Science.gov (United States)

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  8. Impacts and implementation of fuel moisture release and radiation properties in modelling of pulverized fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    . Therefore, cares must be taken in particle radiation, especially particle radiative properties. The refined weighted-sum-of-gray-gases model (WSGGM) and conversion-dependent particle radiative property models presented in the paper are recommended for use in generic CFD modelling of PF combustion....

  9. New paradigm for simplified combustion modeling of energetic solids: Branched chain gas reaction

    Energy Technology Data Exchange (ETDEWEB)

    Brewster, M.Q.; Ward, M.J. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    Two combustion models with simple but rational chemistry are compared: the classical high gas activation energy (E{sub g}/RT {much_gt} 1) Denison-Baum-Williams (DBW) model, and a new low gas activation energy (E{sub g}/RT {much_lt} 1) model recently proposed by Ward, Son, and Brewster (WSB). Both models make the same simplifying assumptions of constant properties, Lewis number unity, single-step, second order gas phase reaction, and single-step, zero order, high activation energy condensed phase decomposition. The only difference is in the gas reaction activation energy E{sub g} which is asymptotically large for DBW and vanishingly small for WSB. For realistic parameters the DBW model predicts a nearly constant temperature sensitivity {sigma}{sub p} and a pressure exponent n approaching 1. The WSB model predicts generally observed values of n = 0.7 to 0.9 and {sigma}{sub p}(T{sub o},P) with the generally observed variations with temperature (increasing) and pressure (decreasing). The WSB temperature profile also matches measured profiles better. Comparisons with experimental data are made using HMX as an illustrative example (for which WSB predictions for {sigma}{sub p}(T{sub o},P) are currently more accurate than even complex chemistry models). WSB has also shown good agreement with NC/NG double base propellant and HNF, suggesting that at the simplest level of combustion modeling, a vanishingly small gas activation energy is more realistic than an asymptotically large one. The authors conclude from this that the important (regression rate determining) gas reaction zone near the surface has more the character of chain branching than thermal decomposition.

  10. Characterising Combustion in Diesel Engines : Using parameterised finite stage cylinder process models

    NARCIS (Netherlands)

    Ding, Y.

    2011-01-01

    Characterising combustion of diesel engines is not only necessary when researching the instantaneous combustion phenomena but also when investigating the change of the combustion process under variable engine operating conditions. An effective way to achieve this goal is to parameterize the

  11. Modelling of NOx emissions from pressurized fluidized bed combustion - A parameter study

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik

    1997-01-01

    velocity, the bubble size, the bubble rise velocity and the gas interchange coefficient between bubble and dense phase. The most important combustion parameters are the rates of CO and CH4 combustion and the CO/(CO + CO2) ratio from char combustion. (C) 1997 Elsevier Science Ltd....

  12. The numerical comparison of fire combustion model and water-mist suppression with experiments by FDS code

    International Nuclear Information System (INIS)

    Li Hsuennien; Ferng Yuhming; Shih Chunkuan; Hsu Wensheng

    2007-01-01

    FDS [1] code numerically solves a form of the Navier-Stokes equations appropriate for low-speed, thermally driven flow with an emphasis on smoke and heat transport from fires. FDS uses a mixture fraction combustion model. The mixture fraction is a conserved scalar quantity that is defined as the fraction of fuel gas at a given point in the flow field. The model assumes that combustion is mixing-controlled, and that the reaction of fuel and oxygen is infinitely fast. In FDS, Lagrangian particles are used to simulate smoke movement and sprinkling water-mist discharge. In order to evaluate the combustion model and water-mist suppression function of the code, FDS analyses are conducted to simulate two enclosure fire cases available in the literature. Comparisons with other combustion models are also made. For fires suppression by water-mist in FDS, parametric studies are performed to compare various water-mist injection characteristics for maximum suppression. Numerical results indicate that the flame suppression is closely related to characteristics of the water mist, such as droplet diameter, mist injection velocity, injection density. Our present investigations show that the combustion model and water-mist suppression in FDS can provide simulation results that are comparable with the experiments. (author)

  13. Generative probabilistic models extend the scope of inferential structure determination

    DEFF Research Database (Denmark)

    Olsson, Simon; Boomsma, Wouter; Frellsen, Jes

    2011-01-01

    demonstrate that the use of generative probabilistic models instead of physical forcefields in the Bayesian formalism is not only conceptually attractive, but also improves precision and efficiency. Our results open new vistas for the use of sophisticated probabilistic models of biomolecular structure......Conventional methods for protein structure determination from NMR data rely on the ad hoc combination of physical forcefields and experimental data, along with heuristic determination of free parameters such as weight of experimental data relative to a physical forcefield. Recently, a theoretically...

  14. Extending MBI Model using ITIL and COBIT Processes

    Directory of Open Access Journals (Sweden)

    Sona Karkoskova

    2015-10-01

    Full Text Available Most organizations today operate in a highly complex and competitive business environment and need to be able to react to rapidly changing market conditions. IT management frameworks are widely used to provide effective support for business objectives through aligning IT with business and optimizing the use of IT resources. In this paper we analyze three IT management frameworks (ITIL, COBIT and MBI with the objective to identify the relationships between these frameworks, and mapping ITIL and COBIT processes to MBI tasks. As a result of this analysis we propose extensions to the MBI model to incorporate IT Performance Management and a Capability Maturity Model.

  15. Elementary particles, dark matter candidate and new extended standard model

    Science.gov (United States)

    Hwang, Jaekwang

    2017-01-01

    Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.

  16. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  17. The conditional moment closure method for modeling lean premixed turbulent combustion

    Science.gov (United States)

    Martin, Scott Montgomery

    Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from

  18. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  19. Model Research of Gas Emissions From Lignite and Biomass Co-Combustion in a Large Scale CFB Boiler

    Directory of Open Access Journals (Sweden)

    Krzywański Jarosław

    2014-06-01

    Full Text Available The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2 were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.

  20. Analysis on reduced chemical kinetic model of N-heptane for HCCI combustion. Paper no. IGEC-1-072

    International Nuclear Information System (INIS)

    Yao, M.; Zheng, Z.

    2005-01-01

    Because of high complexity coupled with multidimensional fluid dynamics, it is difficult to apply detailed chemical kinetic model to simulate practical engines. A reduced model of n-heptane has been developed on the basic of detailed mechanism by sensitivity analysis and reaction path analysis of every stage of combustion. The new reduced mechanism consists of 35 species and 41 reactions, and it is effective in engine condition. The results show that it gives predictions similar to the detailed model in ignition timing, in-cylinder temperature and pressure. Furthermore, the reduced mechanism can be used to simulate boundary condition of partial combustion in good agreement with the detailed mechanism. (author)

  1. Searches for Neutral Higgs Bosons in Extended Models

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2004-01-01

    Searches for neutral Higgs bosons produced at LEP in association with Z bosons, in pairs and in the Yukawa process are presented in this paper. Higgs boson decays into b quarks, tau leptons, or other Higgs bosons are considered, giving rise to four-b, four-b+jets, six-b and four-tau final states, as well as mixed modes with b quarks and tau leptons. The whole mass domain kinematically accessible at LEP in these topologies is searched. The analysed data set covers both the LEP1 and LEP2 energy ranges and exploits most of the luminosity recorded by the DELPHI experiment. No convincing evidence for a signal is found, and results are presented in the form of mass-dependent upper bounds on coupling factors (in units of model-independent reference cross-sections) for all processes, allowing interpretation of the data in a large class of models.

  2. Non-leptonic decays in an extended chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J. O. [Dept. of Physics, Univ. of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway)

    2012-10-23

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.

  3. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    KAUST Repository

    Atef, Nour

    2017-02-05

    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.

  4. Extended objects

    International Nuclear Information System (INIS)

    Creutz, M.

    1976-01-01

    After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation

  5. Combustion Research Facility | A Department of Energy Office of Science

    Science.gov (United States)

    Collaborative Research Facility Back to Sandia National Laboratory Homepage Combustion Research Search the CRF Combustion Chemistry Flame Chemistry Research.Combustion_Chemistry.Flame_Chemistry Theory and Modeling Theory and Modeling Combustion Kinetics High Pressure Chemistry Chemistry of Autoignition

  6. On extended liability in a model of adverse selection

    OpenAIRE

    Dieter Balkenborg

    2004-01-01

    We consider a model where a judgment-proof firm needs finance to realize a project. This project might cause an environmental hazard with a probability that is the private knowledge of the firm. Thus there is asymmetric information with respect to the environmental riskiness of the project. We consider the implications of a simple joint and strict liability rule on the lender and the firm where, in case of a damage, the lender is responsible for that part of the liability which the judgment-p...

  7. On Extending Temporal Models in Timed Influence Networks

    Science.gov (United States)

    2009-06-01

    among variables in a system. A situation where the impact of a variable takes some time to reach the affected variable(s) cannot be modeled by either of...A1 A4 [h11(1) = 0.99, h11(0) = -0.99] [h12(1) = 0.90, h12 (0) = 0] [ h13 (1) = 0, h13 (0) = -0.90] [h14(1) =- 0.90, h14(0...the corresponding )( 1 11 xh and )( 2 12 xh . The posterior probability of B captures the impact of an affecting event on B and can be plotted as a

  8. Extending PSA models including ageing and asset management - 15291

    International Nuclear Information System (INIS)

    Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.

    2015-01-01

    This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed

  9. The Action of Chain Extenders in Nylon-6, PET, and Model Compounds

    NARCIS (Netherlands)

    Loontjens, T.; Pauwels, K.; Derks, F.; Neilen, M.; Sham, C.K.; Serné, M.

    1997-01-01

    The action of two complementary chain extenders is studied in model systems as well as in poly(ethylene terephthalate) (PET) and nylon–6. Chain extenders are low molecular weight compounds that can be used to increase the molecular weight of polymers in a short time. The reaction must preferably be

  10. Minimal representations of supersymmetry and 1D N-extended σ-models

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2008-01-01

    We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)

  11. Perceived Convenience in an Extended Technology Acceptance Model: Mobile Technology and English Learning for College Students

    Science.gov (United States)

    Chang, Chi-Cheng; Yan, Chi-Fang; Tseng, Ju-Shih

    2012-01-01

    Since convenience is one of the features for mobile learning, does it affect attitude and intention of using mobile technology? The technology acceptance model (TAM), proposed by David (1989), was extended with perceived convenience in the present study. With regard to English language mobile learning, the variables in the extended TAM and its…

  12. Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    NARCIS (Netherlands)

    Jones, Valerie M.; Rensink, Arend; Brinksma, Hendrik

    2005-01-01

    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing

  13. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    DEFF Research Database (Denmark)

    Ivarsson, Anders

    emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. The complex combustion process of a compression ignition engine may be divided...... it is well suited for optical line of sight diagnostics in both pre and post combustion regions. The work also includes some preliminary studies of radiant emissions from helium stabilized ethylene/air and methane/oxygen flames. It is demonstrated that nano particles below the sooting threshold actually...... of ethylene/air flames well known from the experimental work, was used for the model validation. Two cases were helium stabilized flames with φ = 1 and 2.14. The third case was an unstable flame with φ = 2.14. The unstable case was used to test whether a transient model would be able to predict the frequency...

  14. Top quark decays with flavor violation in extended models

    International Nuclear Information System (INIS)

    Aranda, J I; Gómez, D E; Ramírez-Zavaleta, F; Tututi, E S; Cortés-Maldonado, I

    2016-01-01

    We analyze the top quark decays t → cg and t → cγ mediated by a new neutral gauge boson, identified as Z', in the context of the sequential Z model. We focus our attention on the corresponding branching ratios, which are a function of the Z' boson mass. The study range is taken from 2 TeV to 6 TeV, which is compatible with the resonant region of the dileptonic channel reported by ATLAS and CMS Collaborations. Finally, our preliminary results tell us that the branching ratios of t → cg and t → cγ processes can be of the order of 10 -11 and 10 -13 , respectively. (paper)

  15. EXTENDE MODEL OF COMPETITIVITY THROUG APPLICATION OF NEW APPROACH DIRECTIVES

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2009-03-01

    Full Text Available The basic subject of this work is the model of new approach impact on quality and safety products, and competency of our companies. This work represents real hypothesis on the basis of expert's experiences, in regard to that the infrastructure with using new approach directives wasn't examined until now, it isn't known which product or industry of Serbia is related to directives of the new approach and CE mark, and it is not known which are effects of the use of the CE mark. This work should indicate existing quality reserves and product's safety, the level of possible competency improvement and increasing the profit by discharging new approach directive requires.

  16. Dynamic Chemical Model for $\\text {H} _2 $/$\\text {O} _2 $ Combustion Developed Through a Community Workflow

    KAUST Repository

    Oreluk, James

    2018-01-30

    Elementary-reaction models for $\\\\text{H}_2$/$\\\\text{O}_2$ combustion were evaluated and optimized through a collaborative workflow, establishing accuracy and characterizing uncertainties. Quantitative findings were the optimized model, the importance of $\\\\text{H}_2 + \\\\text{O}_2(1\\\\Delta) = \\\\text{H} + \\\\text{HO}_2$ in high-pressure flames, and the inconsistency of certain low-temperature shock-tube data. The workflow described here is proposed to be even more important because the approach and publicly available cyberinfrastructure allows future community development of evolving improvements. The workflow steps applied here were to develop an initial reaction set using Burke et al. [2012], Burke et al. [2013], Sellevag et al. [2009], and Konnov [2015]; test it for thermodynamic and kinetics consistency and plausibility against other sets in the literature; assign estimated uncertainties where not stated in the sources; select key data targets (

  17. Dynamic Chemical Model for $\\text {H} _2 $/$\\text {O} _2 $ Combustion Developed Through a Community Workflow

    KAUST Repository

    Oreluk, James; Needham, Craig D.; Baskaran, Sathya; Sarathy, Mani; Burke, Michael P.; West, Richard H.; Frenklach, Michael; Westmoreland, Phillip R.

    2018-01-01

    Elementary-reaction models for $\\text{H}_2$/$\\text{O}_2$ combustion were evaluated and optimized through a collaborative workflow, establishing accuracy and characterizing uncertainties. Quantitative findings were the optimized model, the importance of $\\text{H}_2 + \\text{O}_2(1\\Delta) = \\text{H} + \\text{HO}_2$ in high-pressure flames, and the inconsistency of certain low-temperature shock-tube data. The workflow described here is proposed to be even more important because the approach and publicly available cyberinfrastructure allows future community development of evolving improvements. The workflow steps applied here were to develop an initial reaction set using Burke et al. [2012], Burke et al. [2013], Sellevag et al. [2009], and Konnov [2015]; test it for thermodynamic and kinetics consistency and plausibility against other sets in the literature; assign estimated uncertainties where not stated in the sources; select key data targets (

  18. Topological superconductivity in the extended Kitaev-Heisenberg model

    Science.gov (United States)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  19. Bipolarons in one-dimensional extended Peierls-Hubbard models

    Science.gov (United States)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  20. Thermochemical Modeling and Experimental Validation of Wood Pyrolysis Occurring During Pre-ignition Combustion

    Science.gov (United States)

    Fawaz, M.; Lautenberger, C.; Bond, T. C.

    2017-12-01

    The use of wood as a solid fuel for cooking and heating is associated with high particle emission which largely contribute to the dispersion of particulate matter (PM) in the atmosphere. The majority of those particles are released during the "pre-ignition" phase, i.e., before flaming of the wood occurs. In this work, we investigate the factors that influence the emission of PM during pre-ignition and lead to high particle emission to the atmosphere. During this combustion phase, at elevated temperature, pyrolysis is responsible for wood degradation and the production of gaseous materials that travel and exit the wood. We model the thermal degradation using Gpyro, an open source finite volume method numerical model to simulate heat, mass, and momentum transfer in the wood. In our analysis, we study factors that vary during combustion and that influence emission of PM: wood sample size and boundary conditions. In a fire the boundary conditions represent the thermal energy a piece of wood receives from the surrounding in the form of heat flux. We find that heat transfer is the limiting process governing the production and transport of gas from the wood, and that the amount of emitted PM is dependent on the size of the wood. The dependence of heat transfer from the boundaries on PM emission becomes more important with increasing wood log size. The model shows that a small log of wood (6cm by 2cm) emits close values of total mass of gas at low and high heat fluxes. For a large log of wood (20cm by 5cm) the total mass of gas emitted increases by 30% between low and high heat flux. We validate the model results with a controlled-temperature reactor that accommodates centimeter scale wood samples. The size of the wood used, indicates the abundance of wood in the region where wood is used a solid fuel. Understanding those factors will allow for defining conditions that result in reducing particle emissions during combustion.

  1. Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable

    NARCIS (Netherlands)

    Elhorst, J. Paul

    2001-01-01

    This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the

  2. Extended Mixed-Efects Item Response Models with the MH-RM Algorithm

    Science.gov (United States)

    Chalmers, R. Philip

    2015-01-01

    A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…

  3. Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling

    Science.gov (United States)

    Omidvarborna, Hamid

    methyl esters (SME) produced more CO and less CO2 emissions than those with low degrees of unsaturation and short chain lengths (WCO and TO, respectively). In addition, biodiesel fuels with long and unsaturated chains released more CH4 than the ones with shorter and less unsaturated chains. Experimental results on soot particles showed a significant reduction in soot emissions when using biodiesel compared to ULSD. For neat biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles was greater than the average soot particle from biodiesel blends. Eight elements were detected as the marker metals in biodiesel soot particles. The conclusion suggests that selected characterization methods are valuable for studying the structure and distribution of particulates. Experiments on both PM and NOx emissions were conducted on real engines in parallel with laboratory study. Field experiments using TARTA buses were performed on buses equipped with/without post-treatment technologies. The performance of the bus that ran on blended biodiesel was found to be very similar to ULSD. As a part of this study, the toxic nature of engine exhausts under different idling conditions was studied. The results of the PM emission analysis showed that the PM mean value of emission is dependent on the engine operation conditions and fuel type. Besides, different idling modes were investigated with respect to organic carbon (OC), elemental carbon (EC), and elemental analysis of the PMs collected from public transit buses in Toledo, Ohio. In the modeling portion of this work, a simplified model was developed by using artificial neural network (ANN) to predict NOx emissions from TARTA buses via engine parameters. ANN results showed that the developed ANN model was capable of predicting the NOx emissions of the tested engines with excellent correlation coefficients

  4. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  5. Computer modeling of fluid flow and combustion in the ISV [In Situ Vitrification] confinement hood

    International Nuclear Information System (INIS)

    Johnson, R.W.; Paik, S.

    1990-09-01

    Safety and suitability objectives for the application of the In Situ Vitrification (ISV) technology at the INEL require that the physical processes involved in ISVV be modeled to determine their operational behavior. The mathematical models that have been determined to address the modeling needs adequately for the ISV analysis package are detailed elsewhere. The present report is concerned with the models required for simulating the reacting flow that occurs in the ISV confinement hood. An experimental code named COYOTE has been secured that appears adequate to model the combustion in the confinement hood. The COYOTE code is a two-dimensional, transient, compressible, Eulerian, gas dynamics code for modeling reactive flows. It recognizes nonuniform Cartesian and cylindrical geometry and is based on the ICE (Implicit Continuous-fluid Eulerian) family of solution methods. It includes models for chemical reactions based on chemical kinetics as well as equilibrium chemistry. The mathematical models contained in COYOTE, their discrete analogs, the solution procedure, code structure and some test problems are presented in the report. 12 refs., 17 figs., 6 tabs

  6. Accurate prediction of the dew points of acidic combustion gases by using an artificial neural network model

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Aminian, Ali

    2011-01-01

    This paper presents a new approach based on using an artificial neural network (ANN) model for predicting the acid dew points of the combustion gases in process and power plants. The most important acidic combustion gases namely, SO 3 , SO 2 , NO 2 , HCl and HBr are considered in this investigation. Proposed Network is trained using the Levenberg-Marquardt back propagation algorithm and the hyperbolic tangent sigmoid activation function is applied to calculate the output values of the neurons of the hidden layer. According to the network's training, validation and testing results, a three layer neural network with nine neurons in the hidden layer is selected as the best architecture for accurate prediction of the acidic combustion gases dew points over wide ranges of acid and moisture concentrations. The proposed neural network model can have significant application in predicting the condensation temperatures of different acid gases to mitigate the corrosion problems in stacks, pollution control devices and energy recovery systems.

  7. On mathematical modeling and numerical simulation of chemical kinetics in turbulent lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lilleberg, Bjorn

    2011-07-01

    This thesis investigates turbulent reacting lean premixed flows with detailed treatment of the chemistry. First, the fundamental equations which govern laminar and turbulent reacting flows are presented. A perfectly stirred reactor numerical code is developed to investigate the role of unmixedness and chemical kinetics in driving combustion instabilities. This includes both global single-step and detailed chemical kinetic mechanisms. The single-step mechanisms predict to some degree a similar behavior as the detailed mechanisms. However, it is shown that simple mechanisms can by themselves introduce instabilities. Magnussens Eddy Dissipation Concept (EDC) for turbulent combustion is implemented in the open source CFD toolbox OpenFOAM R for treatment of both fast and detailed chemistry. RANS turbulence models account for the turbulent compressible flow. A database of pre-calculated chemical time scales, which contains the influence of chemical kinetics, is coupled to EDC with fast chemistry to account for local extinction in both diffusion and premixed flames. Results are compared to fast and detailed chemistry calculations. The inclusion of the database shows significantly better results than the fast chemistry calculations while having a comparably small computational cost. Numerical simulations of four piloted lean premixed jet flames falling into the 'well stirred reactor/broken reaction zones' regime, with strong finite-rate chemistry effects, are performed. Measured and predicted scalars compare well for the two jets with the lowest velocities. The two jets with the highest velocities experience extinction and reignition, and the simulations are able to capture the decrease and increase of the OH mass fractions, but the peak values are higher than in the experiments. Also numerical simulations of a lean premixed lifted jet flame with high sensitivity to turbulence modeling and chemical kinetics are performed. Limitations of the applied turbulence and

  8. Ultrametric distribution of culture vectors in an extended Axelrod model of cultural dissemination

    Science.gov (United States)

    Stivala, Alex; Robins, Garry; Kashima, Yoshihisa; Kirley, Michael

    2014-05-01

    The Axelrod model of cultural diffusion is an apparently simple model that is capable of complex behaviour. A recent work used a real-world dataset of opinions as initial conditions, demonstrating the effects of the ultrametric distribution of empirical opinion vectors in promoting cultural diversity in the model. Here we quantify the degree of ultrametricity of the initial culture vectors and investigate the effect of varying degrees of ultrametricity on the absorbing state of both a simple and extended model. Unlike the simple model, ultrametricity alone is not sufficient to sustain long-term diversity in the extended Axelrod model; rather, the initial conditions must also have sufficiently large variance in intervector distances. Further, we find that a scheme for evolving synthetic opinion vectors from cultural ``prototypes'' shows the same behaviour as real opinion data in maintaining cultural diversity in the extended model; whereas neutral evolution of cultural vectors does not.

  9. A reduced fidelity model for the rotary chemical looping combustion reactor

    KAUST Repository

    Iloeje, Chukwunwike O.

    2017-01-11

    The rotary chemical looping combustion reactor has great potential for efficient integration with CO capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel fraction for the selected oxygen carrier materials.

  10. Comparison of a semi-analytic and a CFD model uranium combustion to experimental data

    International Nuclear Information System (INIS)

    Clarksean, R.

    1998-01-01

    Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome

  11. Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism

    International Nuclear Information System (INIS)

    Yang, Weihong; Blasiak, Wlodzimierz

    2005-01-01

    A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N 2 O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. The results show that NO emission formed by N 2 O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N 2 O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace. (author)

  12. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr; Bari, Saiful [Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, Univ. of South Australia, Mawson Lakes SA 5095 (Australia)

    2009-12-15

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air. (author)

  13. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Bari, Saiful

    2009-01-01

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air.

  14. Optimal Design and Model Validation for Combustion Experiments in a Shock Tube

    KAUST Repository

    Long, Quan

    2014-01-06

    We develop a Bayesian framework for the optimal experimental design of the shock tube experiments which are being carried out at the KAUST Clean Combustion Center. The unknown parameters are the pre-exponential parameters and the activation energies in the reaction rate functions. The control parameters are the initial hydrogen concentration and the temperature. First, we build a polynomial based surrogate model for the observable related to the reactions in the shock tube. Second, we use a novel MAP based approach to estimate the expected information gain in the proposed experiments and select the best experimental set-ups corresponding to the optimal expected information gains. Third, we use the synthetic data to carry out virtual validation of our methodology.

  15. Modelling of plume chemistry of high flying aircraft with H2 combustion engines

    International Nuclear Information System (INIS)

    Weibring, G.; Zellner, R.

    1993-01-01

    Emissions from hydrogen fueled aircraft engines include large concentrations of radicals such as NO, OH, O and H. We describe the result of modelling studies in which the evolution of the radical chemistry in an expanding and cooling plume for three different mixing velocities is evaluated. The simulations were made for hydrogen combustion engines at an altitude of 26 km. For the fastest mixing conditions, the radical concentrations decrease only because of dilution with the ambient air, since the time for chemical reaction is too short. With lower mixing velocities, however, larger chemical conversions were determined. For the slowest mixing conditions the unburned hydrogen is converted into water. As a consequence the radicals O and OH increase considerably around 1400 K. The only exception being NO, for which no chemical change during the expansion is found. The concentrations of the reservoir molecules like H 2 O 2 , N 2 O 5 or HNO 3 have been calculated to remain relatively small. (orig.)

  16. Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion

    DEFF Research Database (Denmark)

    Wu, Hao; Grell, Morten Nedergaard; Jespersen, Jacob Boll

    2013-01-01

    Potassium chloride, KCl, formed from biomass combustion may lead to ash deposition and corrosion problems in boilers. Sulfates are effective additives for converting KCl to the less harmful K2SO4. In the present study, the decomposition of ammonium sulfate, aluminum sulfate and ferric sulfate...... of ammonium sulfate addition and ferric sulfation addition compared favorably with the experimental results. However, the model for aluminum sulfate addition under-predicted significantly the high sulfation degree of KCl observed in the experiments, possibly because of an under-estimation of the decomposition...... rate of aluminum. Under the boiler conditions of the present work, the simulation results suggested that the desirable temperature for the ferric sulfate injection was around 950-900oC, whereas for ammonium sulfate the preferable injection temperature was below 800oC....

  17. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    Science.gov (United States)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer

  18. An examination of the shrinking-core model of sub-micron aluminum combustion

    Science.gov (United States)

    Buckmaster, John; Jackson, Thomas L.

    2013-04-01

    We revisit the shrinking-core model of sub-micron aluminum combustion with particular attention to the mass flux balance at the reaction front which necessarily leads to a displacement velocity of the alumina shell surrounding the liquid aluminum. For the planar problem this displacement simply leads to an equal displacement of the entire alumina layer, and therefore a straightforward mathematical framework can be constructed. In this way we are able to construct a single curve which defines the burn time for arbitrary values of the diffusion coefficient of O atoms, the reaction rate, the characteristic length of the combustion field, and the O atom mass concentration within the alumina provided that it is much smaller than the aluminum density. This demonstrates a transition between a 'd 2-t' law for fast chemistry and a 'd-t' law for slow chemistry. For the spherical geometry, the one of physical interest, the outward displacement velocity creates not a simple displacement, but a stress field which, when examined within the framework of linear elasticity, strongly suggests the creation of internal cracking. We note that if the molten aluminum is pushed into these cracks by the high internal pressure characteristic of the stress field, its surface, where reaction occurs, could be fractal in nature and affect the fundamental nature of the burning law. Indeed, if this ingredient is added to the planar model, a single curve for the burn time can again be derived, and this describes a transition from a 'd 2-t' law to a 'd ν-t' law, where 0<ν<1.

  19. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.

    Science.gov (United States)

    Ramirez, Ivan; Volcke, Eveline I P; Rajinikanth, Rajagopal; Steyer, Jean-Philippe

    2009-06-01

    The anaerobic digestion process comprises a whole network of sequential and parallel reactions, of both biochemical and physicochemical nature. Mathematical models, aiming at understanding and optimization of the anaerobic digestion process, describe these reactions in a structured way, the IWA Anaerobic Digestion Model No. 1 (ADM1) being the most well established example. While these models distinguish between different microorganisms involved in different reactions, to our knowledge they all neglect species diversity between organisms with the same function, i.e. performing the same reaction. Nevertheless, available experimental evidence suggests that the structure and properties of a microbial community may be influenced by process operation and on their turn also determine the reactor functioning. In order to adequately describe these phenomena, mathematical models need to consider the underlying microbial diversity. This is demonstrated in this contribution by extending the ADM1 to describe microbial diversity between organisms of the same functional group. The resulting model has been compared with the traditional ADM1 in describing experimental data of a pilot-scale hybrid Upflow Anaerobic Sludge Filter Bed (UASFB) reactor, as well as in a more detailed simulation study. The presented model is further shown useful in assessing the relationship between reactor performance and microbial community structure in mesophilic CSTRs seeded with slaughterhouse wastewater when facing increasing levels of ammonia.

  20. Model-based safety analysis of a control system using Simulink and Simscape extended models

    Directory of Open Access Journals (Sweden)

    Shao Nian

    2017-01-01

    Full Text Available The aircraft or system safety assessment process is an integral part of the overall aircraft development cycle. It is usually characterized by a very high timely and financial effort and can become a critical design driver in certain cases. Therefore, an increasing demand of effective methods to assist the safety assessment process arises within the aerospace community. One approach is the utilization of model-based technology, which is already well-established in the system development, for safety assessment purposes. This paper mainly describes a new tool for Model-Based Safety Analysis. A formal model for an example system is generated and enriched with extended models. Then, system safety analyses are performed on the model with the assistance of automation tools and compared to the results of a manual analysis. The objective of this paper is to improve the increasingly complex aircraft systems development process. This paper develops a new model-based analysis tool in Simulink/Simscape environment.

  1. MILES extended : Stellar population synthesis models from the optical to the infrared

    NARCIS (Netherlands)

    Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical

  2. Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion

    Science.gov (United States)

    Alrbai, Mohammad

    Free-piston engines have the potential to challenge the conventional crankshaft engines by their design simplicity and higher operational efficiency. Many studies have been performed to overcome the limitations of the free-piston devices especially the stability and control issues. The investigations within the presented dissertation aim to satisfy many objectives by employing the approach of chemical kinetics to present the combustion process in the free-piston engine. This approach in addition to its advanced accuracy over the empirical methods, it has many other features like the ability to analyze the engine emissions. The effect of the heat release rate (HRR) on the engine performance is considered as the main objective. Understanding the relation between the HRR and the piston dynamics helps in enhancing the system efficiency and identifying the parameters that affect the overall performance. The dissertation covers some other objectives that belongs to the combustion phasing. Exhaust gas recirculation (EGR), equivalence ratio and the intake temperature represent the main combustion parameters, which have been discussed in this dissertation. To obtain the stability in system performance, the model requires a proper controller to simulate the operation and manage the different system parameters; for this purpose, different controlling techniques have been employed. In addition, the dissertation considers some other topics like engine emissions, fuels and fuels mechanisms. The model of the study describes the processes within a single cylinder, two stroke engine, which includes springs to support higher frequencies, reduce cyclic variations and sustain the engine compression ratio. An electrical generator presents the engine load; the generator supports different load profiles and play the key role in controlling the system. The 1st law of thermodynamics and Newton's 2nd law are applied to couple the piston dynamics with the engine thermodynamics. The model

  3. Modelling of Effects of Operating Conditions and Coal Reactivity on Temperature of Burning Particles in Fluidized Bed Combustion

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Hartman, Miloslav; Pohořelý, Michael; Trnka, Otakar

    2004-01-01

    Roč. 1, č. 2 (2004), s. 261-274 ISSN 1211-1910 R&D Projects: GA AV ČR IAA4072201; GA AV ČR IAA4072001 Institutional research plan: CEZ:AV0Z4072921 Keywords : fluidized bed combustion * char temperature * modelling Subject RIV: DI - Air Pollution ; Quality

  4. Experimental validation of a combustion kinetics based multi-zone model for natural gas-diesel RCCI engines

    NARCIS (Netherlands)

    Mikulski, M.; Bekdemir, C.; Willems, F.P.T.

    2016-01-01

    This paper presents the validation results of TNO's combustion model designed to support RCCI control development. In-depth validation was performed on a multi-cylinder heavy-duty engine operating in RCCI mode on natural gas and diesel fuel. It was shown that the adopted approach is able to

  5. Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using “FiresCone”

    Directory of Open Access Journals (Sweden)

    Long Shi

    2015-10-01

    Full Text Available A mathematical model, named FiresCone, was developed to simulate the pyrolysis and combustion processes of different types of combustible materials, which also took into account both gas and solid phases. In the present study, some non-charring and intumescent-protected polymer samples were investigated regarding their combustion behaviors in response to pre-determined external heat fluxes. The modeling results were validated against the experimental outcomes obtained from a cone calorimeter. The predicted mass loss rates of the samples were found to fit reasonably well with the experimental data collected under various levels of external irradiation. Both the experimental and modeling results showed that the peak mass loss rate of the non-charring polymer material occurred near the end of burning, whereas for the intumescent-protected polymer it happed shortly after the start of the experiment. “FiresCone” is expected to act as a practical tool for the investigation of fire behavior of combustible materials. It is also expected to model fire scenarios under complicated conditions.

  6. Reduced combustion mechanism for C1-C4 hydrocarbons and its application in computational fluid dynamics flare modeling.

    Science.gov (United States)

    Damodara, Vijaya; Chen, Daniel H; Lou, Helen H; Rasel, Kader M A; Richmond, Peyton; Wang, Anan; Li, Xianchang

    2017-05-01

    Emissions from flares constitute unburned hydrocarbons, carbon monoxide (CO), soot, and other partially burned and altered hydrocarbons along with carbon dioxide (CO 2 ) and water. Soot or visible smoke is of particular concern for flare operators/regulatory agencies. The goal of the study is to develop a computational fluid dynamics (CFD) model capable of predicting flare combustion efficiency (CE) and soot emission. Since detailed combustion mechanisms are too complicated for (CFD) application, a 50-species reduced mechanism, LU 3.0.1, was developed. LU 3.0.1 is capable of handling C 4 hydrocarbons and soot precursor species (C 2 H 2 , C 2 H 4 , C 6 H 6 ). The new reduced mechanism LU 3.0.1 was first validated against experimental performance indicators: laminar flame speed, adiabatic flame temperature, and ignition delay. Further, CFD simulations using LU 3.0.1 were run to predict soot emission and CE of air-assisted flare tests conducted in 2010 in Tulsa, Oklahoma, using ANSYS Fluent software. Results of non-premixed probability density function (PDF) model and eddy dissipation concept (EDC) model are discussed. It is also noteworthy that when used in conjunction with the EDC turbulence-chemistry model, LU 3.0.1 can reasonably predict volatile organic compound (VOC) emissions as well. A reduced combustion mechanism containing 50 C 1 -C 4 species and soot precursors has been developed and validated against experimental data. The combustion mechanism is then employed in the computational fluid dynamics (CFD) of modeling of soot emission and combustion efficiency (CE) of controlled flares for which experimental soot and CE data are available. The validated CFD modeling tools are useful for oil, gas, and chemical industries to comply with U.S. Environmental Protection Agency's (EPA) mandate to achieve smokeless flaring with a high CE.

  7. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Wang, Rong; Balkanski, Yves

    2018-04-01

    Daily modeled fields of phosphate deposition to the Mediterranean from natural dust, anthropogenic combustion and wildfires were used to assess the effect of this external nutrient on marine biogeochemistry. The ocean model used is a high-resolution (1/12°) regional coupled dynamical-biogeochemical model of the Mediterranean Sea (NEMO-MED12/PISCES). The input fields of phosphorus are for 2005, which are the only available daily resolved deposition fields from the global atmospheric chemical transport model LMDz-INCA. Traditionally, dust has been suggested to be the main atmospheric source of phosphorus, but the LMDz-INCA model suggests that combustion is dominant over natural dust as an atmospheric source of phosphate (PO4, the bioavailable form of phosphorus in seawater) for the Mediterranean Sea. According to the atmospheric transport model, phosphate deposition from combustion (Pcomb) brings on average 40.5×10-6 mol PO4 m-2 yr-1 over the entire Mediterranean Sea for the year 2005 and is the primary source over the northern part (e.g., 101×10-6 mol PO4 m-2 yr-1 from combustion deposited in 2005 over the north Adriatic against 12.4×10-6 from dust). Lithogenic dust brings 17.2×10-6 mol PO4 m-2 yr-1 on average over the Mediterranean Sea in 2005 and is the primary source of atmospheric phosphate to the southern Mediterranean Basin in our simulations (e.g., 31.8×10-6 mol PO4 m-2 yr-1 from dust deposited in 2005 on average over the south Ionian basin against 12.4×10-6 from combustion). The evaluation of monthly averaged deposition flux variability of Pdust and Pcomb for the 1997-2012 period indicates that these conclusions may hold true for different years. We examine separately the two atmospheric phosphate sources and their respective flux variability and evaluate their impacts on marine surface biogeochemistry (phosphate concentration, chlorophyll a, primary production). The impacts of the different phosphate deposition sources on the biogeochemistry of the

  8. Predicting auto-ignition characteristics of RCCI combustion using a multi-zone model

    NARCIS (Netherlands)

    Egüz, U.; Maes, N.C.J.; Leermakers, C.A.J.; Somers, L.M.T.; Goey, de L.P.H.

    2013-01-01

    The objective of new combustion concepts is to meet emission standards by improving fuel air mixing prior to ignition. Since there is no overlap between injection and ignition, combustion is governed mainly by chemical kinetics and it is challenging to control the phasing of ignition. Reactivity

  9. A reduced fidelity model for the rotary chemical looping combustion reactor

    International Nuclear Information System (INIS)

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    Highlights: • Methodology for developing a reduced fidelity rotary CLC reactor model is presented. • The reduced model determines optimal reactor configuration that meets design and operating requirements. • A 4-order of magnitude reduction in computational cost is achieved with good prediction accuracy. • Sensitivity studies demonstrate importance of accurate kinetic parameters for reactor optimization. - Abstract: The rotary chemical looping combustion reactor has great potential for efficient integration with CO_2 capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel

  10. Innovative Calibration Method for System Level Simulation Models of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Ivo Prah

    2016-09-01

    Full Text Available The paper outlines a procedure for the computer-controlled calibration of the combined zero-dimensional (0D and one-dimensional (1D thermodynamic simulation model of a turbocharged internal combustion engine (ICE. The main purpose of the calibration is to determine input parameters of the simulation model in such a way as to achieve the smallest difference between the results of the measurements and the results of the numerical simulations with minimum consumption of the computing time. An innovative calibration methodology is based on a novel interaction between optimization methods and physically based methods of the selected ICE sub-systems. Therein physically based methods were used for steering the division of the integral ICE to several sub-models and for determining parameters of selected components considering their governing equations. Innovative multistage interaction between optimization methods and physically based methods allows, unlike the use of well-established methods that rely only on the optimization techniques, for successful calibration of a large number of input parameters with low time consumption. Therefore, the proposed method is suitable for efficient calibration of simulation models of advanced ICEs.

  11. Three phase Eulerian-granular model applied on numerical simulation of non-conventional liquid fuels combustion in a bubbling fluidized bed

    Directory of Open Access Journals (Sweden)

    Nemoda Stevan Đ.

    2016-01-01

    Full Text Available The paper presents a two-dimensional CFD model of liquid fuel combustion in bubbling fluidized bed. The numerical procedure is based on the two-fluid Euler-Euler approach, where the velocity field of the gas and particles are modeled in analogy to the kinetic gas theory. The model is taking into account also the third - liquid phase, as well as its interaction with the solid and gas phase. The proposed numerical model comprise energy equations for all three phases, as well as the transport equations of chemical components with source terms originated from the component conversion. In the frame of the proposed model, user sub-models were developed for heterogenic fluidized bed combustion of liquid fuels, with or without water. The results of the calculation were compared with experiments on a pilot-facility (power up to 100 kW, combusting, among other fuels, oil. The temperature profiles along the combustion chamber were compared for the two basic cases: combustion with or without water. On the basis of numerical experiments, influence of the fluid-dynamic characteristics of the fluidized bed on the combustion efficiency was analyzed, as well as the influence of the fuel characteristics (reactivity, water content on the intensive combustion zone. [Projekat Ministarstva nauke Republike Srbije, br. TR33042: Improvement of the industrial fluidized bed facility, in scope of technology for energy efficient and environmentally feasible combustion of various waste materials in fluidized bed

  12. Analytical modeling of electron energy loss spectroscopy of graphene: Ab initio study versus extended hydrodynamic model.

    Science.gov (United States)

    Djordjević, Tijana; Radović, Ivan; Despoja, Vito; Lyon, Keenan; Borka, Duško; Mišković, Zoran L

    2018-01-01

    We present an analytical modeling of the electron energy loss (EEL) spectroscopy data for free-standing graphene obtained by scanning transmission electron microscope. The probability density for energy loss of fast electrons traversing graphene under normal incidence is evaluated using an optical approximation based on the conductivity of graphene given in the local, i.e., frequency-dependent form derived by both a two-dimensional, two-fluid extended hydrodynamic (eHD) model and an ab initio method. We compare the results for the real and imaginary parts of the optical conductivity in graphene obtained by these two methods. The calculated probability density is directly compared with the EEL spectra from three independent experiments and we find very good agreement, especially in the case of the eHD model. Furthermore, we point out that the subtraction of the zero-loss peak from the experimental EEL spectra has a strong influence on the analytical model for the EEL spectroscopy data. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Default risk modeling beyond the first-passage approximation: Extended Black-Cox model

    Science.gov (United States)

    Katz, Yuri A.; Shokhirev, Nikolai V.

    2010-07-01

    We develop a generalization of the Black-Cox structural model of default risk. The extended model captures uncertainty related to firm’s ability to avoid default even if company’s liabilities momentarily exceeding its assets. Diffusion in a linear potential with the radiation boundary condition is used to mimic a company’s default process. The exact solution of the corresponding Fokker-Planck equation allows for derivation of analytical expressions for the cumulative probability of default and the relevant hazard rate. Obtained closed formulas fit well the historical data on global corporate defaults and demonstrate the split behavior of credit spreads for bonds of companies in different categories of speculative-grade ratings with varying time to maturity. Introduction of the finite rate of default at the boundary improves valuation of credit risk for short time horizons, which is the key advantage of the proposed model. We also consider the influence of uncertainty in the initial distance to the default barrier on the outcome of the model and demonstrate that this additional source of incomplete information may be responsible for nonzero credit spreads for bonds with very short time to maturity.

  14. Thermal radiation transfer calculations in combustion fields using the SLW model coupled with a modified reference approach

    Science.gov (United States)

    Darbandi, Masoud; Abrar, Bagher

    2018-01-01

    The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.

  15. An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation

    Directory of Open Access Journals (Sweden)

    Yi Tang

    2017-11-01

    Full Text Available With increasing penetration of wind power into the power system, wind power participation in frequency regulation is regarded as a beneficial strategy to improve the dynamic frequency response characteristics of power systems. The traditional power system frequency response (SFR model, which only includes synchronous generators, is no longer suitable for power systems with high penetrated wind power. An extended SFR model, based on the reduced-order model of wind turbine generator (WTG and the traditional SFR model, is presented in this paper. In the extended SFR model, the reduced-order model of WTG with combined frequency control is deduced by employing small signal analysis theory. Afterwards, the stability analysis of a closed-loop control system for the extended SFR model is carried out. Time-domain simulations using a test system are performed to validate the effectiveness of the extended SFR model; this model can provide a simpler, clearer and faster way to analyze the dynamic frequency response characteristic for a high-wind integrated power systems. The impact of additional frequency control parameters and wind speed disturbances on the system dynamic frequency response characteristics are investigated.

  16. Modelling of EAF off-gas post combustion in dedusting systems using CFD methods

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.; Kirschen, M.; Pfeifer, H. [Inst. for Industrial Furnaces and Heat Engineering in Metallurgy, RWTH Aachen, Aachen (Germany); Abel, M. [VAI-Fuchs GmbH, Willstaett (Germany)

    2003-04-01

    To comply with the increasingly strict environmental regulations, the poisonous off-gas species, e.g. carbon monoxide (CO), produced in the electric arc furnace (EAF) must be treated in the dedusting system. In this work, gas flow patterns of the off-gas post combustion in three different dedusting system units were simulated with a computational fluid dynamics (CFD) code: (1) post combustion in a horizontal off-gas duct, (2) post combustion in a water cooled post combustion chamber without additional energy supply (no gas or air/oxygen injectors) and (3) post combustion in a post combustion chamber with additional energy input (gas, air injectors and ignition burner, case study of VAI-Fuchs GmbH). All computational results are illustrated with gas velocity, temperature distribution and chemical species concentration fields for the above three cases. In case 1, the effect of different false air volume flow rates at the gap between EAF elbow and exhaust gas duct on the external post combustion of the off-gas was investigated. For case 2, the computed temperature and chemical composition (CO, CO{sub 2} and O{sub 2}) of the off-gas at the post chamber exit are in good agreement with additional measurements. Various operating conditions for case 3 have been studied, including different EAF off-gas temperatures and compositions, i. e. CO content, in order to optimize oxygen and burner gas flow rates. Residence time distributions in the external post combustion chambers have been calculated for cases 2 and 3. Derived temperature fields of the water cooled walls yield valuable information on thermally stressed parts of post combustion units. The results obtained in this work may also gain insight to future investigation of combustion of volatile organic components (VOC) or formation of nitrogen oxide (NO{sub x}) and permit the optimization of the operation and design of the off-gas dedusting system units. (orig.)

  17. Numerical Methods and Turbulence Modeling for LES of Piston Engines: Impact on Flow Motion and Combustion

    Directory of Open Access Journals (Sweden)

    Misdariis A.

    2013-11-01

    Full Text Available In this article, Large Eddy Simulations (LES of Spark Ignition (SI engines are performed to evaluate the impact of the numerical set-upon the predictedflow motion and combustion process. Due to the high complexity and computational cost of such simulations, the classical set-up commonly includes “low” order numerical schemes (typically first or second-order accurate in time and space as well as simple turbulence models (such as the well known constant coefficient Smagorinsky model (Smagorinsky J. (1963 Mon. Weather Rev. 91, 99-164. The scope of this paper is to evaluate the feasibility and the potential benefits of using high precision methods for engine simulations, relying on higher order numerical methods and state-of-the-art Sub-Grid-Scale (SGS models. For this purpose, two high order convection schemes from the Two-step Taylor Galerkin (TTG family (Colin and Rudgyard (2000 J. Comput. Phys. 162, 338-371 and several SGS turbulence models, namely Dynamic Smagorinsky (Germano et al. (1991 Phys. Fluids 3, 1760-1765 and sigma (Baya Toda et al. (2010 Proc. Summer Program 2010, Stanford, Center for Turbulence Research, NASA Ames/Stanford Univ., pp. 193-202 are considered to improve the accuracy of the classically used Lax-Wendroff (LW (Lax and Wendroff (1964 Commun. Pure Appl. Math. 17, 381-398 - Smagorinsky set-up. This evaluation is performed considering two different engine configurations from IFP Energies nouvelles. The first one is the naturally aspirated four-valve spark-ignited F7P engine which benefits from an exhaustive experimental and numerical characterization. The second one, called Ecosural, is a highly supercharged spark-ignited engine. Unique realizations of engine cycles have been simulated for each set-up starting from the same initial conditions and the comparison is made with experimental and previous numerical results for the F7P configuration. For the Ecosural engine, experimental results are not available yet and only

  18. Inference and testing on the boundary in extended constant conditional correlation GARCH models

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard

    2017-01-01

    We consider inference and testing in extended constant conditional correlation GARCH models in the case where the true parameter vector is a boundary point of the parameter space. This is of particular importance when testing for volatility spillovers in the model. The large-sample properties...

  19. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    Science.gov (United States)

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  20. 2D Modeling and Classification of Extended Objects in a Network of HRR Radars

    NARCIS (Netherlands)

    Fasoula, A.

    2011-01-01

    In this thesis, the modeling of extended objects with low-dimensional representations of their 2D geometry is addressed. The ultimate objective is the classification of the objects using libraries of such compact 2D object models that are much smaller than in the state-of-the-art classification