WorldWideScience

Sample records for exploring cosmic x-ray

  1. Exploring the X-Ray Universe

    Science.gov (United States)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale. This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  2. Half a century of cosmic x-ray research

    International Nuclear Information System (INIS)

    Makishima, Kazuo; Takahashi, Tadayuki

    2012-01-01

    The year of 2012, which is the centennial of the cosmic-ray discovery, happens to coincide with the 50th anniversary of the discovery of cosmic X-ray sources. First carried by cosmic-ray physicists, the study of cosmic X-rays has made explosive developments over the last half a century, and has established the X-ray wavelength as an indispensable window onto the Universe. Among a variety of X-ray emitting celestial objects, we choose here neutron stars as a representative, and review the 50 years connecting the dawn era of the research and the state-of-the-art ASTRO-H satellite to be launched in 2014. In this article, 'X-rays' mean energetic photons with energies from 0.1 keV up to a few hundreds keV. (author)

  3. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  4. Irradiated ISM : Discriminating between cosmic rays and X-rays

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Israel, F. P.

    2006-01-01

    The interstellar medium ( ISM) at the centers of active galaxies is exposed to a combination of cosmic-ray, far-ultraviolet (FUV), and X-ray radiation. We apply photodissociation region (PDR) models to this ISM with both "normal" and highly elevated (5 x 10(-15) s(-1)) cosmic- ray (CR) rates and

  5. A New Measurement of the Cosmic X-ray Background

    International Nuclear Information System (INIS)

    Moretti, A.

    2009-01-01

    I present a new analytical description of the cosmic X-ray background (CXRB) spectrum in the 1.5-200 keV energy band, obtained by combining the new measurement performed by the Swift X-ray telescope (XRT) with the recently published Swift burst alert telescope (BAT) measurement. A study of the cosmic variance in the XRT band (1.5-7 keV) is also presented. I find that the expected cosmic variance (expected from LogN-LogS) scales as Ω -0.3 (where Ω is the surveyed area) in very good agreement with XRT data.

  6. Hard X-ray irradiation of cosmic silicate analogs: structural evolution and astrophysical implications

    Science.gov (United States)

    Gavilan, L.; Jäger, C.; Simionovici, A.; Lemaire, J. L.; Sabri, T.; Foy, E.; Yagoubi, S.; Henning, T.; Salomon, D.; Martinez-Criado, G.

    2016-03-01

    of the resin embedded (originally polycrystalline) silicate sample. We explore the astrophysical implications of this laboratory result as an upper limit to the effect of X-rays on the structure of cosmic silicates.

  7. The Imaging X-Ray Polarimetry Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Ramsey, Brian; O’Dell, Stephen; Tennant, Allyn; Elsner, Ronald; Soffita, Paolo; Bellazzini, Ronaldo; Costa, Enrico; Kolodziejczak, Jeffery; Kaspi, Victoria; hide

    2016-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is an exciting international collaboration for a scientific mission that dramatically brings together the unique talents of the partners to expand observation space by simultaneously adding polarization measurements to the array of source properties currently measured (energy, time, and location). IXPE uniquely brings to the table polarimetric imaging. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially systems under extreme physical conditions-such as neutron stars and black holes. Polarization singularly probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. Hence, IXPE complements all other investigations in high-energy astrophysics by adding important and relatively unexplored information to the parameter space for studying cosmic X-ray sources and processes, as well as for using extreme astrophysical environments as laboratories for fundamental physics.

  8. The Imaging X-ray Polarimetry Explorer (IXPE

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    Full Text Available The Imaging X-ray Polarimetry Explorer (IXPE expands observation space by simultaneously adding polarization to the array of X-ray source properties currently measured (energy, time, and location. IXPE will thus open new dimensions for understanding how X-ray emission is produced in astrophysical objects, especially in systems under extreme physical conditions. Keywords: X-ray astronomy, X-ray polarimetry, X-ray imaging

  9. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    Science.gov (United States)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  10. IXPE - The Imaging X-Ray Polarimetry Explorer

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission that will be proposed in response to NASA's upcoming Announcement of Opportunity. IXPE will transform our understanding of the most energetic and exotic astrophysical objects, especially neutron stars and black holes, by measuring the linear polarization of astronomical objects as a function of energy, time and, where relevant, position. As the first dedicated polarimetry observatory IXPE will add a new dimension to the study of cosmic sources, enlarging the observational phase space and providing answers to fundamental questions. IXPE will feature x-ray optics fabricated at NASA/MSFC and gas pixel focal plane detectors provided by team members in Italy (INAF and INFN). This presentation will give an overview of the proposed IXPE mission, detailing the payload configuration, the expected sensitivity, and a typical observing program.

  11. Cosmic X-ray background from hot gas

    International Nuclear Information System (INIS)

    Rogers, R.D.; Field, G.B.

    1991-01-01

    This paper considers constraints on models of the cosmic X-ray background (XRB) in which the XRB is produced by optically thin thermal bremsstrahlung from hot gas. It is shown that models in which the gas is gravitationally confined in a spherical configuration and is heated only once are contradicted by the observed number of gravitationally lensed quasars together with the lower limit on the number of XRB sources required by limits on fluctuations in the XRB and the cosmic microwave background. In addition, it is shown that, for models in which the gas is not gravitationally confined, the expansion time of the gas is much shorter than the radiative cooling time, so that such models cannot explain the XRB. It is concluded that thermal bremsstrahlung models cannot account for the XRB if the emitting gas is heated only once. 31 refs

  12. Cosmological Implications of the Effects of X-Ray Clusters on the Cosmic Microwave Background

    Science.gov (United States)

    Forman, William R.

    1996-01-01

    We have been carrying forward a program to confront X-ray observations of clusters and their evolution as derived from X-ray observatories with observations of the cosmic microwave background radiation (CMBR). In addition to the material covered in our previous reports (including three published papers), most recently we have explored the effects of a cosmological constant on the predicted Sunyaev-Zel'dovich effect from the ensemble of clusters. In this report we summarize that work from which a paper will be prepared.

  13. Exploring subluminous X-ray binaries

    NARCIS (Netherlands)

    Degenaar, N.D.

    2010-01-01

    Halfway the twentieth century, technological developments made it possible to carry detection instruments outside the absorbing layers of the Earth’s atmosphere onboard rockets and satellites. This opened up the opportunity to detect the emission from celestial objects at X-ray wavelengths, thereby

  14. Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources

    Science.gov (United States)

    2000-01-01

    While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower

  15. XRASE: The X-Ray Spectroscopic Explorer

    DEFF Research Database (Denmark)

    Schnopper, H.W.; Silver, E.; Murray, S.

    2001-01-01

    baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe K alpha region (1100 cm(2)). Its microcalorimeter array combines high energy resolution (7...... eV at 6 keV) and efficiency with a field-of-view of 26 arcmin(2) . A deep orbit allows for long, continuous observations. Monitoring instruments in the optical (WOM-X), UV (TAUVEX) and hard X-RAY (GRAM) bands will offer exceptional opportunities to make simultaneous multi-wavelength observations....

  16. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  17. Origin of the cosmic x-ray background

    International Nuclear Information System (INIS)

    Margon, B.

    1983-01-01

    Since 1962, it has been known that every part of the sky emits a uniform glow of x-rays. After two decades of intense study the origin of this diffuse x-ray background is still a subject of controversy. The near perfect isotropy of the x-ray background is clearly a vital clue to its origin. A second clue to the origin of the x-ray background arises from the fact that it is x-radiation tha is generated, rather than some longer wavelength radiation. Two hypotheses of the origin of this x-ray background are discussed. One hypothesis is that the x-ray background can be attributed to bremsstrahlung from a hot intergalactic medium. The second hypothesis is that the x-ray background originates from a large number of quasars. Because there is no estimate independent of the intensity of the x-ray background of how much hot intergalactic medium exists (if any), there is a real possibility that both sources contribute to the observed x-rays. (SC)

  18. Diffuse cosmic x-rays below 1 keV

    International Nuclear Information System (INIS)

    Kraushaar, W.L.

    1973-01-01

    A description of those features of the low energy diffuse x-ray flux on which there is general observational agreement is given. Most of the discussion is restricted to the energy region below 280 eV, the carbon K edge. Topics include intensity, spatial structure, nature of the local emission, and the extragalactic component. It is concluded that the diffuse soft x-ray measurements cannot, taken alone, be said to provide positive evidence for a hot dense intergalactic medium. (U.S.)

  19. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    Science.gov (United States)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  20. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    Science.gov (United States)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  1. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    Science.gov (United States)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  2. COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Glassgold, Alfred E.; Galli, Daniele; Padovani, Marco

    2012-01-01

    Cosmic-ray and X-ray heating are derived from the electron energy-loss calculations of Dalgarno, Yan, and Liu for hydrogen-helium gas mixtures. These authors treated the heating from elastic scattering and collisional de-excitation of rotationally excited hydrogen molecules. Here we consider the heating that can arise from all ionization and excitation processes, with particular emphasis on the reactions of cosmic-ray and X-ray generated ions with the heavy neutral species, which we refer to as chemical heating. In molecular regions, chemical heating dominates and can account for 50% of the energy expended in the creation of an ion pair. The heating per ion pair ranges in the limit of negligible electron fraction from ∼4.3 eV for diffuse atomic gas to ∼13 eV for the moderately dense regions of molecular clouds and to ∼18 eV for the very dense regions of protoplanetary disks. An important general conclusion of this study is that cosmic-ray and X-ray heating depends on the physical properties of the medium, i.e., on the molecular and electron fractions, the total density of hydrogen nuclei, and, to a lesser extent, on the temperature. It is also noted that chemical heating, the dominant process for cosmic-ray and X-ray heating, plays a role in UV irradiated molecular gas.

  3. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    Science.gov (United States)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  4. A balloon-borne solid state cosmic X-ray detector

    International Nuclear Information System (INIS)

    Proctor, R.; Pietsch, W.; Reppin, C.

    1982-01-01

    On 9th May 1980 a MPI/AIT hard X-ray balloon payload successfully observed numerous cosmic X-ray sources. The payload consisted of a 2400 cm 2 Phoswich detector and a 114 cm 2 solid state detector. The solid state detector is described in this report. It consists of six intrinsic germanium planar crystals in a vacuum cryostat cooled by liquid nitrogen. The detector operates in the hard X-ray energy range of 20-150 keV and had in-flight a mean energy resolution of 2.75 keV at 60 keV. A hexagonal molybdenum collimator defined the field of view as approximately 4 0 fwhm. A CsI(Na) and plastic active shield and passive shielding provided background rejection. Mean background values of 1.3 X 10 -3 counts/(sec x cm 2 x keV) at 60 keV were obtained. (orig.)

  5. IXPE the Imaging X-ray Polarimetry Explorer

    Science.gov (United States)

    Soffitta, Paolo

    2017-08-01

    IXPE, the Imaging X-ray Polarimetry Explorer, has been selected as a NASA SMEX mission to be flown in 2021. It will perform polarimetry resolved in energy, in time and in angle as a break-through in High Energy Astrophysics. IXPE promises to 're-open', after 40 years, a window in X-ray astronomy adding two more observables to the usual ones. It will directly measure the geometrical parameters of many different classes of sources eventually breaking possible degeneracies. The probed angular scales (30") are capable of producing the first X-ray polarization maps of extended objects with scientifically relevant sensitivity. This will permit mapping the magnetic fields in Pulsar Wind Nebulae and Super-Nova Remnants at the acceleration sites of 10-100 TeV electrons. Additionally, it will probe vacuum birefringence effects in systems with magnetic fields far larger than those reachable with experiments on Earth. The payload of IXPE consists of three identical telescopes with mirrors provided by MSFC/NASA. The focal plane is provided by ASI with IAPS/INAF responsible for the overall instrument that includes detector units that are provided by INFN. ASI also provides, in kind, the Malindi Ground Station. LASP is responsible for the Mission Operation Center while the Science Operation Center is at MSFC. The operations phase lasts at least two years. All the data including those related to polarization will be made available quickly to the general user. In this paper we present the mission, its payload and we discuss a few examples of astrophysical targets.

  6. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  7. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  8. Exploring X-ray lines as scotogenic signals

    Energy Technology Data Exchange (ETDEWEB)

    Faisel, Gaber [Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan (China); Egyptian Center for Theoretical Physics, Modern University for Information and Technology, Cairo (Egypt); Ho, Shu-Yu; Tandean, Jusak [Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan (China)

    2014-11-10

    We consider some implications of X-ray lines from certain astronomical objects as potential effects of dark matter decay in the context of the scotogenic model, where neutrinos acquire mass radiatively via one-loop interactions with dark matter. As an example, we focus on the 3.5 keV line recently detected in the X-ray spectra of galaxy clusters, assuming that it stands future scrutiny. We explore the scenario in which the line originates from the slow decay of fermionic dark matter in the model. After obtaining a number of benchmark points representing the parameter space consistent with the new data and various other constraints, we make predictions on several observables in leptonic processes. They include the effective Majorana mass in neutrinoless double-beta decay, the sum of neutrino masses, and the rate of flavor-changing decay μ→eγ, as well as the cross sections of e{sup +}e{sup −} collisions into final states containing nonstandard particles in the model. These are testable in ongoing or future experiments and thus offer means to probe the scotogenic scenario studied.

  9. XIPE the X-Ray Imaging Polarimetry Explorer

    Science.gov (United States)

    Soffitta, Paolo; Barcons, Xavier; Bellazzini, Ronaldo; Braga, Joao; Costa, Enrico; Fraser, George W.; Gburek, Szymon; Huovelin, Juhani; Matt, Giorgio; Pearce, Mark; hide

    2013-01-01

    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 in the 210 keV band in 105 s for pointed observations, and 0.6 for an X10 class solar flare in the 1535 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14

  10. The Cosmic History of Black Hole Accretion from Chandra X-ray Stacking

    Science.gov (United States)

    Treister, Ezequiel; Urry, C.; Schawinski, K.; Lee, N.; Natarajan, P.; Volonteri, M.; Sanders, D. B.

    2012-05-01

    In order to fully understand galaxy formation we need to know when in the cosmic history are black holes growing more intensively, in what type of galaxies this growth is happening and what fraction of these sources are invisible at most wavelengths due to obscuration. We take advantage of the rich multi-wavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Msec Chandra observations (the deepest X-ray data to date), in order to measure the amount of black hole accretion as a function of cosmic history, from z 0 to z 6. We obtain stacked rest-frame X-ray spectra for samples of galaxies binned in terms of their IR luminosity, stellar mass and other galaxy properties. We find that the AGN fraction and their typical luminosities, and thus black hole accretion rates, increase with IR luminosity and stellar mass. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, 22%, occurs in heavily-obscured systems that are not individually detected in even the deepest X-ray observations. We find evidence for a strong connection between significant black hole growth events and major galaxy mergers from z 0 to z 3, while less spectacular but longer accretion episodes are most likely due to other (stochastic) processes. E.T. and K.S. gratefully acknowledges the support provided by NASA through Chandra Postdoctoral Fellowship Award Numbers PF8-90055 and PF9-00069, respectively issued by the Chandra X-ray Observatory Center. E.T. also thanks support by NASA through Chandra Award SP1-12005X Center of Excellence in Astrophysics and Associated Technologies (PFB 06). C. M. Urry acknowledges support from NSF Grants AST-0407295, AST-0449678, AST-0807570, and Yale University.

  11. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    Science.gov (United States)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  12. X-ray and Optical Explorations of Spiders

    Science.gov (United States)

    Roberts, M.; Al Noori, H.; Torres, R.; Russell, D.; Mclaughlin, M.; Gentile, P.

    2017-10-01

    Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion which is having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton data obtained from several of these systems, along with new optical photometry.

  13. Exploring transient X-ray sky with Einstein Probe

    Science.gov (United States)

    Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.

    2017-10-01

    The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.

  14. Observation of cosmic hard x-ray by L-3H-9 rocket

    International Nuclear Information System (INIS)

    Hayakawa, Sachio; Makino, Fumiyoshi; Matsui, Yutaka; Fukada, Yutaka.

    1978-01-01

    It has been considered that the isotropic constituents of cosmic hard X-ray have their origins outside the galactic system. As the spectra are uncertain, the generation mechanism of X-ray has not been clearly known yet. It was attempted to make more reliable observation by shutter method and the technique removing charged particles, using the L-3H-8 rocket. The equipment consists of NaI scintillation counter, a front counter, a Xenon counter, a UV sensor, a collimator, a shutter and a shutter-driving device. The L-3H-9 rocket was launched on August 16, 1977, and reached height of 310 km in about 300 seconds. Then the observation was started, but it was not able to observe the isotropic constituents of hard X-ray which were aimed at, as the shutter didn't work normally. It is expected to make another observation with the K-9M-64 rocket in August, 1978, after investigating the action of the shutter and employing and improved driving device. (Kobatake, H.)

  15. The Nature of the Unresolved Extragalactic Cosmic Soft X-Ray Background

    Science.gov (United States)

    Cappelluti, N.; Ranalli, P.; Roncarelli, M.; Arevalo, P.; Zamorani, G.; Comastri, A.; Gilli, R.; Rovilos, E.; Vignali, C.; Allevato, V.; hide

    2013-01-01

    In this paper we investigate the power spectrum of the unresolved 0.5-2 keV cosmic X-ray background (CXB) with deep Chandra 4-Msec (Ms) observations in the Chandra Deep Field South (CDFS). We measured a signal that, on scales >30 arcsec, is significantly higher than the shot noise and is increasing with angular scale. We interpreted this signal as the joint contribution of clustered undetected sources like active galactic nuclei (AGN), galaxies and the intergalactic medium (IGM). The power of unresolved cosmic source fluctuations accounts for approximately 12 per cent of the 0.5-2 keV extragalactic CXB. Overall, our modelling predicts that approximately 20 per cent of the unresolved CXB flux is produced by low-luminosity AGN, approximately 25 per cent by galaxies and approximately 55 per cent by the IGM. We do not find any direct evidence of the so-called 'warm hot intergalactic medium' (i.e. matter with 10(exp 5) less than T less than 10(exp 7) K and density contrast delta less than 1000), but we estimated that it could produce about 1/7 of the unresolved CXB. We placed an upper limit on the space density of postulated X-ray-emitting early black holes at z greater than 7.5 and compared it with supermassive black hole evolution models.

  16. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  17. The epoch of cosmic heating by early sources of X-rays

    Science.gov (United States)

    Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana

    2018-05-01

    Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.

  18. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  19. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  20. TOMOX : An X-rays tomographer for planetary exploration

    Science.gov (United States)

    Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone

    2017-04-01

    The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines

  1. Cosmic and solar gamma-ray x-ray and particle measurements from high altitude balloons in Antarctica

    International Nuclear Information System (INIS)

    Lin, R.P.

    1990-01-01

    For measurements of cosmic and solar gamma-rays, hard X-rays, and particles, Antarctica offers the potential for very long, 10--20 day, continuous, twenty-four-hour-a-day observations, with balloon flights circling the South Pole during austral summer. For X-ray/gamma-ray sources at high south latitude the overlying atmosphere is minimized, and for cosmic ray measurements the low geomagnetic cutoff permits entry of low rigidity particles. The first Antarctic flight of a heavy (∼2400 lb.) payload on a large (11.6x10 6 cu. ft.) balloon took place in January, 1988, to search for the gamma-ray lines of 56 Co produced in the new supernova SN 1987A in the Large Magellanic Cloud. The long duration balloon flights presently planned from Antarctica include those for further gamma-ray/hard X-ray studies of SN 1987A and for the NASA Max '91 program for solar flare studies

  2. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T., E-mail: stephen.angus@physics.ox.ac.uk, E-mail: j.conlon1@physics.ox.ac.uk, E-mail: david.marsh1@physics.ox.ac.uk, E-mail: andrew.powell2@physics.ox.ac.uk, E-mail: l.witkowski@thphys.uni-heidelberg.de [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2014-09-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g{sub aγγ} ∼ 2 × 10{sup -13} Ge {sup -1}. The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E{sub a} ) ∼< 250 eV, the axion mass to m{sub a} ∼< 10{sup -12} eV, and derive a lower bound on the axion-photon coupling g{sub aγγ} ∼> √(0.5/Δ N{sub eff}) 1.4 × 10{sup -13} Ge {sup -1}.

  3. Soft X-ray excess in the Coma cluster from a Cosmic Axion Background

    International Nuclear Information System (INIS)

    Angus, Stephen; Conlon, Joseph P.; Marsh, M.C. David; Powell, Andrew J.; Witkowski, Lukas T.

    2014-01-01

    We show that the soft X-ray excess in the Coma cluster can be explained by a cosmic background of relativistic axion-like particles (ALPs) converting into photons in the cluster magnetic field. We provide a detailed self-contained review of the cluster soft X-ray excess, the proposed astrophysical explanations and the problems they face, and explain how a 0.1- 1 keV axion background naturally arises at reheating in many string theory models of the early universe. We study the morphology of the soft excess by numerically propagating axions through stochastic, multi-scale magnetic field models that are consistent with observations of Faraday rotation measures from Coma. By comparing to ROSAT observations of the 0.2- 0.4 keV soft excess, we find that the overall excess luminosity is easily reproduced for g aγγ  ∼ 2 × 10 -13  Ge -1 . The resulting morphology is highly sensitive to the magnetic field power spectrum. For Gaussian magnetic field models, the observed soft excess morphology prefers magnetic field spectra with most power in coherence lengths on O(3 kpc) scales over those with most power on O(12 kpc) scales. Within this scenario, we bound the mean energy of the axion background to 50 eV∼< ( E a  ) ∼< 250 eV, the axion mass to m a  ∼< 10 -12  eV, and derive a lower bound on the axion-photon coupling g aγγ  ∼> √(0.5/Δ N eff ) 1.4 × 10 -13  Ge -1

  4. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Science.gov (United States)

    Šimon, V.

    2017-07-01

    We show the astrophysical aspects of observing the X-ray sky with the planned lobster-eye telescope. This instrument is important because it is able to provide wide-field X-ray imaging. For the testing observations, we propose to include also X-ray binaries in which matter transfers onto the compact object (mostly the neutron star). We show the typical features of the long-term X-ray activity of such objects. Observing in the soft X-ray band is the most promising because their X-ray intensity is the highest in this band. Since these X-ray sources tend to concentrate toward the center of our Galaxy, several of them can be present in the field of view of the tested instrument.

  5. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    Science.gov (United States)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  6. Observation of superheavy primary cosmic ray nuclei with solid state track detectors and x-ray films

    International Nuclear Information System (INIS)

    Doke, Tadayoshi; Hayashi, Takayoshi; Ito, Kensai; Yanagimachi, Tomoki; Kobayashi, Shigeru.

    1977-01-01

    The measurements of energy spectra and the nuclear charge distribution of superheavy nuclei heavier than iron in primary cosmic ray can provide information on the origin, propagation and life time of the cosmic ray. Since incident particles are in the region of relativistic velocity (the low energy cosmic ray below the cutoff energy is forbidden from entering), the charges of cosmic ray nuclei can be determined without knowing the energy of particles. The balloon-borne solid state track detector and plastic and X-ray films were employed for the detection of superheavy cosmic ray, and the five events were detected with the cellulose nitrate film. The flux of superheavy nuclei is predicted from the present analysis. (Yoshimori, M.)

  7. Cylindrical Crystal Imaging Spectrometer (CCIS) for cosmic X-ray spectroscopy

    Science.gov (United States)

    Schnopper, H. W.; Taylor, P. O.

    1981-01-01

    A "stigmatic" focusing, Bragg crystal spectrometer was developed and used for high spectral resolution X-ray emission line diagnostics on hot laboratory plasmas. The concept be applied at the focal plane of an orbiting X-ray telescope where it offers several advantages over conventional spectrometers, i.e., mechanical simplicity, high resolving power and sensitivity, simultaneous measurement of an extended segment of spectrum, and good imaging properties. The instrument features a simple, unambiguous, non-scanning spectrum readout that is not adversely affected by either spacecraft pointing error or source extent. The performance of the instrument is estimated in the context of the Advanced X-Ray Astrophysical Facility mission.

  8. An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies

    Science.gov (United States)

    Markowitz, A.; Edelson, R.

    2004-12-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  9. X-RAY STRIPES IN TYCHO'S SUPERNOVA REMNANT: SYNCHROTRON FOOTPRINTS OF A NONLINEAR COSMIC-RAY-DRIVEN INSTABILITY

    International Nuclear Information System (INIS)

    Bykov, Andrei M.; Osipov, Sergei M.; Uvarov, Yury A.; Ellison, Donald C.; Pavlov, George G.

    2011-01-01

    High-resolution Chandra observations of Tycho's supernova remnant (SNR) have revealed several sets of quasi-steady, high-emissivity, nearly parallel X-ray stripes in some localized regions of the SNR. These stripes are most likely the result of cosmic-ray (CR) generated magnetic turbulence at the SNR blast wave. However, for the amazingly regular pattern of these stripes to appear, simultaneous action of a number of shock-plasma phenomena is required, which is not predicted by most models of magnetic field amplification. A consistent explanation of these stripes yields information on the complex nonlinear plasma processes connecting efficient CR acceleration and magnetic field fluctuations in strong collisionless shocks. The nonlinear diffusive shock acceleration (NL-DSA) model described here, which includes magnetic field amplification from a CR-current-driven instability, does predict stripes consistent with the synchrotron observations of Tycho's SNR. We argue that the local ambient mean magnetic field geometry determines the orientation of the stripes and therefore it can be reconstructed with the high-resolution X-ray imaging. The estimated maximum energy of the CR protons responsible for the stripes is ∼10 15 eV. Furthermore, the model predicts that a specific X-ray polarization pattern, with a polarized fraction ∼50%, accompanies the stripes, which can be tested with future X-ray polarimeter missions.

  10. An exploration of adolescents' perceptions of X-ray examinations

    International Nuclear Information System (INIS)

    O' Shea, C.; Davis, M.

    2015-01-01

    Purpose: The research presented in this paper is taken from a larger study whose aims were to explore adolescents' perceptions of X-ray examinations and more specifically middle adolescents' perceptions of X-ray examinations. Middle adolescents are between the ages of 15 and 17 years and experience many changes in their lives that differentiate them from young and late adolescents. There is limited research available on middle adolescents' perceptions of the X-ray examination process Methodology: 18 adolescents, age range 15–17 years, took part in the research study. This included 9 male and 9 female adolescents from 2 secondary schools in the Dublin area. A self-completion questionnaire was used as the method of investigating their perceptions of the X-ray examination process. The data, which consisted of feelings and opinions, was analysed qualitatively using thematic analysis. Results: Analysis suggested that the adolescents perceived that the ‘wait’ in the waiting room was long and boring. They expressed an interest in the provision of suitable recreational facilities to distract them from feeling nervous, bored and from the pain they felt. 16 of the adolescents found the X-ray examination interesting, although they appeared to have little knowledge of what was happening. 14 of the adolescents perceived the radiographer to be friendly. More boys than girls complained about the radiographer. Conclusion: The study indicates that middle adolescents are not receiving effective quality care that meets their specific needs when presenting for an X-ray examination. Further research could help in providing the adolescents with the optimum care they need. - Highlights: • Waiting was long and boring. • X-ray examination was interesting. • Adolescents had little knowledge of what was happening. • Adolescents would like more age appropriate material

  11. Constraining Dark Energy with X-ray Galaxy Clusters, Supernovae and the Cosmic Microwave Background

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    We present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w 0 = 1.05 -0.12 +0.10 . Including w et as a free parameter and allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . We find no significant evidence for evolution in the dark energy equation of state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w 0 = -1.09 -0.15 +0.12 and obtain a tight constraint on the current dark energy density, (Omega) de = 0.70 ± 0.03. For dark energy models other than a cosmological constant, energy-momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c s 2 = 1 in the dark energy fluid as expected for Quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints

  12. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

    Science.gov (United States)

    Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.

    2003-11-01

    The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.

  13. Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2016-05-01

    Full Text Available The fragmentation of shock-melted metal material is an important scientific problem in shock physics and is suitable for experimentally investigating by the laser-driven x-ray backlighting technique. This letter reports on the exploration of laser shock-melted aluminum fragmentation by means of x-ray backlighting at the SGII high energy facility in China. High-quality and high-resolution radiographs with negligible motion blur were obtained and these images enabled analysis of the mass distribution of the fragmentation product.

  14. Exploration in vivo by X-ray fluorescence (thyroid-brain)

    International Nuclear Information System (INIS)

    Delcroix, V.; Allemand, R.; Laval, M.; Dipaola, M.; Tubiana, M.

    1975-01-01

    X-ray fluorescence methods of medical exploration avoid the use of radioactive tracers and hence reduce the total dose received by the patient. In addition the collimation to the excitation source and detector respectively produces a tomographic effect which improves the spatial resolution of the system and even allows organs to be charted. The physical principles involved in X-ray fluorescence are outlined, with emphasis on the fact that the only elements useful for such applications are those of high enough atomic number to emit a fluorescence radiation of energy sufficient to pass through the tissues. The apparatus used, the excitation sources (radioactive source or X-ray tube), the detector and the measurement equipment are described. The experimental results obtained are given in two fields: measurement of blood flow in the tissues; thyroid imagery [fr

  15. The Cosmic Background Explorer

    Science.gov (United States)

    Gulkis, Samuel; Lubin, Philip M.; Meyer, Stephan S.; Silverberg, Robert F.

    1990-01-01

    The Cosmic Background Explorer (CBE), NASA's cosmological satellite which will observe a radiative relic of the big bang, is discussed. The major questions connected to the big bang theory which may be clarified using the CBE are reviewed. The satellite instruments and experiments are described, including the Differential Microwave Radiometer, which measures the difference between microwave radiation emitted from two points on the sky, the Far-Infrared Absolute Spectrophotometer, which compares the spectrum of radiation from the sky at wavelengths from 100 microns to one cm with that from an internal blackbody, and the Diffuse Infrared Background Experiment, which searches for the radiation from the earliest generation of stars.

  16. Exploration of X-ray and charged-particle spectroscopy with CCDs and PSDs

    NARCIS (Netherlands)

    Simons, D.P.L.; Mutsaers, P.H.A.; IJzendoorn, van L.J.; Voigt, de M.J.A.

    1998-01-01

    Two alternative detector types have been studied for use in the Eindhoven Scanning Ion Microprobe set-up. First, the applicability of a Charge Coupled Device (CCD) system for X-ray spectroscopy has been explored. Second, some properties of the SiTek type 1L30 Position Sensitive Detector (PSD) for

  17. The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)

    Science.gov (United States)

    Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.; hide

    2009-01-01

    X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.

  18. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    International Nuclear Information System (INIS)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto; Corbet, Robin H. D.; Harris, Robert J.

    2011-01-01

    We present the results of a systematic search in ∼14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the ∼3.9 day orbital period of LMC X-1 and the ∼3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.

  19. SEXTANT - Station Explorer for X-ray Timing and Navigation Technology

    Science.gov (United States)

    Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.

  20. Measurements of hard cosmic X-rays with special reference to burst phenomena

    International Nuclear Information System (INIS)

    Mills, J.S.

    1978-06-01

    The bulk of this work is concerned with the development and subsequent flights of two balloon-borne gamma-burst detectors. The first was a 1 m 2 device which accumulated a total of 13 1/2 hours flying time at a latitude of 40 0 . The second was a large 7 m 2 detector which was flown from Alice Springs, N. Australia. Both detectors were sensitive to 50 keV to 2 MeV X-rays. The results of these flights are discussed with particular reference to the origin of gamma-bursts. The nature of X-ray bursts is also discussed, together with the results of observations by Experiment F on Ariel V, of the region of the sky centred on the rapid burster MXB1730-335. The last chapter is concerned with the development of a large area hard X-ray detector. This device is designed to be built in modular form and have a total collecting area up to 1 m 2 . It is sensitive to X-rays in the range 20 to 200 keV and is collimated by a tantalum honeycomb which has a field of view of 2 0 FWHM. A small version of this detector was flown on the same platform as the large burst detector. (author)

  1. A hard x-ray spectrometer for high angular resolution observations of cosmic sources

    International Nuclear Information System (INIS)

    Hailey, C.J.; Ziock, K.P.; Harrison, F.; Kahn, S.M.; Liedahl, D.; Lubin, P.M.; Seiffert, M.

    1988-01-01

    LAXRIS (large area x-ray imaging spectrometer) is an experimental, balloon-borne, hard x-ray telescope that consists of a coaligned array of x-ray imaging spectrometer modules capable of obtaining high angular resolution (1--3 arcminutes) with moderate energy resolution in the 20- to 300-keV region. Each spectrometer module consists of a CsI(Na) crystal coupled to a position-sensitive phototube with a crossed-wire, resistive readout. Imaging is provided by a coded aperture mask with a 4-m focal length. The high angular resolution is coupled with rather large area (/approximately/800 cm 2 ) to provide good sensitivity. Results are presented on performance and overall design. Sensitivity estimates are derived from a Monte-Carlo code developed to model the LAXRIS response to background encountered at balloon altitudes. We discuss a variety of observations made feasible by high angular resolution. For instance, spatially resolving the nonthermal x-ray emission from clusters of galaxies is suggested as an ideal program for LAXRIS. 15 refs., 5 figs

  2. Sudden f/sub min/ enhancements and sudden cosmic noise absorptions associated with solar X-ray flares

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T [Hyogo Coll. of Medicine, Hyogo (Japan). Dept. of Physics

    1975-01-01

    Sudden fsub(min) enhancements (SFsub(m)E's) and sudden cosmic noise absorptions (SCNA's) associated with increments of X-ray fluxes during solar flares are studied on the basis of X-ray flux data measured by SOLRAD 9 and 10 satellites. Some statistical analyses on SFsub(m)E's observed at five observatories in Japan, corresponding to increased X-ray fluxes in the 1-8 A band are made for 50 solar flare events during the period January 1972 to December 1973, and value of fsub(min) is expressed as functions of cos x(x; solar zenith angle) and 1-8 A band X-ray flux. Similar study is also made for SCNA's observed by 30 MHz riometer at Hiraiso for 15 great solar flare events during the same period, together with 27.6 MHz riometer data reported by Schwentek (1973) and 18 MHz data published by Deshpande and Mitra (1972b). It is found that fsub(min) value (MHz) and SCNA value (L, dB) of a radio wave with frequency f(MHz) are related to X-ray flux (F/sub 0/, erg cm/sup -2/ sec/sup -1/) in the 1-8 A band and to cos x, by following approximate expressions, fsub(min)(MHz)=10F/sub 0/sup(1/4) cossup(1/2) x, and L(dB)=4.37x10/sup 3/f/sup -2/F/sub 0/sup(1/2) cos x, respectively. Blackout seems to occur for F/sub 0/ values causing fsub(min)'s greater than about 5 MHz. It is shown that these expressions can be derived from a brief theoretical calculation of radio wave absorption in the lower ionosphere. Also it is suggested that threshold X-ray fluxes in the 1-8 A band which may produce a minimum SFsub(m)E (2 MHz), blackout and minimum SCNA (0.27-0.36 dB for 30 MHz noise) are 1.6x10/sup -3/, 6.2x10/sup -2/ and (3-8) x 10/sup -3/ erg cm/sup -2/ sec/sup -1/, respectively, for cos x=1.

  3. Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background

    Science.gov (United States)

    2001-03-01

    Summary Important scientific advances often happen when complementary investigational techniques are brought together . In the present case, X-ray and optical/infrared observations with some of the world's foremost telescopes have provided the crucial information needed to solve a 40-year old cosmological riddle. Very detailed observations of a small field in the southern sky have recently been carried out, with the space-based NASA Chandra X-Ray Observatory as well as with several ground-based ESO telescopes, including the Very Large Telescope (VLT) at the Paranal Observatory (Chile). Together, they have provided the "deepest" combined view at X-ray and visual/infrared wavelengths ever obtained into the distant Universe. The concerted observational effort has already yielded significant scientific results. This is primarily due to the possibility to 'identify' most of the X-ray emitting objects detected by the Chandra X-ray Observatory on ground-based optical/infrared images and then to determine their nature and distance by means of detailed (spectral) observations with the VLT . In particular, there is now little doubt that the so-called 'X-ray background' , a seemingly diffuse short-wave radiation first detected in 1962, in fact originates in a vast number of powerful black holes residing in active nuclei of distant galaxies . Moreover, the present investigation has permitted to identify and study in some detail a prime example of a hitherto little known type of object, a distant, so-called 'Type II Quasar' , in which the central black hole is deeply embedded in surrounding gas and dust. These achievements are just the beginning of a most fruitful collaboration between "space" and "ground". It is yet another impressive demonstration of the rapid progress of modern astrophysics, due to the recent emergence of a new generation of extremely powerful instruments. PR Photo 09a/01 : Images of a small part of the Chandra Deep Field South , obtained with ESO telescopes

  4. Probing Large-scale Coherence between Spitzer IR and Chandra X-Ray Source-subtracted Cosmic Backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Cappelluti, N.; Urry, M. [Yale Center for Astronomy and Astrophysics, P.O. Box 208120, New Haven, CT 06520 (United States); Arendt, R. [University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Kashlinsky, A. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Li, Y.; Hasinger, G. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Helgason, K. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Natarajan, P. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Finoguenov, A. [Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741, Garching bei München (Germany)

    2017-09-20

    We present new measurements of the large-scale clustering component of the cross-power spectra of the source-subtracted Spitzer -IRAC cosmic infrared background and Chandra -ACIS cosmic X-ray background surface brightness fluctuations Our investigation uses data from the Chandra Deep Field South, Hubble Deep Field North, Extended Groth Strip/AEGIS field, and UDS/SXDF surveys, comprising 1160 Spitzer hours and ∼12 Ms of Chandra data collected over a total area of 0.3 deg{sup 2}. We report the first (>5 σ ) detection of a cross-power signal on large angular scales >20″ between [0.5–2] keV and the 3.6 and 4.5 μ m bands, at ∼5 σ and 6.3 σ significance, respectively. The correlation with harder X-ray bands is marginally significant. Comparing the new observations with existing models for the contribution of the known unmasked source population at z < 7, we find an excess of about an order of magnitude at 5 σ confidence. We discuss possible interpretations for the origin of this excess in terms of the contribution from accreting early black holes (BHs), including both direct collapse BHs and primordial BHs, as well as from scattering in the interstellar medium and intra-halo light.

  5. Infrared-faint radio sources: a cosmological view. AGN number counts, the cosmic X-ray background and SMBH formation

    Science.gov (United States)

    Zinn, P.-C.; Middelberg, E.; Ibar, E.

    2011-07-01

    Context. Infrared-faint radio sources (IFRS) are extragalactic emitters clearly detected at radio wavelengths but barely detected or undetected at optical and infrared wavelengths, with 5σ sensitivities as low as 1 μJy. Aims: Spectral energy distribution (hereafter SED) modelling and analyses of their radio properties indicate that IFRS are consistent with a population of (potentially extremely obscured) high-redshift AGN at 3 ≤ z ≤ 6. We demonstrate some astrophysical implications of this population and compare them to predictions from models of galaxy evolution and structure formation. Methods: We compiled a list of IFRS from four deep extragalactic surveys and extrapolated the IFRS number density to a survey-independent value of (30.8 ± 15.0) deg-2. We computed the IFRS contribution to the total number of AGN in the Universe to account for the cosmic X-ray background. By estimating the black hole mass contained in IFRS, we present conclusions for the SMBH mass density in the early universe and compare it to relevant simulations of structure formation after the Big Bang. Results: The number density of AGN derived from the IFRS density was found to be ~310 deg-2, which is equivalent to a SMBH mass density of the order of 103 M⊙ Mpc-3 in the redshift range 3 ≤ z ≤ 6. This produces an X-ray flux of 9 × 10-16 W m-2 deg-2 in the 0.5-2.0 keV band and 3 × 10-15 W m-2 deg-2 in the 2.0-10 keV band, in agreement with the missing unresolved components of the Cosmic X-ray Background. To address SMBH formation after the Big Bang we invoke a scenario involving both halo gas accretion and major mergers.

  6. Perspectives of the lobster-eye telescope: The promising types of cosmic X-ray sources

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    2017-01-01

    Roč. 47, č. 2 (2017), s. 184-191 ISSN 1335-1842. [INTEGRAL/BART Workshop /14./. Karlovy Vary, 03.04.2017-07.04.2017] Grant - others:GA ČR(CZ) GA13-33324S Institutional support: RVO:67985815 Keywords : X-rays binaries * radiation mechanisms * observational methods Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 0.336, year: 2016

  7. IXPE: The Imaging X-ray Polarimetry Explorer, Implementing a Dedicated Polarimetry Mission

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    Only a few experiments have conducted x-ray polarimetry of cosmic sources since Weisskopf et al confirmed the 19% polarization of the Crab Nebula with the Orbiting Solar Observatory (OSO-8) in the 70's center dot The challenge is to measure a faint polarized component against a background of non-polarized signal (as well as the other, typical background components) center dot Typically, for a few % minimum detectable polarization, 106 photons are required. center dot So, a dedicated mission is vital with instruments that are designed specifically to measure polarization (with minimal systematic effects) Over the proposed mission life (2- 3 years), IXPE will first survey representative samples of several categories of targets: magnetars, isolated pulsars, pulsar wind nebula and supernova remnants, microquasars, active galaxies etc. The survey results will guide detailed follow-up observations. Precise calibration of IXPE is vital to ensuring sensitivity goals are met. The detectors will be characterized in Italy, and then a full calibration of the complete instrument will be performed at MSFC's stray light facility. Polarized flux at different energies Heritage: X-ray Optics at MSFC polarimetry mission.

  8. A cosmic ALP background and the cluster soft X-ray excess in A665, A2199 and A2255

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Andrew J., E-mail: Andrew.Powell2@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2015-09-01

    It has been proposed that an excess in soft X-ray emission observed from many galaxy clusters can be explained by conversion into photons of axion-like particles (ALPs) in the cluster's magnetic field. Previously it has been shown that conversion of this primordially-generated background of relativistic ALPs—a cosmic ALP background (CAB)—can explain the observed soft X-ray excess in both the centre and the outskirts of the Coma cluster. Here we extend this work to the three clusters A665, A2199 and A2255. We use a stochastic, power law model of the cluster magnetic field to numerically calculate ALP-photon conversion probabilities to predict the CAB-generated soft X-ray flux in these clusters. The simulated magnetic fields include models with non-standard (i.e. not turbulent Kolmogorov) power spectra, the index of the spectrum changes from cluster to cluster and even within the cluster A2255. We compare this flux to ROSAT PSPC observations of the three clusters, and use these observations to constrain the CAB parameter space. Assuming these non-standard magnetic field power spectra are valid, we find the CAB can reproduce the magnitude of the observed excess in A2199 and A2255 for the same CAB parameters that match the observed soft excess in the Coma cluster. We also find good fit to the morphology of the excesses in these clusters. Simulation of CAB conversion in the cluster A665 is in mild tension with the other clusters due to producing a small but observable excess at large radii where none is observed. This tension is alleviated considering the uncertainty on predicting the count rate in the ROSAT detector, and on the systematics affecting the magnetic field determination. Overall we find good agreement between the CAB parameters for the four clusters studied so far.

  9. A cosmic ALP background and the cluster soft X-ray excess in A665, A2199 and A2255

    International Nuclear Information System (INIS)

    Powell, Andrew J.

    2015-01-01

    It has been proposed that an excess in soft X-ray emission observed from many galaxy clusters can be explained by conversion into photons of axion-like particles (ALPs) in the cluster's magnetic field. Previously it has been shown that conversion of this primordially-generated background of relativistic ALPs—a cosmic ALP background (CAB)—can explain the observed soft X-ray excess in both the centre and the outskirts of the Coma cluster. Here we extend this work to the three clusters A665, A2199 and A2255. We use a stochastic, power law model of the cluster magnetic field to numerically calculate ALP-photon conversion probabilities to predict the CAB-generated soft X-ray flux in these clusters. The simulated magnetic fields include models with non-standard (i.e. not turbulent Kolmogorov) power spectra, the index of the spectrum changes from cluster to cluster and even within the cluster A2255. We compare this flux to ROSAT PSPC observations of the three clusters, and use these observations to constrain the CAB parameter space. Assuming these non-standard magnetic field power spectra are valid, we find the CAB can reproduce the magnitude of the observed excess in A2199 and A2255 for the same CAB parameters that match the observed soft excess in the Coma cluster. We also find good fit to the morphology of the excesses in these clusters. Simulation of CAB conversion in the cluster A665 is in mild tension with the other clusters due to producing a small but observable excess at large radii where none is observed. This tension is alleviated considering the uncertainty on predicting the count rate in the ROSAT detector, and on the systematics affecting the magnetic field determination. Overall we find good agreement between the CAB parameters for the four clusters studied so far

  10. Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and Control Concept

    Science.gov (United States)

    Bladt, Jeff; Deininger, William D.; Kalinowski, William C.; Boysen, Mary; Bygott, Kyle; Guy, Larry; Pentz, Christina; Seckar, Chris; Valdez, John; Wedmore, Jeffrey; hide

    2018-01-01

    The goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in Astrophysics: "Discover how the universe works." X-ray polarimetry is the focus of the IXPE science mission. Polarimetry uniquely probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. The IXPE Observatory consists of Spacecraft and Payload modules. The Payload includes three polarization sensitive, X-ray detector units (DU), each paired with its corresponding grazing incidence mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the DUs and MMAs. These Payload elements are supported by the IXPE Spacecraft. A star tracker is mounted directly with the deployed Payload to minimize alignment errors between the star tracker line of sight (LoS) and Payload LoS. Stringent pointing requirements coupled with a flexible structure and a non-collocated attitude sensor-actuator configuration requires a thorough analysis of control-structure interactions. A non-minimum phase notch filter supports robust control loop stability margins. This paper summarizes the IXPE mission science objectives and Observatory concepts, and then it describes IXPE attitude determination and control implementation. IXPE LoS pointing accuracy, control loop stability, and angular momentum management are discussed.

  11. Performance verification of the Gravity and Extreme Magnetism Small explorer (GEMS) x-ray polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kaneko, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; Marlowe, Hannah; Griffiths, Scott; Kaaret, Philip E.; Kenward, David; Khalid, Syed

    2014-07-01

    Polarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor >=35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, ~20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  12. Rossi X-Ray Timing Explorer Observation of PSR B0656+14

    International Nuclear Information System (INIS)

    Chang, H.; Ho, C.

    1999-01-01

    PSR B0656+14 was observed by the Rossi X-Ray Timing Explorer (RXTE) with the proportional counter array (PCA) and the high-energy X-ray timing experiment (HEXTE) for 160 ks during 1997 August 22 - September 3. No pulsation was firmly found in the timing analysis, during which the contemporaneous radio ephemeris and various statistical tests were applied in searching for evidence of pulsation. A marginal detection of pulsation at a confidence level of 95.5% based on the H test was found with data in the whole HEXTE energy band. In the energy band of 2-10 keV the RXTE PCA upper limits are about 1 order of magnitude lower than that from ASCA GIS data. If the Compton Gamma Ray Observatory EGRET detection of this pulsar is real, considering the common trait that most EGRET-detected pulsars have a cooling spectrum in hard X-ray and gamma-ray energy bands, the estimated RXTE upper limits indicate a deviation (low-energy turnover) from a cooling spectrum starting from 20 keV or higher. This in turn suggests an outer magnetospheric synchrotron radiation origin for high-energy emissions from PSR B0656+14. The RXTE PCA upper limits also suggest that a reported power-law component based on ASCA SIS data in 1-10 keV fitted jointly with ROSAT data, if real, should be mainly unpulsed. copyright copyright 1999. The American Astronomical Society

  13. Performance Verification of the Gravity and Extreme Magnetism Small Explorer GEMS X-Ray Polarimeter

    Science.gov (United States)

    Enoto, Teruaki; Black, J. Kevin; Kitaguchi, Takao; Hayato, Asami; Hill, Joanne E.; Jahoda, Keith; Tamagawa, Toru; Kanako, Kenta; Takeuchi, Yoko; Yoshikawa, Akifumi; hide

    2014-01-01

    olarimetry is a powerful tool for astrophysical observations that has yet to be exploited in the X-ray band. For satellite-borne and sounding rocket experiments, we have developed a photoelectric gas polarimeter to measure X-ray polarization in the 2-10 keV range utilizing a time projection chamber (TPC) and advanced micro-pattern gas electron multiplier (GEM) techniques. We carried out performance verification of a flight equivalent unit (1/4 model) which was planned to be launched on the NASA Gravity and Extreme Magnetism Small Explorer (GEMS) satellite. The test was performed at Brookhaven National Laboratory, National Synchrotron Light Source (NSLS) facility in April 2013. The polarimeter was irradiated with linearly-polarized monochromatic X-rays between 2.3 and 10.0 keV and scanned with a collimated beam at 5 different detector positions. After a systematic investigation of the detector response, a modulation factor greater than or equal to 35% above 4 keV was obtained with the expected polarization angle. At energies below 4 keV where the photoelectron track becomes short, diffusion in the region between the GEM and readout strips leaves an asymmetric photoelectron image. A correction method retrieves an expected modulation angle, and the expected modulation factor, approximately 20% at 2.7 keV. Folding the measured values of modulation through an instrument model gives sensitivity, parameterized by minimum detectable polarization (MDP), nearly identical to that assumed at the preliminary design review (PDR).

  14. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    International Nuclear Information System (INIS)

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs

  15. X-ray spectroscopy of clusters of galaxies and of the cosmic web

    NARCIS (Netherlands)

    Werner, N.

    2008-01-01

    I present the results on the study of the chemical evolution of the intra-cluster medium (ICM) and on the evolution of clusters of galaxies in the context of the cosmic web. Clusters of galaxies are excellent laboratories to study the chemical enrichment history of the Universe. This thesis presents

  16. Relation of large-scale coronal X-ray structure and cosmic rays. Pt. 4

    International Nuclear Information System (INIS)

    Roelof, E.C.; Gold, R.E.; Krieger, A.S.; Nolte, J.T.; Venkatesan, D.

    1975-01-01

    We have studied the amplitude of the diurnal variations in the Sulphur Mountain superneutron monitor as a function of the high-coronal connection longitudine of the interplanetary field lines passing over Earth. We find that the amplitude of the diurnal variation is based toward below average values ( 0.4%) over bright regions. The results are consistent with the theoretical argument (Roelof 1975) that the diurnal variation is influenced by the ability of the corona to sustain a meridional cosmic ray gradient set up by the motional EMF in interplanetary space. (orig./WBU) [de

  17. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    Science.gov (United States)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  18. Exploration of X-ray and charged-particle spectroscopy with CCDs and PSDs

    International Nuclear Information System (INIS)

    Simons, D.P.L.; Mutsaers, P.H.A.; Ijzendoorn, L.J. van; Voigt, M.J.A. de

    1998-01-01

    Two alternative detector types have been studied for use in the Eindhoven scanning ion microprobe set-up. First, the applicability of a charge coupled device (CCD) system for X-ray spectroscopy has been explored. Second, some properties of the SiTek type 1L30 position sensitive detector (PSD) for charged-particle spectroscopy have been studied. A literature survey shows that excellent X-ray spectroscopy with a CCD system is feasible, particularly with a deep-depletion backside-illuminated CCD and low speed read-out. If, however, high-speed CCD read-out is required, such as for scanning microprobe experiments, a CCD system cannot be used for spectroscopy due to excess read-out noise. For the PSD, noise theory calculations are presented, which result in a noise shaping time for optimal energy and position resolution. In practice, however, a much longer time is needed to obtain sufficient energy and position linearity. Characterization measurements of the PSD using our 4 MeV He + microprobe are also described. A position resolution of 0.47 mm and a position linearity of better than 0.15% detector length are found. In addition, an energy linearity better than 0.3% and an energy resolution of 36 keV are measured. The latter will have to be improved, to make the PSD suitable for charged-particle spectroscopy applications. (orig.)

  19. Rossi X-Ray Timing Explorer All-Sky Monitor Localization of SGR 1627-41

    Science.gov (United States)

    Smith, Donald A.; Bradt, Hale V.; Levine, Alan M.

    1999-07-01

    The fourth unambiguously identified soft gamma repeater (SGR), SGR 1627-41, was discovered with the BATSE instrument on 1998 June 15. Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6° segment of a narrow (19") annulus. We present two bursts from this source observed by the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer. We use the ASM data to further constrain the source location to a 5' long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3 arcmin of the supernova remnant G337.0-0.1. The probability that a supernova remnant would fall so close to the error box purely by chance is ~5%.

  20. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    Science.gov (United States)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  1. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background

    Science.gov (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid

    2018-02-01

    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  2. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    Science.gov (United States)

    Sakurai, Kenji

    2010-12-01

    This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as

  3. The shape of the cosmic X-ray background: nuclear starburst discs and the redshift evolution of AGN obscuration

    Science.gov (United States)

    Gohil, R.; Ballantyne, D. R.

    2018-04-01

    A significant number of active galactic nuclei (AGNs) are observed to be hidden behind dust and gas. The distribution of material around AGNs plays an important role in modelling the cosmic X-ray background (CXB), especially the fraction of type 2 AGNs (f2). One of the possible explanations for obscuration in Seyfert galaxies at intermediate redshifts is dusty starburst discs. We compute the two-dimensional (2D) hydrostatic structure of 768 nuclear starburst discs (NSDs) under various physical conditions and also the distribution of column density along the line of sight (NH) associated with these discs. Then the NH distribution is evolved with redshift by using the redshift-dependent distribution function of input parameters. Parameter f2 shows a strong positive evolution up to z = 2, but only a weak level of enhancement at higher z. The Compton-thin and Compton-thick AGN fractions associated with these starburst regions increase ∝ (1 + z)δ, where δ is estimated to be 1.12 and 1.45, respectively. The reflection parameter Rf associated with column density NH ≥ 1023.5 cm-2 extends from 0.13 at z = 0 to 0.58 at z = 4. A CXB model employing this evolving NH distribution indicates that more compact (Rout < 120 pc) NSDs provide a better fit to the CXB. In addition to `Seyfert-like' AGNs obscured by nuclear starbursts, we predict that 40-60 per cent of quasars must be Compton-thick to produce a peak of the CXB spectrum within the observational uncertainty. The predicted total number counts of AGNs in 8-24 keV bands are in fair agreement with observations from the Nuclear Spectroscopic Telescope Array (NuSTAR).

  4. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  5. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  6. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Trombka, J.I.; Boynton, W.V.; Brueckner, J.; Squyres, S.; Clark, P.E.; Starr, R.; Evans, L.G.; Floyd, S.R.; McClanahan, T.P.; Goldsten, J.; Mcnutt, R.; Schweitzer, J.S.

    1999-01-01

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  7. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kärtner, F.X., E-mail: franz.kaertner@cfel.de [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (United States); Ahr, F. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Calendron, A.-L. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Çankaya, H. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Carbajo, S. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Chang, G.; Cirmi, G. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Dörner, K. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Dorda, U. [DESY, Hamburg (Germany); Fallahi, A. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Hartin, A. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Hemmer, M. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); and others

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  8. Exploring anti-correlated radio/X-ray modes in transitional millisecond pulsars

    Science.gov (United States)

    Jaodand, Amruta

    2017-09-01

    Recently, using coordinated VLA+Chandra observations, Bogdanov et al.(2017) have uncovered a stunning anti-correlation in the LMXB state of the tMSP PSR J1023+0038. They see that radio luminosity consistently peaks during the X-ray `low' luminosity modes. Also, we have found a promising candidate tMSP, 3FGL J1544-1125(J1544) (Bogdanov and Halpern 2015; currently only tMSP candidate apart from J1023 in a persistent LMXB state). Using VLA and simultaneous Swift observations we see that it lies on the proposed tMSP track in radio vs. X-ray luminosity (L_ R/L_X) diagram. This finding strengthens its classification as a tMSP and provides an excellent opportunity to a)determine universality of radio/X-ray brightness anti-correlatio and b)understand jet/outflow formation in tMSPs.

  9. The Nustar Extragalactic Surveys: The Number Counts of Active Galactic Nuclei and the Resolved Fraction of the Cosmic X-Ray Background

    DEFF Research Database (Denmark)

    Harrison, F. A.; Aird, J.; Civano, F.

    2016-01-01

    . The measured NuSTAR counts lie significantly abovesimple extrapolation with a Euclidian slope to low flux of the Swift/BAT 15–55 keV number counts measured at higher fluxes (S(15–55 keV) ≤ 10−11 erg s-1 cm-2), reflecting the evolution of the AGN population between the Swift/BAT local (z ...STAR’s z ~ 1 sample. CXB synthesis models, which account for AGNevolution, lie above the Swift/BAT measurements, suggesting that they do not fully capture the evolution of obscured AGNs at low redshifts....... cm-2 ≤ 10-12, a factor ∼100 fainter than previous measurements. The 8–24 keV number counts match predictions from AGN populationsynthesis models, directly confirming the existence of a population of obscured and/or hard X-ray sources inferredfrom the shape of the integrated cosmic X-ray background...

  10. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  11. A fundamental parameters approach to calibration of the Mars Exploration Rover Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Campbell, J. L.; Lee, M.; Jones, B. N.; Andrushenko, S. M.; Holmes, N. G.; Maxwell, J. A.; Taylor, S. M.

    2009-04-01

    The detection sensitivities of the Alpha Particle X-ray Spectrometer (APXS) instruments on the Mars Exploration Rovers for a wide range of elements were experimentally determined in 2002 using spectra of geochemical reference materials. A flight spare instrument was similarly calibrated, and the calibration exercise was then continued for this unit with an extended set of geochemical reference materials together with pure elements and simple chemical compounds. The flight spare instrument data are examined in detail here using a newly developed fundamental parameters approach which takes precise account of all the physics inherent in the two X-ray generation techniques involved, namely, X-ray fluorescence and particle-induced X-ray emission. The objectives are to characterize the instrument as fully as possible, to test this new approach, and to determine the accuracy of calibration for major, minor, and trace elements. For some of the lightest elements the resulting calibration exhibits a dependence upon the mineral assemblage of the geological reference material; explanations are suggested for these observations. The results will assist in designing the overall calibration approach for the APXS on the Mars Science Laboratory mission.

  12. Preliminary results of the experiment on the identification of cosmic hadrons usinq the X-ray transition radiation XTR-detectors

    International Nuclear Information System (INIS)

    Avakyan, R.A.; Avakyan, K.M.; Alikhanyan, A.I.

    1974-01-01

    The spectrum of cosmic hadrons with an energy of 300 GeV or more at the height of 3250 m above the sea level has been studied. The objective has been to determine the Nsub(π)/Nsub(p) ratio at the given energies. The device consists of a 830 g/cm 2 scintillation calorimeter and an X-ray transition radiation detector, comprising three sections of laminated medium each having 200 layers, and multi-filament proportional counters. The lower limit of the Nsub(π)/Nsub(p) ratio has been obtained, it is equal to 0.37+-0.16

  13. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.

    2007-01-01

    by the Earth atmosphere and the Earth auroral emission. Results. The spectrum of the cosmic X-ray background in the energy band 5-100 keV is obtained. The shape of the spectrum is consistent with that obtained previously by the HEAO-1 observatory, while the normalization is similar to 10% higher....... This difference in normalization can ( at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy...

  14. Experimental determination of foetal doses received during conventional X rays explorations of troncus. Influence of the lead apron

    International Nuclear Information System (INIS)

    Pifarre, X.; Brualla, L.; Ruiz, J.; Escalada, C.; Planes, D.; Paredes, M.C.

    2001-01-01

    The aim of this paper is to assess the real doses received by pregnant women during some X rays conventional explorations of thorax and abdomen. The procedure that has been used is the measurement of doses by the use of thermoluminescent dosimeters located on the uterus position of a Random Phantom, and simulating different conventional X rays explorations. The results of such measurements are compared with other data published in ICRP 34, which were our reference. We have obtained smaller doses with the measurements than those derived from ICRP 34. The causes of these differences are analysed. The influence of the use of lead apron to protect abdomen during thorax examination is also analysed, computing the real value of this protection. We conclude that it seems interesting to obtain measurements of theses doses with our own equipment and techniques, because it offers a more realistic approximation to real doses received by patients. (author)

  15. X-ray spectrometer for measuring chemical composition of Maus soil with the use of ''Viking'' cosmic apparatuses

    International Nuclear Information System (INIS)

    Chesnokov, V.I.

    1982-01-01

    Design and operating principle of the X-ray spectrometer which is applied for investigations of the chemical composition of the Mars soil, are described. The measurement performed in two points of the Mars surface have permitted to determine the content of magnesium, aluminium, silicon, potassium and 9 other elements in the Mars ground

  16. Exploring the Diffuse X-ray Emission of Supernova Remnant Kesteven 69 with XMM-Newton

    Directory of Open Access Journals (Sweden)

    Kyoung-Ae Seo

    2013-06-01

    Full Text Available We have investigated the X-ray emission from the shock-heated plasma of the Galactic supernova remnant Kesteven 69 with XMM-Newton. Assuming the plasma is at collisional ionization equilibrium, a plasma temperature and a column absorption are found to be kT ~ 0.62 keV and NH ~ 2.85 ×1022 cm-2 respectively by imaging spectroscopy. Together with the deduced emission measure, we place constraints on its Sedov parameters.

  17. A Multiwavelength Exploration of the Grand Design Spiral M83: Diffuse X-ray Emission

    Science.gov (United States)

    Kuntz, K. D.; Long, K. S.; Blair, W. P.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.

    2013-01-01

    We have obtained a series of deep X-ray images of the nearby galaxy M83, with a total exposure 729 ksec with the Chandra ACIS-S array. Since the bulk of the X-ray emitting disk falls within the BI chip, these observations allow a detailed study of the soft diffuse emission in the disk. Most of the diffuse emission is related to star-formation regions and must be powered by supernovae and stellar winds, though the amount of emission due to identifiable SNR is only a few percent. The relation between the spectral shape and surface brightness that was seen in M101 suggests that the properties of the X-ray emission in spiral disks are shaped by the local hot gas production rate (traced by the local star-formation rate) or the disk mid-plane pressure, but it is unclear which physical mechanism dominates. To illuminate this problem, we will compare M83 with the previous Chandra studies of M101 and M33.

  18. Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian

    2014-01-01

    On September 21-22, 2013, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope, flew as a balloon payload from Ft. Sumner, N.M. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 hour flight. In this paper we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources, applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray-Light (SLF) Facility in Huntsville, AL, and using ray traces.

  19. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    Science.gov (United States)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  20. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  1. Studying Dark Energy, Black Holes and Cosmic Feedback at X-ray Wavelengths: NASA's Constellation-X Mission

    Science.gov (United States)

    Hornschemeier, A.

    2005-01-01

    Among the most important topics in modern astrophysics are the nature of the dark energy equation of state, the formation and evolution of supermassive black holes in concert with galaxy bulges, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. For instance, theoretical models predict that the majority (98%) of the energy and metal content in starburst superwinds exists in the hot million-degree gas. The Constellation-X observatory is being developed to perform spatially resolved high-resolution X-ray spectroscopy so that we may directly measure the absolute element abundances and velocities of this hot gas. This talk focuses on the driving science behind this mission, which is one of two flagship missions in NASA's Beyond Einstein program. A general overview of the observatory's capabilities and basic technology will also be given.

  2. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  3. Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling

    International Nuclear Information System (INIS)

    Knight, Jennifer L.; Zhou, Zhiyong; Gallicchio, Emilio; Himmel, Daniel M.; Friesner, Richard A.; Arnold, Eddy; Levy, Ronald M.

    2008-01-01

    Torsion-angle sampling, as implemented in the Protein Local Optimization Program (PLOP), is used to generate multiple structurally variable single-conformer models which are in good agreement with X-ray data. An ensemble-refinement approach to differentiate between positional uncertainty and conformational heterogeneity is proposed. Modeling structural variability is critical for understanding protein function and for modeling reliable targets for in silico docking experiments. Because of the time-intensive nature of manual X-ray crystallographic refinement, automated refinement methods that thoroughly explore conformational space are essential for the systematic construction of structurally variable models. Using five proteins spanning resolutions of 1.0–2.8 Å, it is demonstrated how torsion-angle sampling of backbone and side-chain libraries with filtering against both the chemical energy, using a modern effective potential, and the electron density, coupled with minimization of a reciprocal-space X-ray target function, can generate multiple structurally variable models which fit the X-ray data well. Torsion-angle sampling as implemented in the Protein Local Optimization Program (PLOP) has been used in this work. Models with the lowest R free values are obtained when electrostatic and implicit solvation terms are included in the effective potential. HIV-1 protease, calmodulin and SUMO-conjugating enzyme illustrate how variability in the ensemble of structures captures structural variability that is observed across multiple crystal structures and is linked to functional flexibility at hinge regions and binding interfaces. An ensemble-refinement procedure is proposed to differentiate between variability that is a consequence of physical conformational heterogeneity and that which reflects uncertainty in the atomic coordinates

  4. Transient soft X-ray sources

    International Nuclear Information System (INIS)

    Hayakawa, S.; Murakami, T.; Nagase, F.; Tanaka, Y.; Yamashita, K.

    1976-01-01

    A rocket observation of cosmic soft X-rays suggests the existence of transient, recurrent soft X-ray sources which are found variable during the flight time of the rocket. Some of the soft X-ray sources thus far reported are considered to be of this time. These sources are listed and their positions are shown. (Auth.)

  5. Exploring coherent phenomena and energy discrimination in X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Thomas

    2011-05-04

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  6. EXTraS: Exploring the X-ray Transient and variable Sky

    Science.gov (United States)

    De Luca, A.; Salvaterra, R.; Tiengo, A.; D'Agostino, D.; Watson, M.; Haberl, F.; Wilms, J.

    2017-10-01

    The EXTraS project extracted all temporal domain information buried in the whole database collected by the EPIC cameras onboard the XMM-Newton mission. This included a search and characterisation of variability, both periodic and aperiodic, in hundreds of thousands of sources spanning more than eight orders of magnitude in time scale and six orders of magnitude in flux, as well as a search for fast transients, missed by standard image analysis. Phenomenological classification of variable sources, based on X-ray and multiwavelength information, has also been performed. All results and products of EXTraS are made available to the scientific community through a web public data archive. A dedicated science gateway will allow scientists to apply EXTraS pipelines on new observations. EXTraS is the most comprehensive analysis of variability, on the largest ever sample of soft X-ray sources. The resulting archive and tools disclose an enormous scientific discovery space to the community, with applications ranging from the search for rare events to population studies, with impact on the study of virtually all astrophysical source classes. EXTraS, funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).

  7. Exploring coherent phenomena and energy discrimination in X-ray imaging

    International Nuclear Information System (INIS)

    Koenig, Thomas

    2011-01-01

    Conventional X-ray imaging is based on the generation of photons in materials that are selected for different applications according to their densities, dimensions, and atomic numbers. The photons produced in these targets are commonly detected by measuring the integrated amount of energy released in films or digital imaging systems. This thesis aims at extending these two paradigms. First, it is shown that the use of single-crystalline, i.e. well-ordered targets, can significantly soften photon spectra created by megavoltage electrons when compared to usual targets. The reason for this is an effect called ''coherent bremsstrahlung''. It is shown that this type of radiation bears the potential of increasing the quality of megavoltage images and reducing radiation dose for image guided radiotherapy. Second, new spectroscopic pixel detectors of the Medipix2 family operated with cadmium telluride sensors are characterised and thus potential benefits and difficulties for X-ray imaging are investigated. Besides describing in detail how to calibrate these detectors, emphasis is placed on determining their energy responses, modulation transfer functions, and detective quantum efficiencies. Requirements for photon counting megavoltage imaging are discussed. The detector systems studied are finally used to perform spectral computed tomography and to illustrate the benefits of energy discrimination for coherent scatter imaging. (orig.)

  8. Comparison between energy dispersive X-ray fluorescence and other nuclear analytical techniques in mineral exploration and mining

    International Nuclear Information System (INIS)

    Clayton, C.G.; Packer, T.W.; Wormald, M.R.

    1979-01-01

    At the present time there is an increasing awareness of the value and need for in-situ analytical methods throughout the general area of mineral exploration and mining. Of the alternative techniques, the measurement of natural gamma radiation is well established for uranium exploration and it is now being developed for sea-bed and lake-bed surveying. Energy dispersive X-ray fluorescence equipment is becoming more generally accepted, especially for mine control. Neutron techniques, for so long used routinely in oil well logging, are now being developed for a wide range of applications in all aspects of exploration and mining. It is believed that these techniques will result in major applications in the future. The present paper compares the principal characteristics of energy dispersive X-ray fluorescence and neutron techniques in particular, with special emphasis being given to those factors which affect the accuracy of analytical content; such as elemental resolution, matrix effects, material heterogeneity and neutron transport. A generalised comparison between the techniques is difficult to achieve because of the different nature of radiation interactions, but a range of applications is described and these show the complementary nature of the methods and point to the areas for more active development in the future. (author)

  9. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  10. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  11. Soft X-ray focusing Telescope aboard AstroSat

    DEFF Research Database (Denmark)

    Singh, K. P.; Dewangan, G. C.; Chandra, S.

    2017-01-01

    The Soft X-ray focusing Telescope (SXT) is a moderateresolution X-ray imaging spectrometer supplementing the ultraviolet and hard X-ray payloads for broadband studies of cosmic sources with AstroSat. Well suited for observing bright X-ray sources, SXT observations of nearby active galactic nuclei...

  12. Cosmic ray effect on the X-ray Trigger Telescope of UFFO/Lomonosov using YSO scintillation crystal array in space

    DEFF Research Database (Denmark)

    Kim, M. B.; Jeong, S.; Jeong, H. M.

    2017-01-01

    UFFO Burst Alert and Trigger telescope (UBAT) is the X-ray trigger telescope of UFFO/Lomonosov to localize X-ray source with coded mask method and X-ray detector. Its X-ray detector is made up of 36 8×8 pixels Yttrium OxyorthoSilicate (Y2SiO5:Ce, YSO) scintillation crystal arrays and 36 64-channe...

  13. In situ x-ray fluorescence and californium-252 neutron activation analysis for marine and terrestrial mineral exploration

    International Nuclear Information System (INIS)

    Wogman, N.A.

    1976-12-01

    Instrumentation has been designed for in situ analysis of marine and terrestrial minerals using the techniques of x-ray fluorescence and neutron activation analysis. The energy-dispersive x-ray fluorescence analyzer allows more than 20 elements to be quantitatively measured at the 10 ppM level in water depths to 300 m. The analyzer consists of a solid cryogen-cooled Si(Li) detector, a 50 mCi 109 Cd or 57 Co excitation source, and an analyzer-computer system for data storage and manipulation. The neutron activation analysis, which is designed to measure up to 30 elements at parts per hundred to ppM levels, utilizes the man-made element 252 Cf as its neutron activation source. The resulting radioelements which emit characteristic gamma radiation are then analyzed in situ during 2- to 200-s counting intervals with Ge(Li) or NaI(T1) detector systems. An extension of this latter technique, which uses a 252 Cf- 235 U fueled subcritical multiplier, is also being studied. The subcritical facility allows the neutrons from the 252 Cf source to be multiplied, thus providing greater neutron flux. Details of these in situ analysis systems, actual in situ spectra, and recorded data are discussed with respect to the detection of minerals at their varying concentration levels. The system response of each illustrates its usefulness for various rapid environmental mineral exploration studies. These techniques can be utilized on terrestrial surfaces and marine or fresh water sediments. 5 figures, 2 tables

  14. Exploration of Near-Field Plume Properties for Aerated-Liquid Jets Using X-Ray Radiography (Postprint)

    Science.gov (United States)

    2014-02-01

    high-speed transimpedance amplifier , with the resulting voltage integrated for 1.0 s at each measurement location. According to Beer’s law, the...detector absorbs virtually all of the X-rays incident on the detector, converting the X-rays into a weak photocurrent. This current is amplified with a

  15. Chandra's X-ray Vision

    Indian Academy of Sciences (India)

    1999-07-23

    Jul 23, 1999 ... CXO is 13.8 metres long and its solar arrays have a wingspan of. 19.5 metres as shown in ... the Universe (for example, coronae of stars, matter ejected from .... The telescope system and the scientific instruments were put through ..... solve the puzzle about the origin of cosmic X-ray background- one of the ...

  16. Sensors for x-ray astronomy satellite

    International Nuclear Information System (INIS)

    Makino, Fumiyoshi; Kondo, Ichiro; Nishioka, Yonero; Kameda, Yoshihiko; Kubo, Masaki.

    1980-01-01

    For the purpose of observing the cosmic X-ray, the cosmic X-ray astronomy satellite (CORSA-b, named ''Hakucho'', Japanese for cygnus,) was launched Feb. 21, 1979 by Institute of Space and Aeronautical Science, University of Tokyo. The primary objectives of the satellite are: to perform panoramic survey of the space for X-ray bursts and to perform the spectral and temporal measurement of X-ray sources. The very soft X-ray sensor for X-ray observation and the horizon sensor for spacecraft attitude sensing were developed by Toshiba Corporation under technical support by University of Tokyo and Nagoya University for ''Hakucho''. The features of these sensors are outlined in this paper. (author)

  17. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  18. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  20. High Energy Replicated Optics to Explore the Sun: Hard X-ray balloon-borne telescope

    Science.gov (United States)

    Gaskin, J.; Apple, J.; Chavis, K. S.; Dietz, K.; Holt, M.; Koehler, H.; Lis, T.; O'Connor, B.; Otero, M. R.; Pryor, J.; Ramsey, B.; Rinehart-Dawson, M.; Smith, L.; Sobey, A.; Wilson-Hodge, C.; Christe, S.; Cramer, A.; Edgerton, M.; Rodriguez, M.; Shih, A.; Gregory, D.; Jasper, J.; Bohon, S.

    Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaborative effort between the NASA Marshall Space Flight Center and the Goddard Space Flight Center to upgrade an existing payload, the High Energy Replicated Optics (HERO) balloon-borne telescope, to make unique scientific measurements of the Sun and astrophysical targets during the same flight. The HEROES science payload consists of 8 mirror modules, housing a total of 109 grazing-incidence optics. These modules are mounted on a carbon-fiber - and Aluminum optical bench 6 m from a matching array of high pressure xenon gas scintillation proportional counters, which serve as the focal-plane detectors. The HERO gondola utilizes a differential GPS system (backed by a magnetometer) for coarse pointing in the azimuth and a shaft angle encoder plus inclinometer provides the coarse elevation. The HEROES payload will incorporate a new solar aspect system to supplement the existing star camera, for fine pointing during both the day and night. A mechanical shutter will be added to the star camera to protect it during solar observations. HEROES will also implement two novel alignment monitoring system that will measure the alignment between the optical bench and the star camera and between the optics and detectors for improved pointing and post-flight data reconstruction. The overall payload will also be discussed. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership, in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer and Office of the Chief Technologist.

  1. EXPLORING THE DIVERSITY OF GROUPS AT 0.1 < z < 0.8 WITH X-RAY AND OPTICALLY SELECTED SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Connelly, J. L. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Wilman, David J.; Finoguenov, Alexis; Saglia, Roberto [Max Planck Institute for Extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., D-85741 Garching (Germany); Hou, Annie; Parker, Laura C.; Henderson, Robert D. E. [Department of Physics and Astronomy, McMaster University, Hamilton ON L8S4M1 (Canada); Mulchaey, John S. [Observatories of the Carnegie Institution, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); McGee, Sean L.; Balogh, Michael L. [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Bower, Richard G. [Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

    2012-09-10

    We present the global group properties of two samples of galaxy groups containing 39 high-quality X-ray-selected systems and 38 optically (spectroscopically) selected systems in coincident spatial regions at 0.12 < z < 0.79. The total mass range of the combined sample is {approx}(10{sup 12}-5) Multiplication-Sign 10{sup 14} M{sub Sun }. Only nine optical systems are associable with X-ray systems. We discuss the confusion inherent in the matching of both galaxies to extended X-ray emission and of X-ray emission to already identified optical systems. Extensive spectroscopy has been obtained and the resultant redshift catalog and group membership are provided here. X-ray, dynamical, and total stellar masses of the groups are also derived and presented. We explore the effects of utilizing different centers and applying three different kinds of radial cut to our systems: a constant cut of 1 Mpc and two r{sub 200} cuts, one based on the velocity dispersion of the system and the other on the X-ray emission. We find that an X-ray-based r{sub 200} results in less scatter in scaling relations and less dynamical complexity as evidenced by results of the Anderson-Darling and Dressler-Schectman tests, indicating that this radius tends to isolate the virialized part of the system. The constant and velocity dispersion based cuts can overestimate membership and can work to inflate velocity dispersion and dynamical and stellar mass. We find L{sub X} -{sigma} and M{sub stellar}-L{sub X} scaling relations for X-ray and optically selected systems are not dissimilar. The mean fraction of mass found in stars, excluding intracluster light, for our systems is {approx}0.014 with a logarithmic standard deviation of 0.398 dex. We also define and investigate a sample of groups which are X-ray underluminous given the total group stellar mass. For these systems the fraction of stellar mass contributed by the most massive galaxy is typically lower than that found for the total population of

  2. CORE-COLLAPSE MODEL OF BROADBAND EMISSION FROM SNR RX J1713.7–3946 WITH THERMAL X-RAYS AND GAMMA RAYS FROM ESCAPING COSMIC RAYS

    International Nuclear Information System (INIS)

    Ellison, Donald C.; Slane, Patrick; Patnaude, Daniel J.; Bykov, Andrei M.

    2012-01-01

    We present a spherically symmetric, core-collapse model of SNR RX J1713.7–3946 that includes a hydrodynamic simulation of the remnant evolution coupled to the efficient production of cosmic rays (CRs) by nonlinear diffusive shock acceleration. High-energy CRs that escape from the forward shock (FS) are propagated in surrounding dense material that simulates either a swept-up, pre-supernova shell or a nearby molecular cloud. The continuum emission from trapped and escaping CRs, along with the thermal X-ray emission from the shocked heated interstellar medium behind the FS, integrated over the remnant, is compared against broadband observations. Our results show conclusively that, overall, the GeV-TeV emission is dominated by inverse-Compton from CR electrons if the supernova is isolated regardless of its type, i.e., not interacting with a >>100 M ☉ shell or cloud. If the supernova remnant is interacting with a much larger mass ∼> 10 4 M ☉ , pion decay from the escaping CRs may dominate the TeV emission, although a precise fit at high energy will depend on the still uncertain details of how the highest energy CRs are accelerated by, and escape from, the FS. Based on morphological and other constraints, we consider the 10 4 M ☉ pion-decay scenario highly unlikely for SNR RX J1713.7–3946 regardless of the details of CR escape. Importantly, even though CR electrons dominate the GeV-TeV emission, the efficient production of CR ions is an essential part of our leptonic model.

  3. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  4. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  5. Lifting the veil on the X-ray universe

    Science.gov (United States)

    1999-11-01

    . A multi-spectral space telescope The spacecraft carries three sets of science instruments, not only capable of making images of an X-ray source but also able to precisely distinguish the "colour" of the X-rays being viewed. At the prime focus of each of the telescopes are three European Photon Imaging Cameras. With silicon chips that can register extremely weak X-ray radiation, these advanced cameras are capable of detecting rapid variations in the intensity of a source. Grating structures at the exit of two mirror modules will reflect about half the incoming rays to a secondary focus, with its own cameras. This Reflection Grating Spectrometer will "fan out" the various wavelengths (much like a prism with visible light), and indicate in more detail the presence of individual elements, such as oxygen and iron. The third instrument aboard XMM is a conventional but very sensitive optical telescope. It will observe simultaneously the same regions as the X-ray telescopes but in the ultraviolet and visible wavelengths, giving astronomers complementary data about the X-ray sources being studied. In orbit, this 30-cm telescope will be as sensitive as a 4-m instrument on the Earth's surface. The mysteries of the X-ray sky XMM will explore the hidden depths of the Universe, its violent hotspots where stars and galaxies are formed, and where worlds and matter itself disappear. Much as the colour of a street lamp can indicate which gas it uses, the science instruments on board XMM will reveal the deepest secrets of X-ray objects, their chemical composition and temperatures - clues to the physical processes that are taking place. Astronomers will use XMM to resolve the mysteries of stars that exploded long ago as supernovae and whose remnants, glowing with X-rays, may be supplying material for new planets and stars. They will study regions of supernova remnants that are still hot and may hold the key to understanding the origin of the enigmatic cosmic rays that pervade the

  6. The NuSTAR Extragalactic Survey: A First Sensitive Look at the High-Energy Cosmic X-Ray Background Population

    Science.gov (United States)

    Alexander, D. M.; Stern, D.; DelMoro, A.; Lansbury, G. B.; Assef, R. J.; Aird, J.; Ajello, M.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; hide

    2013-01-01

    We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at approximately greater than 10 keV. We find that these NuSTAR-detected sources are approximately 100 times fainter than those previously detected at approximately greater than 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L(sub 10-40 keV) approximately equals 4 × 10(exp 41) - 5 × 10(exp 45) erg per second; the median redshift and luminosity are z approximately equal to 0.7 and L(sub 10-40 keV) approximately equal to 3 × 10(exp 44) erg per second, respectively. We characterize these sources on the basis of broad-band approximately equal to 0.5 - 32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L(sub 10-40 keV) greater than 10(exp 44) erg per second, of which approximately 50% are obscured with N(sub H) approximately greater than 10(exp 22) per square centimeters. However, none of the 10 NuSTAR sources are Compton thick (N(sub H) approximately greater than 10(exp 24) per square centimeters) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L(sub 10-40 keV) greater than 10(exp 44) erg per second) selected at approximately greater than 10 keV of approximately less than 33% over the redshift range z = 0.5 - 1.1. We jointly fitted the rest-frame approximately equal to 10-40 keV data for all of the non-beamed sources with L(sub 10-40 keV) greater than 10(exp 43) erg per second to constrain the average strength of reflection; we find R less than 1.4 for gamma = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at approximately greater than 10 keV. We also constrain the host-galaxy masses and find a median stellar

  7. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  9. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  10. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  11. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  12. Exploring the behavior of molybdenum diboride (MoB2): A high pressure x-ray diffraction study

    International Nuclear Information System (INIS)

    Liu, Pingping; Peng, Fang; Yin, Shuai; Liu, Fangming; Wang, Qiming; Zhu, Xuhui; Wang, Pei; He, Duanwei; Liu, Jing

    2014-01-01

    Investigation of the equation of state of molybdenum diboride (MoB 2 ) has been performed to 24.1 GPa using synchrotron radiation angle-dispersive x-ray diffraction techniques (ADXRD) in a diamond anvil cell (DAC) at room temperature. Rietveld refinement of the X-ray powder diffraction data reveals that the rhombohedral structure MoB 2 is stable up to 24.1 GPa. The ADXRD data yield a bulk modulus K 0  = 314(11) GPa with a pressure derivative K 0 ′  = 6.4(1.5). The experimental data are discussed and compared to the results of first-principles calculations. In addition, the compressibility of the unit cell axes (a and c axes) of MoB 2 demonstrates an anisotropic property with pressure increasing

  13. The STAR-X X-Ray Telescope Assembly (XTA)

    Science.gov (United States)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  14. Exploring cosmic origins with CORE: Inflation

    Science.gov (United States)

    Finelli, F.; Bucher, M.; Achúcarro, A.; Ballardini, M.; Bartolo, N.; Baumann, D.; Clesse, S.; Errard, J.; Handley, W.; Hindmarsh, M.; Kiiveri, K.; Kunz, M.; Lasenby, A.; Liguori, M.; Paoletti, D.; Ringeval, C.; Väliviita, J.; van Tent, B.; Vennin, V.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Banday, A. J.; Banerji, R.; Bartlett, J. G.; Basak, S.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Borril, J.; Bouchet, F. R.; Boulanger, F.; Brinckmann, T.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Chluba, J.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; D'Amico, G.; Delabrouille, J.; Desjacques, V.; De Zotti, G.; Diego, J. M.; Di Valentino, E.; Feeney, S.; Fergusson, J. R.; Fernandez-Cobos, R.; Ferraro, S.; Forastieri, F.; Galli, S.; García-Bellido, J.; de Gasperis, G.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Hu, B.; Kisner, T.; Kitching, T.; Kovetz, E. D.; Kurki-Suonio, H.; Lamagna, L.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Lindholm, V.; Lizarraga, J.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martínez-González, E.; Martins, C. J. A. P.; Masi, S.; McCarthy, D.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Oppizzi, F.; Paiella, A.; Pajer, E.; Patanchon, G.; Patil, S. P.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Ravenni, A.; Remazeilles, M.; Renzi, A.; Roest, D.; Roman, M.; Rubiño-Martin, J. A.; Salvati, L.; Starobinsky, A. A.; Tartari, A.; Tasinato, G.; Tomasi, M.; Torrado, J.; Trappe, N.; Trombetti, T.; Tucci, M.; Tucker, C.; Urrestilla, J.; van de Weygaert, R.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the scientific capabilities to improve our understanding of cosmic inflation of CORE, a proposed CMB space satellite submitted in response to the ESA fifth call for a medium-size mission opportunity. The CORE satellite will map the CMB anisotropies in temperature and polarization in 19 frequency channels spanning the range 60–600 GHz. CORE will have an aggregate noise sensitivity of 1.7 μKṡ arcmin and an angular resolution of 5' at 200 GHz. We explore the impact of telescope size and noise sensitivity on the inflation science return by making forecasts for several instrumental configurations. This study assumes that the lower and higher frequency channels suffice to remove foreground contaminations and complements other related studies of component separation and systematic effects, which will be reported in other papers of the series "Exploring Cosmic Origins with CORE." We forecast the capability to determine key inflationary parameters, to lower the detection limit for the tensor-to-scalar ratio down to the 10‑3 level, to chart the landscape of single field slow-roll inflationary models, to constrain the epoch of reheating, thus connecting inflation to the standard radiation-matter dominated Big Bang era, to reconstruct the primordial power spectrum, to constrain the contribution from isocurvature perturbations to the 10‑3 level, to improve constraints on the cosmic string tension to a level below the presumptive GUT scale, and to improve the current measurements of primordial non-Gaussianities down to the fNLlocal inflation. Its capabilities will be further enhanced by combining with complementary future cosmological observations.

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  17. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    Science.gov (United States)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  18. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  19. X-ray novae - what are they

    International Nuclear Information System (INIS)

    Wennfors, B.

    1976-01-01

    Ten of the two hundred cosmic X-ray sources exhibit characteristics in their emissions analogous to novae, i.e. after a rapid increase in luminosity, lasting about three days, follows a period of about a month with a slow decrease, and thereafter a rapid decrease to invisibility. The spectra of such sources are discussed in general terms and brief descriptions are given of the five which have been identified with optical objects. Three models for the history of X-ray novae, all based on X-ray emission from a compact object in an orbit very near a larger star, are discussed. (JIW)

  20. An X-ray and optical study of the ultracompact X-ray binary A 1246-58

    NARCIS (Netherlands)

    in 't Zand, J.J.M.; Bassa, C.G.; Jonker, P.G.; Keek, L.; Verbunt, F.W.M.; Méndez, M.; Markwardt, C.B.

    2008-01-01

    Results are discussed of an X-ray and optical observation campaign of the low-mass X-ray binary A 1246-58 performed with instruments on Satellite per Astronomia X ("BeppoSAX"), the Rossi X-ray Timing Explorer (RXTE), the X-ray Multi-mirror Mission ("XMM-Newton"), the Swift mission, and the Very

  1. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  2. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  3. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Anshul [Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107 (United States); Casjens, Sherwood R. [University of Utah School of Medicine, Salt Lake City, UT 84112 (United States); Cingolani, Gino, E-mail: gino.cingolani@jefferson.edu [Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107 (United States)

    2014-02-01

    This study presents the crystal structure of a ∼320 Å long protein fiber generated by in-frame extension of its repeated helical coiled-coil core. Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20–35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.

  4. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography

    International Nuclear Information System (INIS)

    Bhardwaj, Anshul; Casjens, Sherwood R.; Cingolani, Gino

    2014-01-01

    This study presents the crystal structure of a ∼320 Å long protein fiber generated by in-frame extension of its repeated helical coiled-coil core. Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20–35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility

  5. The X-Ray Surveyor Mission Concept Study: Forging the Path to NASA Astrophysics 2020 Decadal Survey Prioritization

    Science.gov (United States)

    Gaskin, Jessica; Ozel, Feryal; Vikhlinin, Alexey

    2016-01-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  6. The X-Ray Surveyor mission concept study: forging the path to NASA astrophysics 2020 decadal survey prioritization

    Science.gov (United States)

    Gaskin, Jessica; Özel, Feryal; Vikhlinin, Alexey

    2016-07-01

    The X-Ray Surveyor mission concept is unique among those being studied for prioritization in the NASA Astrophysics 2020 Decadal Survey. The X-Ray Surveyor mission will explore the high-energy Universe; providing essential and complimentary observations to the Astronomy Community. The NASA Astrophysics Roadmap (Enduring Quests, Daring Visions) describes the need for an X-Ray Observatory that is capable of addressing topics such as the origin and growth of the first supermassive black holes, galaxy evolution and growth of the cosmic structure, and the origin and evolution of the stars that make up our Universe. To address these scientifically compelling topics and more, an Observatory that exhibits leaps in capability over that of previous X-Ray Observatories in needed. This paper describes the current status of the X-Ray Surveyor Mission Concept Study and the path forward, which includes scientific investigations, technology development, and community participation.

  7. X-ray interferometers

    International Nuclear Information System (INIS)

    Franks, A.

    1980-01-01

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  8. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  9. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  11. Rossi X-Ray Timing Explorer Observations of the First Transient Z Source XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neutron Star X-Ray Binaries

    Science.gov (United States)

    Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil

    2007-02-01

    We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.

  12. Exploring the Cosmic Frontier Astrophysical Instruments for the 21st Century

    CERN Document Server

    Lobanov, Andrei P; Cesarsky, Catherine; Diamond, Phillip J

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society’s Harnack-Haus in Dahlem, Berlin hosted the international symposium "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century". The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting ...

  13. Exploring the cosmic frontier. Astrophysical instruments for the 21st century

    International Nuclear Information System (INIS)

    Lobanov, A.P.; Zensus, J.A.; Cesarsky, C.; Diamond, P.

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society's Harnack-Haus in Dahlem, Berlin hosted the international symposium ''Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century''. The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting and discussing the fundamental scientific problems that will be addressed by major future astrophysical facilities in the next few decades. This book contains 70 papers from the meeting and is intended to give a lasting account of a snapshot of an evolving scientific discourse and interaction throughout our field of research. (orig.)

  14. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  15. X-ray lasers

    CERN Document Server

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  16. X-ray apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Stagg, L.; Lambert, T.W.; Griswa, P.J.

    1976-01-01

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  17. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  18. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  1. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  3. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  5. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  6. Stellar X-Ray Polarimetry

    Science.gov (United States)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  7. Infrared and X-ray bursts from the rapid burster

    International Nuclear Information System (INIS)

    Apparao, K.M.V.; Chitre, S.M.

    1979-01-01

    Studies on sudden bursts from the cosmic X-ray sources are reported. The processes occuring from the rise in luminosity of an x-ray source to its collapse are described. Records of the x-ray burst from the globular cluster NGC 6624 and the 'Rapid Burster' are shown. The Infra-red bursts from the Rapid Burster are also explained. (A.K.)

  8. Chest X-Ray

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  10. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  11. Chest X-Ray

    Medline Plus

    Full Text Available ... breath, persistent cough, fever, chest pain or injury. It may also be useful to help diagnose and ... have some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to ...

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Chest X-ray ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot ... Inc. (RSNA). To help ensure current and accurate information, we do not permit copying but encourage linking ...

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... Site Index A-Z Spotlight Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  16. Chest X-Ray

    Medline Plus

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... June is Men's Health Month Recently posted: Pancreatic Cancer The Limitations of Online Dose Calculators Video: The ... of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  18. Microwave and theoretical studies for Cosmic Background Explorer satellite

    International Nuclear Information System (INIS)

    Wilkinson, D.T.

    1983-07-01

    The Cosmic Background Explorer (COBE) satellite, its instruments, and its scientific mission are discussed. The COBE radiometer is considered, and measurement of galactic radio emission with masers is reviewed. Extragalactic radiation and zodiacal dust are mentioned briefly

  19. X-ray sources

    International Nuclear Information System (INIS)

    Masswig, I.

    1986-01-01

    The tkb market survey comparatively evaluates the X-ray sources and replacement tubes for stationary equipment currently available on the German market. It lists the equipment parameters of 235 commercially available X-ray sources and their replacement tubes and gives the criteria for purchase decisions. The survey has been completed with December 1985, and offers good information concerning medical and technical aspects as well as those of safety and maintenance. (orig.) [de

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  6. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  7. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  8. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  9. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  10. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Setti, G.

    1980-01-01

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  11. Flash x-ray

    International Nuclear Information System (INIS)

    Johnson, Q.; Pellinen, D.

    1976-01-01

    The complementary techniques of flash x-ray radiography (FXR) and flash x-ray diffraction (FXD) provide access to a unique domain in nondestructive materials testing. FXR is useful in studies of macroscopic properties during extremely short time intervals, and FXD, the newer technique, is used in studies of microscopic properties. Although these techniques are similar in many respects, there are some substantial differences. FXD generally requires low-voltage, line-radiation sources and extremely accurate timing; FXR is usually less demanding. Phenomena which can be profitably studied by FXR often can also be studied by FXD to permit a complete materials characterization

  12. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  13. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  14. X-ray detector

    International Nuclear Information System (INIS)

    Houston, J.M.; Whetten, N.R.

    1981-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of xray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes

  15. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  16. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  17. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  18. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  19. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  20. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  1. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  2. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  3. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  4. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  5. Review of X-ray Tomography and X-ray Fluorescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shear, Trevor A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-16

    This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.

  6. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  7. Chest X-Ray

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos ... x-ray is used to evaluate the lungs, heart and chest wall and may be used to ...

  8. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  9. Medical x-ray

    International Nuclear Information System (INIS)

    Abd Aziz Mhd Ramli; Gui Ah Auu; Husaini Salleh; Idris Besar; Mohd Ashhar Khalid; Muhammad Jamal Md Isa; Shaharuddin Mohd; Siti Najila Mohd Janib; Mohamed Ali Abdul Khader; Mahalatchimi Dave; Mohd Fazly Abdul Rahim; Ng Chee Moon; Ram Piari; Teoh Hoon Heng; Lee Peter

    2004-01-01

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... change into a gown. You may have some concerns about chest x-rays. However, it’s important to ... You Sponsored by About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | Site Map Copyright © 2018 ...

  11. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  12. Exploring cosmic origins with CORE: Cosmological parameters

    Science.gov (United States)

    Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed

  13. WORKSHOP: Accreting X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    Earlier this year a workshop on 'High Energy/Ultra High Energy Behaviour of Accreting X-Ray Sources' was held in Vulcano, a small island near Sicily, jointly organized by the Italian Istituto Nazionale di Fisica Nucleare and Consiglio Nazionale delle Ricerche. About 60 astrophysicists and particle physicists attended the meeting which covered the study of galactic cosmic sources emitting in the wide energy range from the optical region to some 10{sup 15} eV.

  14. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  15. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  16. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  17. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    Full text: The most common form of radio therapy is X-ray therapy, where a beam of photons or their parent electrons break down hydrogen bonds within the body's cells and remove certain DNA information necessary for cell multiplication. This process can eradicate malignant cells leading to complete recovery, to the remission of some cancers, or at least to a degree of pain relief. The radiotherapy instrument is usually an electron linac, and the electrons are used either directly in 'electrotherapy' for some 10% of patients, or the electrons bombard a conversion target creating a broad beam of high energy photons or 'penetration X-rays'. The simplest machine consists of several accelerating sections at around 3 GHz, accelerating electrons to 6 MeV; a cooled tungsten target is used to produce a 4 Gray/min X-ray field which can be collimated into a rectangular shape at the patient position. This tiny linac is mounted inside a rotating isocentric gantry above the patient who must remain perfectly still. Several convergent beams can also be used to increase the delivered dose. More sophisticated accelerators operate at up to 18 MeV to increase penetration depths and decrease skin exposure. Alternatively, electrotherapy can be used with different energies for lower and variable penetration depths - approximately 0.5 cm per MeV. In this way surface tissue may be treated without affecting deeper and more critical anatomical regions. This type of linac, 1 to 2 metres long, is mounted parallel to the patient with a bending magnet to direct the beam to the radiotherapy system, which includes the target, thick movable collimator jaws, a beam field equalizer, dose rate and optical field simulation and energy controls. There are over 2000 acceleratorbased X-ray treatment units worldwide. Western countries have up to two units per million population, whereas in developing countries such as Bangladesh, the density is only one per 100 million. Several

  18. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  19. X-ray microtomography

    International Nuclear Information System (INIS)

    Dunsmuir, J.H.; Ferguson, S.R.; D'Amico, K.L.; Stokes, J.P.

    1991-01-01

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  20. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  1. X-ray apparatus

    International Nuclear Information System (INIS)

    Tomita, Chuji.

    1980-01-01

    A principal object of the present invention is to provide an X-ray apparatus which is such that the distance between the surface of the patient's table and the floor on which the apparatus is installed is sufficiently small in the horizontal position of the patient's table of the roentgenographical pedestal and that the rotation of the pedestal from the horizontal position to a tilted position and further to the vertical position of the table can be carried out smoothly. (auth)

  2. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  3. An X-ray view of the very faint black hole X-ray transient Swift J1357.2-0933 during its 2011 outburst

    NARCIS (Netherlands)

    Armas Padilla, M.; Wijnands, R.; Altamirano, D.; Méndez, M.; Miller, J. M.; Degenaar, N.

    We report on the X-ray spectral (using XMM-Newton data) and timing behaviour [using XMM-Newton and Rossi X-ray Timing Explorer (RXTE) data] of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Newton X-ray spectrum of this source can be

  4. BURST FLUENCE DISTRIBUTIONS OF SOFT GAMMA REPEATERS 1806–20 AND 1900+14 IN THE ROSSI X-RAY TIMING EXPLORER PCA ERA

    International Nuclear Information System (INIS)

    Prieskorn, Zachary; Kaaret, Philip

    2012-01-01

    We study the fluence distributions of over 3040 bursts from SGR 1806–20 and over 1963 bursts from SGR 1900+14 using the complete set of observations available from the Rossi X-Ray Timing Explorer/Proportional Counter Array through 2011 March. Cumulative event distributions are presented for both sources and are fitted with single and broken power laws as well as an exponential cutoff. The distributions are best fitted by a broken power law with exponential cutoff; however the statistical significance of the cutoff is not high and the upper portion of the broken power law can be explained as the expected number of false bursts due to random noise fluctuations. Event distributions are also examined in high and low burst rate regimes and power-law indices are found to be consistent, independent of the burst rate. The contribution function of the event fluence is calculated. This distribution shows that the energy released in the soft gamma repeater (SGR) bursts is dominated by the most powerful events for both sources. The power-law nature of these distributions combined with the dominant energy dissipation of the system occurring in the large, less frequent bursts is indicative of a self-organized critical system, as suggested by Goğus et al. in 1999.

  5. X-Ray microtomography for ant taxonomy: An exploration and case study with two new Terataner (Hymenoptera, Formicidae, Myrmicinae species from Madagascar.

    Directory of Open Access Journals (Sweden)

    Francisco Hita Garcia

    Full Text Available We explore the potential of x-ray micro computed tomography (μCT for the field of ant taxonomy by using it to enhance the descriptions of two remarkable new species of the ant genus Terataner: T. balrog sp. n. and T. nymeria sp. n.. We provide an illustrated worker-based species identification key for all species found on Madagascar, as well as detailed taxonomic descriptions, which include diagnoses, discussions, measurements, natural history data, high-quality montage images and distribution maps for both new species. In addition to conventional morphological examination, we have used virtual reconstructions based on volumetric μCT scanning data for the species descriptions. We also include 3D PDFs, still images of virtual reconstructions, and 3D rotation videos for both holotype workers and one paratype queen. The complete μCT datasets have been made available online (Dryad, https://datadryad.org and represent the first cybertypes in ants (and insects. We discuss the potential of μCT scanning and critically assess the usefulness of cybertypes for ant taxonomy.

  6. Producing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.

    1977-01-01

    A method of producing x-rays by directing radiant energy from a laser onto a target is described. Conversion efficiency of at least about 3 percent is obtained by providing the radiant energy in a low-power precursor pulse of approximately uniform effective intensity focused onto the surface of the target for about 1 to 30 nanoseconds so as to generate an expanding unconfined coronal plasma having less than normal solid density throughout and comprising a low-density (underdense) region wherein the plasma frequency is less than the laser radiation frequency and a higher-density (overdense) region wherein the plasma frequency is greater than the laser radiation frequency and, about 1 to 30 nanoseconds after the precursor pulse strikes the target, a higher-power main pulse focused onto the plasma for about 10 -3 to 30 nanoseconds and having such power density and total energy that the radiant energy is absorbed in the underdense region and conducted into the overdense region to heat it and thus to produce x-rays therefrom with the plasma remaining substantially below normal solid density and thus facilitating the substantial emission of x-rays in the form of spectral lines arising from nonequilibrium ionization states

  7. X-ray telescope mirrors made of slumped glass sheets

    Science.gov (United States)

    Winter, A.; Breunig, E.; Friedrich, P.; Proserpio, L.

    2017-11-01

    For several decades, the field of X-ray astronomy has been playing a major role in understanding the processes in our universe. From binary stars and black holes up to galaxy clusters and dark matter, high energetic events have been observed and analysed using powerful X-ray telescopes like e.g. Rosat, Chandra, and XMM-Newton [1,2,3], giving us detailed and unprecedented views of the high-energy universe. In November 2013, the theme of "The Hot and Energetic Universe" was rated as of highest importance for future exploration and in June 2014 the ATHENA Advanced Telescope for High Energy Astrophysics was selected by ESA for the second large science mission (L2) in the ESA Cosmic Vision program, with launch foreseen in 2028 [4]. By combining a large X-ray telescope with state-of-the-art scientific instruments, ATHENA will address key questions in astrophysics, including: How and why does ordinary matter assemble into the galaxies and galactic clusters that we see today? How do black holes grow and influence their surroundings? In order to answer these questions, ATHENA needs a powerful mirror system which exceed the capabilities of current missions, especially in terms of collecting area. However, current technologies have reached the mass limits of the launching rocket, creating the need for more light-weight mirror systems in order to enhance the effective area without increasing the telescope mass. Hence new mirror technologies are being developed which aim for low-weight systems with large collecting areas. Light material like glass can be used, which are shaped to form an X-ray reflecting system via the method of thermal glass slumping.

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the body. X-rays are the oldest and most frequently used form of medical imaging. A bone ... bones. top of page How should I prepare? Most bone x-rays require no special preparation. You ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... can be taken to the patient in a hospital bed or the emergency room. The x-ray ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  12. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... tissue shows up in shades of gray and air appears black. Until recently, x-ray images were ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... changes seen in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg (shin), ankle or foot. top of page ... the patient standing upright, as in cases of knee x-rays. A portable x-ray machine is ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... conditions. Imaging with x-rays involves exposing a part of the body to a small dose of ... body. Once it is carefully aimed at the part of the body being examined, an x-ray ...

  20. X-Ray Exam: Hip

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What It Is Why ... You Have Questions Print What It Is A hip X-ray is a safe and painless test ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  4. X-Ray Exam: Ankle

    Science.gov (United States)

    ... for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What It Is Why ... You Have Questions Print What It Is An ankle X-ray is a safe and painless test ...

  5. SMM x ray polychromator

    Science.gov (United States)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  6. Obstetric X-rays

    International Nuclear Information System (INIS)

    Mwachi, M.K.

    2006-01-01

    Radiography of the pelvis should never be taken to diagnose early pregnancy, because of potential hazards of radiation damage to the growing foetus. the only indication occurs in the last week of pregnancy (37 weeks). Obstetric X-ray will help you answer like confirmation of malposition,multiple pregnancies; fetal abnormalities e.g. hydrocephalus, foetal disposition. The choice of radiographic projection will help give foetal presentation, disposition as well as foetal maturity. The search pattern helps you determine maternal and spine deformity, foetal spine and head , foetal presentation and any other anomalies

  7. X-ray film

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.; Wonacott, A.J.

    1977-01-01

    The performance of film as an X-ray detector is discussed and its behaviour is compared with that of a perfect Poissonian detector. The efficiency of microdensitometry as a method of extracting the information recorded on the film is discussed. More emphasis is placed in the precision of microdensitometric measurements than on the more obvious characteristic of film speed. The effects of chemical fog and background on the precision of the measurements is considered and it is concluded that the final limit to precision is set by the chemical fog. (B.D.)

  8. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  9. Exploring cosmic origins with CORE: Cluster science

    Science.gov (United States)

    Melin, J.-B.; Bonaldi, A.; Remazeilles, M.; Hagstotz, S.; Diego, J. M.; Hernández-Monteagudo, C.; Génova-Santos, R. T.; Luzzi, G.; Martins, C. J. A. P.; Grandis, S.; Mohr, J. J.; Bartlett, J. G.; Delabrouille, J.; Ferraro, S.; Tramonte, D.; Rubiño-Martín, J. A.; Macìas-Pérez, J. F.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Basak, S.; Basu, K.; Battye, R. A.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colafrancesco, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; De Petris, M.; De Zotti, G.; Di Valentino, E.; Errard, J.; Feeney, S. M.; Fernández-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Gerbino, M.; González-Nuevo, J.; Greenslade, J.; Hanany, S.; Handley, W.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Le Brun, A. M. C.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Maffei, B.; Martinez-Gonzalez, E.; Masi, S.; Mazzotta, P.; McCarthy, D.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Roman, M.; Salvati, L.; Tartari, A.; Tomasi, M.; Trappe, N.; Triqueneaux, S.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Weller, J.; Young, K.; Zannoni, M.

    2018-04-01

    We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (>1014 Msolar) at redshift z>1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect 0~ 50 clusters at redshift z>1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4×1014 Msolar, for a 120 cm aperture telescope, and 1014 Msolar for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky would be shallower than CORE and detect about 11,000 clusters, while a survey with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with the latter, CORE would reach a limiting mass of M500 ~ 2‑3 × 1013 Msolar and detect 220,000 clusters (5 sigma detection limit

  10. X ray spectra of X Per. [oso-8 observations

    Science.gov (United States)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  11. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  12. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  13. Hard X ray lines from neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; La Padula, C.; Ubertini, P.

    1982-01-01

    Experimental evidence is presented and evaluated concerning the features of the hard X-ray spectra detected in a number of cosmic X-ray sources which contain a neutron star. The strong emission line at cyclotron resonance detected in the spectrum of Her XI at an energy of 58 keV is evaluated and the implications of this finding are discussed. Also examined is the presence of spectral features in the energy range 20-80 keV found in the spectra of gamma-ray bursts, which have been interpreted as cyclotron resonance from interstellar-gas-accreting neutron stars. The less understood finding of a variable emission line at approximately 70 keV in the spectrum of the Crab Pulsar is considered. It is determined that several features varying with time are present in the spectra of cosmic X-ray sources associated with neutron stars. If these features are due to cyclotron resonance, it is suggested that they provide a direct measurement of neutron star magnetic fields on the order of 10 to the 11th-10 to the 13th Gauss. However, the physical condition of the emitting region and its geometry are still quite obscure.

  14. X-Ray Polarimetry with GEMS

    Science.gov (United States)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  15. X-ray table

    International Nuclear Information System (INIS)

    Craig, J.R.; Otto, G.W.

    1980-01-01

    An X-ray radiographic or fluoroscopic table is described which includes a film holder with a frame attached to a cable running over end pulleys for positioning the holder longitudinally as desired under the table top. The holder has a front opening to receive a cassette-supporting tray which can be slid out on tracks to change the cassette. A reed switch on the frame is opened by a permanent magnet on the tray only when the tray is half-way out. When the switch is closed, an electromagnet locks the pulley and the holder in place. The holder is thus automatically locked in place not only during exposure (tray in) but when the tray is out for changing the cassette. To re-position the holder, the operator pulls the tray half-out and, using the tray itself, pushes the holder along the table, the holder being counterbalanced by a weight. (author)

  16. X-ray equipment

    International Nuclear Information System (INIS)

    Redmayne, I.G.B.

    1988-01-01

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.)

  17. X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.G.B.

    1988-01-06

    The patent concerns a warning and protection system for mobile x-ray equipment used for 'on site' radiography, so that workers in the vicinity of such a working unit can be alerted to its presence. The invention is a local repeater warning system which gives a preliminary warning that energisation of the tubehead is imminent, as well as a switch near the tubehead to abort or inhibit energisation. The latter switch allows personnel caught in the vicinity of the tubehead to prevent energisation. The preliminary warning may be flashing lamps or by a klaxon. The control unit for the equipment may include a monitoring circuit to detect failure of the warning light or klaxon. (U.K.).

  18. The Correlation between Hard X-Ray Peak Flux and Soft X-Ray Peak Flux in the Outburst Rise of Low-Mass X-Ray Binaries

    NARCIS (Netherlands)

    Yu, W.; van der Klis, M.; Fender, R.P.

    2004-01-01

    We have analyzed Rossi X-Ray Timing Explorer pointed observations of the outbursts of black hole and neutron star soft X-ray transients in which an initial low/hard state, or ``island'' state, followed by a transition to a softer state was observed. In three sources-the black hole transient XTE

  19. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  20. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  1. Advanced X-Ray Telescope Mirrors Provide Sharpest Focus Ever

    Science.gov (United States)

    1997-03-01

    's science mission. "We will observe X-rays generated when stars are torn apart by the incredibly strong gravity around massive black holes in the centers of galaxies," added Tananbaum. On a larger scale, the telescope will play a vital role in answering fundamental questions about the universe. "The superior quality of the mirrors will allow us to see and measure the details of hot gas clouds in clusters of galaxies, giving us a much better idea of the age and size of the universe," said Dr. Leon Van Speybroeck, Telescope Scientist at the Smithsonian Observatory. "These same observations also will measure the amount of dark matter present, providing unique insight into one of nature's great puzzles," said Van Speybroeck. A second phase of testing is now underway at Marshall. Calibration of the observatory's science instruments began in mid-February. "This phase of testing," said Weisskopf, "includes two focal plane instruments and two sets of gratings used to analyze images and energy distributions from cosmic sources seen by the telescope." Working around the clock, test teams are taking measurements and studying results. "It is very exciting," said Weisskopf. "With more than 1,200 measurements taken, there is already a tremendous amount of information for study." The calibration process will end around late April. The mirror assembly then will be shipped to TRW Space and Electronics Group, Redondo Beach, CA -- NASA's prime contractor for the program -- for integration into the spacecraft. The science instruments will remain at Marshall for several more weeks of testing before being shipped to Ball Aerospace and Technologies Corporation in Boulder, CO, where they will be integrated into the science instrument module before being shipped to TRW. The Advanced X-ray Astrophysics Facility is scheduled for launch in August 1998 and will join NASA's Hubble Space Telescope and Compton Gamma-ray Observatory in exploring the universe. Marshall manages development of the observatory

  2. Topological X-Rays Revisited

    Science.gov (United States)

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  3. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  4. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  5. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  6. X-ray holography: X-ray interactions and their effects

    International Nuclear Information System (INIS)

    London, R.A.; Trebes, J.E.; Rosen, M.D.

    1988-01-01

    The authors summarize a theoretical study of the interactions of x-rays with a biological sample during the creation of a hologram. The choice of an optimal wavelength for x-ray holography is discussed, based on a description of scattering by objects within an aqueous environment. The problem of the motion resulting from the absorption of x-rays during a short exposure is described. The possibility of using very short exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculation on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed. 12 refs., 2 figs

  7. X-ray optics developments at ESA

    DEFF Research Database (Denmark)

    Bavdaz, M.; Wille, E.; Wallace, K.

    2013-01-01

    Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA......) in collaboration with research institutions and industry, enabling leading-edge future science missions. Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class...... reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36]. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  8. Frontiers in X-Ray Science

    International Nuclear Information System (INIS)

    Young, Linda

    2011-01-01

    The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

  9. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  10. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  11. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  12. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  15. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  1. The Growth of Interest in Astronomical X-Ray Polarimetry

    Directory of Open Access Journals (Sweden)

    Frédéric Marin

    2018-03-01

    Full Text Available Astronomical X-ray polarimetry was first explored in the end of the 1960s by pioneering rocket instruments. The craze arising from the first discoveries of stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters to early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled with long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000s, observing astronomical X-ray polarization has become feasible, and scientists are now ready to explore our high-energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (rockets, balloons, and satellites will create new observational opportunities. Interest in astronomical X-ray polarimetry field has thus been renewed, and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of this interest.

  2. X-ray imaging system

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    A novel, high-speed apparatus for use in X-ray computerised tomography is described in detail. It consists of a semi-circular array of X-ray sources, collimators and an ion chamber array for detection of the X-rays. The X-ray sources may be pulsed in salvos such that the corresponding detectors in the array are only illuminated by one source. The use of computer controlled salvos speeds up the image processing by at least a factor of two. The ion chamber array is designed to have a constant detection efficiency for varying angles of X-ray incidence. A detailed description of the detector construction and suggested gaseous fillings are given. It is claimed that the present tomographic system allows fast and accurate imaging of internal body organs and is insensitive to the blurring effects which motion of these organs tends to produce. (UK)

  3. Radiation risks for patients having X rays

    International Nuclear Information System (INIS)

    Hale, J.; Thomas, J.W.

    1985-01-01

    In addition to radiation from naturally occurring radioactive materials and cosmic rays, individuals in developed countries receive radiation doses to bone marrow and gonads from the medical diagnostic use of X rays. A brief discussion of radiation epidemiology shows that deleterious effects are low even when doses are high. The concept of acceptable risk is introduced to help evaluate the small, but still existent, risks of radiation dose. Examples of bone marrow and gonadal doses for representative X-ray examinations are presented along with the current best estimates, per unit of X-ray dose, of the induction of leukemia or of genetic harm. The risk to the patient from an examination can then be compared with the normal risk of mortality from leukemia or of the occurrence of genetic defects. The risk increase is found to be very low. The risks to unborn children from radiographic examinations are also discussed. The benefit to the patient from information obtained from the examination must be balanced against the small risks

  4. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  5. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  6. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  7. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.

  8. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  9. The Large Observatory For x-ray Timing

    DEFF Research Database (Denmark)

    Feroci, M.; Herder, J. W. den; Bozzo, E.

    2014-01-01

    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study th...

  10. LOFT - The large observatory for x-ray timing

    DEFF Research Database (Denmark)

    Feroci, M.; Den Herder, J.W.; Argan, A.

    2012-01-01

    The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral v...

  11. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    CERN Document Server

    Ambrosi, R M; Hutchinson, I B; Willingale, R; Wells, A; Short, A D T; Campana, S; Citterio, O; Tagliaferri, G; Burkert, W; Bräuninger, H

    2002-01-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Planck Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16 arcsec at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4 yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the fo...

  12. High-Resolution X-Ray Tomography: A 3D Exploration Into the Skeletal Architecture in Mouse Models Submitted to Microgravity Constraints

    Directory of Open Access Journals (Sweden)

    Alessandra Giuliani

    2018-03-01

    Full Text Available Bone remodeling process consists in a slow building phase and in faster resorption with the objective to maintain a functional skeleton locomotion to counteract the Earth gravity. Thus, during spaceflights, the skeleton does not act against gravity, with a rapid decrease of bone mass and density, favoring bone fracture. Several studies approached the problem by imaging the bone architecture and density of cosmonauts returned by the different spaceflights. However, the weaknesses of the previously reported studies was two-fold: on the one hand the research suffered the small statistical sample size of almost all human spaceflight studies, on the other the results were not fully reliable, mainly due to the fact that the observed bone structures were small compared with the spatial resolution of the available imaging devices. The recent advances in high-resolution X-ray tomography have stimulated the study of weight-bearing skeletal sites by novel approaches, mainly based on the use of the mouse and its various strains as an animal model, and sometimes taking advantage of the synchrotron radiation support to approach studies of 3D bone architecture and mineralization degree mapping at different hierarchical levels. Here we report the first, to our knowledge, systematic review of the recent advances in studying the skeletal bone architecture by high-resolution X-ray tomography after submission of mice models to microgravity constrains.

  13. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography.

    Science.gov (United States)

    Bhardwaj, Anshul; Casjens, Sherwood R; Cingolani, Gino

    2014-02-01

    Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.

  14. X-ray film calibration

    International Nuclear Information System (INIS)

    Stone, G.F.; Dittmore, C.H.; Henke, B.L.

    1986-01-01

    This paper discusses the use of silver halide x-ray films for imaging and spectroscopy which is limited by the range of intensities that can be recorded and densitometered. Using the manufacturers processing techniques can result in 10 2-3 range in intensity recorded over 0-5 density range. By modifying the chemistry and processing times, ranges of 10 5-6 can be recorded in the same density range. The authors report on x-ray film calibration work and dynamic range improvements. Changes to the processing chemistry and the resulting changes in dynamic range and x-ray sensitivity are discussed

  15. Women and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Dunkley, P A; Stewart, J H

    1976-01-01

    When a woman comes to an X-Ray Department it is usually necessary to know the present stage of her menstrual cycle. X-Rays may have an adverse effect on the embryo, especially in early pregnancy. However, exposure to X-Rays at any stage may be associated with a slightly increased incidence of malignant disease in childhood. The International Commission on Radiological Protection recommends that in women of child-bearing age (in some cases as young as 11 years), non-urgent diagnostic radiography be confined to the preovulatory phase of the menstrual cycle: that is, 14 days following the first day of the last menstrual period.

  16. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  17. Scientific Challenges for a New X-ray Timing Mission

    International Nuclear Information System (INIS)

    Lamb, Frederick K.

    2004-01-01

    The Rossi X-ray Timing Explorer (RXTE) is an immensely successful mission of exploration and discovery. It has discovered a wealth of rapid X-ray variability phenomena that can be used to address fundamental questions concerning the properties of dense matter and strong gravitational fields as well as important astrophysical questions. It has answered many questions and is likely to answer many more, but to follow up fully on the major discoveries RXTE has made will require a new X-ray timing mission with greater capabilities. This introduction to the present volume describes briefly the advantages of X-ray timing measurements for determining the properties of dense matter and strong gravitational fields, indicates some of the key scientific questions that can be addressed using X-ray timing, and summarizes selected achievements of the RXTE mission. It concludes by citing some of the scientific capabilities a proposed follow-on mission will need in order to be successful

  18. Neutron and X-ray optics

    CERN Document Server

    Cremer, Jay Theodore

    2013-01-01

    Covering a wide range of topics related to neutron and x-ray optics, this book explores the aspects of neutron and x-ray optics and their associated background and applications in a manner accessible to both lower-level students while retaining the detail necessary to advanced students and researchers. It is a self-contained book with detailed mathematical derivations, background, and physical concepts presented in a linear fashion. A wide variety of sources were consulted and condensed to provide detailed derivations and coverage of the topics of neutron and x-ray optics as well as the background material needed to understand the physical and mathematical reasoning directly related or indirectly related to the theory and practice of neutron and x-ray optics. The book is written in a clear and detailed manner, making it easy to follow for a range of readers from undergraduate and graduate science, engineering, and medicine. It will prove beneficial as a standalone reference or as a complement to textbooks. Su...

  19. Discovery of Hard Nonthermal Pulsed X-Ray Emission from the Anomalous X-Ray Pulsar 1E 1841-045

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Méndez, R.M.

    2004-01-01

    We report the discovery of nonthermal pulsed X-ray/soft gamma-ray emission up to ~150 keV from the anomalous 11.8 s X-ray pulsar AXP 1E 1841-045 located near the center of supernova remnant Kes 73 using Rossi X-Ray Timing Explorer (RXTE) Proportional Counter Array and High Energy X-Ray Timing

  20. Light from electron avalanches and background rejection in X-ray astronomy

    International Nuclear Information System (INIS)

    Siegmund, O.H.W.; Sanford, P.W.; Mason, I.M.; Culhane, J.L.; Cockshott, R.

    1980-01-01

    A modified version of the parallel plate imaging proportional counter, developed to register images of cosmic x-ray sources in the focal planes of x-ray telescopes, has been constructed to investigate the application of risetime discrimination to the scintillation pulses caused by the electron avalanche process. It is shown that efficient background event rejection (> 90%) is achieved and the application of this system for x-ray astronomy is discussed. (U.K.)

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... more information about pregnancy and x-rays. A Word About Minimizing Radiation Exposure Special care is taken ... and/or your insurance provider to get a better understanding of the possible charges you will incur. ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... is repeated. Two or three images (from different angles) will typically be taken. An x-ray may ... RadiologyInfo.org is not a medical facility. Please contact your physician with specific medical questions or for ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... no special preparation. Tell your doctor and the technologist if there is any possibility you are pregnant. ... should always inform their physician and x-ray technologist if there is any possibility that they are ...

  4. X-ray guided biopsy

    International Nuclear Information System (INIS)

    Casanova, R.; Lezana, A.H.; Pedrosa, C.S.

    1980-01-01

    Fine needle aspiration biopsy (FNAB) is now a routine procedure in many X-ray Departments. This paper presents the authors' experience with this technique in chest, abdominal and skeletal lesions. (Auth.)

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Radiography) - Bone Bone x-ray uses a very small dose of ionizing radiation to produce pictures of ... exposing a part of the body to a small dose of ionizing radiation to produce pictures of ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... replacement and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in ... injuries, including fractures, and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely ...

  7. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  9. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... technologist, an individual specially trained to perform radiology examinations, positions the patient on the x-ray table ... bone is forming), for comparison purposes. When the examination is complete, you may be asked to wait ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... in a known abnormality can be monitored over time. Follow-up examinations are sometimes the best way ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the radiation while soft tissue, such as muscle, fat and organs, allow more of the x-rays ... information you were looking for? Yes No Please type your comment or suggestion into the following text ...

  14. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... pregnant. Many imaging tests are not performed during pregnancy so as not to expose the fetus to ... See the Safety page for more information about pregnancy and x-rays. top of page What does ...

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... in metabolic conditions. assist in the detection and diagnosis of bone cancer . locate foreign objects in soft ... frequently compared to current x-ray images for diagnosis and disease management. top of page How is ...

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of any bone in the body, including the hand, wrist, arm, elbow, shoulder, spine, pelvis, hip, thigh, knee, leg ( ... Image Gallery Radiological technologist preparing to take an arm x-ray on a ... Images related ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the best images for evaluation. National and international radiology protection organizations continually review ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ... radiation oncology provider in your community, you can search the ACR-accredited facilities database . This website does ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in varying degrees. Dense ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray machine is a compact apparatus that can be taken to the patient in a hospital ... so that any change in a known abnormality can be monitored over time. Follow-up examinations are ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of page What will I experience during and after the procedure? A bone x-ray examination itself ... available in emergency rooms, physician offices, ambulatory care centers, nursing homes and other locations, making it convenient ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... will analyze the images and send a signed report to your primary care or referring physician , who ... Medicine Radiation Safety How to Read Your Radiology Report Images related to X-ray (Radiography) - Bone Sponsored ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to produce pictures of any bone in the body. It is commonly used to diagnose fractured bones ... x-rays involves exposing a part of the body to a small dose of ionizing radiation to ...

  6. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... to X-ray (Radiography) - Bone Sponsored by Please note RadiologyInfo.org is not a medical facility. Please ... is further reviewed by committees from the American College of Radiology (ACR) and the Radiological Society of ...

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... and fracture reductions. look for injury, infection, arthritis , abnormal bone growths and bony changes seen in metabolic ... to current x-ray images for diagnosis and disease management. top of page How is the procedure ...

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... imaged. When necessary, sandbags, pillows or other positioning devices will be used to help you maintain the ... here Images × Image Gallery Radiological technologist preparing to take an arm x-ray on a patient. View ...

  10. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... community, you can search the ACR-accredited facilities database . This website does not provide cost information. The ...

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... patient. top of page How does the procedure work? X-rays are a form of radiation like ... taken of the unaffected limb, or of a child's growth plate (where new bone is forming), for ...

  12. Flash x-ray cinematography

    International Nuclear Information System (INIS)

    Stein, W.E.

    1976-01-01

    Experiments intended to provide an overview of the potential capabilities and limitations of flash x-ray cinematography as a diagnostic technique for a Fast Reactor Safety Test Facility are described. The results provide estimates of the x-ray pulse intensity required to obtain adequate radiographs of an array of fuel pins in a typical reactor configuration. An estimate of the upper limit on the pulse duration imposed by the reactor background radiation was also determined. X-ray cinematography has been demonstrated at a repetition rate limited only by the recording equipment on hand at the time of these measurements. These preliminary results indicate that flash x-ray cinematography of the motion of fuel in a Fast Reactor Test Facility is technically feasible

  13. X-ray screening materials

    International Nuclear Information System (INIS)

    Wardley, R.B.

    1981-01-01

    This invention relates to x-ray screening materials and especially to materials in sheet form for use in the production of, for example, protective clothing such as aprons and lower back shields, curtains, mobile screens and suspended shields. The invention is based on the observation that x-ray screening materials in sheet form having greater flexiblity than the hitherto known x-ray screening materials of the same x-ray absorber content can be produced if, instead of using a single sheet of filled sheet material of increased thickness, one uses a plurality of sheets of lesser thickness together forming a laminar material of the desired thickness and one bonds the individual sheets together at their edges and, optionally, at other spaced apart points away from the edges thereby allowing one sheet to move relative to another. (U.K.)

  14. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-ray uses a very small dose of ionizing radiation to produce pictures of any bone in the ... of the body to a small dose of ionizing radiation to produce pictures of the inside of the ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... examination may also be necessary so that any change in a known abnormality can be monitored over ...

  17. Miniature x-ray source

    Science.gov (United States)

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  18. Duodenal X-ray diagnostics

    International Nuclear Information System (INIS)

    Scheppach, W.

    1982-01-01

    The publication provides an overview of duodenal X-ray diagnostics with the aid of barium meals in 1362 patients. The introducing paragraphs deal with the topographic anatomy of the region and the methodics of X-ray investigation. The chapter entitled ''processes at the duodenum itself'' describes mainly ulcers, diverticula, congenital anomalies, tumors and inflammations. The neighbourhood processes comprise in the first place diseases having their origin at the pancreas and bile ducts. As a conclusion, endoscopic rectograde cholangio-pancreaticography and percutaneous transhepatic cholangiography are pointed out as advanced X-ray investigation methods. In the annex of X-ray images some of the described phenomena are shown in exemplary manner. (orig./MG) [de

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... position possible that still ensures x-ray image quality. top of page Who interprets the results and ... accredited facilities database . This website does not provide cost information. The costs for specific medical imaging tests, ...

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ... in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer ...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... the oldest and most frequently used form of medical imaging. A bone x-ray makes images of any ... a radiologist or other physician. To locate a medical imaging or radiation oncology provider in your community, you ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... carefully aimed at the part of the body being examined, an x-ray machine produces a small ... the table in the area of the body being imaged. When necessary, sandbags, pillows or other positioning ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. ... appliances, eye glasses and any metal objects or clothing that might interfere with the x-ray images. ...

  6. Magnetic x-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Paul G [Computer-Aided Engineering Center, University of Wisconsin, Madison, WI 53706 (United States); Isaacs, Eric D [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-08-07

    Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space resolution with a rich magnetic cross section allows new microscopy techniques to be developed and applied to magnetism at the scale of single domains. Potential applications include a wide range of magnetic problems in nanomagnetism, the interaction of strain, polarization and magnetization in complex oxides and spatially resolved studies of magnetic phase transitions. We present the physical basis for x-ray microdiffraction and magnetic scattering processes, review microdiffraction domain imaging techniques in antiferromagnetic and ferromagnetic materials and discuss potential directions for studies. (topical review)

  7. Electromechanical x-ray generator

    Science.gov (United States)

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  8. Accelerator x-ray sources

    CERN Document Server

    Talman, Richard

    2007-01-01

    This first book to cover in-depth the generation of x-rays in particle accelerators focuses on electron beams produced by means of the novel Energy Recovery Linac (ERL) technology. The resulting highly brilliant x-rays are at the centre of this monograph, which continues where other books on the market stop. Written primarily for general, high energy and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers.

  9. X-ray tube target

    International Nuclear Information System (INIS)

    Weber, R.G.

    1980-01-01

    A target with an improved heat emissive surface for use in a rotating anode type x-ray tube is described. The target consists of a body having a first surface portion made of x-ray emissive material and a second surface portion made of a heat emissive material comprising at least one of hafnium boride, hafnium oxide, hafnium nitride, hafnium silicide, and hafnium aluminide. (U.K.)

  10. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  11. X-ray data processing

    OpenAIRE

    Powell, Harold R.

    2017-01-01

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most c...

  12. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  13. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    International Nuclear Information System (INIS)

    Sakuragi, Mina; Sakurai, Kazuo; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

  14. Exploration for novel genes and pathways involved in repair of x-ray damage by functional analyses of C. elegans genome

    International Nuclear Information System (INIS)

    Eki, T.

    2004-01-01

    Gene function suppression nematodes were produced by systematic RNA interference process (RNAi) of genes which included helicase gene group. Some of high sensitivity genes were identified by the result of function screening for X-ray sensitivity of the function suppression nematode. A complete length of cDNA was separated from the two novel genes, and all the base sequences were determined. It was cleared that one of the novel genes encodes RNA helicases protein which consists of 1,119 amino acids, and the other one encodes chromatin modeling ATPase protein which consists of 3,035 and 3,201 amino acids. Candidacy genes of about 14 pieces for the RNA helicase protein were identified by yeast two-hybrid process as the results of research for nematode protein which showed protein interaction. (M. Suetake)

  15. Low energy (soft) x rays

    International Nuclear Information System (INIS)

    Hoshi, Masaharu; Antoku, Shigetoshi; Russell, W.J.; Miller, R.C.; Nakamura, Nori; Mizuno, Masayoshi; Nishio, Shoji.

    1987-05-01

    Dosimetry of low-energy (soft) X rays produced by the SOFTEX Model CMBW-2 was performed using Nuclear Associates Type 30 - 330 PTW, Exradin Type A2, and Shonka-Wyckoff ionization chambers with a Keithley Model 602 electrometer. Thermoluminescent (BeO chip) dosimeters were used with a Harshaw Detector 2000-A and Picoammeter-B readout system. Beam quality measurements were made using aluminum absorbers; exposure rates were assessed by the current of the X-ray tube and by exposure times. Dose distributions were established, and the average factors for non-uniformity were calculated. The means of obtaining accurate absorbed and exposed doses using these methods are discussed. Survival of V79 cells was assessed by irradiating them with soft X rays, 200 kVp X rays, and 60 Co gamma rays. The relative biological effectiveness (RBE) values for soft X rays with 0, 0.2, 0.7 mm added thicknesses of aluminum were 1.6, which were compared to 60 Co. The RBE of 200 kVp X rays relative to 60 Co was 1.3. Results of this study are available for reference in future RERF studies of cell survival. (author)

  16. Exploring the cosmic evolution of habitability with galaxy merger trees

    Science.gov (United States)

    Stanway, E. R.; Hoskin, M. J.; Lane, M. A.; Brown, G. C.; Childs, H. J. T.; Greis, S. M. L.; Levan, A. J.

    2018-04-01

    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma-ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar-mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar-mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.

  17. Exploring cosmic origins with CORE: Effects of observer peculiar motion

    Science.gov (United States)

    Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the

  18. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  19. Planetary X-ray studies: past, present and future

    Science.gov (United States)

    Branduardi-Raymont, Graziella

    2016-07-01

    relative contributions of different processes. SWCX X-ray emission from the Earth's exosphere is turning from unwanted variable background in astrophysical observations to a novel and global diagnostic tool for investigating solar-terrestrial interactions: this underpins the development of the ESA-CAS joint mission SMILE (Solar Wind Magnetosphere Ionosphere Link Explorer) due for launch in 2021. On the longer term ATHENA (Advanced Telescope for High ENergy Astrophysics, launch 2028) will provide planetary targets with vastly improved X-ray sensitivity on that currently afforded by XMM-Newton.

  20. Applications for X-ray detectors in astrophysics

    International Nuclear Information System (INIS)

    Remillard, R.A.

    2003-01-01

    Full text: Position-sensitive X-Ray detectors continue to playa central role in high-energy astrophysics. The current science goals are reviewed with emphasis on requirements in terms of camera performance. Wide-field imaging techniques, including coded mask cameras, are an essential part of space programs because of the transient nature of high-priority targets, e.g. eruptions from black-hole binaries and cosmic explosions such as gamma ray bursts. Pointing X-ray telescopes are being planned with a wide range of photon energies and with collection designs that include both mirrors and coded masks. Requirements for high spectral resolution and high time resolution are driven by diverse types of X-ray sources such as msec pulsars, quasars with emission-line profiles shaped by general relativity, and X-ray binaries that exhibit quasi-periodic oscillations in the range of 40-1300 Hz. Many laboratories and universities are involved in space-qualification of new detector technologies, e.g. CZT cameras, X-ray calorimeters, new types of CCDs, and GEM detectors. Even X-ray interferometry is on the horizon of NASA's science roadmap. The difficulties in advancing new technologies for space science applications require careful coordinations between industry and science groups in order to solve science problems while minimizing risk

  1. The X-ray properties of normal galaxies

    Science.gov (United States)

    Fabbiano, G.

    1986-01-01

    X-ray observations with the Einstein satellite have shown that normal galaxies of all morphological types are spatially extended sources of X-ray emission with luminosities in the range of L(x) of about 10 to the 39th to 10 to the 41st erg/s. Although this is only a small fraction of the total energy output of a normal galaxy, X-ray observations are uniquely suited to study phenomena that are otherwise elusive. In X-rays one can study directly the end products of stellar evolution (SNRs and compact remnants). X-ray observations have led to the discovery of gaseous outflows linked to starburst nuclear activity in spiral galaxies and to the detection of a hot interstellar medium in early-type galaxies. Through X-ray observations it is possible to set constraints on structural galaxy parameters, such as the mass of elliptical galaxies, and perhaps get new insight on the origin of cosmic rays and the properties of the magnetic fields of spiral galaxies.

  2. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  3. European X-ray spectroscopy and polarimetry payload for Spacelab

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, R D; Whitcomb, G [European Space Research and Technology Centre, Noordwijk (Netherlands); Brinkman, A C [Space Research Laboratory, Utrecht, The Netherlands; Beuermann, K [Max-Planck-Institut fuer Physik und Astrophysik, Garching/Muenchen (Germany, F.R.). Inst. fuer Extraterrestrische Physik; Culhane, J L [University Coll., London (UK). Mullard Space Science Lab.; Griffiths, R [Leicester Univ. (UK); Manno, V [ESA Headquarters, Paris, France; Rocchia, R [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1976-08-01

    A group of instruments for X-ray spectroscopy and polarimetry studies of a number of cosmic X-ray sources is being designed for possible use on Spacelab. Large area Bragg spectrometers and polarimeters for photon energies above 2 keV are described. For the energy range below 2 keV, both dispersive and non-dispersive spectrometers are employed at the common focus of a nested array of paraboloids. Following a brief outline of the scientific background to the mission, the properties of the individual instruments are discussed.

  4. Probes of Cosmic Star Formation History

    Indian Academy of Sciences (India)

    I summarize X-ray diagnostic studies of cosmic star formation history in terms of evolutionary schemes for X-ray binary evolution in normal galaxies with evolving star formation. Deep X-ray imaging studies by Chandra and XMM-Newton are now beginning to constrain both the X-ray luminosity evolution of galaxies and the ...

  5. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  6. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    Due to their versatile properties, X rays are a unique tool to investigate the structure and dynamics of matter. X-ray scattering is the fundamental principle of many imaging techniques. Examples are X-ray crystallography, which recently celebrated one hundred years and is currently the leading method in structure determination of proteins, as well as X-ray phase contrast imaging (PCI), which is an imaging technique with countless applications in biology, medicine, etc. The technological development of X-ray free electron lasers (XFEL) has brought X-ray imaging at the edge of a new scientific revolution. XFELs offer ultrashort X-ray pulses with unprecedented high X-ray fluence and excellent spatial coherence properties. These properties make them an outstanding radiation source for X-ray scattering experiments, providing ultrafast temporal resolution as well as atomic spatial resolution. However, the radiation-matter interaction in XFEL experiments also advances into a novel regime. This demands a sound theoretical fundament to describe and explore the new experimental possibilities. This dissertation is dedicated to the theoretical study of nonresonant X-ray scattering. As the first topic, I consider the near-field imaging by propagation based X-ray phase contrast imaging (PCI). I devise a novel theory of PCI, in which radiation and matter are quantized. Remarkably, the crucial interference term automatically excludes contributions from inelastic scattering. This explains the success of the classical description thus far. The second topic of the thesis is the X-ray imaging of coherent electronic motion, where quantum effects become particularly apparent. The electron density of coherent electronic wave packets - important in charge transfer and bond breaking - varies in time, typically on femto- or attosecond time scales. In the near future, XFELs are envisaged to provide attosecond X-ray pulses, opening the possibility for time-resolved ultrafast X-ray scattering

  7. Exploring the doping dependence of the Mott transition on X-ray irradiated crystals of {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Cl

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Sebastian; Tutsch, Ulrich; Naji, Ammar; Lang, Michael [Physikalisches Institut, Goethe-Universitaet Frankfurt (Germany); Sasaki, Takahiko [Institute for Materials Research, Tohoku University, Aoba-ku, Sendai, Miyagi (Japan)

    2011-07-01

    The quasi two-dimensional organic charge-transfer salt {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Cl exhibits a rich pressure vs. temperature phase diagram, including Mott-insulating and metallic phases separated by a first order transition line. By applying moderate pressures of {proportional_to}30 MPa (300 bar), the ratio of the kinetic energy to the onsite Coulomb repulsion t/U can be changed sufficiently to cross this phase transition line. Our objective is to study the effect of carrier doping and the accompanying changes of the first-order transition line and its second-order critical endpoint. We used X-ray irradiation to introduce charge carriers into the material, doping it away from half filling. We present resistivity data for the temperature range 5 K

  8. Next Generation X-ray Polarimeter

    Science.gov (United States)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  9. Transmission X-ray mirror

    International Nuclear Information System (INIS)

    Lairson, B.M.; Bilderback, D.H.

    1982-01-01

    Transmission X-ray mirrors have been made from 400 A to 10 000 A thick soap films and have been shown to have novel properties. Using grazing angles of incidence, low energy X-rays were reflected from the front surface while more energetic X-rays were transmitted through the mirror largely unattenuated. A wide bandpass monochromator was made from a silicon carbide mirror followed by a soap film transmission mirror and operated in the white beam at the cornell High Energy Synchrotron Source (CHESS). Bandpasses of ΔE/E=12% to 18% were achieved at 13 keV with peak efficiencies estimated to be between 55% and 75%, respectively. Several wide angle scattering photographs of stretched polyethylene and a phospholipid were obtained in 10 s using an 18% bandpass. (orig.)

  10. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  11. Exponential x-ray transform

    International Nuclear Information System (INIS)

    Hazou, I.A.

    1986-01-01

    In emission computed tomography one wants to determine the location and intensity of radiation emitted by sources in the presence of an attenuating medium. If the attenuation is known everywhere and equals a constant α in a convex neighborhood of the support of f, then the problem reduces to that of inverting the exponential x-ray transform P/sub α/. The exponential x-ray transform P/sub μ/ with the attenuation μ variable, is of interest mathematically. For the exponential x-ray transform in two dimensions, it is shown that for a large class of approximate δ functions E, convolution kernels K exist for use in the convolution backprojection algorithm. For the case where the attenuation is constant, exact formulas are derived for calculating the convolution kernels from radial point spread functions. From these an exact inversion formula for the constantly attenuated transform is obtained

  12. X-ray of osteopathies

    International Nuclear Information System (INIS)

    Freyschmidt, J.

    1980-01-01

    Osteoporosis, osteomalcia, fibro-osteoclasia and osteosclerosis are essential reactions to pathologicometabolic processes of the bone. The X-ray film shows precisely which changes have taken place in the bone structure, thus supplying the means for an analysis based on anatomic pathology. These phenomena are discussed in detail, special attention being paid to structural modifications. Attention is also focused on the problems connected with X-ray technology. The value of direct and indirect magnification of the skeleton of the hand for the identification and classification of esteopathies is explained. Phenomena observed in X-ray films, such as enosteal erosion, intracortical longitudinal stripes or tunnelisation, as well as subperiostal absorption, can be of pathognomonic importance for certain osteopathies. (orig.) [de

  13. Imaging X-ray astronomy

    International Nuclear Information System (INIS)

    Elvis, M.

    1990-01-01

    The launch of the High Energy Astrophysical Observatory, more appealingly called the Einstein Observatory, marked one of the most revolutionary steps taken in astrophysics this century. Its greater sensitivity compared with earlier satellites and its ability to make high spacial and spectral resolution observations transformed X-ray astronomy. This book is based on a Symposium held in Cambridge, Massachusetts, to celebrate a decade of Einstein Observatory's achievements. It discusses the contributions that this satellite has made to each area of modern astrophysics and the diversity of the ongoing work based on Einstein data. There is a guide to each of the main data bases now coming on-line to increase the availability and to preserve this valuable archive for the future. A review of NASA's next big X-ray mission, AXAF, and a visionary program for novel X-ray astronomy satellites by Riccardo Giacconi conclude this wide-ranging volume. (author)

  14. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  15. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  16. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  17. Overutilization of x-rays

    International Nuclear Information System (INIS)

    Abrams, H.L.

    1979-01-01

    In this article on the overutilization of x-rays the author defines the term overutilization as excessive irradiation per unit of diagnostic information, therapeutic impact, or health outcome. Three main factors are described which lead to overutilization of x-rays: excessive radiation per film; excessive films per examination; and excessive examinations per patient. Topics discussed which influence the excessive examinations per patient are: the physician's lack of knowledge; undue dependence; lack of screening by radiologists; the physician's need for action and certainty; patient demand; reimbursement policies; institutional requirements; preventive medicine; defensive medicine; and the practice of radiology by nonradiologists

  18. Multichannel X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Khabakhpashev, A

    1980-10-01

    A typical design is discussed of multiwire proportional counters and their characteristic feature is explained, ie., the possibility of showing one or two coordinates of the X-ray quantum absorption site. The advantages of such instruments are listed, such as increased sensitivity of determination, the possibility of recording radiations of a different intensity, the possibility of on-line data processing and of the digital display of results. The fields of application include X-ray structural analysis in solid state physics, crystallography, molecular biology, astronomy, materials testing, and medicine.

  19. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  20. Portable X-Ray Device

    Science.gov (United States)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  1. X-ray tube targets

    International Nuclear Information System (INIS)

    Hirsch, H.H.

    1980-01-01

    In rotary targets for X-ray tubes warping is a problem which causes X-ray deficiency. A rotary target is described in which warping is reduced by using alloys of molybdenum with 0.05 to 10% iron, silicon, cobalt, tantalum, niobium, hafnium, stable metal oxide or mixture thereof. Suitable mixtures are 0.5 to 10% of tantalum, niobium or hafnium with from 0.5 to 5% yttrium oxide, or 0.05 to 0.3% of cobalt or silicon. Optionally 0.1 to 5% by weight of additional material may be alloyed with the molybdenum, such as tantalum or hafnium carbides. (author)

  2. X-ray data processing.

    Science.gov (United States)

    Powell, Harold R

    2017-10-31

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most commonly used software in the field. © 2017 The Author(s).

  3. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Solar flares; X-ray detectors; X-ray line emission and continuum; break energy; microflares. Abstract. Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in ...

  4. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very small dose ... Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic ...

  5. X-Ray Exam: Cervical Spine

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Cervical Spine KidsHealth / For Parents / X-Ray ... MRI): Lumbar Spine Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  6. X-Ray Exam: Neck (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Neck KidsHealth / For Parents / X-Ray Exam: ... Neck Enlarged Adenoids Croup Sinusitis Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  7. The restless universe understanding X-ray astronomy in the age of Chandra and Newton

    CERN Document Server

    Schlegel, Eric M

    2002-01-01

    This title tells the story of the development and launch of a major space-based telescope, and explains the discoveries of the nature of the universe in the X-ray spectre. The author looks at the brief history of X-ray astronomy to explore what can and has been learnt by using X-ray.

  8. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  9. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  10. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of Literature on x-ray fluorescence spectrometry starts with a list of conference proceedings on the subject, organised by the Philips organisation at regular intervals in various European countries. It is followed by a list of bulletins. The bibliography is subdivided according to spectra, equipment, applications and absorption analysis

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  12. X-ray Sensitive Material

    Science.gov (United States)

    2015-12-01

    TM 8772 5 Literature reports on BiI3/nylon composites used X-ray sources with a Mo target (Reference 18) or magnesium target (Reference 19). However...1981. Pp. D-155 to D-160. 22. G. Pretzsch, B. Dorschel, and T. Schonmuth. IEEE Transactions on Electrical Insulation, Vol. EI -21, No.3, June 1986

  13. X-ray system analysis

    International Nuclear Information System (INIS)

    Shapiro, J.S.

    1985-01-01

    An X-ray system tester for measuring anode voltage, cathode voltage, anode current, filament current and line voltage in an X-ray system has a selector which couples one of these analog signals or one of a plurality of processing control signals entered by an operator from a control panel to a digitizing section selectively in accordance with control signals provided to the selector by a computing section. The digitizing section converts the selected signal into a train of pulses having a frequency proportional to the value of the selected signal. These pulses are counted, the counts being used by the computing section to determine the value of the selected signal. This computed value is stored in a computing memory section of the computing section. The computing section is adapted to store a plurality of the sets of signals produced during a corresponding sequence of operational intervals of the X-ray system and determines a measure of the deviation of any selected one of the stored electrical signals over the sequence of operating intervals. Each signal produced during the sequential operational intervals can be recalled to aid analysis of the operation of the X-ray system. (author)

  14. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  15. X-ray simulation development

    International Nuclear Information System (INIS)

    Posey, L.D.; Tollefsrud, P.B.; Woodall, H.W.; McDaniel, D.H.; Allred, R.E.

    1975-01-01

    Design modifications are discussed for an electron beam accelerator used as a Bremsstrahlung x-ray source. The primary goal of the program, to obtain a reliable 5 cal/gm exposure capability, can be accomplished with beam compression by an external magnetic guide field. Initial operating characteristics and performance improvements are presented

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. Risks There is always a slight chance of cancer from excessive exposure to radiation. However, the benefit of an accurate ...

  17. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ray, N.B.

    1977-01-01

    The principle, instrument and procedure of X-ray fluorescence spectrometry are described. It is a rapid, simple and sensitive method for the trace analysis of elements from sodium to uranium in powder, liquid or metal samples. (M.G.B.)

  18. X-rays from stars

    Science.gov (United States)

    Güdel, Manuel

    2004-07-01

    Spectroscopic studies available from Chandra and XMM-Newton play a pivotal part in the understanding of the physical processes in stellar (magnetic and non-magnetic) atmospheres. It is now routinely possible to derive densities and to study the influence of ultraviolet radiation fields, both of which can be used to infer the geometry of the radiating sources. Line profiles provide important information on bulk mass motions and attenuation by neutral matter, e.g. in stellar winds. The increased sensitivity has revealed new types of X-ray sources in systems that were thought to be unlikely places for X-rays: flaring brown dwarfs, including rather old, non-accreting objects, and terminal shocks in jets of young stars are important examples. New clues concerning the role of stellar high-energy processes in the modification of the stellar environment (ionization, spallation, etc.) contribute significantly to our understanding of the "astro-ecology" in forming planetary systems. Technological limitations are evident. The spectral resolution has not reached the level where bulk mass motions in cool stars become easily measurable. Higher resolution would also be important to perform X-ray "Doppler imaging" in order to reconstruct the 3-D distribution of the X-ray sources around a rotating star. Higher sensitivity will be required to perform high-resolution spectroscopy of weak sources such as brown dwarfs or embedded pre-main-sequence sources. A new generation of satellites such as Constellation-X or XEUS should pursue these goals.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... An x-ray (radiograph) is a noninvasive medical test that helps physicians diagnose and treat medical conditions. ...

  20. Stellar X-ray sources

    International Nuclear Information System (INIS)

    Katz, J.I.; Washington Univ., St. Louis, MO

    1988-01-01

    I Review some of the salient accomplishments of X-rap studies of compact objects. Progress in this field has closely followed the improvement of observational methods, particularly in angular resolution and duration of exposure. Luminous compact X-ray sources are accreting neutron stars or black holes. Accreting neutron stars may have characteristic temporal signatures, but the only way to establish that an X-ray source is a black hole is to measure its mass. A rough phenomenological theory is succesful, but the transport of angular momentum in accretion flows is not onderstood. A number of interesting complications have been observed, including precessing accretion discs, X-ray bursts, and the acceleration of jets in SS433. Many puzzles remain unsolved, including the excitation of disc precession, the nature of the enigmatic A- and gamma-ray source Cyg X-3, the mechanism by which slowly spinning accreting neutron stars lose angular momentum, and the superabundance of X-ray sources in globular clusters. 41 refs.; 5 figs

  1. X-rays and magnetism

    International Nuclear Information System (INIS)

    Fischer, Peter; Ohldag, Hendrik

    2015-01-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. (report on progress)

  2. X-ray examination apparatus

    International Nuclear Information System (INIS)

    Bernstein, S.; Griswa, P.J.; Halter, P. Jr.; Kidd, H.J.

    1980-01-01

    Apparatus for x-ray cardiovascular examination and which can also be used for general purpose examination is described. An advantage of the system is that there is no mechanical connection between the image intensifier and source to interfere with the medical examiner or emergency procedures. (U.K.)

  3. X-ray tube transformer

    International Nuclear Information System (INIS)

    1980-01-01

    An X-ray generator is described which comprises a transmission line transformer including an electrical conductor with a cavity and a second electrical conductor including helical windings disposed along a longitudinal axis within the cavity of the first conductor. The windings have a pitch which varies per unit length along the axis. There is dielectric material in the cavity for insulation and to couple electromagnetically the two conductors in response to an electric current flowing through the conductors, which have an impedance between them; this varies with distance along the axis of the helix of the second conductor. An X-ray tube is disposed along the longitudinal axis within the cavity, for radiating X-rays. The invention increases the voltage of applied voltage pulses at the remote tube-head with a transformer formed by using a spiral delay line geometry to give a tapered-impedance coaxial high voltage multiplier for pulse voltage operation. This transformer is smaller and lighter than previous designs for the same high peak voltage and power ratings. This is important because the penetration capabilities of Flash X-ray equipment increase with voltage, particularly in heavy materials such as steel. (U.K.)

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of bone cancer . locate foreign objects in soft tissues around or in bones. top of page How should I prepare? Most ... absorb the x-rays in varying degrees. Dense bone absorbs much of the radiation while soft tissue, such as muscle, fat and organs, allow more ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us ... the equipment look like? How does the procedure work? How is the procedure ... diagnose and treat medical conditions. Imaging with x-rays involves exposing a part ...

  6. Proton exciting X ray analysis

    International Nuclear Information System (INIS)

    Ma Xinpei

    1986-04-01

    The analyzing capability of proton exciting X ray analysis for different elements in organisms was discussed, and dealing with examples of trace element analysis in the human body and animal organisms, such as blood serum, urine, and hair. The sensitivity, accuracy, and capability of multielement analysis were discussed. Its strong points for the trace element analysis in biomedicine were explained

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... cancer from excessive exposure to radiation. However, the benefit of an accurate diagnosis far outweighs the risk. ...

  8. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z X-ray ( ...

  9. X-ray absorption holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Lausi, A.; Bussetto, E.; Kub, Jiří; Savoia, A.

    2002-01-01

    Roč. 88, č. 18 (2002), s. 185503-1 - 185503-3 ISSN 0031-9007 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray holography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.323, year: 2002

  10. Laser-produced X-ray sources

    International Nuclear Information System (INIS)

    Hudson, L.T.; Seely, J.F.

    2010-01-01

    A formidable array of advanced laser systems are emerging that produce extreme states of light and matter. By irradiating solid and gaseous targets with lasers of increasing energy densities, new physical regimes of radiation effects are being explored for the first time in controlled laboratory settings. One result that is being accomplished or pursued using a variety of techniques, is the realization of novel sources of X-rays with unprecedented characteristics and light-matter interactions, the mechanisms of which are in many cases still being elucidated. Examples include the megajoule class of laser-produced plasmas designed in pursuit of alternative-energy and security applications and the petawatt class of lasers used for fast ignition and X-ray radiographic applications such as medical imaging and real-time imaging of plasma hydrodynamics. As these technologies mature, increased emphasis will need to be placed on advanced instrumentation and diagnostic metrology to characterize the spectra, time structure, and absolute brightness of X-rays emitted by these unconventional sources. Such customized and absolutely calibrated measurement tools will serve as an enabling technology that can help in assessing the overall system performance and progress, as well as identification of the underlying interaction mechanisms of interest to basic and applied strong-field and high-energy-density science.

  11. X-Ray, UV and Optical Observations of Classical Cepheids: New Insights into Cepheid Evolution, and the Heating and Dynamics of Their Atmospheres

    OpenAIRE

    Engle, Scott G.; Guinan, Edward F.

    2012-01-01

    To broaden the understanding of classical Cepheid structure, evolution and atmospheres, we have extended our continuing secret lives of Cepheids program by obtaining XMM/Chandra X-ray observations, and Hubble space telescope (HST) / cosmic origins spectrograph (COS) FUV-UV spectra of the bright, nearby Cepheids Polaris, {\\delta} Cep and {\\beta} Dor. Previous studies made with the international ultraviolet explorer (IUE) showed a limited number of UV emission lines in Cepheids. The well-known ...

  12. An Overview of X-Ray Polarimetry of Astronomical Sources

    Directory of Open Access Journals (Sweden)

    Martin C. Weisskopf

    2018-03-01

    Full Text Available We review the history of astronomical X-ray polarimetry based on the author’s perspective, beginning with early sounding-rocket experiments by Robert Novick at Columbia University and his team, of which the author was a member. After describing various early techniques for measuring X-ray polarization, we discuss the polarimeter aboard the Orbiting Solar Observatory 8 (OSO-8 and its scientific results. Next, we describe the X-ray polarimeter to have flown aboard the ill-fated original Spectrum-X mission, which provided important lessons on polarimeter design, systematic effects, and the programmatics of a shared focal plane. We conclude with a description of the Imaging X-ray Polarimetry Explorer (IXPE and its prospective scientific return. IXPE, a partnership between NASA and ASI, has been selected as a NASA Astrophysics Small Explorers Mission and is currently scheduled to launch in April of 2021.

  13. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  14. X-rays from spiral and starburst galaxies

    International Nuclear Information System (INIS)

    Fabbiano, G.

    1990-01-01

    The study of the X-ray properties of normal galaxies as a class was made possible by the launch of the Einstein Observatory in November 1978. The Einstein X-ray observations of well over 100 galaxies have been reported in the literature to date, and data on a similar number can still be found in the Einstein data bank. To mention some of the unexpected results, these observations have led to the discovery of plumes of hot gas ejected by starburst nuclei, and to the study of small active nuclei. Hot X-ray halos have been discovered in early-type galaxies, and provide a potentially very powerful means for measuring their mass. The implications of these results range from new insights on the composition and evolution of X-ray emitting sources in spiral galaxies, and their relationship with star formation activity and cosmic ray production, to the formation of the intracluster medium and the origin of the X-ray background. This paper concentrates on the results of the Einstein observations of spiral and starburst galaxies. (author)

  15. Quasars: Cosmological evolution and x-ray background contribution

    International Nuclear Information System (INIS)

    Schmidt, M.; Green, R.F.

    1986-01-01

    The luminosity function of quasars varies with redshift or cosmic epoch. The authors discuss how the luminosity function and its evolution can be determined from complete samples of quasars. They first concentrate on optical survey of quasars. For quasars of medium luminosity, the co-moving space density rises very steeply with redshift. Quasars of lower luminosity exhibit a slower increase of density with redshift, resulting in luminosity-dependent evolution of the space density. They also discuss evidence for a cutoff of quasar redshift and for a possible dependence of the cutoff on luminosity. They evaluate X-ray counts of quasars and show the need for negative X-ray luminosity evolution in order to explain the counts and the low average redshifts of X-ray quasars. As a consequence, the quasar contribution to the X-ray background is lower than originally suspected. They discuss other extragalactic contributors to the X-ray background and conclude that they, together with the quasars, contribute about 60 percent of the observed background. About half of this is contributed by active galactic nuclei with optical luminosities below those of quasars

  16. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    Directory of Open Access Journals (Sweden)

    Shibin Song

    2015-09-01

    Full Text Available The further development of X-ray pulsar-based NAVigation (XNAV is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments.

  17. Flowers behind the back of the universe: A cosmic art project exploring the invisible

    Science.gov (United States)

    Tanaka, Yuri; Doser, Michael; Sakurai, Ryu; Shimoyama, Hajime; Takahashi, Ryo

    2018-05-01

    What can be seen within this universe? Since humans are not instinctively aware of the limitations of their sensorium, what is being missed is not immediately obvious. Aiming to explore with our imagination the invisible elements in the universe, we created an interactive cosmic art project in collaboration with the Gunma Astronomical Observatory, and the Polytech Festival in Moscow. In this paper, we firstly address the topic of dark matter, from the physics point of view, the concept in our project touching upon the invisible beauty in the universe, and then discuss the practical methodology for the process of making the installation. This installation was laid out based on a map of constellations from where people were able to see the antipode of Moscow, an opposite point from the venue where the installation was set, in analogy to illustrating what exists, but can not be seen. Using origami flowers - made in the course of a workshop by the visitors of the festival - as a metaphor of the beauty and transience of life, the installation seeks to deepen the awareness of participants about the numerous invisible structures in the universe. Placing them within reflective structures underlines both our reliance on technology to make the invisible visible, and the influence of the point of view on how we perceive and interpret the resulting representations. In their various forms and colors, these flowers can be seen as metaphorical mirror images of that which lies at the antipodes of our awareness: of colorful gas glowing in radio waves, supernovas in their many x-ray hues, dark matter, neutrinos, gravitational waves, dark energy. Considering both the invisible scenery of the sky and the invisible elements of beauty in the universe as lying behind the 'back' of the universe, hidden to our senses, this project explores a new way of communication between humans and the ubiquitous invisible in an artistic manner. Finally, the whole process of this project is summarized

  18. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  19. Scientific results from the cosmic background explorer (COBE)

    International Nuclear Information System (INIS)

    Bennett, C.L.; Boggess, N.W.; Cheng, E.S.; Hauser, M.G.; Kelsall, T.; Mather, J.C.; Moseley, S.H. Jr.; Shafer, R.A.; Silverberg, R.F.; Murdock, T.L.; Smoot, G.F.; Weiss, R.; Wright, E.L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservation upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. 104 refs., 1 tab

  20. Center for X-Ray Optics, 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers

  1. X-ray diagnostic in gas discharge

    International Nuclear Information System (INIS)

    Chen Suhe; Wang Dalun; Cui Gaoxian; Wang Mei; Fu Yibei; Zhang Xinwei; Zhang Wushou

    1995-01-01

    X rays were observed when the anomalous phenomenon in the metal loaded with deuterium studied by the gas-discharge method. Therefore the X-ray energy spectra were measured by the absorption method, the specific X-ray approach and the NaI scintillation counter, while X-ray intensity was estimated by using 7 Li thermoluminescent foils. The X-ray average energy measured by the absorption method is 27.6 +- 2.1 keV, which is fitted within the error extent to 26.0 +-2.4 keV monoenergetic X rays measured by the NaI scintillation counter

  2. X-ray cardiovascular examination apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    An X-ray source is mounted in an enclosure for angulating longitudinally about a horizontal axis. An X-ray-permeable, patient-supporting table is mounted on the top of the enclosure for executing lateral and longitudinal movements. An X-ray image-receiving device such as an X-ray image intensifier is mounted above the table on a vertically movable arm which is on a longitudinally movable carriage. Electric control means are provided for angulating the X-ray source and image intensifier synchronously as the image intensifier system is shifted longitudinally or vertically such that the central ray from the X-ray source is kept intensifier

  3. X-ray tube arrangements

    International Nuclear Information System (INIS)

    Gillard, R.G.

    1980-01-01

    A technique for ensuring the rapid correction of both amplitude and offset errors in the deflectional movement of an electron beam along an X-ray emissive target is described. The movement is monitored at at least two positions during a sweep and differences, between the two movements and a desired movement, at these positions are combined in different proportions to produce a corrective servo signal. Such arrangements find application, for example, in computerised tomographic scanners. (author)

  4. Smart X-ray optics

    International Nuclear Information System (INIS)

    Michette, A G; Pfauntsch, S J; Sahraei, S; Shand, M; Morrison, G R; Hart, D; Vojnovic, B; Stevenson, T; Parkes, W; Dunare, C; Willingale, R; Feldman, C; Button, T; Zhang, D; Rodriguez-Sanmartin, D; Wang, H

    2009-01-01

    This paper describes reflective adaptive/active optics for applications including studies of biological radiation damage. The optics work on the polycapillary principle, but use arrays of channels in thin silicon. For optimum performance the x-rays should reflect once off a channel wall in each of two successive arrays. This reduces aberrations since then the Abbe sine condition is approximately satisfied. Adaptivity is achieved by flexing the arrays via piezo actuation, providing further aberration reduction and controllable focal length.

  5. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  6. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  7. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  8. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  9. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  10. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  11. Achromatic X-ray lenses

    International Nuclear Information System (INIS)

    Umbach, Marion

    2009-01-01

    This thesis presents first results on the development of achromatic refractive X-ray lenses which can be used for scientific experiments at synchrotron sources. First of all the different requirements for achromatic X-ray lenses have been worked out. There are different types of lenses, one type can be used for monochromatized sources when the energy is scanned while the spot size should be constant. The other type can be used at beamlines providing a broad energy band. By a combination of focusing and defocusing elements we have developed a lens system that strongly reduces the chromatic aberration of a refractive lens in a given energy range. The great challenge in the X-ray case - in contrast to the visible range - the complex refractive index, which is very similar for the possible materials in the X-ray spectrum. For precise studies a numerical code has been developed, which calculates the different rays on their way through the lenses to the detector plane via raytracing. In this numerical code the intensity distribution in the detector plane has been analyzed for a chromatic and the corresponding achromatic system. By optimization routines for the two different fields of applications specific parameter combinations were found. For the experimental verification an achromatic system has been developed, consisting of biconcave SU-8 lenses and biconvex Nickel Fresnel lenses. Their fabrication was based on the LIGA-process, including a further innovative development, namely the fabrication of two different materials on one wafer. In the experiment at the synchrotron source ANKA the energy was varied in a specific energy range in steps of 0.1 keV. The intensity distribution for the different energies was detected at a certain focal length. For the achromatic system a reduction of the chromatic aberration could be clearly shown. Achromatic refractive X-ray lenses, especially for the use at synchrotron sources, have not been developed so far. As a consequence of the

  12. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  13. Aspergillosis - chest x-ray (image)

    Science.gov (United States)

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  14. Soft x-ray Planetary Imager

    Data.gov (United States)

    National Aeronautics and Space Administration — The project is to prototype a soft X-ray Imager for planetary applications that has the sensitivity to observe solar system sources of soft  X-ray emission. A strong...

  15. Stabilized x-ray generator power supply

    International Nuclear Information System (INIS)

    Saha, Subimal; Purushotham, K.V.; Bose, S.K.

    1986-01-01

    X-ray diffraction and X-ray fluorescence analysis are very much adopted in laboratories to determine the type and structure of the constituent compounds in solid materials, chemical composition of materials, stress developed on metals etc. These experiments need X-ray beam of fixed intensity and wave length. This can only be achieved by X-ray generator having highly stabilized tube voltage and tube current. This paper describes how X-ray tube high voltage and electron beam current are stabilized. This paper also highlights generation of X-rays, diffractometry and X-ray fluorescence analysis and their wide applications. Principle of operation for stabilizing the X-ray tube voltage and current, different protection circuits adopted, special features of the mains H.V. transformer and H.T. tank are described in this report. (author)

  16. Development of quantitative x-ray microtomography

    International Nuclear Information System (INIS)

    Deckman, H.W.; Dunsmuir, J.A.; D'Amico, K.L.; Ferguson, S.R.; Flannery, B.P.

    1990-01-01

    The authors have developed several x-ray microtomography systems which function as quantitative three dimensional x-ray microscopes. In this paper the authors describe the evolutionary path followed from making the first high resolution experimental microscopes to later generations which can be routinely used for investigating materials. Developing the instrumentation for reliable quantitative x-ray microscopy using synchrotron and laboratory based x-ray sources has led to other imaging modalities for obtaining temporal and spatial two dimensional information

  17. X-ray diagnostics - benefits and risks

    International Nuclear Information System (INIS)

    Bartholomaeus, Melanie

    2016-01-01

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  18. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  19. Center for X-ray Optics, 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source

  20. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  1. X-Rays, Pregnancy and You

    Science.gov (United States)

    ... Emitting Products and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  2. Automatic weld joint X-ray inspection

    International Nuclear Information System (INIS)

    Richter, H.U.; Linke, D.; Siems, K.D.; Kruse, H.; Schuetze, E.

    1990-01-01

    A gantry mounted robotic x-ray inspection unit has been developed for the series testing of small and medium sized welded components (pipe bends and nozzles). The unit features computer controlled positioning of the x-ray tube and x-ray image amplifier. Image quality classes 2 and even 1 could be achieved without difficulty. (author)

  3. X-ray emission lines from photoionized plasmas

    International Nuclear Information System (INIS)

    Liedahl, D.A.

    1992-11-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae, which are likely to exist in the circumsource environments of compact X-ray sources. X-ray line production in a photoionized plasma is primarily the result of radiative cascades following recombination. Through the development of atomic models of several highly-charged ions, this work extends the range of applicability of discrete spectral models to plasmas dominated by recombination. Assuming that ambient plasma conditions lie in the temperature range 10 5 --10 6 K and the density range 10 11 --10 16 cm -3 , X-ray line spectra are calculated over the wavelength range 5--45 angstrom using the HULLAC atomic physics package. Most of the work focuses on the Fe L-shell ions. Line ratios of the form (3s-2p)/(3d-2p) are shown to characterize the principal mode of line excitation, thereby providing a simple signature of photoionization. At electron densities exceeding 10 12 cm -3 , metastable state populations in the ground configurations approach their LTE value, resulting in the enrichment of the Fe L-shell recombination spectrum and a set of density-sensitive X-ray line ratios. Radiative recombination continua and emission lines produced selectively by Δn = 0 dielectronic recombination are shown to provide two classes of temperature diagnostics. Because of the extreme overionization, the recombination continua are expected to be narrow (ΔE/E much-lt 1), with ΔE = kT. Dielectronic recombination selectively drives radiative transitions that originate on states with vacancies in the 2s subshell, states that are inaccessible under pure RR population kinetics

  4. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  5. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    Science.gov (United States)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  6. CERN explores link between cosmic rays and clouds

    CERN Multimedia

    2006-01-01

    "Scientists at CERN, the European Organisation for Nuclear Research, have started a new experiment to investigate the possible influence of galactic cosmic rays on the Earths clouds and climate. This is the first time that a high energy physics accelerator has been used for atmospheric and climate science." (1 page)

  7. X-ray photographic apparatus

    International Nuclear Information System (INIS)

    1977-01-01

    The X-ray photographic system is designed for medical applications. Two detectors are used for surveys in different planes, and produce electrical signals which are supplied to a comparator. The electron beams are examined according to a system of reference time steps. The apparatus includes a light source and a photo-detector and enables a reference signal to be produced against which the detected signals are compared. The beam source is formed from an electron gun, an extractor electrode and an anode; beam then passes through a collimator. (G.C.)

  8. X-ray source array

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A circular array of cold cathode diode X-ray sources, for radiation imaging applications, such as computed tomography includes electrically conductive cathode plates each of which cooperates with at least two anodes to form at least two diode sources. In one arrangement, two annular cathodes are separated by radially extending, rod-like anodes. Field enhancement blades may be provided on the cathodes. In an alternative arrangement, the cathode plates extend radially and each pair is separated by an anode plate also extending radially. (author)

  9. X-ray intensifying screens

    International Nuclear Information System (INIS)

    Bossomaier, T.R.J.; Sangway, P.C.

    1979-01-01

    It is claimed that stabilization of X-ray intensifying screens against discolouration and hydrolysis of lanthanum or gadolinium oxyhalide phosphors can be achieved by incorporating into the phosphor/binder formulation a compound containing free epoxy groups. Suitable epoxy compounds include gamma glycidoxy trimethoxy silane and dimethyl di(m-glycidoxy methylphenyl) methane. The oxyhalide may be activated by Tb, Tm or Yb and may be mixed with other phosphors. Plasticisers and organo-tin stabilisers for the formulation are given. Many binders are specified, preferably these should not react with the free epoxy groups. (UK)

  10. Protonium X-ray spectroscopy

    CERN Document Server

    Gotta, D

    1999-01-01

    The Lyman and Balmer transitions from antiprotonic hydrogen and deuterium were studied extensively at the low-energy-antiproton ring LEAR at CERN in order to determine the strong interaction effects. A first series of experiments $9 was performed with semiconductor and gaseous X-ray detectors. In the last years of LEAR operation using a Bragg crystal spectrometer, strong interaction parameters in the 2p states of antiprotonic hydrogen and deuterium were measured $9 directly. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (39 refs).

  11. X-ray calibration qualities

    International Nuclear Information System (INIS)

    Burns, J.E.

    1998-01-01

    Since the recent publication of IAEA Technical Reports Series No. 374 ''Calibration of Dosimeters Used in Radiotheraphy'', there have been a number of queries about the origin of, and the rationale behind, the X-ray qualities recommended for calibration purposes. The simple answer is that these are the qualities derived at the UK National Physical Laboratory (NPL) in 1971 for calibration of therapy-level dosimeters and which are still in use for that purpose. As some SSDLs may have difficulties in adopting these exact combinations of kV and filtration. This paper discusses the basic ideas involved, and how to go about deriving a different series of qualities

  12. The X-ray Variability of Eta Car, 1996-2010

    Science.gov (United States)

    Corcoran, Michael F.; Hamaguchi, K.; Gull, T.; Owocki, S.; Pittard, J.

    2010-01-01

    X-ray photometry in the 2-10 keY band of the the supermassive binary star Eta Car has been measured with the Rossi X-ray Timing Explorer from 1996-2010. The ingress to X-ray minimum is consistent with a period of 2024 days. The 2009 X-ray minimum began on January 162009 and showed an unexpectedly abrupt recovery starting after 12 Feb 2009. The X-ray colors become harder about half-way through all three minima and continue until flux recovery. The behavior of the fluxes and X-ray colors for the most recent X-ray minimum, along with Chandra high resolution grating spectra at key phases suggests a significant change in the inner wind of Eta Car, a possible indicator that the star is entering a new unstable phase of mass loss.

  13. NIKOLA TESLA AND THE X-RAY

    OpenAIRE

    Rade R. Babic

    2005-01-01

    After professor Wilhelm Konrad Röntgen published his study of an x-ray discovery (Academy Bulletin, Berlin, 08. 11. 1895.), Nikola Tesla published his first study of an x-ray on the 11th of March in 1896. (X-ray, Electrical Review). Until the 11th of August in 1897 he had published ten studies on this subject. All Tesla,s x-ray studies were experimental, which is specific to his work. Studying the nature of the x-ray, he established a new medical branch-radiology. He wrote:” There’s no doubt...

  14. Einstein pictures the x-ray sky

    International Nuclear Information System (INIS)

    Hartline, B.K.

    1979-01-01

    The second High Energy Astronomy Observatory (HEAO-2, Einstein) is revolutionizing x-ray astronomy just as its namesake revolutionized physics. Earlier x-ray observatories, including HEAO-1, were designed to scan the sky for x-ray emitters. With Einstein, the challenge has shifted from discovering x-ray sources to understanding the processes producing the x-rays. But having 500 times the sensitivity of previous detectors, Einstein makes more than its share of discoveries, too. For example, it sees distant quasars and clusters of galaxies that can barely be detected by the largest optical telescopes

  15. Picosecond x-ray streak camera studies

    International Nuclear Information System (INIS)

    Kasyanov, Yu.S.; Malyutin, A.A.; Richardson, M.C.; Chevokin, V.K.

    1975-01-01

    Some initial results of direct measurement of picosecond x-ray emission from laser-produced plasmas are presented. A PIM-UMI 93 image converter tube, incorporating an x-ray sensitive photocathode, linear deflection, and three stages of image amplification was used to analyse the x-ray radiation emanating from plasmas produced from solid Ti targets by single high-intensity picosecond laser pulses. From such plasmas, the x-ray emission typically persisted for times of 60psec. However, it is shown that this detection system should be capable of resolving x-ray phenomena of much shorter duration. (author)

  16. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  17. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  18. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  19. X-ray geometrical smoothing effect in indirect x-ray-drive implosion

    International Nuclear Information System (INIS)

    Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    X-ray geometrical smoothing effect in indirect X-ray drive pellet implosion for inertial confinement fusion has been numerically analyzed. Attainable X-ray driven ablation pressure has been found to be coupled with X-ray irradiation uniformity. (author)

  20. X-ray diffraction device comprising cooling medium connections provided on the x-ray tube

    NARCIS (Netherlands)

    1996-01-01

    An X-ray diffraction device comprises a water-cooled X-ray tube which exhibits a line focus as well as, after rotation through 90 DEG , a point focus. Contrary to customary X-ray tubes, the cooling water is not supplied via the housing (12) in which the X-ray tube is mounted, but the cooling water

  1. The TESIS Project: Are Type 2 QSO Hidden in X-Ray Emitting EROs?

    Science.gov (United States)

    Severgnini, P.; Della Ceca, R.; Braito, V.; Saracco, P.; Longhetti, M.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    X-ray selected EROs are, on average, the hardest X-ray sources in medium and deep X-ray fields. This coupled with their extremely red colors (R-K > 5) suggest that they represent one of the most promising population where looking for high-luminosity (LX > 1044 erg s-1) and X-ray obscured (NH > 1022 cm-2) type2 AGNs, the so called QSO2 (e.g., [5]; [4]; Mignoli et al. submitted to A&A). These latter are predicted in large density by the synthesis model of the Cosmic X-ray background [9] even if only few observational evidences have been found so far (e.g., [1] and references therein; Caccianiga et al. A&A accepted).

  2. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    Science.gov (United States)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  3. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  4. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  5. X-ray and gamma radiography devices

    International Nuclear Information System (INIS)

    Abdul Nassir Ibrahim; Azali Muhammad; Ab. Razak Hamzah; Abd. Aziz Mohamed; Mohamad Pauzi Ismail

    2008-01-01

    When we are using this technique, we also must familiar with the device and instrument that used such as gamma projector, crawler, x-ray tubes and others. So this chapter discussed detailed on device used for radiography work. For the x-ray and gamma, their characteristics are same but the source to produce is a big different. X-ray produced from the machine meanwhile, gamma produce from the source such as Co-60 and IR-192. Both are electromagnetic waves. So, the reader can have some knowledge on what is x-ray tube, discrete x-ray and characteristic x-ray, how the machine works and how to control a machine, what is source for gamma emitter, how to handle the projector and lastly difference between x-ray and gamma. Of course this cannot be with the theory only, so detailed must be learned practically.

  6. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  7. Submicron X-ray diffraction

    International Nuclear Information System (INIS)

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-01-01

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample

  8. Accelerator X-ray sources

    International Nuclear Information System (INIS)

    Talman, R.

    2006-01-01

    This is the first monograph to cover in-depth the production of brilliant x-ray beams in accelerators, with emphasis on fourth generation designs, such as energy recovery linacs (ERL), fast cycling storage rings, and free electron lasers (FEL). Going beyond existing treatments of the influence of synchroton radiation on accelerator operation, special emphasis is placed on the design of undulator-based beam lines, and the physics of undulator radiation. Starting from the unified treatment of electron and photon beams both as bunches of particles and as waves, the author proceeds to analyse the main components, from electron gun, through linac and arc lattice, to the x-ray beam line. Designs are given for both an ERL and a more conventional storage ring complex, and their anticipated properties are compared in detail. Space charge effects are analysed with emphasis on coherent synchrotron radiation and emittance dilution. Beam diagnostics using synchrotron radiation or laser wire (Compton scattering) are also analysed in detail. Written primarily for general, particle, and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers. (orig.)

  9. VizieR Online Data Catalog: WATCH Solar X-Ray Burst Catalogue (Crosby+ 1998)

    Science.gov (United States)

    Crosby, N.; Lund, N.; Vilmer, N.; Sunyaev, R.

    1998-01-01

    Catalogue containing solar X-ray bursts measured by the Danish Wide Angle Telescope for Cosmic Hard X-Rays (WATCH) experiment aboard the Russian satellite GRANAT in the deca-keV energy range. Table 1 lists the periods during which solar observations with WATCH are available (WATCH ON-TIME) and where the bursts listed in the catalogue have been observed. (2 data files).

  10. Search for Nonthermal X-Rays from Supernova Remnant Shells

    Science.gov (United States)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  11. Exploring the cosmic rays energy frontier with the Auger Observatory

    CERN Document Server

    CERN. Geneva

    2006-01-01

    The existence of cosmic rays with energies in excess of 1020 eV represents a longstanding scientific mystery. Unveileing the mechanism and source of production/acceleration of particles of such enormous energies is a challenging experimental task due to their minute flux, roughly one km2 century. The Pierre Auger Observatory, now nearing completion in Malargue, Mendoza Province, Argentina, is spread over an area of 3000 km2. Two techniques are employed to observe the cosmic ray showers: detection of the shower particles on the ground and detection of fluorescence light produced as the shower particles pass through the atmosphere. I will describe the status of the Observatory and its detectors, and early results from the data recorded while the observatory is reaching its completion.Organiser(s): L. Alvarez-Gaume / PH-THNote: * Tea & coffee will be served at 16:00.

  12. Exploring the Cosmic Ray Spectrum with the CREAM Experiment

    CERN Document Server

    Anderson, Tyler B

    The Cosmic Ray Energetics and Mass (CREAM) project endeavors to resolve the cosmic-ray spectrum in an energy range between 10^{10} and 10^{15} eV for all particles with charges in the range Z = 1 (hydrogen) to Z = 26 (iron). From 2004 to 2011, the CREAM instrument was flown in a succession of long-duration balloon (LDB) missions over the Antarctic continent. To date, it has completed six successful campaigns, for a cumulative 161 days in flight. Starting in 2011, CREAM began a process of reconguration in order to prepare for ISSCREAM a three-year mission bound for the International Space Station in 2014. In addition, a subset of detectors from CREAM's balloon flights have been upgraded and reassembled for the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) mission, which will mount a new LDB campaign during the 2013-2014 Antarctic summer season. The CREAM project is presented, with a special emphasis on the design, construction, and performance of CREAM's (and BACCUS') Timing Charge Detector (...

  13. Performance of the PRAXyS X-ray polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, W.B., E-mail: wataru.iwakiri@riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Black, J.K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Rock Creek Scientific, 1400 East-West Hwy, Silver Spring, MD 20910 (United States); Cole, R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Enoto, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hayato, A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hill, J.E.; Jahoda, K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kaaret, P. [University of Iowa, Iowa City, IA 52242 (United States); Kitaguchi, T. [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kubota, M. [Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Marlowe, H.; McCurdy, R. [University of Iowa, Iowa City, IA 52242 (United States); Takeuchi, Y. [Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tamagawa, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tokyo University of Science, 3-1 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. (Japan)

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2–10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  14. Performance of the PRAXyS X-ray polarimeter

    Science.gov (United States)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  15. Charge-coupled-device X-ray detector performance model

    Science.gov (United States)

    Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.

    1987-01-01

    A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.

  16. X-ray intensifying screens

    International Nuclear Information System (INIS)

    Luckey, G.W.; DeBoer, C.D.

    1982-01-01

    An x-ray intensifying screen comprises a support which has a luminescent composition comprising an isotropic phosphor and a polymer having an index of refraction within 0.02 of that of the phosphor over at least 80 percent of its emission spectrum. The support has an index of refraction up to or equal to 0.05 units higher than that of the phosphor and has a reflection optical density of at least 1.7 to light emitted by the phosphor. A preferred luminescent composition comprises Kl:Tl, Rbl:Tl at BaSrFCl:Eu mixed with two monomers such as 1-naphthylmethylmethacrylate, S(1-naphthylmethyl) thioacrylate, 1-bromo-2-naphthylacrylate, and benzyl methacrylate, coated on black anodised Al and polymerised in situ. The ratio of monomers is adjusted to give the desired refractive index. Other phosphors, polymers and supports are specified together with the preparation of the monomers and polymers. (author)

  17. X-ray protective garment

    International Nuclear Information System (INIS)

    Wardley, R.B.

    1981-01-01

    This patent claim relates to a protective apron. It incorporates material comprising an array of at least two superposed sheets prepared from a composition comprising a natural or synthetic polymeric material, optionally in combination with a plasticiser, and, as a filler, a material serving as an x-ray absorber, the outer, or the outer two sheets having on their outer surfaces a decorative and/or protective surface covering, for example, a layer of unfilled rubber or plastics material, the array of superposed sheets being bonded together round its edges, there being unbonded areas between the sheets in regions away from the edges. Bonding may be by welding, adhesion or stitching. (U.K.)

  18. Anomalous x-ray scattering

    International Nuclear Information System (INIS)

    Wendin, G.

    1979-01-01

    The availability of tunable synchrotron radiation has made it possible systematically to perform x-ray diffraction studies in regions of anomalous scattering near absorption edges, e.g. in order to derive phase information for crystal structure determination. An overview is given of recent experimental and theoretical work and discuss the properties of the anomalous atomic scattering factor, with emphasis on threshold resonances and damping effects. The results are applied to a discussion of the very strong anomalous dispersion recently observed near the L 3 edge in a cesium complex. Also given is an overview of elements and levels where similar behavior can be expected. Finally, the influence of solid state and chemical effects on the absorption edge structure is discussed. 64 references

  19. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  20. X-ray tomographic apparatus

    International Nuclear Information System (INIS)

    Walters, R.G.

    1982-01-01

    An x-ray tomographic system consists of a radiation source such as gamma or x radiation which produces a fan-shaped beam. The fan is wide enough to encompass the patient circle. The system further includes means for rotating the radiation source about the patient for less than a full rotation, and detectors for detecting the radiation at positions that surround the patient by 180 0 plus the angle of the fan beam plus the angle between adjacent fan detectors. Attenuation data from the detectors is sorted into detector fans of attenuation data, then processed. The convolved data is back-projected into an image memory and displayed on a video monitor

  1. Soft x-ray interferometry

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument's components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200 angstrom wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency

  2. Acoustooptics of x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Balakhanov, M.V.; Pustovoyt, V.I.; Radzhabov, R.U.; Khabibullayev, P.K.

    Scattering of x-rays by acoustic phonons in crystals during excitation of a noise phonon flux thermodynamically at equilibrium is analyzed from the standpoint of the dynamic diffraction theory, emphasis being put on the differences with the conventional acoustooptic effect attributable to lower frequencies and smaller amplitudes. The structural peak and the diffusional peak are calculated from known relations for the intensity of scattering in each mode, assuming that the Laue condition is satisfied. Interaction of x-rays and an acoustic wave is considered, the conditions for a diffraction peak being determined by the relations between location of that peak and angular dimensions of the structural peak. Experiments were performed in crystals of photosensitive piezoelectric semiconductors with phonon generation. Rectangular or variable-shape voltage pulses with amplitudes up to 800 V were applied to 6-60 ..mu..m thick CdS crystals at repetition rates up to 800 Hz. The electron concentration was (1.3-4.5) x 10/sup 14/ cm/sup -3/ and the electron mobility, according to saturation of the current-voltage characteristics, was differentially in time. The results reveal sharp anisotropy of scattering, evident in the dependence of scattering intensity on the angle of crystal rotation and the resulting lobar scattering pattern. Structural scattering varies exponentially and diffusional scattering varies linearly with increasing amplitude of the applied voltage. According to the dependence of the spectral density of phonon generation on the concentration of charge carriers, the phase of the scattering effect changes upon transition from the structural range to the diffusional range. 8 references, 3 figures.

  3. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  4. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    International Nuclear Information System (INIS)

    Vink, Jacco

    2009-01-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  5. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    Science.gov (United States)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  6. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  7. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  8. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  9. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  10. Exploring cosmic homogeneity with the BOSS DR12 galaxy sample

    Energy Technology Data Exchange (ETDEWEB)

    Ntelis, Pierros; Hamilton, Jean-Christophe; Busca, Nicolas Guillermo; Aubourg, Eric [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Goff, Jean-Marc Le; Burtin, Etienne; Laurent, Pierre; Rich, James; Bourboux, Hélion du Mas des; Delabrouille, Nathalie Palanque [CEA, Centre de Saclay, IRFU/SPP, F-91191 Gif-sur-Yvette (France); Tinker, Jeremy [Department of Physics and Center for Cosmology and Particle Physics, New York University, 726 Broadway, New York (United States); Bautista, Julian [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Delubac, Timothée [Laboratoire d' astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix (Switzerland); Eftekharzadeh, Sarah; Myers, Adam [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, Meyer Hall of Physics, New York, NY 10003 (United States); Vargas-Magaña, Mariana [Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, México (Mexico); Pâris, Isabelle [Aix Marseille Universite, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, 13388, Marseille (France); Petitjean, Partick [Institut d' Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, Paris, 75014 France (France); Rossi, Graziano, E-mail: pntelis@apc.in2p3.fr, E-mail: jchamilton75@gmail.com [Department of Astronomy and Space Science, Sejong University, Seoul, 143-747 (Korea, Republic of); and others

    2017-06-01

    In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, 3 h {sup −3} Gpc{sup 3} at 0.43 ≤ z ≤ 0.7. We study the scaled counts-in-spheres, N(< r ), and the fractal correlation dimension, D{sub 2}( r ), to assess the homogeneity scale of the universe using a Landy and Szalay inspired estimator. Defining the scale of transition to homogeneity as the scale at which D{sub 2}( r ) reaches 3 within 1%, i.e. D{sub 2}( r )>2.97 for r >R {sub H} , we find R {sub H} = (63.3±0.7) h {sup −1} Mpc, in agreement at the percentage level with the predictions of the ΛCDM model R {sub H} =62.0 h {sup −1} Mpc. Thanks to the large cosmic depth of the survey, we investigate the redshift evolution of the transition to homogeneity scale and find agreement with the ΛCDM prediction. Finally, we find that D{sub 2} is compatible with 3 at scales larger than 300 h {sup −1} Mpc in all redshift bins. These results consolidate the Cosmological Principle and represent a precise consistency test of the ΛCDM model.

  11. Time Variabilities of Solar Wind Ion Fluxes and of X-ray and EUV Emissions from Comet Hyakutake

    Science.gov (United States)

    Neugebauer, M.; Cravens, T.; Lisse, C.; Ipavich, F.; von Steiger, R.; Shah, P.; Armstrong, T.

    1999-01-01

    Observations of X-ray and extreme ultraviolet (EUV) emissions from comet C/Hyakutake 1996 B2 made by the Rontgen X-ray satellite (ROSAT) and the Extreme Ultraviolet Explorer (EUVE) revealed a total X-ray luminosity of about 500 MW.

  12. X-rays in protoplanetary disks : Their impact on the thermal and chemical structure, a grid of models

    NARCIS (Netherlands)

    Aresu, G.; Kamp, I.; Meijerink, R.; Woitke, P.; Thi, W. F.; Spaans, M.C.

    X-rays impact protoplanetary disks hydrostatic, thermal and chemical structure. The range of efficiency of X-rays is explored using a grid modelling approach: different parameters affects the structure of the disk, this determines different contribution of the X-ray radiation to the chemistry and

  13. Chandra and RXTE studies of the X-ray/gamma-ray millisecond pulsar PSR J0218+4232

    NARCIS (Netherlands)

    Kuiper, L.; Hermsen, W.; Stappers, B.W.

    2004-01-01

    We report on high-resolution spatial and timing observations of the millisecond pulsar PSR J0218+4232 performed with the Chandra X-ray Observatory (CXO) and the Rossi X-ray Timing Explorer (RXTE). With these observations we were able to study: (a) the possible spatial extent at X-ray energies of the

  14. Arrangement for X-ray shield

    International Nuclear Information System (INIS)

    1980-01-01

    X-ray screen unit consisting of a light transmissive carrier onto which scintillation material is deposited, which is able to generate light under the influence of incident X-ray irradiation, characterised in that the X-ray screen comprises a number of sectors, wherein the surface with respect to the incident X-radiation is maintained at an acute angle. (G.C.)

  15. X-ray image intensifier tube

    International Nuclear Information System (INIS)

    1981-01-01

    An improved real-time x-ray image intensifier tube of the proximity type used for medical x-ray fluoroscopy is described. It is claimed that this intensifier is of sufficient gain and resolution whilst remaining convenient to use and that the design is such that the patient dosage is minimized whilst the x-ray image information content at the scintillator-photocathode screen is maximized. (U.K.)

  16. Applications of soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1993-01-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed

  17. The Livermore X-ray Laser Program

    International Nuclear Information System (INIS)

    Matthews, D.L.

    1992-01-01

    I will report on the status of x-ray laser development and its applications at Livermore. I will review some of our recent results and comment on where our future research is headed including plans for developing a compact x-ray laser users facility. Finally, I will briefly summarize the results of an X-ray Laser Applications Workshop that was held in San Francisco in January 1992

  18. X-ray spot film device

    International Nuclear Information System (INIS)

    1981-01-01

    Improvements are described in an X-ray spot film device which is used in conjunction with an X-ray table to make a selected number of radiographic exposures on a single film and to perform fluoroscopic examinations. To date, the spot film devices consist of two X-ray field defining masks, one of which is moved manually. The present device is more convenient to use and speeds up the procedure. (U.K.)

  19. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  20. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers