WorldWideScience

Sample records for exposure assessment model

  1. Determinants of Dermal Exposure Relevant for Exposure Modelling in Regulatory Risk Assessment

    NARCIS (Netherlands)

    Marquart, J.; Brouwer, D.H.; Gijsbers, J.H.J.; Links, I.H.M.; Warren, N.; Hemmen, J.J. van

    2003-01-01

    Risk assessment of chemicals requires assessment of the exposure levels of workers. In the absence of adequate specific measured data, models are often used to estimate exposure levels. For dermal exposure only a few models exist, which are not validated externally. In the scope of a large European

  2. Determinants of dermal exposure relevant for exposure modelling in regulatory risk assessment.

    Science.gov (United States)

    Marquart, J; Brouwer, D H; Gijsbers, J H J; Links, I H M; Warren, N; van Hemmen, J J

    2003-11-01

    Risk assessment of chemicals requires assessment of the exposure levels of workers. In the absence of adequate specific measured data, models are often used to estimate exposure levels. For dermal exposure only a few models exist, which are not validated externally. In the scope of a large European research programme, an analysis of potential dermal exposure determinants was made based on the available studies and models and on the expert judgement of the authors of this publication. Only a few potential determinants appear to have been studied in depth. Several studies have included clusters of determinants into vaguely defined parameters, such as 'task' or 'cleaning and maintenance of clothing'. Other studies include several highly correlated parameters, such as 'amount of product handled', 'duration of task' and 'area treated', and separation of these parameters to study their individual influence is not possible. However, based on the available information, a number of determinants could clearly be defined as proven or highly plausible determinants of dermal exposure in one or more exposure situation. This information was combined with expert judgement on the scientific plausibility of the influence of parameters that have not been extensively studied and on the possibilities to gather relevant information during a risk assessment process. The result of this effort is a list of determinants relevant for dermal exposure models in the scope of regulatory risk assessment. The determinants have been divided into the major categories 'substance and product characteristics', 'task done by the worker', 'process technique and equipment', 'exposure control measures', 'worker characteristics and habits' and 'area and situation'. To account for the complex nature of the dermal exposure processes, a further subdivision was made into the three major processes 'direct contact', 'surface contact' and 'deposition'.

  3. Advanced REACH tool: A Bayesian model for occupational exposure assessment

    NARCIS (Netherlands)

    McNally, K.; Warren, N.; Fransman, W.; Entink, R.K.; Schinkel, J.; Van Tongeren, M.; Cherrie, J.W.; Kromhout, H.; Schneider, T.; Tielemans, E.

    2014-01-01

    This paper describes a Bayesian model for the assessment of inhalation exposures in an occupational setting; the methodology underpins a freely available web-based application for exposure assessment, the Advanced REACH Tool (ART). The ART is a higher tier exposure tool that combines disparate

  4. Task-based dermal exposure models for regulatory risk assessment.

    Science.gov (United States)

    Warren, Nicholas D; Marquart, Hans; Christopher, Yvette; Laitinen, Juha; VAN Hemmen, Joop J

    2006-07-01

    The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of new measurements of dermal exposure together with detailed contextual information. This article describes the development of a set of generic task-based models capable of predicting potential dermal exposure to both solids and liquids in a wide range of situations. To facilitate modelling of the wide variety of dermal exposure situations six separate models were made for groupings of exposure scenarios called Dermal Exposure Operation units (DEO units). These task-based groupings cluster exposure scenarios with regard to the expected routes of dermal exposure and the expected influence of exposure determinants. Within these groupings linear mixed effect models were used to estimate the influence of various exposure determinants and to estimate components of variance. The models predict median potential dermal exposure rates for the hands and the rest of the body from the values of relevant exposure determinants. These rates are expressed as mg or microl product per minute. Using these median potential dermal exposure rates and an accompanying geometric standard deviation allows a range of exposure percentiles to be calculated.

  5. A review of air exchange rate models for air pollution exposure assessments.

    Science.gov (United States)

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  6. Using ecosystem modelling techniques in exposure assessments of radionuclides - an overview

    International Nuclear Information System (INIS)

    Kumblad, L.

    2005-01-01

    The risk to humans from potential releases from nuclear facilities is evaluated in safety assessments. Essential components of these assessments are exposure models, which estimate the transport of radionuclides in the environment, the uptake in biota, and transfer to humans. Recently, there has been a growing concern for radiological protection of the whole environment, not only humans, and a first attempt has been to employ model approaches based on stylized environments and transfer functions to biota based exclusively on bioconcentration factors (BCF). They are generally of a non-mechanistic nature and involve no knowledge of the actual processes involved, which is a severe limitation when assessing real ecosystems. in this paper, the possibility of using an ecological modelling approach as a complement or an alternative to the use of BCF-based models is discussed. The paper gives an overview of ecological and ecosystem modelling and examples of studies where ecosystem models have been used in association to ecological risk assessment studies for other pollutants than radionuclides. It also discusses the potential to use this technique in exposure assessments of radionuclides with a few examples from the safety assessment work performed by the Swedish nuclear fuel and waste management company (SKB). Finally there is a comparison of the characteristics of ecosystem models and traditionally exposure models for radionuclides used to estimate the radionuclide exposure of biota. The evaluation of ecosystem models already applied in safety assessments has shown that the ecosystem approach is possible to use to assess exposure to biota, and that it can handle many of the modelling problems identified related to BCF-models. The findings in this paper suggest that both national and international assessment frameworks for protection of the environment from ionising radiation would benefit from striving to adopt methodologies based on ecologically sound principles and

  7. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale

    Energy Technology Data Exchange (ETDEWEB)

    Caudeville, Julien, E-mail: Julien.CAUDEVILLE@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Joint research unit UMR 6599, Heudiasyc (Heuristic and Diagnoses of Complex Systems), University of Technology of Compiegne and CNRS, Rue du Dr Schweitzer, 60200 Compiegne (France); Bonnard, Roseline, E-mail: Roseline.BONNARD@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Boudet, Celine, E-mail: Celine.BOUDET@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Denys, Sebastien, E-mail: Sebastien.DENYS@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Govaert, Gerard, E-mail: gerard.govaert@utc.fr [Joint research unit UMR 6599, Heudiasyc (Heuristic and Diagnoses of Complex Systems), University of Technology of Compiegne and CNRS, Rue du Dr Schweitzer, 60200 Compiegne (France); Cicolella, Andre, E-mail: Andre.CICOLELLA@ineris.fr [INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2012-08-15

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: -identify and manage geographic areas where hotspot exposures are a potential risk to human health; and -reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km{sup 2} regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. -- Highlights: Black-Right-Pointing-Pointer We present a multimedia exposure model for mapping environmental disparities. Black-Right-Pointing-Pointer We perform a risk assessment on a region of France at a fine scale for three metals. Black-Right-Pointing-Pointer We

  8. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale

    International Nuclear Information System (INIS)

    Caudeville, Julien; Bonnard, Roseline; Boudet, Céline; Denys, Sébastien; Govaert, Gérard; Cicolella, André

    2012-01-01

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: -identify and manage geographic areas where hotspot exposures are a potential risk to human health; and -reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km 2 regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. -- Highlights: ► We present a multimedia exposure model for mapping environmental disparities. ► We perform a risk assessment on a region of France at a fine scale for three metals. ► We examine exposure determinants and detect vulnerable population. ► The largest

  9. Stoffenmanager exposure model: company-specific exposure assessments using a Bayesian methodology.

    NARCIS (Netherlands)

    Ven, P. van de; Fransman, W.; Schinkel, J.; Rubingh, C.; Warren, N.; Tielemans, E.

    2010-01-01

    The web-based tool "Stoffenmanager" was initially developed to assist small- and medium-sized enterprises in the Netherlands to make qualitative risk assessments and to provide advice on control at the workplace. The tool uses a mechanistic model to arrive at a "Stoffenmanager score" for exposure.

  10. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  11. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale.

    Science.gov (United States)

    Caudeville, Julien; Bonnard, Roseline; Boudet, Céline; Denys, Sébastien; Govaert, Gérard; Cicolella, André

    2012-08-15

    Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: - identify and manage geographic areas where hotspot exposures are a potential risk to human health; and - reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km(2) regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Human Exposure Assessment for Air Pollution.

    Science.gov (United States)

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  13. Integrated Environmental Assessment Part III: ExposureAssessment

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Small, Mitchell J.

    2006-06-01

    Human exposure assessment is a key step in estimating the environmental and public health burdens that result chemical emissions in the life cycle of an industrial product or service. This column presents the third in a series of overviews of the state of the art in integrated environmental assessment - earlier columns described emissions estimation (Frey and Small, 2003) and fate and transport modeling (Ramaswami, et al., 2004). When combined, these first two assessment elements provide estimates of ambient concentrations in the environment. Here we discuss how both models and measurements are used to translate ambient concentrations into metrics of human and ecological exposure, the necessary precursors to impact assessment. Exposure assessment is the process of measuring and/or modeling the magnitude, frequency and duration of contact between a potentially harmful agent and a target population, including the size and characteristics of that population (IPCS, 2001; Zartarian, et al., 2005). Ideally the exposure assessment process should characterize the sources, routes, pathways, and uncertainties in the assessment. Route of exposure refers to the way that an agent enters the receptor during an exposure event. Humans contact pollutants through three routes--inhalation, ingestion, and dermal uptake. Inhalation occurs in both outdoor environments and indoor environments where most people spend the majority of their time. Ingestion includes both water and food, as well as soil and dust uptake due to hand-to-mouth activity. Dermal uptake occurs through contacts with consumer products; indoor and outdoor surfaces; the water supply during washing or bathing; ambient surface waters during swimming or boating; soil during activities such as work, gardening, and play; and, to a lesser extent, from the air that surrounds us. An exposure pathway is the course that a pollutant takes from an ambient environmental medium (air, soil, water, biota, etc), to an exposure medium

  14. Harmonization of future needs for dermal exposure assessment and modeling : a workshop report

    NARCIS (Netherlands)

    Marquart, H.; Maidment, S.; Mcclaflin, J.L.; Fehrenbacher, M.C.

    2001-01-01

    Dermal exposure assessment and modeling is still in early phases of development. This article presents the results of a workshop organized to harmonize the future needs in this field. Methods for dermal exposure assessment either assess the mass of contaminant that is transferred to the skin, or the

  15. Task-based dermal exposure models for regulatory risk assessment

    NARCIS (Netherlands)

    Warren, N.D.; Marquart, H.; Christopher, Y.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    The regulatory risk assessment of chemicals requires the estimation of occupational dermal exposure. Until recently, the models used were either based on limited data or were specific to a particular class of chemical or application. The EU project RISKOFDERM has gathered a considerable number of

  16. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application

  17. Modeling exposure to persistent chemicals in hazard and risk assessment.

    Science.gov (United States)

    Cowan-Ellsberry, Christina E; McLachlan, Michael S; Arnot, Jon A; Macleod, Matthew; McKone, Thomas E; Wania, Frank

    2009-10-01

    Fate and exposure modeling has not, thus far, been explicitly used in the risk profile documents prepared for evaluating the significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of persistent organic pollutants (POP) and persistent, bioaccumulative, and toxic (PBT) chemicals in the environment. The goal of this publication is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include 1) benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk; 2) directly estimating the exposure of the environment, biota, and humans to provide information to complement measurements or where measurements are not available or are limited; 3) to identify the key processes and chemical or environmental parameters that determine the exposure, thereby allowing the effective prioritization of research or measurements to improve the risk profile; and 4) forecasting future time trends, including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and

  18. The MULTIMEDIA exposure model as a risk assessment tool at LUST sites

    International Nuclear Information System (INIS)

    Bowers, R.B.

    1994-01-01

    In the course of characterizing Leaking Underground Storage Tank (LUST) sites in the Commonwealth, Virginia Department of Environmental Quality (VDEQ) regulations section 6.5.A.2.b of VR-680-13-02, requires that a risk assessment be performed which must address, among other issues, aqueous phase contaminant exposure levels to critical receptors. often, during the course of conducting such an assessment, the aqueous phase contaminant plume has not yet intercepted the critical down gradient receptor. Thus, the determination of the maximum potential exposure level to this receptor can only be made through the use of an appropriate fate and transport model. This paper focuses on an application of the saturated zone module of the USEPA's MULTIMEDIA Exposure Assessment model. The case study presented involves a LUST site in the Commonwealth, in which four critical receptors of leaded gasoline contaminated groundwater were identified. These receptors included three residential water wells and an intermittent stream. At this particular site, the aqueous phase contaminant plume had not yet reached any of the receptors; and the MULTIMEDIA model was employed to predict the steady-state aqueous phase concentrations with very favorable results

  19. CAirTOX, An inter-media transfer model for assessing indirect exposures to hazardous air contaminants

    International Nuclear Information System (INIS)

    McKone, T.E.

    1994-01-01

    Risk assessment is a quantitative evaluation of information on potential health hazards of environmental contaminants and the extent of human exposure to these contaminants. As applied to toxic chemical emissions to air, risk assessment involves four interrelated steps. These are (1) determination of source concentrations or emission characteristics, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization. These steps can be carried out with assistance from analytical models in order to estimate the potential risk associated with existing and future releases. CAirTOX has been developed as a spreadsheet model to assist in making these types of calculations. CAirTOX follows an approach that has been incorporated into the CalTOX model, which was developed for the California Department of Toxic Substances Control, With CAirTOX, we can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The capacity to explicitly address uncertainty has been incorporated into the model in two ways. First, the spreadsheet form of the model makes it compatible with Monte-Carlo add-on programs that are available for uncertainty analysis. Second, all model inputs are specified in terms of an arithmetic mean and coefficient of variation so that uncertainty analyses can be carried out

  20. Assessment of Aircrew Radiation Exposure by further measurements and model development

    International Nuclear Information System (INIS)

    Lewis, B. J.; Desormeaux, M.; Green, A. R.; Bennett, L. G. I.; Butler, A.; McCall, M.; Saez Vergara, J. C.

    2004-01-01

    A methodology is presented for collecting and analysing exposure measurements from galactic cosmic radiation using a portable equipment suite and encapsulating these data into a semi-empirical model/Predictive Code for Aircrew Radiation Exposure (PCAIRE) for the assessment of aircrew radiation exposure on any flight over the solar cycle. The PCAIRE code has been validated against integral route dose measurements at commercial aircraft altitudes during experimental flights made by various research groups over the past 5 y with code predictions typically within ±20% of the measured data. An empirical correlation, based on ground-level neutron monitoring data, is detailed further for estimation of aircrew exposure from solar particle events. The semi-empirical models have been applied to predict the annual and career exposure of a flight crew member using actual flight roster data, accounting for contributions from galactic radiation and several solar energetic-particle events over the period 1973-2002. (authors)

  1. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure

    NARCIS (Netherlands)

    Boerleider, R. Z.; Olie, J. D N; van Eijkeren, J. C H; Bos, P. M J; Hof, B. G H; de Vries, I.; Bessems, J. G M; Meulenbelt, J.; Hunault, C. C.

    2015-01-01

    Introduction: Physiologically based pharmacokinetic (PBPK) models may be useful in emergency risk assessment, after acute exposure to chemicals, such as dichloromethane (DCM). We evaluated the applicability of three PBPK models for human risk assessment following a single exposure to DCM: one model

  2. Multimedia radionuclide exposure assessment modeling. Annual report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Whelan, G.; Onishi, Y.; Simmons, C.S.; Horst, T.W.; Gupta, S.K.; Orgill, M.M.; Newbill, C.A.

    1982-12-01

    Pacific Northwest Laboratory (PNL) and Los Alamos National Laboratory (LANL) are jointly developing a methodology for assessing exposures of the air, water, and plants to radionuclides as part of an overall development effort of a radionuclide disposal site evaluation methodology. Work in FY-1981 continued the development of the Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology and initiated an assessment of radionuclide migration in Los Alamos and Pueblo Canyons, New Mexico, using the methodology. The AIRTRAN model was completed, briefly tested, and documented. In addition, a literature search for existing validation data for AIRTRAN was performed. The feasibility and advisability of including the UNSAT moisture flow model as a submodel of the terrestrial code BIOTRAN was assessed. A preliminary application of the proposed MCEA methodology, as it related to the Mortandad-South Mortandad Canyon site in New Mexico is discussed. This preliminary application represented a scaled-down version of the methodology in which only the terrestrial, overland, and surface water components were used. An update describing the progress in the assessment of radionuclide migration in Los Alamos and Pueblo Canyons is presented. 38 references, 47 figures, 11 tables

  3. Annual report, October 1980-September 1981 Multimedia radionuclide exposure assessment modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Onishi, Y.; Simmons, C.S.; Horst, T.W.; Gupta, S.K.; Orgill, M.M.; Newbill, C.A.

    1982-12-01

    Pacific Northwest Laboratory (PNL) and Los Alamos National Laboratory (LANL) are jointly developing a methodology for assessing exposures of the air, water, and plants to radionuclides as part of an overall development effort of a radionuclide disposal site evaluation methodology. Work in FY-1981 continued the development of the Multimedia Contaminant Environmental Exposure Assessment (MCEA) methodology and initiated an assessment of radionuclide migration in Los Alamos and Pueblo Canyons, New Mexico, using the methodology. The AIRTRAN model was completed, briefly tested, and documented. In addition, a literature search for existing validation data for AIRTRAN was performed. The feasibility and advisability of including the UNSAT moisture flow model as a submodel of the terrestrial code BIOTRAN was assessed. A preliminary application of the proposed MCEA methodology, as it related to the Mortandad-South Mortandad Canyon site in New Mexico is discussed. This preliminary application represented a scaled-down version of the methodology in which only the terrestrial, overland, and surface water components were used. An update describing the progress in the assessment of radionuclide migration in Los Alamos and Pueblo Canyons is presented. 38 references, 47 figures, 11 tables.

  4. Dermal Exposure Assessment to Pesticides in Farming Systems in Developing Countries: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Camilo Lesmes Fabian

    2015-04-01

    Full Text Available In the field of occupational hygiene, researchers have been working on developing appropriate methods to estimate human exposure to pesticides in order to assess the risk and therefore to take the due decisions to improve the pesticide management process and reduce the health risks. This paper evaluates dermal exposure models to find the most appropriate. Eight models (i.e., COSHH, DERM, DREAM, EASE, PHED, RISKOFDERM, STOFFENMANAGER and PFAM were evaluated according to a multi-criteria analysis and from these results five models (i.e., DERM, DREAM, PHED, RISKOFDERM and PFAM were selected for the assessment of dermal exposure in the case study of the potato farming system in the Andean highlands of Vereda La Hoya, Colombia. The results show that the models provide different dermal exposure estimations which are not comparable. However, because of the simplicity of the algorithm and the specificity of the determinants, the DERM, DREAM and PFAM models were found to be the most appropriate although their estimations might be more accurate if specific determinants are included for the case studies in developing countries.

  5. An introduction to the indirect exposure assessment approach: modeling human exposure using microenvironmental measurements and the recent National Human Activity Pattern Survey.

    Science.gov (United States)

    Klepeis, N E

    1999-01-01

    Indirect exposure approaches offer a feasible and accurate method for estimating population exposures to indoor pollutants, including environmental tobacco smoke (ETS). In an effort to make the indirect exposure assessment approach more accessible to people in the health and risk assessment fields, this paper provides examples using real data from (italic>a(/italic>) a week-long personal carbon monoxide monitoring survey conducted by the author; and (italic>b(/italic>) the 1992 to 1994 National Human Activity Pattern Survey (NHAPS) for the United States. The indirect approach uses measurements of exposures in specific microenvironments (e.g., homes, bars, offices), validated microenvironmental models (based on the mass balance equation), and human activity pattern data obtained from questionnaires to predict frequency distributions of exposure for entire populations. This approach requires fewer resources than the direct approach to exposure assessment, for which the distribution of monitors to a representative sample of a given population is necessary. In the indirect exposure assessment approach, average microenvironmental concentrations are multiplied by the total time spent in each microenvironment to give total integrated exposure. By assuming that the concentrations encountered in each of 10 location categories are the same for different members of the U.S. population (i.e., the NHAPS respondents), the hypothetical contribution that ETS makes to the average 24-hr respirable suspended particle exposure for Americans working their main job is calculated in this paper to be 18 microg/m3. This article is an illustrative review and does not contain an actual exposure assessment or model validation. Images Figure 3 Figure 4 PMID:10350522

  6. Predictive models for the assessment of occupational exposure to chemicals: A new challenge for employers

    Directory of Open Access Journals (Sweden)

    Jan Piotr Gromiec

    2013-10-01

    Full Text Available Employers are obliged to carry out and document the risk associated with the use of chemical substances. The best but the most expensive method is to measure workplace concentrations of chemicals. At present no "measureless" method for risk assessment is available in Poland, but predictive models for such assessments have been developed in some countries. The purpose of this work is to review and evaluate the applicability of selected predictive methods for assessing occupational inhalation exposure and related risk to check the compliance with Occupational Exposure Limits (OELs, as well as the compliance with REACH obligations. Based on the literature data HSE COSHH Essentials, EASE, ECETOC TRA, Stoffenmanager, and EMKG-Expo-Tool were evaluated. The data on validation of predictive models were also examined. It seems that predictive models may be used as a useful method for Tier 1 assessment of occupational exposure by inhalation. Since the levels of exposure are frequently overestimated, they should be considered as "rational worst cases" for selection of proper control measures. Bearing in mind that the number of available exposure scenarios and PROC categories is limited, further validation by field surveys is highly recommended. Predictive models may serve as a good tool for preliminary risk assessment and selection of the most appropriate risk control measures in Polish small and medium size enterprises (SMEs providing that they are available in the Polish language. This also requires an extensive training of their future users. Med Pr 2013;64(5:699–716

  7. Health risk assessment of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu

    2011-01-01

    Risk assessment is an essential process for evaluating the human health effects of exposure to ionizing radiation and for determining acceptable levels of exposure. There are two major components of radiation risk assessment: a measure of exposure level and a measure of disease occurrence. For quantitative estimation of health risks, it is important to evaluate the association between exposure and disease occurrence using epidemiological or experimental data. In these approaches, statistical risk models are used particularly for estimating cancer risks related to exposure to low levels of radiation. This paper presents a summary of basic models and methods of risk assessment for studying exposure-risk relationships. Moreover, quantitative risk estimates are subject to several sources of uncertainty due to inherent limitations in risk assessment studies. This paper also discusses the limitations of radiation risk assessment. (author)

  8. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  9. Generic Screening Models for Assessing Exposures to the Public and ICRP Reference Animals and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yankovich, Tamara L.; Proehl, Gerhard; Telleria, Diego [International Atomic Energy Agency, P.O. Box 100, 1400 Vienna (Austria); Berkovskyy, Volodymyr [Ukrainian Radiation Protection Institute (RPI), 53, Melnikova Street, 04050, Kiev (Ukraine)

    2014-07-01

    With the update of the IAEA Fundamental Safety Principles (SF-1) stating the objective to protect people and the environment from harmful effects of ionizing radiation, it has been necessary to update International Basic Safety Standards (BSS) on Radiation Protection and Safety of Radiation Sources and the underlying safety guides and technical documents to provide guidance on how this could be achieved in practice. The current paper provides an update on the status and plans to revise the IAEA Safety Report 'Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment' (SRS 19) that was published in 2001. The models of SRS 19 (2001), which was focused on assessment of exposures to the public, is being expanded into three volumes that provide methodologies for screening assessments for the public, as well as for flora and fauna. The revised SRS 19 guide will ultimately facilitate the application of screening models for different levels of assessment using updated parameter values from database that have been developed as part of the IAEA's EMRAS (Environmental Modelling for Radiation Safety) and EMRAS II international model validation programmes. The scope of the revised SRS 19 covers prospective screening assessment of doses to the representative person and Reference Animals and Plants (RAPs), and will provide simple and robust assessment methods for radiological assessment related to planning and design, applying a graded approach. Tabulated screening coefficients and environmental dilution factors will be included for 825 radionuclides. The screening coefficients are developed assuming equilibrium conditions; they can be used to assess radiological impacts arising from routine discharges of radionuclides to terrestrial and aquatic receptors for planned exposure situations. Volumes 1 and 2 of the revised SRS 19 are at an advanced stage of completion and are focused on 'Screening Assessment of Public

  10. Kriged and modeled ambient air levels of benzene in an urban environment: an exposure assessment study

    Directory of Open Access Journals (Sweden)

    Lai Dejian

    2011-03-01

    Full Text Available Abstract Background There is increasing concern regarding the potential adverse health effects of air pollution, particularly hazardous air pollutants (HAPs. However, quantifying exposure to these pollutants is problematic. Objective Our goal was to explore the utility of kriging, a spatial interpolation method, for exposure assessment in epidemiologic studies of HAPs. We used benzene as an example and compared census tract-level kriged predictions to estimates obtained from the 1999 U.S. EPA National Air Toxics Assessment (NATA, Assessment System for Population Exposure Nationwide (ASPEN model. Methods Kriged predictions were generated for 649 census tracts in Harris County, Texas using estimates of annual benzene air concentrations from 17 monitoring sites operating in Harris and surrounding counties from 1998 to 2000. Year 1999 ASPEN modeled estimates were also obtained for each census tract. Spearman rank correlation analyses were performed on the modeled and kriged benzene levels. Weighted kappa statistics were computed to assess agreement between discretized kriged and modeled estimates of ambient air levels of benzene. Results There was modest correlation between the predicted and modeled values across census tracts. Overall, 56.2%, 40.7%, 31.5% and 28.2% of census tracts were classified as having 'low', 'medium-low', 'medium-high' and 'high' ambient air levels of benzene, respectively, comparing predicted and modeled benzene levels. The weighted kappa statistic was 0.26 (95% confidence interval (CI = 0.20, 0.31, indicating poor agreement between the two methods. Conclusions There was a lack of concordance between predicted and modeled ambient air levels of benzene. Applying methods of spatial interpolation for assessing exposure to ambient air pollutants in health effect studies is hindered by the placement and number of existing stationary monitors collecting HAP data. Routine monitoring needs to be expanded if we are to use these data

  11. An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios (Final Report, 2008)

    Science.gov (United States)

    EPA announced the availability of the final report, An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios. This report investigates the potential dioxin exposure to artists/hobbyists who use ball clay to make pottery and related products. Derm...

  12. Assessment of predictive dermal exposure to chemicals in the work environment

    Directory of Open Access Journals (Sweden)

    Agnieszka Jankowska

    2017-08-01

    Full Text Available Assessment of dermal exposure to chemicals in the work environment is problematic, mainly as a result of the lack of measurement data on occupational exposure to chemicals. Due to common prevalence of occupational skin exposure and its health consequences it is necessary to look for efficient solutions allowing for reliable exposure assessment. The aim of the study is to present predictive models used to assess non-measured dermal exposure, as well as to acquaint Polish users with the principles of the selected model functioning. This paper presents examples of models to assist the employer in the the assessment of occupational exposure associated with the skin contact with chemicals, developed in European Union (EU countries, as well as in countries outside the EU. Based on the literature data dermal exposure models EASE (Estimation and Assessment of Substance Exposure, COSHH Essentials (Control of Substances Hazardous to Health Regulations, DREAM (Dermal Exposure Assessment Method, Stoffenmanager , ECETOC TRA (European Centre for Ecotoxicology and Toxicology of Chemicals Targeted Risk Assessment, MEASE (Metal’s EASE, PHED (Pesticide Handlers Exposure Database, DERM (Dermal Exposure Ranking Method and RISKOFDERM (Risk Assessment of Occupational Dermal Exposure to Chemicals were briefly described. Moreover the characteristics of RISKOFDERM, guidelines for its use, information on input and output data were further detailed. Problem of full work shift dermal exposure assessment is described. An example of exposure assessment using RISKOFDERM and effectiveness evaluation to date were also presented. When no measurements are available, RISKOFDERM allows dermal exposure assessment and thus can improve the risk assessment quality and effectiveness of dermal risk management. Med Pr 2017;68(4:557–569

  13. The Validity and Applicability of Using a Generic Exposure Assessment Model for Occupational Exposure to Nano-Objects and Their Aggregates and Agglomerates

    NARCIS (Netherlands)

    Bekker, Cindy; Voogd, Eef; Fransman, Wouter; Vermeulen, Roel

    2016-01-01

    BACKGROUND: Control banding can be used as a first-tier assessment to control worker exposure to nano-objects and their aggregates and agglomerates (NOAA). In a second tier, more advanced modelling approaches are needed to produce quantitative exposure estimates. As currently no general quantitative

  14. The validity and applicability of using a generic exposure assessment model for occupational exposure to nano-objects and their aggregates and agglomerates

    NARCIS (Netherlands)

    Bekker, C.; Voogd, E.; Fransman, W.; Vermeulen, R.

    2016-01-01

    Background: Control banding can be used as a first-tier assessment to control worker exposure to nano-objects and their aggregates and agglomerates (NOAA). In a second tier, more advanced modelling approaches are needed to produce quantitative exposure estimates. As currently no general quantitative

  15. Opportunities for using spatial property assessment data in air pollution exposure assessments

    Directory of Open Access Journals (Sweden)

    Keller C Peter

    2005-10-01

    Full Text Available Abstract Background Many epidemiological studies examining the relationships between adverse health outcomes and exposure to air pollutants use ambient air pollution measurements as a proxy for personal exposure levels. When pollution levels vary at neighbourhood levels, using ambient pollution data from sparsely located fixed monitors may inadequately capture the spatial variation in ambient pollution. A major constraint to moving toward exposure assessments and epidemiological studies of air pollution at a neighbourhood level is the lack of readily available data at appropriate spatial resolutions. Spatial property assessment data are widely available in North America and may provide an opportunity for developing neighbourhood level air pollution exposure assessments. Results This paper provides a detailed description of spatial property assessment data available in the Pacific Northwest of Canada and the United States, and provides examples of potential applications of spatial property assessment data for improving air pollution exposure assessment at the neighbourhood scale, including: (1 creating variables for use in land use regression modelling of neighbourhood levels of ambient air pollution; (2 enhancing wood smoke exposure estimates by mapping fireplace locations; and (3 using data available on individual building characteristics to produce a regional air pollution infiltration model. Conclusion Spatial property assessment data are an extremely detailed data source at a fine spatial resolution, and therefore a source of information that could improve the quality and spatial resolution of current air pollution exposure assessments.

  16. CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-10-01

    CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

  17. Modelling exposure opportunities

    DEFF Research Database (Denmark)

    Sabel, Clive E.; Gatrell, Anthony C.; Löytönen, Markku

    2000-01-01

    This paper addresses the issues surrounding an individual's exposure to potential environmental risk factors, which can be implicated in the aetiology of a disease. We hope to further elucidate the 'lag' or latency period between the initial exposure to potential pathogens and the physical...... boundaries.We use kernel estimation to model space-time patterns. Raised relative risk is assessed by adopting appropriate adjustments for the underlying population at risk, with the use of controls. Significance of the results is assessed using Monte Carlo simulation, and comparisons are made with results...

  18. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    Science.gov (United States)

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  19. Perspectives for integrating human and environmental exposure assessments.

    Science.gov (United States)

    Ciffroy, P; Péry, A R R; Roth, N

    2016-10-15

    Integrated Risk Assessment (IRA) has been defined by the EU FP7 HEROIC Coordination action as "the mutual exploitation of Environmental Risk Assessment for Human Health Risk Assessment and vice versa in order to coherently and more efficiently characterize an overall risk to humans and the environment for better informing the risk analysis process" (Wilks et al., 2015). Since exposure assessment and hazard characterization are the pillars of risk assessment, integrating Environmental Exposure assessment (EEA) and Human Exposure assessment (HEA) is a major component of an IRA framework. EEA and HEA typically pursue different targets, protection goals and timeframe. However, human and wildlife species also share the same environment and they similarly inhale air and ingest water and food through often similar overlapping pathways of exposure. Fate models used in EEA and HEA to predict the chemicals distribution among physical and biological media are essentially based on common properties of chemicals, and internal concentration estimations are largely based on inter-species (i.e. biota-to-human) extrapolations. Also, both EEA and HEA are challenged by increasing scientific complexity and resources constraints. Altogether, these points create the need for a better exploitation of all currently existing data, experimental approaches and modeling tools and it is assumed that a more integrated approach of both EEA and HEA may be part of the solution. Based on the outcome of an Expert Workshop on Extrapolations in Integrated Exposure Assessment organized by the HEROIC project in January 2014, this paper identifies perspectives and recommendations to better harmonize and extrapolate exposure assessment data, models and methods between Human Health and Environmental Risk Assessments to support the further development and promotion of the concept of IRA. Ultimately, these recommendations may feed into guidance showing when and how to apply IRA in the regulatory decision

  20. Assessing exposure to violence using multiple informants: application of hierarchical linear model.

    Science.gov (United States)

    Kuo, M; Mohler, B; Raudenbush, S L; Earls, F J

    2000-11-01

    The present study assesses the effects of demographic risk factors on children's exposure to violence (ETV) and how these effects vary by informants. Data on exposure to violence of 9-, 12-, and 15-year-olds were collected from both child participants (N = 1880) and parents (N = 1776), as part of the assessment of the Project on Human Development in Chicago Neighborhoods (PHDCN). A two-level hierarchical linear model (HLM) with multivariate outcomes was employed to analyze information obtained from these two different groups of informants. The findings indicate that parents generally report less ETV than do their children and that associations of age, gender, and parent education with ETV are stronger in the self-reports than in the parent reports. The findings support a multivariate approach when information obtained from different sources is being integrated. The application of HLM allows an assessment of interactions between risk factors and informants and uses all available data, including data from one informant when data from the other informant is missing.

  1. A PROBABILISTIC EXPOSURE ASSESSMENT FOR CHILDREN WHO CONTACT CCA-TREATED PLAYSETS AND DECKS USING THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION (SHEDS) MODEL FOR THE WOOD PRESERVATIVE EXPOSURE SCENARIO

    Science.gov (United States)

    The U.S. Environmental Protection Agency has conducted a probabilistic exposure and dose assessment on the arsenic (As) and chromium (Cr) components of Chromated Copper Arsenate (CCA) using the Stochastic Human Exposure and Dose Simulation model for wood preservatives (SHEDS-Wood...

  2. Modeling The Inhalation Exposure Pathway In Performance Assessment Of Geologic Radioactive Waste Repository At Yucca Mountain

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2006-01-01

    Inhalation exposure pathway modeling has recently been investigated as one of the tasks of the BIOPROTA Project (BIOPROTA 2005). BIOPROTA was set up to address the key uncertainties in long term assessments of contaminant releases into the environment arising from radioactive waste disposal. Participants of this international Project include national authorities and agencies, both regulators and operators, with responsibility for achieving safe and acceptable radioactive waste management. The objective of the inhalation task was to investigate the calculation of doses arising from inhalation of particles suspended from soils within which long-lived radionuclides, particularly alpha emitters, had accumulated. It was recognized that site-specific conditions influence the choice of conceptual model and input parameter values. Therefore, one of the goals of the task was to identify the circumstances in which different processes included in specific inhalation exposure pathway models were important. This paper discusses evaluation of processes and modeling assumptions specific to the proposed repository at Yucca Mountain as compared to the typical approaches and other models developed for different assessments and project specific contexts. Inhalation of suspended particulates that originate from contaminated soil is an important exposure pathway, particularly for exposure to actinides such as uranium, neptunium and plutonium. Radionuclide accumulation in surface soil arises from irrigation of soil with contaminated water over many years. The level of radionuclide concentration in surface soil depends on the assumed duration of irrigation. Irrigation duration is one of the parameters used on biosphere models and it depends on a specific assessment context. It is one of the parameters addressed in this paper from the point of view of assessment context for the proposed repository at Yucca Mountain. The preferred model for the assessment of inhalation exposure uses

  3. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    Science.gov (United States)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  4. Air Pollution Exposure Modeling for Health Studies | Science ...

    Science.gov (United States)

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  5. Bayesian algorithm implementation in a real time exposure assessment model on benzene with calculation of associated cancer risks.

    Science.gov (United States)

    Sarigiannis, Dimosthenis A; Karakitsios, Spyros P; Gotti, Alberto; Papaloukas, Costas L; Kassomenos, Pavlos A; Pilidis, Georgios A

    2009-01-01

    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations.

  6. Indirect human exposure assessment of airborne lead deposited on soil via a simplified fate and speciation modelling approach.

    Science.gov (United States)

    Pizzol, Massimo; Bulle, Cécile; Thomsen, Marianne

    2012-04-01

    In order to estimate the total exposure to the lead emissions from a municipal waste combustion plant in Denmark, the indirect pathway via ingestion of lead deposited on soil has to be quantified. Multi-media fate models developed for both Risk Assessment (RA) and Life Cycle Assessment (LCA) can be used for this purpose, but present high uncertainties in the assessment of metal's fate. More sophisticated and metal-specific geochemical models exist, that could lower the uncertainties by e.g. accounting for metal speciation, but they require a large amount of data and are unpractical to combine broadly with other fate and dispersion models. In this study, a Simplified Fate & Speciation Model (SFSM) is presented, that is based on the parsimony principle: "as simple as possible, as complex as needed", and that can be used for indirect human exposure assessment in different context like RA and regionalized LCA. SFSM couples traditional multi-media mass balances with empirical speciation models in a tool that has a simple theoretical framework and that is not data-intensive. The model calculates total concentration, dissolved concentration, and free ion activity of Cd, Cu, Ni, Pb and Zn in different soil layers, after accounting for metal deposition and dispersion. The model is tested for these five metals by using data from peer reviewed literature. Results show good accordance between measured and calculated values (factor of 3). The model is used to predict the human exposure via soil to lead initially emitted into air by the waste combustion plant and both the lead cumulative exposure and intake fraction are calculated. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Model for screening-level assessment of near-field human exposure to neutral organic chemicals released indoors.

    Science.gov (United States)

    Zhang, Xianming; Arnot, Jon A; Wania, Frank

    2014-10-21

    Screening organic chemicals for hazard and risk to human health requires near-field human exposure models that can be readily parametrized with available data. The integration of a model of human exposure, uptake, and bioaccumulation into an indoor mass balance model provides a quantitative framework linking emissions in indoor environments with human intake rates (iRs), intake fractions (iFs) and steady-state concentrations in humans (C) through consideration of dermal permeation, inhalation, and nondietary ingestion exposure pathways. Parameterized based on representative indoor and adult human characteristics, the model is applied here to 40 chemicals of relevance in the context of human exposure assessment. Intake fractions and human concentrations (C(U)) calculated with the model based on a unit emission rate to air for these 40 chemicals span 2 and 5 orders of magnitude, respectively. Differences in priority ranking based on either iF or C(U) can be attributed to the absorption, biotransformation and elimination processes within the human body. The model is further applied to a large data set of hypothetical chemicals representative of many in-use chemicals to show how the dominant exposure pathways, iF and C(U) change as a function of chemical properties and to illustrate the capacity of the model for high-throughput screening. These simulations provide hypotheses for the combination of chemical properties that may result in high exposure and internal dose. The model is further exploited to highlight the role human contaminant uptake plays in the overall fate of certain chemicals indoors and consequently human exposure.

  8. Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

    Directory of Open Access Journals (Sweden)

    Pavlos A. Kassomenos

    2009-02-01

    Full Text Available The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural. Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations.

  9. Assessment and improvement of biotransfer models to cow’s milk and beef used in exposure assessment tools for organic pollutants

    OpenAIRE

    Takaki, Koki; Wade, Andrew J.; Collins, Christopher D.

    2015-01-01

    The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish ...

  10. 76 FR 365 - Exposure Modeling Public Meeting

    Science.gov (United States)

    2011-01-04

    ... classification for ecological risk assessments using aerial photography and GIS data. Dermal contact, movement... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-0879; FRL-8860-5] Exposure Modeling Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: An Exposure Modeling...

  11. Assessment of risk of potential exposures on facilities industries

    International Nuclear Information System (INIS)

    Leocadio, Joao Carlos

    2007-03-01

    This work develops a model to evaluate potential exposures on open facilities of industrial radiography in Brazil. This model will decisively contribute to optimize operational, radiological protection and safety procedures, to prevent radiation accidents and to reduce human errors in industrial radiography. The probabilistic safety assessment (PSA) methodology was very useful to assess potential exposures. The open facilities of industrial radiography were identified as the scenario to be analyzed in what concerns the evaluation of potential exposures, due to their high accidents indices. The results of the assessment of potential exposures confirm that the industrial radiography in Brazil is a high-risk practice as classified by the IAEA. The risk of potential exposure was estimated to be 40,5 x 10 -2 per year in Brazil, having as main consequences injuries to the workers' hands and arms. In the world scene, the consequences are worst, leading to fatalities of people, thus emphasizing the high risk of industrial radiography. (author)

  12. Risk assessment and management of radiofrequency radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Dabala, Dana [Railways Medical Clinic Cluj-Napoca, Occupational Medicine Department, 16-20 Bilascu Gheorghe St., 400015 Cluj-Napoca (Romania); Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath St., 400293 Cluj-Napoca (Romania)

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  13. Risk assessment and management of radiofrequency radiation exposure

    International Nuclear Information System (INIS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-01-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management

  14. Environmental fate and exposure models: advances and challenges in 21st century chemical risk assessment.

    Science.gov (United States)

    Di Guardo, Antonio; Gouin, Todd; MacLeod, Matthew; Scheringer, Martin

    2018-01-24

    Environmental fate and exposure models are a powerful means to integrate information on chemicals, their partitioning and degradation behaviour, the environmental scenario and the emissions in order to compile a picture of chemical distribution and fluxes in the multimedia environment. A 1995 pioneering book, resulting from a series of workshops among model developers and users, reported the main advantages and identified needs for research in the field of multimedia fate models. Considerable efforts were devoted to their improvement in the past 25 years and many aspects were refined; notably the inclusion of nanomaterials among the modelled substances, the development of models at different spatial and temporal scales, the estimation of chemical properties and emission data, the incorporation of additional environmental media and processes, the integration of sensitivity and uncertainty analysis in the simulations. However, some challenging issues remain and require research efforts and attention: the need of methods to estimate partition coefficients for polar and ionizable chemical in the environment, a better description of bioavailability in different environments as well as the requirement of injecting more ecological realism in exposure predictions to account for the diversity of ecosystem structures and functions in risk assessment. Finally, to transfer new scientific developments into the realm of regulatory risk assessment, we propose the formation of expert groups that compare, discuss and recommend model modifications and updates and help develop practical tools for risk assessment.

  15. An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios (External Review Draft)

    Science.gov (United States)

    EPA has released an external review draft entitled, An Exploratory Study: Assessment of Modeled Dioxin Exposure in Ceramic Art Studios(External Review Draft). The public comment period and the external peer-review workshop are separate processes that provide opportunities ...

  16. Assessment of human exposures

    Energy Technology Data Exchange (ETDEWEB)

    Lebret, E. [RIVM-National Inst. of Public Health and Environmental Protection (Netherlands)

    1995-12-31

    This article describes some of the features of the assessment of human exposure to environmental pollutants in epidemiological studies. Since exposure assessment in air pollution epidemiology studies typically involve professionals from various backgrounds, interpretation of a concepts like `exposure` may vary. A brief descriptions is therefore given by way of introduction

  17. Assessment of human exposures

    Energy Technology Data Exchange (ETDEWEB)

    Lebret, E [RIVM-National Inst. of Public Health and Environmental Protection (Netherlands)

    1996-12-31

    This article describes some of the features of the assessment of human exposure to environmental pollutants in epidemiological studies. Since exposure assessment in air pollution epidemiology studies typically involve professionals from various backgrounds, interpretation of a concepts like `exposure` may vary. A brief descriptions is therefore given by way of introduction

  18. Probabilistic assessment of wildfire hazard and municipal watershed exposure

    Science.gov (United States)

    Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille

    2012-01-01

    The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...

  19. From eyeballing to statistical modelling : methods for assessment of occupational exposure

    NARCIS (Netherlands)

    Kromhout, H.

    1994-01-01

    In this thesis methods for assessment of occupational exposure are evaluated and developed. These methods range from subjective methods (qualitative and semiquantitative) to more objective quantitative methods based on actual measurement of personal exposure to chemical and physical

  20. Applicability of western chemical dietary exposure models to the Chinese population.

    Science.gov (United States)

    Zhao, Shizhen; Price, Oliver; Liu, Zhengtao; Jones, Kevin C; Sweetman, Andrew J

    2015-07-01

    A range of exposure models, which have been developed in Europe and North America, are playing an increasingly important role in priority setting and the risk assessment of chemicals. However, the applicability of these tools, which are based on Western dietary exposure pathways, to estimate chemical exposure to the Chinese population to support the development of a risk-based environment and exposure assessment, is unclear. Three frequently used modelling tools, EUSES, RAIDAR and ACC-HUMANsteady, have been evaluated in terms of human dietary exposure estimation by application to a range of chemicals with different physicochemical properties under both model default and Chinese dietary scenarios. Hence, the modelling approaches were assessed by considering dietary pattern differences only. The predicted dietary exposure pathways were compared under both scenarios using a range of hypothetical and current emerging contaminants. Although the differences across models are greater than those between dietary scenarios, model predictions indicated that dietary preference can have a significant impact on human exposure, with the relatively high consumption of vegetables and cereals resulting in higher exposure via plants-based foodstuffs under Chinese consumption patterns compared to Western diets. The selected models demonstrated a good ability to identify key dietary exposure pathways which can be used for screening purposes and an evaluative risk assessment. However, some model adaptations will be required to cover a number of important Chinese exposure pathways, such as freshwater farmed-fish, grains and pork. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Exposure assessment of process-related contaminants in food by biomarker monitoring.

    Science.gov (United States)

    Rietjens, Ivonne M C M; Dussort, P; Günther, Helmut; Hanlon, Paul; Honda, Hiroshi; Mally, Angela; O'Hagan, Sue; Scholz, Gabriele; Seidel, Albrecht; Swenberg, James; Teeguarden, Justin; Eisenbrand, Gerhard

    2018-01-01

    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.

  2. Exposure assessment of mobile phone base station radiation in an outdoor environment using sequential surrogate modeling.

    Science.gov (United States)

    Aerts, Sam; Deschrijver, Dirk; Joseph, Wout; Verloock, Leen; Goeminne, Francis; Martens, Luc; Dhaene, Tom

    2013-05-01

    Human exposure to background radiofrequency electromagnetic fields (RF-EMF) has been increasing with the introduction of new technologies. There is a definite need for the quantification of RF-EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack of a fast and efficient measurement procedure. In this article, a new procedure is proposed for accurately mapping the exposure to base station radiation in an outdoor environment based on surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry for human RF exposure. We tested our procedure in an urban area of about 0.04 km(2) for Global System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map, locating regions of high and low exposure; 70 measurement locations were sufficient to characterize the electric field distribution in the area and build an accurate predictive interpolation model. Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk communication and epidemiological studies) are developed by combining the proven efficiency of sequential design with the speed of exposimeter measurements and their ease of handling. Copyright © 2013 Wiley Periodicals, Inc.

  3. Ecological models and pesticide risk assessment: current modeling practice.

    Science.gov (United States)

    Schmolke, Amelie; Thorbek, Pernille; Chapman, Peter; Grimm, Volker

    2010-04-01

    Ecological risk assessments of pesticides usually focus on risk at the level of individuals, and are carried out by comparing exposure and toxicological endpoints. However, in most cases the protection goal is populations rather than individuals. On the population level, effects of pesticides depend not only on exposure and toxicity, but also on factors such as life history characteristics, population structure, timing of application, presence of refuges in time and space, and landscape structure. Ecological models can integrate such factors and have the potential to become important tools for the prediction of population-level effects of exposure to pesticides, thus allowing extrapolations, for example, from laboratory to field. Indeed, a broad range of ecological models have been applied to chemical risk assessment in the scientific literature, but so far such models have only rarely been used to support regulatory risk assessments of pesticides. To better understand the reasons for this situation, the current modeling practice in this field was assessed in the present study. The scientific literature was searched for relevant models and assessed according to nine characteristics: model type, model complexity, toxicity measure, exposure pattern, other factors, taxonomic group, risk assessment endpoint, parameterization, and model evaluation. The present study found that, although most models were of a high scientific standard, many of them would need modification before they are suitable for regulatory risk assessments. The main shortcomings of currently available models in the context of regulatory pesticide risk assessments were identified. When ecological models are applied to regulatory risk assessments, we recommend reviewing these models according to the nine characteristics evaluated here. (c) 2010 SETAC.

  4. Assessment of Human Exposure to ENMs.

    Science.gov (United States)

    Jiménez, Araceli Sánchez; van Tongeren, Martie

    2017-01-01

    Human exposure assessment of engineered nanomaterials (ENMs) is hampered, among other factors, by the difficulty to differentiate ENM from other nanomaterials (incidental to processes or naturally occurring) and the lack of a single metric that can be used for health risk assessment. It is important that the exposure assessment is carried out throughout the entire life-cycle as releases can occur at the different stages of the product life-cycle, from the synthesis, manufacture of the nano-enable product (occupational exposure) to the professional and consumer use of nano-enabled product (consumer exposure) and at the end of life.Occupational exposure surveys should follow a tiered approach, increasing in complexity in terms of instruments used and sampling strategy applied with higher tiers in order tailor the exposure assessment to the specific materials used and workplace exposure scenarios and to reduce uncertainty in assessment of exposure. Assessment of consumer exposure and of releases from end-of-life processes currently relies on release testing of nano-enabled products in laboratory settings.

  5. Framework for Multi-Pathway Cumulative Exposure for Comparative Assessments

    DEFF Research Database (Denmark)

    McKone, Tom; Fantke, Peter

    2016-01-01

    in comparative risk assessment, life-cycle assessment (LCA), and chemical alternatives assessment (CAA), multimedia fate and exposure models synthesize information about partitioning, reaction, and intermedia-transport properties of chemicals in a representative (local to regional) or generic (continental...

  6. Harmonizing exposure metrics and methods for sustainability assessments of food contact materials

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Jolliet, Olivier; Niero, Monia

    2016-01-01

    ) and Cradle to Cradle to support packaging design. Each assessment has distinct context and goals, but can help manage exposure to toxic chemicals and other environmental impacts. Metrics a nd methods to quantify and characterize exposure to potentially toxic chemicals specifically in food packaging are......, however, notably lacking from such assessments. Furthermore, previous case studies demonstrated that sustainable packaging design focuses, such as decreasing greenhouse gas emissions or resource consumption, can increase exposure to toxic chemicals through packaging. Thereby, developing harmonized methods...... for quantifying exposure to chemicals in food packaging is critical to ensure ‘sustainable packages’ do not increase exposure to toxic chemicals. Therefore we developed modelling methods suitable for first-tier risk screening and environmental assessments. The modelling framework was based on the new product...

  7. Quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment

    DEFF Research Database (Denmark)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive E

    2013-01-01

    exposure studies to accurately assess human health risks. ? We discuss potential and shortcomings of methods and tools with a focus on how their development influences study design. ? We propose a novel conceptual model for integrated health impact assessment of human exposure to air pollutants. ? We......Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure...... results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population...

  8. Challenges and perspectives of nanoparticle exposure assessment.

    Science.gov (United States)

    Lee, Ji Hyun; Moon, Min Chaul; Lee, Joon Yeob; Yu, Il Je

    2010-06-01

    Nanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activities related nanomaterial safety, and exposure assessment standard development for nanotechnology. Further this report describes challenges of nanoparticle exposure assessment such as background measurement, metrics of nanoparticle exposure assessment and personal sampling.

  9. Assessment of dermal exposure to chemicals

    NARCIS (Netherlands)

    Hemmen, J.J. van; Brouwer, D.H.

    1995-01-01

    The methods for the dermal exposure assessment vary in their complexity and are in some sense complementary to each other. The most easy-to-use methods involve a pseudo-skin-approach, such as gloves and removal by washing. In some cases generic modelling appears to be possible. The experimental

  10. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants

    Directory of Open Access Journals (Sweden)

    Elke S. Reichwaldt

    2016-08-01

    Full Text Available Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a ‘high’ risk to develop Day Away From Work illness, and lakes that present a ‘low’ or ‘medium’ risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants.

  11. Comparative Assessment of Particulate Air Pollution Exposure from Municipal Solid Waste Incinerator Emissions

    Science.gov (United States)

    Ashworth, Danielle C.; Fuller, Gary W.; Toledano, Mireille B.; Font, Anna; Elliott, Paul; Hansell, Anna L.; de Hoogh, Kees

    2013-01-01

    Background. Research to date on health effects associated with incineration has found limited evidence of health risks, but many previous studies have been constrained by poor exposure assessment. This paper provides a comparative assessment of atmospheric dispersion modelling and distance from source (a commonly used proxy for exposure) as exposure assessment methods for pollutants released from incinerators. Methods. Distance from source and the atmospheric dispersion model ADMS-Urban were used to characterise ambient exposures to particulates from two municipal solid waste incinerators (MSWIs) in the UK. Additionally an exploration of the sensitivity of the dispersion model simulations to input parameters was performed. Results. The model output indicated extremely low ground level concentrations of PM10, with maximum concentrations of incinerator characteristics, magnitude of emissions, and surrounding meteorological and topographical conditions are considered. Reducing exposure misclassification is particularly important in environmental epidemiology to aid detection of low-level risks. PMID:23935644

  12. Exposure assessment of dioxins and dioxin-like PCBs in pasteurised bovine milk using probabilistic modelling.

    Science.gov (United States)

    Adekunte, Adefunke O; Tiwari, Brijesh K; O'Donnell, Colm P

    2010-09-01

    Quantitative exposure assessment is a useful technique to investigate the risk from contaminants in the food chain. The objective of this study was to develop a probabilistic exposure assessment model for dioxins (PCDD/Fs) and dioxin-like PCBs (DL-PCBs) in pasteurised bovine milk. Mean dioxins and DL-PCBs (non-ortho and mono-ortho PCBs) concentrations (pg WHO-TEQ g(-1)) in bovine milk were estimated as 0.06 ± 0.07 pg WHO-TEQ g(-1) for dioxins and 0.08 ± 0.07 pg WHO-TEQ g(-1) for DL-PCBs using Monte Carlo simulation. The simulated model estimated mean exposure for dioxins was 0.19 ± 0.29 pg WHO-TEQ kg(-1)bw d(-1) and 0.14 ± 0.22 pg WHO-TEQ kg(-1) bw d(-1) and for DL-PCBs was 0.25 ± 0.30 pg WHO-TEQ kg(-1) bw d(-1) and 0.19 ± 0.22 pg WHO-TEQ kg(-1) bw d(-1) for men and women, respectively. This study showed that the mean dioxins and DL-PCBs exposure from consumption of pasteurised bovine milk is below the provisional maximum tolerable monthly intake of 70 pg TEQ kg(-1) bw month(-1) (equivalent of 2.3 pg TEQ kg(-1) bw d(-1)) recommended by the Joint FAO/WHO Expert Committee on Food Additives and Contaminants (JECFA). Results from this study also showed that the estimated dioxins and DL-PCBs concentration in pasteurised bovine milk is comparable to those reported in previous studies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods

    Science.gov (United States)

    Choi, Giehae; Bell, Michelle L.; Lee, Jong-Tae

    2017-04-01

    The land-use regression (LUR) approach to estimate the levels of ambient air pollutants is becoming popular due to its high validity in predicting small-area variations. However, only a few studies have been conducted in Asian countries, and much less research has been conducted on comparing the performances and applied estimates of different exposure assessments including LUR. The main objectives of the current study were to conduct nitrogen dioxide (NO2) exposure assessment with four methods including LUR in the Republic of Korea, to compare the model performances, and to estimate the empirical NO2 exposures of a cohort. The study population was defined as the year 2010 participants of a government-supported cohort established for bio-monitoring in Ulsan, Republic of Korea. The annual ambient NO2 exposures of the 969 study participants were estimated with LUR, nearest station, inverse distance weighting, and ordinary kriging. Modeling was based on the annual NO2 average, traffic-related data, land-use data, and altitude of the 13 regularly monitored stations. The final LUR model indicated that area of transportation, distance to residential area, and area of wetland were important predictors of NO2. The LUR model explained 85.8% of the variation observed in the 13 monitoring stations of the year 2009. The LUR model outperformed the others based on leave-one out cross-validation comparing the correlations and root-mean square error. All NO2 estimates ranged from 11.3-18.0 ppb, with that of LUR having the widest range. The NO2 exposure levels of the residents differed by demographics. However, the average was below the national annual guidelines of the Republic of Korea (30 ppb). The LUR models showed high performances in an industrial city in the Republic of Korea, despite the small sample size and limited data. Our findings suggest that the LUR method may be useful in similar settings in Asian countries where the target region is small and availability of data is

  14. Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient.

    Science.gov (United States)

    Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy

    2017-03-01

    The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.

  15. Modelling ecological and human exposure to POPs in Venice lagoon - Part II: Quantitative uncertainty and sensitivity analysis in coupled exposure models.

    Science.gov (United States)

    Radomyski, Artur; Giubilato, Elisa; Ciffroy, Philippe; Critto, Andrea; Brochot, Céline; Marcomini, Antonio

    2016-11-01

    The study is focused on applying uncertainty and sensitivity analysis to support the application and evaluation of large exposure models where a significant number of parameters and complex exposure scenarios might be involved. The recently developed MERLIN-Expo exposure modelling tool was applied to probabilistically assess the ecological and human exposure to PCB 126 and 2,3,7,8-TCDD in the Venice lagoon (Italy). The 'Phytoplankton', 'Aquatic Invertebrate', 'Fish', 'Human intake' and PBPK models available in MERLIN-Expo library were integrated to create a specific food web to dynamically simulate bioaccumulation in various aquatic species and in the human body over individual lifetimes from 1932 until 1998. MERLIN-Expo is a high tier exposure modelling tool allowing propagation of uncertainty on the model predictions through Monte Carlo simulation. Uncertainty in model output can be further apportioned between parameters by applying built-in sensitivity analysis tools. In this study, uncertainty has been extensively addressed in the distribution functions to describe the data input and the effect on model results by applying sensitivity analysis techniques (screening Morris method, regression analysis, and variance-based method EFAST). In the exposure scenario developed for the Lagoon of Venice, the concentrations of 2,3,7,8-TCDD and PCB 126 in human blood turned out to be mainly influenced by a combination of parameters (half-lives of the chemicals, body weight variability, lipid fraction, food assimilation efficiency), physiological processes (uptake/elimination rates), environmental exposure concentrations (sediment, water, food) and eating behaviours (amount of food eaten). In conclusion, this case study demonstrated feasibility of MERLIN-Expo to be successfully employed in integrated, high tier exposure assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  17. Modelling survival: exposure pattern, species sensitivity and uncertainty.

    Science.gov (United States)

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B; Van den Brink, Paul J; Veltman, Karin; Vogel, Sören; Zimmer, Elke I; Preuss, Thomas G

    2016-07-06

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.

  18. Assessment of human exposure to environmental sources of nickel in Europe: Inhalation exposure.

    Science.gov (United States)

    Buekers, Jurgen; De Brouwere, Katleen; Lefebvre, Wouter; Willems, Hanny; Vandenbroele, Marleen; Van Sprang, Patrick; Eliat-Eliat, Maxime; Hicks, Keegan; Schlekat, Christian E; Oller, Adriana R

    2015-07-15

    The paper describes the inhalation nickel (Ni) exposure of humans via the environment for the regional scale in the EU, together with a tiered approach for assessing additional local exposure from industrial emissions. The approach was designed, in the context of REACH, for the purpose of assessing and controlling emissions and air quality in the neighbourhood of Ni producers and downstream users. Two Derived No Effect Level (DNEL) values for chronic inhalation exposure to total Ni in PM10 (20 and 60ngNi/m(3)) were considered. The value of 20ngNi/m(3) is the current EU air quality guidance value. The value of 60ngNi/m(3) is derived here based on recently published Ni data (Oller et al., 2014). Both values are protective for respiratory toxicity and carcinogenicity but differ in the application of toxicokinetic adjustments and cancer threshold considerations. Estimates of air Ni concentrations at the European regional scale were derived from the database of the European Environment Agency. The 50th and 90th percentile regional exposures were below both DNEL values. To assess REACH compliance at the local scale, measured ambient air data are preferred but are often unavailable. A tiered approach for the use of modelled ambient air concentrations was developed, starting with the application of the default EUSES model and progressing to more sophisticated models. As an example, the tiered approach was applied to 33 EU Ni sulphate producers' and downstream users' sites. Applying the EUSES model demonstrates compliance with a DNEL of 60ngNi/m(3) for the majority of sites, while the value of the refined modelling is demonstrated when a DNEL of 20ngNi/m(3) is considered. The proposed approach, applicable to metals in general, can be used in the context of REACH, for refining the risk characterisation and guiding the selection of risk management measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. ASSESSING CHILDREN'S EXPOSURES TO PESTICIDES: AN IMPORTANT APPLICATION OF THE STOCHASTIC HUMAN EXPOSURE AND DOSE SIMULATION MODEL (SHEDS)

    Science.gov (United States)

    Accurately quantifying human exposures and doses of various populations to environmental pollutants is critical for the Agency to assess and manage human health risks. For example, the Food Quality Protection Act of 1996 (FQPA) requires EPA to consider aggregate human exposure ...

  20. Optimum modellings of atmospheric diffusion of radioactive effluents and exposure doses in the accident consequence assessment (Level 3 PSA)

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Lee, Young Bok; Han, Moon Hee; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae

    1992-12-01

    Atmospheric diffusion and exposure strongly dependent on the environment were firstly considered in the full spectrum of accident consequence assessment to establish based on Korean conditions. An optimum weather category based on Korean climate and site-specific meteorology of Kori region was established by statistical analysis of measured data for 10 years. And a trajectory model was selected as the optimal one in the ACA by reviewing several existing diffusion models. Following aspects were considered in this selection as availability of meteorological data, ability to treat the change to wind direction, easy applicability of the model, and restriction of CPU time and core memory in current computers. Numerical integration method of our own was selected as the optimal dose assessment tool of external exposure. Unit dose rate was firstly computed with this method as the function of energy level of radionuclide, size of lattice, and distance between source and receptor, and then the results were rearranged as the data library for the rapid access to the ACA run. Dynamic ecosystem modelling has been done in order to estimate the seasonal variation of radioactivity for the assessment of ingestion exposure, considering Korean ingestion behavior, agricultural practice and the transportation. There is a lot of uncertainty in a countermeasure model due to the assumed values of parameters such as fraction of population with different shielding factor and driving speed. A new countermeasure model was developed using the concept of fuzzy set theory, since it provided the mathematical tools which could characterize the uncertainty involved in countermeasure modelling. (Author)

  1. Assessment of mankind's exposure through his environment: new tools and aid to decision - Colloquium report

    International Nuclear Information System (INIS)

    Thierry-Mieg, Morgane; Rousset, Marine; Varkados-Lemarechal, Margaret

    2012-01-01

    During this colloquium, the different sessions addressed environmental measurement strategies to assess mankind's exposure, the use and the interpretation of exposure bio-markers, the estimation and reconstruction of exposures (integrated modelling, model-measurement coupling), the organization and motives of dialogue between involved parties. Round tables addressed topics such as: measurement strategies and objectives, bio-availability of soil pollutants, approaches and tools for exposure assessment, new methodological strategies for the assessment of chemical exposure, interpretation of bio-markers, reference toxicological values, interest of bio-monitoring in professional environment, transcriptomic analysis, evolutions in the characterization of genotoxic hazards, a tool for the assessment of the exposure of newborn children to pesticides, and so on

  2. Assessment of exposure dose to workers in virtual decommissioning environments

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, GeunHo; Seo, JaeSeok

    2014-01-01

    This paper is intended to suggest the method analyze and assess the exposure dose to workers in virtual decommissioning environments. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. This work was to be able to simulate scenarios of decommissioning so that exposure dose to workers could be measured and assessed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities are accomplished, the method of simulation assessment was developed in virtual radiological environments. But this work was developed as a tool of simulation for single subject mode. Afterwards, the simulation environment for multi-subjects mode will be upgraded by simultaneous modules with networking environments. Then the much more practical method will be developed by changing number of workers and duration of time under any circumstances of decommissioning

  3. Assessment of exposure dose to workers in virtual decommissioning environments

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, GeunHo; Seo, JaeSeok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    This paper is intended to suggest the method analyze and assess the exposure dose to workers in virtual decommissioning environments. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. This work was to be able to simulate scenarios of decommissioning so that exposure dose to workers could be measured and assessed. To establish the plan of exposure dose to workers during decommissioning of nuclear facilities before decommissioning activities are accomplished, the method of simulation assessment was developed in virtual radiological environments. But this work was developed as a tool of simulation for single subject mode. Afterwards, the simulation environment for multi-subjects mode will be upgraded by simultaneous modules with networking environments. Then the much more practical method will be developed by changing number of workers and duration of time under any circumstances of decommissioning.

  4. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment

    DEFF Research Database (Denmark)

    Ryberg, Morten Walbech; Rosenbaum, Ralph K.; Mosqueron, Luc

    2018-01-01

    Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders...... magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural...... to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation...

  5. Modelling of individual subject ozone exposure response kinetics.

    Science.gov (United States)

    Schelegle, Edward S; Adams, William C; Walby, William F; Marion, M Susan

    2012-06-01

    A better understanding of individual subject ozone (O(3)) exposure response kinetics will provide insight into how to improve models used in the risk assessment of ambient ozone exposure. To develop a simple two compartment exposure-response model that describes individual subject decrements in forced expiratory volume in one second (FEV(1)) induced by the acute inhalation of O(3) lasting up to 8 h. FEV(1) measurements of 220 subjects who participated in 14 previously completed studies were fit to the model using both particle swarm and nonlinear least squares optimization techniques to identify three subject-specific coefficients producing minimum "global" and local errors, respectively. Observed and predicted decrements in FEV(1) of the 220 subjects were used for validation of the model. Further validation was provided by comparing the observed O(3)-induced FEV(1) decrements in an additional eight studies with predicted values obtained using model coefficients estimated from the 220 subjects used in cross validation. Overall the individual subject measured and modeled FEV(1) decrements were highly correlated (mean R(2) of 0.69 ± 0.24). In addition, it was shown that a matrix of individual subject model coefficients can be used to predict the mean and variance of group decrements in FEV(1). This modeling approach provides insight into individual subject O(3) exposure response kinetics and provides a potential starting point for improving the risk assessment of environmental O(3) exposure.

  6. Assessment of inhomogeneous ELF magnetic field exposures

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    In daily life as well as at workplaces, exposures to inhomogeneous magnetic fields become very frequent. This makes easily applicable compliance assessment methods increasingly important. Reference levels have been defined linking basic restrictions to levels of homogeneous fields at worst-case exposure conditions. If reference levels are met, compliance with basic restrictions can be assumed. If not, further investigations could still prove compliance. Because of the lower induction efficiency, inhomogeneous magnetic fields such as from electric appliances could be allowed exceeding reference levels. To easily assess inhomogeneous magnetic fields, a quick and flexible multi-step assessment procedure is proposed. On the basis of simulations with numerical, anatomical human models reference factors were calculated elevating reference levels to link hot-spot values measured at source surfaces to basic limits and allowing accounting for different source distance, size, orientation and position. Compliance rules are proposed minimising assessment efforts. (authors)

  7. Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment

    Science.gov (United States)

    Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.

    2012-01-01

    Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278

  8. Prioritizing chemicals and data requirements for screening-level exposure and risk assessment.

    Science.gov (United States)

    Arnot, Jon A; Brown, Trevor N; Wania, Frank; Breivik, Knut; McLachlan, Michael S

    2012-11-01

    Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner.

  9. A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators

    Directory of Open Access Journals (Sweden)

    Michele Cordioli

    2013-01-01

    Full Text Available Incineration is a common technology for waste disposal, and there is public concern for the health impact deriving from incinerators. Poor exposure assessment has been claimed as one of the main causes of inconsistency in the epidemiological literature. We reviewed 41 studies on incinerators published between 1984 and January 2013 and classified them on the basis of exposure assessment approach. Moreover, we performed a simulation study to explore how the different exposure metrics may influence the exposure levels used in epidemiological studies. 19 studies used linear distance as a measure of exposure to incinerators, 11 studies atmospheric dispersion models, and the remaining 11 studies a qualitative variable such as presence/absence of the source. All reviewed studies utilized residence as a proxy for population exposure, although residence location was evaluated with different precision (e.g., municipality, census block, or exact address. Only one study reconstructed temporal variability in exposure. Our simulation study showed a notable degree of exposure misclassification caused by the use of distance compared to dispersion modelling. We suggest that future studies (i make full use of pollution dispersion models; (ii localize population on a fine-scale; and (iii explicitly account for the presence of potential environmental and socioeconomic confounding.

  10. Optimizing cost-efficiency in mean exposure assessment--cost functions reconsidered.

    Science.gov (United States)

    Mathiassen, Svend Erik; Bolin, Kristian

    2011-05-21

    Reliable exposure data is a vital concern in medical epidemiology and intervention studies. The present study addresses the needs of the medical researcher to spend monetary resources devoted to exposure assessment with an optimal cost-efficiency, i.e. obtain the best possible statistical performance at a specified budget. A few previous studies have suggested mathematical optimization procedures based on very simple cost models; this study extends the methodology to cover even non-linear cost scenarios. Statistical performance, i.e. efficiency, was assessed in terms of the precision of an exposure mean value, as determined in a hierarchical, nested measurement model with three stages. Total costs were assessed using a corresponding three-stage cost model, allowing costs at each stage to vary non-linearly with the number of measurements according to a power function. Using these models, procedures for identifying the optimally cost-efficient allocation of measurements under a constrained budget were developed, and applied on 225 scenarios combining different sizes of unit costs, cost function exponents, and exposure variance components. Explicit mathematical rules for identifying optimal allocation could be developed when cost functions were linear, while non-linear cost functions implied that parts of or the entire optimization procedure had to be carried out using numerical methods.For many of the 225 scenarios, the optimal strategy consisted in measuring on only one occasion from each of as many subjects as allowed by the budget. Significant deviations from this principle occurred if costs for recruiting subjects were large compared to costs for setting up measurement occasions, and, at the same time, the between-subjects to within-subject variance ratio was small. In these cases, non-linearities had a profound influence on the optimal allocation and on the eventual size of the exposure data set. The analysis procedures developed in the present study can be used

  11. CalTOX, a multimedia total exposure model for hazardous-waste sites

    International Nuclear Information System (INIS)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population

  12. Assessment and improvement of biotransfer models to cow's milk and beef used in exposure assessment tools for organic pollutants.

    Science.gov (United States)

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2015-11-01

    The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow's milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants. Copyright © 2015. Published by Elsevier Ltd.

  13. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    International Nuclear Information System (INIS)

    Dhondt, Stijn; Beckx, Carolien; Degraeuwe, Bart; Lefebvre, Wouter; Kochan, Bruno; Bellemans, Tom; Int Panis, Luc; Macharis, Cathy; Putman, Koen

    2012-01-01

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO 2 and O 3 using only home addresses were compared with models that integrate all time-activity patterns—including time in commute—for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO 2 using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: ► Exposure to ambient air pollution was assessed integrating population mobility. ► This dynamic exposure was integrated into a health impact assessment. ► Differences between the dynamic and residential exposure were quantified. ► Modest differences in health impact were found at a regional level. ► At municipal level larger differences were found, influenced by gender and age.

  14. An Exposure Assessment of Polybrominated Diphenyl Ethers ...

    Science.gov (United States)

    EPA announced the availability of the final report, An Exposure Assessment of Polybrominated Diphenyl Ethers. This report provides a comprehensive assessment of the exposure of Americans to this class of persistent organic pollutants. Individual chapters in this document address: the production, use, and lifecycle of PBDEs; environmental fate; environmental levels; and human exposure. This final report addresses the exposure assessment needs identified in the OPBDE Workgroup project plan. It provides a comprehensive assessment of the exposure of Americans to this class of persistent organic pollutants. Individual chapters in this document address: the production, use, and lifecycle of PBDEs; environmental fate; environmental levels; and human exposure.

  15. Risk assessment of exposure to radon decay products

    Energy Technology Data Exchange (ETDEWEB)

    Monchaux, G

    1999-07-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f{sub p}- and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of {sup 218}Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H{sub w}/P{sub p}) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the

  16. Risk assessment of exposure to radon decay products

    International Nuclear Information System (INIS)

    Monchaux, G.

    1999-01-01

    The aim of this project was to assess the risk due to inhalation of radon and its decay products using an horizontal approach across a large scale research programme. The central objective was the assessment of human risk which requires combination of several topics involving a multidisciplinary approach. In the Aerosol Studies Group, progress was achieved in improvement, calibration and automation of experimental techniques for continuous and integrated measurements of the unattached fraction f p - and equilibrium factor F- values. Measurements were performed to determine the variation of size distributions of unattached and aerosol-associated radon decay products under typical living conditions. All aerosol groups performed controlled chamber studies to understand the basic behaviour of airborne activity concentrations. Measurements were performed to determine neutralisation rates of 218 Po, to understand the cluster growth with residence time and to understand the hygroscopic growth of aerosol particles. In the Modelling Group, the programme RADEP has been developed to calculate the weighted committed equivalent lung dose per unit exposure of radon progeny (H w /P p ) which implements the ICRP Publication 66 Human Respiratory Tract Model (HRTM). The stochastic deposition model (IDEAL) has been compared with the deposition model used by the HRTM, and the agreement between the two deposition models was excellent. A deterministic radon progeny dosimetry model (RADOS) has been developed. This model includes all bronchial airway generations compared with the HRTM that groups the 16 airway generations into three regions. Initial calculations with RADOS show that the basal and secretory cell doses are slightly smaller compared with that of the HRTM. A sensitivity analysis has been performed that has identified those HRTM model parameters that most affect the Hw/Pp. A stochastic rat deposition model (RALMO) and a clearance model for the rat based on the HRTM have been

  17. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals

    NARCIS (Netherlands)

    Olie, J Daniël N; Bessems, Jos G; Clewell, Harvey J; Meulenbelt, Jan; Hunault, Claudine C

    BACKGROUND: Physiologically Based Toxicokinetic Models (PBTK) may facilitate emergency risk assessment after chemical incidents with inhalation exposure, but they are rarely used due to their relative complexity and skill requirements. We aimed to tackle this problem by evaluating a semi-generic

  18. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals

    NARCIS (Netherlands)

    Olie, J. Daniël N; Bessems, Jos G.; Clewell, Harvey J.; Meulenbelt, Jan; Hunault, Claudine C.

    2015-01-01

    BACKGROUND: Physiologically Based Toxicokinetic Models (PBTK) may facilitate emergency risk assessment after chemical incidents with inhalation exposure, but they are rarely used due to their relative complexity and skill requirements. We aimed to tackle this problem by evaluating a semi-generic

  19. Human Exposure Model (HEM): A modular, web-based application to characterize near-field chemical exposures and releases

    Science.gov (United States)

    The U.S. EPA’s Chemical Safety and Sustainability research program is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur in various populations over the entire life cycle of a consumer product. The model will be implemented as a...

  20. Exposure assessment and modeling of particulate matter for asthmatic children using personal nephelometers

    Science.gov (United States)

    Wu, Chang-Fu; Delfino, Ralph J.; Floro, Joshua N.; Quintana, Penelope J. E.; Samimi, Behzad S.; Kleinman, Michael T.; Allen, Ryan W.; Sally Liu, L.-J.

    It has been shown that acute exposures to particulate matter (PM) may exacerbate asthma in children. However, most epidemiological studies have relied on time-integrated PM measurements taken at a centrally located stationary monitoring sites. In this article, we characterized children's short-term personal exposures to PM 2.5 (PM with aerodynamic diameters size-selective inlet was used to estimate real-time PM 2.5 concentrations on 20 asthmatic children, inside and outside of their residences, and at a central site. The personal and indoor pDRs were operated passively, while the home outdoor and central site instruments were operated actively. The subjects received 29.2% of their exposures at school, even though they only spent 16.4% of their time there. More precise personal clouds were estimated for the home-indoor and home-outdoor microenvironments where PM concentrations were measured. The personal cloud increased with increasing activity levels and was higher during outdoor activities than during indoor activities. We built models to predict personal PM exposures based on either microenvironmental or central-site PM 2.5 measurements, and evaluated the modeled exposures against the actual personal measurements. A multiple regression model with central site PM concentration as the main predictor had a better prediction power ( R2=0.41) than a three-microenvironmental model ( R2=0.11). We further constructed a source-specific exposure model utilizing the time-space-activity information and the particle infiltration efficiencies (mean=0.72±0.15) calculated from a recursive mass balance model. It was estimated that the mean hourly personal exposures resulting from ambient, indoor-generated, and personal activity PM 2.5 were 11.1, 5.5, and 10.0 μg/m 3, respectively, when the modeling error was minimized. The high PM 2.5 exposure to personal activities reported in our study is likely due to children's more active lifestyle as compared with older adult subjects in

  1. Chapter three: methodology of exposure modeling

    CSIR Research Space (South Africa)

    Moschandreas, DJ

    2002-12-01

    Full Text Available methodologies and models are reviewed. Three exposure/measurement methodologies are assessed. Estimation methods focus on source evaluation and attribution, sources include those outdoors and indoors as well as in occupational and in-transit environments. Fate...

  2. Parameterization models for pesticide exposure via crop consumption.

    Science.gov (United States)

    Fantke, Peter; Wieland, Peter; Juraske, Ronnie; Shaddick, Gavin; Itoiz, Eva Sevigné; Friedrich, Rainer; Jolliet, Olivier

    2012-12-04

    An approach for estimating human exposure to pesticides via consumption of six important food crops is presented that can be used to extend multimedia models applied in health risk and life cycle impact assessment. We first assessed the variation of model output (pesticide residues per kg applied) as a function of model input variables (substance, crop, and environmental properties) including their possible correlations using matrix algebra. We identified five key parameters responsible for between 80% and 93% of the variation in pesticide residues, namely time between substance application and crop harvest, degradation half-lives in crops and on crop surfaces, overall residence times in soil, and substance molecular weight. Partition coefficients also play an important role for fruit trees and tomato (Kow), potato (Koc), and lettuce (Kaw, Kow). Focusing on these parameters, we develop crop-specific models by parametrizing a complex fate and exposure assessment framework. The parametric models thereby reflect the framework's physical and chemical mechanisms and predict pesticide residues in harvest using linear combinations of crop, crop surface, and soil compartments. Parametric model results correspond well with results from the complex framework for 1540 substance-crop combinations with total deviations between a factor 4 (potato) and a factor 66 (lettuce). Predicted residues also correspond well with experimental data previously used to evaluate the complex framework. Pesticide mass in harvest can finally be combined with reduction factors accounting for food processing to estimate human exposure from crop consumption. All parametric models can be easily implemented into existing assessment frameworks.

  3. A hybrid modeling with data assimilation to evaluate human exposure level

    Science.gov (United States)

    Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.

    2015-12-01

    Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.

  4. A flexible matrix-based human exposure assessment framework suitable for LCA and CAA

    DEFF Research Database (Denmark)

    Jolliet, Olivier; Ernstoff, Alexi; Huang, Lei

    2016-01-01

    are not applicable to all types of near-field chemical releases from consumer products, e.g. direct dermal application. A consistent near-and far-field framework is needed for life cycle assessment (LCA) and chemical alternative assessment (CAA) to inform mitigation of human exposure to harmful chemicals. To close......Humans can be exposed to chemicals via near-field exposure pathways (e.g. through consumer product use) and far-field exposure pathways (e.g. through environmental emissions along product life cycles). Pathways are often complex where chemicals can transfer directly from products to humans during...... use or exchange between near-and far-field compartments until sub -fractions reach humans via inhalation, ingestion or dermal uptake. Currently, however, multimedia exposure models mainly focus on far-field exposure pathways. Metrics and modeling approaches used in far-field, emission-based models...

  5. Real-time assessment of exposure dose to workers in radiological environments during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, ByungSeon; Moon, JeiKwon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Seo, JaeSeok; Jeong, SeongYoung; Lee, JungJun; Song, HaeSang; Lee, SangWha; Son, BongKi

    2014-01-01

    Highlights: • The method of exposure dose assessment to workers during decommissioning of nuclear facilities. • The environments of simulation were designed under a virtual reality. • To assess exposure dose to workers, human model was developed within a virtual reality. - Abstract: This objective of this paper is to develop a method to simulate and assess the exposure dose to workers during decommissioning of nuclear facilities. To simulate several scenarios, decommissioning environments were designed using virtual reality. To assess exposure dose to workers, a human model was also developed using virtual reality. The exposure dose was measured and assessed under the principle of ALARA in accordance with radiological environmental change. This method will make it possible to plan for the exposure dose to workers during decommissioning of nuclear facilities

  6. Combining exposure and effect modeling into an integrated probabilistic environmental risk assessment for nanoparticles.

    Science.gov (United States)

    Jacobs, Rianne; Meesters, Johannes A J; Ter Braak, Cajo J F; van de Meent, Dik; van der Voet, Hilko

    2016-12-01

    There is a growing need for good environmental risk assessment of engineered nanoparticles (ENPs). Environmental risk assessment of ENPs has been hampered by lack of data and knowledge about ENPs, their environmental fate, and their toxicity. This leads to uncertainty in the risk assessment. To deal with uncertainty in the risk assessment effectively, probabilistic methods are advantageous. In the present study, the authors developed a method to model both the variability and the uncertainty in environmental risk assessment of ENPs. This method is based on the concentration ratio and the ratio of the exposure concentration to the critical effect concentration, both considered to be random. In this method, variability and uncertainty are modeled separately so as to allow the user to see which part of the total variation in the concentration ratio is attributable to uncertainty and which part is attributable to variability. The authors illustrate the use of the method with a simplified aquatic risk assessment of nano-titanium dioxide. The authors' method allows a more transparent risk assessment and can also direct further environmental and toxicological research to the areas in which it is most needed. Environ Toxicol Chem 2016;35:2958-2967. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2016 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  7. [The methods of assessment of health risk from exposure to radon and radon daughters].

    Science.gov (United States)

    Demin, V F; Zhukovskiy, M V; Kiselev, S M

    2014-01-01

    The critical analysis of existing models of the relationship dose-effect (RDE) for radon exposure on human health has been performed. Conclusion about the necessity and possibility of improving these models has been made. A new improved version ofthe RDE has been developed. A technique for assessing the human health risk of exposure to radon, including the method for estimating of exposure doses of radon, an improved model of RDE, proper methodology risk assessment has been described. Methodology is proposed for the use in the territory of Russia.

  8. Probabilistic calculations and sensitivity analysis of parameters for a reference biosphere model assessing the potential exposure of a population to radionuclides from a deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Christian; Kaiser, Jan Christian [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, Munich (Germany); Proehl, Gerhard [International Atomic Energy Agency, Division of Radiation, Transport and Waste Safety, Wagramerstrasse 5, 1400 Vienna (Austria)

    2014-07-01

    Radioecological models are used to assess the exposure of hypothetical populations to radionuclides. Potential radionuclide sources are deep geological repositories for high level radioactive waste. Assessment time frames are long since releases from those repositories are only expected in the far future, and radionuclide migration to the geosphere biosphere interface will take additional time. Due to the long time frames, climate conditions at the repository site will change, leading to changing exposure pathways and model parameters. To identify climate dependent changes in exposure in the far field of a deep geological repository a range of reference biosphere models representing climate analogues for potential future climate states at a German site were developed. In this approach, model scenarios are developed for different contemporary climate states. It is assumed that the exposure pathways and parameters of the contemporary biosphere in the far field of the repository will change to be similar to those at the analogue sites. Since current climate models cannot predict climate developments over the assessment time frame of 1 million years, analogues for a range of realistically possible future climate conditions were selected. These climate states range from steppe to permafrost climate. As model endpoint Biosphere Dose conversion factors (BDCF) are calculated. The radionuclide specific BDCF describe the exposure of a population to radionuclides entering the biosphere in near surface ground water. The BDCF are subject to uncertainties in the exposure pathways and model parameters. In the presented work, probabilistic and sensitivity analysis was used to assess the influence of model parameter uncertainties on the BDCF and the relevance of individual parameters for the model result. This was done for the long half-live radionuclides Cs-135, I-129 and U-238. In addition to this, BDCF distributions for nine climate reference regions and several scenarios were

  9. The assessment of the aircrew exposure

    International Nuclear Information System (INIS)

    Tommasino, L.

    2002-01-01

    In 1991 ICRP first included exposure of aircraft crew to cosmic radiation as occupational exposure. The European Dosimetry Group (EURADOS) established a working group in 1992 to address this issue. The report 'Exposure of Air Crew to Cosmic Radiation' was published in the European Commission's Radiation Protection series as report 85. The first section of the report assesses the existing data on radiation exposure, describes the radiation environment at civil aviation altitudes and summarizes the computational models that have been developed to describe the cosmic ray radiation field in the atmosphere. The second section describes the quantities used to assess the radiation doses. It is clear that conventional radiation protection dosimetry as applied on the ground is not quite applicable to the situation for air crews. A multinational European research project was launched to investigate the problem of cosmic rays and dosimetry at aviation altitudes. The major objective was to measure the flux and energy spectra of neutrons and charged particles over a wide energy interval at aviation altitudes and compare the results with those calculated with various computer codes. Within the project much progress was made in different areas, for instance the determination of the fundamental physical characteristics of the cosmic radiation field at aircraft altitudes, development of instrumentation, measurements of dose rates and route doses and application of routine radiation protection. Surveys of air crew exposure have been carried out with different advanced dosimetric systems and comparisons were made between passive and real-time detector systems

  10. Exploring Global Exposure Factors Resources for Use in Consumer Exposure Assessments

    Science.gov (United States)

    Zaleski, Rosemary T.; Egeghy, Peter P.; Hakkinen, Pertti J.

    2016-01-01

    This publication serves as a global comprehensive resource for readers seeking exposure factor data and information relevant to consumer exposure assessment. It describes the types of information that may be found in various official surveys and online and published resources. The relevant exposure factors cover a broad range, including general exposure factor data found in published compendia and databases and resources about specific exposure factors, such as human activity patterns and housing information. Also included are resources on exposure factors related to specific types of consumer products and the associated patterns of use, such as for a type of personal care product or a type of children’s toy. Further, a section on using exposure factors for designing representative exposure scenarios is included, along with a look into the future for databases and other exposure science developments relevant for consumer exposure assessment. PMID:27455300

  11. Asbestos Exposure Assessment Database

    Science.gov (United States)

    Arcot, Divya K.

    2010-01-01

    Exposure to particular hazardous materials in a work environment is dangerous to the employees who work directly with or around the materials as well as those who come in contact with them indirectly. In order to maintain a national standard for safe working environments and protect worker health, the Occupational Safety and Health Administration (OSHA) has set forth numerous precautionary regulations. NASA has been proactive in adhering to these regulations by implementing standards which are often stricter than regulation limits and administering frequent health risk assessments. The primary objective of this project is to create the infrastructure for an Asbestos Exposure Assessment Database specific to NASA Johnson Space Center (JSC) which will compile all of the exposure assessment data into a well-organized, navigable format. The data includes Sample Types, Samples Durations, Crafts of those from whom samples were collected, Job Performance Requirements (JPR) numbers, Phased Contrast Microscopy (PCM) and Transmission Electron Microscopy (TEM) results and qualifiers, Personal Protective Equipment (PPE), and names of industrial hygienists who performed the monitoring. This database will allow NASA to provide OSHA with specific information demonstrating that JSC s work procedures are protective enough to minimize the risk of future disease from the exposures. The data has been collected by the NASA contractors Computer Sciences Corporation (CSC) and Wyle Laboratories. The personal exposure samples were collected from devices worn by laborers working at JSC and by building occupants located in asbestos-containing buildings.

  12. Primary blast survival and injury risk assessment for repeated blast exposures.

    Science.gov (United States)

    Panzer, Matthew B; Bass, Cameron R Dale; Rafaels, Karin A; Shridharani, Jay; Capehart, Bruce P

    2012-02-01

    The widespread use of explosives by modern insurgents and terrorists has increased the potential frequency of blast exposure in soldiers and civilians. This growing threat highlights the importance of understanding and evaluating blast injury risk and the increase of injury risk from exposure to repeated blast effects. Data from more than 3,250 large animal experiments were collected from studies focusing on the effects of blast exposure. The current study uses 2,349 experiments from the data collection for analysis of the primary blast injury and survival risk for both long- and short-duration blasts, including the effects from repeated exposures. A piecewise linear logistic regression was performed on the data to develop survival and injury risk assessment curves. New injury risk assessment curves uniting long- and short-duration blasts were developed for incident and reflected pressure measures and were used to evaluate the risk of injury based on blast over pressure, positive-phase duration, and the number of repeated exposures. The risk assessments were derived for three levels of injury severity: nonauditory, pulmonary, and fatality. The analysis showed a marked initial decrease in injury tolerance with each subsequent blast exposure. This effect decreases with increasing number of blast exposures. The new injury risk functions showed good agreement with the existing experimental data and provided a simplified model for primary blast injury risk. This model can be used to predict blast injury or fatality risk for single exposure and repeated exposure cases and has application in modern combat scenarios or in setting occupational health limits. .Copyright © 2012 by Lippincott Williams & Wilkins

  13. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    Energy Technology Data Exchange (ETDEWEB)

    Dhondt, Stijn, E-mail: stijn.dhondt@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Beckx, Carolien, E-mail: Carolien.Beckx@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Degraeuwe, Bart, E-mail: Bart.Degraeuwe@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Lefebvre, Wouter, E-mail: Wouter.Lefebvre@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Kochan, Bruno, E-mail: Bruno.Kochan@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Bellemans, Tom, E-mail: Tom.Bellemans@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Int Panis, Luc, E-mail: Luc.intpanis@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Macharis, Cathy, E-mail: cjmachar@vub.ac.be [Department MOSI-Transport and Logistics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels (Belgium); Putman, Koen, E-mail: kputman@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Interuniversity Centre for Health Economics Research (I-CHER), Vrije Universiteit Brussel, Brussels (Belgium)

    2012-09-15

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO{sub 2} and O{sub 3} using only home addresses were compared with models that integrate all time-activity patterns-including time in commute-for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO{sub 2} using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: Black-Right-Pointing-Pointer Exposure to ambient air pollution was assessed integrating population mobility. Black-Right-Pointing-Pointer This dynamic exposure was integrated into a health impact assessment. Black-Right-Pointing-Pointer Differences between the dynamic and residential exposure were quantified. Black-Right-Pointing-Pointer Modest differences in health impact were found at a regional level. Black

  14. Assessment of exposure-response functions for rocket-emission toxicants

    National Research Council Canada - National Science Library

    Subcommittee on Rocket-Emission Toxicants, National Research Council

    ... aborted launch that results in a rocket being destroyed near the ground. Assessment of Exposure-Response Functions for Rocket-Emmission Toxicants evaluates the model and the data used for three rocket emission toxicants...

  15. Truncated Levy flights and agenda-based mobility are useful for the assessment of personal human exposure

    International Nuclear Information System (INIS)

    Schlink, Uwe; Ragas, Ad M.J.

    2011-01-01

    Receptor-oriented approaches can assess the individual-specific exposure to air pollution. In such an individual-based model we analyse the impact of human mobility to the personal exposure that is perceived by individuals simulated in an exemplified urban area. The mobility models comprise random walk (reference point mobility, RPM), truncated Levy flights (TLF), and agenda-based walk (RPMA). We describe and review the general concepts and provide an inter-comparison of these concepts. Stationary and ergodic behaviour are explained and applied as well as performance criteria for a comparative evaluation of the investigated algorithms. We find that none of the studied algorithm results in purely random trajectories. TLF and RPMA prove to be suitable for human mobility modelling, because they provide conditions for very individual-specific trajectories and exposure. Suggesting these models we demonstrate the plausibility of their results for exposure to air-borne benzene and the combined exposure to benzene and nonane. - Highlights: → Human exposure to air pollutants is influenced by a person's movement in the urban area. → We provide a simulation study of approaches to modelling personal exposure. → Agenda-based models and truncated Levy flights are recommended for exposure assessment. → The procedure is demonstrated for benzene exposure in an urban region. - Truncated Levy flights and agenda-based mobility are useful for the assessment of personal human exposure.

  16. Quantifying human exposure to air pollution--moving from static monitoring to spatio-temporally resolved personal exposure assessment.

    Science.gov (United States)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive Eric

    2013-01-15

    Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population distributions. New developments in sensor technology now enable us to monitor personal exposure to air pollutants directly while people are moving through their activity spaces and varying concentration fields. The literature review on which this paper is based on reflects recent developments in the assessment of human exposure to air pollution. This includes the discussion of methodologies and concepts, and the elaboration of approaches and study designs applied in the field. We identify shortcomings of current approaches and discuss future research needs. We close by proposing a novel conceptual model for the integrated assessment of human exposure to air pollutants taking into account latest technological capabilities and contextual information. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2009-07-01

    Full Text Available This paper presents a model of factors influencing levels of human losses from natural hazards at the global scale, for the period 1980–2000. This model was designed for the United Nations Development Programme as a building stone of the Disaster Risk Index (DRI, which aims at monitoring the evolution of risk. Assessing what countries are most at risk requires considering various types of hazards, such as droughts, floods, cyclones and earthquakes. Before assessing risk, these four hazards were modelled using GIS and overlaid with a model of population distribution in order to extract human exposure. Human vulnerability was measured by crossing exposure with selected socio-economic parameters. The model evaluates to what extent observed past losses are related to population exposure and vulnerability. Results reveal that human vulnerability is mostly linked with country development level and environmental quality. A classification of countries is provided, as well as recommendations on data improvement for future use of the model.

  18. An approach for assessing human exposures to chemical mixtures in the environment

    International Nuclear Information System (INIS)

    Rice, Glenn; MacDonell, Margaret; Hertzberg, Richard C.; Teuschler, Linda; Picel, Kurt; Butler, Jim; Chang, Young-Soo; Hartmann, Heidi

    2008-01-01

    Humans are exposed daily to multiple chemicals, including incidental exposures to complex chemical mixtures released into the environment and to combinations of chemicals that already co-exist in the environment because of previous releases from various sources. Exposures to chemical mixtures can occur through multiple pathways and across multiple routes. In this paper, we propose an iterative approach for assessing exposures to environmental chemical mixtures; it is similar to single-chemical approaches. Our approach encompasses two elements of the Risk Assessment Paradigm: Problem Formulation and Exposure Assessment. Multiple phases of the assessment occur in each element of the paradigm. During Problem Formulation, analysts identify and characterize the source(s) of the chemical mixture, ensure that dose-response and exposure assessment measures are concordant, and develop a preliminary evaluation of the mixture's fate. During Exposure Assessment, analysts evaluate the fate of the chemicals comprising the mixture using appropriate models and measurement data, characterize the exposure scenario, and estimate human exposure to the mixture. We also describe the utility of grouping the chemicals to be analyzed based on both physical-chemical properties and an understanding of environmental fate. In the article, we also highlight the need for understanding of changes in the mixture composition in the environment due to differential transport, differential degradation, and differential partitioning to other media. The section describes the application of the method to various chemical mixtures, highlighting issues associated with assessing exposures to chemical mixtures in the environment

  19. SHEDS-HT: an integrated probabilistic exposure model for prioritizing exposures to chemicals with near-field and dietary sources.

    Science.gov (United States)

    Isaacs, Kristin K; Glen, W Graham; Egeghy, Peter; Goldsmith, Michael-Rock; Smith, Luther; Vallero, Daniel; Brooks, Raina; Grulke, Christopher M; Özkaynak, Halûk

    2014-11-04

    United States Environmental Protection Agency (USEPA) researchers are developing a strategy for high-throughput (HT) exposure-based prioritization of chemicals under the ExpoCast program. These novel modeling approaches for evaluating chemicals based on their potential for biologically relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. Based on probabilistic methods and algorithms developed for The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals (SHEDS-MM), a new mechanistic modeling approach has been developed to accommodate high-throughput (HT) assessment of exposure potential. In this SHEDS-HT model, the residential and dietary modules of SHEDS-MM have been operationally modified to reduce the user burden, input data demands, and run times of the higher-tier model, while maintaining critical features and inputs that influence exposure. The model has been implemented in R; the modeling framework links chemicals to consumer product categories or food groups (and thus exposure scenarios) to predict HT exposures and intake doses. Initially, SHEDS-HT has been applied to 2507 organic chemicals associated with consumer products and agricultural pesticides. These evaluations employ data from recent USEPA efforts to characterize usage (prevalence, frequency, and magnitude), chemical composition, and exposure scenarios for a wide range of consumer products. In modeling indirect exposures from near-field sources, SHEDS-HT employs a fugacity-based module to estimate concentrations in indoor environmental media. The concentration estimates, along with relevant exposure factors and human activity data, are then used by the model to rapidly generate probabilistic population distributions of near-field indirect exposures via dermal, nondietary ingestion, and inhalation pathways. Pathway-specific estimates of near-field direct exposures from consumer products are also modeled

  20. Tools for regulatory assessment of occupational exposure: Development and challenges

    NARCIS (Netherlands)

    Tielemans, E.; Warren, N.; Schneider, T.; Tischer, M.; Ritchie, P.; Goede, H.; Kromhout, H.; Hemmen, J. van; Cherrie, J.W.

    2007-01-01

    REACH (Registration, Evaluation and Authorization of CHemicals) requires improved exposure models that can be incorporated into screening tools and refined assessment tools. These are referred to as tier 1 and 2 models, respectively. There are a number of candidate in tier 1 models that could be

  1. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals.

    Science.gov (United States)

    Olie, J Daniël N; Bessems, Jos G; Clewell, Harvey J; Meulenbelt, Jan; Hunault, Claudine C

    2015-08-01

    Physiologically Based Toxicokinetic Models (PBTK) may facilitate emergency risk assessment after chemical incidents with inhalation exposure, but they are rarely used due to their relative complexity and skill requirements. We aimed to tackle this problem by evaluating a semi-generic PBTK model built in MS Excel for nine chemicals that are widely-used and often released in a chemical incident. The semi-generic PBTK model was used to predict blood concentration-time curves using inhalation exposure scenarios from human volunteer studies, case reports and hypothetical exposures at Emergency Response Planning Guideline, Level 3 (ERPG-3) levels.(2) Predictions using this model were compared with measured blood concentrations from volunteer studies or case reports, as well as blood concentrations predicted by chemical-specific models. The performances of the semi-generic model were evaluated on biological rationale, accuracy, and ease of use and range of application. Our results indicate that the semi-generic model can be easily used to predict blood levels for eight out of nine parent chemicals (dichloromethane, benzene, xylene, styrene, toluene, isopropanol trichloroethylene and tetrachloroethylene). However, for methanol, 2-propanol and dichloromethane the semi-generic model could not cope with the endogenous production of methanol and of acetone (being a metabolite of 2-propanol) nor could it simulate the formation of HbCO, which is one of the toxic end-points of dichloromethane. The model is easy and intuitive to use by people who are not so familiar with toxicokinetic models. A semi-generic PBTK modeling approach can be used as a 'quick-and-dirty' method to get a crude estimate of the exposure dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Road traffic air and noise pollution exposure assessment - A review of tools and techniques.

    Science.gov (United States)

    Khan, Jibran; Ketzel, Matthias; Kakosimos, Konstantinos; Sørensen, Mette; Jensen, Steen Solvang

    2018-09-01

    Road traffic induces air and noise pollution in urban environments having negative impacts on human health. Thus, estimating exposure to road traffic air and noise pollution (hereafter, air and noise pollution) is important in order to improve the understanding of human health outcomes in epidemiological studies. The aims of this review are (i) to summarize current practices of modelling and exposure assessment techniques for road traffic air and noise pollution (ii) to highlight the potential of existing tools and techniques for their combined exposure assessment for air and noise together with associated challenges, research gaps and priorities. The study reviews literature about air and noise pollution from urban road traffic, including other relevant characteristics such as the employed dispersion models, Geographic Information System (GIS)-based tool, spatial scale of exposure assessment, study location, sample size, type of traffic data and building geometry information. Deterministic modelling is the most frequently used assessment technique for both air and noise pollution of short-term and long-term exposure. We observed a larger variety among air pollution models as compared to the applied noise models. Correlations between air and noise pollution vary significantly (0.05-0.74) and are affected by several parameters such as traffic attributes, building attributes and meteorology etc. Buildings act as screens for the dispersion of pollution, but the reduction effect is much larger for noise than for air pollution. While, meteorology has a greater influence on air pollution levels as compared to noise, although also important for noise pollution. There is a significant potential for developing a standard tool to assess combined exposure of traffic related air and noise pollution to facilitate health related studies. GIS, due to its geographic nature, is well established and has a significant capability to simultaneously address both exposures. Copyright

  3. Exposure Assessment Tools by Chemical Classes - Nanomaterials

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  4. Exposure Assessment Tools by Tiers and Types - Deterministic and Probabilistic Assessments

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  5. Comparative Probabilistic Assessment of Occupational Pesticide Exposures Based on Regulatory Assessments

    Science.gov (United States)

    Pouzou, Jane G.; Cullen, Alison C.; Yost, Michael G.; Kissel, John C.; Fenske, Richard A.

    2018-01-01

    Implementation of probabilistic analyses in exposure assessment can provide valuable insight into the risks of those at the extremes of population distributions, including more vulnerable or sensitive subgroups. Incorporation of these analyses into current regulatory methods for occupational pesticide exposure is enabled by the exposure data sets and associated data currently used in the risk assessment approach of the Environmental Protection Agency (EPA). Monte Carlo simulations were performed on exposure measurements from the Agricultural Handler Exposure Database and the Pesticide Handler Exposure Database along with data from the Exposure Factors Handbook and other sources to calculate exposure rates for three different neurotoxic compounds (azinphos methyl, acetamiprid, emamectin benzoate) across four pesticide-handling scenarios. Probabilistic estimates of doses were compared with the no observable effect levels used in the EPA occupational risk assessments. Some percentage of workers were predicted to exceed the level of concern for all three compounds: 54% for azinphos methyl, 5% for acetamiprid, and 20% for emamectin benzoate. This finding has implications for pesticide risk assessment and offers an alternative procedure that may be more protective of those at the extremes of exposure than the current approach. PMID:29105804

  6. Comparative Probabilistic Assessment of Occupational Pesticide Exposures Based on Regulatory Assessments.

    Science.gov (United States)

    Pouzou, Jane G; Cullen, Alison C; Yost, Michael G; Kissel, John C; Fenske, Richard A

    2017-11-06

    Implementation of probabilistic analyses in exposure assessment can provide valuable insight into the risks of those at the extremes of population distributions, including more vulnerable or sensitive subgroups. Incorporation of these analyses into current regulatory methods for occupational pesticide exposure is enabled by the exposure data sets and associated data currently used in the risk assessment approach of the Environmental Protection Agency (EPA). Monte Carlo simulations were performed on exposure measurements from the Agricultural Handler Exposure Database and the Pesticide Handler Exposure Database along with data from the Exposure Factors Handbook and other sources to calculate exposure rates for three different neurotoxic compounds (azinphos methyl, acetamiprid, emamectin benzoate) across four pesticide-handling scenarios. Probabilistic estimates of doses were compared with the no observable effect levels used in the EPA occupational risk assessments. Some percentage of workers were predicted to exceed the level of concern for all three compounds: 54% for azinphos methyl, 5% for acetamiprid, and 20% for emamectin benzoate. This finding has implications for pesticide risk assessment and offers an alternative procedure that may be more protective of those at the extremes of exposure than the current approach. © 2017 Society for Risk Analysis.

  7. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Long, Thomas C; Schultz, Bradley D; Crooks, James; Breen, Miyuki; Langstaff, John E; Isaacs, Kristin K; Tan, Yu-Mei; Williams, Ronald W; Cao, Ye; Geller, Andrew M; Devlin, Robert B; Batterman, Stuart A; Buckley, Timothy J

    2014-07-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies.

  8. Transport of Aquatic Contaminant and Assessment of Radioecological Exposure with Spatial and Temporal Effects

    Science.gov (United States)

    Feng, Ying

    1995-01-01

    A comprehensive study of the radioecological exposure assessment for a contaminated aquatic ecosystem has been performed in this dissertation. The primary objectives of this research were to advance the understanding of radiation exposure in nature and to increase current capabilities for estimating aquatic radiation exposure with the consideration of spatial and temporal effect in nature. This was accomplished through the development of a two-dimensional aquatic exposure assessment framework and by applying the framework to the contaminated Chernobyl cooling lake (pond). This framework integrated spatial and temporal heterogeneity effects of contaminant concentration, abundance and distribution of ecosystem populations, spatial- and temporal-dependent (or density-dependent) radionuclide ingestion, and alternative food web structures. The exposure model was built on the population level to allow for the integration of density dependent population regulation into the exposure assessment. Plankton population dynamics have been integrated into the hydrodynamic-transport model to determine plankton biomass density changes and distributions. The distribution of contaminant in water was also calculated using a hydrodynamic-transport model. The significance of adding spatial and temporal effects, spatial and temporal related ecological functions, and hydrodynamics in the exposure assessment was illustrated through a series of case studies. The results suggested that the spatial and temporal heterogeneity effects of radioactive environments were substantial. Among the ecological functions considered, the food web structure was the most important contributor to the variations of fish exposure. The results obtained using a multiple prey food web structure differed by a factor of 20 from the equilibrium concentration, and by a factor of 2.5 from the concentration obtained using a single-prey food web. Impacts of changes in abundance and distribution of biomass on contaminant

  9. Challenges and Perspectives of Nanoparticle Exposure Assessment

    OpenAIRE

    Lee, Ji Hyun; Moon, Min Chaul; Lee, Joon Yeob; Yu, Il Je

    2010-01-01

    Nanoparticle exposure assessment presents a unique challenge in the field of occupational and environmental health. With the commercialization of nanotechnology, exposure usually starts from the workplace and then spreads to environment and consumer exposure. This report discusses the current trends of nanoparticle exposure assessment, including the definition of nanotechnology relevant terms, essential physicochemical properties for nanomaterial characterization, current international activi...

  10. Assessing population exposures to motor vehicle exhaust.

    Science.gov (United States)

    Van Atten, Chris; Brauer, Michael; Funk, Tami; Gilbert, Nicolas L; Graham, Lisa; Kaden, Debra; Miller, Paul J; Bracho, Leonora Rojas; Wheeler, Amanda; White, Ronald H

    2005-01-01

    The need is growing for a better assessment of population exposures to motor vehicle exhaust in proximity to major roads and highways. This need is driven in part by emerging scientific evidence of adverse health effects from such exposures and policy requirements for a more targeted assessment of localized public health impacts related to road expansions and increasing commercial transportation. The momentum for improved methods in measuring local exposures is also growing in the scientific community, as well as for discerning which constituents of the vehicle exhaust mixture may exert greater public health risks for those who are exposed to a disproportionate share of roadway pollution. To help elucidate the current state-of-the-science in exposure assessments along major roadways and to help inform decision makers of research needs and trends, we provide an overview of the emerging policy requirements, along with a conceptual framework for assessing exposure to motor-vehicle exhaust that can help inform policy decisions. The framework includes the pathway from the emission of a single vehicle, traffic emissions from multiple vehicles, atmospheric transformation of emissions and interaction with topographic and meteorologic features, and contact with humans resulting in exposure that can result in adverse health impacts. We describe the individual elements within the conceptual framework for exposure assessment and discuss the strengths and weaknesses of various approaches that have been used to assess public exposures to motor vehicle exhaust.

  11. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    Science.gov (United States)

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  12. Methyldibromo glutaronitrile: clinical experience and exposure-based risk assessment.

    Science.gov (United States)

    Zachariae, Claus; Rastogi, Suresh; Devantier, Charlotte; Menné, Torkil; Johansen, Jeanne Duus

    2003-03-01

    In the year 2000, the level of methyldibromo glutaronitrile (MDGN) allergy in dermatology clinics in Europe exceeded the level of allergies to all other preservatives, with a prevalence of 3.5%. In the present study, cases of primary sensitization and elicitation to MDGN due to cosmetic products were collected over an 8-month period at the Department of Dermatology, Gentofte University Hospital. The aim was to identify the products related to hand eczema, assess exposure to MDGN in these products and relate the findings to results from a newly developed updated risk assessment model for contact allergy. Out of 24 patients with a positive patch test to MDGN, 17 patients with hand eczema were identified. In 11 of these patients, cosmetic products used in relation to the onset of the disease were shown to contain MDGN (65%). In 8 of these 11 cases, primary sensitization was probable, 5 due to hand/body lotions and 3 due to lotions and/or liquid hand soap. Chemical analysis of 12 products showed that lotions contained 149-390 ppm of MDGN, liquid hand soap 144-399 ppm, a rinsing cream 293 ppm and shampoos 78-79 ppm. The shampoo exposure was not of certain relevance to the eczema. Applying the newly developed updated risk assessment model showed that the concentrations of MDGN in lotions of 149-390 ppm exceeded the calculated maximum acceptable exposure level for MDGN, which would be expected to lead to sensitization in consumers using such products, as seen in the current study. The present cases and updated exposure-based risk assessment process add to the evidence and need for re-defining safe-use concentrations of MDGN in cosmetic products.

  13. Health effects assessment of chemical exposures: ARIES methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-07-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs.

  14. Health effects assessment of chemical exposures: ARIES methodology

    International Nuclear Information System (INIS)

    Sierra, L; Montero, M.; Rabago, I.; Vidania, R.

    1995-01-01

    In this work, we present ARIES* update: a system designed in order to facilitate the human health effects assessment produced by accidental release of toxic chemicals. The first version of ARIES was developed in relation to 82/501/EEC Directive about mayor accidents in the chemical industry. So, the first aim was the support of the effects assessment derived for the chemicals included into this directive. From this establishment, it was considered acute exposures for high concentrations. In this report, we present the actual methodology for considering other type of exposures, such as environmental and occupational. Likewise other versions, the methodology comprises two approaches: quantitative and qualitative assessments. Quantitative assessment incorporates the mathematical algorithms useful to evaluate the effects produced by the most important routes of exposure: inhalation, ingestion, eye contact and skin absorption, in a short, medium and long term. It has been included models that realizes an accurate quantification of doses, effects,... and so on, such as simple approaches when the available information is not enough. Qualitative assessment, designed in order to complement or replace the previous one, is incorporated into an informatics system, developed in Clipper. It executes and displays outstanding and important toxicological information of about 100 chemicals. This information comes from ECDIN (Environmental Chemicals Data and Information Network) database through a collaboration with JRC-ISPRA working group. (Author) 24 refs

  15. Comprehensive European dietary exposure model (CEDEM) for food additives.

    Science.gov (United States)

    Tennant, David R

    2016-05-01

    European methods for assessing dietary exposures to nutrients, additives and other substances in food are limited by the availability of detailed food consumption data for all member states. A proposed comprehensive European dietary exposure model (CEDEM) applies summary data published by the European Food Safety Authority (EFSA) in a deterministic model based on an algorithm from the EFSA intake method for food additives. The proposed approach can predict estimates of food additive exposure provided in previous EFSA scientific opinions that were based on the full European food consumption database.

  16. Use-exposure relationships of pesticides for aquatic risk assessment.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    2011-04-01

    Full Text Available Field-scale environmental models have been widely used in aquatic exposure assessments of pesticides. Those models usually require a large set of input parameters and separate simulations for each pesticide in evaluation. In this study, a simple use-exposure relationship is developed based on regression analysis of stochastic simulation results generated from the Pesticide Root-Zone Model (PRZM. The developed mathematical relationship estimates edge-of-field peak concentrations of pesticides from aerobic soil metabolism half-life (AERO, organic carbon-normalized soil sorption coefficient (KOC, and application rate (RATE. In a case study of California crop scenarios, the relationships explained 90-95% of the variances in the peak concentrations of dissolved pesticides as predicted by PRZM simulations for a 30-year period. KOC was identified as the governing parameter in determining the relative magnitudes of pesticide exposures in a given crop scenario. The results of model application also indicated that the effects of chemical fate processes such as partitioning and degradation on pesticide exposure were similar among crop scenarios, while the cross-scenario variations were mainly associated with the landscape characteristics, such as organic carbon contents and curve numbers. With a minimum set of input data, the use-exposure relationships proposed in this study could be used in screening procedures for potential water quality impacts from the off-site movement of pesticides.

  17. Examining Exposure Assessment in Shift Work Research: A Study on Depression Among Nurses.

    Science.gov (United States)

    Hall, Amy L; Franche, Renée-Louise; Koehoorn, Mieke

    2018-02-13

    Coarse exposure assessment and assignment is a common issue facing epidemiological studies of shift work. Such measures ignore a number of exposure characteristics that may impact on health, increasing the likelihood of biased effect estimates and masked exposure-response relationships. To demonstrate the impacts of exposure assessment precision in shift work research, this study investigated relationships between work schedule and depression in a large survey of Canadian nurses. The Canadian 2005 National Survey of the Work and Health of Nurses provided the analytic sample (n = 11450). Relationships between work schedule and depression were assessed using logistic regression models with high, moderate, and low-precision exposure groupings. The high-precision grouping described shift timing and rotation frequency, the moderate-precision grouping described shift timing, and the low-precision grouping described the presence/absence of shift work. Final model estimates were adjusted for the potential confounding effects of demographic and work variables, and bootstrap weights were used to generate sampling variances that accounted for the survey sample design. The high-precision exposure grouping model showed the strongest relationships between work schedule and depression, with increased odds ratios [ORs] for rapidly rotating (OR = 1.51, 95% confidence interval [CI] = 0.91-2.51) and undefined rotating (OR = 1.67, 95% CI = 0.92-3.02) shift workers, and a decreased OR for depression in slow rotating (OR = 0.79, 95% CI = 0.57-1.08) shift workers. For the low- and moderate-precision exposure grouping models, weak relationships were observed for all work schedule categories (OR range 0.95 to 0.99). Findings from this study support the need to consider and collect the data required for precise and conceptually driven exposure assessment and assignment in future studies of shift work and health. Further research into the effects of shift rotation frequency on depression is

  18. A Formaldehyde Exposure Assessment Tool for Occupants of FEMA Temporary Housing Units

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, Srinandini; Spears, Michael; Maddalena, Randy L.; Russell, Marion L; Apte, Michael G.

    2010-10-01

    The report outlines the methodology used to develop a web-based tool to assess the formaldehyde exposure of the occupants of Federal Emergency Management Administration (FEMA) temporary housing units (THUs) after Hurricanes Katrina and Rita in 2005. Linear regression models were built using available data to retrospectively estimate the indoor temperature and relative humidity, formaldehyde emission factors and concentration, and hence the formaldehyde exposures. The interactive web-tool allows the user to define the inputs to the model to evaluate formaldehyde exposures for different scenarios.

  19. Statistical multi-path exposure method for assessing the whole-body SAR in a heterogeneous human body model in a realistic environment.

    Science.gov (United States)

    Vermeeren, Günter; Joseph, Wout; Martens, Luc

    2013-04-01

    Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.

  20. GPS-based microenvironment tracker (MicroTrac) model to estimate time–location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina

    Science.gov (United States)

    Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.

    2014-01-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294

  1. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  2. Modeled exposure assessment via inhalation and dermal pathways to airborne semivolatile organic compounds (SVOCs) in residences.

    Science.gov (United States)

    Shi, Shanshan; Zhao, Bin

    2014-05-20

    Exposure to airborne semivolatile organic compounds (SVOCs) in indoor and outdoor environments of humans may lead to adverse health risks. Thus, we established a model to evaluate exposure to airborne SVOCs. In this model, SVOCs phase-specific concentrations were estimated by a kinetic partition model accounting for particle dynamics. The exposure pathways to airborne SVOCs included inhalation exposure to gas- and particle-phases, dermal exposure by direct gas-to-skin pathway and dermal exposure by direct particle deposition. Exposures of defined "reference people" to two typical classifications of SVOCs, one generated from both indoor and outdoor sources, represented by polycyclic aromatic hydrocarbons (PAHs), and the other generated mainly from only indoor sources, represented by di 2-ethylhexyl phthalate (DEHP), were analyzed as an example application of the model. For PAHs with higher volatility, inhalation exposure to gas-phase, ranging from 6.03 to 16.4 ng/kg/d, accounted for the most of the exposure to the airborne phases. For PAHs with lower volatility, inhalation exposure to particle-phase, ranging from 1.48 to 1.53 ng/kg/d, was the most important exposure pathway. As for DEHP, dermal exposure via direct gas-to-skin pathway was 460 ng/kg/d, which was the most striking exposure pathway when the barrier effect of clothing was neglected.

  3. Range-finding risk assessment of inhalation exposure to nanodiamonds in a laboratory environment.

    Science.gov (United States)

    Koivisto, Antti J; Palomäki, Jaana E; Viitanen, Anna-Kaisa; Siivola, Kirsi M; Koponen, Ismo K; Yu, Mingzhou; Kanerva, Tomi S; Norppa, Hannu; Alenius, Harri T; Hussein, Tareq; Savolainen, Kai M; Hämeri, Kaarle J

    2014-05-16

    This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers' risk range of inhalation exposure to nanodiamonds (NDs) during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m(-3) (0.08 to 0.74 cm(-3)). In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled) dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m(-3), which is one of the proposed exposure limits for diesel particulate matter, and the workers' calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h) dose of submicrometer urban air particles.

  4. Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment

    Directory of Open Access Journals (Sweden)

    Antti J. Koivisto

    2014-05-01

    Full Text Available This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers’ risk range of inhalation exposure to nanodiamonds (NDs during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m−3 (0.08 to 0.74 cm−3. In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m−3, which is one of the proposed exposure limits for diesel particulate matter, and the workers’ calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h dose of submicrometer urban air particles.

  5. Models for Pesticide Risk Assessment

    Science.gov (United States)

    EPA considers the toxicity of the pesticide as well as the amount of pesticide to which a person or the environments may be exposed in risk assessment. Scientists use mathematical models to predict pesticide concentrations in exposure assessment.

  6. How to assess exposure of aquatic organisms to manufactured nanoparticles?

    DEFF Research Database (Denmark)

    Quik, Joris T.K.; Vonk, Jan Arie; Hansen, Steffen Foss

    2011-01-01

    Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable for estim......Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable...... on sedimentation and dissolution of NMs in environmentally relevant systems. We deduce that the overall kinetics of water–sediment transport of NMs should be close to first order. The lack of data on dissolution of NMs under environmentally realistic conditions calls for a pragmatic decision on which rates...

  7. A statistical framework for the validation of a population exposure model based on personal exposure data

    Science.gov (United States)

    Rodriguez, Delphy; Valari, Myrto; Markakis, Konstantinos; Payan, Sébastien

    2016-04-01

    Currently, ambient pollutant concentrations at monitoring sites are routinely measured by local networks, such as AIRPARIF in Paris, France. Pollutant concentration fields are also simulated with regional-scale chemistry transport models such as CHIMERE (http://www.lmd.polytechnique.fr/chimere) under air-quality forecasting platforms (e.g. Prev'Air http://www.prevair.org) or research projects. These data may be combined with more or less sophisticated techniques to provide a fairly good representation of pollutant concentration spatial gradients over urban areas. Here we focus on human exposure to atmospheric contaminants. Based on census data on population dynamics and demographics, modeled outdoor concentrations and infiltration of outdoor air-pollution indoors we have developed a population exposure model for ozone and PM2.5. A critical challenge in the field of population exposure modeling is model validation since personal exposure data are expensive and therefore, rare. However, recent research has made low cost mobile sensors fairly common and therefore personal exposure data should become more and more accessible. In view of planned cohort field-campaigns where such data will be available over the Paris region, we propose in the present study a statistical framework that makes the comparison between modeled and measured exposures meaningful. Our ultimate goal is to evaluate the exposure model by comparing modeled exposures to monitor data. The scientific question we address here is how to downscale modeled data that are estimated on the county population scale at the individual scale which is appropriate to the available measurements. To assess this question we developed a Bayesian hierarchical framework that assimilates actual individual data into population statistics and updates the probability estimate.

  8. EPa`s program for risk assessment guidelines: Exposure issues

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, M.A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Three major issues to be dealt with over the next ten years in the exposure assessment field are: consistency in terminology, the impact of computer technology on the choice of data and modeling, and conceptual issues such as the use of time-weighted averages.

  9. Sensitivity Analysis of Personal Exposure Assessment Using a Computer Simulated Person

    DEFF Research Database (Denmark)

    Brohus, Henrik; Jensen, H. K.

    2009-01-01

    The paper considers uncertainties related to personal exposure assessment using a computer simulated person. CFD is used to simulate a uniform flow field around a human being to determine the personal exposure to a contaminant source. For various vertical locations of a point contaminant source...... three additional factors are varied, namely the velocity, details of the computer simulated person, and the CFD model of the wind channel. The personal exposure is found to be highly dependent on the relative source location. Variation in the range of two orders of magnitude is found. The exposure...

  10. Exposure assessment in studies on health effects of traffic exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Setaelae, S. [Association for the Pulmonary Disabled, Helsinki (Finland); Jaakkola, J.J.K. [Helsinki Univ. (Finland). Dept. of Public Health

    1995-12-31

    A main source of outdoor air pollution is road traffic, which produces a complex mixture of nitrogen oxides, carbon monoxide, volatile hydrocarbons, airborne particles and some other compounds. Traffic exhaust affects also the concentrations of ozone and other photo chemical oxidants. In earlier studies those components have had remarkable health effects. Several studies on occupational exposure to automobile exhaust have been published and several studies have been observed an association between both outdoor and indoor pollutant levels and health outcomes. However, there are only a few epidemiological studies in which traffic exhaust, a complex mixture, has been studied in its entirety. During recent years, interesting epidemiological studies of the health effects of this complex mixture have been published. Human exposure assessment for traffic exhaust can be categorized according to the environment of exposure (indoors, outdoors, in-traffic) or to the method of exposure assessment (direct or indirect methods). In this presentation the methods are further categorized into (1) traffic activity, (2) air concentration measurements, and (3) dispersion models, in order to better understand the advantages and disadvantages of different approaches. The objective of this presentation is to make a critical review of exposure assessments in the epidemiological studies on health effects of traffic exhaust. (author)

  11. Exposure assessment in studies on health effects of traffic exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Setaelae, S [Association for the Pulmonary Disabled, Helsinki (Finland); Jaakkola, J J.K. [Helsinki Univ. (Finland). Dept. of Public Health

    1996-12-31

    A main source of outdoor air pollution is road traffic, which produces a complex mixture of nitrogen oxides, carbon monoxide, volatile hydrocarbons, airborne particles and some other compounds. Traffic exhaust affects also the concentrations of ozone and other photo chemical oxidants. In earlier studies those components have had remarkable health effects. Several studies on occupational exposure to automobile exhaust have been published and several studies have been observed an association between both outdoor and indoor pollutant levels and health outcomes. However, there are only a few epidemiological studies in which traffic exhaust, a complex mixture, has been studied in its entirety. During recent years, interesting epidemiological studies of the health effects of this complex mixture have been published. Human exposure assessment for traffic exhaust can be categorized according to the environment of exposure (indoors, outdoors, in-traffic) or to the method of exposure assessment (direct or indirect methods). In this presentation the methods are further categorized into (1) traffic activity, (2) air concentration measurements, and (3) dispersion models, in order to better understand the advantages and disadvantages of different approaches. The objective of this presentation is to make a critical review of exposure assessments in the epidemiological studies on health effects of traffic exhaust. (author)

  12. The Diesel Exhaust in Miners Study: I. Overview of the Exposure Assessment Process

    Science.gov (United States)

    Stewart, Patricia A.; Coble, Joseph B.; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998–2001, the average

  13. A Realistic Human Exposure Assessment of Indoor Radon released from Groundwater

    International Nuclear Information System (INIS)

    Yu, Dong Han; Han, Moon Hee

    2002-01-01

    The work presents a realistic human exposure assessment of indoor radon released from groundwater in a house. At first, a two-compartment model is developed to describe the generation and transfer of radon in indoor air from groundwater. The model is used to estimate radon concentrations profile of indoor air in a house using by showering, washing clothes, and flushing toilets. Then, the study performs an uncertainty analysis of model input parameters to quantify the uncertainty in radon concentration profile. In order to estimate a daily internal dose of a specific tissue group in an adult through the inhalation of such indoor radon, a PBPK(Physiologically-Based Pharmaco-Kinetic) model is developed. Combining indoor radon profile and PBPK model is used to a realistic human assessment for such exposure. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor radon released from groundwater

  14. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models.

    Science.gov (United States)

    Teng, S; Tebby, C; Barcellini-Couget, S; De Sousa, G; Brochot, C; Rahmani, R; Pery, A R R

    2016-08-15

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro - in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Application of Physiologically Based Pharmacokinetic Models in Chemical Risk Assessment

    Directory of Open Access Journals (Sweden)

    Moiz Mumtaz

    2012-01-01

    Full Text Available Post-exposure risk assessment of chemical and environmental stressors is a public health challenge. Linking exposure to health outcomes is a 4-step process: exposure assessment, hazard identification, dose response assessment, and risk characterization. This process is increasingly adopting “in silico” tools such as physiologically based pharmacokinetic (PBPK models to fine-tune exposure assessments and determine internal doses in target organs/tissues. Many excellent PBPK models have been developed. But most, because of their scientific sophistication, have found limited field application—health assessors rarely use them. Over the years, government agencies, stakeholders/partners, and the scientific community have attempted to use these models or their underlying principles in combination with other practical procedures. During the past two decades, through cooperative agreements and contracts at several research and higher education institutions, ATSDR funded translational research has encouraged the use of various types of models. Such collaborative efforts have led to the development and use of transparent and user-friendly models. The “human PBPK model toolkit” is one such project. While not necessarily state of the art, this toolkit is sufficiently accurate for screening purposes. Highlighted in this paper are some selected examples of environmental and occupational exposure assessments of chemicals and their mixtures.

  16. A review of models for near-field exposure pathways of chemicals in consumer products

    DEFF Research Database (Denmark)

    Huang, Lei; Ernstoff, Alexi; Fantke, Peter

    2017-01-01

    able to quantify the multiple transfers of chemicals from products used near-field to humans. The present review therefore aims at an in-depth overview of modeling approaches for near-field chemical release and human exposure pathways associated with consumer products. It focuses on lower......-tier, mechanistic models suitable for life cycle assessments (LCA), chemical alternative assessment (CAA) and high-throughput screening risk assessment (HTS). Chemicals in a product enter the near-field via a defined “compartment of entry”, are transformed or transferred to adjacent compartments, and eventually end......Exposure to chemicals in consumer products has been gaining increasing attention, with multiple studies showing that near-field exposures from products is high compared to far-field exposures. Regarding the numerous chemical-product combinations, there is a need for an overarching review of models...

  17. Assessing radiological impacts (exposures and doses) associated with the mining and milling of radioactive ores

    International Nuclear Information System (INIS)

    Williams, G.A.

    1990-01-01

    The basic units and concepts applicable to radiological assessment are presented. Data relevant to the assessment of radiological exposures from the mining and milling phases of uranium and thorium ores are discussed. As a guide to the assessment of environmental exposures to members of the public, concepts such as the critical group are defined. Environmental transport and exposure pathways are presented in general terms, together with a discussion of the use of mathematical models. The dose assessment procedures defined in the 1987 Code of Practice are described. 13 refs., 2 tabs., 1 fig

  18. A probabilistic assessment of health risks associated with short-term exposure to tropospheric ozone

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, R.G; Biller, W.F.; Jusko, M.J.; Keisler, J.M.

    1996-06-01

    The work described in this report is part of a larger risk assessment sponsored by the U.S. Environmental Protection Agency. Earlier efforts developed exposure-response relationships for acute health effects among populations engaged in heavy exertion. Those efforts also developed a probabilistic national ambient air quality standards exposure model and a general methodology for integrating probabilistic exposure-response relation- ships and exposure estimates to calculate overall risk results. Recently published data make it possible to model additional health endpoints (for exposure at moderate exertion), including hospital admissions. New air quality and exposure estimates for alternative national ambient air quality standards for ozone are combined with exposure-response models to produce the risk results for hospital admissions and acute health effects. Sample results explain the methodology and introduce risk output formats.

  19. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models

    International Nuclear Information System (INIS)

    Teng, S.; Tebby, C.; Barcellini-Couget, S.; De Sousa, G.; Brochot, C.; Rahmani, R.; Pery, A.R.R.

    2016-01-01

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.

  20. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models

    Energy Technology Data Exchange (ETDEWEB)

    Teng, S.; Tebby, C. [Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Barcellini-Couget, S. [ODESIA Neosciences, Sophia Antipolis, 400 route des chappes, 06903 Sophia Antipolis (France); De Sousa, G. [INRA, ToxAlim, 400 route des Chappes, BP, 167 06903 Sophia Antipolis, Cedex (France); Brochot, C. [Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Rahmani, R. [INRA, ToxAlim, 400 route des Chappes, BP, 167 06903 Sophia Antipolis, Cedex (France); Pery, A.R.R., E-mail: alexandre.pery@agroparistech.fr [AgroParisTech, UMR 1402 INRA-AgroParisTech Ecosys, 78850 Thiverval Grignon (France); INRA, UMR 1402 INRA-AgroParisTech Ecosys, 78850 Thiverval Grignon (France)

    2016-08-15

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.

  1. How Exposure Science can be Integrated into the Assessment ...

    Science.gov (United States)

    The presentation describes ongoing research in the Rapid Exposure and Dosimetry project funded under the Chemical Safety for Sustainability Research Program of the Office of Research and Development. There is a well known need for information on human exposure to thousands of chemicals, especially with respect to route of exposure. A combination of curation of legacy data, new data collection activities, and mathematical models based both upon statistics (empirical) and mechanism are allowing chemicals to be prioritized for further exposure study. This presentation pays special attention to the opportunities presented by non-targeted screening using mass spectrometry. This is a presentation to the American College of Toxicology annual meeting in Baltimore, Maryland on November 7, 2016. This half hour presentation is part of a session on 21st Century Approaches to Assessing Food Ingredient Safety.

  2. Validation of the dermal exposure model in ECETOC TRA.

    Science.gov (United States)

    Marquart, Hans; Franken, Remy; Goede, Henk; Fransman, Wouter; Schinkel, Jody

    2017-08-01

    The ECETOC TRA model (presently version 3.1) is often used to estimate worker inhalation and dermal exposure in regulatory risk assessment. The dermal model in ECETOC TRA has not yet been validated by comparison with independent measured exposure levels. This was the goal of the present study. Measured exposure levels and relevant contextual information were gathered via literature search, websites of relevant occupational health institutes and direct requests for data to industry. Exposure data were clustered in so-called exposure cases, which are sets of data from one data source that are expected to have the same values for input parameters in the ECETOC TRA dermal exposure model. For each exposure case, the 75th percentile of measured values was calculated, because the model intends to estimate these values. The input values for the parameters in ECETOC TRA were assigned by an expert elicitation and consensus building process, based on descriptions of relevant contextual information.From more than 35 data sources, 106 useful exposure cases were derived, that were used for direct comparison with the model estimates. The exposure cases covered a large part of the ECETOC TRA dermal exposure model. The model explained 37% of the variance in the 75th percentiles of measured values. In around 80% of the exposure cases, the model estimate was higher than the 75th percentile of measured values. In the remaining exposure cases, the model estimate may not be sufficiently conservative.The model was shown to have a clear bias towards (severe) overestimation of dermal exposure at low measured exposure values, while all cases of apparent underestimation by the ECETOC TRA dermal exposure model occurred at high measured exposure values. This can be partly explained by a built-in bias in the effect of concentration of substance in product used, duration of exposure and the use of protective gloves in the model. The effect of protective gloves was calculated to be on average a

  3. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  4. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  5. Probabilistic mercury multimedia exposure assessment in small children and risk assessment.

    Science.gov (United States)

    Morisset, Typhaine; Ramirez-Martinez, Alejandra; Wesolek, Nathalie; Roudot, Alain-Claude

    2013-09-01

    Emissions of mercury in the environment have been decreasing for several years. However, mercury species are still found in different media (food, water, air and breast-milk). Due to mercury toxicity and typical behaviour in children, we have conducted a mercury exposure assessment in French babies, and small children aged 0 to 36months. Consumption and mercury concentration data were chosen for the exposure assessment. The Monte Carlo technique has been used to calculate the weekly exposure dose in order to integrate inter-individual variability and parameter uncertainty. Exposure values have been compared to toxicological reference values for health risk assessment. Inorganic mercury median exposure levels ranged from 0.160 to 1.649μg/kg of body weight per week (95th percentile (P95): 0.298-2.027µg/kg bw/week); elemental mercury median exposure level in children was 0.11ng/kg bw/week (P95: 28ng/kg bw/week); and methylmercury median exposure level ranged from 0.247 to 0.273µg/kg bw/week (P95: 0.425-0.463µg/kg bw/week). Only elemental mercury by inhalation route (indoor air) and methylmercury by ingestion (fish and breast-milk) seem to lead to a health risk in small children. These results confirm the importance of assessing total mercury concentration in media like breast-milk, indoor air and dust and methylmercury level in food, other than fish and seafood. In this way, informed monitoring plan and risk assessment in an at-risk sub-population can be set. © 2013 Elsevier Ltd. All rights reserved.

  6. Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model.

    Science.gov (United States)

    Zhou, Bin; Zhao, Bin

    2014-01-01

    It is difficult to evaluate and compare interventions for reducing exposure to air pollutants, including polycyclic aromatic hydrocarbons (PAHs), a widely found air pollutant in both indoor and outdoor air. This study presents the first application of the Monte Carlo population exposure assessment model to quantify the effects of different intervention strategies on inhalation exposure to PAHs and the associated lung cancer risk. The method was applied to the population in Beijing, China, in the year 2006. Several intervention strategies were designed and studied, including atmospheric cleaning, smoking prohibition indoors, use of clean fuel for cooking, enhancing ventilation while cooking and use of indoor cleaners. Their performances were quantified by population attributable fraction (PAF) and potential impact fraction (PIF) of lung cancer risk, and the changes in indoor PAH concentrations and annual inhalation doses were also calculated and compared. The results showed that atmospheric cleaning and use of indoor cleaners were the two most effective interventions. The sensitivity analysis showed that several input parameters had major influence on the modeled PAH inhalation exposure and the rankings of different interventions. The ranking was reasonably robust for the remaining majority of parameters. The method itself can be extended to other pollutants and in different places. It enables the quantitative comparison of different intervention strategies and would benefit intervention design and relevant policy making.

  7. Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    Full Text Available It is difficult to evaluate and compare interventions for reducing exposure to air pollutants, including polycyclic aromatic hydrocarbons (PAHs, a widely found air pollutant in both indoor and outdoor air. This study presents the first application of the Monte Carlo population exposure assessment model to quantify the effects of different intervention strategies on inhalation exposure to PAHs and the associated lung cancer risk. The method was applied to the population in Beijing, China, in the year 2006. Several intervention strategies were designed and studied, including atmospheric cleaning, smoking prohibition indoors, use of clean fuel for cooking, enhancing ventilation while cooking and use of indoor cleaners. Their performances were quantified by population attributable fraction (PAF and potential impact fraction (PIF of lung cancer risk, and the changes in indoor PAH concentrations and annual inhalation doses were also calculated and compared. The results showed that atmospheric cleaning and use of indoor cleaners were the two most effective interventions. The sensitivity analysis showed that several input parameters had major influence on the modeled PAH inhalation exposure and the rankings of different interventions. The ranking was reasonably robust for the remaining majority of parameters. The method itself can be extended to other pollutants and in different places. It enables the quantitative comparison of different intervention strategies and would benefit intervention design and relevant policy making.

  8. A Comparison of Two Strategies for Building an Exposure Prediction Model.

    Science.gov (United States)

    Heiden, Marina; Mathiassen, Svend Erik; Garza, Jennifer; Liv, Per; Wahlström, Jens

    2016-01-01

    Cost-efficient assessments of job exposures in large populations may be obtained from models in which 'true' exposures assessed by expensive measurement methods are estimated from easily accessible and cheap predictors. Typically, the models are built on the basis of a validation study comprising 'true' exposure data as well as an extensive collection of candidate predictors from questionnaires or company data, which cannot all be included in the models due to restrictions in the degrees of freedom available for modeling. In these situations, predictors need to be selected using procedures that can identify the best possible subset of predictors among the candidates. The present study compares two strategies for selecting a set of predictor variables. One strategy relies on stepwise hypothesis testing of associations between predictors and exposure, while the other uses cluster analysis to reduce the number of predictors without relying on empirical information about the measured exposure. Both strategies were applied to the same dataset on biomechanical exposure and candidate predictors among computer users, and they were compared in terms of identified predictors of exposure as well as the resulting model fit using bootstrapped resamples of the original data. The identified predictors were, to a large part, different between the two strategies, and the initial model fit was better for the stepwise testing strategy than for the clustering approach. Internal validation of the models using bootstrap resampling with fixed predictors revealed an equally reduced model fit in resampled datasets for both strategies. However, when predictor selection was incorporated in the validation procedure for the stepwise testing strategy, the model fit was reduced to the extent that both strategies showed similar model fit. Thus, the two strategies would both be expected to perform poorly with respect to predicting biomechanical exposure in other samples of computer users. © The

  9. Population models for time-varying pesticide exposure

    NARCIS (Netherlands)

    Jager T; Jong FMW de; Traas TP; LER; SEC

    2007-01-01

    A model has recently been developed at RIVM to predict the effects of variable exposure to pesticides of plant and animal populations in surface water. Before a pesticide is placed on the market, the environmental risk of the substance has to be assessed. This risk is estimated by comparing

  10. Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.

    Science.gov (United States)

    Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L

    2016-01-01

    The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.

  11. Modeling and Characterization of the Uplink and Downlink Exposure in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Anis Krayni

    2017-01-01

    Full Text Available This paper deals with a new methodology to assess the exposure induced by both uplink and downlink of a cellular network using 3D electromagnetic simulations. It aims to analyze together the exposure induced by a personal device (uplink exposure and that induced by a base station (downlink exposure. The study involved the major parameters contributing to variability and uncertainty in exposure assessment, such as the user’s posture, the type of wireless device, and the propagation environment. Our approach is relying basically on the modeling of the power radiated by the personal device and the ambient electric field, while taking into account the effects of human body shadowing and the propagation channel fluctuations. The exposure assessment as well as the human-wave interactions has been simulated using the finite difference in time domain method (FDTD. In uplink scenarios, four FDTD simulations were performed with a child model, used in two postures (sitting and standing and in two usage scenarios (voice and data, which aimed to examine the exposure induced by a mobile phone and a tablet emitting, respectively, at 900 MHz and 1940 MHz. In the downlink scenario, a series of FDTD simulations of an exposure to a single plane wave and multiplane waves have been conducted, and an efficient metamodeling of the exposure using the Polynomial Chaos approach has been developed.

  12. Modeling exposure to air pollution and cardiovascular mortality: the ESCAPE study

    NARCIS (Netherlands)

    Wang, M.|info:eu-repo/dai/nl/345480279

    2013-01-01

    Exposure assessment is one of the key issues for health effect estimates in environmental epidemiology. Recent interest has increased in exposure modeling incorporating Geographic Information System (GIS) data to capture small-scale spatial variability in air pollution concentrations. Land use

  13. Traffic-Related Air Pollution and Childhood Asthma: Recent Advances and Remaining Gaps in the Exposure Assessment Methods.

    Science.gov (United States)

    Khreis, Haneen; Nieuwenhuijsen, Mark J

    2017-03-17

    Background : Current levels of traffic-related air pollution (TRAP) are associated with the development of childhood asthma, although some inconsistencies and heterogeneity remain. An important part of the uncertainty in studies of TRAP-associated asthma originates from uncertainties in the TRAP exposure assessment and assignment methods. In this work, we aim to systematically review the exposure assessment methods used in the epidemiology of TRAP and childhood asthma, highlight recent advances, remaining research gaps and make suggestions for further research. Methods : We systematically reviewed epidemiological studies published up until 8 September 2016 and available in Embase, Ovid MEDLINE (R), and "Transport database". We included studies which examined the association between children's exposure to TRAP metrics and their risk of "asthma" incidence or lifetime prevalence, from birth to the age of 18 years old. Results : We found 42 studies which examined the associations between TRAP and subsequent childhood asthma incidence or lifetime prevalence, published since 1999. Land-use regression modelling was the most commonly used method and nitrogen dioxide (NO₂) was the most commonly used pollutant in the exposure assessments. Most studies estimated TRAP exposure at the residential address and only a few considered the participants' mobility. TRAP exposure was mostly assessed at the birth year and only a few studies considered different and/or multiple exposure time windows. We recommend that further work is needed including e.g., the use of new exposure metrics such as the composition of particulate matter, oxidative potential and ultra-fine particles, improved modelling e.g., by combining different exposure assessment models, including mobility of the participants, and systematically investigating different exposure time windows. Conclusions : Although our previous meta-analysis found statistically significant associations for various TRAP exposures and

  14. Human exposure assessment to environmental chemicals using biomonitoring.

    Science.gov (United States)

    Calafat, Antonia M; Ye, Xiaoyun; Silva, Manori J; Kuklenyik, Zsuzsanna; Needham, Larry L

    2006-02-01

    In modern societies, humans may be exposed to a wide spectrum of environmental chemicals. Although the health significance of this exposure for many chemicals is unknown, studies to investigate the prevalence of exposure are warranted because of the chemicals' potential harmful health effects, as often indicated in animal studies. Three tools have been used to assess exposure: exposure history/questionnaire information, environmental monitoring, and biomonitoring (i.e. measuring concentrations of the chemicals, their metabolites, or their adducts in human specimens). We present an overview on the use of biomonitoring in exposure assessment using phthalates, bisphenol A and other environmental phenols, and perfluorinated chemicals as examples. We discuss some factors relevant for interpreting and understanding biomonitoring data, including selection of both biomarkers of exposure and human matrices, and toxicokinetic information. The use of biomonitoring in human risk assessment is not discussed.

  15. CalTOX, a multimedia total exposure model for hazardous-waste sites; Part 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1993-06-01

    CalTOX has been developed as a spreadsheet model to assist in health-risk assessments that address contaminated soils and the contamination of adjacent air, surface water, sediments, and ground water. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify and reduce uncertainty in multimedia, multiple-pathway exposure models. This report provides an overview of the CalTOX model components, lists the objectives of the model, describes the philosophy under which the model was developed, identifies the chemical classes for which the model can be used, and describes critical sensitivities and uncertainties. The multimedia transport and transformation model is a dynamic model that can be used to assess time-varying concentrations of contaminants introduced initially to soil layers or for contaminants released continuously to air or water. This model assists the user in examining how chemical and landscape properties impact both the ultimate route and quantity of human contact. Multimedia, multiple pathway exposure models are used in the CalTOX model to estimate average daily potential doses within a human population in the vicinity of a hazardous substances release site. The exposure models encompass twenty-three exposure pathways. The exposure assessment process consists of relating contaminant concentrations in the multimedia model compartments to contaminant concentrations in the media with which a human population has contact (personal air, tap water, foods, household dusts soils, etc.). The average daily dose is the product of the exposure concentrations in these contact media and an intake or uptake factor that relates the concentrations to the distributions of potential dose within the population.

  16. Radiation exposure and risk assessment for critical female body organs

    International Nuclear Information System (INIS)

    Atwell, W.; Weyland, M.D.; Hardy, A.C.

    1991-07-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed. 13 refs

  17. Quantitative assessment of human and pet exposure to Salmonella associated with dry pet foods.

    Science.gov (United States)

    Lambertini, Elisabetta; Buchanan, Robert L; Narrod, Clare; Ford, Randall M; Baker, Robert C; Pradhan, Abani K

    2016-01-04

    Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to

  18. The landscape of existing models for high-throughput exposure assessment

    DEFF Research Database (Denmark)

    Jolliet, O.; Fantke, Peter; Huang, L.

    2017-01-01

    and ability to easily handle large datasets. For building materials a series of diffusion-based models have been developed to predict the chemicals emissions from building materials to indoor air, but existing models require complex analytical or numerical solutions, which are not suitable for LCA or HTS...... applications. Thus, existing model solutions needed to be simplified for application in LCA and HTS, and a parsimonious model has been developed by Huang et al. (2017) to address this need. For SVOCs, simplified solutions do exist, assuming constant SVOC concentrations in building materials and steadystate...... for skin permeation and volatilization as competing processes and that requires a limited number of readily available physiochemical properties would be suitable for LCA and HTS purposes. Thus, the multi-pathway exposure model for chemicals in cosmetics developed by Ernstoff et al.constitutes a suitable...

  19. Modelling exposure of mammalian predators to anticoagulant rodenticide

    Directory of Open Access Journals (Sweden)

    Christopher John Topping

    2016-12-01

    Full Text Available Anticoagulant rodenticides (AR are a widespread and effective method of rodent control but there is concern about the impact these may have on non-target organisms, in particular secondary poisoning of rodent predators. Incidence and concentration of AR in free-living predators in Denmark is very high. We postulate that this is caused by widespread exposure due to widespread use of AR in Denmark in and around buildings. To investigate this theory a spatio-temporal model of AR use and mammalian predator distribution was created. This model was supported by data from an experimental study of mice as vectors of AR, and was used to evaluate likely impacts of restrictions imposed on AR use in Denmark banning the use of rodenticides for plant protection in woodlands and tree-crops. The model uses input based on frequencies and timings of baiting for rodent control for urban, rural and woodland locations and creates an exposure map based on spatio-temporal modelling of movement of mice-vectored AR (based on Apodemus flavicollis. Simulated predator territories are super-imposed over this exposure map to create an exposure index. Predictions from the model concur with field studies of AR prevalence both before and after the change in AR use. In most cases incidence of exposure to AR is predicted to be greater than 90%, although cessation of use in woodlots and Christmas tree plantations should reduce mean exposure concentrations. Model results suggest that the driver of high AR incidence in non-target small mammal predators is likely to be the pattern of use and not the distance AR is vectored. Reducing baiting frequency by 75% had different effects depending on the landscape simulated, but having a maximum of 12% reduction in exposure incidence, and in one landscape a maximum reduction of <2%. We discuss sources of uncertainty in the model and directions for future development of predictive models for environmental impact assessment of rodenticides. The

  20. Retrospective Occupational Exposure Assessment in Community-Based Studies Made Easier

    International Nuclear Information System (INIS)

    Fritschi, L.; Girschik, J.; Friesen, M.C.; Glass, D.; Monash, G.B.; Sadkowsky, T.

    2010-01-01

    Occ DEAS Assessing occupational exposure in retrospective community-based case-control studies is difficult as measured exposure data are very seldom available. The expert assessment method is considered the most accurate way to attribute exposure but it is a time consuming and expensive process and may be seen as subjective, non reproducible, and non transparent. In this paper, we describe these problems and outline our solutions as ope rationalized in a web-based software application (Occ DEAS). The novel aspects of Occ DEAS are combining all steps in the assessment into one software package; enmeshing the process of assessment into the development of questionnaires; selecting the exposure(s) of interest; specifying rules for exposure assignment; allowing manual or automatic assessments; ensuring that circumstances in which exposure is possible for an individual are highlighted for review; providing reports to ensure consistency of assessment. Development of this application has the potential to make high-quality occupational assessment more efficient and accessible for epidemiological studies

  1. Long- and short-term exposure to PM2.5 and mortality: using novel exposure models.

    Science.gov (United States)

    Kloog, Itai; Ridgway, Bill; Koutrakis, Petros; Coull, Brent A; Schwartz, Joel D

    2013-07-01

    Many studies have reported associations between ambient particulate matter (PM) and adverse health effects, focused on either short-term (acute) or long-term (chronic) PM exposures. For chronic effects, the studied cohorts have rarely been representative of the population. We present a novel exposure model combining satellite aerosol optical depth and land-use data to investigate both the long- and short-term effects of PM2.5 exposures on population mortality in Massachusetts, United States, for the years 2000-2008. All deaths were geocoded. We performed two separate analyses: a time-series analysis (for short-term exposure) where counts in each geographic grid cell were regressed against cell-specific short-term PM2.5 exposure, temperature, socioeconomic data, lung cancer rates (as a surrogate for smoking), and a spline of time (to control for season and trends). In addition, for long-term exposure, we performed a relative incidence analysis using two long-term exposure metrics: regional 10 × 10 km PM2.5 predictions and local deviations from the cell average based on land use within 50 m of the residence. We tested whether these predicted the proportion of deaths from PM-related causes (cardiovascular and respiratory diseases). For short-term exposure, we found that for every 10-µg/m increase in PM 2.5 exposure there was a 2.8% increase in PM-related mortality (95% confidence interval [CI] = 2.0-3.5). For the long-term exposure at the grid cell level, we found an odds ratio (OR) for every 10-µg/m increase in long-term PM2.5 exposure of 1.6 (CI = 1.5-1.8) for particle-related diseases. Local PM2.5 had an OR of 1.4 (CI = 1.3-1.5), which was independent of and additive to the grid cell effect. We have developed a novel PM2.5 exposure model based on remote sensing data to assess both short- and long-term human exposures. Our approach allows us to gain spatial resolution in acute effects and an assessment of long-term effects in the entire population rather than a

  2. Wishful Thinking? Inside the Black Box of Exposure Assessment.

    Science.gov (United States)

    Money, Annemarie; Robinson, Christine; Agius, Raymond; de Vocht, Frank

    2016-05-01

    Decision-making processes used by experts when undertaking occupational exposure assessment are relatively unknown, but it is often assumed that there is a common underlying method that experts employ. However, differences in training and experience of assessors make it unlikely that one general method for expert assessment would exist. Therefore, there are concerns about formalizing, validating, and comparing expert estimates within and between studies that are difficult, if not impossible, to characterize. Heuristics on the other hand (the processes involved in decision making) have been extensively studied. Heuristics are deployed by everyone as short-cuts to make the often complex process of decision-making simpler, quicker, and less burdensome. Experts' assessments are often subject to various simplifying heuristics as a way to reach a decision in the absence of sufficient data. Therefore, investigating the underlying heuristics or decision-making processes involved may help to shed light on the 'black box' of exposure assessment. A mixed method study was conducted utilizing both a web-based exposure assessment exercise incorporating quantitative and semiqualitative elements of data collection, and qualitative semi-structured interviews with exposure assessors. Qualitative data were analyzed using thematic analysis. Twenty-five experts completed the web-based exposure assessment exercise and 8 of these 25 were randomly selected to participate in the follow-up interview. Familiar key themes relating to the exposure assessment exercise emerged; 'intensity'; 'probability'; 'agent'; 'process'; and 'duration' of exposure. However, an important aspect of the detailed follow-up interviews revealed a lack of structure and order with which participants described their decision making. Participants mostly described some form of an iterative process, heavily relying on the anchoring and adjustment heuristic, which differed between experts. In spite of having undertaken

  3. Probabilistic integrated risk assessment of human exposure risk to environmental bisphenol A pollution sources.

    Science.gov (United States)

    Fu, Keng-Yen; Cheng, Yi-Hsien; Chio, Chia-Pin; Liao, Chung-Min

    2016-10-01

    Environmental bisphenol A (BPA) exposure has been linked to a variety of adverse health effects such as developmental and reproductive issues. However, establishing a clear association between BPA and the likelihood of human health is complex yet fundamentally uncertain. The purpose of this study was to assess the potential exposure risks from environmental BPA among Chinese population based on five human health outcomes, namely immune response, uterotrophic assay, cardiovascular disease (CVD), diabetes, and behavior change. We addressed these health concerns by using a stochastic integrated risk assessment approach. The BPA dose-dependent likelihood of effects was reconstructed by a series of Hill models based on animal models or epidemiological data. We developed a physiologically based pharmacokinetic (PBPK) model that allows estimation of urinary BPA concentration from external exposures. Here we showed that the daily average exposure concentrations of BPA and urinary BPA estimates were consistent with the published data. We found that BPA exposures were less likely to pose significant risks for infants (0-1 year) and adults (male and female >20 years) with human long-term BPA susceptibility in relation to multiple exposure pathways, and for informing the public of the negligible magnitude of environmental BPA pollution impacts on human health.

  4. An assessment of air pollutant exposure methods in Mexico City, Mexico.

    Science.gov (United States)

    Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S

    2015-05-01

    Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or

  5. Modeling human exposure to hazardous-waste sites: a question of completeness

    International Nuclear Information System (INIS)

    Daniels, J.I.; McKone, T.E.

    1991-01-01

    In risk analysis, we use human-exposure assessments to translate contaminant sources into quantitative estimates of the amount of contaminant that comes in contact with human-environment boundaries, that is, the lungs, the gastrointestinal tract, and the skin surface of individuals within a specified population. An assessment of intake requires that we determine how much crosses these boundaries. Exposure assessments often rely implicitly in the assumption that exposure can be linked by simple parameters to ambient concentration in air, water, and soil. However, more realistic exposure models require that we abandon such simple assumptions. To link contaminant concentrations in water, air, or soil with potential human intakes, we constrict pathway-exposure factors (PEFs). For each PEF we combine information in environmental partitioning as well as human anatomy, physiology, and patterns into an algebraic term that converts concentrations of contaminants (in mg/L water, mg/m 3 air, and mg/kg soil) into a daily intake per unit body weight in mg/kg-d for a specific rout of exposure such as inhalation, ingestion, or dermal uptake. Using examples involving human exposure to either a radionuclide (tritium, 3 H) or a toxic organic chemical (tetrachloroethylene, PCE) in soil, water, and air, we illustrate the use of PEFs and consider the implications for risk assessment. (au)

  6. Exposure Assessment Tools by Lifestages and Populations - General Population

    Science.gov (United States)

    EPA ExpoBox is a toolbox for exposure assessors. Its purpose is to provide a compendium of exposure assessment and risk characterization tools that will present comprehensive step-by-step guidance and links to relevant exposure assessment data bases

  7. Predictions of models for environmental radiological assessment

    International Nuclear Information System (INIS)

    Peres, Sueli da Silva; Lauria, Dejanira da Costa; Mahler, Claudio Fernando

    2011-01-01

    In the field of environmental impact assessment, models are used for estimating source term, environmental dispersion and transfer of radionuclides, exposure pathway, radiation dose and the risk for human beings Although it is recognized that the specific information of local data are important to improve the quality of the dose assessment results, in fact obtaining it can be very difficult and expensive. Sources of uncertainties are numerous, among which we can cite: the subjectivity of modelers, exposure scenarios and pathways, used codes and general parameters. The various models available utilize different mathematical approaches with different complexities that can result in different predictions. Thus, for the same inputs different models can produce very different outputs. This paper presents briefly the main advances in the field of environmental radiological assessment that aim to improve the reliability of the models used in the assessment of environmental radiological impact. The intercomparison exercise of model supplied incompatible results for 137 Cs and 60 Co, enhancing the need for developing reference methodologies for environmental radiological assessment that allow to confront dose estimations in a common comparison base. The results of the intercomparison exercise are present briefly. (author)

  8. Multi-scale spatial modeling of human exposure from local sources to global intake

    DEFF Research Database (Denmark)

    Wannaz, Cedric; Fantke, Peter; Jolliet, Olivier

    2018-01-01

    Exposure studies, used in human health risk and impact assessments of chemicals are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea......, an innovative multi-scale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties...... occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ~10,000 emission locations covering France more densely to determine per chemical and exposure route...

  9. Integrated fate modeling for exposure assessment of produced water on the Sable Island Bank (Scotian shelf, Canada).

    Science.gov (United States)

    Berry, Jody A; Wells, Peter G

    2004-10-01

    Produced water is the largest waste discharge from the production phase of oil and gas wells. Produced water is a mixture of reservoir formation water and production chemicals from the separation process. This creates a chemical mixture that has several components of toxic concern, ranging from heavy metals to soluble hydrocarbons. Analysis of potential environmental effects from produced water in the Sable Island Bank region (NS, Canada) was conducted using an integrated modeling approach according to the ecological risk assessment framework. A hydrodynamic dispersion model was used to describe the wastewater plume. A second fugacity-based model was used to describe the likely plume partitioning in the local environmental media of water, suspended sediment, biota, and sediment. Results from the integrated modeling showed that the soluble benzene and naphthalene components reach chronic no-effect concentration levels at a distance of 1.0 m from the discharge point. The partition modeling indicated that low persistence was expected because of advection forces caused by tidal currents for the Sable Island Bank system. The exposure assessment for the two soluble hydrocarbon components suggests that the risks of adverse environmental effects from produced water on Sable Island Bank are low.

  10. Safety assessments for potential exposures

    International Nuclear Information System (INIS)

    Dunn, D.I.

    2012-04-01

    Safety Assessment of potential exposures have been carried out in major practices, namely: industrial radiography, gamma irradiators and electron accelerators used in industry and research, and radiotherapy. This paper focuses on reviewing safety assessment methodologies and using developed software to analyse radiological accidents, also review, and discuss these past accidents.The primary objective of the assessment is to assess the adequacy of planned or existing measures for protection and safety and to identify any additional measures that should be put in place. As such, both routine use of the source and the probability and magnitude of potential exposures arising from accidents or incidents should be considered. Where the assessment indicates that there is a realistic possibility of an accident affecting workers or members of the public or having consequences for the environment, the registrant or licensee should prepare a suitable emergency plan. A safety assessment for normal operation addresses all the conditions under which the radiation source operates as expected, including all phases of the lifetime of the source. Due account needs to be taken of the different factors and conditions that will apply during non-operational phases, such as installation, commissioning and maintenance. (author)

  11. Pesticide Flow Analysis to Assess Human Exposure in Greenhouse Flower Production in Colombia

    Directory of Open Access Journals (Sweden)

    Claudia R. Binder

    2013-03-01

    Full Text Available Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology. The transfer coefficients were obtained using the whole body dosimetry method for dermal exposure and the button personal inhalable aerosol sampler for inhalation exposure, using the tracer uranine as a pesticide surrogate. The case study was a greenhouse rose farm in the Bogota Plateau in Colombia. The approach was applied to estimate the exposure to pesticides such as mancozeb, carbendazim, propamocarb hydrochloride, fosetyl, carboxin, thiram, dimethomorph and mandipropamide. We found dermal absorption estimations close to the AOEL reference values for the pesticides carbendazim, mancozeb, thiram and mandipropamide during the study period. In addition, high values of dermal exposure were found on the forearms, hands, chest and legs of study participants, indicating weaknesses in the overlapping areas of the personal protective equipment parts. These results show how the material flow analysis methodology can be applied in the field of human exposure for early recognition of the dispersion of pesticides and support the development of measures to improve operational safety during pesticide management. Furthermore, the model makes it possible to identify the status quo of the health risk faced by workers in the study area.

  12. A model to systematically employ professional judgment in the Bayesian Decision Analysis for a semiconductor industry exposure assessment.

    Science.gov (United States)

    Torres, Craig; Jones, Rachael; Boelter, Fred; Poole, James; Dell, Linda; Harper, Paul

    2014-01-01

    Bayesian Decision Analysis (BDA) uses Bayesian statistics to integrate multiple types of exposure information and classify exposures within the exposure rating categorization scheme promoted in American Industrial Hygiene Association (AIHA) publications. Prior distributions for BDA may be developed from existing monitoring data, mathematical models, or professional judgment. Professional judgments may misclassify exposures. We suggest that a structured qualitative risk assessment (QLRA) method can provide consistency and transparency in professional judgments. In this analysis, we use a structured QLRA method to define prior distributions (priors) for BDA. We applied this approach at three semiconductor facilities in South Korea, and present an evaluation of the performance of structured QLRA for determination of priors, and an evaluation of occupational exposures using BDA. Specifically, the structured QLRA was applied to chemical agents in similar exposure groups to identify provisional risk ratings. Standard priors were developed for each risk rating before review of historical monitoring data. Newly collected monitoring data were used to update priors informed by QLRA or historical monitoring data, and determine the posterior distribution. Exposure ratings were defined by the rating category with the highest probability--i.e., the most likely. We found the most likely exposure rating in the QLRA-informed priors to be consistent with historical and newly collected monitoring data, and the posterior exposure ratings developed with QLRA-informed priors to be equal to or greater than those developed with data-informed priors in 94% of comparisons. Overall, exposures at these facilities are consistent with well-controlled work environments. That is, the 95th percentile of exposure distributions are ≤50% of the occupational exposure limit (OEL) for all chemical-SEG combinations evaluated; and are ≤10% of the limit for 94% of chemical-SEG combinations evaluated.

  13. Quantitative assessment of exposure and risk for three carcinogenics in long-standing pollution sites

    International Nuclear Information System (INIS)

    Wichmann, H.E.; Wuppertal Univ.; Ihme, W.; Mekel, O.C.L.; Wuppertal Univ.

    1993-01-01

    The project attempts a quantitative assessment of risks for three carcinogenics that are common in sites of long-standing pollution. Benzo(a)pyrene stands for the group of polycyclic aromatic hydrocarbons, cadmium for heavy metals, and benzene for volatile aromatic compounds. The report discusses the general fundamentals of exposure and risk assessment. The exposure model is described in detail and applied to the three test substances. (orig./MG) [de

  14. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling

    Science.gov (United States)

    Leonard, Jeremy A.; Tan, Yu-Mei; Gilbert, Mary; Isaacs, Kristin; El-Masri, Hisham

    2016-01-01

    Some pharmaceuticals and environmental chemicals bind the thyroid peroxidase (TPO) enzyme and disrupt thyroid hormone production. The potential for TPO inhibition is a function of both the binding affinity and concentration of the chemical within the thyroid gland. The former can be determined through in vitro assays, and the latter is influenced by pharmacokinetic properties, along with environmental exposure levels. In this study, a physiologically based pharmacokinetic (PBPK) model was integrated with a pharmacodynamic (PD) model to establish internal doses capable of inhibiting TPO in relation to external exposure levels predicted through exposure modeling. The PBPK/PD model was evaluated using published serum or thyroid gland chemical concentrations or circulating thyroxine (T4) and triiodothyronine (T3) hormone levels measured in rats and humans. After evaluation, the model was used to estimate human equivalent intake doses resulting in reduction of T4 and T3 levels by 10% (ED10) for 6 chemicals of varying TPO-inhibiting potencies. These chemicals were methimazole, 6-propylthiouracil, resorcinol, benzophenone-2, 2-mercaptobenzothiazole, and triclosan. Margin of exposure values were estimated for these chemicals using the ED10 and predicted population exposure levels for females of child-bearing age. The modeling approach presented here revealed that examining hazard or exposure alone when prioritizing chemicals for risk assessment may be insufficient, and that consideration of pharmacokinetic properties is warranted. This approach also provides a mechanism for integrating in vitro data, pharmacokinetic properties, and exposure levels predicted through high-throughput means when interpreting adverse outcome pathways based on biological responses. PMID:26865668

  15. Combination of a higher-tier flow-through system and population modeling to assess the effects of time-variable exposure of isoproturon on the green algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Weber, Denis; Schaefer, Dieter; Dorgerloh, Michael; Bruns, Eric; Goerlitz, Gerhard; Hammel, Klaus; Preuss, Thomas G; Ratte, Hans Toni

    2012-04-01

    A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides. Copyright © 2012 SETAC.

  16. Development of model for assessment of radiation discharge to the environment

    International Nuclear Information System (INIS)

    Shang Zhaorong; Wu Hao; Liu Hua

    2003-01-01

    International Atomic Energy Agency (IAEA) establish basic and detailed requirements for protection against the risks associated with exposure to radiation and for the safety of radiation sources that may deliver such exposure, in which, particularly emphasize to 'make an assessment of the nature, magnitude and likelihood of the exposure attributed to the source'. It is clear that the assessment of the consequential radiation exposure arising from any releases of radioactive materials to the environment will have to rely on some form of model. This paper summary recent progress in radiation protection policy and radioecology research and primary concludes the basis requirements in assessment model development

  17. Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo

    Science.gov (United States)

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quant...

  18. Determining the validity of exposure models for environmental epidemiology : predicting electromagnetic fields from mobile phone base stations

    NARCIS (Netherlands)

    Beekhuizen, Johan|info:eu-repo/dai/nl/34472641X

    2014-01-01

    One of the key challenges in environmental epidemiology is the exposure assessment of large populations. Spatial exposure models have been developed that predict exposure to the pollutant of interest for large study sizes. However, the validity of these exposure models is often unknown. In this

  19. Using toxicokinetic-toxicodynamic modeling as an acute risk assessment refinement approach in vertebrate ecological risk assessment.

    Science.gov (United States)

    Ducrot, Virginie; Ashauer, Roman; Bednarska, Agnieszka J; Hinarejos, Silvia; Thorbek, Pernille; Weyman, Gabriel

    2016-01-01

    Recent guidance identified toxicokinetic-toxicodynamic (TK-TD) modeling as a relevant approach for risk assessment refinement. Yet, its added value compared to other refinement options is not detailed, and how to conduct the modeling appropriately is not explained. This case study addresses these issues through 2 examples of individual-level risk assessment for 2 hypothetical plant protection products: 1) evaluating the risk for small granivorous birds and small omnivorous mammals of a single application, as a seed treatment in winter cereals, and 2) evaluating the risk for fish after a pulsed treatment in the edge-of-field zone. Using acute test data, we conducted the first tier risk assessment as defined in the European Food Safety Authority (EFSA) guidance. When first tier risk assessment highlighted a concern, refinement options were discussed. Cases where the use of models should be preferred over other existing refinement approaches were highlighted. We then practically conducted the risk assessment refinement by using 2 different models as examples. In example 1, a TK model accounting for toxicokinetics and relevant feeding patterns in the skylark and in the wood mouse was used to predict internal doses of the hypothetical active ingredient in individuals, based on relevant feeding patterns in an in-crop situation, and identify the residue levels leading to mortality. In example 2, a TK-TD model accounting for toxicokinetics, toxicodynamics, and relevant exposure patterns in the fathead minnow was used to predict the time-course of fish survival for relevant FOCUS SW exposure scenarios and identify which scenarios might lead to mortality. Models were calibrated using available standard data and implemented to simulate the time-course of internal dose of active ingredient or survival for different exposure scenarios. Simulation results were discussed and used to derive the risk assessment refinement endpoints used for decision. Finally, we compared the

  20. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    Science.gov (United States)

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  1. Progress in human exposure assessment for biocidal products

    NARCIS (Netherlands)

    Hemmen, J.J. van

    2004-01-01

    An important shortcoming in our present knowledge required for risk assessment of biocidal products is the assessment of human exposure. This knowledge gap has been filled in a preliminary fashion with the TNsG on human exposure to biocidal products (available from the ECB website). Explicit User

  2. Assessment of chemical exposures: calculation methods for environmental professionals

    National Research Council Canada - National Science Library

    Daugherty, Jack E

    1997-01-01

    ... on by scientists, businessmen, and policymakers. Assessment of Chemical Exposures: Calculation Methods for Environmental Professionals addresses the expanding scope of exposure assessments in both the workplace and environment...

  3. Default values for assessment of potential dermal exposure of the hands to industrial chemicals in the scope of regulatory risk assessments

    NARCIS (Netherlands)

    Marquart, H.; Warren, N.D.; Laitinen, J.; Hemmen, J.J. van

    2006-01-01

    Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with

  4. Comparison of modeled estimates of inhalation exposure to aerosols during use of consumer spray products.

    Science.gov (United States)

    Park, Jihoon; Yoon, Chungsik; Lee, Kiyoung

    2018-05-30

    In the field of exposure science, various exposure assessment models have been developed to complement experimental measurements; however, few studies have been published on their validity. This study compares the estimated inhaled aerosol doses of several inhalation exposure models to experimental measurements of aerosols released from consumer spray products, and then compares deposited doses within different parts of the human respiratory tract according to deposition models. Exposure models, including the European Center for Ecotoxicology of Chemicals Targeted Risk Assessment (ECETOC TRA), the Consumer Exposure Model (CEM), SprayExpo, ConsExpo Web and ConsExpo Nano, were used to estimate the inhaled dose under various exposure scenarios, and modeled and experimental estimates were compared. The deposited dose in different respiratory regions was estimated using the International Commission on Radiological Protection model and multiple-path particle dosimetry models under the assumption of polydispersed particles. The modeled estimates of the inhaled doses were accurate in the short term, i.e., within 10 min of the initial spraying, with a differences from experimental estimates ranging from 0 to 73% among the models. However, the estimates for long-term exposure, i.e., exposure times of several hours, deviated significantly from the experimental estimates in the absence of ventilation. The differences between the experimental and modeled estimates of particle number and surface area were constant over time under ventilated conditions. ConsExpo Nano, as a nano-scale model, showed stable estimates of short-term exposure, with a difference from the experimental estimates of less than 60% for all metrics. The deposited particle estimates were similar among the deposition models, particularly in the nanoparticle range for the head airway and alveolar regions. In conclusion, the results showed that the inhalation exposure models tested in this study are suitable

  5. The multimedia models for the evaluation of exposure bond to the atmospheric emissions of classified installations

    International Nuclear Information System (INIS)

    Bonnard, R.

    2001-12-01

    Risk assessment and environmental impacts studies are realized to preserve the public health. Today one of the most used approach is the use of an atmospheric dispersion model to assess the risks. The data are then injected in a calculation software of exposure bond to polluted soils, to evaluate the risks of non direct exposure. This report details and evaluates the models corresponding to the need: the methodology for assessing Health Risks associated with multiple pathways of exposure to combustor, human health risk assessment proto col for hazardous waste combustion facilities, EUSES, CALTOX, MEPAS, MEND-TOX, RESRAD, MMSOILS, FRAMES-HWIR, PC-GEMS and TRIM. (A.L.B.)

  6. Korean Ministry of Environment's web-based visual consumer product exposure and risk assessment system (COPER).

    Science.gov (United States)

    Lee, Hunjoo; Lee, Kiyoung; Park, Ji Young; Min, Sung-Gi

    2017-05-01

    With support from the Korean Ministry of the Environment (ME), our interdisciplinary research staff developed the COnsumer Product Exposure and Risk assessment system (COPER). This system includes various databases and features that enable the calculation of exposure and determination of risk caused by consumer products use. COPER is divided into three tiers: the integrated database layer (IDL), the domain specific service layer (DSSL), and the exposure and risk assessment layer (ERAL). IDL is organized by the form of the raw data (mostly non-aggregated data) and includes four sub-databases: a toxicity profile, an inventory of Korean consumer products, the weight fractions of chemical substances in the consumer products determined by chemical analysis and national representative exposure factors. DSSL provides web-based information services corresponding to each database within IDL. Finally, ERAL enables risk assessors to perform various exposure and risk assessments, including exposure scenario design via either inhalation or dermal contact by using or organizing each database in an intuitive manner. This paper outlines the overall architecture of the system and highlights some of the unique features of COPER based on visual and dynamic rendering engine for exposure assessment model on web.

  7. Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo

    DEFF Research Database (Denmark)

    Ernstoff, Alexi S.; Fantke, Peter; Csiszar, Susan A.

    2016-01-01

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quantified based...

  8. The EPA's human exposure research program for assessing cumulative risk in communities.

    Science.gov (United States)

    Zartarian, Valerie G; Schultz, Bradley D

    2010-06-01

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available and most relevant, and understanding how to use those tools; given these barriers, community groups tend to rely more on risk perception than science. The U.S. Environmental Protection Agency's Office of Research and Development, National Exposure Research Laboratory (NERL) and collaborators are developing and applying tools (models, data, methods) for enhancing cumulative risk assessments. The NERL's "Cumulative Communities Research Program" focuses on key science questions: (1) How to systematically identify and prioritize key chemical stressors within a given community?; (2) How to develop estimates of exposure to multiple stressors for individuals in epidemiologic studies?; and (3) What tools can be used to assess community-level distributions of exposures for the development and evaluation of the effectiveness of risk reduction strategies? This paper provides community partners and scientific researchers with an understanding of the NERL research program and other efforts to address cumulative community risks; and key research needs and opportunities. Some initial findings include the following: (1) Many useful tools exist for components of risk assessment, but need to be developed collaboratively with end users and made more comprehensive and user-friendly for practical application; (2) Tools for quantifying cumulative risks and impact of community risk reduction activities are also needed; (3) More data are needed to assess community- and individual-level exposures, and to link exposure-related information with health effects; and (4) Additional research is needed to incorporate risk-modifying factors ("non-chemical stressors") into cumulative risk assessments. The products of this

  9. Use of an aggregate exposure model to estimate consumer exposure to fragrance ingredients in personal care and cosmetic products.

    Science.gov (United States)

    Safford, B; Api, A M; Barratt, C; Comiskey, D; Daly, E J; Ellis, G; McNamara, C; O'Mahony, C; Robison, S; Smith, B; Thomas, R; Tozer, S

    2015-08-01

    Ensuring the toxicological safety of fragrance ingredients used in personal care and cosmetic products is essential in product development and design, as well as in the regulatory compliance of the products. This requires an accurate estimation of consumer exposure which, in turn, requires an understanding of consumer habits and use of products. Where ingredients are used in multiple product types, it is important to take account of aggregate exposure in consumers using these products. This publication investigates the use of a newly developed probabilistic model, the Creme RIFM model, to estimate aggregate exposure to fragrance ingredients using the example of 2-phenylethanol (PEA). The output shown demonstrates the utility of the model in determining systemic and dermal exposure to fragrances from individual products, and aggregate exposure. The model provides valuable information not only for risk assessment, but also for risk management. It should be noted that data on the concentrations of PEA in products used in this article were obtained from limited sources and not the standard, industry wide surveys typically employed by the fragrance industry and are thus presented here to illustrate the output and utility of the newly developed model. They should not be considered an accurate representation of actual exposure to PEA. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Human exposure to bisphenol A by biomonitoring: Methods, results and assessment of environmental exposures

    International Nuclear Information System (INIS)

    Dekant, Wolfgang; Voelkel, Wolfgang

    2008-01-01

    Human exposure to bisphenol A is controversially discussed. This review critically assesses methods for biomonitoring of bisphenol A exposures and reported concentrations of bisphenol A in blood and urine of non-occupationally ('environmentally') exposed humans. From the many methods published to assess bisphenol A concentrations in biological media, mass spectrometry-based methods are considered most appropriate due to high sensitivity, selectivity and precision. In human blood, based on the known toxicokinetics of bisphenol A in humans, the expected very low concentrations of bisphenol A due to rapid biotransformation and the very rapid excretion result in severe limitations in the use of reported blood levels of bisphenol A for exposure assessment. Due to the rapid and complete excretion of orally administered bisphenol A, urine samples are considered as the appropriate body fluid for bisphenol A exposure assessment. In urine samples from several cohorts, bisphenol A (as glucuronide) was present in average concentrations in the range of 1-3 μg/L suggesting that daily human exposure to bisphenol A is below 6 μg per person (< 0.1 μg/kg bw/day) for the majority of the population

  11. Radiation in complex exposure situations. Assessing health risks at low levels from concomitant exposures to radiation and chemicals

    International Nuclear Information System (INIS)

    Hornhardt, S.; Jung, T.; Burkart, W.

    2000-01-01

    Health effects from exposures to ionizing radiation are in general the result of complex multi-step reaction chains involving changes and responses on the level of molecules, cells, tissues and organisms. In environmental low dose exposure situations ionizing radiation only contributes a small fraction to the life-long attack on DNA by other exogenous and endogenous genotoxins. Nevertheless, efforts to assess and quantify deleterious effects at low exposure levels are directed mainly towards radiation as a single isolated agent, and rarely towards the concomitant presence of other natural and anthropogenic toxicants. Only these combined exposures may lead to observable health risk effects. In addition they might differ from those expected from simple addition of the individual risks due to interaction. The existing data base on combined effects is rudimentary, mainly descriptive and rarely covers exposure ranges large enough to make direct inferences to present day low dose exposure situations. Therefore, any risk assessment will have to consider the question whether combined effects, i.e. interaction between two or more agents will influence the health outcome from specific exposure situations in such a way that predictions derived from simple standard exposure situations would have to be revised. In view of the multitude of possible interactions between the large number of potentially harmful agents in the human environment, descriptive approaches will have to be supplemented by the use of mechanistic models for critical health endpoints such as cancer. Agents will have to be grouped depending on their physical or chemical mode of action at the molecular and cellular level, to generalize and predict the outcome of combined exposures at low exposure levels and the possibility of interactions. (author)

  12. Underwater noise modelling for environmental impact assessment

    Energy Technology Data Exchange (ETDEWEB)

    Farcas, Adrian [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom); Thompson, Paul M. [Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, Cromarty IV11 8YL (United Kingdom); Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk [Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT (United Kingdom)

    2016-02-15

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  13. Underwater noise modelling for environmental impact assessment

    International Nuclear Information System (INIS)

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D.

    2016-01-01

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliar with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.

  14. Matrix Population Model for Estimating Effects from Time-Varying Aquatic Exposures: Technical Documentation

    Science.gov (United States)

    The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...

  15. Environmental exposure assessment in European birth cohorts: results from the ENRIECO project

    Directory of Open Access Journals (Sweden)

    Gehring Ulrike

    2013-01-01

    Full Text Available Abstract Environmental exposures during pregnancy and early life may have adverse health effects. Single birth cohort studies often lack statistical power to tease out such effects reliably. To improve the use of existing data and to facilitate collaboration among these studies, an inventory of the environmental exposure and health data in these studies was made as part of the ENRIECO (Environmental Health Risks in European Birth Cohorts project. The focus with regard to exposure was on outdoor air pollution, water contamination, allergens and biological organisms, metals, pesticides, smoking and second hand tobacco smoke (SHS, persistent organic pollutants (POPs, noise, radiation, and occupational exposures. The review lists methods and data on environmental exposures in 37 European birth cohort studies. Most data is currently available for smoking and SHS (N=37 cohorts, occupational exposures (N=33, outdoor air pollution, and allergens and microbial agents (N=27. Exposure modeling is increasingly used for long-term air pollution exposure assessment; biomonitoring is used for assessment of exposure to metals, POPs and other chemicals; and environmental monitoring for house dust mite exposure assessment. Collaborative analyses with data from several birth cohorts have already been performed successfully for outdoor air pollution, water contamination, allergens, biological contaminants, molds, POPs and SHS. Key success factors for collaborative analyses are common definitions of main exposure and health variables. Our review emphasizes that such common definitions need ideally be arrived at in the study design phase. However, careful comparison of methods used in existing studies also offers excellent opportunities for collaborative analyses. Investigators can use this review to evaluate the potential for future collaborative analyses with respect to data availability and methods used in the different cohorts and to identify potential partners

  16. Using cell phone location to assess misclassification errors in air pollution exposure estimation.

    Science.gov (United States)

    Yu, Haofei; Russell, Armistead; Mulholland, James; Huang, Zhijiong

    2018-02-01

    Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Hygiene and legal aspects of occupational exposure assessment to cytostatics].

    Science.gov (United States)

    Kupczewska-Dobecka, Małgorzata; Pałaszewska-Tkacz, Anna; Czerczak, Sławomir; Konieczko, Katarzyna

    2018-01-01

    The employers responsibilities for the assessment of occupational exposure to cytostatics in the workplace were analyzed in the light of existing legal regulations. Cytostatics may pose a threat to health and life of workers taking care of patients treated oncologically, i.e., pharmacists, physicians, nurses and other personnel. The significant scale of occupational exposure to cytostatics in Poland is confirmed by the data collected in the Central Register of Data on Exposure to Carcinogenic or Mutagenic Substances, Mixtures, Agents or Technological Processes, maintained by the Nofer Institute of Occupational Medicine, Łódź, Poland. The issue of occupational risk assessment of exposure to cytostatics gives raise to numerous concerns. Polish regulations concerning health protection of employees occupationally exposed to cytostatics are not unequivocal, as they are derived from different areas of the law, especially those applying to hazard classification, labeling and preparation of safety data sheets for cytostatics. There are neither binding occupational exposure limits legally set for active compounds of antineoplastic drugs nor methods for monitoring of these substances concentrations in a worker's breathing zone and biological material. This prevents the employer to carry out the correct assessment of occupational exposure, the results of which are the basis for preparing the proper preventive strategy. In this article the consequences of amendments to the European chemical legislation for employers responsible for adequate protection of health and life of employees exposed to cytostatics, were discussed, as well as some legal changes aimed at a better health and life protection of workers exposed to cytostatics in a workplace were proposed. Med Pr 2018;69(1):77-92. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  18. Final report on the Project Research 'Assessment of Human Exposure to Environmental Radiation'

    International Nuclear Information System (INIS)

    1989-03-01

    This is the final report of the Project Research, 'Assessment of Human Exposure to Environmental Radiation', which has been conducted during the period 1983-1988. With the objective of assessing risk of environmental radioactivity to the population, the Project was divided into the following five research groups: (1) research for establishing calculation models and parameters in transfer of radionuclides from crop species through the human body; (2) research for analyzing transfer of radionuclides in the ocean and their contributions to exposure doses in the human body; (3) research for surveying accuracy of exposure models for the external body and respiratory organ and the influential factors; (4) research for determining uptake and biokinetics of radionuclides in the body; and (5) research for estimating and evaluating physical and physiological characteristics of reference Japanese man and the populaltion doses. Effluents from nuclear power plants and reprocessing plants were regarded as radionuclide sources in the water and atmosphere. (N.K.)

  19. Exposure scenario libraries as a tool for exposure assessment

    International Nuclear Information System (INIS)

    Jiménez, Araceli Sánchez; Rashid, Shahzad; Van Tongeren, Martie; Brouwer, Derk; Fransman, Wouter; Fito, Carlos; Boulougouris, George

    2015-01-01

    The development of nanotechnology has reached a point where it is being widely applied, and numerous nanomaterials and nano-enabled products are handled across a broad range of industrial sectors. Exposure extends beyond occupational settings as products containing nanomaterials are used by different consumer groups.Despite the knowledge on their toxic effects is growing there is still not OEL for most NMS and therefore the precautionary approach is still used where levels are kept as low as possible Therefore there is a need to assess workers and consumers exposure. (paper)

  20. Control banding tools for occupational exposure assessment of nanomaterials - Ready for use in a regulatory context?

    DEFF Research Database (Denmark)

    Liguori, Biase; Hansen, Steffen Foss; Baun, Anders

    2016-01-01

    area of concern. Therefore, a number of Control Banding (CB)-based tools have been developed in order to assess and manage the potential risks associated with occupational exposure to nanomaterials. In this paper we provide a comparative analysis of different nanomaterial-specific types of control-banding/risk...... developed for different purposes, with different application domains and inclusion criteria. The exposure assessments and derived risk levels are based on different concepts and assumptions and outputs in different formats. The use of requested input parameters for exposure assessment differ greatly among...... the tools. Therefore, direct inter-comparison and combination of the different models into a larger holistic framework is not immediately possible. Harmonization of input parameters and output could allow establishment of an exposure assessment framework with different levels of information requirements....

  1. Estimators for longitudinal latent exposure models: examining measurement model assumptions.

    Science.gov (United States)

    Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D

    2017-06-15

    Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Risk of breast cancer following exposure to tetrachloroethylene-contaminated drinking water in Cape Cod, Massachusetts: reanalysis of a case-control study using a modified exposure assessment

    Directory of Open Access Journals (Sweden)

    Webster Thomas F

    2011-05-01

    Full Text Available Abstract Background Tetrachloroethylene (PCE is an important occupational chemical used in metal degreasing and drycleaning and a prevalent drinking water contaminant. Exposure often occurs with other chemicals but it occurred alone in a pattern that reduced the likelihood of confounding in a unique scenario on Cape Cod, Massachusetts. We previously found a small to moderate increased risk of breast cancer among women with the highest exposures using a simple exposure model. We have taken advantage of technical improvements in publically available software to incorporate a more sophisticated determination of water flow and direction to see if previous results were robust to more accurate exposure assessment. Methods The current analysis used PCE exposure estimates generated with the addition of water distribution modeling software (EPANET 2.0 to test model assumptions, compare exposure distributions to prior methods, and re-examine the risk of breast cancer. In addition, we applied data smoothing to examine nonlinear relationships between breast cancer and exposure. We also compared a set of measured PCE concentrations in water samples collected in 1980 to modeled estimates. Results Thirty-nine percent of individuals considered unexposed in prior epidemiological analyses were considered exposed using the current method, but mostly at low exposure levels. As a result, the exposure distribution was shifted downward resulting in a lower value for the 90th percentile, the definition of "high exposure" in prior analyses. The current analyses confirmed a modest increase in the risk of breast cancer for women with high PCE exposure levels defined by either the 90th percentile (adjusted ORs 1.0-1.5 for 0-19 year latency assumptions or smoothing analysis cut point (adjusted ORs 1.3-2.0 for 0-15 year latency assumptions. Current exposure estimates had a higher correlation with PCE concentrations in water samples (Spearman correlation coefficient = 0.65, p

  3. Multiple-Strain Approach and Probabilistic Modeling of Consumer Habits in Quantitative Microbial Risk Assessment: A Quantitative Assessment of Exposure to Staphylococcal Enterotoxin A in Raw Milk.

    Science.gov (United States)

    Crotta, Matteo; Rizzi, Rita; Varisco, Giorgio; Daminelli, Paolo; Cunico, Elena Cosciani; Luini, Mario; Graber, Hans Ulrich; Paterlini, Franco; Guitian, Javier

    2016-03-01

    Quantitative microbial risk assessment (QMRA) models are extensively applied to inform management of a broad range of food safety risks. Inevitably, QMRA modeling involves an element of simplification of the biological process of interest. Two features that are frequently simplified or disregarded are the pathogenicity of multiple strains of a single pathogen and consumer behavior at the household level. In this study, we developed a QMRA model with a multiple-strain approach and a consumer phase module (CPM) based on uncertainty distributions fitted from field data. We modeled exposure to staphylococcal enterotoxin A in raw milk in Lombardy; a specific enterotoxin production module was thus included. The model is adaptable and could be used to assess the risk related to other pathogens in raw milk as well as other staphylococcal enterotoxins. The multiplestrain approach, implemented as a multinomial process, allowed the inclusion of variability and uncertainty with regard to pathogenicity at the bacterial level. Data from 301 questionnaires submitted to raw milk consumers were used to obtain uncertainty distributions for the CPM. The distributions were modeled to be easily updatable with further data or evidence. The sources of uncertainty due to the multiple-strain approach and the CPM were identified, and their impact on the output was assessed by comparing specific scenarios to the baseline. When the distributions reflecting the uncertainty in consumer behavior were fixed to the 95th percentile, the risk of exposure increased up to 160 times. This reflects the importance of taking into consideration the diversity of consumers' habits at the household level and the impact that the lack of knowledge about variables in the CPM can have on the final QMRA estimates. The multiple-strain approach lends itself to use in other food matrices besides raw milk and allows the model to better capture the complexity of the real world and to be capable of geographical

  4. The Potential Neurotoxic Effects of Low-Dose Sarin Exposure in a Guinea Pig Model

    Science.gov (United States)

    2002-01-01

    1 THE POTENTIAL NEUROTOXIC EFFECTS OF LOW-DOSE SARIN EXPOSURE IN A GUINEA PIG MODEL Melinda R. Roberson, PhD, Michelle B. Schmidt...Proving Ground, MD 21010 USA ABSTRACT This study is assessing the effects in guinea pigs of repeated low-dose exposure to the nerve...COVERED - 4. TITLE AND SUBTITLE The Potential Neurotoxic Effects Of Low-Dose Sarin Exposure In A Guinea Pig Model 5a. CONTRACT NUMBER 5b

  5. Analysis of coupled model uncertainties in source-to-dose modeling of human exposures to ambient air pollution: A PM 2.5 case study

    Science.gov (United States)

    Özkaynak, Halûk; Frey, H. Christopher; Burke, Janet; Pinder, Robert W.

    Quantitative assessment of human exposures and health effects due to air pollution involve detailed characterization of impacts of air quality on exposure and dose. A key challenge is to integrate these three components on a consistent spatial and temporal basis taking into account linkages and feedbacks. The current state-of-practice for such assessments is to exercise emission, meteorology, air quality, exposure, and dose models separately, and to link them together by using the output of one model as input to the subsequent downstream model. Quantification of variability and uncertainty has been an important topic in the exposure assessment community for a number of years. Variability refers to differences in the value of a quantity (e.g., exposure) over time, space, or among individuals. Uncertainty refers to lack of knowledge regarding the true value of a quantity. An emerging challenge is how to quantify variability and uncertainty in integrated assessments over the source-to-dose continuum by considering contributions from individual as well as linked components. For a case study of fine particulate matter (PM 2.5) in North Carolina during July 2002, we characterize variability and uncertainty associated with each of the individual concentration, exposure and dose models that are linked, and use a conceptual framework to quantify and evaluate the implications of coupled model uncertainties. We find that the resulting overall uncertainties due to combined effects of both variability and uncertainty are smaller (usually by a factor of 3-4) than the crudely multiplied model-specific overall uncertainty ratios. Future research will need to examine the impact of potential dependencies among the model components by conducting a truly coupled modeling analysis.

  6. Assessment of long-term spatio-temporal radiofrequency electromagnetic field exposure.

    Science.gov (United States)

    Aerts, Sam; Wiart, Joe; Martens, Luc; Joseph, Wout

    2018-02-01

    As both the environment and telecommunications networks are inherently dynamic, our exposure to environmental radiofrequency (RF) electromagnetic fields (EMF) at an arbitrary location is not at all constant in time. In this study, more than a year's worth of measurement data collected in a fixed low-cost exposimeter network distributed over an urban environment was analysed and used to build, for the first time, a full spatio-temporal surrogate model of outdoor exposure to downlink Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) signals. Though no global trend was discovered over the measuring period, the difference in measured exposure between two instances could reach up to 42dB (a factor 12,000 in power density). Furthermore, it was found that, taking into account the hour and day of the measurement, the accuracy of the surrogate model in the area under study was improved by up to 50% compared to models that neglect the daily temporal variability of the RF signals. However, further study is required to assess the extent to which the results obtained in the considered environment can be extrapolated to other geographic locations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Janeen Denise [Univ. of New Mexico, Albuquerque, NM (United States)

    1999-02-01

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  8. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study

    Directory of Open Access Journals (Sweden)

    Hystad Perry

    2012-04-01

    Full Text Available Abstract Background Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. Methods National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2 and a chemical transport model (for O3. The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. Results Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R2 = 0.51, while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R2 = 0.38 and O3 (R2 = 0.56. Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 exposures of 11.3 μg/m3 (SD = 2.6, 17.7 ppb (4.1, and 26.4 ppb (3.4 respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years. Approximately 50

  9. ASSESSING HUMAN EXPOSURE TO GRASS POLLEN IN DENMARK

    DEFF Research Database (Denmark)

    Peel, Robert George; Hertel, Ole; Herbert, Rob

    Objectives: Exposure to pollen is typically assessed using data collected at fixed roof-top monitoring stations, which give a general picture of airborne pollen concentrations over a wide region. Actual exposure levels can be obtained through personal exposure monitoring. This is typically done u...

  10. [Occupational exposure to nanoparticles. Assessment of workplace exposure].

    Science.gov (United States)

    Bujak-Pietrek, Stella

    2010-01-01

    Nanotechnology is currently one of the most popular branch of science. It is a technology that enables designing, manufacturing and application of materials and structures of very small dimensions, and its products are applied in almost every field of life. Nanoparticles are the structures having one or more dimensions of the order of 100 nm or less. They are used in precise mechanics, electronics, optics, medicine, pharmacy, cosmetics and many other spheres. Due to their very small size, nanostructures have completely different and specific properties, unknown for the bulk of materials. Fast-growing nanotechnology provides a wide spectrum of applications, but it also brings about new and unknown danger to human health. Nanotechnology is the branch that has developed rather recently, and much information about health risk and its influence on the environment is beyond our knowledge. Nanoparticles, released in many technological processes, as well as manufactured nanoparticles can induce occupational hazards to workers. The lack of regulations and standards, compulsory in the manufacture and use ofnanoparticles is a fundamental problem faced in the evaluation of exposure. Another problem is the choice of proper measurement equipment for surveying of very small particles - their number, mass and surface area in the workpost air. In this article, the possibility and scope of exposure assessment is discussed and a brief specification of available instrumentation for counting and assessing the parameters essential for classifying the exposure to nanoparticles is presented.

  11. Modeling approaches for characterizing and evaluating environmental exposure to engineered nanomaterials in support of risk-based decision making.

    Science.gov (United States)

    Hendren, Christine Ogilvie; Lowry, Michael; Grieger, Khara D; Money, Eric S; Johnston, John M; Wiesner, Mark R; Beaulieu, Stephen M

    2013-02-05

    As the use of engineered nanomaterials becomes more prevalent, the likelihood of unintended exposure to these materials also increases. Given the current scarcity of experimental data regarding fate, transport, and bioavailability, determining potential environmental exposure to these materials requires an in depth analysis of modeling techniques that can be used in both the near- and long-term. Here, we provide a critical review of traditional and emerging exposure modeling approaches to highlight the challenges that scientists and decision-makers face when developing environmental exposure and risk assessments for nanomaterials. We find that accounting for nanospecific properties, overcoming data gaps, realizing model limitations, and handling uncertainty are key to developing informative and reliable environmental exposure and risk assessments for engineered nanomaterials. We find methods suited to recognizing and addressing significant uncertainty to be most appropriate for near-term environmental exposure modeling, given the current state of information and the current insufficiency of established deterministic models to address environmental exposure to engineered nanomaterials.

  12. A spatiotemporal multi-hazard exposure assessment based on property data

    Science.gov (United States)

    Fuchs, Sven; Keiler, Margreth; Zischg, Andreas

    2016-04-01

    The paper presents a nation-wide spatially explicit object-based assessment of buildings and citizens exposed to natural hazards in Austria, including river flooding, torrential flooding, and snow avalanches. The assessment was based on two different datasets, (a) hazard information providing input to the exposure of elements at risk, and (b) information on the building stock combined from different spatial data available on the national level. Hazard information was compiled from two different sources. For torrential flooding and snow avalanches available local-scale hazard maps were used, and for river flooding the results of the countrywide flood modelling eHORA were available. Information on the building stock contained information on the location and size of each building, as well as on the building category and the construction period. Additional information related to the individual floors, such as their height and net area, main purpose and configuration, was included for each property. Moreover, this dataset has an interface to the population register and allowed therefore retrieving the number of primary residents for each building. With the exception of sacral buildings, an economic module was used to compute the monetary value of buildings using (a) the information of the building register such as building type, number of storeys and utilisation, and (b) regionally averaged construction costs. It is shown that the repeatedly-stated assumption of increasing exposure due to continued population growth and related increase in assets has to be carefully evaluated by the local development of building stock. While some regions have shown a clearly above-average increase in assets, other regions were characterised by a below-average development. This mirrors the topography of the country, but also the different economic activities. While hotels and hostels are extraordinary prone to torrential flooding, commercial buildings as well as buildings used for

  13. Variability and uncertainty in Swedish exposure factors for use in quantitative exposure assessments.

    Science.gov (United States)

    Filipsson, Monika; Öberg, Tomas; Bergbäck, Bo

    2011-01-01

    Information of exposure factors used in quantitative risk assessments has previously been compiled and reported for U.S. and European populations. However, due to the advancement of science and knowledge, these reports are in continuous need of updating with new data. Equally important is the change over time of many exposure factors related to both physiological characteristics and human behavior. Body weight, skin surface, time use, and dietary habits are some of the most obvious examples covered here. A wealth of data is available from literature not primarily gathered for the purpose of risk assessment. Here we review a number of key exposure factors and compare these factors between northern Europe--here represented by Sweden--and the United States. Many previous compilations of exposure factor data focus on interindividual variability and variability between sexes and age groups, while uncertainty is mainly dealt with in a qualitative way. In this article variability is assessed along with uncertainty. As estimates of central tendency and interindividual variability, mean, standard deviation, skewness, kurtosis, and multiple percentiles were calculated, while uncertainty was characterized using 95% confidence intervals for these parameters. The presented statistics are appropriate for use in deterministic analyses using point estimates for each input parameter as well as in probabilistic assessments. © 2010 Society for Risk Analysis.

  14. Stochastic modeling of near-field exposure to parabens in personal care products

    DEFF Research Database (Denmark)

    Csiszar, Susan A.; Ernstoff, Alexi; Fantke, Peter

    2017-01-01

    Exposure assessment is a key step in determining risks to chemicals in consumer goods, including personal care products (PCPs). Exposure models can be used to estimate exposures to chemicals in the absence of biomonitoring data and as tools in chemical risk prioritization and screening. We apply...... a PCP exposure model based on the product intake fraction (PiF), which is defined as the fraction of chemical in a product that is taken in by the exposed population, to estimate chemical intake based on physicochemical properties and PCP usage characteristics. The PiF can be used to estimate route...... and pathway-specific exposures during both the use and disposal stages of a product. As a case study, we stochastically quantified population level exposures to parabens in PCPs, and compared estimates with biomarker values. We estimated exposure based on the usage of PCPs in the female US population, taking...

  15. Assessment of risk of potential exposures on facilities industries; Estimativa do risco de exposicao potencial em instalacoes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Leocadio, Joao Carlos

    2007-03-15

    This work develops a model to evaluate potential exposures on open facilities of industrial radiography in Brazil. This model will decisively contribute to optimize operational, radiological protection and safety procedures, to prevent radiation accidents and to reduce human errors in industrial radiography. The probabilistic safety assessment (PSA) methodology was very useful to assess potential exposures. The open facilities of industrial radiography were identified as the scenario to be analyzed in what concerns the evaluation of potential exposures, due to their high accidents indices. The results of the assessment of potential exposures confirm that the industrial radiography in Brazil is a high-risk practice as classified by the IAEA. The risk of potential exposure was estimated to be 40,5 x 10{sup -2} per year in Brazil, having as main consequences injuries to the workers' hands and arms. In the world scene, the consequences are worst, leading to fatalities of people, thus emphasizing the high risk of industrial radiography. (author)

  16. Assessment of risk of potential exposures on facilities industries; Estimativa do risco de exposicao potencial em instalacoes industriais

    Energy Technology Data Exchange (ETDEWEB)

    Leocadio, Joao Carlos

    2007-03-15

    This work develops a model to evaluate potential exposures on open facilities of industrial radiography in Brazil. This model will decisively contribute to optimize operational, radiological protection and safety procedures, to prevent radiation accidents and to reduce human errors in industrial radiography. The probabilistic safety assessment (PSA) methodology was very useful to assess potential exposures. The open facilities of industrial radiography were identified as the scenario to be analyzed in what concerns the evaluation of potential exposures, due to their high accidents indices. The results of the assessment of potential exposures confirm that the industrial radiography in Brazil is a high-risk practice as classified by the IAEA. The risk of potential exposure was estimated to be 40,5 x 10{sup -2} per year in Brazil, having as main consequences injuries to the workers' hands and arms. In the world scene, the consequences are worst, leading to fatalities of people, thus emphasizing the high risk of industrial radiography. (author)

  17. EPHECT III: Health risk assessment of exposure to household consumer products.

    Science.gov (United States)

    Trantallidi, M; Dimitroulopoulou, C; Wolkoff, P; Kephalopoulos, S; Carrer, P

    2015-12-01

    In the framework of the EU EPHECT project (Emissions, Exposure Patterns and Health Effects of Consumer Products in the EU), irritative and respiratory effects were assessed in relation to acute (30-min) and long-term (24-h) inhalation exposure to key and emerging indoor air pollutants emitted during household use of selected consumer products. A detailed Health Risk Assessment (HRA) was performed for five selected pollutants of respiratory health relevance, namely acrolein, formaldehyde, naphthalene, d-limonene and α-pinene. For each pollutant, the Critical Exposure Limit (CEL) was compared to indoor air concentrations and exposure estimates for the use of 15 selected consumer products by two population groups (housekeepers and retired people) in the four geographical regions of Europe (North, West, South, East), which were derived previously based on microenvironmental modelling. For the present HRA, health-based CELs were derived for certain compounds in case indoor air quality guidelines were not available by the World Health Organization for end-points relevant to the current study. For each pollutant, the highest indoor air concentrations in each microenvironment and exposure estimates across home microenvironments during the day were lower than the corresponding acute and long-term CELs. However, considerable contributions, especially to acute exposures, were obtained in some cases, such as formaldehyde emissions resulting from single product use of a floor cleaning agent (82% CEL), a candle (10% CEL) and an electric air freshener (17% CEL). Regarding multiple product use, the case of 30-min formaldehyde exposure reaching 34% CEL when eight product classes were used across home microenvironments, i.e. all-purpose/kitchen/floor cleaning agents, furniture/floor polish, combustible/electric air fresheners, and perfume, needs to be highlighted. Such estimated values should be evaluated with caution, as these may be attributed to the exposure scenarios

  18. Assessing the risks from exposure to radon in dwellings

    International Nuclear Information System (INIS)

    Walsh, P.J.; Lowder, W.M.

    1983-07-01

    The factors used to assess the radiation dose and health risks from human exposure to radon in dwellings are critically reviewed in this summary. Sources of indoor radon and determinants of air concentrations and exposure levels are given as well as the uncertainties that exist in their formulation. Methods of assessing health effects from inhalation of radon and its progeny are discussed with emphasis on dosimetry of radon daughters and formulation of risk per dose values. Finally, methods of assessing risks for general population exposures to indoor radon concentrations are treated

  19. Scientific Opinion on outline proposals for assessment of exposure of organisms to substances in soil

    DEFF Research Database (Denmark)

    Petersen, Annette

    2010-01-01

    appropriate for both conventional and reduced tillage in multi-year exposure calculations. The Panel proposes a tiered exposure assessment approach with four tiers. Tier 1 consists of a simple analytical model. Tier 2 consists of three scenarios (one for each of the three regulatory zones) that can be used...... for any annual crop in a zone. In Tiers 3 and 4, the exposure assessment can be refined considering the specific crops and/or substances with specific properties. The Panel proposes to develop guidance for estimating the degradation rate within the soil matrix from field persistence studies...

  20. Exposure assessment strategies for non-routine work operations (NORWO)

    International Nuclear Information System (INIS)

    Lew, V.; Cohen, J.; Chiusano, S.; McGann, C.; McLouth, L.

    1993-09-01

    The DOE Office of Health and Office of Safety and Health Oversight are collaborating to address special problems related to assessment of worker exposures associated with nonroutine work operations (NORWO), such as hazardous waste operations. Both off ices have formed a single working group of industrial hygiene specialists from the DOE, fts contractors, and other interested organizations which held its first meeting July 1993. The DOE Canter of Excellence for Exposure Assessment, maintained at Lawrence Livermore National Laboratory, is assisting in developing reasonable policies and guidance on exposure assessment strategies for NORWO. The DOE EA Center will research this subject to assist the DOE in formulating guidance documents for conduct of EA for NORWO that are consistent with the DOE draft EAS technical standard. This report presents an outline for a section on NORWO intended for inclusion in the DOE technical guidance documents for EAS and Hazardous Waste Operations Emergency Response (HAZWOPER) currently under development by the DOE Industrial Hygiene Division (EH-412), and EM-23. Also presented is a review of the July 21--23 meeting and a proposed workplan for developing NORWO exposure assessment procedures. Appendices include: (A) David Weitzman's memo on NORWO, (B) Draft annotated outline of the technical standard for the Assessment of Employee Exposure to Hazardous Chemical Agents, (C) ORC proposed EAS standard, (D) program for the October 31--November 3, 1993 ACGIH Conference on Occupational Exposure Databases, (E) agenda for the July 15, 1993 DOE meeting on NORWO, (F) viewgraphs used in formal presentations at this meeting, (G) Hanford Exposure Assessment Program Plan, and (H) a list of attendees and invitees to the July DOE -- NORWO meeting

  1. CONSEXPO 3.0, consumer exposure and uptake models

    NARCIS (Netherlands)

    Veen MP van; LBM

    2001-01-01

    The report provides a modelling approach to consumer exposure to chemicals, based on mathematical contact, exposure and uptake models. For each route of exposure, a number of exposure and uptake models are included. A general framework joins the exposure and uptake models selected by the user. By

  2. Exposure monitoring and risk assessment of biphenyl in the workplace.

    Science.gov (United States)

    Kim, Hyeon-Yeong; Shin, Sae-Mi; Ham, Miran; Lim, Cheol-Hong; Byeon, Sang-Hoon

    2015-05-13

    This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable maximum exposure and were shown to be 0.03 and 0.12 mg/m³, respectively. In addition, the carcinogenic risk of biphenyl as determined by risk assessment was 0.14 × 10⁻⁴ (central tendency exposure) and 0.56 × 10⁻⁴ (reasonable maximum exposure), which is below the acceptable risk value of 1.0 × 10⁻⁴. Furthermore, the central tendency exposure and reasonable maximum exposure hazard quotients were 0.01 and 0.06 for oral toxicity, 0.05 and 0.23 for inhalation toxicity, and 0.08 and 0.39 for reproduction toxicity, respectively, which are all lower than the acceptable hazard quotient of 1.0. Therefore, exposure to biphenyl was found to be safe in current workplace environments. Because occupational exposure limits are based on socioeconomic assessment, they are generally higher than true values seen in toxicity experiments. Based on the results of exposure monitoring of biphenyl, the current occupational exposure limits in Korea could be reviewed.

  3. Exposure Monitoring and Risk Assessment of Biphenyl in the Workplace

    Directory of Open Access Journals (Sweden)

    Hyeon-Yeong Kim

    2015-05-01

    Full Text Available This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable maximum exposure and were shown to be 0.03 and 0.12 mg/m3, respectively. In addition, the carcinogenic risk of biphenyl as determined by risk assessment was 0.14 × 10−4 (central tendency exposure and 0.56 × 10−4 (reasonable maximum exposure, which is below the acceptable risk value of 1.0 × 10−4. Furthermore, the central tendency exposure and reasonable maximum exposure hazard quotients were 0.01 and 0.06 for oral toxicity, 0.05 and 0.23 for inhalation toxicity, and 0.08 and 0.39 for reproduction toxicity, respectively, which are all lower than the acceptable hazard quotient of 1.0. Therefore, exposure to biphenyl was found to be safe in current workplace environments. Because occupational exposure limits are based on socioeconomic assessment, they are generally higher than true values seen in toxicity experiments. Based on the results of exposure monitoring of biphenyl, the current occupational exposure limits in Korea could be reviewed.

  4. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  5. Review of the chronic exposure pathways models in MACCS [MELCOR Accident Consequence Code System] and several other well-known probabilistic risk assessment models

    International Nuclear Information System (INIS)

    Tveten, U.

    1990-06-01

    The purpose of this report is to document the results of the work performed by the author in connection with the following task, performed for US Nuclear Regulatory Commission, (USNRC) Office of Nuclear Regulatory Research, Division of Systems Research: MACCS Chronic Exposure Pathway Models: Review the chronic exposure pathway models implemented in the MELCOR Accident Consequence Code System (MACCS) and compare those models to the chronic exposure pathway models implemented in similar codes developed in countries that are members of the OECD. The chronic exposures concerned are via: the terrestrial food pathways, the water pathways, the long-term groundshine pathway, and the inhalation of resuspended radionuclides pathway. The USNRC has indicated during discussions of the task that the major effort should be spent on the terrestrial food pathways. There is one chapter for each of the categories of chronic exposure pathways listed above

  6. Stochastic health effects assessment due to short-term external exposure

    International Nuclear Information System (INIS)

    Raicevic, J.J.; Raskob, W.; Merkle, M.; Ninkovic, M.M.

    2001-01-01

    The new model for calculation of stochastic health effects is presented in this paper. The exposure pathways which are briefly considered are the short-term external exposure due to passage of the radioactive cloud (cloudshine) and the short-term external exposure due to radioactive material deposited on skin and clothes (skin contamination). The quantitative assessment of stochastic effects is expressed in numbers of deaths, which are given as a functions of the time at the accident, and age at death, what on the other side enables estimation of the number of deaths within the specified range of the time/age parameters. That means the model calculates the number of deaths within one particular year, summed up over all ages at deaths, or vice versa, it finds the number of deaths within the specified range of ages at death, summed up over all observation times. Results presented in this paper are implemented in the module LATEHEAL, which is incorporated in RODOS, a new European system for decision support for nuclear emergencies. (author)

  7. Physiologically based pharmacokinetic toolkit to evaluate environmental exposures: Applications of the dioxin model to study real life exposures

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@biosmc.com [BioSimulation Consulting Inc, Newark, DE (United States); Ruiz, Patricia; Mumtaz, Moiz [Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)

    2017-01-15

    Chlorinated dibenzo-p-dioxins (CDDs) are a series of mono- to octa-chlorinated homologous chemicals commonly referred to as polychlorinated dioxins. One of the most potent, well-known, and persistent member of this family is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of translational research to make computerized models accessible to health risk assessors, we present a Berkeley Madonna recoded version of the human physiologically based pharmacokinetic (PBPK) model used by the U.S. Environmental Protection Agency (EPA) in the recent dioxin assessment. This model incorporates CYP1A2 induction, which is an important metabolic vector that drives dioxin distribution in the human body, and it uses a variable elimination half-life that is body burden dependent. To evaluate the model accuracy, the recoded model predictions were compared with those of the original published model. The simulations performed with the recoded model matched well with those of the original model. The recoded model was then applied to available data sets of real life exposure studies. The recoded model can describe acute and chronic exposures and can be useful for interpreting human biomonitoring data as part of an overall dioxin and/or dioxin-like compounds risk assessment. - Highlights: • The best available dioxin PBPK model for interpreting human biomonitoring data is presented. • The original PBPK model was recoded from acslX to the Berkeley Madonna (BM) platform. • Comparisons were made of the accuracy of the recoded model with the original model. • The model is a useful addition to the ATSDR's BM based PBPK toolkit that supports risk assessors. • The application of the model to real-life exposure data sets is illustrated.

  8. The Health Impacts of Energy Policy Pathways in Ulaanbaatar, Mongolia: A Total Exposure Assessment

    Science.gov (United States)

    Hill, L. A.; Damdinsuren, Y.; Olkhanud, P. B.; Smith, K. R.; Turner, J. R.; Edwards, R.; Odsuren, M.; Ochir, C.

    2015-12-01

    Ulaanbaatar is home to nearly half of Mongolia's 2.8 million residents. The city's rapid growth, frigid winters, valley topography, and reliance on coal-fired stoves have led to some of the worst winter pollution levels in the world. To better understand this issue, we modeled integrated PM2.5exposures and related health impacts for various city-wide heating policies through 2024. This assessment is one of the first to employ a total exposure approach and results of the 2014 Comparative Risk Assessments of the Global Burden of Disease Project (CRA/GBD) in a policy-relevant energy study. Emissions related to heating, traffic, and power generation were considered under Business as Usual, Moderate Improvement, and Max Improvement scenarios. Calibrated outdoor models were combined with indoor models, local infiltration and time activity estimates, and demographic projections to estimate PM2.5exposures in 2014 and 2024. Indoor exposures were assigned by heating type, home type, and smoking status; outdoor exposures were assigned through geocoding. Population average annual exposures were calculated and applied to local disease rates and integrated exposure-response curves (2014 CRA/GBD) to arrive at annual projections of premature deaths and DALYs. We estimate 2014 annual average exposures at 68 μg/m3, dictated almost exclusively by indoor winter exposures. Under current trends, annual exposures increase 10% to 75 μg/m3 in 2024. This is in stark contrast to the moderate and max improvement scenarios, which lead to 2024 annual exposures that are 31%, and 68% lower, respectively. Under the Moderate scenario, 2024 per capita annual DALY and death burdens drop 26% and 22%, respectively, from 2014 levels. Under the Max scenario, 2024 per capita annual DALY and death burdens drop 71% and 66%, respectively, from 2014. SHS becomes a major contributor as emissions from other sectors decrease. Reductions are dominated by cardiovascular and lower respiratory diseases in children.

  9. Modeling population exposures to silver nanoparticles present in consumer products

    Science.gov (United States)

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-11-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (geographic information system) Extension (PRoTEGE), has been developed: it employs a product life cycle analysis (LCA) approach coupled with basic human life stage analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs probabilistic material flow analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employ screening microenvironmental modeling and intake fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters.

  10. Testing of an accident consequence assessment model using field data

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Matsubara, Takeshi; Tomita, Kenichi

    2007-01-01

    This paper presents the results obtained from the application of an accident consequence assessment model, OSCAAR to the Iput dose reconstruction scenario of BIOMASS and also to the Chernobyl 131 I fallout scenario of EMRAS, both organized by International Atomic Energy Agency. The Iput Scenario deals with 137 Cs contamination of the catchment basin and agricultural area in the Bryansk Region of Russia, which was heavily contaminated after the Chernobyl accident. This exercise was used to test the chronic exposure pathway models in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect to each part of the assessment. The OSCAAR chronic exposure pathway models had some limitations but the refined model, COLINA almost successfully reconstructed the whole 10-year time course of 137 Cs activity concentrations in most requested types of agricultural products and natural foodstuffs. The Plavsk scenario provides a good opportunity to test not only the food chain transfer model of 131 I but also the method of assessing 131 I thyroid burden. OSCAAR showed in general good capabilities for assessing the important 131 I exposure pathways. (author)

  11. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic

    Science.gov (United States)

    Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea

    2016-04-01

    A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.

  12. Non-ionizing electromagnetic exposure assessment and dosimetry

    International Nuclear Information System (INIS)

    Paulsson, L.E.

    1992-11-01

    A comprehensive literature survey of advancements in the area 'human exposure assessment and dosimetry' for the years 1988-1992 has been performed by the author and published elsewhere. In the present report that material has been complemented with a historical background and a thorough description of the physical principles behind the methods and techniques. The report covers strategies, principles, methods, limitations and future developments for the area of human exposure assessment and dosimetry of electromagnetic fields form extremely low frequencies up to and including microwaves

  13. DREAM: a method for semi-quantitative dermal exposure assessment

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Brouwer, D.H.; Kromhout, H.; Hemmen, J.J. van

    2003-01-01

    This paper describes a new method (DREAM) for structured, semi-quantitative dermal exposure assessment for chemical or biological agents that can be used in occupational hygiene or epidemiology. It is anticipated that DREAM could serve as an initial assessment of dermal exposure, amongst others,

  14. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks.

    Science.gov (United States)

    Guillaume, Charrier; Isabelle, Chuine; Marc, Bonhomme; Thierry, Améglio

    2018-05-01

    Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod, were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, J. regia × nigra 'Early' and 'Late'). The photothermal model predicted more accurate values for all genotypes (efficiency = 0.879; Root Mean Standard Error Predicted (RMSEP) = 2.55 °C) than the thermal model (efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R 2  = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter. © 2017 John Wiley & Sons Ltd.

  15. Exposure assessment of tetrafluoroethylene and ammonium perfluorooctanoate 1951-2002.

    Science.gov (United States)

    Sleeuwenhoek, Anne; Cherrie, John W

    2012-03-01

    To develop a method to reconstruct exposure to tetrafluoroethylene (TFE) and ammonium perfluorooctanoate (APFO) in plants producing polytetrafluoroethylene (PTFE) in the absence of suitable objective measurements. These data were used to inform an epidemiological study being carried out to investigate possible risks in workers employed in the manufacture of PTFE and to study trends in exposure over time. For each plant, detailed descriptions of all occupational titles, including tasks and changes over time, were obtained during semi-structured interviews with key plant personnel. A semi-quantitative assessment method was used to assess inhalation exposure to TFE and inhalation plus dermal exposure to APFO. Temporal trends in exposure to TFE and APFO were investigated. In each plant the highest exposures for both TFE and APFO occurred in the polymerisation area. Due to the introduction of control measures, increasing process automation and other improvements, exposures generally decreased over time. In the polymerisation area, the annual decline in exposure to TFE varied by plant from 3.8 to 5.7% and for APFO from 2.2 to 5.5%. A simple method for assessing exposure was developed which used detailed process information and job descriptions to estimate average annual TFE and APFO exposure on an arbitrary semi-quantitative scale. These semi-quantitative estimates are sufficient to identify relative differences in exposure for the epidemiological study and should good data become available, they could be used to provide quantitative estimates for all plants across the whole period of operation. This journal is © The Royal Society of Chemistry 2012

  16. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting.

    Directory of Open Access Journals (Sweden)

    André Ravel

    Full Text Available Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF. It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79% human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases whereas exposure to cattle (manure ranked second (14-19% of attributable cases, the other sources being minor (including beef meat. In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.

  17. Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting.

    Science.gov (United States)

    Ravel, André; Hurst, Matt; Petrica, Nicoleta; David, Julie; Mutschall, Steven K; Pintar, Katarina; Taboada, Eduardo N; Pollari, Frank

    2017-01-01

    Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF). It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water) collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79%) human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases) whereas exposure to cattle (manure) ranked second (14-19% of attributable cases), the other sources being minor (including beef meat). In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.

  18. A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution.

    Science.gov (United States)

    Nasari, Masoud M; Szyszkowicz, Mieczysław; Chen, Hong; Crouse, Daniel; Turner, Michelle C; Jerrett, Michael; Pope, C Arden; Hubbell, Bryan; Fann, Neal; Cohen, Aaron; Gapstur, Susan M; Diver, W Ryan; Stieb, David; Forouzanfar, Mohammad H; Kim, Sun-Young; Olives, Casey; Krewski, Daniel; Burnett, Richard T

    2016-01-01

    The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.

  19. Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization

    NARCIS (Netherlands)

    Voet, van der H.; Slob, W.

    2007-01-01

    A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a

  20. Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties.

    Science.gov (United States)

    Puncher, M; Zhang, W; Harrison, J D; Wakeford, R

    2017-06-26

    Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer

  1. Cea-Expo: A facility exposure matrix to assess passed exposure to chemical carcinogens and radionuclides of nuclear workers

    International Nuclear Information System (INIS)

    Telle-Lamberton, M.; Bouville, P.; Bergot, D.; Gagneau, M.; Marot, S.; Telle-Lamberton, M.; Giraud, J.M.; Gelas, J.M.

    2005-01-01

    A 'Facility-Exposure Matrix' (FEM) is proposed to assess exposure to chemical carcinogens and radionuclides in a cohort of nuclear workers. Exposures are to be attributed in the following way: a worker reports to an administrative unit and/or is monitored for exposure to ionising radiation in a specific workplace. These units are connected with a list of facilities for which exposure is assessed through a group of experts. The entire process of the FEM applied in one of the nuclear centres included in the study shows that the FEM is feasible: exposure durations as well as groups of correlated exposures are presented but have to be considered as possible rather than positive exposures. Considering the number of facilities to assess (330), ways to simplify the method are proposed: (i) the list of exposures will be restricted to 18 chemical products retained from an extensive bibliography study; (ii) for each of the following classes of facilities: nuclear reactors, fuel fabrication, high-activity laboratories and radiation chemistry, accelerators and irradiators, waste treatment, biology, reprocessing, fusion, occupational exposure will be deduced from the information already gathered by the initial method. Besides taking into account confusion factors in the low doses epidemiological study of nuclear workers, the matrix should help in the assessment of internal contamination and chemical exposures in the nuclear industry. (author)

  2. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    show a very different response during anisotropic events, leading to variations in aircrew radiation doses that may be significant for dose assessment. To estimate the additional exposure due to solar flares, a model was developed using a Monte-Carlo radiation transport code, MCNPX. The model transports an extrapolated particle spectrum based on satellite measurements through the atmosphere using the MCNPX analysis. This code produces the estimated flux at a specific altitude where radiation dose conversion coefficients are applied to convert the particle flux into effective and ambient dose-equivalent rates. A cut-off rigidity model accounts for the shielding effects of the Earth's magnetic field. Comparisons were made between the model predictions and actual flight measurements taken with various types of instruments used to measure the mixed radiation field during Ground Level Enhancements 60 and 65. An anisotropy analysis that uses neutron monitor responses and the pitch angle distribution of energetic solar particles was used to identify particle anisotropy for a solar event in December 2006. In anticipation of future commercial use, a computer code has been developed to implement the radiation dose assessment model for routine analysis. Keywords: Radiation Dosimetry, Radiation Protection, Space Physics.

  3. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10−4; 5% and 95%, 5.7 × 10−4—0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10−4 and 1.6 × 10−4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10−4, 2.0 × 10−4, and 1.9 × 10−4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results

  4. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms.

    Science.gov (United States)

    Scott, Angela Bullanday; Toribio, Jenny-Ann; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta

    2018-01-01

    This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI) virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms), free-range layer farms had the highest probability of exposure (7.5 × 10 -4 ; 5% and 95%, 5.7 × 10 -4 -0.001). The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10 -4 and 1.6 × 10 -4 for free-range layer and free-range meat chicken farms, respectively) and indirect exposure was highest in non-free-range farm types (2.7 × 10 -4 , 2.0 × 10 -4 , and 1.9 × 10 -4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively). The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI) virus. These results

  5. Low Pathogenic Avian Influenza Exposure Risk Assessment in Australian Commercial Chicken Farms

    Directory of Open Access Journals (Sweden)

    Angela Bullanday Scott

    2018-04-01

    Full Text Available This study investigated the pathways of exposure to low pathogenic avian influenza (LPAI virus among Australian commercial chicken farms and estimated the likelihood of this exposure occurring using scenario trees and a stochastic modeling approach following the World Organization for Animal Health methodology for risk assessment. Input values for the models were sourced from scientific literature and an on-farm survey conducted during 2015 and 2016 among Australian commercial chicken farms located in New South Wales and Queensland. Outputs from the models revealed that the probability of a first LPAI virus exposure to a chicken in an Australian commercial chicken farms from one wild bird at any point in time is extremely low. A comparative assessment revealed that across the five farm types (non-free-range meat chicken, free-range meat chicken, cage layer, barn layer, and free range layer farms, free-range layer farms had the highest probability of exposure (7.5 × 10−4; 5% and 95%, 5.7 × 10−4—0.001. The results indicate that the presence of a large number of wild birds on farm is required for exposure to occur across all farm types. The median probability of direct exposure was highest in free-range farm types (5.6 × 10−4 and 1.6 × 10−4 for free-range layer and free-range meat chicken farms, respectively and indirect exposure was highest in non-free-range farm types (2.7 × 10−4, 2.0 × 10−4, and 1.9 × 10−4 for non-free-range meat chicken, cage layer, and barn layer farms, respectively. The probability of exposure was found to be lowest in summer for all farm types. Sensitivity analysis revealed that the proportion of waterfowl among wild birds on the farm, the presence of waterfowl in the range and feed storage areas, and the prevalence of LPAI in wild birds are the most influential parameters for the probability of Australian commercial chicken farms being exposed to avian influenza (AI virus

  6. A geographic approach to modelling human exposure to traffic air pollution using GIS

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG) 109 refs.

  7. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks

    Science.gov (United States)

    Stenemo, Fredrik; Lindahl, Anna M. L.; Gärdenäs, Annemieke; Jarvis, Nicholas

    2007-08-01

    Several simple index methods that use easily accessible data have been developed and included in decision-support systems to estimate pesticide leaching across larger areas. However, these methods often lack important process descriptions (e.g. macropore flow), which brings into question their reliability. Descriptions of macropore flow have been included in simulation models, but these are too complex and demanding for spatial applications. To resolve this dilemma, a neural network simulation meta-model of the dual-permeability macropore flow model MACRO was created for pesticide groundwater exposure assessment. The model was parameterized using pedotransfer functions that require as input the clay and sand content of the topsoil and subsoil, and the topsoil organic carbon content. The meta-model also requires the topsoil pesticide half-life and the soil organic carbon sorption coefficient as input. A fully connected feed-forward multilayer perceptron classification network with two hidden layers, linked to fully connected feed-forward multilayer perceptron neural networks with one hidden layer, trained on sub-sets of the target variable, was shown to be a suitable meta-model for the intended purpose. A Fourier amplitude sensitivity test showed that the model output (the 80th percentile average yearly pesticide concentration at 1 m depth for a 20 year simulation period) was sensitive to all input parameters. The two input parameters related to pesticide characteristics (i.e. soil organic carbon sorption coefficient and topsoil pesticide half-life) were the most influential, but texture in the topsoil was also quite important since it was assumed to control the mass exchange coefficient that regulates the strength of macropore flow. This is in contrast to models based on the advection-dispersion equation where soil texture is relatively unimportant. The use of the meta-model is exemplified with a case-study where the spatial variability of pesticide leaching is

  8. Biological exposure assessment to tetrachloroethylene for workers in the dry cleaning industry

    Directory of Open Access Journals (Sweden)

    Ashley David L

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to assess the feasibility of conducting biological tetrachloroethylene (perchloroethylene, PCE exposure assessments of dry cleaning employees in conjunction with evaluation of possible PCE health effects. Methods Eighteen women from four dry cleaning facilities in southwestern Ohio were monitored in a pilot study of workers with PCE exposure. Personal breathing zone samples were collected from each employee on two consecutive work days. Biological monitoring included a single measurement of PCE in blood and multiple measurements of pre- and post-shift PCE in exhaled breath and trichloroacetic acid (TCA in urine. Results Post-shift PCE in exhaled breath gradually increased throughout the work week. Statistically significant correlations were observed among the exposure indices. Decreases in PCE in exhaled breath and TCA in urine were observed after two days without exposure to PCE. A mixed-effects model identified statistically significant associations between PCE in exhaled breath and airborne PCE time weighted average (TWA after adjusting for a random participant effect and fixed effects of time and body mass index. Conclusion Although comprehensive, our sampling strategy was challenging to implement due to fluctuating work schedules and the number (pre- and post-shift on three consecutive days and multiplicity (air, blood, exhaled breath, and urine of samples collected. PCE in blood is the preferred biological index to monitor exposures, but may make recruitment difficult. PCE TWA sampling is an appropriate surrogate, although more field intensive. Repeated measures of exposure and mixed-effects modeling may be required for future studies due to high within-subject variability. Workers should be monitored over a long enough period of time to allow the use of a lag term.

  9. The Future of Exposure Assessment: Perspectives from the ...

    Science.gov (United States)

    The British Occupational Hygiene Society, in collaboration with the Institute of Occupational Medicine, the University of Manchester, the UK Health and Safety Executive, and the University of Aberdeen hosted the 7th International Conference on the Science of Exposure Assessment (X2012) on 2 July–5 July 2012 in Edinburgh, UK. The conference ended with a special session at which invited speakers from government, industry, independent research institutes, and academia were asked to reflect on the conference and discuss what may now constitute the important highlights or drivers of future exposure assessment research. This article summarizes these discussions with respect to current and future technical and methodological developments. For the exposure science community to continue to have an impact in protecting public health, additional efforts need to be made to improve partnerships and cross-disciplinary collaborations, although it is equally important to ensure that the traditional occupational exposure themes are still covered as these issues are becoming increasingly important in the developing world. To facilitate this the ‘X’ conferences should continue to retain a holistic approach to occupational and non-occupational exposures and should actively pursue collaborations with other disciplines and professional organizations to increase the presence of consumer and environmental exposure scientists. The National Exposure Research Laboratory′s (NERL′

  10. Uncertainties in radioecological assessment models

    International Nuclear Information System (INIS)

    Hoffman, F.O.; Miller, C.W.; Ng, Y.C.

    1983-01-01

    Environmental radiological assessments rely heavily on the use of mathematical models. The predictions of these models are inherently uncertain because models are inexact representations of real systems. The major sources of this uncertainty are related to bias in model formulation and imprecision in parameter estimation. The magnitude of uncertainty is a function of the questions asked of the model and the specific radionuclides and exposure pathways of dominant importance. It is concluded that models developed as research tools should be distinguished from models developed for assessment applications. Furthermore, increased model complexity does not necessarily guarantee increased accuracy. To improve the realism of assessment modeling, stochastic procedures are recommended that translate uncertain parameter estimates into a distribution of predicted values. These procedures also permit the importance of model parameters to be ranked according to their relative contribution to the overall predicted uncertainty. Although confidence in model predictions can be improved through site-specific parameter estimation and increased model validation, health risk factors and internal dosimetry models will probably remain important contributors to the amount of uncertainty that is irreducible. 41 references, 4 figures, 4 tables

  11. Estimating the value of a Country's built assets: investment-based exposure modelling for global risk assessment

    Science.gov (United States)

    Daniell, James; Pomonis, Antonios; Gunasekera, Rashmin; Ishizawa, Oscar; Gaspari, Maria; Lu, Xijie; Aubrecht, Christoph; Ungar, Joachim

    2017-04-01

    In order to quantify disaster risk, there is a demand and need for determining consistent and reliable economic value of built assets at national or sub national level exposed to natural hazards. The value of the built stock in the context of a city or a country is critical for risk modelling applications as it allows for the upper bound in potential losses to be established. Under the World Bank probabilistic disaster risk assessment - Country Disaster Risk Profiles (CDRP) Program and rapid post-disaster loss analyses in CATDAT, key methodologies have been developed that quantify the asset exposure of a country. In this study, we assess the complementary methods determining value of building stock through capital investment data vs aggregated ground up values based on built area and unit cost of construction analyses. Different approaches to modelling exposure around the world, have resulted in estimated values of built assets of some countries differing by order(s) of magnitude. Using the aforementioned methodology of comparing investment data based capital stock and bottom-up unit cost of construction values per square meter of assets; a suitable range of capital stock estimates for built assets have been created. A blind test format was undertaken to compare the two types of approaches from top-down (investment) and bottom-up (construction cost per unit), In many cases, census data, demographic, engineering and construction cost data are key for bottom-up calculations from previous years. Similarly for the top-down investment approach, distributed GFCF (Gross Fixed Capital Formation) data is also required. Over the past few years, numerous studies have been undertaken through the World Bank Caribbean and Central America disaster risk assessment program adopting this methodology initially developed by Gunasekera et al. (2015). The range of values of the building stock is tested for around 15 countries. In addition, three types of costs - Reconstruction cost

  12. Assessment of genetic risk for human exposure to radiation. State of the art

    International Nuclear Information System (INIS)

    Shevchenko, V.A.

    2000-01-01

    Historical aspects of the conception of genetic risk of human irradiation for recent 40 years. Methodology of assessing the genetic risk of radiation exposure is based on the concept of hitting the target. To predict genetic risk of irradiation, the direct and indirect methods of assessment, extrapolation, integral and populational criteria of risk analysis is widely used. Combination of these methods permits to calculate the risk from human exposure on the basis of data obtained for mice. Method of doubling dose based on determination of the dose doubling the level of natural mutational process in humans is the main one used to predict the genetic risk. Till 1972 the main model for assessing the genetic risk was the human/mouse model (the use of data on the spontaneous human variability and data on the frequency of induced mutations in mice). In the period from 1972 till 1994 the mouse/mouse model was intensively elaborated in many laboratories. This model was also used in this period to analyse the genetic risk of human irradiation. Recent achievements associated with the study of molecular nature of many hereditary human diseases as well as the criticism of a fundamental principles of the mouse/mouse model for estimating the genetic risk on a new basis. Estimates of risk for the different classes of genetic diseases have been obtained using the doubling-dose method [ru

  13. Quantitative self-assessment of exposure to solvents among shoe repair men

    NARCIS (Netherlands)

    Hertsenberg, S.; Brouwer, D.; Lurvink, M.; Rubingh, C.; Rijnders, E.; Tielemans, E.

    2007-01-01

    Self-assessment of exposure (SAE) refers to any exposure assessment methodology wherein the worker takes an active role in establishing his or her exposure status. The objective of this study was to investigate the reliability and feasibility of SAE approaches among shoe repair workers collecting

  14. Technical Overview of Ecological Risk Assessment - Analysis Phase: Exposure Characterization

    Science.gov (United States)

    Exposure Characterization is the second major component of the analysis phase of a risk assessment. For a pesticide risk assessment, the exposure characterization describes the potential or actual contact of a pesticide with a plant, animal, or media.

  15. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  16. Pro-tobacco advertisement exposure among African American smokers: An ecological momentary assessment study.

    Science.gov (United States)

    Robinson, Cendrine D; Muench, Christine; Brede, Emily; Endrighi, Romano; Szeto, Edwin H; Sells, Joanna R; Lammers, John P; Okuyemi, Kolawole S; Izmirlian, Grant; Waters, Andrew J

    2018-08-01

    Many African Americans live in communities with a disproportionately high density of tobacco advertisements compared to Whites. Some research indicates that point-of-sale advertising is associated with impulse purchases of cigarettes and smoking. Ecological Momentary Assessment (EMA) can be used to examine associations between tobacco advertisement exposure and smoking variables in the natural environment. Non-treatment seeking African American smokers were given a mobile device for 2weeks (N=56). They were prompted four times per day and responded to questions about recent exposure to tobacco advertisements. Participants were also asked to indicate the number of cigarettes smoked, and if they made any purchase, or an impulse purchase, since the last assessment. Linear mixed models (LMMs) analyzed between- and within-subject associations between exposure and outcomes. Participants reported seeing at least one advertisement on 33% of assessments. Of those assessments, they reported seeing menthol advertisements on 87% of assessments. Between-subject analyses revealed that participants who on average saw more advertisements were generally more likely to report purchasing cigarettes and to purchase cigarettes on impulse. Within-subject analyses revealed that when an individual participant reported seeing more advertisements than usual they were more likely to have reported purchasing cigarettes, making an impulse purchase and smoking more cigarettes during the same period, but not the subsequent time period. Many African American smokers are frequently exposed to pro-tobacco marketing. Advertisement exposure is cross-sectionally associated with impulse purchases and smoking. Future research should assess prospective associations in more detail. Published by Elsevier Ltd.

  17. Standardizing measurement, sampling and reporting for public exposure assessments

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R. [Instituto de Radioprotecao e Dosimetria, Comissao Nacional de Energia Nuclear, Av. Salvador Allende s/No. CEP 22780-160 Rio de Janeiro, RJ (Brazil)], E-mail: elaine@ird.gov.br

    2008-11-15

    UNSCEAR assesses worldwide public exposure from natural and man-made sources of ionizing radiation based on information submitted to UNSCEAR by United Nations Member States and from peer reviewed scientific literature. These assessments are used as a basis for radiation protection programs of international and national regulatory and research organizations. Although UNSCEAR describes its assessment methodologies, the data are based on various monitoring approaches. In order to reduce uncertainties and improve confidence in public exposure assessments, it would be necessary to harmonize the methodologies used for sampling, measuring and reporting of environmental results.

  18. An Agent-Based Modeling Framework for Simulating Human Exposure to Environmental Stresses in Urban Areas

    Directory of Open Access Journals (Sweden)

    Liang Emlyn Yang

    2018-04-01

    Full Text Available Several approaches have been used to assess potential human exposure to environmental stresses and achieve optimal results under various conditions, such as for example, for different scales, groups of people, or points in time. A thorough literature review in this paper identifies the research gap regarding modeling approaches for assessing human exposure to environment stressors, and it indicates that microsimulation tools are becoming increasingly important in human exposure assessments of urban environments, in which each person is simulated individually and continuously. The paper further describes an agent-based model (ABM framework that can dynamically simulate human exposure levels, along with their daily activities, in urban areas that are characterized by environmental stresses such as air pollution and heat stress. Within the framework, decision-making processes can be included for each individual based on rule-based behavior in order to achieve goals under changing environmental conditions. The ideas described in this paper are implemented in a free and open source NetLogo platform. A basic modeling scenario of the ABM framework in Hamburg, Germany, demonstrates its utility in various urban environments and individual activity patterns, as well as its portability to other models, programs, and frameworks. The prototype model can potentially be extended to support environmental incidence management through exploring the daily routines of different groups of citizens, and comparing the effectiveness of different strategies. Further research is needed to fully develop an operational version of the model.

  19. A structured observational method to assess dermal exposure to manufactured nanoparticles: DREAM as an initial assessment tool

    NARCIS (Netherlands)

    Duuren-Stuurman, B. van; Pelzer, J.; Moehlmann, C.; Berges, M.; Bard, D.; Wake, D.; Mark, D.; Jankowska, E.; Brouwer, D.

    2010-01-01

    Preliminary results of inventories of exposure scenarios for nanomaterials have indicated possible dermal exposure. Within the NANOSH project focused on occupational safety and health aspects of nanotechnology a shortened version of the observational DeRmal Exposure AssessMent (DREAM) method was

  20. A quantitative screening-level approach to incorporate chemical exposure and risk into alternative assessment evaluations.

    Science.gov (United States)

    Arnold, Scott M; Greggs, Bill; Goyak, Katy O; Landenberger, Bryce D; Mason, Ann M; Howard, Brett; Zaleski, Rosemary T

    2017-11-01

    As the general public and retailers ask for disclosure of chemical ingredients in the marketplace, a number of hazard screening tools were developed to evaluate the so-called "greenness" of individual chemical ingredients and/or formulations. The majority of these tools focus only on hazard, often using chemical lists, ignoring the other part of the risk equation: exposure. Using a hazard-only focus can result in regrettable substitutions, changing 1 chemical ingredient for another that turns out to be more hazardous or shifts the toxicity burden to others. To minimize the incidents of regrettable substitutions, BizNGO describes "Common Principles" to frame a process for informed substitution. Two of these 6 principles are: "reduce hazard" and "minimize exposure." A number of frameworks have emerged to evaluate and assess alternatives. One framework developed by leading experts under the auspices of the US National Academy of Sciences recommended that hazard and exposure be specifically addressed in the same step when assessing candidate alternatives. For the alternative assessment community, this article serves as an informational resource for considering exposure in an alternatives assessment using elements of problem formulation; product identity, use, and composition; hazard analysis; exposure analysis; and risk characterization. These conceptual elements build on practices from government, academia, and industry and are exemplified through 2 hypothetical case studies demonstrating the questions asked and decisions faced in new product development. These 2 case studies-inhalation exposure to a generic paint product and environmental exposure to a shampoo rinsed down the drain-demonstrate the criteria, considerations, and methods required to combine exposure models addressing human health and environmental impacts to provide a screening level hazard and exposure (risk) analysis. This article informs practices for these elements within a comparative risk context

  1. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    Directory of Open Access Journals (Sweden)

    Martina S. Ragettli

    2014-05-01

    Full Text Available We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland, and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2 as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61 than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51, and a land use regression model (41 ± 5 µg m−3; range: 24–54. Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  2. Task-based exposure assessment of nanoparticles in the workplace

    International Nuclear Information System (INIS)

    Ham, Seunghon; Yoon, Chungsik; Lee, Euiseung; Lee, Kiyoung; Park, Donguk; Chung, Eunkyo; Kim, Pilje; Lee, Byoungcheun

    2012-01-01

    Although task-based sampling is, theoretically, a plausible approach to the assessment of nanoparticle exposure, few studies using this type of sampling have been published. This study characterized and compared task-based nanoparticle exposure profiles for engineered nanoparticle manufacturing workplaces (ENMW) and workplaces that generated welding fumes containing incidental nanoparticles. Two ENMW and two welding workplaces were selected for exposure assessments. Real-time devices were utilized to characterize the concentration profiles and size distributions of airborne nanoparticles. Filter-based sampling was performed to measure time-weighted average (TWA) concentrations, and off-line analysis was performed using an electron microscope. Workplace tasks were recorded by researchers to determine the concentration profiles associated with particular tasks/events. This study demonstrated that exposure profiles differ greatly in terms of concentrations and size distributions according to the task performed. The size distributions recorded during tasks were different from both those recorded during periods with no activity and from the background. The airborne concentration profiles of the nanoparticles varied according to not only the type of workplace but also the concentration metrics. The concentrations measured by surface area and the number concentrations measured by condensation particle counter, particulate matter 1.0, and TWA mass concentrations all showed a similar pattern, whereas the number concentrations measured by scanning mobility particle sizer indicated that the welding fume concentrations at one of the welding workplaces were unexpectedly higher than were those at workplaces that were engineering nanoparticles. This study suggests that a task-based exposure assessment can provide useful information regarding the exposure profiles of nanoparticles and can therefore be used as an exposure assessment tool.

  3. Pathway analysis and exposure assessment: MEPAS modeling for nonradiological chemical contaminants at the Hanford Site

    International Nuclear Information System (INIS)

    Blanton, M.L.; Dirkes, R.; Buck, J.; Cooper, A.; Castieton, K.; Glantz, C.

    1995-01-01

    A Chemical Pathway Analysis and Exposure Assessment was performed by the Surface Environmental Surveillance Project (SESP). The SESP monitors air, surface water, sediment, agricultural products, vegetation, soil, and wildlife in order to assess onsite of offsite environmental impacts and offsite human health risk at the Hanford Site. The objectives of this study are (1) determine if a nonradiological chemical monitoring program is warranted for the Hanford Site, (2) ensure that the selection of surveillance parameters such as media, sampling location, and analytes are chosen in a manner that is scientifically sound and cost-efficient, and (3) identify specific nonradiological chemicals of concern (COC) for the Hanford Site. The basis for identification of COC for the Hanford Site was an extensive literature review. The model was also used to predict COC concentrations required onsite to achieve an offsite cancer incidence of 1 E-6 and a hazard quotient of 1.0. This study indicated that nonradiological chemical contamination occurring onsite does not pose a significant offsite human health risk. The highest cancer incidence to the offsite maximally exposed individual from COC was from arsenic (1.76E-1 0); the highest hazard quotient was chromium VI (1.48E-04)

  4. How much, how long, what, and where: air pollution exposure assessment for epidemiologic studies of respiratory disease.

    Science.gov (United States)

    Brauer, Michael

    2010-05-01

    Epidemiology has played an important role in the understanding of air pollution as a risk factor for respiratory disease and in the evidence base for air quality standards. With the widespread availability of genetic information and increasingly sophisticated measurements of molecular markers of adverse effects, there is a need for more specific and precise assessment of exposure to maximize the potential information to be derived from epidemiologic studies. Here advances in air pollution exposure assessment and their applications to studies of respiratory disease are reviewed, with a focus on recent studies of traffic-related air pollution and asthma. Although continuous measurements of personal exposures for all study subjects for a complete study period might be considered the desired "gold standard" for exposure, this is rarely, if ever, achieved due to feasibility constraints. Given this, exposure is typically estimated using models. Recent applications of geospatial (e.g., land use regression) models to studies of respiratory disease have made possible new study designs focused on spatial variability in exposure within urban areas and have provided new insights into the potential role of traffic-related air pollution (TRAP) as a risk factor for the development of childhood asthma. Substantial uncertainty remains, however, regarding what agent(s) within TRAP might be responsible for the observed associations. Future research will require increasing the specificity of exposure assessment to identify the potential roles of individual air pollution components, to elucidate potential mechanisms, and to facilitate studies of mixtures and gene-air pollution interactions.

  5. Exposure levels, environmental fate modelling and human health risk assessment of lindane in Ghana

    International Nuclear Information System (INIS)

    Adu-Kumi, S.

    2011-01-01

    This thesis discusses an innovative approach of combining chemical trace analysis including the use of 13 C-labelled isotopes as internal and recovery standards) with multi-media modelling for assessing health risks of Lindane which is a persistent organic pollutant (POP) and a commercial formulated insecticide also known as Gamma-hexachlorocyclohexane (γ-HCH). Samples studied were background air, human breast milk, and edible fish (tilapia and catfish). The investigations focused on the exposure of the general population. For the first time levels and seasonal variation of Lindane, α-HCH and β-HCH in background air of Lake Bosumtwi, Kwabenya and East Legon in Ghana were studied with polyurethane foam based passive air samplers. Lindane (average concentration 53 pg m -3 ) was measured in all samples with (i) gas chromatography-mass spectrometer (GC-MS) and (ii) gas chromatography-mass spectrometer operated in electron ionization mode (GC-EI-MS). Agricultural application and revolatilisation from soils were main primary and secondary sources of HCH releases. Levels and variation of Lindane, α-HCH and β-HCH in pooled and individual human breast milk samples collected from lactating mothers countrywide were determined using a high-resolution gas chromatography interfaced with a high-resolution gas chromatography interfaced with a high-resolution mass spectrometer (HRGC-HRMS). This constitutes the first comprehensive nationwide human breast milk study of assessing risks of HCHs for the general population of Ghana. Mothers were selected from three major cities (Accra, Kumasi and Tamale) and three rural communities (Ada, Jachie/Pramso and Tolon) representing the Southern, Middle and Northern sectors respectively. The results of the study showed that the general population of Ghana is widely exposed to HCHs although the current levels are generally low; and also suggest that the usage pattern and exposure levels of Lindane vary among the various regions in Ghana.

  6. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Directory of Open Access Journals (Sweden)

    Kihal-Talantikite Wahida

    2016-03-01

    Full Text Available Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs.

  7. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Science.gov (United States)

    Wahida, Kihal-Talantikite; Padilla, Cindy M.; Denis, Zmirou-Navier; Olivier, Blanchard; Géraldine, Le Nir; Philippe, Quenel; Séverine, Deguen

    2016-01-01

    Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i) retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii) a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs. PMID:26999170

  8. What are the elements required to improve exposure estimates in life cycle assessments?

    DEFF Research Database (Denmark)

    Ernstoff, Alexi; Rosenbaum, Ralph K.; Margni, Manuele

    2016-01-01

    human toxicity and ecosystem toxicity of chemicals posed by different product life cycle stages are characterized in the life cycle impact assessment (LCIA) phase. Exposure and effect quantification as part of LCIA toxicity characterization faces numerous challenges related to inventory analysis (e.......g. number and quantity of chemicals emitted), substance-specific modelling (e.g. organics, inorganics, nano-materials) in various environments and time horizons, human and ecosystem exposure quantification (e.g. exposed organisms and exposure pathways), and toxicity end-points (e.g. carcinogenicity...... chemical exposure and harmful effects. Thereby, we structure this study of key elements identified as areas of elevated public, industrial, regulatory, and scientific concerns. We found the majority of missing elements are directly related to the definition of exposed populations (both ecosystems...

  9. Assessment of Industrial Exposure to Magnetic Fields (invited paper)

    International Nuclear Information System (INIS)

    Chadwick, P.

    1999-01-01

    Magnetic field strengths produced by industrial processes can be very large, but they often exhibit a marked spatial variation. Whilst there may be the potential for exposures of workers to be high, actual exposure will be determined to a great extent by working practices. Possible metrics for epidemiological studies might be based on the temporal variability of exposure as well as maximum operator exposure or time-weighted average exposure and, whilst it might be possible to estimate these quantities from spot magnetic field strength measurements and observed working practices, this might be very difficult to achieve in practice. An alternative would be the use of a logging dosemeter: this paper describes some of the results of exposure assessments carried out in industrial environments with a modified EMDEX II magnetic field dosemeter. Magnetic fields in industrial environments often have waveforms which are not purely sinusoidal. Distortion can be introduced by the magnetic saturation of transformer and motor cores, by rectification, by poor matching between oscillator circuits and loads and when thyristors are used to control power. The resulting repetitive but non-sinusoidal magnetic field waveforms can be recorded and analysed; the spectral data may be incorporated into possible exposure metrics. It is also important to ensure that measurement instrumentation is responding appropriately in a non-sinusoidal field and this can only be done if the spectral content of the field is characterised fully. Some non-sinusoidal magnetic field waveforms cannot be expressed as a harmonic series. Specialist instrumentation and techniques are needed to assess exposure to such fields. Examples of approaches to the assessment of exposure to repetitive and non-repetitive magnetic fields are also discussed. (author)

  10. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks

    International Nuclear Information System (INIS)

    Suciu, Nicoleta; Tediosi, Alice; Ciffroy, Philippe; Altenpohl, Annette; Brochot, Céline; Verdonck, Frederik; Ferrari, Federico; Giubilato, Elisa; Capri, Ettore; Fait, Gabriella

    2016-01-01

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. - Highlights: • Exposure and risk evaluation of chemicals • Coupling environmental exposure and pharmacokinetic models • MERLIN-expo as a higher tier exposure tool • MERLIN-expo potential application in EU chemical regulations • EU legislations and policies related to risk assessment and management of chemicals

  11. Potential for MERLIN-Expo, an advanced tool for higher tier exposure assessment, within the EU chemical legislative frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Suciu, Nicoleta, E-mail: nicoleta.suciu@unicatt.it [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy); Tediosi, Alice [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Ciffroy, Philippe [Electricité de France (EDF) R& D, National Hydraulic and Environment Laboratory, 6 quai Watier, 78400 Chatou (France); Altenpohl, Annette [Österreichisches Normungsinstitut/Austrian Standards Institute, Heinestraße 38, 1020 Wien (Austria); Brochot, Céline [INERIS, Parc ALATA, BP2, 60550 Verneuil en Halatte (France); Verdonck, Frederik [ARCHE cvba, Liefkensstraat 35d, 9032 Gent-Wondelgem (Belgium); Ferrari, Federico [Aeiforia Srl, 29027 Gariga di Podenzano (PC) (Italy); Giubilato, Elisa [University Ca Foscari Venice, Department of Environmental Sciences, Informatics and Statistics, via Torino 155, 30172 Mestre-Venice (Italy); Capri, Ettore [Università Cattolica del Sacro Cuore, 29122 Piacenza (Italy); Fait, Gabriella [EFSA, via Carlo Magno 1/a, 43126 Parma (Italy)

    2016-08-15

    MERLIN-Expo merges and integrates advanced exposure assessment methodologies, allowing the building of complex scenarios involving several pollution sources and targets. The assessment of exposure and risks to human health from chemicals is of major concern for policy and ultimately benefits all citizens. The development and operational fusion of the advanced exposure assessment methodologies envisaged in the MERLIN-Expo tool will have a significant impact in the long term on several policies dealing with chemical safety management. There are more than 30 agencies in Europe related to exposure and risk evaluation of chemicals, which have an important role in implementing EU policies, having especially tasks of technical, scientific, operational and/or regulatory nature. The main purpose of the present paper is to introduce MERLIN-Expo and to highlight its potential for being effectively integrated within the group of tools available to assess the risk and exposure of chemicals for EU policy. The main results show that the tool is highly suitable for use in site-specific or local impact assessment, with minor modifications it can also be used for Plant Protection Products (PPPs), biocides and REACH, while major additions would be required for a comprehensive application in the field of consumer and worker exposure assessment. - Highlights: • Exposure and risk evaluation of chemicals • Coupling environmental exposure and pharmacokinetic models • MERLIN-expo as a higher tier exposure tool • MERLIN-expo potential application in EU chemical regulations • EU legislations and policies related to risk assessment and management of chemicals.

  12. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures.

    Science.gov (United States)

    Bhatt, Chhavi Raj; Redmayne, Mary; Abramson, Michael J; Benke, Geza

    2016-03-01

    Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.

  13. Instruments to assess and measure personal and environmental radiofrequency-electromagnetic field exposures

    International Nuclear Information System (INIS)

    Bhatt, Chhavi R.; Redmayne, Mary; Abramson, Michael J.; Benke, Geza

    2016-01-01

    Radiofrequency-electromagnetic field (RF-EMF) exposure of human populations is increasing due to the widespread use of mobile phones and other telecommunication and broadcasting technologies. There are ongoing concerns about potential short- and long-term public health consequences from RF-EMF exposures. To elucidate the RF-EMF exposure-effect relationships, an objective evaluation of the exposures with robust assessment tools is necessary. This review discusses and compares currently available RF-EMF exposure assessment instruments, which can be used in human epidemiological studies. Quantitative assessment instruments are either mobile phone-based (apps/software-modified and hardware-modified) or exposimeters. Each of these tool has its usefulness and limitations. Our review suggests that assessment of RF-EMF exposures can be improved by using these tools compared to the proxy measures of exposure (e.g. questionnaires and billing records). This in turn, could be used to help increase knowledge about RF-EMF exposure induced health effects in human populations.

  14. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.

  15. Existing Default Values and Recommendations for Exposure Assessment - A Nordic Exposure Group Project 2011

    DEFF Research Database (Denmark)

    Höglund, Lena; Räisänen, Jouni; Hämäläinen, Anne-Maija

    range of more or less well-documented values originating from many different sources. The purpose of this report is to give an overview and to evaluate exposure factors that are currently used by the authorities and industry in the exposure assessments for both adults (occupational and consumer exposure......) and children in relation to REACH. Another important purpose of the report is to contribute towards a further harmonisation of exposure factors by giving recommendations of most valid and representative defaults. These recommendations can be used besides REACH also in biocide's and plant protection product...

  16. Retrospective internal radiation exposure assessment in occupational epidemiology

    International Nuclear Information System (INIS)

    Neton, J.W.; Flora, J.T.; Spitz, H.B.; Taulbee, T.D.

    2000-01-01

    Epidemiologic studies of workers at U.S. Department of Energy facilities are being conducted by the U.S. National Institute for Occupational Safety and Health to evaluate the health risk associated with exposure to sources of external and internal ionizing radiation. While exposure to external sources of radiation can be estimated from personal dosimeter data, reconstruction of exposure due to internally deposited radioactivity is more challenging because bioassay monitoring data is frequently less complete. Although comprehensive monitoring was provided for workers with the highest internal exposures, the majority of workers were monitored relatively infrequently. This monitoring was conducted to demonstrate compliance with regulations rather than to evaluate exposure for use in epidemiologic studies. Attributes of past internal monitoring programs that challenge accurate exposure assessment include: incomplete characterization of the workplace source term; a lack of timely measurements; insensitive and/or nonspecific bioassay measurements; and the presence of censored data. In spite of these limitations, many facilities have collected a large amount of worker and workplace monitoring information that can be used to evaluate internal exposure while minimizing worker misclassification. This paper describes a systematic approach for using the available worker and workplace monitoring data that can lead to either a qualitative or quantitative retrospective assessment of internal exposures. Various aspects of data analysis will be presented, including the evaluation of minimum detectable dose, the treatment of censored data, and the use of combinations of bioassay and workplace data to characterize exposures. Examples of these techniques applied to a cohort study involving chronic exposure scenarios to uranium are provided. A strategy for expressing exposure or dose in fundamental, unweighted units related to the quantity of radiation delivered to an organ will also

  17. Assessment of health risks from exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Beebe, G.W.

    1982-01-01

    Rapid development in the assessment of health risks from exposure to ionizing radiation has produced an impressive array of risk differentials of presumed biologic significance. In the human data these differentials involve: (1) the variety of cancer, especially its size; (2) host factors, especially age; (3) time following exposure; (4) magnitude of dose; and (5) type of radiation. From experimental work we may presume that dose-rate also plays a role, especially for sparsely ionizing radiation. Current research is extending the scope of differentials with respect to these and other variables, including cell type and concomitant environmental risk factors, and testing dose-response models suggested by experimental and theoretical work. As facts to be explained, differentials in risk may lead to hypotheses to be explored experimentally and improve our understanding of how ionizing radiation causes cancer. 74 references

  18. Human exposure assessment: Approaches for chemicals (REACH) and biocides (BPD)

    NARCIS (Netherlands)

    Hemmen, J.J. van; Gerritsen-Ebben, R.

    2008-01-01

    The approaches that are indicated in the various guidance documents for the assessment of human exposure for chemicals and biocides are summarised. This reflects the TNsG (Technical notes for Guidance) version 2: human exposure assessment for biocidal products (1) under the BPD (Biocidal Products

  19. Extending Participatory Sensing to Personal Exposure Using Microscopic Land Use Regression Models

    Directory of Open Access Journals (Sweden)

    Luc Dekoninck

    2017-05-01

    Full Text Available Personal exposure is sensitive to the personal features and behavior of the individual, and including interpersonal variability will improve the health and quality of life evaluations. Participatory sensing assesses the spatial and temporal variability of environmental indicators and is used to quantify this interpersonal variability. Transferring the participatory sensing information to a specific study population is a basic requirement for epidemiological studies in the near future. We propose a methodology to reduce the void between participatory sensing and health research. Instantaneous microscopic land-use regression modeling (µLUR is an innovative approach. Data science techniques extract the activity-specific and route-sensitive spatiotemporal variability from the data. A data workflow to prepare and apply µLUR models to any mobile population is presented. The µLUR technique and data workflow are illustrated with models for exposure to traffic related Black Carbon. The example µLURs are available for three micro-environments; bicycle, in-vehicle, and indoor. Instantaneous noise assessments supply instantaneous traffic information to the µLURs. The activity specific models are combined into an instantaneous personal exposure model for Black Carbon. An independent external validation reached a correlation of 0.65. The µLURs can be applied to simulated behavioral patterns of individuals in epidemiological cohorts for advanced health and policy research.

  20. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    Science.gov (United States)

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  1. Atmospheric Dispersion Modelling and Spatial Analysis to Evaluate Population Exposure to Pesticides from Farming Processes

    Directory of Open Access Journals (Sweden)

    Sofia Costanzini

    2018-01-01

    Full Text Available This work originates from an epidemiological study aimed to assess the correlation between population exposure to pesticides used in agriculture and adverse health effects. In support of the population exposure evaluation two models implemented by the authors were applied: a GIS-based proximity model and the CAREA atmospheric dispersion model. In this work, the results of the two models are presented and compared. Despite the proximity analysis is widely used for these kinds of studies, it was investigated how meteorology could affect the exposure assessment. Both models were applied to pesticides emitted by 1519 agricultural fields and considering 2584 receptors distributed over an area of 8430 km2. CAREA output shows a considerable enhancement in the percentage of exposed receptors, from the 4% of the proximity model to the 54% of the CAREA model. Moreover, the spatial analysis of the results on a specific test site showed that the effects of meteorology considered by CAREA led to an anisotropic exposure distribution that differs considerably from the symmetric distribution resulting by the proximity model. In addition, the results of a field campaign for the definition and planning of ground measurement of concentration for the validation of CAREA are presented. The preliminary results showed how, during treatments, pesticide concentrations distant from the fields are significantly higher than background values.

  2. Assessment of occupational exposure to radiofrequency fields and radiation

    International Nuclear Information System (INIS)

    Cooper, T. G.; Allen, S. G.; Blackwell, R. P.; Litchfield, I.; Mann, S. M.; Pope, J. M.; Van Tongeren, M. J. A.

    2004-01-01

    The use of personal monitors for the assessment of exposure to radiofrequency fields and radiation in potential future epidemiological studies of occupationally exposed populations has been investigated. Data loggers have been developed for use with a commercially available personal monitor and these allowed personal exposure records consisting of time-tagged measurements of electric and magnetic field strength to be accrued over extended periods of the working day. The instrumentation was worn by workers carrying out tasks representative of some of their typical daily activities at a variety of radio sites. The results indicated significant differences in the exposures of workers in various RF environments. A number of measures of exposure have been examined with a view to assessing possible exposure metrics for epidemiological studies. There was generally a good correlation between a given measure of electric field strength and the same measure of magnetic field strength. (authors)

  3. Categorization framework to aid exposure assessment of nanomaterials in consumer products

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Michelson, Evan S.; Kamper, Anja

    2008-01-01

    Exposure assessment is crucial for risk assessment for nanomaterials. We propose a framework to aid exposure assessment in consumer products. We determined the location of the nanomaterials and the chemical identify of the 580 products listed in the inventory maintained by the Woodrow Wilson Inte...

  4. Environmental tobacco smoke in designated smoking areas in the hospitality industry: exposure measurements, exposure modelling and policy assessment.

    Science.gov (United States)

    McNabola, A; Eyre, G J; Gill, L W

    2012-09-01

    Tobacco control policy has been enacted in many jurisdictions worldwide banning smoking in the workplace. In the hospitality sector many businesses such as bars, hotels and restaurants have installed designated smoking areas on their premises and allowance for such smoking areas has been made in the tobacco control legislation of many countries. An investigation was carried out into the level of exposure to environmental tobacco smoke (ETS) present in 8 pubs in Ireland which included designated smoking areas complying with two different definitions of a smoking area set out in Irish legislation. In addition, ETS exposure in a pub with a designated smoking area not in compliance with the legislation was also investigated. The results of this investigation showed that the two differing definitions of a smoking area present in pubs produced similar concentrations of benzene within smoking areas (5.1-5.4 μg/m(3)) but differing concentrations within the 'smoke-free' areas (1.42-3.01 μg/m(3)). Smoking areas in breach of legislative definitions were found to produce the highest levels of benzene in the smoking area (49.5 μg/m(3)) and 'smoke-free' area (7.68 μg/m(3)). 3D exposure modelling of hypothetical smoking areas showed that a wide range of ETS exposure concentrations were possible in smoking areas with the same floor area and same smoking rate but differing height to width and length to width ratios. The results of this investigation demonstrate that significant scope for improvement of ETS exposure concentrations in pubs and in smoking areas may exist by refining and improving the legislative definitions of smoking areas in law. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    Science.gov (United States)

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials

  6. Occupational exposure assessment: Practices in Malaysian nuclear agency

    Energy Technology Data Exchange (ETDEWEB)

    Sarowi, S. Muhd, E-mail: suzie@nuclearmalaysia.gov.my; Ramli, S. A.; Kontol, K. Mohamad [Radiation Safety & Health Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Rahman, N. A. H. Abd. [Faculty of Science & Mathematics, Sultan Idris of Education Universit, 35900, Tanjong Malim, Perak Darul Ridzuan (Malaysia)

    2016-01-22

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H{sub 0}) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)

  7. Occupational exposure assessment: Practices in Malaysian nuclear agency

    Science.gov (United States)

    Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.

    2016-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H₀) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304).

  8. Occupational exposure assessment: Practices in Malaysian nuclear agency

    International Nuclear Information System (INIS)

    Sarowi, S. Muhd; Ramli, S. A.; Kontol, K. Mohamad; Rahman, N. A. H. Abd.

    2016-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is the leading agency in introducing and promoting the application of nuclear science technology in Malaysia. The agency provides major nuclear facilities purposely for research and commercialisation such as reactor, irradiation plants and radioisotope production laboratory. When dealing with ionizing radiation, there is an obligatory requirement to monitor and assess the radiation exposure to the workers. The personal dose of radiation workers were monitored monthly by assessing their Thermoluminescence Dosimeter (TLD) dose reading. This paper will discuss the current practice in managing, assessing, record keeping and reporting of the occupational exposure in Nuclear Malaysia including the Health Physic Group roles and challenges. The statistics on occupational radiation exposure of monitored workers working in different fields in Nuclear Malaysia from 2011 - 2013 will also be presented. The results show that the null hypothesis (H 0 ) was accepted which the means of every populations are all equal or not differ significantly. This hypothesis states that the dose exposure received by the radiation workers in Nuclear Malaysia is similar and there were no significant changes from 2011 to 2013. The radiation monitoring programme correlate with the requirement of our national law, the Atomic Energy Licensing Act 1984 (Act 304)

  9. Exposure Monitoring and Risk Assessment of Biphenyl in the Workplace

    OpenAIRE

    Kim, Hyeon-Yeong; Shin, Sae-Mi; Ham, Miran; Lim, Cheol-Hong; Byeon, Sang-Hoon

    2015-01-01

    This study was performed to assess exposure to and the risk caused by biphenyl in the workplace. Biphenyl is widely used as a heat transfer medium and as an emulsifier and polish in industry. Vapor or high levels of dust inhalation and dermal exposure to biphenyl can cause eye inflammation, irritation of respiratory organs, and permanent lesions in the liver and nervous system. In this study, the workplace environment concentrations were assessed as central tendency exposure and reasonable ma...

  10. Sex Differences in Adolescent Depression: Stress Exposure and Reactivity Models

    Science.gov (United States)

    Hankin, Benjamin L.; Mermelstein, Robin; Roesch, Linda

    2007-01-01

    Stress exposure and reactivity models were examined as explanations for why girls exhibit greater levels of depressive symptoms than boys. In a multiwave, longitudinal design, adolescents' depressive symptoms, alcohol usage, and occurrence of stressors were assessed at baseline, 6, and 12 months later (N=538; 54.5% female; ages 13-18, average…

  11. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Teeguarden, Justin G.; Fisher, Jeffrey W.

    2015-01-01

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d 6 -BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d 6 -BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d 6 -BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  12. INFLUENCE OF EXPOSURE ASSESSMENT METHOD IN AN EPIDEMIOLOGIC STUDY OF TRIHALOMETHANE EXPOSURE AND SPONTANEOUS ABORTION

    Science.gov (United States)

    Trihalomethanes are common contaminants of chlorinated drinking water. Studies of their health effects have been hampered by exposure misclassification, due in part to limitations inherent in using utility sampling records. We used two exposure assessment methods, one based on ut...

  13. Assessment of personal exposures to optical radiation in large entertainment venues

    International Nuclear Information System (INIS)

    Bonner, R.; O'Hagan, J. B.; Khazova, M.

    2012-01-01

    Workplace exposure to optical radiation from artificial sources is regulated in Europe under the Artificial Optical Radiation Directive 2006/25/EC implemented in the UK as The Control of Artificial Optical Radiation at Work Regulations 2010. The entertainment environment often presents an extremely complex situation for the assessment of occupational exposures. Multiple illumination sources, continuously changing illumination conditions and people moving during performances add further complexity to the assessment. This document proposes a methodology for assessing the risks arising from exposure to optical radiation and presents detailed case studies of practical assessment for two large entertainment venues. (authors)

  14. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies.

    Science.gov (United States)

    Planchart, Antonio; Green, Adrian; Hoyo, Cathrine; Mattingly, Carolyn J

    2018-03-01

    Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model

  15. DynaPop-X: A population dynamics model applied to spatio-temporal exposure assessment - Implementation aspects from the CRISMA project

    Science.gov (United States)

    Aubrecht, Christoph; Steinnocher, Klaus; Humer, Heinrich; Huber, Hermann

    2014-05-01

    In the context of proactive disaster risk as well as immediate situational crisis management knowledge of locational social aspects in terms of spatio-temporal population distribution dynamics is considered among the most important factors for disaster impact minimization (Aubrecht et al., 2013a). This applies to both the pre-event stage for designing appropriate preparedness measures and to acute crisis situations when an event chain actually unfolds for efficient situation-aware response. The presented DynaPop population dynamics model is developed at the interface of those interlinked crisis stages and aims at providing basic input for social impact evaluation and decision support in crisis management. The model provides the starting point for assessing population exposure dynamics - thus here labeled as DynaPop-X - which can either be applied in a sense of illustrating the changing locations and numbers of affected people at different stages during an event or as ex-ante estimations of probable and maximum expected clusters of affected population (Aubrecht et al., 2013b; Freire & Aubrecht, 2012). DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation (Ahola et al., 2007; Bhaduri, 2008; Cockings et al., 2010). We will present ongoing developments particularly focusing on the implementation logic of the model using the emikat software tool, a data management system initially designed for inventorying and analysis of spatially resolved regional air pollutant emission scenarios. This study was performed in the framework of the EU CRISMA project. CRISMA is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. REFERENCES Ahola, T., Virrantaus, K., Krisp, J

  16. Status update: is smoke on your mind? Using social media to assess smoke exposure

    Directory of Open Access Journals (Sweden)

    B. Ford

    2017-06-01

    Full Text Available Exposure to wildland fire smoke is associated with negative effects on human health. However, these effects are poorly quantified. Accurately attributing health endpoints to wildland fire smoke requires determining the locations, concentrations, and durations of smoke events. Most current methods for assessing these smoke events (ground-based measurements, satellite observations, and chemical transport modeling are limited temporally, spatially, and/or by their level of accuracy. In this work, we explore using daily social media posts from Facebook regarding smoke, haze, and air quality to assess population-level exposure for the summer of 2015 in the western US. We compare this de-identified, aggregated Facebook dataset to several other datasets that are commonly used for estimating exposure, such as satellite observations (MODIS aerosol optical depth and Hazard Mapping System smoke plumes, daily (24 h average surface particulate matter measurements, and model-simulated (WRF-Chem surface concentrations. After adding population-weighted spatial smoothing to the Facebook data, this dataset is well correlated (R2 generally above 0.5 with the other methods in smoke-impacted regions. The Facebook dataset is better correlated with surface measurements of PM2. 5 at a majority of monitoring sites (163 of 293 sites than the satellite observations and our model simulation. We also present an example case for Washington state in 2015, for which we combine this Facebook dataset with MODIS observations and WRF-Chem-simulated PM2. 5 in a regression model. We show that the addition of the Facebook data improves the regression model's ability to predict surface concentrations. This high correlation of the Facebook data with surface monitors and our Washington state example suggests that this social-media-based proxy can be used to estimate smoke exposure in locations without direct ground-based particulate matter measurements.

  17. Status update: is smoke on your mind? Using social media to assess smoke exposure

    Science.gov (United States)

    Ford, Bonne; Burke, Moira; Lassman, William; Pfister, Gabriele; Pierce, Jeffrey R.

    2017-06-01

    Exposure to wildland fire smoke is associated with negative effects on human health. However, these effects are poorly quantified. Accurately attributing health endpoints to wildland fire smoke requires determining the locations, concentrations, and durations of smoke events. Most current methods for assessing these smoke events (ground-based measurements, satellite observations, and chemical transport modeling) are limited temporally, spatially, and/or by their level of accuracy. In this work, we explore using daily social media posts from Facebook regarding smoke, haze, and air quality to assess population-level exposure for the summer of 2015 in the western US. We compare this de-identified, aggregated Facebook dataset to several other datasets that are commonly used for estimating exposure, such as satellite observations (MODIS aerosol optical depth and Hazard Mapping System smoke plumes), daily (24 h) average surface particulate matter measurements, and model-simulated (WRF-Chem) surface concentrations. After adding population-weighted spatial smoothing to the Facebook data, this dataset is well correlated (R2 generally above 0.5) with the other methods in smoke-impacted regions. The Facebook dataset is better correlated with surface measurements of PM2. 5 at a majority of monitoring sites (163 of 293 sites) than the satellite observations and our model simulation. We also present an example case for Washington state in 2015, for which we combine this Facebook dataset with MODIS observations and WRF-Chem-simulated PM2. 5 in a regression model. We show that the addition of the Facebook data improves the regression model's ability to predict surface concentrations. This high correlation of the Facebook data with surface monitors and our Washington state example suggests that this social-media-based proxy can be used to estimate smoke exposure in locations without direct ground-based particulate matter measurements.

  18. TOWARDS RELIABLE AND COST-EFFECTIVE OZONE EXPOSURE ASSESSMENT: PARAMETER EVALUATION AND MODEL VALIDATION USING THE HARVARD SOUTHERN CALIFORNIA CHRONIC OZONE EXPOSURE STUDY DATA

    Science.gov (United States)

    Accurate assessment of chronic human exposure to atmospheric criteria pollutants, such as ozone, is critical for understanding human health risks associated with living in environments with elevated ambient pollutant concentrations. In this study, we analyzed a data set from a...

  19. Occupational Exposure Assessment of Nanomaterials using Control Banding Tools

    DEFF Research Database (Denmark)

    Liguori, Biase

    , are relatively advanced, and they are good foundations for an advanced exposure assessment. Considering the tiered approach for workplace assessment proposed by the OECD, these two tools could be situated, between Tier 1 (Information gathering) and Tier 2 (Basic exposure assessment). Moreover, the thesis......Nanotechnology can be termed as the “new industrial revolution”. A broad range of potential benefits in various applications for the environment and everyday life of humans can be related to the use of nanotechnology. Nanomaterials are used in a large variety of products already in the market......, and because of their novel physical and chemical characteristics, the application of nanomaterials is projected to increase further. This will inevitably increase the production of nanomaterials with potential increase of exposure for the workers which are the first in line expected to become exposed...

  20. Nano-metal oxides: Exposure and engineering control assessment.

    Science.gov (United States)

    Garcia, Alberto; Eastlake, Adrienne; Topmiller, Jennifer L; Sparks, Christopher; Martinez, Kenneth; Geraci, Charles L

    2017-09-01

    In January 2007, the National Institute for Occupational Safety and Health (NIOSH) conducted a field study to evaluate process specific emissions during the production of ENMs. This study was performed using the nanoparticle emission assessment technique (NEAT). During this study, it was determined that ENMs were released during production and cleaning of the process reactor. Airborne concentrations of silver, nickel, and iron were found both in the employee's personal breathing zone and area samples during reactor cleaning. At the completion of this initial survey, it was suggested that a flanged attachment be added to the local exhaust ventilation system.  NIOSH re-evaluated the facility in December 2011 to assess worker exposures following an increase in production rates. This study included a fully comprehensive emissions, exposure, and engineering control evaluation of the entire process. This study made use of the nanoparticle exposure assessment technique (NEAT 2.0). Data obtained from filter-based samples and direct reading instruments indicate that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentration decreased, creating a concentration gradient with respect to the reactor. The results of this study confirm that the flanged attachment on the local exhaust ventilation system served to decrease exposure potential.  Given the available toxicological data of the metals evaluated, caution is warranted. One should always keep in mind that occupational exposure levels were not developed specifically for nanoscale particles. With data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source

  1. Population-Based Assessment of Exposure to Risk Behaviors in Motion Pictures.

    Science.gov (United States)

    Sargent, James D; Worth, Keilah A; Beach, Michael; Gerrard, Meg; Heatherton, Todd F

    2008-01-01

    The aim of most population-based studies of media is to relate a specific exposure to an outcome of interest. A research program has been developed that evaluates exposure to different components of movies in an attempt of assess the association of such exposure with the adoption of substance use during adolescence. To assess exposure to movie substance use, one must measure both viewing time and content. In developing the exposure measure, the study team was interested in circumventing a common problem in exposure measurement, where measures often conflate exposure to media with attention to media. Our aim in this paper is to present a validated measure of exposure to entertainment media, the Beach method, which combines recognition of a movie title with content analysis of the movie for substance use, to generate population based measures of exposure to substance use in this form of entertainment.

  2. Assessment of exposure to shiftwork mechanisms in the general population: the development of a new job-exposure matrix.

    Science.gov (United States)

    Fernandez, Renae C; Peters, Susan; Carey, Renee N; Davies, Michael J; Fritschi, Lin

    2014-10-01

    To develop a job-exposure matrix (JEM) that estimates exposure to eight variables representing different aspects of shiftwork among female workers. Occupational history and shiftwork exposure data were obtained from a population-based breast cancer case-control study. Exposure to light at night, phase shift, sleep disturbances, poor diet, lack of physical activity, lack of vitamin D, and graveyard and early morning shifts, was calculated by occupational code. Three threshold values based on the frequency of exposure were considered (10%, 30% and 50%) for use as cut-offs in determining exposure for each occupational code. JEM-based exposure classification was compared with that from the OccIDEAS application (job-specific questionnaires and assessment by rules) by assessing the effect on the OR for phase shift and breast cancer. Using data from the Australian Workplace Exposure Study, the specificity and sensitivity of the threshold values were calculated for each exposure variable. 127 of 413 occupational codes involved exposure to one or more shiftwork variables. Occupations with the highest probability of exposure shiftwork included nurses and midwives. Using the 30% threshold, the OR for the association between phase shift exposure and breast cancer was decreased and no longer statistically significant (OR=1.14, 95% CI 0.92 to 1.42). The 30% cut-off point demonstrated best specificity and sensitivity, although results varied between exposure variables. This JEM provides a set of indicators reflecting biologically plausible mechanisms for the potential impact of shiftwork on health and may provide an alternative method of exposure assessment in the absence of detailed job history and exposure data. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Toxicity assessment of unintentional exposure to multiple chemicals

    International Nuclear Information System (INIS)

    Mumtaz, M.M.; Ruiz, P.; De Rosa, C.T.

    2007-01-01

    Typically exposure to environmental chemicals is unintentional, and often the exposure is to chemical mixtures, either simultaneously or sequentially. When exposure occurs, in public health practice, it is prudent to ascertain if thresholds for harmful health effects are exceeded, whether by individual chemicals or by chemicals in combination. Three alternative approaches are available for assessing the toxicity of chemical mixtures. Each approach, however, has shortcomings. As the procedures of each approach are described in this paper, at various steps research needs are identified. Recently, reliance has increased on computational toxicology methods for predicting toxicological effects when data are limited. Advances in molecular biology, identification of biomarkers, and availability of accurate and sensitive methods allow us to more precisely define the relationships between multiple chemical exposures and health effects, both qualitatively and quantitatively. Key research needs are best fulfilled through collaborative research. It is through such collaborations that resources are most effectively leveraged to further develop and apply toxicity assessment methods that advance public health practices in vulnerable communities

  4. Stakeholder attitudes towards cumulative and aggregate exposure assessment of pesticides.

    Science.gov (United States)

    Verbeke, Wim; Van Loo, Ellen J; Vanhonacker, Filiep; Delcour, Ilse; Spanoghe, Pieter; van Klaveren, Jacob D

    2015-05-01

    This study evaluates the attitudes and perspectives of different stakeholder groups (agricultural producers, pesticide manufacturers, trading companies, retailers, regulators, food safety authorities, scientists and NGOs) towards the concepts of cumulative and aggregate exposure assessment of pesticides by means of qualitative in-depth interviews (n = 15) and a quantitative stakeholder survey (n = 65). The stakeholders involved generally agreed that the use of chemical pesticides is needed, primarily for meeting the need of feeding the growing world population, while clearly acknowledging the problematic nature of human exposure to pesticide residues. Current monitoring was generally perceived to be adequate, but the timeliness and consistency of monitoring practices across countries were questioned. The concept of cumulative exposure assessment was better understood by stakeholders than the concept of aggregate exposure assessment. Identified pitfalls were data availability, data limitations, sources and ways of dealing with uncertainties, as well as information and training needs. Regulators and food safety authorities were perceived as the stakeholder groups for whom cumulative and aggregate pesticide exposure assessment methods and tools would be most useful and acceptable. Insights obtained from this exploratory study have been integrated in the development of targeted and stakeholder-tailored dissemination and training programmes that were implemented within the EU-FP7 project ACROPOLIS. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Probabilistic assessment of exposure to hair cosmetic products by the French population.

    Science.gov (United States)

    Ficheux, A S; Bernard, A; Chevillotte, G; Dornic, N; Roudot, A C

    2016-06-01

    Cosmetic exposure data are limited in Europe and especially in France. The aim of this study was to assess the exposure to hair cosmetics using recent consumption data (percentage of users, frequency of use and amount per use) generated for the French population (Ficheux et al., 2015, 2016). Exposure was assessed using a probabilistic method for eleven hair products: liquid shampoo, dry shampoo, conditioner, hair mask, hair serum, hair oil, styling lacquer, styling gel, styling foam, styling wax and styling spray. Exposure was assessed by sex and by age classes in adults and children. Pregnant women were also studied. For liquid shampoo, conditioner and some styling products (gel, lacquer and foam), the levels of exposure were higher than the values currently used by the Scientific Committee on Consumer Safety (SCCS). Exposure values found for styling wax and styling spray were lower than SCCS values. Exposure was assessed for the first time for dry shampoo, hair mask, hair serum and hair oil products. These new French exposure values will be useful for safety assessors and for safety agencies in order to protect the general population and these at-risk populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Model for evaluation of the radiological exposure in an urban environment after a radioactive contamination

    International Nuclear Information System (INIS)

    Rochedo, Elaine Rua Rodriguez

    1994-08-01

    A dynamic model aimed on the assessment of the long-term consequences of an accidental contamination of an urban environments has been developed. The model was designed to assess the radiation exposure, as a function of time, of the different kinds of people that uses the contaminated environment, the relative contribution of each exposure pathway and to simulate the application of countermeasures and its effects on the reduction of surfaces contamination and on the exposure of the individuals and of the population. The model is an empirical one, mainly based on environmental data gathered after the Chernobyl and Goiania accidents, and takes into account climatic and population habits characteristic of tropical areas. The model was applied here to a contamination with the radionuclide 137 Cs but can be easily adapted to other nuclides by changes on parameter values. An analysis of the variabilities associated to the model outputs regarding population habits, different kinds of urban environment and parameters uncertainty has shown that the main source of uncertainty on model predictions is associated to a correct knowledge of population characteristics, its habits and used of the contaminated environment. (author)

  7. Performance of GPS-devices for environmental exposure assessment.

    Science.gov (United States)

    Beekhuizen, Johan; Kromhout, Hans; Huss, Anke; Vermeulen, Roel

    2013-01-01

    Integration of individual time-location patterns with spatially resolved exposure maps enables a more accurate estimation of personal exposures to environmental pollutants than using estimates at fixed locations. Current global positioning system (GPS) devices can be used to track an individual's location. However, information on GPS-performance in environmental exposure assessment is largely missing. We therefore performed two studies. First, a commute-study, where the commute of 12 individuals was tracked twice, testing GPS-performance for five transport modes and two wearing modes. Second, an urban-tracking study, where one individual was tracked repeatedly through different areas, focused on the effect of building obstruction on GPS-performance. The median error from the true path for walking was 3.7 m, biking 2.9 m, train 4.8 m, bus 4.9 m, and car 3.3 m. Errors were larger in a high-rise commercial area (median error=7.1 m) compared with a low-rise residential area (median error=2.2 m). Thus, GPS-performance largely depends on the transport mode and urban built-up. Although ~85% of all errors were 50 m. Modern GPS-devices are useful tools for environmental exposure assessment, but large GPS-errors might affect estimates of exposures with high spatial variability.

  8. A Spatial Model of the Mere Exposure Effect.

    Science.gov (United States)

    Fink, Edward L.; And Others

    1989-01-01

    Uses a spatial model to examine the relationship between stimulus exposure, cognition, and affect. Notes that this model accounts for cognitive changes that a stimulus may acquire as a result of exposure. Concludes that the spatial model is useful for evaluating the mere exposure effect and that affective change does not require cognitive change.…

  9. Dynamic model for the assessment of radiological exposure to marine biota

    Energy Technology Data Exchange (ETDEWEB)

    Vives i Batlle, J. [Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom)], E-mail: jordi.vives@westlakes.ac.uk; Wilson, R.C.; Watts, S.J.; Jones, S.R.; McDonald, P.; Vives-Lynch, S. [Westlakes Scientific Consulting Ltd, The Princess Royal Building, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3LN (United Kingdom)

    2008-11-15

    A generic approach has been developed to simulate dynamically the uptake and turnover of radionuclides by marine biota. The approach incorporates a three-compartment biokinetic model based on first order linear kinetics, with interchange rates between the organism and its surrounding environment. Model rate constants are deduced as a function of known parameters: biological half-lives of elimination, concentration factors and a sample point of the retention curve, allowing for the representation of multi-component release. The new methodology has been tested and validated in respect of non-dynamic assessment models developed for regulatory purposes. The approach has also been successfully tested against research dynamic models developed to represent the uptake of technetium and radioiodine by lobsters and winkles. Assessments conducted on two realistic test scenarios demonstrated the importance of simulating time-dependency for ecosystems in which environmental levels of radionuclides are not in equilibrium.

  10. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  11. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  12. #2 - An Empirical Assessment of Exposure Measurement Error ...

    Science.gov (United States)

    Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation of effect estimates in single and bipollutantepidemiological models The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  13. ASSESSMENT OF HUMAN EXPOSURE TO TOLUENE DIISOCYANATE

    Directory of Open Access Journals (Sweden)

    OLIVIA ANCA RUSU

    2011-03-01

    Full Text Available Assessment of human exposure to toluene diisocyanate. Toluene diisocyanate (TDI, an aromatic compound, may be dangerous for human health. Diisocyanates have wide industrial use in the fabrication of flexible and rigid foams, fibers, elastomers, and coatings such as paints and varnishes. Isocyanates are known skin and respiratory sensitizers, and proper engineering controls should be in place to prevent exposure to isocyanate liquid and vapor; exposure to TDI vapors is well documented to increase asthma risk. The study focused on the exposure of workers and nearby populations to toluene diisocyanate in a Polyurethane Foam Factory located in Baia Mare, Romania. Workplace air measurements were performed in different departments of the plant, after sampling either in fixed points or as personal monitoring. Sampling in four different locations of Baia Mare town was carried out, - during and after the foaming process. TDI sampling was performed on silica cartridge followed by GC-MS analysis. TDI concentration at workplace was lower than 0,035 mg/m³, which represents the permissible exposure limit, while in the city the TDI concentration had shown values below 0,20 μg/m³. Health assessment of a group of 49 workers was based on questionnaire interview, determination of TDI antibodies and lung function tests. Data collected until this stage do not show any negative effects of TDI on the employees health. Since this plant had only recently begun operating, continuous workplace and ambient air TDI monitoring, along with workers health surveillance, is deemed necessary.

  14. Retrospective benzene exposure assessment for a multi-center case-cohort study of benzene-exposed workers in China.

    Science.gov (United States)

    Portengen, Lützen; Linet, Martha S; Li, Gui-Lan; Lan, Qing; Dores, Graça M; Ji, Bu-Tian; Hayes, Richard B; Yin, Song-Nian; Rothman, Nathaniel; Vermeulen, Roel

    2016-01-01

    Quality of exposure assessment has been shown to be related to the ability to detect risk of lymphohematopoietic disorders in epidemiological investigations of benzene, especially at low levels of exposure. We set out to build a statistical model for reconstructing exposure levels for 2898 subjects from 501 factories that were part of a nested case-cohort study within the NCI-CAPM cohort of more than 110,000 workers. We used a hierarchical model to allow for clustering of measurements by factory, workshop, job, and date. To calibrate the model we used historical routine monitoring data. Measurements below the limit of detection were accommodated by constructing a censored data likelihood. Potential non-linear and industry-specific time-trends and predictor effects were incorporated using regression splines and random effects. A partial validation of predicted exposures in 2004/2005 was performed through comparison with full-shift measurements from an exposure survey in facilities that were still open. Median cumulative exposure to benzene at age 50 for subjects that ever held an exposed job (n=1175) was 509 mg/m(3) years. Direct comparison of model estimates with measured full-shift personal exposure in the 2004/2005 survey showed moderate correlation and a potential downward bias at low (<1 mg/m(3)) exposure estimates. The modeling framework enabled us to deal with the data complexities generally found in studies using historical exposure data in a comprehensive way and we therefore expect to be able to investigate effects at relatively low exposure levels.

  15. A model to assess exposure from releases of radioactivity into the seas of northern Europe

    International Nuclear Information System (INIS)

    Clark, M.J.; Webb, G.A.M.

    1981-01-01

    A regional marine model is described which can be used to estimate the exposure of populations as a result of the discharge of radioactive effluents into the coastal waters of northern Europe. The model simulates the dispersion of radionuclides in marine waters, their interaction with marine sediments and the concentration mechanisms occurring in seafoods. A local/regional interface is included whereby releases are assumed to first enter a local marine compartment before widespread dispersion in coastal waters. Depletion mechanisms operate within both the local and regional environments influencing the fraction of radionuclide release which contributes to collective exposure. In general, results of the regional model are expressed as collective intakes of activity from ingestion of marine seafoods. These quantities can be converted into collective doses per unit discharge, given a knowledge of local depletion factors and the dose per unit intake of radionuclides. Results for caesium-137 and plutonium-239 released into United Kingdom coastal waters are discussed. (author)

  16. Data collection costs in industrial environments for three occupational posture exposure assessment methods

    Science.gov (United States)

    2012-01-01

    Background Documentation of posture measurement costs is rare and cost models that do exist are generally naïve. This paper provides a comprehensive cost model for biomechanical exposure assessment in occupational studies, documents the monetary costs of three exposure assessment methods for different stakeholders in data collection, and uses simulations to evaluate the relative importance of cost components. Methods Trunk and shoulder posture variables were assessed for 27 aircraft baggage handlers for 3 full shifts each using three methods typical to ergonomic studies: self-report via questionnaire, observation via video film, and full-shift inclinometer registration. The cost model accounted for expenses related to meetings to plan the study, administration, recruitment, equipment, training of data collectors, travel, and onsite data collection. Sensitivity analyses were conducted using simulated study parameters and cost components to investigate the impact on total study cost. Results Inclinometry was the most expensive method (with a total study cost of € 66,657), followed by observation (€ 55,369) and then self report (€ 36,865). The majority of costs (90%) were borne by researchers. Study design parameters such as sample size, measurement scheduling and spacing, concurrent measurements, location and travel, and equipment acquisition were shown to have wide-ranging impacts on costs. Conclusions This study provided a general cost modeling approach that can facilitate decision making and planning of data collection in future studies, as well as investigation into cost efficiency and cost efficient study design. Empirical cost data from a large field study demonstrated the usefulness of the proposed models. PMID:22738341

  17. Assessing exposures and risks in heterogeneously contaminated areas: A simulation approach

    International Nuclear Information System (INIS)

    Fingleton, D.J.; MacDonell, M.M.; Haroun, L.A.; Oezkaynak, H.; Butler, D.A.; Xue, J.

    1991-01-01

    The US Department of Energy (DOE) is responsible for cleanup activities at a number of facilities under its Environmental Restoration and Waste Management Program. The major goals of this program are to eliminate potential hazards to human health and the environment that are associated with contamination of these sites and, to the extent possible, make surplus real property available for other uses. The assessment of potential baseline health risks and ecological impacts associated with a contaminated site is an important component of the remedial investigation/feasibility study (RI/FS) process required at all Superfund sites. The purpose of this paper is to describe one phase of the baseline assessment, i.e., the characterization of human health risks associated with exposure to chemical contaminants in air and on interior building surfaces at a contaminated site. The model combines data on human activity patterns in a particular microenvironment within a building with contaminant concentrations in that microenvironment to calculate personal exposure profiles and risks within the building. The results of the building assessment are presented as probability distribution functions and cumulative distribution functions, which show the variability and uncertainty in the risk estimates

  18. Assessing exposures and risks in heterogeneously contaminated areas: A simulation approach

    International Nuclear Information System (INIS)

    Fingleton, D.J.; MacDonell, M.M.; Haroun, L.A.; Oezkaynak, H.; Butler, D.A.; Jianping Xue

    1991-01-01

    The US Department of Energy (DOE) is responsible for cleanup activities at a number of facilities under its Environmental Restoration and Waste Management Program. The major goals of this program are to eliminate potential hazards to human health and the environment that are associated with contamination of these sites and, to the extent possible, make surplus real property available for other uses. The assessment of potential baseline health risks and ecological impacts associated with a contaminated site is an important component of the remedial investigation/feasibility study (RI/FS) process required at all Superfund sites. The purpose of this paper is to describe one phase of the baseline assessment, i.e., the characterization of human health risks associated with exposure to chemical contaminants in air and on interior building surfaces at a contaminated site. The model combines data on human activity patterns in a particular microenvironment within a building with contaminant concentrations in that microenvironment to calculate personal exposure profiles and risks within the building. The results of the building assessment are presented as probability distributions functions and cumulative distribution functions, which show the variability and uncertainty in the risk estimates. 23 refs., 2 figs., 1 tab

  19. A faecal exposure assessment of farm workers in Accra, Ghana: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Prince Antwi-Agyei

    2016-07-01

    Full Text Available Abstract Background Wastewater use in urban agriculture is common as a result of rapid urbanisation, and increasing competition for good quality water. In order to minimize risks to farmers and consumers of wastewater irrigated produce the World Health Organization (WHO has developed guidelines for the safe use of wastewater in agriculture. These guidelines are based on a Quantitative Microbial Risk Assessment (QMRA model, though the reliability of this model has been questioned due to a lack of primary data. This study aimed to assess the ability of the WHO guidelines to protect farmers’ health, by identifying and quantifying key exposures associated with the transmission of faecal pathogens in wastewater irrigated agriculture. Methods Eighty farmers were observed and interviewed during the dry and wet seasons, and water and soil samples were analysed for the presence of E. coli. STATA 12 was used for descriptive analyses of farmers’ exposure and risk practices, and also to determine risk factors for soil and irrigation water contamination, while the WHO QMRA model and @Risk 6 were used to model farmers’ infection risk to pathogens. Results The results showed that although irrigation water was highly contaminated (5.6 Log E. coli/100 ml, exposure to farm soil (2.3 Log E. coli/g was found to be the key risk pathway due to soil-to-mouth events. During the observations 93 % of farmers worked barefoot, 86 % experienced hand-to-soil contact, while 53 % experienced ‘soil’-to-mouth events, while no ‘water’ to mouth contacts were observed. On average, farmers were found to have 10 hand-to-mouth events per day. From the indicator based QMRA model the estimated norovirus infection risk to farmers was found to be higher than guidelines set by the WHO. Conclusions This study found exposure to soil as the critical pathway of pathogen risk in wastewater farmers, and that this risk exceeded recommended health targets. The study recommends

  20. Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid, PFOA.

    Science.gov (United States)

    Lorber, Matthew; Egeghy, Peter P

    2011-10-01

    Models for assessing intakes of perfluorooctanoic acid, PFOA, are described and applied. One model is based on exposure media concentrations and contact rates. This model is applied to general population exposures for adults and 2-year old children. The other model is a simple one-compartment, first-order pharmacokinetic (PK) model. Parameters for this model include a rate of elimination of PFOA and a blood volume of distribution. The model was applied to data from the National Health and Nutritional Examination Survey, NHANES, to backcalculate intakes. The central tendency intake estimate for adults and children based on exposure media concentrations and contact rates were 70 and 26 ng/day, respectively. The central tendency adult intake derived from NHANES data was 56 and 37 ng/day for males and females, respectively. Variability and uncertainty discussions regarding the intake modeling focus on lack of data on direct exposure to PFOA used in consumer products, precursor compounds, and food. Discussions regarding PK modeling focus on the range of blood measurements in NHANES, the appropriateness of the simple PK model, and the uncertainties associated with model parameters. Using the PK model, the 10th and 95th percentile long-term average adult intakes of PFOA are 15 and 130 ng/day.

  1. Assessing internal exposure in the absence of an appropriate model: two cases involving an incidental inhalation of transuranic elements

    International Nuclear Information System (INIS)

    Blanchin, N.; Grappin, L.; Guillermin, A.M.; Lafon, P.; Miele, A.; Berard, P.; Blanchardon, E.; Fottorino, R.

    2008-01-01

    Two incidents involving internal exposure by inhalation of transuranic compounds are presented herein. The results of the measurements of urinary and faecal excretions of the two individuals involved do not concur with the values predicted by the ICRP models that should be applied by default, according to the circumstances of the incidents and the chemical form of the products involved: oxide in the first case and nitrate in the second. These cases are remarkable in the similarity of their biokinetic behaviour even though they occurred in different situations and involved different chemical compounds. Both situations provide an illustration of the management of internal contamination events. The precautions to be taken and the questions that the physician should ask himself in the estimation of the internal dose are listed as follows: What type of examinations should be prescribed and at what frequency? What analysis results should be used in assessing the dose? How can the effect of the Ca-DTPA treatment be assessed? How long is it necessary to perform radio toxicological exams before assessing the dose? What should be done if the ICRP model corresponding to the initial circumstances does not fit the measurement data? Finally, our selected hypotheses, used to explain specific biokinetic behaviour and to estimate its intake in both cases, are detailed. These incidental contaminations suggest that further studies should be carried out to develop a new model for inhalation of transuranic compounds that would follow neither the S nor the M absorption type of the respiratory tract model of ICRP publication 66. (authors)

  2. Assessing internal exposure in the absence of an appropriate model: two cases involving an incidental inhalation of transuranic elements

    International Nuclear Information System (INIS)

    Blanchin, Nicolas; Fottorino, Robert; Grappin, Louise; Guillermin, Anne-Marie; Lafon, Philippe; Miele, Alain; Berard, Philippe; Blanchardon, Eric

    2008-01-01

    Two incidents involving internal exposure by inhalation of transuranic compounds are presented herein. The results of the measurements of urinary and faecal excretions of the two individuals involved do not concur with the values predicted by the ICRP models that should be applied by default, according to the circumstances of the incidents and the chemical form of the products involved: oxide in the first case and nitrate in the second. These cases are remarkable in the similarity of their biokinetic behaviour even though they occurred in different situations and involved different chemical compounds. Both situations provide an illustration of the management of internal contamination events. The precautions to be taken and the questions that the physician should ask himself in the estimation of the internal dose are listed as follows: a) What type of examinations should be prescribed and at what frequency?; b) What analysis results should be used in assessing the dose?; c) How can the effect of the Ca-DTPA treatment be assessed?; d) How long is it necessary to perform radio toxicological exams before assessing the dose?; e) What should be done if the ICRP model corresponding to the initial circumstances does not fit the measurement data? Finally, our selected hypotheses, used to explain specific biokinetic behaviour and to estimate its intake in both cases, are detailed. These incidental contaminations suggest that further studies should be carried out to develop a new model for inhalation of transuranic compounds that would follow neither the S nor the M absorption type of the respiratory tract model of ICRP publication 66. (author)

  3. Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system.

    Science.gov (United States)

    Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-04-01

    Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Assessing the importance of different exposure metrics and time-activity data to predict 24-H personal PM2.5 exposures.

    Science.gov (United States)

    Chang, Li-Te; Koutrakis, Petros; Catalano, Paul J; Suh, Helen H

    Personal PM(2.5) data from two recent exposure studies, the Scripted Activity Study and the Older Adults Study, were used to develop models predicting 24-h personal PM(2.5) exposures. Both studies were conducted concurrently in the summer of 1998 and the winter of 1999 in Baltimore, MD. In the Scripted Activity Study, 1-h personal PM(2.5) exposures were measured. Data were used to identify significant factors affecting personal exposures and to develop 1-h personal exposure models for five different micro-environments. By incorporating the time-activity diary data, these models were then combined to develop a time-weighted microenvironmental personal model (model M1AD) to predict the 24-h PM(2.5) exposures measured for individuals in the Older Adults Study. Twenty-four-hour time-weighted models were also developed using 1-h ambient PM(2.5) levels and time-activity data (model A1AD) or using 24-h ambient PM(2.5) levels and time-activity data (model A24AD). The performance of these three models was compared to that using 24-h ambient concentrations alone (model A24). Results showed that factors affecting 1-h personal PM(2.5) exposures included air conditioning status and the presence of environmental tobacco smoke (ETS) for indoor micro-environments, consistent with previous studies. ETS was identified as a significant contributor to measured 24-h personal PM(2.5) exposures. Staying in an ETS-exposed microenvironment for 1 h elevated 24-h personal PM(2.5) exposures by approximately 4 microg/m 3 on average. Cooking and washing activities were identified in the winter as significant contributors to 24-h personal exposures as well, increasing 24-h personal PM(2.5) exposures by about 4 and 5 microg/m 3 per hour of activity, respectively. The ability of 3 microenvironmental personal exposure models to estimate 24-h personal PM(2.5) exposures was generally comparable to and consistently greater than that of model A24. Results indicated that using time-activity data with 1

  5. An assessment of the acute dietary exposure to glyphosate using deterministic and probabilistic methods.

    Science.gov (United States)

    Stephenson, C L; Harris, C A; Clarke, R

    2018-02-01

    Use of glyphosate in crop production can lead to residues of the active substance and related metabolites in food. Glyphosate has never been considered acutely toxic; however, in 2015 the European Food Safety Authority (EFSA) proposed an acute reference dose (ARfD). This differs from the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) who in 2016, in line with their existing position, concluded that an ARfD was not necessary for glyphosate. This paper makes a comprehensive assessment of short-term dietary exposure to glyphosate from potentially treated crops grown in the EU and imported third-country food sources. European Union and global deterministic models were used to make estimates of short-term dietary exposure (generally defined as up to 24 h). Estimates were refined using food-processing information, residues monitoring data, national dietary exposure models, and basic probabilistic approaches to estimating dietary exposure. Calculated exposures levels were compared to the ARfD, considered to be the amount of a substance that can be consumed in a single meal, or 24-h period, without appreciable health risk. Acute dietary intakes were Probabilistic exposure estimates showed that the acute intake on no person-days exceeded 10% of the ARfD, even for the pessimistic scenario.

  6. A tiered asthma hazard characterization and exposure assessment approach for evaluation of consumer product ingredients.

    Science.gov (United States)

    Maier, Andrew; Vincent, Melissa J; Parker, Ann; Gadagbui, Bernard K; Jayjock, Michael

    2015-12-01

    Asthma is a complex syndrome with significant consequences for those affected. The number of individuals affected is growing, although the reasons for the increase are uncertain. Ensuring the effective management of potential exposures follows from substantial evidence that exposure to some chemicals can increase the likelihood of asthma responses. We have developed a safety assessment approach tailored to the screening of asthma risks from residential consumer product ingredients as a proactive risk management tool. Several key features of the proposed approach advance the assessment resources often used for asthma issues. First, a quantitative health benchmark for asthma or related endpoints (irritation and sensitization) is provided that extends qualitative hazard classification methods. Second, a parallel structure is employed to include dose-response methods for asthma endpoints and methods for scenario specific exposure estimation. The two parallel tracks are integrated in a risk characterization step. Third, a tiered assessment structure is provided to accommodate different amounts of data for both the dose-response assessment (i.e., use of existing benchmarks, hazard banding, or the threshold of toxicological concern) and exposure estimation (i.e., use of empirical data, model estimates, or exposure categories). Tools building from traditional methods and resources have been adapted to address specific issues pertinent to asthma toxicology (e.g., mode-of-action and dose-response features) and the nature of residential consumer product use scenarios (e.g., product use patterns and exposure durations). A case study for acetic acid as used in various sentinel products and residential cleaning scenarios was developed to test the safety assessment methodology. In particular, the results were used to refine and verify relationships among tiered approaches such that each lower data tier in the approach provides a similar or greater margin of safety for a given

  7. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods

    OpenAIRE

    Berggren, Elisabet; White, Andrew; Ouedraogo, Gladys; Paini, Alicia; Richarz, Andrea-Nicole; Bois, Frederic Y.; Exner, Thomas; Leite, Sofia; Grunsven, Leo A. van; Worth, Andrew; Mahony, Catherine

    2017-01-01

    Highlights • A workflow for an exposure driven chemical safety assessment to avoid animal testing. • Hypothesis based on existing data, in silico modelling and biokinetic considerations. • A tool to inform targeted and toxicologically relevant in vitro testing.

  8. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface.

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J; Bisig, Christoph; Damby, David E; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauser, Barbara

    2018-07-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited. The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm 2 and 0.39 ± 0.09 μg/cm 2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO 2 ). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses. Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  9. Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface

    Science.gov (United States)

    Tomasek, Ines; Horwell, Claire J.; Bisig, Christoph; Damby, David; Comte, Pierre; Czerwinski, Jan; Petri-Fink, Alke; Clift, Martin J D; Drasler, Barbara; Rothen-Rutishauer, Barbara

    2018-01-01

    Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of

  10. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  11. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

    Science.gov (United States)

    Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon

    2018-04-01

    Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. COMPARING THE UTILITY OF MULTIMEDIA MODELS FOR HUMAN AND ECOLOGICAL EXPOSURE ANALYSIS: TWO CASES

    Science.gov (United States)

    A number of models are available for exposure assessment; however, few are used as tools for both human and ecosystem risks. This discussion will consider two modeling frameworks that have recently been used to support human and ecological decision making. The study will compare ...

  13. Assessment of health impacts of radon exposures in Florida

    International Nuclear Information System (INIS)

    Vonstille, W.T.; Sacarello, H.L.A.

    1990-01-01

    This paper reports on residential radon levels, from a statewide Florida survey, that were used in an analysis of over 150,000 medically treated episodes of malignancies and other serious illnesses and conditions in whites, blacks and Hispanics from all counties in the state. No evidence of an increased percentage of cancer was found in any sex or ethnic group from the areas with the highest radon exposure levels. Age adjustment of data did not affect the results. The highest radon exposures were associated with some of the lowest cancer rates and contradict the risk assessment hypothesis based on extrapolation from exposures in mining. Points for DOE and EPA errors in risk assessment methods are reviewed; predictions from risk assessment should be empirically tested as in the case of any other scientific hypothesis before being used as a basis for public policy. Thus, the authors find that cancer risks of residential radon have been vastly overstated

  14. Risk assessment and food allergy: the probabilistic model applied to allergens

    NARCIS (Netherlands)

    Spanjersberg, M.Q.I.; Kruizinga, A.G.; Rennen, M.A.J.; Houben, G.F.

    2007-01-01

    In order to assess the risk of unintended exposure to food allergens, traditional deterministic risk assessment is usually applied, leading to inconsequential conclusions as 'an allergic reaction cannot be excluded'. TNO therefore developed a quantitative risk assessment model for allergens based on

  15. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    Science.gov (United States)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  16. A geographic approach to modelling human exposure to traffic air pollution using GIS. Separate appendix report

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG)

  17. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Teeguarden, Justin G. [Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  18. Recent developments in health risks modeling techniques applied to hazardous waste site assessment and remediation

    International Nuclear Information System (INIS)

    Mendez, W.M. Jr.

    1990-01-01

    Remediation of hazardous an mixed waste sites is often driven by assessments of human health risks posed by the exposures to hazardous substances released from these sites. The methods used to assess potential health risk involve, either implicitly or explicitly, models for pollutant releases, transport, human exposure and intake, and for characterizing health effects. Because knowledge about pollutant fate transport processes at most waste sites is quite limited, and data cost are quite high, most of the models currently used to assess risk, and endorsed by regulatory agencies, are quite simple. The models employ many simplifying assumptions about pollutant fate and distribution in the environment about human pollutant intake, and toxicologic responses to pollutant exposures. An important consequence of data scarcity and model simplification is that risk estimates are quite uncertain and estimates of the magnitude uncertainty associated with risk assessment has been very difficult. A number of methods have been developed to address the issue of uncertainty in risk assessments in a manner that realistically reflects uncertainty in model specification and data limitations. These methods include definition of multiple exposure scenarios, sensitivity analyses, and explicit probabilistic modeling of uncertainty. Recent developments in this area will be discussed, along with their possible impacts on remediation programs, and remaining obstacles to their wider use and acceptance by the scientific and regulatory communities

  19. Dermal exposure assessment to benzene and toluene using charcoal cloth pads

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Tielemans, E.; Vermeulen, R.; Wegh, H.; Kromhout, H.

    2005-01-01

    Charcoal cloth pads have been used to assess volatile chemicals on the skin in a laboratory setting; however, they have not yet been applied to measure dermal exposure in occupational settings. This study aimed at evaluating whether charcoal pads can be used to assess dermal exposure to benzene and

  20. Default values for assessment of potential dermal exposure of the hands to industrial chemicals in the scope of regulatory risk assessments.

    Science.gov (United States)

    Marquart, Hans; Warren, Nicholas D; Laitinen, Juha; van Hemmen, Joop J

    2006-07-01

    Dermal exposure needs to be addressed in regulatory risk assessment of chemicals. The models used so far are based on very limited data. The EU project RISKOFDERM has gathered a large number of new measurements on dermal exposure to industrial chemicals in various work situations, together with information on possible determinants of exposure. These data and information, together with some non-RISKOFDERM data were used to derive default values for potential dermal exposure of the hands for so-called 'TGD exposure scenarios'. TGD exposure scenarios have similar values for some very important determinant(s) of dermal exposure, such as amount of substance used. They form narrower bands within the so-called 'RISKOFDERM scenarios', which cluster exposure situations according to the same purpose of use of the products. The RISKOFDERM scenarios in turn are narrower bands within the so-called Dermal Exposure Operation units (DEO units) that were defined in the RISKOFDERM project to cluster situations with similar exposure processes and exposure routes. Default values for both reasonable worst case situations and typical situations were derived, both for single datasets and, where possible, for combined datasets that fit the same TGD exposure scenario. The following reasonable worst case potential hand exposures were derived from combined datasets: (i) loading and filling of large containers (or mixers) with large amounts (many litres) of liquids: 11,500 mg per scenario (14 mg cm(-2) per scenario with surface of the hands assumed to be 820 cm(2)); (ii) careful mixing of small quantities (tens of grams in default values are considered useful for estimating exposure for similar substances in similar situations with low uncertainty. Several other default values based on single datasets can also be used, but lead to estimates with a higher uncertainty, due to their more limited basis. Sufficient analogy in all described parameters of the scenario, including duration, is needed

  1. Annual individual hygienic assessment of natural exposure doses of the Altai territory model areas population

    Directory of Open Access Journals (Sweden)

    N. Yu. Potseluev

    2016-01-01

    Full Text Available The goal is to determine ionizing radiation natural sources exposure regularities of Altai Territory model areas population. The materials and methods. 11376 radon measurements, 1247 gamma radiation meas-urements in an open area and in residential and office buildings were performed, selection of 189 drinking water tests was carried out. Results. Complex radiation and hygienic examination of the region with the most large municipalities number with model areas allocation was conducted. The assessment of the Altai Territory population’s individual annual radiation doses from natural radionuclides has revealed a number of the regularities depending on the terrain’s ecological and geographical type. Following the research results, ranging the region territories taking into account of annual effective doses of the population from natural sources for 2009-2015 was carried out. The annual individual effective dose of the Altai Territory upland areas population presented by the highest values and ranges from 7.36 mSv / year to 8.19 mSv / year. Foothill regions of Altai and in Salair ridge are characterized by increased population exposure from natural sources. Here the dose ranges from 5.09 mSv / year to 6.22 mSv / year. Steppe and forest-steppe territories are characterized by the lowest level of the natural radiation which is ranging from 3.23 mSv / year to 4.11 mSv / year, that doesn’t exceed the all-Russian levels. Most of the hygienic radon equivalent equilibrium volume activity standards exceedances were registered in mountain and foothill areas buildings. A number of radon anomalies is revealed also in steppe areas. Med exceedances ranged from 203 ± 17.8 Bq / m3 to 480 ± 37.9 Bq / m3. Given the fact that most of these buildings belong to the administrative or educational institutions with an eight-hour working day, the dose of radiation for people there can be up to 10 mSv / year. Conclusion. Spreading of individual annual effective

  2. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment.

    Science.gov (United States)

    de Zwart, Dick; Adams, William; Galay Burgos, Malyka; Hollender, Juliane; Junghans, Marion; Merrington, Graham; Muir, Derek; Parkerton, Thomas; De Schamphelaere, Karel A C; Whale, Graham; Williams, Richard

    2018-03-01

    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes, from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent, or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the event mean concentration concept, with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modeling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed of the role of nonchemical stressors in such highly modified urban water bodies. Environ Toxicol Chem 2018;37:703-714. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

  3. Establishing an air pollution monitoring network for intra-urban population exposure assessment : a location-allocation approach

    Energy Technology Data Exchange (ETDEWEB)

    Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). School of Geography and Geology; Jerrett, M.; Beckerman, B.; Arain, M.A. [McMaster Univ., Hamilton, ON (Canada). School of Geography and Geology]|[McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health; Morrison, J. [Carleton Univ., Ottawa, ON (Canada). School of Computer Science; Gilbert, N.L. [Health Canada, Ottawa, ON (Canada). Air Health Effects Div; Brook, J.R. [Meteorological Service of Canada, Toronto, ON (Canada)

    2004-10-01

    A study was conducted to assess the relation between traffic-generated air pollution and health reactions ranging from childhood asthma to mortality from lung cancer. In particular, it developed a formal method of optimally locating a dense network of air pollution monitoring stations in order to derive an exposure assessment model based on the data obtained from the monitoring stations and related land use, population and biophysical information. The method for determining the locations of 100 nitrogen dioxide monitors in Toronto, Ontario focused on land use, transportation infrastructure and the distribution of at-risk populations. The exposure assessment produced reasonable estimates at the intra-urban scale. This method for locating air pollution monitors effectively maximizes sampling coverage in relation to important socio-demographic characteristics and likely pollution variability. The location-allocation approach integrates many variables into the demand surface to reconfigure a monitoring network and is especially useful for measuring traffic pollutants with fine-scale spatial variability. The method also shows great promise for improving the assessment of exposure to ambient air pollution in epidemiologic studies. 19 refs., 3 tabs., 4 figs.

  4. Assessment of Po-210 exposure for the Italian population

    International Nuclear Information System (INIS)

    Clemente, G.F.; Renzetti, A.; Santori, G.; Breuer, F.

    1980-01-01

    Most of the natural internal dose of the general population due to alpha particles is associated with 210 Po exposure. The experimental data obtained to evaluate the levels of 210 Po exposure to members of the general Italian population and to some critical population groups exposed to high radon and daughter air concentration are summarized. The 210 Po content was measured in the following: a) daily diets; b) urinary excretions from members of the general population, both non-smokers and smokers; c) urinary excretions from workers in radioactive spas and non-uranium mines; d) teeth and bone samples from the general population. In most samples the content of 210 Pb, was also measured to assess the behaviour of 210 Po in man. A mathematical model fitting the experimental data was developed to describe the metabolism of systemic 210 Po. Four different levels of 210 Po exposure were detected according to the internal burden measured in the considered subjects. The corresponding dose rate to cortical and trabecular bone and soft tissue was evaluated. The values of the mean dose to the skeleton (cortical bone) were found to range from about 70 μGy/year for non-smokers of the general population to about 2 mGy/year for individuals working inside radioactive spas. (H.K.)

  5. Spatio-temporal modelling of residential exposure to particulate matter and gaseous pollutants for the Heinz Nixdorf Recall Cohort

    Science.gov (United States)

    Nonnemacher, Michael; Jakobs, Hermann; Viehmann, Anja; Vanberg, Irene; Kessler, Christoph; Moebus, Susanne; Möhlenkamp, Stefan; Erbel, Raimund; Hoffmann, Barbara; Memmesheimer, Michael

    2014-07-01

    For the simultaneous analysis of short- and long-term effects of air pollution in the Heinz Nixdorf Recall Cohort a sophisticated exposure modelling was performed. The dispersion and chemistry transport model EURAD (European Air Pollution Dispersion) was used for the estimation of hourly concentrations of a number of pollutants for a horizontal grid with a cell size of 1 km² covering the whole study area (three large adjacent cities in a highly urbanized region in Western Germany) for the years 2000-2003 and 2006-2008. For each 1 km² cell we estimated the mean concentration by calculating daily means from the hourly concentrations modelled by the EURAD process. The modelled concentrations showed an overall tendency to decrease from 2001 to 2008 whereas the trend in the single grid cells and study period was inhomogeneous. Participant-related exposure slightly increased from 2001 to 2003 followed by a decrease from 2006 to 2008. The exposure modelling enables a very flexible exposure assessment compared to conventional modelling approaches which either use central monitoring or temporally static spatial contrasts. The modelling allows the calculation of an average exposure concentration for any place and time within the study region and study period with a high spatial and temporal resolution. This is important for the assessment of short-, medium and long-term effects of air pollution on human health in epidemiological studies.

  6. BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    Science.gov (United States)

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard the use of biologically based dose-response models is particularly advocated. The aim is to pr...

  7. Systematic evaluation of observational methods assessing biomechanical exposures at work

    DEFF Research Database (Denmark)

    Takala, Esa-Pekka; Irmeli, Pehkonen; Forsman, Mikael

    2009-01-01

    by sorting the methods according to the several items evaluated.   Numerous methods have been developed to assess physical workload (biomechanical exposures) in order to identify hazards leading to musculoskeletal disorders, to monitor the effects of ergonomic changes, and for research. No indvidual method...... between observers Potential users NIOSH Lifting Eq. NA X - O, R Arbouw M - - O ACGIH Lifting TLV M - - O MAC - - M O, W(?) ManTRA - - - O, R(?),W(?) NZ Code for MH - - - O, W(?) Washington state ergonomic rule M X M O, W(?) BackEST ML - M R   Correspondence with valid reference: HM = High to moderate, L......), and Washington state model. MAC (UK), ManTRA (Australia), and New Zealand code are widely used for the assessment of risks in MMH but we did not found formal studies on validity of these methods. The inter-observer repeatability of MAC and the Washington state model has been found to be moderate. Back...

  8. Drone based measurement system for radiofrequency exposure assessment.

    Science.gov (United States)

    Joseph, Wout; Aerts, Sam; Vandenbossche, Matthias; Thielens, Arno; Martens, Luc

    2016-03-10

    For the first time, a method to assess radiofrequency (RF) electromagnetic field (EMF) exposure of the general public in real environments with a true free-space antenna system is presented. Using lightweight electronics and multiple antennas placed on a drone, it is possible to perform exposure measurements. This technique will enable researchers to measure three-dimensional RF-EMF exposure patterns accurately in the future and at locations currently difficult to access. A measurement procedure and appropriate measurement settings have been developed. As an application, outdoor measurements are performed as a function of height up to 60 m for Global System for Mobile Communications (GSM) 900 MHz base station exposure. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    DEFF Research Database (Denmark)

    Custer, Rocco; Nishijima, Kazuyoshi

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature...... disaggregation model that considers the uncertainty in the disaggregation, taking basis in the scaled Dirichlet distribution. The proposed probabilistic disaggregation model is applied to a portfolio of residential buildings in the Canton Bern, Switzerland, subject to flood risk. Thereby, the model is verified...... are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is generally imperfect, uncertainty arises in disaggregation. This paper therefore proposes a probabilistic...

  10. An energetics-based honeybee nectar-foraging model used to assess the potential for landscape-level pesticide exposure dilution

    Directory of Open Access Journals (Sweden)

    Johannes M. Baveco

    2016-08-01

    Full Text Available Estimating the exposure of honeybees to pesticides on a landscape scale requires models of their spatial foraging behaviour. For this purpose, we developed a mechanistic, energetics-based model for a single day of nectar foraging in complex landscape mosaics. Net energetic efficiency determined resource patch choice. In one version of the model a single optimal patch was selected each hour. In another version, recruitment of foragers was simulated and several patches could be exploited simultaneously. Resource availability changed during the day due to depletion and/or intrinsic properties of the resource (anthesis. The model accounted for the impact of patch distance and size, resource depletion and replenishment, competition with other nectar foragers, and seasonal and diurnal patterns in availability of nectar-providing crops and wild flowers. From the model we derived simple rules for resource patch selection, e.g., for landscapes with mass-flowering crops only, net energetic efficiency would be proportional to the ratio of the energetic content of the nectar divided by distance to the hive. We also determined maximum distances at which resources like oilseed rape and clover were still energetically attractive. We used the model to assess the potential for pesticide exposure dilution in landscapes of different composition and complexity. Dilution means a lower concentration in nectar arriving at the hive compared to the concentration in nectar at a treated field and can result from foraging effort being diverted away from treated fields. Applying the model for all possible hive locations over a large area, distributions of dilution factors were obtained that were characterised by their 90-percentile value. For an area for which detailed spatial data on crops and off-field semi-natural habitats were available, we tested three landscape management scenarios that were expected to lead to exposure dilution: providing alternative resources than

  11. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Fan Chihhao [Department of Safety, Health, and Environmental Engineering, Mingchi University of Technology, Taipei County, Taiwan (China); Wang, G.-S. [Department of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Y.-C. [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu County, Taiwan (China); Ko, C.-H. [School of Forest and Resources Conservation, National Taiwan University, Taipei, Taiwan (China)], E-mail: chunhank@ntu.edu.tw

    2009-03-15

    The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 {mu}g/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs.

  12. Assessment of Exposure to VOCs among Pregnant Women in the National Children's Study.

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M; Wright, David J; Merrill, Lori S; Alwis, K Udeni; Blount, Benjamin C; Mortensen, Mary E; Moye, John; Dellarco, Michael

    2016-03-29

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children's Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  13. Critical elements for human health risk assessment of less than lifetime exposures.

    Science.gov (United States)

    Geraets, Liesbeth; Nijkamp, Monique M; Ter Burg, Wouter

    2016-11-01

    Less than lifetime exposure has confronted risk assessors as to how to interpret the risks for human health in case a chronic health-based limit is exceeded. Intermittent, fluctuating and peak exposures do not match with the basis of the chronic limit values possibly leading to conservative outcomes. This paper presents guidance on how to deal with human risk assessment of less than lifetime exposure. Important steps to be considered are characterization of the human exposure situation, evaluation whether the human less than lifetime exposure scenario corresponds to a non-chronic internal exposure: toxicokinetic and toxicodynamic considerations, and, finally, re-evaluation of the risk assessment. Critical elements for these steps are the mode of action, Haber's rule, and toxicokinetics (ADME) amongst others. Previous work for the endpoints non-genotoxic carcinogenicity and developmental toxicity is included in the guidance. The guidance provides a way to consider the critical elements, without setting default factors to correct for the less than lifetime exposure in risk assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Release of nanomaterials from solid nanocomposites and consumer exposure assessment - a forward-looking review

    DEFF Research Database (Denmark)

    Mackevica, Aiga; Hansen, Steffen Foss

    2016-01-01

    of the studies report their findings in a format that can be used for exposure assessment under REACH, and most do not include characterization of the released particles. Although inhalation, dermal, and oral exposures can be derived using the guidelines on how to complete consumer exposure assessments under......The European chemical legislation requires manufacturers and importers of chemicals to do consumer exposure assessment when the chemical has certain hazards associated to it (e.g. explosive, carcinogenicity, and hazardous to the aquatic environment), but the question is how this obligation can...... be met in light of the scientific uncertainty and technical challenges related to exposure assessment of nanomaterials. In this paper, we investigate to what extent the information and data in the literature can be used to perform consumer exposure assessment according to the REACH requirements and we...

  15. OSHA's approach to risk assessment for setting a revised occupational exposure standard for 1,3-butadiene.

    Science.gov (United States)

    Grossman, E A; Martonik, J

    1990-01-01

    In its 1980 benzene decision [Industrial Union Department, ALF-CIO v. American Petroleum Institute, 448 U.S. 607 (1980)], the Supreme Court ruled that "before he can promulgate any permanent health or safety standard, the Secretary [of Labor] is required to make a threshold finding that a place of employment is unsafe--in the sense that significant risks are present and can be lessened by a change in practices" (448 U.S. at 642). The Occupational Safety and Health Administration (OSHA) has interpreted this to mean that whenever possible, it must quantify the risk associated with occupational exposure to a toxic substance at the current permissible exposure limit (PEL). If OSHA determines that there is significant risk to workers' health at its current standard, then it must quantify the risk associated with a variety of alternative standards to determine at what level, if any, occupational exposure to a substance no longer poses a significant risk. For rulemaking on occupational exposure to 1,3-butadiene, there are two studies that are suitable for quantitative risk assessment. One is a mouse inhalation bioassay conducted by the National Toxicology Program (NTP), and the other is a rat inhalation bioassay conducted by Hazelton Laboratories Europe. Of the four risk assessments that have been submitted to OSHA, all four have used the mouse and/or rat data with a variety of models to quantify the risk associated with occupational exposure to 1,3-butadiene. In addition, OSHA has performed its own risk assessment using the female mouse and female rat data and the one-hit and multistage models.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2401254

  16. Ecological and human exposure assessment to PBDEs in Adige River.

    Science.gov (United States)

    Giulivo, Monica; Suciu, Nicoleta Alina; Eljarrat, Ethel; Gatti, Marina; Capri, Ettore; Barcelo, Damia

    2018-07-01

    The interest for environmental issues and the concern resulting from the potential exposure to contaminants were the starting point to develop methodologies in order to evaluate the consequences that those might have over both the environment and human health. Considering the feature of POPs, including PBDEs, such as bioaccumulation, biomagnification, long-range transport and adverse effects even long time after exposure, risk assessment of POPs requires specific approaches and tools. In this particular context, the MERLIN-Expo tool was used to assess the aquatic environmental exposure of Adige River to PBDEs and the accumulation of PBDEs in humans through the consumption of possible contaminated local aquatic food. The aquatic food web models provided as output of the deterministic simulation the time trend of concentrations for twenty years of BDE-47 and total PBDEs, expressed using the physico-chemical properties of BDE-47, in aquatic organisms of the food web of Adige River. For BDE-47, the highest accumulated concentrations were detected for two benthic species: Thymallus thymallus and Squalius cephalus whereas the lowest concentrations were obtained for the pelagic specie Salmo trutta marmoratus. The trend obtained for the total PBDEs, calculated using the physico-chemical properties of BDE-47, follows the one of BDE-47. For human exposure, different BDE-47 and total PBDEs concentration trends between children, adolescent, adults and elderly were observed, probably correlated with the human intake of fish products in the daily diet and the ability to metabolize these contaminants. In detail, for the adolescents, adults and elderly a continuous accumulation of the target contaminants during the simulation's years was observed, whereas for children a plateau at the end of the simulation period was perceived. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Long-term dietary exposure to lead in young European children: Comparing a pan-European approach with a national exposure assessment

    DEFF Research Database (Denmark)

    Boon, P.E.; Te Biesebeek, J.D.; van Klaveren, J.D.

    2012-01-01

    Long-term dietary exposures to lead in young children were calculated by combining food consumption data of 11 European countries categorised using harmonised broad food categories with occurrence data on lead from different Member States (pan-European approach). The results of the assessment...... in children living in the Netherlands were compared with a long-term lead intake assessment in the same group using Dutch lead concentration data and linking the consumption and concentration data at the highest possible level of detail. Exposures obtained with the pan-European approach were higher than...... the national exposure calculations. For both assessments cereals contributed most to the exposure. The lower dietary exposure in the national study was due to the use of lower lead concentrations and a more optimal linkage of food consumption and concentration data. When a pan-European approach, using...

  18. An objective spinal motion imaging assessment (OSMIA): reliability, accuracy and exposure data.

    OpenAIRE

    Breen, Alan C.; Muggleton, J.M.; Mellor, F.E.

    2006-01-01

    Abstract Background Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA) based on low-dose fluoroscopy and image processing. Methods Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptom...

  19. Presenting of a material exposure health risk assessment model in Oil and Gas Industries (case study: Pars Economic and Energy Region

    Directory of Open Access Journals (Sweden)

    M. Heydari

    2014-02-01

    Result and Conclusion: The results revealed that the quantitative amount of consequence, probability and exposure was 83.2, 8.45, and 2.2, respectively. Generally, the chemical exposure risk number was 1546 which shows that reforming plans are in highly priorities from an economical point of view. William-fine method has the benefit of an accurate chemical exposure by combination of effect severity, exposure probability and detriment rate, and also minimization of personal judgments during the assessment.

  20. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    Science.gov (United States)

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  1. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    Science.gov (United States)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  2. Harmonisation of food categorisation systems for dietary exposure assessments among European children

    DEFF Research Database (Denmark)

    De Neve, Melissa; Sioen, Isabelle; Boon, Polly

    2010-01-01

    Within the European project called EXPOCHI (Individual Food Consumption Data and Exposure Assessment Studies for Children), 14 different European individual food consumption databases of children were used to conduct harmonised dietary exposure assessments for lead, chromium, selenium and food...... colours. For this, two food categorisation systems were developed to classify the food consumption data in such a way that these could be linked to occurrence data of the considered compounds. One system served for the exposure calculations of lead, chromium and selenium. The second system was developed...... for the exposure assessment of food colours. The food categories defined for the lead, chromium and selenium exposure calculations were used as a basis for the food colour categorisation, with adaptations to optimise the linkage with the food colour occurrence data. With this work, an initial impetus was given...

  3. Socio-economic exposure to natural disasters

    International Nuclear Information System (INIS)

    Marin, Giovanni; Modica, Marco

    2017-01-01

    Even though the correct assessment of risks is a key aspect of the risk management analysis, we argue that limited effort has been devoted in the assessment of comprehensive measures of economic exposure at very low scale. For this reason, we aim at providing a series of suitable methodologies to provide a complete and detailed list of the exposure of economic activities to natural disasters. We use Input-Output models to provide information about several socio-economic variables, such as population density, employment density, firms' turnover and capital stock, that can be seen as direct and indirect socio-economic exposure to natural disasters. We then provide an application to the Italian context. These measures can be easily incorporated into risk assessment models to provide a clear picture of the disaster risk for local areas. - Highlights: • Ex ante assessment of economic exposure to disasters at very low geographical scale • Assessment of the cost of natural disasters in ex-post perspective • IO model and spatial autocorrelation to get information on socio-economic variables • Indicators supporting risk assessment and risk management models

  4. Socio-economic exposure to natural disasters

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Giovanni, E-mail: giovanni.marin@uniurb.it [Department of Economics, Society, Politics, University of Urbino ' Carlo Bo' , via Aurelio Saffi, 2, 61029 Urbino (Italy); IRCrES - CNR, Research Institute on Sustainable Economic Growth, Via Corti 12, 20133 - Milano (Italy); SEEDS, Ferrara (Italy); Modica, Marco, E-mail: marco.modica@ircres.cnr.it [IRCrES - CNR, Research Institute on Sustainable Economic Growth, Via Corti 12, 20133 - Milano (Italy); SEEDS, Ferrara (Italy)

    2017-05-15

    Even though the correct assessment of risks is a key aspect of the risk management analysis, we argue that limited effort has been devoted in the assessment of comprehensive measures of economic exposure at very low scale. For this reason, we aim at providing a series of suitable methodologies to provide a complete and detailed list of the exposure of economic activities to natural disasters. We use Input-Output models to provide information about several socio-economic variables, such as population density, employment density, firms' turnover and capital stock, that can be seen as direct and indirect socio-economic exposure to natural disasters. We then provide an application to the Italian context. These measures can be easily incorporated into risk assessment models to provide a clear picture of the disaster risk for local areas. - Highlights: • Ex ante assessment of economic exposure to disasters at very low geographical scale • Assessment of the cost of natural disasters in ex-post perspective • IO model and spatial autocorrelation to get information on socio-economic variables • Indicators supporting risk assessment and risk management models.

  5. Risk assessment for heart disease and workplace ETS exposure among nonsmokers.

    OpenAIRE

    Steenland, K

    1999-01-01

    In 1994 the U.S. Occupational Health and Safety Administration (OSHA) published a study of risk assessment for heart disease and lung cancer resulting from workplace exposure to environmental tobacco smoke (ETS) among nonsmokers. This assessment is currently being revised. The present article considers different possible approaches to a risk assessment for heart disease among nonsmokers resulting from workplace ETS exposure, reviews the approach taken by OSHA in 1994, and suggests some modifi...

  6. Measurement errors in the assessment of exposure to solar ultraviolet radiation and its impact on risk estimates in epidemiological studies.

    Science.gov (United States)

    Dadvand, Payam; Basagaña, Xavier; Barrera-Gómez, Jose; Diffey, Brian; Nieuwenhuijsen, Mark

    2011-07-01

    To date, many studies addressing long-term effects of ultraviolet radiation (UVR) exposure on human health have relied on a range of surrogates such as the latitude of the city of residence, ambient UVR levels, or time spent outdoors to estimate personal UVR exposure. This study aimed to differentiate the contributions of personal behaviour and ambient UVR levels on facial UVR exposure and to evaluate the impact of using UVR exposure surrogates on detecting exposure-outcome associations. Data on time-activity, holiday behaviour, and ambient UVR levels were obtained for adult (aged 25-55 years old) indoor workers in six European cities: Athens (37°N), Grenoble (45°N), Milan (45°N), Prague (50°N), Oxford (52°N), and Helsinki (60°N). Annual UVR facial exposure levels were simulated for 10,000 subjects for each city, using a behavioural UVR exposure model. Within-city variations of facial UVR exposure were three times larger than the variation between cities, mainly because of time-activity patterns. In univariate models, ambient UVR levels, latitude and time spent outdoors, each accounted for less than one fourth of the variation in facial exposure levels. Use of these surrogates to assess long-term exposure to UVR resulted in requiring more than four times more participants to achieve similar statistical power to the study that applied simulated facial exposure. Our results emphasise the importance of integrating both personal behaviour and ambient UVR levels/latitude in exposure assessment methodologies.

  7. Improving the relevance and efficiency of human exposure assessments within the process of regulatory risk assessment.

    Science.gov (United States)

    Money, Chris

    2018-01-24

    The process for undertaking exposure assessments varies dependent on its purpose. But for exposure assessments to be relevant and accurate, they are reliant on access to reliable information on key exposure determinants. Acquiring such information is seldom straightforward and can take significant time and resources. This articles examines how the application of tiered and targeted approaches to information acquisition, within the context of European human health risk assessments, can not only lead to improvements in the efficiency and effectiveness of the process but also in the confidence of stakeholders in its outputs. The article explores how the benefits might be further improved through the coordination of such activities, as well as those areas that represent barriers to wider international harmonisation.

  8. Cumulative health risk assessment: integrated approaches for multiple contaminants, exposures, and effects

    International Nuclear Information System (INIS)

    Rice, Glenn; Teuschler, Linda; MacDonel, Margaret; Butler, Jim; Finster, Molly; Hertzberg, Rick; Harou, Lynne

    2007-01-01

    Available in abstract form only. Full text of publication follows: As information about environmental contamination has increased in recent years, so has public interest in the combined effects of multiple contaminants. This interest has been highlighted by recent tragedies such as the World Trade Center disaster and hurricane Katrina. In fact, assessing multiple contaminants, exposures, and effects has long been an issue for contaminated sites, including U.S. Department of Energy (DOE) legacy waste sites. Local citizens have explicitly asked the federal government to account for cumulative risks, with contaminants moving offsite via groundwater flow, surface runoff, and air dispersal being a common emphasis. Multiple exposures range from ingestion and inhalation to dermal absorption and external gamma irradiation. Three types of concerns can lead to cumulative assessments: (1) specific sources or releases - e.g., industrial facilities or accidental discharges; (2) contaminant levels - in environmental media or human tissues; and (3) elevated rates of disease - e.g., asthma or cancer. The specific initiator frames the assessment strategy, including a determination of appropriate models to be used. Approaches are being developed to better integrate a variety of data, extending from environmental to internal co-location of contaminants and combined effects, to support more practical assessments of cumulative health risks. (authors)

  9. Quantitative assessment of the effect of corrosion product buildup on occupational exposure

    International Nuclear Information System (INIS)

    Divine, J.R.

    1982-10-01

    The program was developed to provide a method for predicting occupational exposures caused by the deposition of radioactive corrosion products outside the core of the primary system of an operating power reactor. This predictive capability will be useful in forecasting total occupational doses during maintenance, inspection, decontamination, waste treatment, and disposal. In developing a reliable predictive model, a better understanding of the parameters important to corrosion product film formation, corrosion product transport, and corrosion product film removal will be developed. This understanding can lead to new concepts in reactor design to minimize the buildup and transport of radioactive corrosion products or to improve methods of operation. To achieve this goal, three objectives were established to provide: (1) criteria for acceptable coolant sampling procedures and sampling equipment that will provide data which will be used in the model development; (2) a quantitative assessment of the effect of corrosion product deposits on occupational exposure; and (3) a model which describes the influence of flow, temperature, coolant chemistry, construction materials, radiation, and other operating parameters on the transport and buildup of corrosion products

  10. Dose related risk and effect assessment model (DREAM) -- A more realistic approach to risk assessment of offshore discharges

    International Nuclear Information System (INIS)

    Johnsen, S.; Furuholt, E.

    1995-01-01

    Risk assessment of discharges from offshore oil and gas production to the marine environment features determination of potential environmental concentration (PEC) levels and no observed effect concentration (NOEC) levels. The PEC values are normally based on dilution of chemical components in the actual discharge source in the recipient, while the NOEC values are determined by applying a safety factor to acute toxic effects from laboratory tests. The DREAM concept focuses on realistic exposure doses as function of contact time and dilution, rather than fixed exposure concentrations of chemicals in long time exposure regimes. In its present state, the DREAM model is based on a number of assumptions with respect to the link between real life exposure doses and effects observed in laboratory tests. A research project has recently been initiated to develop the concept further, with special focus on chronic effects of different chemical compounds on the marine ecosystem. One of the questions that will be addressed is the link between exposure time, dose, concentration and effect. Validation of the safety factors applied for transforming acute toxic data into NOEC values will also be included. The DREAM model has been used by Statoil for risk assessment of discharges from new and existing offshore oil and gas production fields, and has been found to give a much more realistic results than conventional risk assessment tools. The presentation outlines the background for the DREAM approach, describes the model in its present state, discusses further developments and applications, and shows a number of examples on the performance of DREAM

  11. Children's exposure assessment of radiofrequency fields: Comparison between spot and personal measurements.

    Science.gov (United States)

    Gallastegi, Mara; Huss, Anke; Santa-Marina, Loreto; Aurrekoetxea, Juan J; Guxens, Mònica; Birks, Laura Ellen; Ibarluzea, Jesús; Guerra, David; Röösli, Martin; Jiménez-Zabala, Ana

    2018-05-24

    Radiofrequency (RF) fields are widely used and, while it is still unknown whether children are more vulnerable to this type of exposure, it is essential to explore their level of exposure in order to conduct adequate epidemiological studies. Personal measurements provide individualized information, but they are costly in terms of time and resources, especially in large epidemiological studies. Other approaches, such as estimation of time-weighted averages (TWAs) based on spot measurements could simplify the work. The aims of this study were to assess RF exposure in the Spanish INMA birth cohort by spot measurements and by personal measurements in the settings where children tend to spend most of their time, i.e., homes, schools and parks; to identify the settings and sources that contribute most to that exposure; and to explore if exposure assessment based on spot measurements is a valid proxy for personal exposure. When children were 8 years old, spot measurements were conducted in the principal settings of 104 participants: homes (104), schools and their playgrounds (26) and parks (79). At the same time, personal measurements were taken for a subsample of 50 children during 3 days. Exposure assessment based on personal and on spot measurements were compared both in terms of mean exposures and in exposure-dependent categories by means of Bland-Altman plots, Cohen's kappa and McNemar test. Median exposure levels ranged from 29.73 (in children's bedrooms) to 200.10 μW/m 2 (in school playgrounds) for spot measurements and were higher outdoors than indoors. Median personal exposure was 52.13 μW/m 2 and median levels of assessments based on spot measurements ranged from 25.46 to 123.21 μW/m 2 . Based on spot measurements, the sources that contributed most to the exposure were FM radio, mobile phone downlink and Digital Video Broadcasting-Terrestrial, while indoor and personal sources contributed very little (altogether spot measurements, with the latter

  12. Aggregate Exposure and Cumulative Risk Assessment--Integrating Occupational and Non-occupational Risk Factors.

    Science.gov (United States)

    Lentz, T J; Dotson, G S; Williams, P R D; Maier, A; Gadagbui, B; Pandalai, S P; Lamba, A; Hearl, F; Mumtaz, M

    2015-01-01

    Occupational exposure limits have traditionally focused on preventing morbidity and mortality arising from inhalation exposures to individual chemical stressors in the workplace. While central to occupational risk assessment, occupational exposure limits have limited application as a refined disease prevention tool because they do not account for all of the complexities of the work and non-occupational environments and are based on varying health endpoints. To be of greater utility, occupational exposure limits and other risk management tools could integrate broader consideration of risks from multiple exposure pathways and routes (aggregate risk) as well as the combined risk from exposure to both chemical and non-chemical stressors, within and beyond the workplace, including the possibility that such exposures may cause interactions or modify the toxic effects observed (cumulative risk). Although still at a rudimentary stage in many cases, a variety of methods and tools have been developed or are being used in allied risk assessment fields to incorporate such considerations in the risk assessment process. These approaches, which are collectively referred to as cumulative risk assessment, have potential to be adapted or modified for occupational scenarios and provide a tangible path forward for occupational risk assessment. Accounting for complex exposures in the workplace and the broader risks faced by the individual also requires a more complete consideration of the composite effects of occupational and non-occupational risk factors to fully assess and manage worker health problems. Barriers to integrating these different factors remain, but new and ongoing community-based and worker health-related initiatives may provide mechanisms for identifying and integrating risk from aggregate exposures and cumulative risks from all relevant sources, be they occupational or non-occupational.

  13. Chemical Exposure Assessment Program at Los Alamos National Laboratory: A risk based approach

    International Nuclear Information System (INIS)

    Stephenson, D.J.

    1996-01-01

    The University of California Contract And DOE Order 5480.10 require that Los Alamos National Laboratory (LANL) perform health hazard assessments/inventories of all employee workplaces. In response to this LANL has developed the Chemical Exposure Assessment Program. This program provides a systematic risk-based approach to anticipation, recognition, evaluation and control of chemical workplace exposures. Program implementation focuses resources on exposures with the highest risks for causing adverse health effects. Implementation guidance includes procedures for basic characterization, qualitative risk assessment, quantitative validation, and recommendations and reevaluation. Each component of the program is described. It is shown how a systematic method of assessment improves documentation, retrieval, and use of generated exposure information

  14. Road traffic noise: self-reported noise annoyance versus GIS modelled road traffic noise exposure.

    Science.gov (United States)

    Birk, Matthias; Ivina, Olga; von Klot, Stephanie; Babisch, Wolfgang; Heinrich, Joachim

    2011-11-01

    self-reported road traffic noise annoyance is commonly used in epidemiological studies for assessment of potential health effects. Alternatively, some studies have used geographic information system (GIS) modelled exposure to road traffic noise as an objective parameter. The aim of this study was to analyse the association between noise exposure due to neighbouring road traffic and the noise annoyance of adults, taking other determinants into consideration. parents of 951 Munich children from the two German birth cohorts GINIplus and LISAplus reported their annoyance due to road traffic noise at home. GIS modelled road traffic noise exposure (L(den), maximum within a 50 m buffer) from the noise map of the city of Munich was available for all families. GIS-based calculated distance to the closest major road (≥10,000 vehicles per day) and questionnaire based-information about family income, parental education and the type of the street of residence were explored for their potential influence. An ordered logit regression model was applied. The noise levels (L(den)) and the reported noise annoyance were compared with an established exposure-response function. the correlation between noise annoyance and noise exposure (L(den)) was fair (Spearman correlation r(s) = 0.37). The distance to a major road and the type of street were strong predictors for the noise annoyance. The annoyance modelled by the established exposure-response function and that estimated by the ordered logit model were moderately associated (Pearson's correlation r(p) = 0.50). road traffic noise annoyance was associated with GIS modelled neighbouring road traffic noise exposure (L(den)). The distance to a major road and the type of street were additional explanatory factors of the noise annoyance appraisal.

  15. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Sevcenko, V.A.; Rubanovic, A.V.

    2002-01-01

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  16. Development of a new fuzzy exposure model

    International Nuclear Information System (INIS)

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira; Texeira, Marcello Goulart

    2007-01-01

    The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)

  17. Development of a new fuzzy exposure model

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Wagner Eustaquio de; Lira, Carlos Alberto Brayner de Oliveira [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Engenharia de Reatores], E-mail: wagner@ufpe.br, E-mail: cabol@ufpe.br; Texeira, Marcello Goulart [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Terrestrial Modelling Group], E-mail: marcellogt@ime.eb.br

    2007-07-01

    The main topic of this study is the development of an exposure fuzzy model to evaluate the exposure of inhabitants in an area containing uranium, which present a high natural background. In this work, a fuzzy model was created, based on some of the following main factors: activity concentration of uranium, physiological factors and characteristic customs of the exposed individuals. An inference block was created to evaluate some factors of radiation exposure. For this, AHP-fuzzy technique (Analytic Hierarchic Process) was used and its application was demonstrated for a subjected population to the radiation of the natural uranium. The Mandami type fuzzy model was also created from the opinion of specialists. The Monte Carlo method was used to generate a statistics of input data and the daily average exposure served as comparison parameter between the three techniques. The output fuzzy sets were expressed in form of linguistic variables, such as high, medium and low. In the qualitative analysis, the obtained results were satisfactory when translating the opinion of the specialists. In the quantitative analysis, the obtained values are part of the same fuzzy set as the values found in literature. The global results suggest that this type of fuzzy model is highly promising for analysis of exposure to ionizing radiation. (author)

  18. Reconstructing exposures from biomarkers using exposure-pharmacokinetic modeling--A case study with carbaryl.

    Science.gov (United States)

    Brown, Kathleen; Phillips, Martin; Grulke, Christopher; Yoon, Miyoung; Young, Bruce; McDougall, Robin; Leonard, Jeremy; Lu, Jingtao; Lefew, William; Tan, Yu-Mei

    2015-12-01

    Sources of uncertainty involved in exposure reconstruction for short half-life chemicals were characterized using computational models that link external exposures to biomarkers. Using carbaryl as an example, an exposure model, the Cumulative and Aggregate Risk Evaluation System (CARES), was used to generate time-concentration profiles for 500 virtual individuals exposed to carbaryl. These exposure profiles were used as inputs into a physiologically based pharmacokinetic (PBPK) model to predict urinary biomarker concentrations. These matching dietary intake levels and biomarker concentrations were used to (1) compare three reverse dosimetry approaches based on their ability to predict the central tendency of the intake dose distribution; and (2) identify parameters necessary for a more accurate exposure reconstruction. This study illustrates the trade-offs between using non-iterative reverse dosimetry methods that are fast, less precise and iterative methods that are slow, more precise. This study also intimates the necessity of including urine flow rate and elapsed time between last dose and urine sampling as part of the biomarker sampling collection for better interpretation of urinary biomarker data of short biological half-life chemicals. Resolution of these critical data gaps can allow exposure reconstruction methods to better predict population-level intake doses from large biomonitoring studies. Published by Elsevier Inc.

  19. The occurrence, exposure and risk assessment of perfluoroalkyl acids in food from mainland, China.

    Science.gov (United States)

    Wang, Xinxuan; Zhang, Ruobing; Zhang, Hong; Wang, Yanping

    2017-11-01

    To study the contamination of perfluoroalkyl acids (PFAAs) in Chinese food and the risk of dietary exposure for the Chinese population, the data of 17 PFAAs covering 38 cities throughout China in 15 groups of foods were collected for meta-analysis from published and available research literature. Using food consumption and body weight parameters, estimated dietary intakes (EDIs) were calculated for evaluation using the Scenario-Based Risk Assessment (SceBRA) modelling. Among food groups, the highest ΣPFAAs concentrations and EDI contributions were both found in poultry (363 ng/g), fish and shrimp (313 ng/g), dark vegetables (309 ng/g), fruits (116 ng/g) and pork (25 ng/g). The EDI of adults in the high-exposure scenario was about twice that of the intermediate-exposure scenario, while the EDI of children was about twice that of adults' EDI in the intermediate-exposure scenario. In addition, the PFOS EDI for children under high exposure approached its tolerable daily intake (TDI). Therefore high dietary exposure to PFAAs is giving rise to an increased health risk, especially for children.

  20. Assessing multimedia/multipathway exposures to inorganic arsenic at population and individual level using MERLIN-Expo.

    Science.gov (United States)

    Van Holderbeke, Mirja; Fierens, Tine; Standaert, Arnout; Cornelis, Christa; Brochot, Céline; Ciffroy, Philippe; Johansson, Erik; Bierkens, Johan

    2016-10-15

    In this study, we report on model simulations performed using the newly developed exposure tool, MERLIN-Expo, in order to assess inorganic arsenic (iAs) exposure to adults resulting from past emissions by non-ferrous smelters in Belgium (Northern Campine area). Exposure scenarios were constructed to estimate external iAs exposure as well as the toxicologically relevant As (tAs, i.e., iAs, MMA and DMA) body burden in adults living in the vicinity of the former industrial sites as compared to adults living in adjacent areas and a reference area. Two scenarios are discussed: a first scenario studying exposure to iAs at the aggregated population level and a second scenario studying exposure at the individual level for a random sub-sample of subjects in each of the three different study areas. These two scenarios only differ in the type of human related input data (i.e., time-activity data, ingestion rates and consumption patterns) that were used, namely averages (incl. probability density functions, PDFs) in the simulation at population level and subject-specific values in the simulation at individual level. The model predictions are shown to be lower than the corresponding biomonitoring data from the monitoring campaign. Urinary tAs levels in adults, irrespective of the area they lived in, were under-predicted by MERLIN-Expo by 40% on average. The model predictions for individual adults, by contrast, under-predict the biomonitoring data by 7% on average, but with more important under-predictions for subjects at the upper end of exposure. Still, average predicted urinary tAs levels from the simulations at population level and at individual level overlap, and, at least for the current case, lead to similar conclusions. These results constitute a first and partial verification of the model performance of MERLIN-Expo when dealing with iAs in a complex site-specific exposure scenario, and demonstrate the robustness of the modelling tool for these situations. Copyright

  1. Human health risk assessment of lead from mining activities at semi-arid locations in the context of total lead exposure.

    Science.gov (United States)

    Zheng, Jiajia; Huynh, Trang; Gasparon, Massimo; Ng, Jack; Noller, Barry

    2013-12-01

    Lead from historical mining and mineral processing activities may pose potential human health risks if materials with high concentrations of bioavailable lead minerals are released to the environment. Since the Joint Expert Committee on Food Additives of Food and Agriculture Organization/World Health Organization withdrew the Provisional Tolerable Weekly Intake of lead in 2011, an alternative method was required for lead exposure assessment. This study evaluated the potential lead hazard to young children (0-7 years) from a historical mining location at a semi-arid area using the U.S. EPA Integrated Exposure Uptake Biokinetic (IEUBK) Model, with selected site-specific input data. This study assessed lead exposure via the inhalation pathway for children living in a location affected by lead mining activities and with specific reference to semi-arid conditions and made comparison with the ingestion pathway by using the physiologically based extraction test for gastro-intestinal simulation. Sensitivity analysis for major IEUBK input parameters was conducted. Three groups of input parameters were classified according to the results of predicted blood concentrations. The modelled lead absorption attributed to the inhalation route was lower than 2 % (mean ± SE, 0.9 % ± 0.1 %) of all lead intake routes and was demonstrated as a less significant exposure pathway to children's blood, compared with ingestion. Whilst dermal exposure was negligible, diet and ingestion of soil and dust were the dominant parameters in terms of children's blood lead prediction. The exposure assessment identified the changing role of dietary intake when house lead loadings varied. Recommendations were also made to conduct comprehensive site-specific human health risk assessment in future studies of lead exposure under a semi-arid climate.

  2. Assessment of soil lead exposure in children in Shenyang, China

    International Nuclear Information System (INIS)

    Ren, H.M.; Wang, J.D.; Zhang, X.L.

    2006-01-01

    Soil lead pollution is serious in Shenyang, China. The paper brings together the soil work, the bioaccessibility, and the blood lead data to assess the soil lead exposure in children in Shenyang, China. Approximately 15.25% of the samples were above China Environment Protection Agency guideline concentration for soil Pb to protect human from health risk (350 mg kg -1 ). Pb concentrations varied among use scenarios. The main lead contamination sources are industry emission and automobile exhaust. Bioaccessibility also varied among use scenarios. Children, who ingested soil from industrial area, public parks, kindergarten playground, and commercial area, are more susceptible to soil lead toxicity. The industrial area soil samples presented higher bioaccessibility compared to the other use scenario soil samples contaminated by automobile exhaust. The result also suggested a most significant linear relationship between the level of Pb contamination and the amount of Pb mobilized from soil into ingestion juice. Soil pH seemed to have insignificant influence on bioaccessibility in the present study. Bioaccessibility was mainly controlled by other factors that are not investigated in this study. A linear relationship between children blood lead and soil intestinal bioaccessibility was present in the study. Children who are 4-5 years old are more likely to demonstrate the significant relationship between soil lead bioaccessibility and blood lead as their behaviors place them at greatest risk of soil lead toxicity, and their blood lead levels are more likely to represent recent exposure. - Children were exposed to soil lead and the exposure was assessed by bioaccessibility using in vitro digestion model in a modified version

  3. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale

    International Nuclear Information System (INIS)

    Corburn, Jason

    2007-01-01

    Land use data are increasingly understood as important indicators of potential environmental health risk in urban areas where micro-scale or neighborhood level hazard exposure data are not routinely collected. This paper aims to offer a method for estimating the distribution of air toxics in urban neighborhoods using land use information because actual air monitoring data rarely exist at this scale. Using Geographic Information System spatial modeling tools, we estimate air toxics concentrations across neighborhoods in New York City and statistically compare our model with the US Environmental Protection Agency's National Air Toxic Assessment and air monitoring data across three NYC neighborhoods. We conclude that land use data can act as a good proxy for estimating neighborhood scale air toxics, particularly in the absence of monitoring data. In addition, the paper suggests that land use data can expand the reach of environmental impact assessments that routinely exclude analyses of potential exposures to urban air toxics at the neighborhood scale

  4. A dermatotoxicokinetic model of human exposures to jet fuel.

    Science.gov (United States)

    Kim, David; Andersen, Melvin E; Nylander-French, Leena A

    2006-09-01

    Workers, both in the military and the commercial airline industry, are exposed to jet fuel by inhalation and dermal contact. We present a dermatotoxicokinetic (DTK) model that quantifies the absorption, distribution, and elimination of aromatic and aliphatic components of jet fuel following dermal exposures in humans. Kinetic data were obtained from 10 healthy volunteers following a single dose of JP-8 to the forearm over a surface area of 20 cm2. Blood samples were taken before exposure (t = 0 h), after exposure (t = 0.5 h), and every 0.5 h for up to 3.5 h postexposure. The DTK model that best fit the data included five compartments: (1) surface, (2) stratum corneum (SC), (3) viable epidermis, (4) blood, and (5) storage. The DTK model was used to predict blood concentrations of the components of JP-8 based on dermal-exposure measurements made in occupational-exposure settings in order to better understand the toxicokinetic behavior of these compounds. Monte Carlo simulations of dermal exposure and cumulative internal dose demonstrated no overlap among the low-, medium-, and high-exposure groups. The DTK model provides a quantitative understanding of the relationship between the mass of JP-8 components in the SC and the concentrations of each component in the systemic circulation. The model may be used for the development of a toxicokinetic modeling strategy for multiroute exposure to jet fuel.

  5. The multimedia models for the evaluation of exposure bond to the atmospheric emissions of classified installations; Les modeles multimedia pour l'evaluation des expositions liees aux emissions atmospheriques des installations classees

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, R

    2001-12-15

    Risk assessment and environmental impacts studies are realized to preserve the public health. Today one of the most used approach is the use of an atmospheric dispersion model to assess the risks. The data are then injected in a calculation software of exposure bond to polluted soils, to evaluate the risks of non direct exposure. This report details and evaluates the models corresponding to the need: the methodology for assessing Health Risks associated with multiple pathways of exposure to combustor, human health risk assessment proto col for hazardous waste combustion facilities, EUSES, CALTOX, MEPAS, MEND-TOX, RESRAD, MMSOILS, FRAMES-HWIR, PC-GEMS and TRIM. (A.L.B.)

  6. Environmental exposure assessment framework for nanoparticles in solid waste

    Science.gov (United States)

    Boldrin, Alessio; Hansen, Steffen Foss; Baun, Anders; Hartmann, Nanna Isabella Bloch; Astrup, Thomas Fruergaard

    2014-06-01

    Information related to the potential environmental exposure of engineered nanomaterials (ENMs) in the solid waste management phase is extremely scarce. In this paper, we define nanowaste as separately collected or collectable waste materials which are or contain ENMs, and we present a five-step framework for the systematic assessment of ENM exposure during nanowaste management. The framework includes deriving EOL nanoproducts and evaluating the physicochemical properties of the nanostructure, matrix properties and nanowaste treatment processes as well as transformation processes and environment releases, eventually leading to a final assessment of potential ENM exposure. The proposed framework was applied to three selected nanoproducts: nanosilver polyester textile, nanoTiO2 sunscreen lotion and carbon nanotube tennis racquets. We found that the potential global environmental exposure of ENMs associated with these three products was an estimated 0.5-143 Mg/year, which can also be characterised qualitatively as medium, medium, low, respectively. Specific challenges remain and should be subject to further research: (1) analytical techniques for the characterisation of nanowaste and its transformation during waste treatment processes, (2) mechanisms for the release of ENMs, (3) the quantification of nanowaste amounts at the regional scale, (4) a definition of acceptable limit values for exposure to ENMs from nanowaste and (5) the reporting of nanowaste generation data.

  7. Development of a method for personal, spatiotemporal exposure assessment.

    Science.gov (United States)

    Adams, Colby; Riggs, Philip; Volckens, John

    2009-07-01

    This work describes the development and evaluation of a high resolution, space and time-referenced sampling method for personal exposure assessment to airborne particulate matter (PM). This method integrates continuous measures of personal PM levels with the corresponding location-activity (i.e. work/school, home, transit) of the subject. Monitoring equipment include a small, portable global positioning system (GPS) receiver, a miniature aerosol nephelometer, and an ambient temperature monitor to estimate the location, time, and magnitude of personal exposure to particulate matter air pollution. Precision and accuracy of each component, as well as the integrated method performance were tested in a combination of laboratory and field tests. Spatial data was apportioned into pre-determined location-activity categories (i.e. work/school, home, transit) with a simple, temporospatially-based algorithm. The apportioning algorithm was extremely effective with an overall accuracy of 99.6%. This method allows examination of an individual's estimated exposure through space and time, which may provide new insights into exposure-activity relationships not possible with traditional exposure assessment techniques (i.e., time-integrated, filter-based measurements). Furthermore, the method is applicable to any contaminant or stressor that can be measured on an individual with a direct-reading sensor.

  8. Probabilistic disaggregation model with application to natural hazard risk assessment of portfolios

    OpenAIRE

    Custer, Rocco; Nishijima, Kazuyoshi

    2012-01-01

    In natural hazard risk assessment, a resolution mismatch between hazard data and aggregated exposure data is often observed. A possible solution to this issue is the disaggregation of exposure data to match the spatial resolution of hazard data. Disaggregation models available in literature are usually deterministic and make use of auxiliary indicator, such as land cover, to spatially distribute exposures. As the dependence between auxiliary indicator and disaggregated number of exposures is ...

  9. Risk assessment of fluoride exposure in drinking water of Tunisia.

    Science.gov (United States)

    Guissouma, Wiem; Hakami, Othman; Al-Rajab, Abdul Jabbar; Tarhouni, Jamila

    2017-06-01

    The presence of fluoride in drinking water is known to reduce dental cavities among consumers, but an excessive intake of this anion might leads to dental and skeletal fluorosis. This study reports a complete survey of the fluoridated tap water taken from 100 water consumption points in Tunisia. The fluoride concentrations in tap water were between 0 and 2.4 mg L -1 . Risk assessment of Fluoride exposure was assessed depending on the age of consumers using a four-step method: hazard identification, toxicity reference values selection (TRVs), daily exposure assessment, and risk characterization. Our findings suggest that approximately 75% of the Tunisian population is at risk for dental decay, 25% have a potential dental fluorosis risk, and 20% might have a skeletal fluorosis risk according to the limits of fluoride in drinking water recommended by WHO. More investigations are recommended to assess the exposure risk of fluoride in other sources of drinking water such as bottled water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Elaboration of a concept for the cumulative environmental exposure assessment of biocides

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Rita; Bunke, Dirk; Moch, Katja [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie e.V., Freiburg im Breisgau (Germany); Gartiser, Stefan [Hydrotox GmbH, Freiburg im Breisgau (Germany)

    2011-12-15

    Article 10(1) of the EU Biocidal Products Directive 98/8/EC (BPD) requires that for the inclusion of an active substance in Annex I, Annex IA or IB, cumulation effects from the use of biocidal products containing the same active substance shall be taken into account, where relevant. The study proves the feasibility of a technical realisation of Article 10(1) of the BPD and elaborates a first concept for the cumulative environmental exposure assessment of biocides. Existing requirements concerning cumulative assessments in other regulatory frameworks have been evaluated and their applicability for biocides has been examined. Technical terms and definitions used in this context were documented with the aim to harmonise terminology with other frameworks and to set up a precise definition within the BPD. Furthermore, application conditions of biocidal products have been analysed to find out for which cumulative exposure assessments may be relevant. Different parameters were identified which might serve as indicators for the relevance of cumulative exposure assessments. These indicators were then integrated in a flow chart by means of which the relevance of cumulative exposure assessments can be checked. Finally, proposals for the technical performance of cumulative exposure assessments within the Review Programme have been elaborated with the aim to bring the results of the project into the upcoming development and harmonization processes on EU level. (orig.)

  11. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Variation in calculated human exposure. Comparison of calculations with seven European human exposure models

    NARCIS (Netherlands)

    Swartjes F; ECO

    2003-01-01

    Twenty scenarios, differing with respect to land use, soil type and contaminant, formed the basis for calculating human exposure from soil contaminants with the use of models contributed by seven European countries (one model per country). Here, the human exposures to children and children

  13. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases.

    Science.gov (United States)

    van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik

    2013-01-01

    Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  15. A Chemical Activity Approach to Exposure and Risk Assessment of Chemicals

    DEFF Research Database (Denmark)

    Gobas, Frank A. P. C.; Mayer, Philipp; Parkerton, Thomas F.

    2018-01-01

    activity approach, its strengths and limitations, and provides examples of how this concept may be applied to the management of single chemicals and chemical mixtures. The examples demonstrate that the chemical activity approach provides a useful framework for 1) compiling and evaluating exposure......To support the goals articulated in the vision for exposure and risk assessment in the twenty-first century, we highlight the application of a thermodynamic chemical activity approach for the exposure and risk assessment of chemicals in the environment. The present article describes the chemical...... assessment. The article further illustrates that the chemical activity approach can support an adaptive management strategy for environmental stewardship of chemicals where “safe” chemical activities are established based on toxicological studies and presented as guidelines for environmental quality...

  16. Probabilistic dietary exposure models

    NARCIS (Netherlands)

    Boon, Polly E.; Voet, van der H.

    2015-01-01

    Exposure models are used to calculate the amount of potential harmful chemicals ingested by a human population. Examples of harmful chemicals are residues of pesticides, chemicals entering food from the environment (such as dioxins, cadmium, lead, mercury), and chemicals that are generated via

  17. Exposure Assessment of Diesel Bus Emissions

    Directory of Open Access Journals (Sweden)

    Werner Hofmann

    2006-12-01

    Full Text Available The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG powered buses. Background (outside of the bus station and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform

  18. Assessing asbestos exposure potential in nonindustrial settings.

    Science.gov (United States)

    Chang, S N; White, L E; Scott, W D

    1987-01-01

    The presence of asbestos containing materials (ACM) in office and commercial buildings is a significant environmental problem. Asbestosis, mesothelioma and lung cancer have been linked with industrial exposure to airborne asbestos. The extensive use of asbestos products in buildings has raised concerns about the widespread exposure of the general public to asbestos in nonoccupational settings. The presence of asbestos in a building does not necessarily mean that significant exposure of the occupants of the building has occurred, but it is important that the asbestos be monitored regularly to ensure that fibers do not become airborne. If ACM are contained within a matrix and not disturbed, exposure is unlikely. However, if the asbestos becomes friable (crumbling) or if building maintenance, repair, renovation or other activities disturb ACM, airborne asbestos fibers may be a source of exposure to the occupants of the building. Currently, asbestos exposure assessment is conducted by a phase contrast light microscope (PCM) technique. Due to its inherent limitation in resolution and the generic counting rules used, analysis by the PCM method underestimates the airborne asbestos fiber concentration as compared to analysis by transmission electron microscopy (TEM). It is important that the air monitoring results analyzed by PCM be interpreted carefully in conjunction with a survey by a professional to judge the physical condition of the ACM in buildings. Exposure levels to airborne asbestos fibers vary from day to day and depend on the physical condition of the material involved and the type of operating and maintenance program in place.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-15

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information—inside hotspots or in search of them—based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km{sup 2}. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2 dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. -- Highlights: • We present an

  20. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling

    International Nuclear Information System (INIS)

    Aerts, Sam; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-01-01

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information—inside hotspots or in search of them—based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km 2 . In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2 dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. -- Highlights: • We present an

  1. Added value of experts' knowledge to improve a quantitative microbial exposure assessment model--Application to aseptic-UHT food products.

    Science.gov (United States)

    Pujol, Laure; Johnson, Nicholas Brian; Magras, Catherine; Albert, Isabelle; Membré, Jeanne-Marie

    2015-10-15

    In a previous study, a quantitative microbial exposure assessment (QMEA) model applied to an aseptic-UHT food process was developed [Pujol, L., Albert, I., Magras, C., Johnson, N. B., Membré, J. M. Probabilistic exposure assessment model to estimate aseptic UHT product failure rate. 2015 International Journal of Food Microbiology. 192, 124-141]. It quantified Sterility Failure Rate (SFR) associated with Bacillus cereus and Geobacillus stearothermophilus per process module (nine modules in total from raw material reception to end-product storage). Previously, the probabilistic model inputs were set by experts (using knowledge and in-house data). However, only the variability dimension was taken into account. The model was then improved using expert elicitation knowledge in two ways. First, the model was refined by adding the uncertainty dimension to the probabilistic inputs, enabling to set a second order Monte Carlo analysis. The eight following inputs, and their impact on SFR, are presented in detail in this present study: D-value for each bacteria of interest (B. cereus and G. stearothermophilus) associated with the inactivation model for the UHT treatment step, i.e., two inputs; log reduction (decimal reduction) number associated with the inactivation model for the packaging sterilization step for each bacterium and each part of the packaging (product container and sealing component), i.e., four inputs; and bacterial spore air load of the aseptic tank and the filler cabinet rooms, i.e., two inputs. Second, the model was improved by leveraging expert knowledge to develop further the existing model. The proportion of bacteria in the product which settled on surface of pipes (between the UHT treatment and the aseptic tank on one hand, and between the aseptic tank and the filler cabinet on the other hand) leading to a possible biofilm formation for each bacterium, was better characterized. It was modeled as a function of the hygienic design level of the aseptic

  2. Assessing human exposure risk to cadmium through inhalation and seafood consumption

    International Nuclear Information System (INIS)

    Ju, Yun-Ru; Chen, Wei-Yu; Liao, Chung-Min

    2012-01-01

    Highlights: ► Trophically available fraction in seafood and bioaccessibility is linked. ► Human health risk to Cd can via inhalation and seafood consumption. ► Female had the higher Cd accumulation in urine and blood than male. ► Cigarette smoking is a major determinant of human Cd intake. - Abstract: The role of cadmium (Cd) bioaccessibility in risk assessment is less well studied. The aim of this study was to assess human health risk to Cd through inhalation and seafood consumption by incorporating bioaccessibility. The relationships between trophically available Cd and bioaccessibility were constructed based on available experimental data. We estimated Cd concentrations in human urine and blood via daily intake from seafood consumption and inhalation based on a physiologically-based pharmacokinetic (PBPK) model. A Hill-based dose–response model was used to assess human renal dysfunction and peripheral arterial disease risks for long-term Cd exposure. Here we showed that fish had higher bioaccessibility (∼83.7%) than that of shellfish (∼73.2%) for human ingestion. Our results indicated that glomerular and tubular damage among different genders and smokers ranged from 18.03 to 18.18%. Our analysis showed that nonsmokers had 50% probability of peripheral arterial disease level exceeding from 3.28 to 8.80%. Smoking populations had 2–3 folds higher morbidity risk of peripheral arterial disease than those of nonsmokers. Our study concluded that the adverse effects of Cd exposure are exacerbated when high seafood consumption coincides with cigarette smoking. Our work provides a framework that could more accurately address risk dose dependency of Cd hazard.

  3. Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Lin, Chia-Jung; Liao, Chung-Min

    2014-01-01

    Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use. -- Highlights: • Environmentally relevant concentrations of anti-influenza drug have ecotoxicologically important effects. • Tamiflu is unlikely to pose a significant chronic environmental risk during seasonal influenza. • Chronic environmental risk posed by Tamiflu during pandemic is alarming. • Tertiary process in sewage treatment plants is crucial in mitigating Tamiflu exposure risk. -- A probabilistic framework can be used for assessing exposure risks posed by environmentally relevant concentrations of anti-influenza drug in aquatic ecosystems

  4. Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

    Science.gov (United States)

    Iskandar, Anita R.; Xiang, Yang; Frentzel, Stefan; Talikka, Marja; Leroy, Patrice; Kuehn, Diana; Guedj, Emmanuel; Martin, Florian; Mathis, Carole; Ivanov, Nikolai V.; Peitsch, Manuel C.; Hoeng, Julia

    2015-01-01

    Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model. PMID:26085348

  5. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: Methods and application to a Dutch urban area

    International Nuclear Information System (INIS)

    Beckx, Carolien; Int Panis, Luc; Arentze, Theo; Janssens, Davy; Torfs, Rudi; Broekx, Steven; Wets, Geert

    2009-01-01

    Recent air quality studies have highlighted that important differences in pollutant concentrations can occur over the day and between different locations. Traditional exposure analyses, however, assume that people are only exposed to pollution at their place of residence. Activity-based models, which recently have emerged from the field of transportation research, offer a technique to micro-simulate activity patterns of a population with a high resolution in space and time. Due to their characteristics, this model can be applied to establish a dynamic exposure assessment to air pollution. This paper presents a new exposure methodology, using a micro-simulator of activity-travel behaviour, to develop a dynamic exposure assessment. The methodology is applied to a Dutch urban area to demonstrate the advantages of the approach for exposure analysis. The results for the exposure to PM 10 and PM 2.5 , air pollutants considered as hazardous for human health, reveal large differences between the static and the dynamic approach, mainly due to an underestimation of the number of hours spent in the urban region by the static method. We can conclude that this dynamic population modelling approach is an important improvement over traditional methods and offers a new and more sensitive way for estimating population exposure to air pollution. In the light of the new European directive, aimed at reducing the exposure of the population to PM 2.5 , this new approach contributes to a much more accurate exposure assessment that helps evaluate policies to reduce public exposure to air pollution

  6. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    Science.gov (United States)

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  7. Consumer behaviour survey for assessing exposure from consumer products: a feasibility study.

    Science.gov (United States)

    Schneider, Klaus; Recke, Selina; Kaiser, Eva; Götte, Sebastian; Berkefeld, Henrike; Lässig, Juliane; Rüdiger, Thomas; Lindtner, Oliver; Oltmanns, Jan

    2018-05-23

    Evaluating chemical exposures from consumer products is an essential part of chemical safety assessments under REACH and may also be important to demonstrate compliance with consumer product legislation. Modelling of consumer exposure needs input information on the substance (e.g. vapour pressure), the product(s) containing the substance (e.g. concentration) and on consumer behaviour (e.g. use frequency and amount of product used). This feasibility study in Germany investigated methods for conducting a consumer survey in order to identify and retrieve information on frequency, duration, use amounts and use conditions for six example product types (four mixtures, two articles): hand dishwashing liquid, cockpit spray, fillers, paints and lacquers, shoes made of rubber or plastic, and ball-pens/pencils. Retrospective questionnaire methods (Consumer Product Questionnaire (CPQ), and Recall-Foresight Questionnaire (RFQ)) as well as protocol methods (written reporting by participants and video documentation) were used. A combination of retrospective questionnaire and written protocol methods was identified to provide valid information in a resource-efficient way. Relevant information, which can readily be used in exposure modelling, was obtained for all parameters and product types investigated. Based on the observations in this feasibility study, recommendations are given for designing a large consumer survey.

  8. Development of exposure scenarios for CERCLA risk assessments at the Savannah River Site

    International Nuclear Information System (INIS)

    Nix, D.W.; Immel, J.W.; Phifer, M.A.

    1992-01-01

    A CERCLA Baseline Risk Assessment (BRA) is performed to determine if there are any potential risks to human health and the environment from waste unit at SRS. The SRS has numerous waste units to evaluate in the RFMU and CMS/FS programs and, in order to provide a consistent approach, four standard exposure scenarios were developed for exposure assessments to be used in human health risk assessments. The standard exposure scenarios are divided into two temporal categories: (a) Current Land Use in the BRA, and (b) Future Land Use in the RERA. The Current Land Use scenarios consist of the evaluation of human health risk for Industrial Exposure (of a worker not involved in waste unit characterization or remediation), a Trespasser, a hypothetical current On-site Resident, and an Off-site Resident. The Future Land Use scenario considers exposure to an On-site Resident following termination of institutional control in the absence of any remedial action (No Action Alternative), as well as evaluating potential remedial alternatives against the four scenarios from the BRA. A critical facet in the development of a BRA or RERA is the scoping of exposure scenarios that reflect actual conditions at a waste unit, rather than using factors such as EPA Standard Default Exposure Scenarios (OSWER Directive 9285.6-03) that are based on upper-bound exposures that tend to reflect worst case conditions. The use of site-specific information for developing risk assessment exposure scenarios will result in a more realistic estimate of Reasonable Maximum Exposure for SRS waste units

  9. Development of exposure scenarios for CERCLA risk assessments at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Nix, D.W.; Immel, J.W. [Westinghouse Savannah River Co., Aiken, SC (United States); Phifer, M.A. [Tennessee Univ., Knoxville, TN (United States). Dept. of Civil Engineering

    1992-12-31

    A CERCLA Baseline Risk Assessment (BRA) is performed to determine if there are any potential risks to human health and the environment from waste unit at SRS. The SRS has numerous waste units to evaluate in the RFMU and CMS/FS programs and, in order to provide a consistent approach, four standard exposure scenarios were developed for exposure assessments to be used in human health risk assessments. The standard exposure scenarios are divided into two temporal categories: (a) Current Land Use in the BRA, and (b) Future Land Use in the RERA. The Current Land Use scenarios consist of the evaluation of human health risk for Industrial Exposure (of a worker not involved in waste unit characterization or remediation), a Trespasser, a hypothetical current On-site Resident, and an Off-site Resident. The Future Land Use scenario considers exposure to an On-site Resident following termination of institutional control in the absence of any remedial action (No Action Alternative), as well as evaluating potential remedial alternatives against the four scenarios from the BRA. A critical facet in the development of a BRA or RERA is the scoping of exposure scenarios that reflect actual conditions at a waste unit, rather than using factors such as EPA Standard Default Exposure Scenarios (OSWER Directive 9285.6-03) that are based on upper-bound exposures that tend to reflect worst case conditions. The use of site-specific information for developing risk assessment exposure scenarios will result in a more realistic estimate of Reasonable Maximum Exposure for SRS waste units.

  10. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Directory of Open Access Journals (Sweden)

    Elizabeth Barksdale Boyle

    2016-03-01

    Full Text Available Epidemiologic studies can measure exposure to volatile organic compounds (VOCs using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS. We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking and by observations by a trained data collector (presence of scented products in homes. We found several significant (p < 0.01 relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite

  11. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M.; Wright, David J.; Merrill, Lori S.; Alwis, K. Udeni; Blount, Benjamin C.; Mortensen, Mary E.; Moye, John; Dellarco, Michael

    2016-01-01

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  12. An Integrated Approach to Assess Exposure and Health-Risk from Polycyclic Aromatic Hydrocarbons (PAHs in a Fastener Manufacturing Industry

    Directory of Open Access Journals (Sweden)

    Hsin-I Hsu

    2014-09-01

    Full Text Available An integrated approach was developed to assess exposure and health-risk from polycyclic aromatic hydrocarbons (PAHs contained in oil mists in a fastener manufacturing industry. One previously developed model and one new model were adopted for predicting oil mist exposure concentrations emitted from metal work fluid (MWF and PAHs contained in MWF by using the fastener production rate (Pr and cumulative fastener production rate (CPr as predictors, respectively. By applying the annual Pr and CPr records to the above two models, long-term workplace PAH exposure concentrations were predicted. In addition, true exposure data was also collected from the field. The predicted and measured concentrations respectively served as the prior and likelihood distributions in the Bayesian decision analysis (BDA, and the resultant posterior distributions were used to determine the long-term exposure and health-risks posed on workers. Results show that long term exposures to PAHs would result in a 3.1%, 96.7%, and 73.4% chance of exceeding the PEL-TWA (0.2 mg/m3, action level (0.1 mg/m3, and acceptable health risk (10−3, respectively. In conclusion, preventive measures should be taken immediately to reduce workers’ PAH exposures.

  13. An assessment of residential exposure to environmental noise at a shipping port.

    Science.gov (United States)

    Murphy, Enda; King, Eoin A

    2014-02-01

    The World Health Organisation has recently acknowledged that contrary to the trend for other environmental stressors, noise exposure is increasing in Europe. However, little research has been conducted on environmental noise exposure to handling activity at shipping ports. This paper reports on research examining the extent of noise exposure for residents within the vicinity of Dublin Port, Ireland using the nation's largest port terminal as a proxy for port noise. In order to assess the level of exposure in the area, long-term measurements were undertaken at the most exposed residential façade for a period of 45days to determine the extent of night-time exposure that was above levels recommended by the World Health Organisation. The indicators L90, Leq and LMax were used to determine exposure levels. The results show that exposure is above night-time guideline limits set down by the WHO, above Irish levels for the assessment of noise mitigation and highlight the extent to which port noise can be a significant environmental stressor. The research also investigated the extent of low-frequency noise (which is associated with greater health issues) from night-time port handling activity and found a significant low-frequency component indicating the negative health issues that might arise from port noise exposure more generally. We also undertook semi-structured interviews with residents to qualitatively assess the self-reported impact of prolonged night-time noise exposure for local residents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The margin of internal exposure (MOIE) concept for dermal risk assessment based on oral toxicity data - A case study with caffeine.

    Science.gov (United States)

    Bessems, Jos G M; Paini, Alicia; Gajewska, Monika; Worth, Andrew

    2017-12-01

    Route-to-route extrapolation is a common part of human risk assessment. Data from oral animal toxicity studies are commonly used to assess the safety of various but specific human dermal exposure scenarios. Using theoretical examples of various user scenarios, it was concluded that delineation of a generally applicable human dermal limit value is not a practicable approach, due to the wide variety of possible human exposure scenarios, including its consequences for internal exposure. This paper uses physiologically based kinetic (PBK) modelling approaches to predict animal as well as human internal exposure dose metrics and for the first time, introduces the concept of Margin of Internal Exposure (MOIE) based on these internal dose metrics. Caffeine was chosen to illustrate this approach. It is a substance that is often found in cosmetics and for which oral repeated dose toxicity data were available. A rat PBK model was constructed in order to convert the oral NOAEL to rat internal exposure dose metrics, i.e. the area under the curve (AUC) and the maximum concentration (C max ), both in plasma. A human oral PBK model was constructed and calibrated using human volunteer data and adapted to accommodate dermal absorption following human dermal exposure. Use of the MOIE approach based on internal dose metrics predictions provides excellent opportunities to investigate the consequences of variations in human dermal exposure scenarios. It can accommodate within-day variation in plasma concentrations and is scientifically more robust than assuming just an exposure in mg/kg bw/day. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides.

    Science.gov (United States)

    van der Voet, Hilko; de Boer, Waldo J; Kruisselbrink, Johannes W; Goedhart, Paul W; van der Heijden, Gerie W A M; Kennedy, Marc C; Boon, Polly E; van Klaveren, Jacob D

    2015-05-01

    Pesticide risk assessment is hampered by worst-case assumptions leading to overly pessimistic assessments. On the other hand, cumulative health effects of similar pesticides are often not taken into account. This paper describes models and a web-based software system developed in the European research project ACROPOLIS. The models are appropriate for both acute and chronic exposure assessments of single compounds and of multiple compounds in cumulative assessment groups. The software system MCRA (Monte Carlo Risk Assessment) is available for stakeholders in pesticide risk assessment at mcra.rivm.nl. We describe the MCRA implementation of the methods as advised in the 2012 EFSA Guidance on probabilistic modelling, as well as more refined methods developed in the ACROPOLIS project. The emphasis is on cumulative assessments. Two approaches, sample-based and compound-based, are contrasted. It is shown that additional data on agricultural use of pesticides may give more realistic risk assessments. Examples are given of model and software validation of acute and chronic assessments, using both simulated data and comparisons against the previous release of MCRA and against the standard software DEEM-FCID used by the Environmental Protection Agency in the USA. It is shown that the EFSA Guidance pessimistic model may not always give an appropriate modelling of exposure. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  16. Exposure assessment strategies for non-routine work operations (NORWO)

    International Nuclear Information System (INIS)

    Lew, V.; Johnson, J.; Chiusano, S.; McLouth, L.

    1993-01-01

    This meeting is the second in a series of a cooperative effort between the Industrial Hygiene Division of the Office of Health (EH-40) and the Office of Oversight (EM-23) to gain input for the development of a section on NORWO exposure assessment in the Exposure Assessment Strategies and HAZWOPER technical guidance manuals. The first day of the meeting was dedicated to a seminar relating to AIHA Strategy for Occupational Exposure Assessment to NORWO situations. Jeff Miller and Tom Weeda of Radian were the course instructors. The course covered how the elements of basic characterization, prioritization, monitoring and decision making could apply to NORWO situations. Several examples of applications of statistical analysis for decision making were illustrated. In addition, the seminar brought forth some points that need additional examination before the strategy can be applied to NORWO. They are: should qualitative and semi-quantitative data be applied to statistical decision making; should professional judgment be balanced with an acceptable degree of statistical certainty; and the need for development of a standardized application of statistics for the DOE Health ampersand Safety community. The remaining two days of the meeting were devoted to the continued development of guidelines to measure and document, in a technically correct and consistent manner, the exposures DOE environmental restoration and waste management (ERWM) workers receive during NORWO and reflects the perspectives and experiences of the attendees. Formal presentations were given by representatives from Hanford and INEL

  17. Advances in exposure and toxicity assessment of particulate matter: An overview of presentations at the 2009 Toxicology and Risk Assessment Conference

    International Nuclear Information System (INIS)

    Gunasekar, Palur G.; Stanek, Lindsay W.

    2011-01-01

    The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.

  18. Environmental exposure to asbestos and other inorganic fibres using animal lung model

    Energy Technology Data Exchange (ETDEWEB)

    Fornero, Elisa [Dipartimento di Scienze dell' Ambiente e della Vita, Universita del Piemonte Orientale ' A. Avogadro' , Via Bellini 25/g, 15100 Alessandria (Italy); Centro Interdipartimentale per lo Studio degli Amianti e di altri Particolati Nocivi ' Giovanni Scansetti' , Universita degli Studi di Torino, Torino (Italy)], E-mail: elisa.fornero@mfn.unipmn.it; Belluso, Elena [Dipartimento di Scienze Mineralogiche e Petrologiche, Universita degli Studi di Torino, Via V. Caluso 35, 10125 Torino (Italy); Istituto di Geoscienze e Georisorse, CNR-Unita di Torino, Via V. Caluso 35, 10125 Torino (Italy); Centro Interdipartimentale per lo Studio degli Amianti e di altri Particolati Nocivi ' Giovanni Scansetti' , Universita degli Studi di Torino, Torino (Italy); Capella, Silvana [Dipartimento di Scienze Mineralogiche e Petrologiche, Universita degli Studi di Torino, Via V. Caluso 35, 10125 Torino (Italy); Centro Interdipartimentale per lo Studio degli Amianti e di altri Particolati Nocivi ' Giovanni Scansetti' , Universita degli Studi di Torino, Torino (Italy); Bellis, Donata [Servizio di Anatomia, Istologia Patologica e Citodiagnostica, Azienda Ospedaliera San Giovanni Bosco, ASLTO2 Piazza Donatori del Sangue 3, 10154 Torino (Italy); Centro Interdipartimentale per lo Studio degli Amianti e di altri Particolati Nocivi ' Giovanni Scansetti' , Universita degli Studi di Torino, Torino (Italy)

    2009-01-15

    Professional exposure to asbestos fibres is widely recognized as very dangerous to human health and for this reason many countries have banned their commercial uses. People, nevertheless, continue to be exposed to low dose of asbestos from natural and anthropogenic sources still in loco, for which the potential hazard is unknown. The aim of this research is to assess environmental exposure in an area with outcropping serpentinite rocks, which bear asbestos mineralizations, using sentinel animals which are a non-experimental animal model. We studied the burden of inorganic fibres in cattle lungs which come from two areas in Italy's Western Alps bearing serpentinitic outcrops: Susa Valley with a heavy anthropization and Lanzo Valleys, with a minor human impact. The identification and quantification of inorganic fibres were performed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS). In comparison to humans, studies of animals have some advantages, such as no occupational exposure or history of smoking and, in the case of cattle, a sedentary life restricted to one region. Results spotlight that over than 35% of inorganic fibres found both in Susa and Lanzo valleys, belong to asbestos mineralogical species (asbestos tremolite/actinolite, chrysotile s.s., asbestos grunerite, crocidolite). We also observed a higher concentration of artificial fibrous products in Susa samples showing a correlation with the level of anthropization. These results confirm that sentinel animals are an excellent model to assess breathable environmental background because it is possible to eliminate some variables, such as unknown occupational exposure.

  19. Environmental exposure to asbestos and other inorganic fibres using animal lung model

    International Nuclear Information System (INIS)

    Fornero, Elisa; Belluso, Elena; Capella, Silvana; Bellis, Donata

    2009-01-01

    Professional exposure to asbestos fibres is widely recognized as very dangerous to human health and for this reason many countries have banned their commercial uses. People, nevertheless, continue to be exposed to low dose of asbestos from natural and anthropogenic sources still in loco, for which the potential hazard is unknown. The aim of this research is to assess environmental exposure in an area with outcropping serpentinite rocks, which bear asbestos mineralizations, using sentinel animals which are a non-experimental animal model. We studied the burden of inorganic fibres in cattle lungs which come from two areas in Italy's Western Alps bearing serpentinitic outcrops: Susa Valley with a heavy anthropization and Lanzo Valleys, with a minor human impact. The identification and quantification of inorganic fibres were performed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS). In comparison to humans, studies of animals have some advantages, such as no occupational exposure or history of smoking and, in the case of cattle, a sedentary life restricted to one region. Results spotlight that over than 35% of inorganic fibres found both in Susa and Lanzo valleys, belong to asbestos mineralogical species (asbestos tremolite/actinolite, chrysotile s.s., asbestos grunerite, crocidolite). We also observed a higher concentration of artificial fibrous products in Susa samples showing a correlation with the level of anthropization. These results confirm that sentinel animals are an excellent model to assess breathable environmental background because it is possible to eliminate some variables, such as unknown occupational exposure

  20. Company-level, semi-quantitative assessment of occupational styrene exposure when individual data are not available.

    Science.gov (United States)

    Kolstad, Henrik A; Sønderskov, Jette; Burstyn, Igor

    2005-03-01

    In epidemiological research, self-reported information about determinants and levels of occupational exposures is difficult to obtain, especially if the disease under study has a high mortality rate or follow-up has exceeded several years. In this paper, we present a semi-quantitative exposure assessment strategy for nested case-control studies of styrene exposure among workers of the Danish reinforced plastics industry when no information on job title, task or other indicators of individual exposure were readily available from cases and controls. The strategy takes advantage of the variability in styrene exposure level and styrene exposure probability across companies. The study comprised 1522 cases of selected malignancies and neurodegenerative diseases and controls employed in 230 reinforced plastics companies and other related industries. Between 1960 and 1996, 3057 measurements of styrene exposure level obtained from 191 companies, were identified. Mixed effects models were used to estimate expected styrene exposure levels by production characteristics for all companies. Styrene exposure probability within each company was estimated for all but three cases and controls from the fraction of laminators, which was reported by a sample of 945 living colleagues of the cases and controls and by employers and dealers of plastic raw materials. The estimates were validated from a subset of 427 living cases and controls that reported their own work as laminators in the industry. We computed styrene exposure scores that integrated estimated styrene exposure level and styrene exposure probability. Product (boats), process (hand and spray lamination) and calendar year period were the major determinants of styrene exposure level. Within-company styrene exposure variability increased by calendar year and was accounted for when computing the styrene exposure scores. Exposure probability estimates based on colleagues' reports showed the highest predictive values in the

  1. Risk assessments using the Strain Index and the TLV for HAL, Part I: Task and multi-task job exposure classifications.

    Science.gov (United States)

    Kapellusch, Jay M; Bao, Stephen S; Silverstein, Barbara A; Merryweather, Andrew S; Thiese, Mathew S; Hegmann, Kurt T; Garg, Arun

    2017-12-01

    The Strain Index (SI) and the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value for Hand Activity Level (TLV for HAL) use different constituent variables to quantify task physical exposures. Similarly, time-weighted-average (TWA), Peak, and Typical exposure techniques to quantify physical exposure from multi-task jobs make different assumptions about each task's contribution to the whole job exposure. Thus, task and job physical exposure classifications differ depending upon which model and technique are used for quantification. This study examines exposure classification agreement, disagreement, correlation, and magnitude of classification differences between these models and techniques. Data from 710 multi-task job workers performing 3,647 tasks were analyzed using the SI and TLV for HAL models, as well as with the TWA, Typical and Peak job exposure techniques. Physical exposures were classified as low, medium, and high using each model's recommended, or a priori limits. Exposure classification agreement and disagreement between models (SI, TLV for HAL) and between job exposure techniques (TWA, Typical, Peak) were described and analyzed. Regardless of technique, the SI classified more tasks as high exposure than the TLV for HAL, and the TLV for HAL classified more tasks as low exposure. The models agreed on 48.5% of task classifications (kappa = 0.28) with 15.5% of disagreement between low and high exposure categories. Between-technique (i.e., TWA, Typical, Peak) agreement ranged from 61-93% (kappa: 0.16-0.92) depending on whether the SI or TLV for HAL was used. There was disagreement between the SI and TLV for HAL and between the TWA, Typical and Peak techniques. Disagreement creates uncertainty for job design, job analysis, risk assessments, and developing interventions. Task exposure classifications from the SI and TLV for HAL might complement each other. However, TWA, Typical, and Peak job exposure techniques all have

  2. Modeled population exposures to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — Population exposures to ozone from APEX modeling for combinations of potential future air quality and demographic change scenarios. This dataset is not publicly...

  3. Ecological Momentary Assessment of the Association Between Exposure to Alcohol Advertising and Early Adolescents' Beliefs About Alcohol.

    Science.gov (United States)

    Martino, Steven C; Kovalchik, Stephanie A; Collins, Rebecca L; Becker, Kirsten M; Shadel, William G; D'Amico, Elizabeth J

    2016-01-01

    To evaluate the momentary association between exposure to alcohol advertising and middle-school students' beliefs about alcohol in real-world settings and to explore racial/ethnic differences in this association. Middle-school students (N = 588) carried handheld data collection devices for 14 days, recording their exposures to all forms of alcohol advertising during the assessment period. Students also responded to three investigator-initiated control prompts (programmed to occur randomly) on each day of the assessment period. After each exposure to advertising and at each control prompt, students reported their beliefs about alcohol. Mixed-effects regression models compared students' beliefs about alcohol between moments of exposure to alcohol advertising and control prompts. Students perceived the typical person their age who drinks alcohol (prototype perceptions) more favorably and perceived alcohol use as more normative at times of exposure to alcohol advertising than at times of nonexposure (i.e., at control prompts). Exposure to alcohol advertising was not associated with shifts in the perceived norms of black and Hispanic students, however, and the association between exposure and prototype perceptions was stronger among non-Hispanic students than among Hispanic students. Exposure to alcohol advertising is associated with acute shifts in adolescents' perceptions of the typical person that drinks alcohol and the normativeness of drinking. These associations are both statistically and substantively meaningful. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  4. Exposure assessment for dioxin-like PCBs intake from organic and conventional meat integrating cooking and digestion effects.

    Science.gov (United States)

    Tressou, Jessica; Ben Abdallah, Nadia; Planche, Christelle; Dervilly-Pinel, Gaud; Sans, Pierre; Engel, Erwan; Albert, Isabelle

    2017-12-01

    In this paper, exposure to Polychlorinated biphenyls (PCBs) related to bovine meat consumption is assessed based on multiples sources of data, namely data collected within the national research project "SoMeat" that objectively assesses the potential risks and benefits of organic and conventional food production systems in terms of contaminants respective contents. The work focuses on dioxin like PCBs in bovine meat in France. A modular Bayesian approach is proposed including measures after production, effect of cooking, levels and frequency of consumption and effect of digestion. In each module, a model is built and prior information can be integrated through previously acquired data commonly used in food risk assessment or vague priors. The output of the global model is the exposure including both production modes (organic and conventional) for three different cooking intensities (rare, medium, and well-done), before digestion and after digestion. The main results show that organic meat is more contaminated than conventional meat in mean after production stage and after cooking although cooking reduces the contamination level. This work is a first step of refined risk assessment integrating different steps such as cooking and digestion in the context of chemical risk assessment similarly to current microbiological risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Benchmarking of computer codes and approaches for modeling exposure scenarios

    International Nuclear Information System (INIS)

    Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.

    1994-08-01

    The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided

  6. Taking Multiple Exposure Into Account Can Improve Assessment of Chemical Risks.

    Science.gov (United States)

    Clerc, Frédéric; Bertrand, Nicolas Jean Hyacinthe; La Rocca, Bénédicte

    2017-12-15

    During work, operators may be exposed to several chemicals simultaneously. Most exposure assessment approaches only determine exposure levels for each substance individually. However, such individual-substance approaches may not correctly estimate the toxicity of 'cocktails' of chemicals, as the toxicity of a cocktail may differ from the toxicity of substances on their own. This study presents an approach that can better take into account multiple exposure when assessing chemical risks. Almost 30000 work situations, monitored between 2005 and 2014 and recorded in two French databases, were analysed using MiXie software. The algorithms employed in MiXie can identify toxicological classes associated with several substances, based on the additivity of the selected effects of each substance. The results of our retrospective analysis show that MiXie was able to identify almost 20% more potentially hazardous situations than identified using a single-substance approach. It therefore appears essential to review the ways in which multiple exposure is taken into account during risk assessment. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. Assessment of occupational exposure to gaseous peracetic acid.

    Science.gov (United States)

    Dugheri, Stefano; Bonari, Alessandro; Pompilio, Ilenia; Colpo, Marco; Montalti, Manfredi; Mucci, Nicola; Arcangeli, Giulio

    2018-02-07

    In order to assess short-term exposure to peracetic acid (PAA) in disinfection processes, the Authors compared 4 industrial hygiene monitoring methods to evaluate their proficiency in measuring airborne PAA concentrations. An active sampling by basic silica gel impregnated with methyl p-tolyl sulfoxide (MTSO), a passive solid phase micro-extraction technique using methyl p-tolyl sulfide (MTS) as on-fiber derivatization reagent, an electrochemical direct-reading PAA monitor, and a novel visual test strip PAA detector doped with 2,2'-azino-bis (3-ethylbenzothiazoline)-6-sulfonate were evaluated and tested over the range of 0.06-16 mg/m3, using dynamically generated PAA air concentrations. The linear regression analysis of linearity and accuracy showed that the 4 methods were suitable for PAA monitoring. Peracetic acid monitoring in several use applications showed that the PAA concentration (1.8 mg/m3) was immediately dangerous to life or health as proposed by the National Institute of Occupational Safety and Health, and was frequently exceeded in wastewater treatment (up to 7.33 mg/m3), and sometimes during food and beverage processes and hospital high-level disinfection operations (up to 6.8 mg/m3). The methods were suitable for the quick assessment of acute exposure in PAA environmental monitoring and can assist in improving safety and air quality in the workplace where this disinfectant is used. These monitoring methods allowed the evaluation of changes to work out practices to reduce PAA vapor concentrations during the operations when workers are potentially overexposed to this strong antioxidant agent. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  8. Pro Et Con Analysis Of Occupational Exposure Assessement Tools And Concepts For nanomaterials

    DEFF Research Database (Denmark)

    Liguori, Biase; Hansen, Steffen Foss; Alstrup Jensen, Keld

    . Examples of these include the "Control Banding Nanotool" developed to assess and control the risks of nanomaterials, the more holistic "Swiss precautionary matrix", and the first order quantitative risk assessment tool, NanoSafer. Here we review these and other tools and we discuss various elements...... of the tools (input data requirements, exposure evaluation and handling to reduce exposure) as well as specific pros and cons. Most of the tools provide a transparent and comprehensible approach to assess occupational exposure, but the majority of them are based on purely qualitative considerations about...... occupational settings. A few methods include specific advice on risk management going well beyond what is normally considered in traditional exposure assessment. A disadvantage in most of the existing concepts is that their data requirements are fairly high. In some cases the technical and scientific...

  9. Cross-validation and refinement of the Stoffenmanager as a first tier exposure assessment tool for REACH

    NARCIS (Netherlands)

    Schinkel, J.; Fransman, W.; Heussen, H.; Kromhout, H.; Marquart, H.; Tielemans, E.

    2010-01-01

    Objectives: For regulatory risk assessment under REACH a tiered approach is proposed in which the first tier models should provide a conservative exposure estimate that can discriminate between scenarios which are of concern and those which are not. The Stoffenmanager is mentioned as a first tier

  10. Cross-validation and refinement of the Stoffenmanager as a first tier exposure assessment tool for REACH.

    NARCIS (Netherlands)

    Schinkel, J.; Fransman, W.; Heussen, H.; Kromhout, H.; Marquart, H.; Tielemans, E.

    2010-01-01

    OBJECTIVES: For regulatory risk assessment under REACH a tiered approach is proposed in which the first tier models should provide a conservative exposure estimate that can discriminate between scenarios which are of concern and those which are not. The Stoffenmanager is mentioned as a first tier

  11. A multimedia exposure assessment methodology for evaluating the performance of the design of structures containing chemical and radioactive wastes

    International Nuclear Information System (INIS)

    Stephanatos, B.N.; Molholt, B.; Walter, K.P.; MacGregor, A.

    1991-01-01

    The objectives of this work are to develop a multimedia exposure assessment methodology for the evaluation of existing and future design of structures containing chemical and radioactive wastes and to identify critical parameters for design optimization. The designs are evaluated in terms of their compliance with various federal and state regulatory requirements. Evaluation of the performance of a particular design is presented within the scope of a given exposure pathway. An exposure pathway has four key components: (1) a source and mechanism of chemical release, (2) a transport medium; (3) a point of exposure; and (4) a route of exposure. The first step in the analysis is the characterization of the waste source behavior. The rate and concentration of releases from the source are evaluated using appropriate mathematical models. The migration of radionuclides and chemicals is simulated through each environmental medium to the exposure point. The total exposure to the potential receptor is calculated, and an estimate of the health effects of the exposure is made. Simulation of the movement of radionuclides and chemical wastes from the source to the receptor point includes several processes. If the predicted human exposure to contaminants meets the performance criteria, the design has been validated. Otherwise the structure design is improved to meet the performance criteria. A phased modeling approach is recommended at a particular mixed waste site. A relatively simple model is initially used to pinpoint critical fate and transport processes and design parameters. The second phase of the modeling effort involves the use of more complex and resource intensive fate and transport models. This final step in the modeling process provides more accurate estimates of contaminant concentrations at the point of exposure. Thus the human dose is more accurately predicted, providing better design validation

  12. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  13. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  14. Assessment of occupational exposure due to external sources of radiation. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure to ionizing radiation can occur in a range of industries, medical institutions, educational and research establishments and nuclear fuel cycle facilities. Adequate radiation protection of workers is essential for the safe and acceptable use of radiation, radioactive materials and nuclear energy. The three Safety Guides on occupational radiation protection are jointly sponsored by the IAEA and the International Labour Office. The Agency gratefully acknowledges the contribution of the European Commission to the development of the present Safety Guide. The present Safety Guide addresses the assessment of exposure due to external sources of radiation in the workplace. Such exposure can result from a number of sources within a workplace, and the monitoring of workers and the workplace in such situations is an integral part of any occupational radiation protection programme. The assessment of exposure due to external radiation sources depends critically upon knowledge of the radiation type and energy and the conditions of exposure. The present Safety Guide reflects the major changes over the past decade in international practice in external dose assessment

  15. Prediction of residential radon exposure of the whole Swiss population: comparison of model-based predictions with measurement-based predictions.

    Science.gov (United States)

    Hauri, D D; Huss, A; Zimmermann, F; Kuehni, C E; Röösli, M

    2013-10-01

    Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Dynamic assessments of population exposure to urban greenspace using multi-source big data.

    Science.gov (United States)

    Song, Yimeng; Huang, Bo; Cai, Jixuan; Chen, Bin

    2018-09-01

    A growing body of evidence has proven that urban greenspace is beneficial to improve people's physical and mental health. However, knowledge of population exposure to urban greenspace across different spatiotemporal scales remains unclear. Moreover, the majority of existing environmental assessments are unable to quantify how residents enjoy their ambient greenspace during their daily life. To deal with this challenge, we proposed a dynamic method to assess urban greenspace exposure with the integration of mobile-phone locating-request (MPL) data and high-spatial-resolution remote sensing images. This method was further applied to 30 major cities in China by assessing cities' dynamic greenspace exposure levels based on residents' surrounding areas with different buffer scales (0.5km, 1km, and 1.5km). Results showed that regarding residents' 0.5-km surrounding environment, Wenzhou and Hangzhou were found to be with the greenest exposure experience, whereas Zhengzhou and Tangshan were the least ones. The obvious diurnal and daily variations of population exposure to their surrounding greenspace were also identified to be highly correlated with the distribution pattern of urban greenspace and the dynamics of human mobility. Compared with two common measurements of urban greenspace (green coverage rate and green area per capita), the developed method integrated the dynamics of population distribution and geographic locations of urban greenspace into the exposure assessment, thereby presenting a more reasonable way to assess population exposure to urban greenspace. Additionally, this dynamic framework could hold potential utilities in supporting urban planning studies and environmental health studies and advancing our understanding of the magnitude of population exposure to greenspace at different spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The Penobscot River and environmental contaminants: Assessment of tribal exposure through sustenance lifeways

    Science.gov (United States)

    Marshall, Valerie; Kusnierz, Daniel; Hillger, Robert; Ferrario, Joseph; Hughes, Thomas; Diliberto, Janet; Orazio, Carl E.; Dudley, Robert W.; Byrne, Christian; Sugatt, Richard; Warren, Sarah; DeMarini, David; Elskus, Adria; Stodola, Steve; Mierzykowski, Steve; Pugh, Katie; Culbertson, Charles W.

    2015-01-01

    EPA in collaboration with the Penobscot Indian Nation, U.S. Geological Survey (USGS), Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Fish and Wildlife Service (USF&WS) collectively embarked on a four year research study to evaluate the environmental health of the riverine system by targeting specific cultural practices and using traditional science to conduct a preliminary contaminant screening of the flora and fauna of the Penobscot River ecosystem. This study was designed as a preliminary screening to determine if contaminant concentrations in fish, eel, snapping turtle, wood ducks, and plants in Regions of the Penobscot River relevant to where PIN tribal members hunt, fish and gather plants were high enough to be a health concern. This study was not designed to be a statistically validated assessment of contaminant differences among study sites or among species. The traditional methodology for health risk assessment used by the U. S. Environmental Protection Agency (EPA) is based on the use of exposure assumptions (e.g. exposure duration, food ingestion rate, body weight, etc.) that represent the entire American population, either as a central tendency exposure (e.g. average, median) or as a reasonable maximum exposure (e.g. 95% upper confidence limit). Unfortunately, EPA lacked exposure information for assessing health risks for New England regional tribes sustaining a tribal subsistence way of life. As a riverine tribe, the Penobscot culture and traditions are inextricably tied to the Penobscot River watershed. It is through hunting, fishing, trapping, gathering and making baskets, pottery, moccasins, birch-bark canoes and other traditional practices that the Penobscot culture and people are sustained. The Penobscot River receives a variety of pollutant discharges leaving the Penobscot Indian Nation (PIN) questioning the ecological health and water quality of the river and how this may affect the practices that sustain their way of life

  18. Variable population exposure and distributed travel speeds in least-cost tsunami evacuation modelling

    Science.gov (United States)

    Fraser, Stuart A.; Wood, Nathan J.; Johnston, David A.; Leonard, Graham S.; Greening, Paul D.; Rossetto, Tiziana

    2014-01-01

    Evacuation of the population from a tsunami hazard zone is vital to reduce life-loss due to inundation. Geospatial least-cost distance modelling provides one approach to assessing tsunami evacuation potential. Previous models have generally used two static exposure scenarios and fixed travel speeds to represent population movement. Some analyses have assumed immediate departure or a common evacuation departure time for all exposed population. Here, a method is proposed to incorporate time-variable exposure, distributed travel speeds, and uncertain evacuation departure time into an existing anisotropic least-cost path distance framework. The method is demonstrated for hypothetical local-source tsunami evacuation in Napier City, Hawke's Bay, New Zealand. There is significant diurnal variation in pedestrian evacuation potential at the suburb level, although the total number of people unable to evacuate is stable across all scenarios. Whilst some fixed travel speeds approximate a distributed speed approach, others may overestimate evacuation potential. The impact of evacuation departure time is a significant contributor to total evacuation time. This method improves least-cost modelling of evacuation dynamics for evacuation planning, casualty modelling, and development of emergency response training scenarios. However, it requires detailed exposure data, which may preclude its use in many situations.

  19. Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: a preliminary probabilistic assessment.

    Science.gov (United States)

    Liao, Chung-Min; Chio, Chia-Pin; Chen, Wei-Yu; Ju, Yun-Ru; Li, Wen-Hsuan; Cheng, Yi-Hsien; Liao, Vivian Hsiu-Chuan; Chen, Szu-Chieh; Ling, Min-Pei

    2011-06-15

    Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition fraction and internal organic-specific PAHs doses. A probabilistic risk assessment framework was developed to estimate potential lung cancer risk. We reanalyzed particle size distribution, total-PAHs, particle-bound benzo(a)pyrene (B[a]P) and PM concentrations. A dose-response profile describing the relationships between external B[a]P concentration and lung cancer risk response was constructed based on population attributable fraction (PAF). We found that 90% probability lung cancer risks ranged from 10(-5) to 10(-4) for traffic-related nano and ultrafine particle-bound PAHs, indicating a potential lung cancer risk. The particle size-specific PAF-based excess annual lung cancer incidence rate due to PAHs exposure was estimated to be less than 1 per 100,000 population, indicating a mild risk factor for lung cancer. We concluded that probabilistic risk assessment linked PAF for limiting cumulative PAHs emissions to reduce lung cancer risk plays a prominent role in future government risk assessment program. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models

    Science.gov (United States)

    Laurier, Dominique; Rage, Estelle

    2018-01-01

    Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies. PMID:29408862

  1. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    Directory of Open Access Journals (Sweden)

    Perry Melissa J

    2010-11-01

    Full Text Available Abstract Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC generated during the tasks were measured using a direct reading instrument (DRI with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred

  2. NanoSafer vs. 1.1 - Nanomaterial risk assessment using first order modeling

    DEFF Research Database (Denmark)

    Jensen, Keld A.; Saber, Anne T.; Kristensen, Henrik V.

    2013-01-01

    for safe use of MN based on first order modeling. The hazard and case specific exposure as sessments are combined for an integrated risk evaluation and final control banding. Requested material da ta are typically available from the producers’ technical information sheets. The hazard data are given...... using the work room dimensions , ventilation rate, powder use rate, duration, and calculated or given emission rates. The hazard sc aling is based on direct assessment. The exposure band is derived from estimated acute and work day expo sure levels divided by a nano OEL calculated from the OEL...... to construct user specific work scenarios for exposure assessment is considered a highly versatile approach....

  3. A margin-of-exposure approach to assessment of noncancer risks of dioxins based on human exposure and response data.

    Science.gov (United States)

    Aylward, Lesa L; Goodman, Julie E; Charnley, Gail; Rhomberg, Lorenz R

    2008-10-01

    Risk assessment of human environmental exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDFs) and other dioxin-like compounds is complicated by several factors, including limitations in measuring intakes because of the low concentrations of these compounds in foods and the environment and interspecies differences in pharmacokinetics and responses. We examined the feasibility of relying directly on human studies of exposure and potential responses to PCDD/PCDFs and related compounds in terms of measured lipid-adjusted concentrations to assess margin of exposure (MOE) in a quantitative, benchmark dose (BMD)-based framework using representative exposure and selected response data sets. We characterize estimated central tendency and upper-bound general U.S. population lipid-adjusted concentrations of PCDD/PCDFs from the 1970s and early 2000s based on available data sets. Estimates of benchmark concentrations for three example responses of interest (induction of cytochrome P4501A2 activity, dental anomalies, and neonatal thyroid hormone alterations) were derived based on selected human studies. The exposure data sets indicate that current serum lipid concentrations in young adults are approximately 6- to 7-fold lower than 1970s-era concentrations. Estimated MOEs for each end point based on current serum lipid concentrations range from 100 for dental anomalies-approximately 6-fold greater than would have existed during the 1970s. Human studies of dioxin exposure and outcomes can be used in a BMD framework for quantitative assessments of MOE. Incomplete exposure characterization can complicate the use of such studies in a BMD framework.

  4. Aggregate exposure pathways in support of risk assessment

    Science.gov (United States)

    Over time, risk assessment has shifted from establishing relationships between exposure to a single chemical and a resulting adverse health outcome, to evaluating multiple chemicals and disease outcomes simultaneously. As a result, there is an increasing need to better understand...

  5. Modeling the impact of climate change in Germany with biosphere models for long-term safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Staudt, C.; Semiochkina, N.; Kaiser, J.C.; Pröhl, G.

    2013-01-01

    Biosphere models are used to evaluate the exposure of populations to radionuclides from a deep geological repository. Since the time frame for assessments of long-time disposal safety is 1 million years, potential future climate changes need to be accounted for. Potential future climate conditions were defined for northern Germany according to model results from the BIOCLIM project. Nine present day reference climate regions were defined to cover those future climate conditions. A biosphere model was developed according to the BIOMASS methodology of the IAEA and model parameters were adjusted to the conditions at the reference climate regions. The model includes exposure pathways common to those reference climate regions in a stylized biosphere and relevant to the exposure of a hypothetical self-sustaining population at the site of potential radionuclide contamination from a deep geological repository. The end points of the model are Biosphere Dose Conversion factors (BDCF) for a range of radionuclides and scenarios normalized for a constant radionuclide concentration in near-surface groundwater. Model results suggest an increased exposure of in dry climate regions with a high impact of drinking water consumption rates and the amount of irrigation water used for agriculture. - Highlights: ► We model Biosphere Dose Conversion Factors for a representative group exposed to radionuclides from a waste repository. ► The BDCF are modeled for different soil types. ► One model is used for the assessment of the influence of climate change during the disposal time frame.

  6. Physiologically Based Toxicokinetic Modelling as a Tool to Support Risk Assessment: Three Case Studies

    Directory of Open Access Journals (Sweden)

    Hans Mielke

    2012-01-01

    Full Text Available In this contribution we present three case studies of physiologically based toxicokinetic (PBTK modelling in regulatory risk assessment. (1 Age-dependent lower enzyme expression in the newborn leads to bisphenol A (BPA blood levels which are near the levels of the tolerated daily intake (TDI at the oral exposure as calculated by EFSA. (2 Dermal exposure of BPA by receipts, car park tickets, and so forth, contribute to the exposure towards BPA. However, at the present levels of dermal exposure there is no risk for the adult. (3 Dermal exposure towards coumarin via cosmetic products leads to external exposures of two-fold the TDI. PBTK modeling helped to identify liver peak concentration as the metric for liver toxicity. After dermal exposure of twice the TDI, the liver peak concentration was lower than that present after oral exposure with the TDI dose. In the presented cases, PBTK modeling was useful to reach scientifically sound regulatory decisions.

  7. Improvements in Modelling Bystander and Resident Exposure to Pesticide Spray Drift: Investigations into New Approaches for Characterizing the 'Collection Efficiency' of the Human Body.

    Science.gov (United States)

    Butler Ellis, M Clare; Kennedy, Marc C; Kuster, Christian J; Alanis, Rafael; Tuck, Clive R

    2018-03-17

    The BREAM (Bystander and Resident Exposure Assessment Model) (Kennedy et al. in BREAM: A probabilistic bystander and resident exposure assessment model of spray drift from an agricultural boom sprayer. Comput Electron Agric 2012;88:63-71) for bystander and resident exposure to spray drift from boom sprayers has recently been incorporated into the European Food Safety Authority (EFSA) guidance for determining non-dietary exposures of humans to plant protection products. The component of BREAM, which relates airborne spray concentrations to bystander and resident dermal exposure, has been reviewed to identify whether it is possible to improve this and its description of variability captured in the model. Two approaches have been explored: a more rigorous statistical analysis of the empirical data and a semi-mechanistic model based on established studies combined with new data obtained in a wind tunnel. A statistical comparison between field data and model outputs was used to determine which approach gave the better prediction of exposures. The semi-mechanistic approach gave the better prediction of experimental data and resulted in a reduction in the proposed regulatory values for the 75th and 95th percentiles of the exposure distribution.

  8. Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

    OpenAIRE

    Sarigiannis, Dimosthenis A.; Karakitsios, Spyros P.; Gotti, Alberto; Papaloukas, Costas L.; Kassomenos, Pavlos A.; Pilidis, Georgios A.

    2009-01-01

    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based...

  9. Retrospective benzene and total hydrocarbon exposure assessment for a petroleum marketing and distribution worker epidemiology study.

    Science.gov (United States)

    Armstrong, T W; Pearlman, E D; Schnatter, A R; Bowes, S M; Murray, N; Nicolich, M J

    1996-04-01

    A quantitative exposure-estimating algorithm for benzene and total hydrocarbons was developed for a case control study of petroleum marketing and distribution workers. The algorithm used a multiplicative model to adjust recently measured quantitative exposure data to past scenarios for which representative exposure measurement data did not exist. This was accomplished through the development of exposure modifiers to account for differences in the workplace, the materials handled, the environmental conditions, and the tasks performed. Values for exposure modifiers were obtained empirically and through physical/chemical relationships. Dates for changes that altered exposure potential were obtained from archive records, retired employee interviews, and from current operations personnel. Exposure modifiers were used multiplicatively, adjusting available measured data to represent the relevant exposure scenario and time period. Changes in exposure modifiers translated to step changes in exposure estimates. Though limited by availability of data, a validation exercise suggested that the algorithm provided accurate exposure estimates for benzene (compared with measured data in industrial hygiene survey reports); the estimates generally differed by an average of less than 20% from the measured values. This approach is proposed to quantify exposures retrospectively where there are sufficient data to develop reliable current era estimates and where a historical accounting of key exposure modifiers can be developed, but where there are insufficient historic exposure measurements to directly assess historic exposures.

  10. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    Science.gov (United States)

    2015-08-01

    Unaccounted dynamic habitats and resultant changes in wildlife usage;  Simplified foraging strategies (lacking important considerations such as...and water exposures, fish foraging strategies, and PCB uptake. Figure 2 additionally shows the comparison of standard deviations across the...area (1, 2, and 5) at the Tyndall AFB site. ....................................... 22  Figure 5. Comparison of model predictions to site data for

  11. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling.

    Science.gov (United States)

    Aerts, Sam; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-01

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information-inside hotspots or in search of them-based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km2. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. Copyright © 2013 Elsevier Inc. All rights

  12. Guide for developing conceptual models for ecological risk assessments

    International Nuclear Information System (INIS)

    Suter, G.W., II.

    1996-05-01

    Ecological conceptual models are the result of the problem formulation phase of an ecological risk assessment, which is an important component of the Remedial Investigation process. They present hypotheses of how the site contaminants might affect the site ecology. The contaminant sources, routes, media, routes, and endpoint receptors are presented in the form of a flow chart. This guide is for preparing the conceptual models; use of this guide will standardize the models so that they will be of high quality, useful to the assessment process, and sufficiently consistent so that connections between sources of exposure and receptors can be extended across operable units (OU). Generic conceptual models are presented for source, aquatic integrator, groundwater integrator, and terrestrial OUs

  13. Estimated risks of radon-induced lung cancer by two-mutation model for different exposures in mines and in homes

    International Nuclear Information System (INIS)

    Boehm, K.; Nikodemova, D.; Salat, D.; Drabova, D.

    2005-01-01

    In this work, the two-mutation model has been applied and compared with BEIR VI models for a prediction of the radon risk in various environments. The obtained results can be summarised into several points. The values of risk from the radon exposure predicted by the two-mutation model are comparable with the results obtained by BEIR VI for the short-time as well as for the long-time exposures. In the range of low exposures is this agreement of the results closer to the risk values assessed by the exposure-age-concentration model. In the range of higher exposures the results are closer to the values based on the age- duration model. The two-mutation model predicts the increase of dRR/dC with the increase of the radon concentration in the range of low concentrations. According to our results the inverse effect occurs only when the radon concentrations reach the value of 1500 Bq/m 3 . The two-mutation model can be taken as an universal model for the risk calculation in different environments, and for various smoking status. This model makes possible to analyse the influence of the fractionalisation of the exposure on the resulting RR. (authors)

  14. Father's occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study

    Directory of Open Access Journals (Sweden)

    Rodriguez-Rivera Maria

    2008-01-01

    Full Text Available Abstract Background Medical research has not been able to establish whether a father's occupational exposures are associated with the development of acute leukemia (AL in their offspring. The studies conducted have weaknesses that have generated a misclassification of such exposure. Occupations and exposures to substances associated with childhood cancer are not very frequently encountered in the general population; thus, the reported risks are both inconsistent and inaccurate. In this study, to assess exposure we used a new method, an exposure index, which took into consideration the industrial branch, specific position, use of protective equipment, substances at work, degree of contact with such substances, and time of exposure. This index allowed us to obtain a grade, which permitted the identification of individuals according to their level of exposure to known or potentially carcinogenic agents that are not necessarily specifically identified as risk factors for leukemia. The aim of this study was to determine the association between a father's occupational exposure to carcinogenic agents and the presence of AL in their offspring. Methods From 1999 to 2000, a case-control study was performed with 193 children who reside in Mexico City and had been diagnosed with AL. The initial sample-size calculation was 150 children per group, assessed with an expected odds ratio (OR of three and a minimum exposure frequency of 15.8%. These children were matched by age, sex, and institution with 193 pediatric surgical patients at secondary-care hospitals. A questionnaire was used to determine each child's background and the characteristics of the father's occupation(s. In order to determine the level of exposure to carcinogenic agents, a previously validated exposure index (occupational exposure index, OEI was used. The consistency and validity of the index were assessed by a questionnaire comparison, the sensory recognition of the work area, and an

  15. Media Exposure: How Models Simplify Sampling

    DEFF Research Database (Denmark)

    Mortensen, Peter Stendahl

    1998-01-01

    In media planning, the distribution of exposures to more ad spots in more media (print, TV, radio) is crucial to the evaluation of the campaign. If such information should be sampled, it would only be possible in expensive panel-studies (eg TV-meter panels). Alternatively, the distribution...... of exposures may be modelled statistically, using the Beta distribution combined with the Binomial Distribution. Examples are given....

  16. An assessment of dietary exposure to glyphosate using refined deterministic and probabilistic methods.

    Science.gov (United States)

    Stephenson, C L; Harris, C A

    2016-09-01

    Glyphosate is a herbicide used to control broad-leaved weeds. Some uses of glyphosate in crop production can lead to residues of the active substance and related metabolites in food. This paper uses data on residue levels, processing information and consumption patterns, to assess theoretical lifetime dietary exposure to glyphosate. Initial estimates were made assuming exposure to the highest permitted residue levels in foods. These intakes were then refined using median residue levels from trials, processing information, and monitoring data to achieve a more realistic estimate of exposure. Estimates were made using deterministic and probabilistic methods. Exposures were compared to the acceptable daily intake (ADI)-the amount of a substance that can be consumed daily without an appreciable health risk. Refined deterministic intakes for all consumers were at or below 2.1% of the ADI. Variations were due to cultural differences in consumption patterns and the level of aggregation of the dietary information in calculation models, which allows refinements for processing. Probabilistic exposure estimates ranged from 0.03% to 0.90% of the ADI, depending on whether optimistic or pessimistic assumptions were made in the calculations. Additional refinements would be possible if further data on processing and from residues monitoring programmes were available. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The exposure assessment of Rn-222 gas in the atmosphere(II)

    International Nuclear Information System (INIS)

    Ha, Chung Wo; Chang, Si Young; Seo, Kyung Won; Yoon, Yeo Chang; Kim, Jang Lyul; Yoon, Suk Chul; Chung, Rae Ik; Kim, Jong Soo; Park, Young Woong

    1991-01-01

    Dose assessment to inhalation exposure of indoor 222 Rn daughters in 12 residential areas in Korea has been performed by long term averaged radon concentrations measured with passive CR-39 radon cups. A simple mathematical lung dosimetry model based on the ICRP-30 was derived to estimate the indoor radon daughters exposure. The long term average indoor 222 Rn concentrations and corresponding equilibrium equivalent radon concentrations (EEC Rn ) in 12 areas showed a range of 33.82 ∼ 61.42 Bq.m -3 (median : 48.90 Bq.m -3 ) and of 13.53 ∼ 24.57 Bq.m -3 (median: 19.55 Bq.m -3 ), respectively. Reference dose conversion functions for evaluation of regional lung dose and effective dose equivalent for unit exposure to EEC Rn have been derived for an adult. The effective dose equivalent conversion factor was estimated to be 1.07 x 10 -5 mSv/Bq.h.m -3 and this conversion factor agreed well with that recommended by the ICRP and UNSCEAR report. The annual average dose equivalents(H) to Tracheo-Bronchial and Pulmonary region of the lung, and total lung from exposure to measured EEC Rn were estimated to be 17.52 mSv.y -l , 3.35 mSv.y -l and 20.90 mSv.y -1 , respectively, and the resulting effective dose equivalent(H E ) was estimated to be 1.25 mSv.y -l , which is almost 50% of the natural radiation exposure of 2.40 mSv.y -l reported by the UNSCEAR. (Author)

  18. Probabilistic risk assessment from potential exposures to the public applied for innovative nuclear installations

    International Nuclear Information System (INIS)

    Dvorzhak, Alla; Mora, Juan C.; Robles, Beatriz

    2016-01-01

    Potential exposures are those that may occur as a result of unanticipated operational performance or accidents. Potential exposure situations are probabilistic in nature because they depend on uncertain events such as equipment failure, operator errors or external initiators beyond the control of the operator. Consequently, there may exist a range of possible radiological impacts that need to be considered. In this paper a Level 3 Probabilistic Safety Assessment (PSA) for a hypothetical scenario relevant to Innovative Nuclear Energy Systems (INS) was conducted using computer code MACCS (MELCOR Accident Consequence Code Systems). The acceptability of an INS was analyzed taking into account the general requirement that relocation or evacuation measures must not be necessary beyond the site boundary. In addition, deterministic modeling of the accident consequences for the critical meteorological conditions was carried out using the JRODOS decision support system (Real-time On-line Decision Support system for off-site emergency management in Europe). The approach used for dose and risk assessment from potential exposure of accidental releases and their comparison with acceptance criteria are presented. The methodology described can be used as input to the licensing procedure and engineering design considerations to help satisfy relevant health and environmental impact criteria for fission or fusion nuclear installations. - Highlights: • PSA Level-3 based on WinMACCS code is carried out for accidental release. • Family curves of percentiles for radiation exposure doses are constructed. • Risk indicators for potential exposure are defined. • Using of risk acceptance curve criteria is proposed for decision making process.

  19. Assessment of radon exposure in Austria based on geology and settlement

    International Nuclear Information System (INIS)

    Gruber, Valeria; Seidel, Claudia

    2008-01-01

    are used as input for geo-statistical modelling. Based on the results an applied assessment and distribution of radon exposure of the population can be carried out and used for radiation protection measures and precautions like regulations, health studies, land use planning and urban development. First exposure assessments and distributions complete this paper. (author)

  20. Metabolic responses of the isopod Porcellionides pruinosus to nickel exposure assessed by (1)H NMR metabolomics.

    Science.gov (United States)

    Ferreira, Nuno G C; Saborano, Raquel; Morgado, Rui; Cardoso, Diogo N; Rocha, Cláudia M; Soares, Amadeu M V M; Loureiro, Susana; Duarte, Iola F

    2016-03-30

    This work aimed at characterizing the metabolome of the isopod Porcellionides pruinosus and at assessing its variations over 14 days under laboratory culture conditions and upon exposure to the contaminant metal Nickel (Ni). The spectral profiles obtained by (1)H NMR spectroscopy were thoroughly assigned and subjected to multivariate analysis in order to highlight consistent changes. Over 50 metabolites could be identified, providing considerable new knowledge on the metabolome of these model organisms. Several metabolites changed non-linearly with Ni dose and exposure time, showing distinct variation patterns for initial (4 days) and later time points (7 and 14 days). In particular, at day 4, several amino acids were increased and sugars were decreased (compared to controls), whereas these variations were inverted for longer exposure, possibly reflecting earlier and more intensive moulting. Other variations, namely in betaines and choline-containing compounds, were suggested to relate with osmoregulation and detoxification mechanisms. Ni also had a marked effect on several nucleotides (increased upon exposure) and a moderate impact on lipids (decreased upon exposure). Overall, this study has provided new information on the Ni-induced metabolic adaptations of the P. pruinosus isopod, paving the way for improved mechanistic understanding of how these model organisms handle soil contamination. This study provided, for the first time to our knowledge, a detailed picture of the NMR-detectable metabolome of terrestrial isopods and of its fluctuations in time and upon exposure to the contaminant metal Nickel. Several time- and dose-dependent changes were highlighted, providing mechanistic insight into how these important model organisms handle Ni contamination.

  1. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  2. ConsExpo Web. Consumer exposure models - model documentation : Update for ConsExpo Web 1.0.2

    NARCIS (Netherlands)

    Delmaar JE; Schuur AG; CPV; VSP

    2018-01-01

    RIVM has developed a manual for ConsExpo Web. This web application has been developed for use by exposure experts and risk assessors to estimate exposure to chemical substances from various products under various exposure conditions. Exposure assessments provide necessary information for the

  3. Systems-level modeling the effects of arsenic exposure with sequential pulsed and fluctuating patterns for tilapia and freshwater clam

    International Nuclear Information System (INIS)

    Chen, W.-Y.; Tsai, J.-W.; Ju, Y.-R.; Liao, C.-M.

    2010-01-01

    The purpose of this paper was to use quantitative systems-level approach employing biotic ligand model based threshold damage model to examine physiological responses of tilapia and freshwater clam to sequential pulsed and fluctuating arsenic concentrations. We tested present model and triggering mechanisms by carrying out a series of modeling experiments where we used periodic pulses and sine-wave as featured exposures. Our results indicate that changes in the dominant frequencies and pulse timing can shift the safe rate distributions for tilapia, but not for that of freshwater clam. We found that tilapia increase bioenergetic costs to maintain the acclimation during pulsed and sine-wave exposures. Our ability to predict the consequences of physiological variation under time-varying exposure patterns has also implications for optimizing species growing, cultivation strategies, and risk assessment in realistic situations. - Systems-level modeling the pulsed and fluctuating arsenic exposures.

  4. Systems-level modeling the effects of arsenic exposure with sequential pulsed and fluctuating patterns for tilapia and freshwater clam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.-Y. [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, J.-W. [Institute of Ecology and Evolutionary Ecology, China Medical University, Taichung 40402, Taiwan (China); Ju, Y.-R. [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liao, C.-M., E-mail: cmliao@ntu.edu.t [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-05-15

    The purpose of this paper was to use quantitative systems-level approach employing biotic ligand model based threshold damage model to examine physiological responses of tilapia and freshwater clam to sequential pulsed and fluctuating arsenic concentrations. We tested present model and triggering mechanisms by carrying out a series of modeling experiments where we used periodic pulses and sine-wave as featured exposures. Our results indicate that changes in the dominant frequencies and pulse timing can shift the safe rate distributions for tilapia, but not for that of freshwater clam. We found that tilapia increase bioenergetic costs to maintain the acclimation during pulsed and sine-wave exposures. Our ability to predict the consequences of physiological variation under time-varying exposure patterns has also implications for optimizing species growing, cultivation strategies, and risk assessment in realistic situations. - Systems-level modeling the pulsed and fluctuating arsenic exposures.

  5. EXPURT - a model for evaluating exposure from radioactive material deposited in the urban environment

    International Nuclear Information System (INIS)

    Crick, M.J.; Brown, J.

    1990-06-01

    This model, EXPURT (EXPosure from Urban Radionuclide Transfer), is described in detail. The model simulates the movement of activity deposited on various surfaces in the urban environment and, by taking into account the shielding properties of buildings and the habits of the population, evaluates the external doses to members of the population living in such urban environments, as a function of time after deposition. One of the other advantages of EXPURT over simpler models is that it can be used to assess the possible dose reductions that might be achieved by various decontamination techniques; for example, it can estimate the effectiveness of decontaminating roof surfaces alone in reducing exposure to individuals living in an urban environment. Sensitivity/uncertainty studies have been performed whereby those parameters contributing most to remaining uncertainty in the model's predictions of dose and dose rates were identified. Predictions of the EXPURT model were compared with those from a simpler external dose model in use at NRPB. (author)

  6. Pesticide exposure assessment for surface waters in the EU. Part 2: Determination of statistically based run-off and drainage scenarios for Germany.

    Science.gov (United States)

    Bach, Martin; Diesner, Mirjam; Großmann, Dietlinde; Guerniche, Djamal; Hommen, Udo; Klein, Michael; Kubiak, Roland; Müller, Alexandra; Preuss, Thomas G; Priegnitz, Jan; Reichenberger, Stefan; Thomas, Kai; Trapp, Matthias

    2017-05-01

    In order to assess surface water exposure to active substances of plant protection products (PPPs) in the European Union (EU), the FOCUS (FOrum for the Co-ordination of pesticide fate models and their USe) surface water workgroup introduced four run-off and six drainage scenarios for Step 3 of the tiered FOCUSsw approach. These scenarios may not necessarily represent realistic worst-case situations for the different Member States of the EU. Hence, the suitability of the scenarios for risk assessment in the national authorisation procedures is not known. Using Germany as an example, the paper illustrates how national soil-climate scenarios can be developed to model entries of active substances into surface waters from run-off and erosion (using the model PRZM) and from drainage (using the model MACRO). In the authorisation procedure for PPPs on Member State level, such soil-climate scenarios can be used to determine exposure endpoints with a defined overall percentile. The approach allows the development of national specific soil-climate scenarios and to calculate percentile-based exposure endpoints. The scenarios have been integrated into a software tool analogous to FOCUS-SWASH which can be used in the future to assess surface water exposure in authorisation procedures of PPPs in Germany. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  7. Human health risk assessment related to cyanotoxins exposure.

    Science.gov (United States)

    Funari, Enzo; Testai, Emanuela

    2008-01-01

    This review focuses on the risk assessment associated with human exposure to cyanotoxins, secondary metabolites of an ubiquitous group of photosynthetic procariota. Cyanobacteria occur especially in eutrophic inland and coastal surface waters, where under favorable conditions they attain high densities and may form blooms and scums. Cyanotoxins can be grouped according to their biological effects into hepatotoxins, neurotoxins, cytotoxins, and toxins with irritating potential, also acting on the gastrointestinal system. The chemical and toxicological properties of the main cyanotoxins, relevant for the evaluation of possible risks for human health, are presented. Humans may be exposed to cyanotoxins via several routes, with the oral one being by far the most important, occurring by ingesting contaminated drinking water, food, some dietary supplements, or water during recreational activities. Acute and short-term toxic effects have been associated in humans with exposure to high levels of cyanotoxins in drinking and bathing waters. However, the chronic exposure to low cyanotoxin levels remains a critical issue. This article identifies the actual risky exposure scenarios, provides toxicologically derived reference values, and discusses open issues and research needs.

  8. Dynamic assessment of exposure to air pollution using mobile phone data.

    Science.gov (United States)

    Dewulf, Bart; Neutens, Tijs; Lefebvre, Wouter; Seynaeve, Gerdy; Vanpoucke, Charlotte; Beckx, Carolien; Van de Weghe, Nico

    2016-04-21

    Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments. In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach). The mean exposure to NO2 increases with 1.27 μg/m(3) (4.3%) during the week and with 0.12 μg/m(3) (0.4%) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations. It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones).

  9. Lead concentrations and risk exposure assessment in surface soils ...

    African Journals Online (AJOL)

    Lead concentrations and risk exposure assessment in surface soils at residential lands previously used for auto-mechanic and auto-welding activities in Port Harcourt, Nigeria. ... Journal of Applied Sciences and Environmental Management.

  10. Probabilistic exposure assessment to face and oral care cosmetic products by the French population.

    Science.gov (United States)

    Bernard, A; Dornic, N; Roudot, Ac; Ficheux, As

    2018-01-01

    Cosmetic exposure data for face and mouth are limited in Europe. The aim of the study was to assess the exposure to face cosmetics using recent French consumption data (Ficheux et al., 2016b, 2015). Exposure was assessed using a probabilistic method for thirty one face products from four lines of products: cleanser, care, make-up and make-up remover products and two oral care products. Probabilistic exposure was assessed for different subpopulation according to sex and age in adults and children. Pregnant women were also studied. The levels of exposure to moisturizing cream, lip balm, mascara, eyeliner, cream foundation, toothpaste and mouthwash were higher than the values currently used by the Scientific Committee on Consumer Safety (SCCS). Exposure values found for eye shadow, lipstick, lotion and milk (make-up remover) were lower than SCCS values. These new French exposure values will be useful for safety assessors and for safety agencies in order to protect the general population and the at risk populations. Copyright © 2017. Published by Elsevier Ltd.

  11. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  12. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2000-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  13. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2001-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  14. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  15. Assessment of occupational exposure due to intakes of radionuclides. Safety guide

    International Nuclear Information System (INIS)

    1999-01-01

    Occupational exposure due to radioactive materials can occur as a result of various human activities. These include work associated with the different stages of the nuclear fuel cycle, the use of radioactive sources in medicine, scientific research, agriculture and industry, and occupations which involve the handling of materials containing enhanced concentrations of naturally occurring radionuclides. In order to control this exposure, it is necessary to be able to assess the magnitude of the doses involved. Three interrelated Safety Guides, prepared jointly by the IAEA and the International Labour Office (ILO), provide guidance on the application of the requirements of the Basic Safety Standards with respect to occupational exposure. Reference [3] gives general advice on the exposure conditions for which monitoring programmes should be set up to assess radiation doses arising from external radiation and from intakes of radionuclides by workers. More specific guidance on the assessment of doses from external sources of radiation can be found in Ref. [4] and the present Safety Guide deals with intakes of radioactive materials. Recommendations related to occupational radiation protection have also been developed by the International Commission on Radiological Protection (ICRP) [5]. These and other current recommendations of the ICRP [6] have been taken into account in preparing this Safety Guide. The purpose of this Safety Guide is to provide guidance for regulatory authorities on conducting assessments of intakes of radioactive material arising from occupational exposure. This Guide will also be useful to those concerned with the planning, management and operation of occupational monitoring programmes, and to those involved in the design of equipment for use in internal dosimetry and workplace monitoring

  16. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential.

    Science.gov (United States)

    Mitchell, Jade; Arnot, Jon A; Jolliet, Olivier; Georgopoulos, Panos G; Isukapalli, Sastry; Dasgupta, Surajit; Pandian, Muhilan; Wambaugh, John; Egeghy, Peter; Cohen Hubal, Elaine A; Vallero, Daniel A

    2013-08-01

    While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA's need to develop novel approaches and tools for rapidly prioritizing chemicals, a "Challenge" was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA's effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential

    Science.gov (United States)

    Mitchell, Jade; Arnot, Jon A.; Jolliet, Olivier; Georgopoulos, Panos G.; Isukapalli, Sastry; Dasgupta, Surajit; Pandian, Muhilan; Wambaugh, John; Egeghy, Peter; Cohen Hubal, Elaine A.; Vallero, Daniel A.

    2014-01-01

    While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA’s need to develop novel approaches and tools for rapidly prioritizing chemicals, a “Challenge” was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA’s effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches. PMID:23707726

  18. Multi-pathway exposure modeling of chemicals in cosmetics with application to shampoo.

    Science.gov (United States)

    Ernstoff, Alexi S; Fantke, Peter; Csiszar, Susan A; Henderson, Andrew D; Chung, Susie; Jolliet, Olivier

    2016-01-01

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quantified based on the chemical mass originally applied via a product, multiplied by the product intake fractions (PiF, the fraction of a chemical in a product that is taken in by exposed persons) to yield intake rates. The average PiFs for the evaluated chemicals in shampoo ranged from 3×10(-4) up to 0.3 for rapidly absorbed ingredients. Average intake rates ranged between nano- and micrograms per kilogram bodyweight per day; the order of chemical prioritization was strongly affected by the ingredient concentration in shampoo. Dermal intake and inhalation (for 20% of the evaluated chemicals) during use dominated exposure, while the skin permeation coefficient dominated the estimated uncertainties. The fraction of chemical taken in by a shampoo user often exceeded, by orders of magnitude, the aggregated fraction taken in by the population through post-use environmental emissions. Chemicals with relatively high octanol-water partitioning and/or volatility, and low molecular weight tended to have higher use stage exposure. Chemicals with low intakes during use (<1%) and subsequent high post-use emissions, however, may yield comparable intake for a member of the general population. The presented PiF based framework offers a novel and critical advancement for life cycle assessments and high-throughput exposure screening of chemicals in cosmetic products demonstrating the importance of consistent consideration of near- and far-field multi-pathway exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A sensitivity analysis of a radiological assessment model for Arctic waters

    DEFF Research Database (Denmark)

    Nielsen, S.P.

    1998-01-01

    A model based on compartment analysis has been developed to simulate the dispersion of radionuclides in Arctic waters for an assessment of doses to man. The model predicts concentrations of radionuclides in the marine environment and doses to man from a range of exposure pathways. A parameter sen...... scavenging, water-sediment interaction, biological uptake, ice transport and fish migration. Two independent evaluations of the release of radioactivity from dumped nuclear waste in the Kara Sea have been used as source terms for the dose calculations.......A model based on compartment analysis has been developed to simulate the dispersion of radionuclides in Arctic waters for an assessment of doses to man. The model predicts concentrations of radionuclides in the marine environment and doses to man from a range of exposure pathways. A parameter...... sensitivity analysis has identified components of the model that are potentially important contributors to the predictive accuracy of doses to individuals of critical groups as well as to the world population. The components investigated include features associated with water transport and mixing, particle...

  20. Skin sensitisation quantitative risk assessment (QRA) based on aggregate dermal exposure to methylisothiazolinone in personal care and household cleaning products.

    Science.gov (United States)

    Ezendam, J; Bokkers, B G H; Bil, W; Delmaar, J E

    2018-02-01

    Contact allergy to preservatives is an important public health problem. Ideally, new substances should be evaluated for the risk on skin sensitisation before market entry, for example by using a quantitative risk assessment (QRA) as developed for fragrances. As a proof-of-concept, this QRA was applied to the preservative methylisothiazolinone (MI), a common cause of contact allergy. MI is used in different consumer products, including personal care products (PCPs) and household cleaning products (HCPs). Aggregate exposure to MI in PCPs and HCPs was therefore assessed with the Probabilistic Aggregated Consumer Exposure Model (PACEM). Two exposure scenarios were evaluated: scenario 1 calculated aggregate exposure on actual MI product concentrations before the restricted use in PCPs and scenario 2 calculated aggregate exposure using the restrictions for MI in PCPs. The QRA for MI showed that in scenarios 1 and 2, the proportion of the population at risk for skin sensitisation is 0.7% and 0.5%, respectively. The restricted use of MI in PCPs does not seem very effective in lowering the risk on skin sensitization. To conclude, it is important to consider aggregate exposure from the most important consumer products into consideration in the risk assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.